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Delay and state observer for SISO LTI systems

V. Léchappé, J. De Lebn, E. Moulay, F. Plestan and A. Ghaau

Index Terms—Input delay, time delay estimation, robust as a parameter of the system and its identification is often
observer. combined to the identification of other parameters. Some

Abstract— This paper deals with the problem of state and authors use the frequency domain where the delay appears
delay estimation for SISO LTI systems, with unknown time- g5 g parameter in the exponential”s. In [1], the term

varying delay in the input. Thanks to an adequate approx- —hs : . . ;
imation of the delayed input by the Taylors theorem, an  © is approximated by a rational transfer function of the

original approach based on observer design is proposed in Padé form; then a standard discrete least-square algpisth
order to estimate both state and delay. This new technique used to minimize an objective function. Tuehal. [25] also
allows the estimation of time-varying delay. The convergere based their approach on the frequency domain and proposed
of the observer is formally proved. The efficiency of the metbd 3 continuous recursive least square algorithm. Howevir, th
is widely illustrated by simulations. method does not work if the initial conditions of the system

. INTRODUCTION are not perfectly known. In [19], a PDE approximation is
. used to extract the delay. In [8], a similar techniques as in

Input delay systems are a sybcategory of time-delay sy 5] is applied but the value of(t — h) is required. In [9],

tems (TDS). They especially include all remote controlle bservers have been used to identify the delay. However, all

?ewc?_s - The S?#rce ?f d_elayl_t|s rr:uluple: th? netkwgrlémcinthe state and its time-derivatives are needed; so the method
iguration (see the extensive literature on networke s very sensitive to noise measurement. In [2], a convatutio

system [14], [24]), compu_tational delays or physic_:al s proach is discussed for transfer function systems.
delays. When the delay is small or the sys.tem IS open IOOFPNote that, in all previously mentioned articles the delay is
stable, delay free controllers can often achieve stahitina constant

However, predictive techniques are often required as seon a ’

the delay becomes larger and cannot be neglected anymgyestate observation of TDS with unknown delay

[18], [23]. To use such methods, the exact value of the _ .

delay is needed. However, in real applications, it is quite In previous methods, transfer function models are often

difficult to measure the delay with precision so it has to bggnade:ﬂedoartwr? the tproblem of state dobTer_\;gttlﬁn IS br;Ot
estimated. For an exhaustive review of time delay estimatid?tress€d. ©n e contrary, Some papers deal wi € probiem
f state observation with an unknown delay but do not esti-

TDE) techni th d fer to th t [2 )
( ) techniques, the reader can refer to the report | ate the delay [11], [21], [22]. The references on that topic

by O’Dwyer. To build the prediction not only the delay is
needed but also all the state. However, standard obsenvatid © much more scarteAs far as the authors knowledge, the

techniques cannot be applied when the delay is unknow?\nly paper that deals with both delay identification andestat

In this paper, both problem are addressed : delay estimati{)%constructlon is [10]. The design of their state obserser i

and state observation argely based on a particular sampling/holding technique.

A. Delay identification C. Contribution

Time delay identification has often been based on a Thg_ mgin contribution of this paper is to offer an online
signal processing approach and particularly in the awusﬂpeptlflcatmn method, based on the theory of robust opser—
field [7][16]. These methods are not well adapted in thgaﬂo_n, for both state and delay. The method works for t_|me-
control context because they are usually offline methods a@'Ying delays and only requires the knowledge of the input
because they require the knowledge of the delayed sign¥flue and the output at time The observer convergence is
A survey of TDE techniques with a signal processing focuformally proven even for time-varying delays.
is given in [4]. On the contrary, some works use controb Paper's structure
oriented tools. In these approaches, the delay is considere’

The paper is organized as follows. The problem presen-
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Il. PROBLEM STATEMENT AND OBSERVABILITY By substitutingu(t — h(t)) by (3) in (1), an extended

ANALYSIS system with perturbation is obtained:
A. Problem statement T A -Bu| [z]  |B . By(t— h(t))
The considered systems are SISO LTI systems with a time {h} - [0 0 ] [h] + [0] )+ { n(t) }

varying delayh(t) acting on the control inpu: y=Cxzx

#(t) = Ax(t) + Bu(t — h(t)) Denoting the extended vectdf = [z h]T, X € R**!, the

y(t) = Cx(t) (1) system can be rewritten in the general form:

2(0) = o X = A(i) X + Bu(t) + T(t,t — h(t)) ©
with € R", u € R, A € R"*", B € R™!, C € R'*™, y=Y(X)=0X

This work is focused on the estimation of a single timey,o
varying delay in the input of LTI SISO systems; no parameter - . A —-Bu| 3 B| A
identification is considered here. Ala) = [0 0 ] B = [0} , ¢ =[C 0] and

Assumption 1:The matricesA, B andC are constant and
known. The pair(A, C) is observable. T(t,t —h(t)) = {BV(L‘ » h(t))] .

Assumption 2:The relative degree of system (1)1s n(t)

Assumption 3:The delay is a unknown and time-varying.It is important to note that the extended system (6) is delay-
It is modeled as a continuous and differentiable functiai th free, with respect to the input, thanks to the expression (3)
satisfiesh(t) € [0, h]. Its dynamicsh(t) = n(t) is unknown However, systems (1) and (6) are equivalent in the sense
and bounded for all ¢ > 0, |(t)] < H. The bounds: and that they have the same state trajectories. The transfamat
H can be unknown as well. is only a convenient way to rewrite the system in order to

Assumption 4:The inputw is at least twice time differ- apply existing results from observer literature. The eobr
entiable and the derivatives are bounded fortaf —h. In  approximatiorny is going to be considered as a perturbation
particular, there existd/ > 0 such that in the design of the observer as well as the dynamics of
the delayr. This is a key point of the method : considering
the delay dynamics as perturbation and designing a robust
for all + > —h. observer that is able to reconstruct the state and the delay i
The objective is to design an observer that reconstructs tggite of the uncertainty. In the next part, the observability
statez(t) and the delay:(t) from the only knowledge of the Of the extended system (6) is investigated.
outputy(t) and the inputy(t) and its Fime—derivatives. B. Delay observability

The Taylor’'s theorem is used to kick the delay out of the _. _ L

First the following assumption is made:

control. The inputy is differentiable for allt > —h. Then, : s )
P Assumption 5:The perturbationl’ does not modify the

li(t)] < M

there exists a function : | — h; R such that for all
o e A THneion J = hi+ool> R su observability of (6).
' Then, the observability condition for extended system (6)
w(t’) = u(t) + (t — tHu(t) + () (2) is given in the next theorem. See [13] for observability

definitions.
Theorem 1:Extended system (6) is observable if and only
if
u(t — h(t)) = u(t) — h(t)a(t) +(t — h(t))  (3) a(t) £0 ¥t > 0. ¥
Proof: First note that from Assumption 2, one has
e« CA'B=0forallisuchthat0 <i<n-—2

where~ is called the remainder. In particular for = ¢ —
h(t) > —h, it leads to

for all t > —h. Besides, since is twice differentiable from

Assumption 4, the remainderis such that « CA"1B£0
It — h(t))] < h22(t) M. (4y Consideringl’ = 0 (Assumption (5)), the observation space

is defined by

From expression (3), the first order approximationu¢f — (’)(Y):spar{Cx CAzx. ... CA" CA"x—CA"ilBuh}

h(t)) is ’ Y ’ '
u(t — h(t)) = u(t) — h(t)u(t). (5) Since the initial system is observable, one has

Note that it could be possible to extend the approximation dim spad Cdz, CAdz,. ..,CA" 'dz} = n

to higher order to make it more accurate. However, fro

a practical point of view, it has been arbitrarily decided to

stop at order one as a tradeoff between problems induced byO(Y') =spar{ Cdz, CAdz.,. . .,CA"'dz, —-CA™'Budh}

numerical differentiation and approximation precision. and din{dO(Y)) = n + 1 if and only if CA"~'Ba # 0.

2No restriction is made on the delay rat& can be larger than one Final!y_' from _[13]* _SYStem (6) is observable if and only if
(fast-varying delays) condition (7) is verified becaus€ A"~ ' B # 0. [ |



This is a logical condition because if the input is constantyith S given by (9) ande = X — X, the error dynamics
the delay as no influence on the system so it cannot luf the observer. The objective is to show that (11) complies
observed. This condition is very restrictive because itmsea with the assumptions of Lemma 9.4 in [15].
that the input has to be strictly monotonic. However, this From Lemma 1, there exisis andty such that
condition can be relaxed using the notion of persistence B
defined in [3]. The definition is recalled below. allel]* < V(e) < Blel” (12)

Definition 1: A measurable bounded signalis said to
be regularly persistent for system (6) if there exigts> 0,
a > 0 andty > 0 such thatmin; (A, (W (¢, T,4)) > « for all
t > to whereW (¢, T, 4) is the Observability Gramian and ¢ =[A(i) — SL1ETC)e. (13)
A\;(M) denotes the?” eigenvalue of the matri®/.

Roughly speaking, it allows to cancel at some isolated time Then, by using (9) and (13), the time derivative of (11) is
instants without deteriorating the estimation. ) o
Assumption 6:The signalu is regularly persistent. V(e) = —pe’Se—e"CTCe.

for all p > py andt > ty. Furthermore, the dynamics of the
observer of thaindisturbed system is

IIl. A NEW SCHEME OF DELA¥STATE OBSERVER Sincee”CTCe > 0, one has the inequality
A. Kalman like observer design [12]

Kalman-like observer is easy to tune because it only has
one parameter to adjust and it is well adapted for lineah addition,V satisfies the relation
systems with matrixd depending on an external signal. That
is why, it has been chosen in this work. From [12], a Kalman-
like observer for (6) reads as

V(e) < —palle]|?. (14)

ov -
%2 < 28t (15)

X = A(u)X + Bu — S—lR@T@(X - X) (8) Equations (12), (14) and (15) holds globally so Lemma 9.4

o i from [15] ensures that
where the matrixS is the solution of

8= —pS— AW)TS — SA@) +CTC lle(®)]] < klle(to)l] exp (~8(t — to)) +
S(0) >0 _ \/E -
with p a positive constant an&® a diagonal matrix acting with k= /. 0 = 28 and
as a filter. In the noise-free cask,= I,, (identity matrix of 9232
ordern). = e [IT@)]]- (16)
t>to

B. Practical stability of the observer -

The time-varying perturbations(¢ — h(t)) andn(t) pre- |y a particular case, it is possible to evaluate the value. of
vent the asymptotic convergence of the observer error. Con'CoroIIary 1: For constant delays and ramp inputs, the

sequently, only a practical convergence to a ball of radius opgeryation error converges exponentially to zero and one
around the origin is achievable. The sizera$ tightly related 4, — (.

to the size of the perturbation and the observer gain. The

following lemma, given in [3], will be useful to formulate

the main result. sup [|T(t)|| < eth®M + o H
Lemma 1:Consider thatS is defined by (9) and that t>to

Assumption 6 holds. Then there exists a r@abuch that for

any symmetric positive definite matri%(0), for all p > po,

there existsx > 0, 5 > 0, to > 0 such that for allt > ¢,

Proof: Assumptions 3 and 4 gives

with ¢; and ¢; stricly positive scalars. Furthermore, if the
delay is constant then its dynamics is equal to zeré/se 0;
if the input is a ramp, its second time-derivative (isso
i1 < S(t) < Bt M = 0. As a consequence, the upper bound’of 0 and
the radiusr given in (16) cancels which ends the prooli
g Note that if the delay is slowly-varying then the approx-
Now, the main result can be stated. _ imation will be more accurate becaugg will be smaller.
Theorem 2:Consider system (6) and any inputt) and  gimilarly, the smallerM andh, the finer the approximation
delay h(t) such that Assumptions 1-6 are fulfilled. Then,sy ang the smaller the convergence radiudheoretically,
there exist positive scalats, k, r, 6 such that for alt > o j; s possible to add higher order terms in the approximation
the following inequality holds: (5) to reduce the uncertain term however, it would require
HX(t) _ X(t)H < klle(to)]| exp(—6(t — to)) + . (10) to compute high order time-derivatives af Observer (8)
does not guarantee the boundednesshofo [0,2] so a
projection off on [0, k] can be made if the bounds are known
[5][6][10]. Simulation results are provided in the next Sec
V(e) =€l Se (11) to illustrate the efficiency and the limits of this new method

where [, .1 is the identity matrix of orden + 1.

Proof:
Define the Lyapunov candidate function as



IV. SIMULATIONS
A. Model presentation and observer design

u2
A second order system has been chosen to illustra 5¢ ' .
previous result. Its input-output representation reads as

10 uy

. . Q == \;
§+ 51y + Boy = u(t — h(?)), (17)
and its state space representation is P05 10 15 20 25 30 35 40 45 50
)= | o0+ | ute = nie) —
y(t) = Cx(t) = 21 (). 0.2

The system is observable and the relative degrageaxfuals 01 / 8
two; Assumptions 1 and 2 hold. The parameters chosen f ok \ .
all the simulations are(0) = [1.5,1]7, 8, = 2, 2 = 3 and //

h(t) € [0,1]. The extended system is defined by matrices: O 15 20 25 30 3 20 a5 50
0 1 0 0 time (s)
Afa) = —Oﬁo —051 _Ou » B= (1) and¢’ =10 0]. Fig. 1. Inputs and observation singularity

The parametep is chosen equal to %(0) = I5 (the identity

matrix of dimension3). The value ofp is a compromise R | T S A B noh
between fast time-response and noise amplification (in tt 0.05f 2
real case). The initial conditions of the observer afe) = ol .
[0,0]” and h(0) = 0.4. o A4
B. Noise-free simulations o |
Two kinds of delay are used in the sequel: 05 10 15 20 25 30 35 40 45 50
015foro<t<1s o
e hi(t)=< 0.6 for 15 <t <30 08 — @

0.3 otherwise
The delayh, is a piecewise function whose each sub functiol
complies with Assumption 3. The delay, complies with
Assumption 3. Two cases of input signals are tested: o ‘ ‘ ‘ ‘ ‘
e a ramp :ul(t) = 0.2t 0 5 10 15 20 timZES(S) 30 35 40 45 50
« a sinusoidal inputusy(t) = sin(0.1t)
For the inputu,, one hasi,(t) = 0.2 and ;(t) = 0 so
Assumption 4 and 6 are true. The input is regularly
persistent because the condition (7) holds almost evemavhe
so Assumption 6 is true. Figure 1 displays inpufsuz and |t js clear thate, = # — z ande, = h — h converge to a
their derivatives. neighborhood around the origin and the size of this ball can
On Figure 2, the simulation is carried out with the delayye adjusted thanks to the gainFigure 4 shows this feature,
hy and the inputul. It can be noted that the observationwith p =15, the convergence radius has decreased.
errors tend to zero asymptotically (exponentially) beeaus  On Figure 5, the piecewise constant delay is asso-
« the delay dynamics(t) is O since the delay is piecewise ciated to the sinusoidal input,. One can notice that the

Fig. 2. Simulation 1 witha(t)=h1(¢t) andu(t)=wu1(t) (ramp)

constant; convergence radius far, is smaller whenh is small. This
« the Taylor approximation (5) is exaet (t — h(t)) = is is mainly due to the accuracy of the approximation (5)
up(t) — h(t)uy(t). that is better for small delays. The peaks are caused by the

Consequently, the pertubation teifrin (6) is equal to 0 and Singularity in the observer gair5("') and the poor accuracy

the convergence radius is reduced to 0. This result illtesra of the approximation (5) for large delays.

Corollary 1. The last configuration with the sinusoidal inptgt and the
Figure 3 shows the result for the time-varying defay time varying-delay:, is presented on Figure 6. The analysis

and the ramp input:;. The Taylor approximation is still is the same as the one of simulations 2 and 3:

exact sov in (6) is equal to 0. However, the observation « some peaks appear on the graph fofdue to the

error x — z does not tend to zero exponentially. Indeed, the  observation singularity;

observation errof,—h, is introduced in the state observation. « the convergence radiuses fef ande;, are larger than



To — T2 T2 — T2
0.05 7 0.05 1
or\y 0 ~—
-0.05 y -0.05 4
0.1 i i i i i i i i i 0.1 i i i i i i i i i
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
—————— h
08 h(t)
h(t)
06 e o

Observation singularity
i i i i i
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

time (s) time (s)
Fig. 3. Simulation 2 withh(t) = ha(t) and u(t) = u1(¢t) (ramp) and Fig. 5. Simulation 3 withh(t)=h1 (t) andu(t) =u2(t) (sine)
p=>5
Olg— T T === xr1 — il
(1 e ——E— e e e M R R R T, — T1 T2 — T2
To — T2 0.051 . -
0.05 H 7
ok
0 v
-0.05F J
-0.05F 1
o1 i i i i i i i i i
—01 i i i i i i i i i 5 10 15 20 25 30 35 40 45 50

5 10 15 20 25 30 35 40 45 50

Observation singularity
i i i i

i i i i i 0 5 10 15 20 25 30 35 40 45 50
0 5 10 15 20 25 30 35 40 45 50 time (s)
time (s)

Fig. 6. Simulation 4 withi(t) =ha(t) andu(t) =wu2(t) (sine)
Fig. 4. Simulation 2 withh(t) = ha(t) and u(t) = u1(¢t) (ramp) and
p=15

(@ = 0). This method will be tested in the next subsection.

for constant delay because of the tent) 7 0. C. Simulations with noisy measurement and noisy input

Previous simulations have confirmed theoretical results. In practice, the measurement and the input can be affected

They _iIIustrate the efficiency of the proposed robust observ by noise. In the next simulation, a 5% white noise has been

technique added to the output (measurement) and the input. A diagonal
« to reconstruct the state of a system with an unknowmatrix R has been implemented in the observer (see (8)) to

and possibly time-varying delay in the input; filter the noise and a Levant differentiator [17] has beerduse

» to estimate the delay value. to compute the input derivative. Furthermore, to overcome
The choice of the input is crucial. Indeed, the quality othe observability singularity, the observer is turned off a

the delay estimation highly depends on the input dynamicsoon as|u(t)| < e. More precisely, only the delay-observer

As shown before, the ramp input is the best choice becaupart of (8) is turned off, the state-observer part still rufise

it does not introduce any observation singularity and beeauparametet has to be tuned according to the input dynamics,

the Taylor approximation is exact in this case. Howeves thiin the next simulatiore = 0.03.

is not always possible to apply it in practice. Consequently Figure 7 shows that the estimation accuracy is degraded

a basic idea is to design inputs that are similar to a ramp amdit the observer still converges. Note also that the conver-

turned off the observer when it gets closer to the singylaritgence is slower because of the filter. When the observer



is turned off, the gain of the last equation in (8) is set to[e]

zero soh = 0 that is Whyﬁ is constant. Because of this
observation, the technique is efficient when the delay sarie[7]
slowly; the tuning ofe has to be a tradeoff between avoiding
the singularity peaks and keeping an accurate estimation %]
h.

El

Olp————— T T = === 1 — 21
ro — T2
0.05 7 [10]
0 -
[11]
-0.05 1
ot 0 15 20 2 30 35 40 a5 s 12
------ h(t)
08 h(t) [13]
0.6
04 [14]
o2t [15]
T Observer turned: off 7 [16]
% 5 10 15 20 25 30 35 40 45 50
time (s)
[17]
Fig. 7. Simulation 5 withh(¢) = h1(t) and u(t) = u2(t) (sine) with [18]

measurement noise

[19]
V. CONCLUSION

This paper presents a new and original approach ffo
observer design of input delay systems. This observation
solution allows to estimate both state and delay (time-
varying). The Taylor approximation is exploited to take?!]
out the delay from the retarded input. Then an extended
system is created with the delay as a part of the augmentigdl
state. An observability condition is derived from the asédy
of this extended system. Finally, a Kalman-like observer
is design and practical stability is obtained. It is shown
that asymptotic convergence can be achieved for constafit
delay with particular inputs. All the results are illustdtby |24
numerous simulations.

The extension to nonlinear or MIMO systems as wel
as the observation in closed-loop are considered for future
developments.
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