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Delay and state observer for SISO LTI systems

V. Léchappé, J. De León, E. Moulay, F. Plestan and A. Glumineau

Index Terms— Input delay, time delay estimation, robust
observer.

Abstract— This paper deals with the problem of state and
delay estimation for SISO LTI systems, with unknown time-
varying delay in the input. Thanks to an adequate approx-
imation of the delayed input by the Taylor’s theorem, an
original approach based on observer design is proposed in
order to estimate both state and delay. This new technique
allows the estimation of time-varying delay. The convergence
of the observer is formally proved. The efficiency of the method
is widely illustrated by simulations.

I. I NTRODUCTION

Input delay systems are a subcategory of time-delay sys-
tems (TDS). They especially include all remote controlled
devices. The source of delay is multiple: the network con-
figuration (see the extensive literature on networked control
system [14], [24]), computational delays or physical transport
delays. When the delay is small or the system is open loop
stable, delay free controllers can often achieve stabilization.
However, predictive techniques are often required as soon as
the delay becomes larger and cannot be neglected anymore
[18], [23]. To use such methods, the exact value of the
delay is needed. However, in real applications, it is quite
difficult to measure the delay with precision so it has to be
estimated. For an exhaustive review of time delay estimation
(TDE) techniques, the reader can refer to the report [20]
by O’Dwyer. To build the prediction not only the delay is
needed but also all the state. However, standard observation
techniques cannot be applied when the delay is unknown.
In this paper, both problem are addressed : delay estimation
and state observation.

A. Delay identification

Time delay identification has often been based on a
signal processing approach and particularly in the acoustic
field [7][16]. These methods are not well adapted in the
control context because they are usually offline methods and
because they require the knowledge of the delayed signal.
A survey of TDE techniques with a signal processing focus
is given in [4]. On the contrary, some works use control
oriented tools. In these approaches, the delay is considered
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as a parameter of the system and its identification is often
combined to the identification of other parameters. Some
authors use the frequency domain where the delay appears
as a parameter in the exponentiale−hs. In [1], the term
e−hs is approximated by a rational transfer function of the
Padé form; then a standard discrete least-square algorithm is
used to minimize an objective function. Tuchet al. [25] also
based their approach on the frequency domain and proposed
a continuous recursive least square algorithm. However, this
method does not work if the initial conditions of the system
are not perfectly known. In [19], a PDE approximation is
used to extract the delay. In [8], a similar techniques as in
[25] is applied but the value ofu(t− h) is required. In [9],
observers have been used to identify the delay. However, all
the state and its time-derivatives are needed; so the method
is very sensitive to noise measurement. In [2], a convolution
approach is discussed for transfer function systems.

Note that, in all previously mentioned articles the delay is
constant.

B. State observation of TDS with unknown delay

In previous methods, transfer function models are often
considered and the problem of state observation is not
adressed. On the contrary, some papers deal with the problem
of state observation with an unknown delay but do not esti-
mate the delay [11], [21], [22]. The references on that topic
are much more scarce1. As far as the authors knowledge, the
only paper that deals with both delay identification and state
reconstruction is [10]. The design of their state observer is
largely based on a particular sampling/holding technique.

C. Contribution

The main contribution of this paper is to offer an online
identification method, based on the theory of robust obser-
vation, for both state and delay. The method works for time-
varying delays and only requires the knowledge of the input
value and the output at timet. The observer convergence is
formally proven even for time-varying delays.

D. Paper’s structure

The paper is organized as follows. The problem presen-
tation and an observability study are provided in Section
II. Section III is dedicated to the observer construction
and the convergence analysis. The results are illustrated by
simulations in Section IV and a conclusion and some future
developments are given in Section V.

1However, there are a lot of works on state observation of TDS with
known delay (see [11] and references therein).



II. PROBLEM STATEMENT AND OBSERVABILITY

ANALYSIS

A. Problem statement

The considered systems are SISO LTI systems with a time
varying delayh(t) acting on the control inputu:







ẋ(t) = Ax(t) +Bu(t− h(t))
y(t) = Cx(t)
x(0) = x0

(1)

with x ∈ R
n, u ∈ R, A ∈ R

n×n, B ∈ R
n×1, C ∈ R

1×n.
This work is focused on the estimation of a single time-
varying delay in the input of LTI SISO systems; no parameter
identification is considered here.

Assumption 1:The matricesA, B andC are constant and
known. The pair(A,C) is observable.

Assumption 2:The relative degree of system (1) isn.
Assumption 3:The delay is a unknown and time-varying.

It is modeled as a continuous and differentiable function that
satisfiesh(t) ∈ [0, h̄]. Its dynamicsḣ(t) = η(t) is unknown
and bounded2: for all t > 0, |η(t)| ≤ H . The bounds̄h and
H can be unknown as well.

Assumption 4:The inputu is at least twice time differ-
entiable and the derivatives are bounded for allt > −h̄. In
particular, there existsM > 0 such that

|ü(t)| ≤ M

for all t ≥ −h̄.
The objective is to design an observer that reconstructs the
statex(t) and the delayh(t) from the only knowledge of the
outputy(t) and the inputu(t) and its time-derivatives.

The Taylor’s theorem is used to kick the delay out of the
control. The inputu is differentiable for allt > −h̄. Then,
there exists a functionγ : ]− h̄; +∞[→ R such that for all
t′ > −h̄,

u(t′) = u(t) + (t− t′)u̇(t) + γ(t′) (2)

whereγ is called the remainder. In particular fort′ = t −
h(t) > −h̄, it leads to

u(t− h(t)) = u(t)− h(t)u̇(t) + γ(t− h(t)) (3)

for all t > −h̄. Besides, sinceu is twice differentiable from
Assumption 4, the remainderγ is such that

|γ(t− h(t))| ≤
h2(t)

2
M. (4)

From expression (3), the first order approximation ofu(t−
h(t)) is

u(t− h(t)) ≈ u(t)− h(t)u̇(t). (5)

Note that it could be possible to extend the approximation
to higher order to make it more accurate. However, from
a practical point of view, it has been arbitrarily decided to
stop at order one as a tradeoff between problems induced by
numerical differentiation and approximation precision.

2No restriction is made on the delay rate;H can be larger than one
(fast-varying delays)

By substitutingu(t − h(t)) by (3) in (1), an extended
system with perturbation is obtained:






[

ẋ

ḣ

]

=

[

A −Bu̇

0 0

] [

x

h

]

+

[

B

0

]

u(t)+

[

Bγ(t− h(t))
η(t)

]

y = Cx

Denoting the extended vectorX = [xT h]T , X ∈ R
n+1, the

system can be rewritten in the general form:
{

Ẋ = Ā(u̇)X + B̄u(t) + Γ(t, t− h(t))
y = Y (X) = C̄X

(6)

where

Ā(u̇) =

[

A −Bu̇

0 0

]

, B̄ =

[

B

0

]

, C̄ = [C 0] and

Γ(t, t− h(t)) =

[

Bγ(t− h(t))
η(t)

]

.

It is important to note that the extended system (6) is delay-
free, with respect to the input, thanks to the expression (3).
However, systems (1) and (6) are equivalent in the sense
that they have the same state trajectories. The transformation
is only a convenient way to rewrite the system in order to
apply existing results from observer literature. The errorof
approximationγ is going to be considered as a perturbation
in the design of the observer as well as the dynamics of
the delayη. This is a key point of the method : considering
the delay dynamics as perturbation and designing a robust
observer that is able to reconstruct the state and the delay in
spite of the uncertaintyΓ. In the next part, the observability
of the extended system (6) is investigated.

B. Delay observability

First the following assumption is made:
Assumption 5:The perturbationΓ does not modify the

observability of (6).
Then, the observability condition for extended system (6)
is given in the next theorem. See [13] for observability
definitions.

Theorem 1:Extended system (6) is observable if and only
if

u̇(t) 6= 0 ∀t > 0. (7)
Proof: First note that from Assumption 2, one has

• CAiB = 0 for all i such that0 ≤ i ≤ n− 2
• CAn−1B 6= 0.

ConsideringΓ = 0 (Assumption (5)), the observation space
is defined by

O(Y )=span
{

Cx,CAx, . . . ,CAn−1x,CAnx−CAn−1Bu̇h
}

.

Since the initial system is observable, one has

dim span
{

Cdx,CAdx,. . .,CAn−1dx
}

= n

so

dO(Y )=span
{

Cdx,CAdx,. . .,CAn−1dx,−CAn−1Bu̇dh
}

and dim(dO(Y )) = n + 1 if and only if CAn−1Bu̇ 6= 0.
Finally, from [13], system (6) is observable if and only if
condition (7) is verified becauseCAn−1B 6= 0.



This is a logical condition because if the input is constant,
the delay as no influence on the system so it cannot be
observed. This condition is very restrictive because it means
that the input has to be strictly monotonic. However, this
condition can be relaxed using the notion of persistence
defined in [3]. The definition is recalled below.

Definition 1: A measurable bounded signalu̇ is said to
be regularly persistent for system (6) if there existsT > 0,
α > 0 andt0 > 0 such thatmini(λi(W (t, T, u̇)) > α for all
t > t0 whereW (t, T, u̇) is the Observability Gramian and
λi(M) denotes theith eigenvalue of the matrixM .
Roughly speaking, it allowṡu to cancel at some isolated time
instants without deteriorating the estimation.

Assumption 6:The signalu̇ is regularly persistent.

III. A NEW SCHEME OF DELAY-STATE OBSERVER

A. Kalman like observer design [12]

Kalman-like observer is easy to tune because it only has
one parameter to adjust and it is well adapted for linear
systems with matrixA depending on an external signal. That
is why, it has been chosen in this work. From [12], a Kalman-
like observer for (6) reads as

˙̂
X = Ā(u̇)X̂ + B̄u− S−1RC̄T C̄(X̂ −X) (8)

where the matrixS is the solution of
{

Ṡ = −ρS − Ā(u̇)TS − SĀ(u̇) + C̄T C̄

S(0) > 0
(9)

with ρ a positive constant andR a diagonal matrix acting
as a filter. In the noise-free case,R = In (identity matrix of
ordern).

B. Practical stability of the observer

The time-varying perturbationsγ(t − h(t)) andη(t) pre-
vent the asymptotic convergence of the observer error. Con-
sequently, only a practical convergence to a ball of radiusr

around the origin is achievable. The size ofr is tightly related
to the size of the perturbation and the observer gain. The
following lemma, given in [3], will be useful to formulate
the main result.

Lemma 1:Consider thatS is defined by (9) and that
Assumption 6 holds. Then there exists a realρ0 such that for
any symmetric positive definite matrixS(0), for all ρ ≥ ρ0,
there exists̄α > 0, β̄ > 0, t0 > 0 such that for allt > t0

ᾱIn+1 ≤ S(t) ≤ β̄In+1

whereIn+1 is the identity matrix of ordern+ 1.
Now, the main result can be stated.

Theorem 2:Consider system (6) and any inputu(t) and
delay h(t) such that Assumptions 1-6 are fulfilled. Then,
there exist positive scalarst0, k, r, θ such that for allt ≥ t0
the following inequality holds:

∥

∥

∥
X̂(t)−X(t)

∥

∥

∥
≤ k||e(t0)|| exp(−θ(t− t0)) + r. (10)

Proof:
Define the Lyapunov candidate function as

V (e) = eTSe (11)

with S given by (9) ande = X̂ − X , the error dynamics
of the observer. The objective is to show that (11) complies
with the assumptions of Lemma 9.4 in [15].

From Lemma 1, there existsρ0 and t0 such that

ᾱ||e||2 ≤ V (e) ≤ β̄||e||2 (12)

for all ρ ≥ ρ0 andt ≥ t0. Furthermore, the dynamics of the
observer of theundisturbed system is

ė = [Ā(u̇)− S−1C̄T C̄]e. (13)

Then, by using (9) and (13), the time derivative of (11) is

V̇ (e) = −ρeTSe− eT C̄T C̄e.

SinceeT C̄T C̄e ≥ 0, one has the inequality

V̇ (e) ≤ −ρᾱ||e||2. (14)

In addition,V satisfies the relation
∥

∥

∥

∥

∂V

∂e

∥

∥

∥

∥

≤ 2β̄||e||. (15)

Equations (12), (14) and (15) holds globally so Lemma 9.4
from [15] ensures that

||e(t)|| ≤ k||e(t0)|| exp (−θ(t− t0)) + r

with k =

√

β̄
ᾱ

, θ = ρᾱ

2β̄
and

r =
2β̄2

ρᾱ2
sup
t>t0

||Γ(t)||. (16)

In a particular case, it is possible to evaluate the value ofr.
Corollary 1: For constant delays and ramp inputs, the

observation error converges exponentially to zero and one
hasr = 0.

Proof: Assumptions 3 and 4 gives

sup
t>t0

||Γ(t)|| ≤ c1h̄
2M + c2H

with c1 and c2 stricly positive scalars. Furthermore, if the
delay is constant then its dynamics is equal to zero soH = 0;
if the input is a ramp, its second time-derivative is0 so
M = 0. As a consequence, the upper bound ofΓ is 0 and
the radiusr given in (16) cancels which ends the proof.

Note that if the delay is slowly-varying then the approx-
imation will be more accurate becauseH will be smaller.
Similarly, the smallerM and h̄, the finer the approximation
(5) and the smaller the convergence radiusr. Theoretically,
it is possible to add higher order terms in the approximation
(5) to reduce the uncertain termγ; however, it would require
to compute high order time-derivatives ofu. Observer (8)
does not guarantee the boundedness ofĥ to [0, h̄] so a
projection ofĥ on [0, h̄] can be made if the bounds are known
[5][6][10]. Simulation results are provided in the next section
to illustrate the efficiency and the limits of this new method.



IV. SIMULATIONS

A. Model presentation and observer design

A second order system has been chosen to illustrate
previous result. Its input-output representation reads as

ÿ + β1ẏ + β0y = u(t− h(t)), (17)

and its state space representation is






ẋ(t) =

[

0 1
−β0 −β1

]

x(t) +

[

0
1

]

u(t− h(t))

y(t) = Cx(t) = x1(t).

The system is observable and the relative degree ofy equals
two; Assumptions 1 and 2 hold. The parameters chosen for
all the simulations arex(0) = [1.5, 1]T , β1 = 2, β2 = 3 and
h(t) ∈ [0, 1]. The extended system is defined by matrices:

Ā(u̇) =





0 1 0
−β0 −β1 0
0 0 −u̇



 , B̄ =





0
1
0



 and C̄ = [1 0 0].

The parameterρ is chosen equal to 5,S(0) = I3 (the identity
matrix of dimension3). The value ofρ is a compromise
between fast time-response and noise amplification (in the
real case). The initial conditions of the observer arex̂(0) =
[0, 0]T and ĥ(0) = 0.4.

B. Noise-free simulations

Two kinds of delay are used in the sequel:

• h1(t) =







0.15 for 0 ≤ t ≤ 15
0.6 for 15 < t ≤ 30
0.3 otherwise

• h2(t) = 0.4 + 0.2 sin(0.4t)

The delayh1 is a piecewise function whose each sub function
complies with Assumption 3. The delayh2 complies with
Assumption 3. Two cases of input signals are tested:

• a ramp :u1(t) = 0.2t
• a sinusoidal input:u2(t) = sin(0.1t)

For the inputu1, one hasu̇1(t) = 0.2 and ü1(t) = 0 so
Assumption 4 and 6 are true. The inputu2 is regularly
persistent because the condition (7) holds almost everywhere
so Assumption 6 is true. Figure 1 displays inputsu1, u2 and
their derivatives.

On Figure 2, the simulation is carried out with the delay
h1 and the inputu1. It can be noted that the observation
errors tend to zero asymptotically (exponentially) because

• the delay dynamicsη(t) is 0 since the delay is piecewise
constant;

• the Taylor approximation (5) is exactu1(t − h(t)) =
u1(t)− h(t)u̇1(t).

Consequently, the pertubation termΓ in (6) is equal to 0 and
the convergence radius is reduced to 0. This result illustrates
Corollary 1.

Figure 3 shows the result for the time-varying delayh2

and the ramp inputu1. The Taylor approximation is still
exact soγ in (6) is equal to 0. However, the observation
errorx− x̂ does not tend to zero exponentially. Indeed, the
observation error,h−ĥ, is introduced in the state observation.
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Observation singularity:̇u(t) = 0

Fig. 1. Inputs and observation singularity
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Fig. 2. Simulation 1 withh(t)=h1(t) andu(t)=u1(t) (ramp)

It is clear thatex = x̂ − x and eh = ĥ − h converge to a
neighborhood around the origin and the size of this ball can
be adjusted thanks to the gainρ. Figure 4 shows this feature,
with ρ = 15, the convergence radius has decreased.

On Figure 5, the piecewise constant delayh1 is asso-
ciated to the sinusoidal inputu2. One can notice that the
convergence radius foreh is smaller whenh is small. This
is is mainly due to the accuracy of the approximation (5)
that is better for small delays. The peaks are caused by the
singularity in the observer gain (S−1) and the poor accuracy
of the approximation (5) for large delays.

The last configuration with the sinusoidal inputu2 and the
time varying-delayh2 is presented on Figure 6. The analysis
is the same as the one of simulations 2 and 3:

• some peaks appear on the graph ofĥ due to the
observation singularity;

• the convergence radiuses forex andeh are larger than
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Fig. 3. Simulation 2 withh(t) = h2(t) and u(t) = u1(t) (ramp) and
ρ = 5
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Fig. 4. Simulation 2 withh(t) = h2(t) and u(t) = u1(t) (ramp) and
ρ = 15

for constant delay because of the termη(t) 6= 0.

Previous simulations have confirmed theoretical results.
They illustrate the efficiency of the proposed robust observer
technique

• to reconstruct the state of a system with an unknown
and possibly time-varying delay in the input;

• to estimate the delay value.

The choice of the input is crucial. Indeed, the quality of
the delay estimation highly depends on the input dynamics.
As shown before, the ramp input is the best choice because
it does not introduce any observation singularity and because
the Taylor approximation is exact in this case. However, this
is not always possible to apply it in practice. Consequently,
a basic idea is to design inputs that are similar to a ramp and
turned off the observer when it gets closer to the singularity
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Fig. 5. Simulation 3 withh(t)=h1(t) andu(t)=u2(t) (sine)
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Fig. 6. Simulation 4 withh(t)=h2(t) andu(t)=u2(t) (sine)

(u̇ = 0). This method will be tested in the next subsection.

C. Simulations with noisy measurement and noisy input

In practice, the measurement and the input can be affected
by noise. In the next simulation, a 5% white noise has been
added to the output (measurement) and the input. A diagonal
matrix R has been implemented in the observer (see (8)) to
filter the noise and a Levant differentiator [17] has been used
to compute the input derivative. Furthermore, to overcome
the observability singularity, the observer is turned off as
soon as|u̇(t)| ≤ ǫ. More precisely, only the delay-observer
part of (8) is turned off, the state-observer part still runs. The
parameterǫ has to be tuned according to the input dynamics,
in the next simulationǫ = 0.03.

Figure 7 shows that the estimation accuracy is degraded
but the observer still converges. Note also that the conver-
gence is slower because of the filter. When the observer



is turned off, the gain of the last equation in (8) is set to

zero so ˙̂
h = 0 that is why ĥ is constant. Because of this

observation, the technique is efficient when the delay varies
slowly; the tuning ofǫ has to be a tradeoff between avoiding
the singularity peaks and keeping an accurate estimation of
h.
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Fig. 7. Simulation 5 withh(t) = h1(t) and u(t) = u2(t) (sine) with
measurement noise

V. CONCLUSION

This paper presents a new and original approach for
observer design of input delay systems. This observation
solution allows to estimate both state and delay (time-
varying). The Taylor approximation is exploited to take
out the delay from the retarded input. Then an extended
system is created with the delay as a part of the augmented
state. An observability condition is derived from the analysis
of this extended system. Finally, a Kalman-like observer
is design and practical stability is obtained. It is shown
that asymptotic convergence can be achieved for constant
delay with particular inputs. All the results are illustrated by
numerous simulations.

The extension to nonlinear or MIMO systems as well
as the observation in closed-loop are considered for future
developments.
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