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émanant des établissements d’enseignement et de
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Predictive scheme for observer-based control of LTI systems with unknown
disturbances

V. Léchappé, E. Moulay, F. Plestan, A. Glumineau and A. Chriette

Index Terms— Input delay, unknown disturbance, reduction
method, predictive control, observation.

Abstract— In this work, it is shown that the results introduced
in [1], that hold for full state measurement, can be extended
to partial state measurement. In particular, it is proven that
the combination of an observer with the new predictive scheme
of [1] leads to a better disturbance attenuation than using the
same observer with the standard predictive scheme. Finally,
some simulations illustrate the results for constant and time-
varying disturbances.

I. I NTRODUCTION

One of the first work on the control of input delay systems
is the well-known Smith predictor [2]. It is a frequency
domain approach for SISO and open-loop stable systems.
In the 80’s, the Finite Spectrum Assignment (FSA) [3], [4]
and the model reduction, also called Artstein reduction [5],
have extended Smith’s work to MIMO, open-loop unstable
systems. All these techniques lead to state feedback con-
trollers because they use the prediction and the full state has
to be known to compute the prediction. Furthermore, these
reference articles do not deal with disturbance attenuation. A
complete analysis of predictive control can be found in [6].

In spite of numerous works on Time Delay Systems
(TDS), very few articles deal with disturbance attenuation
in presence of delay in the input even if there is a real
interest from a practical point of view. Indeed, it is really
a complex challenge even for linear systems. Some robust
control methods have been extended to input delay systems.
First, sliding mode control, known for its robustness in the
delay-free case, has been adapted to input delay systems
by using “surfaces” [7], [8] or a standard surface [9], [10].
The problem of sliding mode with relay systems is the
unavoidable apparition of oscillations [11].H∞ control has
also been studied for input delay systems and a review is
proposed in [12]. A complete analysis of this topic is also
provided by [13]. All these works consider that the whole
state is available for measurement.

On the contrary, many works tackle the observer-based
control problem but in the disturbance free case. The problem
of state reconstruction for system with delayed input has
been addressed first in [14] and [15]. Then, their works have
been extended to observer-based control. In [16], a predictive
feedback control from the reconstructed states is designed.
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The problem of output feedback for nonlinear systems is
addressed in [17] but the designed controller does not involve
any prediction. In [18], the controller is a Truncated Predictor
Feedback (TPF) introduced in [19].

To the authors knowledge, there exist only two works
combining output predictive feedback and perturbation atten-
uation. In the discrete framework, [20] uses a disturbance ob-
server and a linear predictive feedback. In [21], a geometric
approach is used to show the existence of an output predictive
feedback that minimizes the effect of the disturbance on the
system. However, they use the standard prediction so the
disturbance attenuation can be improved by using the new
predictive scheme proposed in [1].

This work extends the results of [1] to the systems with
partial state measurement. The combination of an observer
with the new predictive scheme allows the design of con-
trollers that performs a better disturbance attenuation than
the standard reduction method. This extension is particularly
interesting from a practical point of view.

The paper is organized as follows. The problem formula-
tion is given in Subsection II-A and the predictive schemes
with full state feedback is recalled in II-B. The predictive
schemes for partial state measurement is introduced at the
end of Section II. Section III provides a comparison between
the standard and the new predictive schemes with partial
state measurement. Theoretical results are illustrated by
simulations in Section IV. Finally, some conclusions are
drawn in Section V.

II. PROBLEM STATEMENT AND PREDICTIVE APPROACHES

A. Problem Statement

The considered systems are LTI systems with a delayh

acting on the control inputu and an additive disturbanced






ẋ(t) = Ax(t) +Bu(t− h) + d(t)
y(t) = Cx(t)
u(t) = u0(t) for all t ∈ [−h, 0[
x(0) = x0

(1)

with x(t) ∈ R
n, u(t) ∈ R

m, d(t) ∈ R
n, A ∈ R

n×n, B ∈
R

n×m andC ∈ R
p×n.

Assumption 1:A, B andC are constant and known, the
pair (A,B) is controllable, the pair(C,A) is observable.

Assumption 2:h > 0 is constant and known.

Let I ⊆ R be an unbounded interval andS ⊆ R
m be a set.

The space of locally integrable functionsu(.) defined onI
and taking values intoS is denoted byL1

loc(I, S).



Assumption 3:u is a locally integrable function:u ∈
L1
loc([−h,+∞[,Rm).

Assumption 4:d : R≥0 → R
n is an unknown function

such that for allt ≥ 0,

||d(t)|| ≤ dmax < +∞ (2)

and for all t ≥ h,

||d(t)− d(t− h)|| ≤ hDmax < +∞. (3)
The inequality (3) is implied by (2) choosingDmax = 2dmax

h

but more accurate upper bound may exist.

B. Predictive schemes with full state knowledge

In this subsection, the new predictive scheme designed in
[1] is recalled. This scheme is based on the definition of a
new predictionXp̂:

Definition 1: Let us define:

Xp̂(t) = xp̂(t) + x(t)− xp̂(t− h) (4)

for all t ≥ h, with xp̂ given by

xp̂(t) = eAhx(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (5)

The integral term in (5) and all the integral terms mentioned
in the sequel are well defined thanks to Assumptions 3 and
4.

The termxp̂ is the standard prediction that is used in
almost all papers about predictive control of input delay
systems [5],[4], [2]. Basicaly,Xp̂(t) is equal to the standard
predictionxp̂(t) corrected byx(t) − xp̂(t − h). This latter
term represents the prediction error at instantt − h due to
the unknown perturbationd:

x(t)− xp̂(t− h) =

t∫

t−h

eA(t−s)d(s)ds

Note that the computation ofXp̂ does not require any knowl-
edge of the perturbation but it requires the full knowledge
of x.

The reduction method consists in rewritting system (1) in
terms of predictions1. For the standard predictionxp̂, the
transformation leads to the delay free system:

ẋp̂(t) = Axp̂(t) +Bu(t) + eAhd(t). (6)

For the new predictionXp̂, it yields to

Ẋp̂(t) = AXp̂(t)+Bu(t)+d(t)+eAh
[

d(t)−d(t−h)
]

. (7)

Then, the objective consists in designing the control lawu

on delay free systems (6) or (7). In the rest of the paper,
• designing a controller based on the standard predictive

sheme will refer to the design of a control law on (6)
so the controller will read asu = f(xp̂);

1In the Artstein reduction method [5], the system is turned into a delay
free system using the transformationZ(t) = e−Ahxp̂(t).

• designing a controller based on the new predictive
scheme will refer to the design of a control law on (7)
so the controller will read asu = f(Xp̂).

It has been shown in [1] that a controller of the form
u(t) = f(Xp̂) (with f is a Lipschitz continuous function)
leads to a better disturbance attenuation than a controllerof
the formu(t) = f(xp̂) for a wide class of perturbations. In
next subsection, previous considerations are extended to the
partial state measurement case.

C. Predictive schemes with partial state knowledge

The computation ofXp̂ involves the full knowledge of
statex in (4). However, when only a part of the state is
available, one can design an observer to first recontruct the
state and then compute the prediction in a similar way to
(4). Consider the Luenberger observer for (1):

˙̂x(t) = Ax̂(t) +Bu(t− h) + L(y(t)− Cx̂(t)). (8)

Note that (8) can be implemented becauseh is known.
The coefficientL has to be properly chosen such that the
following error dynamics is practically stable2

ė(t) = Ae(t)− LCe(t) + d(t) (9)

with e(t) = x(t) − x̂(t). In particular,L can be chosen
such that the convergence error of the nominal system, with
d(t) = 0, is exponentially stable. Observability Assumption
1 guarantees the existence of such a gain.

From Lemma 9.2 in [23] and Assumption 4, one can state
that there existsT , Γ > 0 such that for allt > T

||e(t)|| ≤ Γdmax (10)

and

||e(t)− e(t− h)|| ≤ hΓDmax. (11)

From the estimated statêx, we can computêXp̂, the “recon-
structed new prediction”:

Definition 2: Let us define:

X̂p̂(t)= x̂p̂(t) + x̂(t)− x̂p̂(t− h) (12)

for all t ≥ h, with x̂p̂ given by

x̂p̂(t)=eAhx̂(t) +

t∫

t−h

eA(t−s)Bu(s)ds. (13)

Like in subsection II-B, the dynamics of (1) can be rewrit-
ten in the coordinate of the reconsructed predictions. The
reduction inx̂p̂ leads to the system :

˙̂xp̂(t) = Ax̂p̂(t) + Bu(t) + eAhLCe(t)
︸ ︷︷ ︸

dx̂(t)

. (14)

2Practical stability means that the observation errore converges to a ball
of radiusr > 0 around the origin [22].



As for the transformation witĥXp̂, one obtains

˙̂
Xp̂(t)=AX̂p̂(t)+Bu(t)+LCe(t)+eAhLC

[

e(t)− e(t− h)
]

︸ ︷︷ ︸

d
X̂
(t)

.

(15)
The objective of the next section is to show that the results
of [1] still holds when the state is partially known. In other
words, it will be proved that designing a controller on (14)
(u(t) = f(x̂p̂)) leads to better disturbance attenuation than
designing a controller on (15) (u = f(X̂p̂)). Similarly, to the
full state knowledge case,

• designing a controller based on the standard recon-
structed predictive sheme will refer to the design of
a control law on (14) so the controller will read as
u(t) = f(x̂p̂);

• designing a controller based on the new reconstructed
predictive scheme will refer to the design of a control
law on (15) so the controller will read asu = f(X̂p̂).

III. C OMPARISON BETWEEN PREDICTIVE SCHEMES WITH

PARTIAL MEASUREMENT

For time varying perturbations,i.e when Dmax > 0,
asymptotic stability cannot be achieved, only stability within
a ball around the origin is possible. The objective of this
subsection is to study the influence of the prediction scheme
on the error bound.

Let f be a Lipschitz continuous function and assume the
control

u(t) = f(x̂p̂(t)) (16)

is such that the origin of the closed-loop system (14)-(16)
with dx̂ = 0 is a globally exponentially stable equilibrium
point. The functionf : Rn → R

m is locally Lipschitz and
x̂p̂ is continuous so Assumption 3 holds. Besides, Theorem
4.14 in [23] guarantees the existence of a Lyapunov function
V (x̂p̂) that satisfies

c1||x̂p̂|| ≤ V (x̂p̂) ≤ c2||x̂p̂||

V̇ (x̂p̂) ≤ −c3||x̂p̂||∥
∥
∥

dV
dx̂p̂

∥
∥
∥ ≤ c4||x̂p̂||

(17)

with c1, c2, c3 and c4 positive constants. In addition, the
perturbation of system (14) is bounded and the following
maximization holds

||dx̂(t)|| ≤ Γ||eAh|| ||LC||dmax, ∀t ≥ T. (18)

Therefore, the assumptions of Lemma 9.4 in [23] are fulfilled
(equations (17) and (18)) so one deduces that for allt ≥ T

||x̂p̂(t)|| ≤ βe−α(t−T ) + γΓ||LC|| ||eAh||dmax (19)

with α, β and γ positive constants that depends onc1, c2,
c3 andc4.

Since (6) and (7) have the same form when there is no
perturbation,i.e dx̂(t) = 0 andd

X̂
(t) = 0, the controller

u(t) = f(X̂p̂(t)) (20)

guarantees that̂Xp̂ = 0 is a globally exponentially stable
equilibrium point of the closed-loop system (15)-(20) with
d
X̂
(t) = 0 for all t > 0. Similarly to u(t) = f(x̂p̂(t)),

Assumption 3 is verified foru(t) = f(X̂p̂(t)). Besides,
inequalities (17) still holds forX̂p̂:

c1||X̂p̂|| ≤ V (X̂p̂) ≤ c2||X̂p̂||

V̇ (X̂p̂) ≤ −c3||X̂p̂||∥
∥
∥

dV

dX̂p̂

∥
∥
∥ ≤ c4||X̂p̂||.

(21)

From Assumption 4, the inequality
∥
∥d

X̂
(t)

∥
∥ ≤ Γ||LC||

[
dmax+h||eAh||Dmax

]
, (22)

is verified for all t ≥ T . Relations (21) and (22) comply
with the assumptions of Lemma 9.4 in [23] so the following
inequality is obtained

||X̂p̂(t)|| ≤ βe−α(t−T ) + γΓ||LC||
[

dmax + h||eAh||Dmax

]

(23)
for all t ≥ T . The constantsα, β andγ are the same as in
(19) because they only depend on the form of the undisturbed
system. As it has been mentioned before, systems (14) and
(15) have the same representationχ̇ = Aχ + Bu(t) when
there is no observation error. Sincex is the solution of (1),

x(t+h) = eAhx(t)+

t∫

t−h

eA(t−s)[Bu(s)+d(s+h)]ds (24)

and one has

x̂p̂(t)− x(t+ h) = −eAhe(t)−

t∫

t−h

eA(t−s)d(s+ h)ds.

After evaluating above expression int− h, it follows that

||x(t)|| ≤ ||x̂p̂(t− h)||+ ηdmax + ||eAh|| ||e(t− h)||

with η =

∥
∥
∥
∥
∥

0∫

−h

eAsds

∥
∥
∥
∥
∥

. Similarly,

X̂p̂(t)− x(t+ h)= eAh[x(t)−e(t)]+
t∫

t−h

eA(t−s)Bu(s)ds

+x(t)−e(t)−eAh[x(t−h)−e(t−h)]

−
t−h∫

t−2h

eA(t−h−s)Bu(s)ds−x(t+ h)

Substitutingx(t+h) andx(t) by their expressions from (24)
leads to

X̂p̂(t)− x(t+ h) =−eAhe(t)− e(t) + eAhe(t− h)]

−

t∫

t−h

eA(t−s)[d(s+ h)− d(s)]ds.

Thus, the following maximization is derived

||x(t)|| ≤ ||X̂p̂(t− h)||+ ηhDmax + ||e(t− h)||+

||eAh|| ||e(t− h)− e(t− 2h)||. (25)



As a result, if (1) is controlled by the feedbacku(t) = f(x̂p̂),
the inequality

||x(t)|| ≤ βeαhe−α(t−T )+
[

η+Γ||eAh|| [1+γ||LC||]
]

dmax

︸ ︷︷ ︸

r1
(26)

holds and, if (1) is controlled by the feedbacku(t) = f(X̂p̂),
the inequality

||x(t)|| ≤ βeαhe−α(t−T )

+Γ [1+γ||LC||]dmax+
[

η+Γ||eAh|| [1 + γ||LC||]
]

hDmax

︸ ︷︷ ︸

r2
(27)

is verified. This proves the following theorem.

Theorem 1:Consider system (1), observer (8) and
predictor-controllers (13)-(16) and (12)-(20), resulting in
error bounds respectivelyr1 in (26) and r2 in (27). If
Dmax > 0 and the bounds ond(t) comply with the relations

dmax

Dmax

> h
||eAh||

||eAh|| − 1
, (28)

then one getsr2 < r1 for ||eAh|| > 1.

In addition, dmax and Dmax are supposed to be known
in order to apply this criterion but they are not used in
the controller design. Theorem 1 and equations (26) and
(27) show that the design of a Lipschitz controller with
the new reconstructed prediction̂Xp̂ given by (20) leads
to a smaller error bound than designing a controller with
the standard reconstructed prediction (16). Consequently,
the new predictive scheme is said to better attenuate the
disturbances than the standard one. Note that the criterion
(28) is the same as in [1]: it is independent of the observer
choice. Indeed, the same observer is designed in both cases:
it means that whatever the observer (robust, finite time), (28)
will remain unchanged. The result holds for a wide class of
functionsf so it gives the possibility to robustly stabilize
X̂p̂ at zero. However, even if̂Xp̂ converges to zero, there
are inevitable errors in (25) when the perturbation is time-
varying:

• ||e(t−h)||+ ||eAh|| ||e(t−h)−e(t−2h)|| is due to the
observation error and it can be attenuated by the design
of a robust observer;

• ηhDmax is independent of the controller and the ob-
server and cannot be reduced.

Note that if the observation error in (26) and (27) is canceled,
we get back to the full state knowledge case like in [1].
Theorem 1 holds for time-varying disturbances,i.e when
Dmax > 0. Nevertheless, for constant disturbances,r1 is
not modified andr2 becomes

r2 = Γ [1 + γ||LC||] dmax if Dmax = 0;

so one always hasr2 < r1. These results are going to be
illustrated in the next section.

IV. SIMULATION

A. Model presentation, observer and predictor-controller
design

A second order perturbed system has been chosen to
illustrate the results. Its state space representation is






ẋ(t) =

[
0 1

−a0 −a1

]

x(t) +

[
0
1

]

u(t− h) +

[
0

d(t)

]

y(t) = x1(t)
(29)

with a0 = 9 and a1 = −3. The parameters chosen for all
the simulations areh = 0.5 s, x(0) = [1.5, 1]T and x̂(0) =
[0, 0]T . Two Luenberger observers are tested:

˙̂x(t) = Ax̂(t) +Bu(t− h) + L1(y(t)− Cx̂(t)) (30)

and

˙̂x(t) = Ax̂(t) +Bu(t− h) + L2(y(t)− Cx̂(t)) (31)

with L1 and L2 such that (31) is faster than (30). In the
sequel, the components of a vector are denoted by the
subscript “i”. For instance, one hasxp̂ = [xp̂1, xp̂2]

T . The
PID controllers used in the simulation are defined in Table I
and the functionf is defined below

f(χ) = kpχ1(t) + kdχ2(t) + ki

∫ t

0

χ1(s)ds. (32)

Controllers (33) and (34) are designed using the whole state
in order to have a comparison point with observer-based
controllers (35) and (36). Finally, two kinds of disturbances,
d1 and d2, are chosen as shown on Figure 1. The analytic
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d1(t)

d2(t)

time (s)

Fig. 1. Disturbances:d(t) = d1(t) or d(t) = d2(t)

expression ofd2 is

d2(t) = 3 sin(t+
π

4
)

so dmax = 3 andDmax = 3.



STANDARD PREDICTIVE SCHEME NEW PREDICTIVE SCHEME

Full State Measurement u(t) = f(xp̂) (33) u(t) = f(Xp̂) (34)

Partial State Measurement u(t) = f(x̂p̂) (35) u(t) = f(X̂p̂) (36)

TABLE I

PREDICTIVE FEEDBACKS WITHf DEFINED IN (32),xp̂ IN (5),Xp̂ IN (4), x̂p̂ IN (13),X̂p̂ IN (12)

B. Comparison of the schemes for constant disturbanced1

In this subsection, the performances of the closed-loop
system (29) with one of the four controllers defined above
are compared. From the analysis of the results obtained with
“slow” observer (30) (see Figure 2), one concludes that:

• The controllers designed from the new predictionsXp̂

and X̂p̂ perform a better disturbance attenuation than
the controllers from the standard ones: the convergence
radius for solid lines is much smaller than for dotted
ones.

• The controllers obtained from the reconstructed pre-
dictions x̂p̂ (respectivelyX̂p̂) do not achieve as good
attenuation as the controllers from full state predictions
xp̂ (respectivelyXp̂): the convergence radius for black
solid line (respectively dotted line) is larger than blue
solid line (respectively dotted line).

• The observer-based controller (36) designed with the
new reconstructed predictive scheme performs better
disturbance attenuation than full state controller (33)
designed with the standard predictive scheme. This
confirms the improvement of the new predictive scheme
to attenuate perturbation.

Note that in the full state knowledge case, the new predictive
scheme (controller (34)) leads to the perfect rejection of the
constant disturbance. In the case of partial measurement,
this is not possible anymore because of the observation
error. However, it is clear on Figure 3 (results obtained with
“fast” observer (31)) that if the observer becomes faster the
results from the reconstructed predictions tend to the full
state knowledge case. Therefore, perfect rejection is almost
achieved for the controller (36) from the new reconstructed
scheme.

C. Comparison of the schemes for time-varying disturbances
d2

From the above subsection, it has been illustrated that the
faster the observer is, the more attenuated is the perturbation.
Therefore, only observer (31) has been used with the time-
varying disturbanced2. Note that criterion (28) is verified
becausedmax

Dmax
= 1 andh

||eAh||
||eAh||−1

≈ 0.58. The only differ-
ence with perturbationd1 is that, perfect rejection cannot be
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u=f(X̂p̂) (36)

u=f(Xp̂) (34)

u=f(x̂p̂) (35)

u=f(xp̂) (33)

||x||

time (s)

Fig. 2. Comparison between predictive feedbacks with “slow” observer
(30) and disturbanced1

achieved by a simple PID controller3 even if it is designed
with the new predictive scheme and full state knowledge.
Remark that it would not be possible in the delay free
case either. The behaviour of the system with observer-based
controllers (35) and (36) is diplayed on Figure 4. It is clear
that the controller designed on the new predictive scheme
performs better disturbance attenuation than the controller
from the standard predictive scheme because the convergence
radius for (36) is smaller than the convergence radius for
(35). This observation confirms the result of Theorem 1.

V. CONCLUSION

It has been shown that the results of [1] can be extended
to the case when only partial state measurement is avail-
able. In comparison with our previous work, an inevitable
observation error is introduced but the new predictive scheme
with the reconstructed state performs a better disturbance
attenuation than the standard scheme with the reconstructed
state. Besides, the faster the observer is, the closer the results

3It could have been possible to reject perfectly time-varying disturbances
with sliding mode control for example but in this casef is not Lipschitz
anymore.
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u=f(X̂p̂) (36)

u=f(Xp̂) (34)

u=f(x̂p̂) (35)

u=f(xp̂) (33)
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Fig. 3. Comparison between predictive feedback with “fast”observer (31)
and disturbanced1
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u=f(X̂p̂) (36)

u=f(x̂p̂) (35)

||x||

time (s)

Fig. 4. Comparison between predictive feedback with “fast”observer (31)
and disturbanced2

get to the full state measurement case. This result is very
interesting from a practical point of view. All the results are
illustrated by simulations. An extension to unknown delay is
one of the perspectives of this work.
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