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Abstract

The main goal of this paper is to study the geometric structures associated with the representation of
tensors in subspace based formats. To do this we use a property of the so-called minimal subspaces which
allows us to describe the tensor representation by means of a rooted tree. By using the tree structure
and the dimensions of the associated minimal subspaces, we introduce, in the underlying algebraic tensor
space, the set of tensors in a tree-based format with either bounded or fixed tree-based rank. This class
contains the Tucker format and the Hierarchical Tucker format (including the Tensor Train format). In
particular, we show that the set of tensors in the tree-based format with bounded (respectively, fixed)
tree-based rank of an algebraic tensor product of normed vector spaces is an analytic Banach manifold.
Indeed, the manifold geometry for the set of tensors with fixed tree-based rank is induced by a fibre
bundle structure and the manifold geometry for the set of tensors with bounded tree-based rank is given
by a finite union of connected components where each of them is a manifold of tensors in the tree-based
format with a fixed tree-based rank. The local chart representation of these manifolds is often crucial
for an algorithmic treatment of high-dimensional PDEs and minimization problems. In order to describe
the relationship between these manifolds and the natural ambient space, we introduce the definition of
topological tensor spaces in the tree-based format. We prove under natural conditions that any tensor of
the topological tensor space under consideration admits best approximations in the manifold of tensors
in the tree-based format with bounded tree-based rank. In this framework, we also show that the tangent
(Banach) space at a given tensor is a complemented subspace in the natural ambient tensor Banach space
and hence the set of tensors in the tree-based format with bounded (respectively, fixed) tree-based rank
is an immersed submanifold. This fact allows us to extend the Dirac-Frenkel variational principle in the
bodywork of topological tensor spaces.
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1 Introduction

Tensor approximation methods play a central role in the numerical solution of high dimensional problems
arising in a wide range of applications. Low-rank tensor formats based on subspaces are widely used for
complexity reduction in the representation of high-order tensors. The construction of these formats are
usually based on a hierarchy of tensor product subspaces spanned by orthonormal bases, because in most
cases a hierarchical representation fits with the structure of the mathematical model and facilitates its
computational implementation. Two of the most popular formats are the Tucker format and the Hierarchical
Tucker format [I8] (HT for short). It is possible to show that the Tensor Train format [29] (TT for short),
introduced originally by Vidal [35], is a particular case of the HT format (see e.g. Chapter 12 in [19]). An
important feature of these formats, in the framework of topological tensor spaces, is the existence of a best
approximation in each fixed set of tensors with bounded rank [T1]. In particular, it allows to construct, on a
theoretical level, iterative minimisation methods for nonlinear convex problems over reflexive tensor Banach
spaces [12].

Tucker tensors of fixed rank are also used for the discretisation of differential equations arising in quantum
chemical problems or in the multireference Hartree and Hartree-Fock methods (MR-HF) in quantum dynam-
ics [25]. In particular, for finite dimensional ambient tensor spaces, it can be shown that the set of Tucker
tensors of fixed rank forms an immersed finite-dimensional quotient manifold [22]. A similar approach in a
complex Hilbert space setting for Tucker tensors of fixed rank is given in [4]. Then the numerical treatment
of this class of problems follows the general concepts of differential equations on manifolds [16]. Recently,
similar results have been obtained for the TT format [20] and the HT format [33] (see also [3]). The term
”matrix-product state” (MPS) was introduced in quantum physics (see, e.g., [34]). The related tensor rep-
resentation can be found already in [35] without a special naming of the representation. The method has
been reinvented by Oseledets and Tyrtyshnikov (see [28], [29], and [30]) and called ” TT decomposition”. For
matrix product states (MPS), the differential geometry in a finite-dimensional complex Hilbert space setting
is covered in [I7].

As we will show below, the Tucker and the HT formats are completely characterised by a rooted tree
together with a finite sequence of natural numbers associated to each node on the tree, denominated the tree-
based rank. Each number in the tree-based rank is associated with a class of subspaces of fixed dimension.
Moreover, it can be shown that for a given tree, every element in the tensor space possesses a unique tree-
based rank. In consequence, given a tree, a tensor space is a union of sets indexed by the tree-based ranks.
It allows to consider for a given tree two kinds of sets in a tensor space: the set of tensors of fixed tree-based
rank and the set of tensors of bounded tree-based rank. Two commonly accepted facts are the following.



(a) Even if it can be shown in finite dimension that the set of Tucker (respectively, HT) tensors with
bounded tree-based rank is closed, the existence of a manifold structure for this set is an open question.
Thus the existence of minimisers over these sets can be shown, however, no first order optimality
conditions are available from a geometric point of view.

(b) Even if either in finite dimension or in a Hilbert space setting it can be shown that the set of Tucker
(respectively, in finite dimensions HT) tensors with fixed tree-based rank is a quotient manifold, the
construction of an explicit parametrisation in order to provide a manifold structure is not known.

In our opinion, these two facts are due to the lack of a common mathematical frame for developing a
mathematical analysis of these abstract objects. The main goal of this paper is to provide this common
framework by means of the theory for algebraic and topological tensor spaces developed in [I1] by some of
the authors of this article.

Our starting point are the following natural questions that arise in the mathematical theory of tensor
spaces. The first one is: is it possible to introduce a class of tensors containing Tucker, HT (and hence TT)
tensors with fixed and bounded rank? A second question is: if such a class exists, is it possible to construct a
parametrisation for the set of tensors of bounded (respectively, fixed) rank in order to show that it is a true
manifold even in the infinite-dimensional case? Finally, if the answers to the first two questions are positive,
we would like to ask: is the set of tensors of bounded (respectively, fixed) rank an immersed submanifold of
the topological tensor space, as ambient manifold, under consideration?

The paper is organised as follows.

e In Sect. 2l we introduce the tree-based tensors as a generalisation, at algebraic level, of the hierarchical
tensor format. This class contains the Tucker tensors (among others). Moreover, we characterise the
minimal subspaces for tree-based tensors extending the previous results obtained in [I1] and introducing
the definition of tree-based rank. In particular, the main result of this section, Theorem 2.9 is a
characterisation of the set of parameters needed to provide an explicit geometric representation for the
set of tensors with fixed tree-based rank.

e In Sect. Bl by the help of Theorem 2.I9, we show that in an algebraic tensor product of normed
spaces the set of tensors with fixed tree-based rank is an analytic Banach manifold. Indeed, we give an
explicit atlas and we prove that this atlas is induced by a fibre bundle structure. This result allows us
to deduce that the set of tensors with bounded tree-based rank is also an analytic Banach manifold.
An important fact is that the geometric structure of these manifolds is independent on the ambient
tensor Banach space under consideration.

e In Sect. @ we discuss the choice of a norm in the ambient tensor Banach space (a) to show the existence
of a best approximation for the set of tensors with bounded tree-based rank and (b) to prove that the
set of tensors with fixed tree-based rank is an immersed submanifold of that space (considered as
Banach manifold). To this end we assume the existence of a norm at each node of the tree not weaker
than the injective norm constructed from the Banach spaces associated with the sons of that node.
This assumption generalises the condition used in [IT] to prove the existence of a best approximation
in the Tucker case. More precisely, under this assumption,

— we provide a proof of the existence of best approximation in the manifold of tensors with bounded
tree-based rank,

— we construct a linear isomorphism, at each point in the manifold of tensors with fixed tree-based
rank, from the tangent space at that point to a closed linear subspace of the ambient tensor
Banach space, this subspace being given explicitly,

— we show that the set of tensors with fixed tree-based rank is an immersed submanifold,
— we also deduce that the set of tensors with bounded tree-based rank is an immersed submanifold.

e In Sect. Bl we give a formalisation in this framework of the multi—configuration time-dependent Hartree
MCTDH method (see [25]) in tensor Banach spaces.



2 Algebraic tensors spaces in the tree-based Format

2.1 Preliminary definitions and notations

Concerning the definition of the algebraic tensor space , ®?:1 V; generated from vector spaces V; (1 < j < d),
we refer to Greub [14]. As underlying field we choose R, but the results hold also for C. The suffix ‘a’ in

a ®;l:1 V; refers to the ‘algebraic’ nature. By definition, all elements of

are finite linear combinations of elementary tensors v = ®;l:1 vj (v; € V5).Let D :={1,...,d} be the index

set of the ‘spatial directions’. In the sequel, the index sets D\{j} will appear. Here, we use the abbreviations

Vi = a®Vk , where ® means ®

k#3j k#j keD\{j}

Similarly, elementary tensors @), 2 Uk are denoted by v{;;. The following notations and definitions will be
useful.

For vector spaces V; and W; over R, let linear mappings A, : V; — W; (1 < j < d) be given. Then the
definition of the elementary tensor

d d d

A=Q)4;: V=0V, = W=, W,
Jj=1 J=1 j=1

is given by

A

(Aj’l}j) . (21)

d d
1

Uj
j=1
Note that ([Z1]) uniquely defines the linear mapping A : V. — W. We recall that L(V, W) is the space of linear
maps from V into W, while V' = L(V,R) is the algebraic dual of V. For metric spaces, L(V, W) denotes the
continuous linear maps, while V* = L(V,R) is the topological dual of V. Often, mappings A = ®;l:1 A;
will appear, where most of the A; are the identity (and therefore V; = W;). If Ay € L(Vj, W) for one k
and A; = id for j # k, we use the following notation:

J

idm@Ak =id® ... Qid® Ag ®id®...®id€L(V,V[k] ®a W),

k—1 factors d—k factors

provided that it is obvious which component k is meant. By the multiplication rule (@‘;:1 Aj) o (®j:1 Bj) =
®;l:1 (A; o B;) and since ido A; = A; o id, the following identityl] holds for j # k:
d®..QIdRA;RIAd® ... ®IdRA,RId® ... ®1id
= (idy;) ® 4;) o (idpy ® Ay)
= (id[k] ® Ag) o (id[j] & Aj)
(in the first line we assume j < k). Proceeding inductively with this argument over all indices, we obtain

A=Q)A; = (idy ® A1) oo (idg ® Ag).

j=1

INote that the meaning of idj; and id[) may differ: in the second line of 2.2)), (idjy) ® Ag) € L(V, Vi ®a Wy) and
(id[j] ®Aj) €L (V[k] Ra kav[j,k] ®Ra W ®a Wk) , whereas in the third one (id[j]@Aj) € L(V,Vm Ra WJ‘) and (id[k]@)Ak) €
L (Vij) ®a W, Vij k) ®a W) @ Wi) . Here Vij 41 = o e py g h) Vi



If W; =R, ie, if 4; = ¢; € V/ is a linear form, then idj;) ® ¢; € L(V,Vy;) is used as symbol for
d®...0idQ¢; ®id® ...Q id defined by

(idjj ® ¢;) <®vk> = ¢, (vy) ®vk
k#j

Thus, if ¢ = ®] 195 € ®j 1 VJ, we can also write

¢ =@j_1p; = (idp ® 1) 0o (idg ® ga). (2.2a)

Consider again the splitting of V. = ®;l:1 Vj into V = V; ®, V[; with V{;) := 4 ®k¢j Vi.. For a linear
form ;) € ij], the notation id; ® ¢; € L(V,V;) is used for the mapping

d
(id; ® o)) <® vk> = @y <®vk> v;. (2.2b)

k=1 ktj

If @) = Qs Pk € a Qpy; Vi 18 an elementary tensor, ¢ (®k# v(k)) = liy; ox (v*®)) holds in (2:2L).
Finally, we can write (2:2al) as

P =07_1p; =pjo(idj @) for1<j<d

2.2 Algebraic tensor spaces in the tree-based format

We introduce the abbreviation TBF for ‘tree-based format’. For instance, a TBF tensor is a tensor repres-
ented in the tree-based format, etc. The tree-based rank will be abbreviated by TB rank. To introduce the
underlying tree we use the following example.

Example 2.1 Let us consider D = {1,2,3,4,5,6}, then
6 3 5
VD:a®‘/j: a®‘/j Ra a®‘/j ®a‘/6:V123®aV45®a‘/6-

Observe that Vp = 4 ®?:1 V; can be represented by the tree given in Figure[ZQland Vp = V1234 Vs Q4 Vs
by the tree given in Figure[Z2 We point out that there are other trees to describe the tensor representation
Vp =Via3 ®, Vus ®q Vi, because

3 5 3 5
a®v} Qq a®v} ®a Vo= | V1 ®a a®v} Qq a®v} ®a Ve,
Jj=1 Jj=4 Jj=2 j=4

that is, Via3 = 4 ®?:1 V; = Vi ®q Vas (see Figure[Z.3).
The above example motivates the following definition.
Definition 2.2 The tree Tp is called a dimension partition tree of D if

(a) all vertices a € Tp are non—empty subsets of D,
(b) D is the root of Tp,

(c) every verter a € Tp with #a > 2 has at least two sons. Moreover, if S(a) C 2P denotes the set of
sons of o then o = Ugeg(a)B where N 3" =0 for all B,5" € S(a), B # B,

(d) every vertex oo € Tp with #a =1 has no son.



{1,2,3,4,5,6}

{2 8 {4 {55 {6}

Figure 2.1: A dimension partition tree related to Vp = ®6 V.

{1,2,3,4,5,6}
{1,2,3} {4,5} {6}

g VAN

{1 {2y 8y 4 {5}

Figure 2.2: A dimension partition tree related to Vp = V123 ®, V5 Q4 Vs.

If S(a) = 0, v is called a leaf. The set of leaves is denoted by £(Tp). An easy consequence of Definition 2.2]
is that the set of leaves £(Tp) coincides with the singletons of D, i.e., L(Tp) = {{j} : j € D}.

Example 2.3 Consider D = {1,2,3,4,5,6}. Take
Tp ={D,{1},{2}, {3}, {4}, {5}, {6}} and S(D) = {{1}, {2}, {3}, {4}, {5}, {6}}
(see Figure[21). Then S(D) = L(Tp).

Example 2.4 In Figure we have a tree which corresponds to Vp = Via3 ®, Vus R4 V. Here D =
{1,2,3,4,5,6} and
Tp = {Da {17 25 3}7 {45 5}7 {1}7 {2}5 {3}5 {4}7 {5}5 {6}}7

S(D) = {{L 273}a {475}a {6}}a S({4a 5}) = {{4}a {5}}7 S({la 273}) = {{1}a {2}7 {3}}
Moreover L(Tp) = {{1},{2}, {3}, {4}, {5}, {6} }.

Finally we give the definition of a TBF tensor.

Definition 2.5 Let D be a finite index set and Tp be a partition tree. Let V; be a vector space for j € D,
and consider for each o € Tp \ L(Tp) a tensor space V, := a®ﬁe$(a) Vg . Then the collection of vector
spaces {Vataerp\(p} 5 called a representation of the tensor space Vp = a®a€S(D) V. in tree-based
format.

Observe that we can write Vp = ®QGS(D) V., =4 ®j€D V; . A first property of TBF tensors is the
independence of the representation of the algebraic tensor space Vp with respect to the tree Tp.

{1,2,3,4,5,6}

{1,2,3} {4,5} {6}

SN N

{23 {4 {8

(2r {3

Figure 2.3: A dimension partition tree related to Vp = V123 ®, V45 ®4 Vg where Viss = V1 ®, Vas.



Lemma 2.6 Let D be a finite index set and Tp be a partition tree. Let V; be a vector space for j € D.
Assume that {Va}aerp\(D} 5 a representation of the tensor space Vp = 4 ®aES(D) V. in the tree-based

format. Then for each oy € Tp\{D} there exist oz, ..., 0m € Tp\{D, a1} such that D = U™ a;, a;Nevj =
and Vp = @i~ Va, .

2.3 Minimal subspaces for TBF tensors

Let V; be a vector space for j € D, where D is a finite index set, and a,...,a, C 2P\ {D,0}, be such
that a; Na; =0 for all i # j and D = J;_, a;. For v € ,®,~, Vo, we define the minimal subspace of v
on each V,, := , ®jeai V; for 1 <1i < m, as follows.

Definition 2.7 For a tensor v e @;cpVi =« Q" Vo, , the minimal subspaces denoted by US™(v) C
Va,, for 1 < i < m, are defined by the properties that v € o @;~, U™ (v) and v € Q- Uy, implies
Umin(v) ¢ U,,.

The minimal subspaces are useful to introduce the following sets of tensor representations based on
subspaces. Fix r = (r1,...,74) € N% Then we define the set of Tucker tensors with bounded rank r in

V=,V by
a j=1"J .
Te(V):={veV:dmU™(v) <r;, 1 <j<d},

and the set of Tucker tensors with fixed rank r in V = , ®;l:1 V; by
M(V):={v eV :dimU(v) =r;,1<j<d}.
Then M, (V) C 7+(V) C V holds.

The next characterisation of Ug;,i“(v) for 1 < j < m is due to [I9] (it is included in the proof of Lemma
6.12). Since we assume that V,, are vector spaces for 1 < j < m, then we may consider the subspaces

UL, (v) i= {(ida, © 00 ) (V) @1 € X, Vi }

and
U4 (v) 1= { (e, ® 010 )V) 01 € 0 @), UB"(¥) ]

for 1 < j < m. Moreover, if Vaj are normed spaces for 1 < 7 < m we can also consider

Uifl(v) = {(idaj ® Pla,)) (V) : P, € a ®k;ﬁj Ve }’

and
ULY () = { (e, © 010) (V) 0101 € w @), VB |

Theorem 2.8 Assume that V., are vector spaces for 1 < j < m. Then the following statements hold.
(a) For anyv € V= Q). Va,, it holds

Uai"(v) = Ug, (V) = Ugj(v),
for1 <j<m.

(b) Assume that Vo, are normed spaces for 1 < j <m. Then for any v eV = , ®;n:1 Va, , it holds

Upn(v) = U (v) = UL (v),

for1 <j<m.



Let D = U™, a; be a given partition. Assume that a; = U B, is also a given partition, then we have
minimal subspaces Ug;i“(v) C Vg = aQpep, Vi for 1 < j < n and UR™(v) C Vo, = 0 Qpea, Vi for
1 <i < m. Observe that V,, = 4 ®?:1 Vg, , where

v e aéU;“ii“(v) and v € aéUé’;i“(v) ®aq <aéU§;i“(v)> .
i=1

Jj=1 =2

Example 2.9 Let us consider D = {1,2,3,4,5,6} and the partition tree Tp given in Figure [22. Take
v E.QjcpVi = Va, ®a Vay ®a Vay, where an = {1,2,3}, ao = {4,5}, and a5 = {6}. Then we can
conclude that there are minimal subspaces UR™(v) for v =1,2,3, such that v € 4 ®°_, Urin(v) and also
minimal subspaces Ujmin(v) for j € D, such that v € « Q,cp Ujmin(v)

The relation between U (v) and U (v) is as follows (see Corollary 2.9 of [11]).

Proposition 2.10 Let V; be a vector space for j € D, where D is a finite index set, and D = U~ a; be a
given partition. Let v € 4 ®]€D V. For a partition cy = UJL, 35 it holds

U (v ® Umln

The following result gives us the relationship between a basis of UZ™(v) and a basis of Ugin(v) for
I1<j<m.

Proposition 2.11 Let V; be a vector space for j € D, where D is a finite index set. Let o C D such
that o = U, o, where O # «; are pairwise disjoint for 1 < i < m. Let v € «Qjcp Vi - The following
statements hold.

(a) For each 1 <1i < m, it holds

U (v) = span { (ida, © 00\ (va) v € UZ(v) and 9\ €, @) U (v
k#i

= span (idai ® cp(o‘\a"')) (Vo) : Vo € UPIN(v) and @@\ € ®V’ak
ki

(b) Assume that Vo := o @~ Va, and Vg, for 1 <i < m, are normed spaces. For each 1 <i < m it
holds

Umn(v) = span 4 (ida, © 9\ (va) : va € UR(v) and 9\ € , @ UI"(v)"
k#1

= span (idai ® ga(a\o”)) (Vo) : Vo € UPN(v) and @\ € , ®V;k
k#i

Proof. Statements (a) and (b) are proved in a similar way. Let v = D \ o and write v = J!_; 7;, where
() # ~v; C D are pairwise disjoint for ¢ = 1,2,...,n. In particular, to prove (b), we observe that

VD—V ®a ( é al> Qa aévvj
i=1 Jj=1



Then, by Theorem Z8(b), using ULY (v), we have

m

U™(v) = { (ida @ o) (v) : ) € «Q@UE"(v)* ¢ and
j=1
Uit (v) = { (ida, @ @ P\ (v) : PV e | Q) Umin( ® Uz

k#1

for 1 <i < m. Take v, € U™ (v). Then there exists () € ), U%‘i“(v)* such that v, = (ida ® ) (V).
Now, for p(e\@i) ¢ a @z Uzin(v)* , we have

(z‘dai ® ga(a\an) (va) = (z‘dai 9 pa\a) g ¢<D\a>) ),

and hence (ida, ® ¢(*\*)) (v,) € UM (v). Now, take v, € UR"(v), then there exists

SO(D\&.L ® Umm ® Umm
k#i
such that v, = (id ® CP(D\DL-L)) (v). Then QD(D\D“) — Z;”Zl wl(a\ozi) ® (]5l(V)7 where (bl(’Y) €., ®T:1 U,?;in(V)*
and 1\ € , @, Um™(v)* for 1 <1 < 7. Thus,

= (o 0) 0

Z (Zdal ® ,lp(a\%) ® ¢(V)) ( )

=1

(ida, @91\ *) ((ida @ 6)(V)) -

=1

Observe that (id, ® qbl(’Y))(v) € UM (v), Hence the other inclusion holds and the first equality of statement
(b) is proved. To show the second inequality of statement (b), we proceed in a similar way by using
Theorem [Z8(b) and the definition of UijU(v). |

From now on, given ) # o C D, we will denote Vo := ¢ @, Vj ; 7o == dim Umin(v) and UB"(v) =

span{v}. Observe that for each v € Vp we have that (dim U™ (v))4ea0\ (g} is in N277-1,

Definition 2.12 Let D be a finite index set and Tp be a partition tree. Let V; be a vector space for
J € D, Assume that {Va}acr,\(D} i5 a representation of the tensor space Vp = a®a€S(D) V. in the
tree-based format. Then for eachv € Vp = , & V; we define its tree-based rank (TB rank) by the tuple
(dim UM (v)) ger, € N#TD,

JED
In order to characterise the tensors v € V p satisfying (dim U™ (v))4e7,, = t, for a fixed t := (74 )act), €
N#Tp | we introduce the following definition.

Definition 2.13 We will say that t := (r4)act, € N#TP is an admissible tuple for Tp, if there evists
v € Vp \ {0} such that dim U™ (v) = r, for all « € Tp \ {D}.

Necessary conditions for t € N#¥TP to be admissible are

rp = 1,
iy < dim'Vj for {j} € L(Tp),
To < H,@ES(a) s for a € TD \ E(TD),

rs <o llpesnisym8  fora € Tp\ L(Ip) and § € S(a).



2.4 The representations of tensors of fixed TB rank

Before introducing the representation of a tensor of fixed TB rank we need to define the set of coefficients
of that tensors. To this end, we recall the definition of the ‘matricisation’ (or ‘unfolding’) of a tensor in a
finite-dimensional setting.

Definition 2.14 For a C 2P, and B8 C « the map Mg is defined as the isomorphism

Mﬁ : RXMEa Tu — R(HMEB T“)X(H5€a\5 TJ),
C(i — C(z

wnea wneps(is)scars

It allows to introduce the following definition.
Definition 2.15 For o C 2P, let C(®) € RXuea™s. We say that C(®) € R*X nea v if and only if

H (det (M#(C’(“))MH(C’(“))T) + det (M#(C(Of))TM#(C(a)))) >0,

HEX

where M,,(C(®) € R7+ X (Msear gy 7) for each p € a. We point out that this condition is equivalent to the
condition that all M,,(C™)) have mazimal rank.

peaTu

Since the determinant is a continuous function, R, is an open set in R X uea T,

Definition 2.16 Let Tp be a given dimension partition tree and fix some tuple v € NTP. Then the set of
TBF tensors of fixed TB rank ¢t is defined by

FT(Vp) :={v e Vp :dimUY"(v) =rq for alla € Tp} (2.3)
and the set of TBF tensors of bounded TB rank v is defined by
FT<(Vp):={veVp: dmU"(v) <ry foralaeTp }. (2.4)

Note that F7(Vp) =0 for an inadmissible tuple t. For t,s € N7 we write s < v if and only if 5, < 74
for all @ € Tp. Then we can also use the following notation

FT<(Vp):={0}U|J FT:(Vp). (2.5)

s<t
Next we give some useful examples.

Example 2.17 (Tucker format) Consider the dimension partition tree of D := {1,...,d}, where S(D) =
L(Tp) ={{j}:1<j<d} Let (rp,r1,...,7q4) be admissible, then rp =1 and r; < dimV; for 1 < j <d.
Thus we can write

rq) (VD)

..........

and
FT ) VD) = M(py, o) (VD).

Example 2.18 (Tensor Train format) Consider a binary partition tree of D := {1,...,d} given by
Tp={D,{{j}:1<j<d}{{j+1,....d}:1<j<d—2}}.

In particular, S{g,...,d}) ={{j},{j+1,...,d}} for 1 <j < d—1. This tree-based format is related to the
following chain of inclusions:

UB™(v) € UP™(v) @, UR(v) © UPP(v) @, UF(v) @0 D) € - € o R UPR ().
jeb
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The next result gives us a characterisation of the tensors in F7T(Vp).

Theorem 2.19 Let V; be vector spaces for j € D and Tp be a dimension partition tree of D. Then the
following two statements are equivalent.

(a) v € FT«(VDp).
(b) There exists {uz(f) 1 <ip <1} a basis of UM (v) for k € L(Tp) where for each pu € Tp \ L(Tp)
there exists a unique C*) ¢ R Xpes s such that the set {uz(-‘:) 11 <4, <rq}, with
(W) _ (k) )]
Wi, = Z Ciuv(iﬁ)ﬂes(u) ® Wig (2.6)
1<ig<rg BES(n)

BES (1)

for 1 <, <, is a basis of U™ (v) and

v = Z ((f:))aes(m ® u . (2.7)

1<iq<ra aeS(D)
a€eS (D)

Furthermore, if v.€ FT(Vp) then 1) can be written for each o € S(D) as

S o u@eul®. (2.8)
1<ia<ra
where US(D)\{Q}( V) = span {UES) 11 <iq <7}, and for each p € Tp \ L(Tp) we have
(M) B o1
Z 'll ® Tuyig?
1<ig<rg
where "
Uzu ip T Z lm(zs)aesw) ® u ’ (2'9)
1<is<rs 5€S(u)
d€S(p)
540
min B . ; ;
and US(#)\{ﬁ}( v) = US(#)\{ﬁ}(uEf)) = span {UEW)Z-B 11 <ig < 7“5} for1 <1, <r,.

Proof. Assuming first that (b) is true, (a) follows by the definition of FT7(Vp). Now, assume that (a)
holds. Since v € 4 @ e5(p) Umin(yv) | there exists a unique C(P) € RXeesm) ™ such that

V= Z (('L[:))QES(D) ® u ’

1<in<ra «cS(D)
aeS(D)

where {ul(.j) 01 < iq < rq} is a basif of Umin(v). For each o € S(D) we set

(a) . o) (8)
Ui = Z (is)pes(p) ® Wig (2.10)

1<ip<rg BES(D)
BeS(D) B#a
BF#o

then (Z7) can be written as (Z.8]). From the definition of minimal subspaces we can write

US(By oy (V) = {(id (o] ® 0a) (V) : 0 € US™ (V)"

2There are a small issue with the bold notation when o € S(i) and « is a leaf, then uiz) should not be bold.
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We claim that {U(a) 1 < iy < 74} is a basis of US(D)\{Q}( v). To prove the claim assume that U is

a linear combination of {UZ(-S) 12 < iy < 74}, then Uga) = Y ocin<r, Mia UZ(-:) where \;, # 0 for some
2 <ig < 1rq. Thus, T
V= Y ) o U
2<ia<Ta
since {uz(-:‘) + A ula) : 2 < iy < 1o} are linearly independent we have dim UM (v) < r,, a contradiction.
Since {UZ(-:‘) :1 <iq <1y} are linearly independent for each o € S(D), from (2.8)) we have that

U&IB)\{Q}(V) = Span {UES) 01 S 7:04 S Ta}7

and from (@I0), we deduce that M, (CP)) maps a basis into another one for each a € S(D) and hence

X r
CP) ¢ R P57 I consequence, when S(D) = L(Tp) statement (a) holds and then (7)) gives us the
classical Tucker representation.
Next, assume S(D) # L(Tp). Then, for each u € Tp\{D} such that S(p) # 0, thanks to Proposition2.10,

we have
Umln ® mln
ﬁeS (1)

Consider {u(”) 1 <i, <r,} a basis of U"(v) and {u(’ﬁ) 1 <ig < rs} a basis of U™ (v) for § € S(u)
and 1 <4, <r,. Then, there exists a unique C) ¢ R (Xﬂ55<a) "4) such that

(H) (w) ()
lu Z Ciua(iﬁ)f}es(u) ® uiﬂ )
1<ip<rg BeS(n)

BES (1)

for 1 <, <r,. Since {ugf) :1 <14, <r,} is a basis, we can identify C® with the matrix MM(C(”)), in the

non-compact Stiefel manifold R:”X(Hﬂgs(“) Tﬂ), which is the set of matrices in R7#*(Tsesa 7s) whose rows
are linearly independent (see 3.1.5 in [I]). From (Z7) and (Z6]) we obtain the Tucker representation of v,
when S(D) # L(Tp), as

V= Z Z C((iDa))aGS(D) H Czl(fv)(iﬂ)ﬂes(u) ® UE::)’ (2'11)

1<ip<ry | 1<ia<ra HET\{D} keL(Tp)
k€L(Tp) \ «€Tp\{D} S(p)#0
ag L(Tp)

here {ugf) : 1 < ix < 7k} is a basis of UM"(v) for each k € L£(Tp). To conclude, we claim that CW €

X
R} (Xpese ms) for all 4 € Tp \ L(Tp). To prove the claim we proceed in a similar way as in the root case,
for each fixed 1 <, <r, and 8 € S(u), we introduce (Z3). Hence, we can write (ZG) as

W= 3w eul?)

Ty ’Lg’
1<ig<rg

where 1 <14, <r, and § € S(u). From Proposition 2Z11[a), we have

UF™(v) = span 4 (idg © U\ D)) 11 <y <ryand VD e, Q) U (v)
seS(m\{8}

= span { (idg ®<p(“\ﬂ))(uz(-’:)) :1<i, <r, and e\B) ¢ | ® A\
seS(m)\{8}
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and hence Uéni“(ul(.l’j)) C Ug’in( v) for 1 <, < r,. Let us consider {ga(B) 1 <ig <rg} C U™ (v) adual

basis of the finite-dimensional space {uiﬂ 1 <ig <rg}, that is, @(ﬁ)( ) ) =0;
and B € S(u). Thus, we have

ig:dp for all 1 <ig,jg <rg,

(6) (N) (1) (B) min
idg ® ® Pis u;, Z C ws(Js)ses(u) Y, GU ( )

deS(1) 1<js<rp
3#B

for each multi-index (js)ses(ung € Xsesqil,...,rs}. Then, for B € S(u),
5F#pB

min 5 . i
U,G (V) = span Zdﬁ ® ® 50( ) u(ﬂ) (]5)5€S(u)\ﬂ € >< {15 e .,7’5}, 1< an < Tu

(m
ses seS(p)
57558”) 0#B

. r X r
with dim Uz (v) = rp if and only if rank Mg(CW) = rg for 3 € S(p). Finally, we have C") € R*”X( ses) 7s)

for all 4 € Tp \ L(Tp) and the claim follows. Thus, statement (b) holds.

To end the proof of the theorem, observe that in a similar way as above and by using idg(,)\s ® 505‘5) for

(1)

1 < jg < g, over u; * it can be proved that

50 gy () = span {UP, 1 < ig < g}

for 1 <4, <7, and also
USG5y (V) = span {Uﬁf,)iﬂ 11<ig<rg, 1<i, < m-}-

Now, we claim that {Ugf?iﬂ 1 <ig < Tg} are linearly independent in ®5¢ﬂ Vs for1 <4, <r,and g €
A, UY — 0.

S(p). Otherwise, there exist A;, for 1 <ig < rg not all identically zero such that Zl<i5<w inig

Take wg € Vg \ {0} and then

wo [ X v )= ¥ aweud <o

1§igST[-; 1Si5§’r’g

Observe that

) (8) _ (w) ) N
Z (/\zﬁwﬁ ® iniﬁ) - Z Ciua(ié)ées(u) )\Zﬂwﬁ ® ® 11 - ’

1Si5 ST[-; 1;1g(§’l“)g p 5?? )
eS(p esS(p

for 1 < i, <r, and B € S(u), take a dual basis of {tpgf) 11 <is <rs} CVsof {ugf) :1<is <rs} CVs
(5)( ()

where ¢; 7 (u;;

) = 0i4.,55 for all 1 < is5,js < rs. Then we obtain

. ©) (8) _ (w) _
idg ® ® Pis Z (/\ wp & UZ lﬂ) B Z Ciuv(ia)aesw) )\iﬂwﬁ =0,
sesS(u\{B} 1<ig<rg 1<ig<rg

that is, Mg(C"W)Tzg = 0, where z5 := (\;, wg )w 1~ Since rank Mg(C") = 15, then dim Ker M 5(CU)T =

0, and hence zg = ()\iﬂwﬁ)le = (0):521 for 8 € S(v), a contradiction. In consequence,

dim US4y () = dim U™ (")) = rg

"

for 1 <4, <r, and § € S(p). Hence U™ (v) = Ug’in(ugf)) holds for 1 <, <r, and 3 € S(u). [
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3 Geometric structures for TBF tensors

Before characterising the ”local coordinates” of a tensor v € FT(Vp) we need to introduce the Banach-
Grassmann manifold and its relatives.

3.1 The Grassmann-Banach manifold and its relatives

In the following, X is a Banach space with norm ||-||. The dual norm |[|-|| y. of X* is

el x- = sup{lp(z)] s & € X with |[z]|y <1} =sup {|p(z)]/[|lz]x : 0 # 2 € X} (3.1)

By L(X,Y) we denote the space of continuous linear mappings from X into Y. The corresponding operator
norm is written as |||y y -

Definition 3.1 Let X be a Banach space. We say that P € L(X,X) is a projection if P o P = P. In this
situation we also say that P is a projection from X onto P(X) :=1Im P parallel to Ker P.

From now on, we will denote P o P = P2, Observe that if P is a projection then Iy — P is also a
projection. Moreover, Ix — P is parallel to Im P.

Observe that each projection gives rise to a pair of closed subspaces, namely U = Im P and V = Ker P
such that X = U @ V. It allows us to introduce the following two definitions.

Definition 3.2 We will say that a subspace U of a Banach space X is a complemented subspace if U is
closed and there exists V in X such that X =U @V and V is also a closed subspace of X. This subspace V
is called a (topological) complement of U and (U, V) is a pair of complementary subspaces.

Corresponding to each pair (U, V') of complementary subspaces, there is a projection P mapping X onto
U along V, defined as follows. Since for each x there exists a unique decomposition x = u + v, where u € U
and v € V, we can define a linear map P(u + v) := u, where Im P = U and Ker P = V. Moreover, P? = P.

Definition 3.3 The Grassmann manifold of a Banach space X, denoted by G(X), is the set of all comple-
mented subspaces of X.

U € G(X) holds if and only if U is a closed subspace and there exists a closed subspace V in X such
that X = U @ V. Observe that X and {0} are in G(X). Moreover, by the proof of Proposition 4.2 of [10],
the following result can be shown.

Proposition 3.4 Let X be a Banach space. The following conditions are equivalent:
(a) U € G(X).
(b) There exists P € L(X,X) such that P> = P and Im P = U.
(c) There exists Q € L(X, X) such that Q*> = Q and Ker Q = U.
Moreover, from Theorem 4.5 in [I0], the following result can be shown.
Proposition 3.5 Let X be a Banach space. Then every finite-dimensional subspace U belongs to G(X).

Let V and U be closed subspaces of a Banach space X such that X = U® V. From now on, we will denote
by P,., the projection onto U along V. Then we have P, =Ix— P, Let U, U’ € G(X). We say that

2% Vou UV :*

U and U’ have a common complementary subspace in X, if X = U@ W = U’ @ W for some W € G(X).
The following result will be useful (see Lemma 2.1 in [g]).

Lemma 3.6 Let X be a Banach space and assume that W, U, and U’ are in G(X). Then the following
statements are equivalent:

(o) X=UaW =U &W, ie, U and U have a common complement in X.
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(b) P,owlur : U — U has an inverse.

Furthermore, if Q = (PU@W |U,)71 , then @ is bounded and QQ = P

U’@W|U'

Next, we recall the definition of a Banach manifold.

Definition 3.7 Let M be a set. An atlas of class C? (p > 0) on M is a family of charts with some indexing
set A, namely {(My,uq) : a € A}, having the following properties:

AT1 {My}oea is a coverin of M, that is, M, C M for all « € A and Upea M, = M.

AT2 For each a € A, (Mgy,us) stands for a bijection uq : My — Uy of My onto an open set Uy, of a Banach
space Xq, and for any o and B the set ua(Mq N Mpg) is open in X,.

ATS Finally, if we let Moy N\ Mg = Mag and ua(Mag) = Uag, the transition mapping ugouy' : Ung — Upa
is a CP-diffeomorphism.

Since different atlases can give the same manifold, we say that two atlases are compatible if each chart of
one atlas is compatible with the charts of the other atlas in the sense of AT3. One verifies that the relation
of compatibility between atlases is an equivalence relation.

Definition 3.8 An equivalence class of atlases of class CP on M is said to define a structure of a CP-Banach
manifold on M, and hence we say that M is a Banach manifold. In a similar way, if an equivalence class
of atlases is given by analytic maps, then we say that M is an analytic Banach manifold. If X, is a Hilbert
space for all a« € A, then we say that M is a Hilbert manifold.

In condition AT2 we do not require that the Banach spaces are the same for all indices «, or even that
they are isomorphic. If X, is linearly isomorphic to some Banach space X for all a, we have the following
definition.

Definition 3.9 Let M be a set and X be a Banach space. We say that M is a CP? Banach manifold modelled
on X if there exists an atlas of class CP over M with X, linearly isomorphic to X for all a € A.

Example 3.10 FEvery Banach space is a Banach manifold modelled on itself (for a Banach space Y, simply
take (Y, Iy) as atlas, where Iy is the identity map on'Y ). In particular, the set of all bounded linear maps
L(X,X) of a Banach space X is also a Banach manifold modelled on itself.

If X is a Banach space, then the set of all bounded linear automorphisms of X will be denoted by
GL(X) :={A € L(X,X) : A invertible }.

Example 3.11 If X is a Banach space, then GL(X) is a Banach manifold modelled on L(X,X), because
it is an open set in L(X, X). Moreover, the map A — A~ is analytic (see 2.7 in [32]).

The next example is a Banach manifold not modelled on a particular Banach space.

Example 3.12 (Grassmann—Banach manifold) Let X be a Banach space. Then, following [9] (see also
[32] and [26G]), it is possible to construct an atlas for G(X). To do this, denote one of the complements of
UeG(X) byW,ie, X=U@®W. Then we define the Banach Grassmannian of U relative to W by

GW,X)={VeGX): X=VaeW}.
By using Lemma 3.8 it is possible to introduce a bijection
\I]UGBW : G(VV, X) — K(U, W)

defined by
Vyew (U') = Pwaulv o Prewlu = Pweulvr © (Puew|u) ™

3The condition of an open covering is not needed, see [23].
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It can be shown that the inverse

Vb : LUW) — G(W, X),

is given by

Uiew (L) =G(L) :={u+L(u) :u € U}.
Observe that G(0) = U and G(L) ® W = X for all L € L(U,W). Now, to prove that this manifold is

analytic we need to describe the overlap maps. To explain the behaviour of one overlap map, assume that

X=UaeW=U @&W' and the existence of U" € G(W,X)NG(W',X). Let L € L(U, W) be such that
U"=G(L) =Yy (L).

and then
X=UapW=UaW=GL)oW=GL)oW'.

Since (id + L) is a linear isomorphism from U to U" = G(L) then T := Pygw: o (id + L) is a linear
isomorphism from U to U’. It follows that the map (Vyrgw: o \PEéBW) LU W) — LU, W) given by

(Yorow o Vo) (L) = Yuew (G(L)) = Pwaulew) © (Poew lam) ™
= Vyow (G(L) = Pweuvlaw o Powew: [vr o ToT™!
= Pwiaur|aw) © Payew v © Prigw: o (id+ L) o T
= Pwrgur o (id + L) o (Pyrgw o (id + L)) ™1

is analytic. Then we say that the collection {Vyaw,G(W, X)}uea(x) s an analytic atlas, and therefore,
T
G(X) is an analytic Banach manifold. In particular, for each U € G(X) the set G(W, X) =" LU,W) is

a Banach manifold modelled on L(U,W). Observe that if U and U’ are finite-dimensional subspaces of X
such that dimU # dimU’ and X = UGW =U'@W’, then L(U, W) is not linearly isomorphic to L(U',W').

Example 3.13 Let X be a Banach space. From Proposition [3.3, every finite-dimensional subspace belongs
to G(X). It allows to introduce G,(X), the space of all n-dimensional subspaces of X (n > 0). It can be
shown (see [20]) that G,(X) is a connected component of G(X), and hence it is also a Banach manifold
modelled on L(U, W), here U € G,(X) and X =U @ W. Moreover,

G<r(X) = [ Gn(X)

n<r
is also a Banach manifold for each fized r < oo.

The next example introduce the Banach-Grassmannian manifold for a normed (non-Banach) space. To
the authors knowledge there are not references in the literature about this (nontrivial) Banach manifold
structure. We need the following lemma.

Lemma 3.14 Assume that (X, || - ||) is a normed space and let X be the Banach space obtained as the
completion of X. Let U € Gn(X) be such that U C X and X = U & W for some W € G(X). Then every
subspace U’ € G(W, X) is a subspace of X, that is, U' C X.

Proof. First at all observe that X = U @ (W N X) where W N X is a linear subspace dense in W = W nX.
Assume that the lemma is not true. Then there exists U’ € G(W, X) such that U'@W = X and U'NX # U'.
Clearly U’ N X # {0}, otherwise W N X = X a contradiction. We have X = (U' N X) @& (W N X), which

implies X = (U’ N X) @ W, a contradiction and the lemma follows. ]

Example 3.15 Assume that (X, || - ||) is a normed space and let X be the Banach space obtained as the
completion of X. We define the set G, (X) as follows. We say that U € G, (X) if and only if U € G, (X)
and U C X. Then G,(X) is also a Banach manifold. To see this observe that, by Lemma for each
U € Gu(X) such that X = U @ W for some W € G(X), we have G(W,X) C G,(X). Then the collection
{Yvew,G(W,X)}vee, (x) is an analytic atlas on Gn(X), and therefore, G,(X) is an analytic Banach
manifold modelled on L(U,W), here U € G,(X) and X = U @ W. Moreover, as in Example [F13, we can
define a Banach manifold G<,(X) for each fized r < .
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Let M be a Banach manifold of class CP, p > 1. Let m be a point of M. We consider triples (U, ¢, v)
where (U, ¢) is a chart at m and v is an element of the vector space in which ¢(U) lies. We say that two of
such triples (U, p,v) and (V, v, w) are equivalent if the derivative of 1p~! at ¢(m) maps v on w. Thanks to
the chain rule it is an equivalence relation. An equivalence class of such triples is called a tangent vector of
M at m.

Definition 3.16 The set of such tangent vectors is called the tangent space of M at m and it is denoted by
T, (M).

Each chart (U, ) determines a bijection of T,,(M) on a Banach space, namely the equivalence class
of (U, p,v) corresponds to the vector v. By means of such a bijection it is possible to equip T,,(M) with
the structure of a topological vector space given by the chart, and it is immediate that this structure is
independent of the selected chart.

Example 3.17 If X is a Banach space, then T,(X) =X for all z € X.
Example 3.18 Let X be a Banach space and take A € GL(X). Then TAo(GL(X)) = L(X, X).
Example 3.19 For U € G(X) such that X =U & W for some W € G(X), we have Ty (G(X)) = L(U,W).

Example 3.20 We point out that for a Hilbert space X with associated inner product (-,-) and norm | - ||,
its unit sphere denoted by
Sx :={x e X :|z|| =1},

is a Hilbert manifold of codimension one. Moreover, for each x € Sx, its tangent space is

T.(Sx) = span {2z} = {2/ € X : (2,2/) = 0}.

3.2 The manifold of TBF tensors of fixed TB rank

Assume that {Va}aer,\(p} is a representation of the tensor space Vp = 4 ®a€S(D) V, in the tree-based
format where for each k € L(Tp) the vector space Vj, is a normed space with a norm || - [[x. As usual V-

denotes the corresponding Banach space obtained from Vi for k € L£(Tp). From now on, to simplify the
notation, we introduce for an admissible v € N7P the product vector space

Rt :— X Rrax(xges(a)rg)’
a€TH\L(Tp)
with rp = 1. It allows us to introduce its open subset R}, and hence a manifold, defined as

R e Lo cpe. OO eRIoes® Mg oo g g Xoeswr) |
: for each u € Tp \ {D} such that S(u) # 0.

From Theorem 219 we know that each v € FT.(Vp) is totally characterised by € = €(v) € RY and a
basis {ugj) 01 <ig < 1} of UMM(v) for k € L(Tp). Recall that in Example B.I5, the finite-dimensional
subspace U (v) C Vi C Vi, belongs to the Banach manifold G, (Vi) for k € L(Tp) (see also Example
BI3) and for each k € L(Tp), there exists a bijection (local chart)

Uy wewpn() P GOV V), Vi ) = LOP (), W (v))

given by
\IIUE”"(V)GBWIZM"(V)(U]C) = Lk = PW;Z“"(V)@U{J’“‘(VﬂUk e} (PUL“m(V)@W,;ni"(V)|Uk)_1'

Moreover, Uy, = G(Ly) = span{uy + Li(ux) : ux € UM(v)}. Clearly, the map

T, X GWM(v), Vi, ) = X LU (v), WiER(v)),
keL(Tp) keL(Tp)
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defined as Wy := Xycrirp) Wirmin (v)gwmin(v) 18 also bijective. Furthermore, it is a local chart for an element

U(v) = {UP™(v)}her(rp) in the product manifold such that ¥ (U(v)) = 0 := (0)res(ry)- It allows us to
introduce the surjective map
0 : FT(Vp) = X G, (Vj)

JEL(TD)

defined by o¢(v) = 8(v) := (U™ (V))kes(rp)- Now, for each v € FT(Vp) introduce the set
UWv) = o " ( X G(iji“(v),\/})> ={w € FT(Vp) : U™(w) € GIW"™(v), Vi), 1 < k < d}.
JEL(TD)
Our next step is to construct the following natural bijection. Let
Xe(v) 1 UV) = ( X G(iji“("),vj)> xRL we (a(v)(w), xa(v)(w)
JEL(TD)
defined as follows. Let w € U(v). From Theorem we have the following.

(a) There exists a basis of U™ (w) € G(Wmin(v), Vi, ) for each k € L(T'p) and hence a unique

L= Likecrpy € X LUFR(v), Wi (v))
keL(Tp)

such that ¥ (o.(w)) = £, that is, U™ (w) = G(Lg) for all k € L(Tp). Then x; (v)(w) := ¥, (£) and
Uprin(w) = G(Lg) = span {(idy, + L) (u; (k )) 1 <y < ry} where U (v) = span {ugf) (1< <t}
is a fixed basis for k € L(Tp) and hence W v(0:(v)) = (0)res(rp)-

b) There exists a unique x2(v)(w) := € = (C(), cp 7.y € R such that
( q X €Tp\L(Tp) *

W= Z ((f:))aesw) ® W ), (3.2)

1<in<rq a€eS(D
aeS(D)

and where for each 8 € Tp \ ({D}UL(Tp)) we have

Ug’in(w) =span{w;, : 1 <ig <rg}

with
(idg + Lg)(ul) if 8€ L(Th)
w® _
e > c® X W( ) otherwise
15<gg<ré ip,(i5)ses(p) IES(B) :

Finally, let

Pv: < X G(W]min(v)av})> xR, = X G(Wymin(v)vvj)

JEL(TD) J€L(TD)

be the projection py (4, €) = i then py 0 x(V) = o.

A very useful remark is the following. Recall that (idy + Lj) is a linear isomorphism from UPin(v) to
Urin(w) = G(Ly) for all k € L(Tp). From Proposition 3.49 of [19] we have

® E Umln mln(w)) =L|. ® U}znin(v) . a ® U]inin(w

ket:(TD) keL(Tp) keL(Tp)
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and denote by GL (a Qrer(rp) Urin(v) , o recirn) U,g“i“(w)) the set of linear isomorphisms of

Lle @ UFv),a Q UP(w)

kEC(TD) kEL(TD)

Let us define

GLi o & Ur(v).a Q) UMmw) | :=

kE€L(Tp) keL(Tp)
GL{a & UF™(v),a @ UF™(w) | Mo @ LOF™(V),UF™(w))
keL(Tp) keL(Tp) keL(Tp)
Then
® (idk + Li) € GL1 | 4 ® Ur™(v) s a ® U™ (w)

keL(Tp) keL(Tp) keL(Tp)

Observe that for each given v € FT7(Vp) the map
O, : ( X G(iji“(v),Vj)> x RE — ( X E(Ufﬂn(v),WJmi“(v))> x RS
JEL(TD) JEL(TD)
where Oy, := ¥, X id is a bijection. Then
Oy o X“(V) :U(V) - ( X ‘C(U;nin(v)a ijin(v))> x RS
JjEL(TD)

is also a bijection where

Ovoxe(W) &) =w=| @ (de+Li)|()=| & C(idi+Ls)]| (Oyox:(v)) " (o,0).
keL(Tp) keL(Tp)

We can interpret this last equality as follows. w € U(v) holds if and only if

w e FT. Q) (di+ L) | [« @ UMW)

kEﬁ(TD) kEL(TD)

for some £ € Xyerry) LU (v), W (v)). In consequence, each neighbourhood of v in FT(Vp) can
be written as

Uv) = U FT. Q) (d+Li) | |« @ UMV | ],

£€ X per(rp) LR (v),Winin (v)) k€L(Tp) k€L(Tp)
that is, a union of copies of F7T (a R e £(Tp) R7x ) indexed by a Banach manifold. Before stating the next
result, we introduce the following definition.

Definition 3.21 Let X and Y be two Banach manifolds. Let F : X —Y be a map. We shall say that F' is
a C" (respectively, analytic) morphism if given x € X there exists a chart (U, ) at © and a chart (W,v) at
F(z) such that F(U) C W, and the map

YoFop o) — (W)

is a C"-Fréchet differentiable (respectively, analytic) map.
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Lemma 3.22 Let v,v' € FT(Vp) be such that U(v) NU(V') # O. Then the bijective map
Xe(V') o xe(v) 7" ( X G(ngin(v)an)> xRy — ( X G(ngin(V'),Vj)> x R}
JEL(TD) JjeL(Tp)
is an analytic morphism. Furthermore, it is an analytic diffeomorphism.

Proof. Let v,v' € FT(Vp) be given. To prove the lemma we need to check that the map

Oviox:(V)oxe(v)TtoOy s X LIUFT(v), Wi (v)) x RE = X L(UF™(V), W™ (v)) x Ry
keL(Tp) kE€L(Tp)

is analytic whenever U(v) NU(V') # 0. Let w € U(v) NU(V') be such that (x.(v) o Oy)(w) = (£,¢€) and
(xe(v") 0 Our)(w) = (£, D), that .

Oy o xe (V) o xe (V) Lo O (L, €) = (£,D).
Since w € U(v) NU(V') then

@f<w><U;ni“<w>>kec<TD>e< X G(WF”(ij))m( X G(W?i%v’),vj))

JEL(TD) JEL(TD)
and
(Wyr 0 W) (W (U™ (W))ker(rp))) = Yo (U™ (W))kes(rn)):
that is,
(Uy oW (L) = £
Hence

(Ov o x:(V)) (W) = (¥ 0 UT)(£),D),
where Uy 0 Wt is an analytlc map. Let u = (x (v) Lo@7")(0,€) and u’' = (x(V'"' 0 0,)(0,D). Then
uc a®ke£(TD)Uk M(v),u' € ®keL(TD)Uk v') and

w=(0y0x:(v)) 1 (L, €) = (idy, + Lz) (idp + Li) | 0 (©y 0 xe(v)) " (0,€)
keL(TD) kEC(TD)
=Ovox:(vV) (€D =| Q (di+Ly)| W)= & (ide+L})|oOvoxe(v) " (0,9).
kE[:(TD) kEL(TD)
Hence,

(0.9)=Owox:(v)o | Q) (idk+ L) o (idk + Li) | o (Oy 0 x(v)) ™" (0, ).
keL(Tp)

In consequence, we can write

(Oa D)= f(sa €)= (@v’ © Xt(vl)) o ® (idk + L;c)_l © (idk + Lk) o (ev © Xt(v))_l (Oa @).

keL(Tp)
and the map _
foo X LUP(v), Wit (v)) x RY = {o} x R}
keL(Tp)
is an analytic morphism. Thus the lemma is proved. [

The next result will help us to show that the collection {Oy o x(Vv),U(V)}verT. (vp) is an atlas for
FT(Vp). Indeed, it is the unique manifold structure for which g. : FT+(Vp) = X cr (1) Gr; (V) defines
a locally trivial fibre bundle with typical fibre R}. To this end we will use Lemma and the followmg
classical result (see Proposition 3.4.28 in [20]).
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Theorem 3.23 Let E be a set, B and F be C* manifolds, and let 7 : E — B be a surjective map. Assume
that

(a) there is a C* atlas {(Us, va) : o € I} of B and a family of bijective maps xo : 7 *(Uy) — Uy X F
satisfying po © Xo = ™, where po, : Uy X F' — Uy, 1s the projection, and that

(b) the maps Xor 0 X3! : Ua X F — Uy x F are C* diffeomorphisms whenever Uy N Uy # 0.

Then there is a C* atlas {(Vz,va) : B € J} of F and a unique C* manifold structure on E given by

{(xa'(Ua x Vp), (pa x ¥s)) oXxata €I, f € J}

for which 7 : E — B is a C* locally trivial fibre bundle with typical fibre F.

Let us mention the following two mathematical objects related to the above theorem. Let B and F be C*
manifolds, and let 7 : E — B be a surjective map satisfying the conditions (a)-(b) of Theorem Then
(E, B, ) is called a fibre bundle with typical fibre F, and if F' is also a Banach space, then it is called a
vector bundle (see Chapters 6 and 7 in [6]). In consequence, we can state the following result.

Theorem 3.24 Assume that {Va}aerp\(p} is a representation of the tensor space Vb = o @ es(py Va
in the tree-based format where for each k € L(Tp) the vector space Vi, is a normed space with a norm || - |-
Then the collection {©y o x(V),U(V)}verT.(vp) 8 an analytic atlas for FT.(Vp). Furthermore, the set
FT«(Vp) of TBF tensors with fixed TB rank is an analytic Banach manifold and

<]:Tt(VD)a >< GTj (Vj)a Qt)

JEL(TD)
is a fibre bundle with typical fibre R.

Proof. Take the set £ = FT.(Vp) and the analytic Banach manifolds B = X ;cz(7,,) Gr;(V;) and F' = R}.
Let us consider the surjective map o. : FT«(Vp) = X crry) G, (Vj). The theorem follows from The-
orem [B.23] because Theorem B:23(a) is true by the definition of x.(v) and Theorem B.23[(b) is a consequence
of Lemma ]

Remark 3.25 We observe that the geometric structure of manifold is independent of the choice of the norm
Il - llp over the tensor space Vp.

Corollary 3.26 Assume that Vi, is a Hilbert space with norm || - ||y for k € L(Tp). Then FT+(Vp) is
an analytic Hilbert manifold.

Proof. We can identify each Ly, € £ (U™ (v), W (v)) with a (wglz))i’;jk € Wmin(v)™  where wif) =
L (u¥ and U™ (v) = span {u®, ... uf for k € L(Tp). Thus we can identify each (£, &) € U(v) with
(sk) k 1) (%)
a pair .
(W, ¢)e X WM(v)™ x R,
keL(Tp)

where 20 := ((wglz))izz’“)keﬁ(TD). Take X pcrirp) Wmin(v)rs x RE an open subset of the Hilbert space

X kel (Tn) Wmin(v)s x R* endowed with the product norm
T
1@, lh= > lcole+ > > IwE s,
a€Tp\L(Tp) keL(Tp) sk=1

with || - | the Frobenius norm. It allows us to define local charts, also denoted by Oy o x.(v), by

X:'(v)oO s X WER(v)™ x RE — U(v),
keL(Tp)

21



where (x;1(v) o ©,1) (20, €) = w putting Lk(uz(-f)) = wgf), 1 <i <1, and k € L(Tp). Since each local
chart is defined over an open subset of the Hilbert space X ez (7)) W,;“i“(v)”“ x R, the corollary follows. m

Using the geometric structure of local charts for the manifold F7(V p), we can identify its tangent space
at v with Ty (FT (VD)) == Xyper(rm) L(UDin(v), Wmin(v)) x R*. We will consider Ty (FT(Vp)) endowed
with the product norm

NEoll:= > 19+ > ILklwps)cvpn):
a€Tp\L(Tp) keL(Tp)

Moreover, the map o, is an analytic morphism and

Tyo.: X E(U};’i“(v), ,g“i“(v))xRt% X E(U};’i“(v), ,gni“(v)), (£,¢)— L.
k€L(Tp) keL(Tp)

Finally, the same argument used to provide a Banach manifold structure to the set G<,(X) used with
FT<(Vp) and (2.3), allows us to state the following.

Theorem 3.27 Assume that {Va}aerp\(D} 5 a representation of the tensor space Vp = 4 ®aeS(D) Va
in the tree-based format where for each k € L(Tp) the vector space Vi, is a normed space with a norm || - ||x.
Then the set FT <.(Vp) of TBF tensors with bounded TB rank is an analytic Banach (Hilbert) manifold.

4 The TBF tensors and its natural ambient tensor Banach space

Assume that {VQ}QGTD\{D} is a representation of the tensor space Vp = ®aeS(D) V. in the tree-based
format and that for each k € L(Tp) the vector space Vj, is a normed space with a norm || - ||. We start with
a brief discussion about the choice of the ambient manifold for F7(Vp). To this end assume the existence

of two norms || - [|p,1 and || - ||p,2 on Vp. Then we have Vp C VDH'”D’1 and Vp C VD”‘”D'Q. The next
example illustrates this situation.

Example 4.1 Let Vi~ := H"P(Iy) and V= H"“P(I3). Take Vp = H"P(I)) @, H"P(I3). From
Theorem[3.24] we obtain that FT.(Vp) is a Banach manifold. However, we can consider as ambient manifold

cither Vo' = H'P(I x 1) or Vi "% = HY (1) @)y, , H'P(12), where || 0.0, is the norm

given by
p> 1/p
P

In this context two questions about the choice of a norm || - ||, for each algebraic tensor space V, =
o ®ges(a) Vs » where a € Tp \ L(Tp) appears:

0
1l o0 = (“f I+ Ha_f

for 1 <p < oco.

1. What is the good choice for these norms to show that F7 <.(Vp) is proximinal?

2. What is the good choice for these norms to show that F7(Vp) is an immersed submanifold?

To see this we need to introduce the topological tensor spaces in the tree-based format.

4.1 Topological tensor spaces in the tree-based Format

First, we recall the definition of some topological tensor spaces and we will give some examples.

22



Definition 4.2 We say that V.| is a Banach tensor space if there exists an algebraic tensor space V and
a norm ||-|| on V such that V. is the completion of V with respect to the norm ||-||, i.e.

d —l
d
Vi = 11 QY =@, Vi
j=1
If V. is a Hilbert space, we say that V. is a Hilbert tensor space.

Next, we give some examples of Banach and Hilbert tensor spaces.

Example 4.3 For I; CR (1 <j <d) and 1 < p < oo, the Sobolev space HN'P(I;) consists of all univariate
functions f from LP(I;) with bounded nornty

N 1/p
g, = (3 [ 1orsras)
n=0 J

whereas the space HNP(I) of d-variate functions on I =1I; x Iy x ... x I; C R? is endowed with the norm

= (X [losrax)””

0<|n|<N

with n € N¢ being a multi-index of length |n| := 2?21 nj. For p > 1 it is well known that H™?(I;) and
HN?(1) are reflexive and separable Banach spaces. Moreover, for p = 2, the Sobolev spaces H™ (I;) =
HN2(I;) and HN(I) := HN2(I) are Hilbert spaces. As a first evample,

d
HY (1) = ., Q HY (L)
j=1
is a Banach tensor space. FExamples of Hilbert tensor spaces are
d d
L2(I) = ”_”0,2 ®L2(Ij) and HN(I) = H'HN,z ®HN(Ij) f07“ N e N.
j=1 j=1

In the definition of a tensor Banach space || ®jeD V; we have not fixed, whether Vj;, for j € D, are
complete or not. This leads us to introduce the following definition.

Definition 4.4 Let D be a finite index set and Tp be a dimension partition tree. Let (Vj,| - ;) be a
normed space such that V;,  —is a Banach space obtained as the completion of Vj, for j € D, and consider
J

a representation {Va}aer,\(p}y of the tensor space Vp = o Q.cp V; where for each o € Tp \ L(Tp) we
have a tensor space Vo = o Qges(a) Vo - If for each o € Tp \ L(Ip) there exists a norm || - [lo defined

on Vo such that Vo, = . ®ﬁe$(a) Vs is a tensor Banach space, we say that {Va, , }acTp\(D} 15 @
representation of the tensor Banach space VDH-HD = |lp ®j€D V; in the topological tree-based format.
Since V, = ®jea Vi,

Voo =1 @ Va=11.QV;

aeS(D) JjEa

holds for all « € Tp \ L(Tp).

Example 4.5 Figure[{.]] gives an example of a representation in the topological tree-based format for an
anisotropic Sobolev space.

41t suffices to have in (@) the terms n = 0 and n = N. The derivatives are to be understood as weak derivatives.
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TP(1) @a HNP(Io) ©0q HNP(I3)

T

(1) TG EL BN

HN’p(IQ) HN’p(IQ)

Figure 4.1: A representation in the topological tree-based format for the tensor Banach space
Lp(Il) Ra HNvP(]Q) R4 HNvP(]B)”'”mB

. Here || - ||2s and || - |[123 are given norms.

[Ill123

11|23

Lr(Iy) ®q HN-P(I3) @ HN-P(I3)

T

LP(I,) HN#(Iy) @, HN,p(Ig)d'st

HN?(L,) HNP(I)

Tl ll123
Figure 4.2: A representation for the tensor Banach space LP(I1) ®, HV?(I3) ®q HNvP(Ig)" 20 , using a
tree. Here || - ||23 and || - ||123 are given norms.

Remark 4.6 Observe that a tree as given in Figure[{.3 is not included in the definition of the topological
tree-based format. Moreover, for a tensor v € LP(I1) ®@q (HNP(I3) ®).j,, HN?(I3)), we have UB™(v) C
HNP(I3) @)1y HY?(I3). However, in the topological tree-based representation of Figure [[], for a given
v € LP(I) ®, HYP(I3) ®, HYP(I3) we have UB™(v) C HNP(I) ®, HYP(I3), and hence UBT(v) C
U (v) @ U (v).

The difference between the tensor spaces involved in Figure ] and Figure is the following. For all
B €Tp\L(Tp), it |- | is also a norm on the tensor space o &, cs(s) Vi, » we have

s @V, 2 Ve, =i, @ Vo= 11, Q-
nes(8) nes(B) JjeB

A desirable property for the tensor product is that if ||-|| is also a norm on the tensor space , ®BeS(a) Vg, I

then
(R[S ® Vi, = ® Vi = ||‘||Q®Vj (4.2)

BeS(a) peS(a) JjEa

must be true for all & € Tp\ L(Tp). To precise these ideas, we introduce the following definitions and results.

Let [|-[|;, 1 < j < d, be the norms of the vector spaces V; appearing in V = , ®;l:1 V; . By |||l we denote
the norm on the tensor space V. Note that [|-|| is not determined by ||-[|;, for j € D, but there are relations

which are ‘reasonable’. Any norm ||-|| on , ®?:1 V; satisfying

d
iy
H ®j:1 J

is called a crossnorm. As usual, the dual norm of ||-|| is denoted by |[|-||*. If ||-|| is a crossnorm and also ||-||*

d
= szl 1ol forallv; eV, (1<j<d) (4.3)

. d .
is a crossnorm on o @;_, V", i.e.,

d || * d . )
@ = () [* ) * .
H®j:1“"j H =L 1ePl5 forall e Vi (1<) <d), (4.4)

then ||-|| is called a reasonable crossnorm.

24



Remark 4.7 Eq. [@3) implies the inequality || ®J 19511 S H] 1 |vjll; which is equivalent to the continuity
of the multilinear tensor product mappm! between normed spaces:

X >< (V3. ;) — (®v ,||-||), (45)

defined by @ ((vi,...,vq)) = ®d:1 vj, the product space being equipped with the product topology induced by
the mazimum norm ||(vy, . .. ,’Ud§|| = maxi<,;<d [|vj]l;-

The following result is a consequence of Lemma 4.34 of [19].

Lemma 4.8 Let (V;, | -|;) be normed spaces for 1 < j < d. Assume that || - || is a norm on the tensor space
a ®;l:1 Vi such that the tensor product map
J

&: >< (Vi 1) — (®v ,||-||) (4.6)

Jj=1

is continuous. Then (L) is also continuous and

d d
1 Q Vi, = 1@V
j=1 j=1

holds.

Definition 4.9 Assume that for each o € Tp\L(Tp) there exists a norm || ||o defined on o @ geg(a) Vi, -
We will say that the tensor product map Q) is Tp-continuous if the map

X (VﬂH‘Hg’H ls) = ® Vsy. Hg’ o

BeS(a) ﬁeS a)
is continuous for each oo € Tp \ L(Tp).
The next result gives the conditions to have ([4.2)).

Theorem 4.10 Assume that we have a representation {VQHAHQ YaeTn\{D} in the topological tree-based format
of the tensor Banach space Vp, | == |, Qaes(p) Va » such that for each o € Tp \ L(Tp), the norm |- [|a
is also defined on ®ﬁe$(a) Vﬂu»ug and the tensor product map Q) is Tp-continuous. Then

e @ Ve, =i @ Vo= 1. Qi
BeS(a) BeS(a) JjEa
holds for all o € Tp \ L(Tp).
Proof. From Lemma [4.8] if the tensor product map

®: >< (Vﬁ\l»\lg’H Hﬁ ® Vﬁu ”B’” H)

BeS(a) ﬁeS(a
is continuous, then
e @ Ve, = 1. @ Ve,
BeS(a) BeS(a)
holds. Since V, = ®§€S(a) Vg =, ®j€a V; , the theorem follows. [

d
5Recall that a multilinear map T from X j=1(Vj, | -1l;) equipped with the product topology to a normed space (W, || -||) is
continuous if and only if ||T|| < oo, with

T(vi,...,vq
ITh =  sup  |T(or,... va)ll = sup T, vl = sup AL@L- vl

(W15 e0a) (V150r0a) 1revg) o1l Jvalla
[(v1,..vg) <1 ||U1H1<1 ~~~~~ [lvalla<1
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Example 4.11 Assume that the tensor product maps

& (LP (L), Il

and

0.p:1,) X (HNP (L) @105 HNP(Is), || - [|23) = (LP(I1) ®@a (HYP(12) @10 HYP(13)), || - [l123)

@) : (HNP (L), |- |nvpira) X (HNP(I3), |- v pars) = (HNP(I2) @0 HNP(13), | - [|25)

are continuous. Then the trees of Figure[].1] and Figure[{.Z are the same.

The next result is a consequence of the well-known fact that every continuous multilinear map between
normed spaces is also Fréchet differentiable (see (2.1.22) in [5]).

Proposition 4.12 Let (V},| - ||;) be normed spaces for 1 < j < d. Assume that || - || is a norm onto the
tensor space a®‘;:1 Vj“}“j such that the tensor product map (E8) s continuous. Then it is also Fréchet

differentiable and its differential is given by
d
D (®(U1,...,Ud)) (wl,...,wd) = Z’U1 R...Q0V_1 QW; ®Vjt1 @ -+ vq.
j=1

4.1.1 On the best approximation in 77 <.(Vp)

Now we discuss about the best approximation problem in F7 <.(Vp). For this, we need a stronger condition
than the T'p-continuity of the tensor product. Grothendieck [I5] named the following norm ||-||,, the injective
norm.

ey . . d
Definition 4.13 Let V; be a Banach space with norm |-||; for 1 < i < d. Then forv € V = . Q;_, V;
define H'Hv(v1 Vy) by

.....

(1 ® @2 ®...® pq) (V)|
d *
Hj:l H‘Pj”j

It is well known that the injective norm is a reasonable crossnorm (see Lemma 1.6 in [24] and ([@3)-(@4).
Further properties are given by the next proposition (see Lemma 4.96 and 4.2.4 in [19]).

:07ésojevj*,1§j3d}. (4.7)

Proposition 4.14 Let V; be a Banach space with norm ||-||, for 1 <i < d, and | - || be a norm on V :=
a ®;l:1 Vi . The following statements hold.

(a) For each 1 < j < d introduce the tensor Banach space X := [ P ®k¢j Vi. . Then
- veva,vy = 1 vy x;5) (4.8)
holds for 1 < j <d.

(b) The injective norm is the weakest reasonable crossnorm on 'V, i.e., if ||-|| is a reasonable crossnorm on

V, then
2 v - (4.9)
(¢) For any norm ||-|| on 'V satisfying ||-[l\,(v;, . v,y S Il the map (£:8) is continuous, and hence Fréchet
differentiable.

In Corollary 4.4 in [II] the following result, which is re-stated here using the notations of the present
paper, is proved as a consequence of a similar result showed for tensors in Tucker format with bounded rank.

Theorem 4.15 Let Vp = a®jeDVj and let {V, e 1255 < d}y u{V; :1<j<d} ford>3, bea
J

representation of a reflexive Banach tensor space VDMD = Ilp ®j€D V; , in topological tree-based format
such that

I-11 5
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(@) -1 2 - Ivewn, vy, )
j d

(b)) Vo, =Va1®4q Va, and Vo, =Vj_1 ®q Va,,,, for2<j<d—1, and

Then for each v € Vb, there exists Wpest € FT<:(Vp) such that

||V_ubest||D = min ||V_u||D'
ueFT<(Vp)

It seems clear that tensor Banach spaces as we show in Example are not included in this framework.
So a natural question is if for a representation in the topological tree-based format of a reflexive Banach
space the statement of Theorem is also true. To prove this, we will reformulate some of the results
given in [I1]. In the aforementioned paper, the milestone to prove the existence of a best approximation is
the extension of the definition of minimal subspace for tensors v € V Diip \ Vp. To do this the authors use
a similar result to the following lemma (see Lemma 3.8 in [11]).

Lemma 4.16 Let Vj“}“j be a Banach space for j € D, where D is a finite index set, and aq,...,0, C

2P\ {D,0}, be such that a; Naj = O for all i # j and D = \J;*, o;. Assume that if #c; > 2 for some
1 <v<m, then V, I, 18 atensor Banach space. Consider the tensor space

m

Vb =4 ®Vai -l

i=1

endowed with the injective norm ||-||y v Fiz1 <k <m, then given @4, € o @; 1, V<

. —_— ~— Il
the map idq, ® P[q,] belongs to L (VD,V% M%) . Moreover, ida, ® ¢y, € L(Vp ", Va, HAH%) for any

Loy 7T am H-Ham)

norm satisfying
AR R —

) am, \l,“am)

Let {Va, . tacTp\(p} be a representation of the Banach tensor space Vp, | = ||, Q;cp Vj , in the
topological tree-based format and assume that the tensor product map ) is Tp-continuous. From Theorem
410l we may assume that we have a tensor Banach space

e = e @ Vo,

BES(a)

v

for each o« € Tp \ L(Tp), and a Banach space V; = for j € L(Tp). Let o € Tp \ L(Tp). To simplify the

notation we write for A, B C S(«)

I-11 5

|- ||v(A) = ||v({v5H_H5:5eA}),

and
- lveavy =1 llvivs, | seayxm)
where
XB = s ®V5H«H5 :
BeB

From Proposition f.14(a), we can write

I lvistan = I llvis.vis@ns)

for each 8 € S(«). From now on, we assume that

I lla =1 - ||\/(S(a)) for each a € Tp \ L(Tp), (4.10)
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holds. Recall that Proposition 14{c) implies that the tensor product map ) is Tp-continuous. Since
Il lla 2 I~ [lvs,v(s(a)\p)) holds for each B € S(a), the tensor product map

® F (Vs I l8) | v ens ® Vs ol lvis@ens | = Va0l lla)
seS(a)\{B}

is also continuous for each 8 € S(«). Moreover, by Theorem .10
Vo =1l @ Ve, = 10e @ Ve = 11. Qs -
BeS(a) BeS(a) JjEa

holds for each o € Tp \ L(Tp). Observe, that Vi, |~ C V7, for all a € S(D). Take Vp = o Q,cp V; - Since

-l Z Il llv(spy), from Lemma A.16] and Proposition E.II(b), we can extend for v € Vp,  \ Vp, the
definition of minimal subspace for each a € S(D) as

Ut (v) =S (ilda @ pi))(V) i@ €a @ Vi
BES(D)\{a}

Observe that (ida ® @[y)) € E(VDH 10 Vay.)- Recall that if v € Vp and e ¢ £(Tp), from Proposition 210
we have U™ (v) C , ®ﬂes(a) U™ (v) C a @pes(a) Vs - Moreover, by Proposition Z.II(b), for 8 € S(a)

we have

U™ (v) = span < (ids @ @jg)(Va) : Va € US™(v) and g€ 0« Q) V;
seS(a)\{B}

= span ¢ (idg @ @) 0 (ida @ P)(V) 1P €a @ Vi andppgea & Vi
neS(D)\{a} seS(a)\{8}
Thus, (ida ® @(a)) (V) € UF™(v) C Vo C Vg, and hence
(ids ® @) © (ida ® @pa))(v) € UF™(v) C Vg C Vi,
when #3 > 2. However, ifv € Vp, \VD then (ida ® @(,))(v) € UF™(v) C Vg, . Since ||[la 2 I lv(s(a))

also by Lemma .16 we have idg ® o5 € L(V QH_HQ,VgH_Hﬂ). In consequence, a natural extension of the
definition of minimal subspace Ug““( ), forveVp \ Vp, is given by

Ug™(v) := span 4 (ids @ pg) 0 (ida @ 00 (V) i €0 Q) Vi andegea Q  V;
peS(D)\{a} seS(a)\{B}

To simplify the notation, we can write

(ids ® @ig,a)) (V) = (idg ® p(g)) 0 (ida @ @(4))(V)

where Qo[ﬁ,a] = Cp[a]®<,0[5] S (a ®u€S(D)\{a} VZ)@a(a ®6ES(0¢)\{,6} V§) and (idﬁ ® ‘P[ﬁ,a]) € ‘C(VDH-HD ) VﬂH-Hg )
Proceeding inductively, from the root to the leaves, we define the minimal subspace Ujmi“(v) for each
j € L(Tp) such that there exists n € Tp \ {D} with j € S(n) as

U]min(v> ‘= span {(Zdj & (p[j,n,...,ﬁ,a])(v) : <Aa[j,n,.,.,ﬂ,az] € W]} )

where

Wi=la @ Vi|l@la &Q Vi|®@la & W

neS(D)\{a} seS()\{8} keS(m\{s}
With this extension the following result can be shown (see Lemma 3.13 in [I1]).
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Lemma 4.17 Let {Vq }tactp\{D} be a representation of the Banach tensor space Vo, = o ®jeD V
in the topological tree-based format and assume that @I0) holds. Let {vn}n>0 C Vp, with v, = v, and
w€Tp\ ({D}UL(Tp)). Then for each v € S(u) we have

(Zd’Y ® 90[77H7...1ﬁ7a])(vn) - (Zd'}/ ® (P['y,,u,--- ,ﬁ,a])(v) in V'V\le’

for all @i ... p,0) € (“®u€S(D)\{a} VZ) Pa (“®5€S(a)\{ﬁ} VE) Far Ba (“®n€5<#>\{v} Vﬂ*) '

Then in a similar way as Theorem 3.15 in [I1] the following theorem can be shown.

Theorem 4.18 Let {Vy,  }aerp\(D} be a representation of the Banach tensor space Vo, = 1o ®jeD Vi,
in the topological tree-based format and assume that &I0) holds. Let {vn}n>0 C Vp with v, — v, then

Tamr e

dim Umin(v)" " = dim U™ (v) < liminf dim U™ (v,,),

n—oo

for alla € Tp \ {D}.
Now, following the proof of Theorem 4.1 in [I1] we obtain the final theorem.

Theorem 4.19 Let Vp = o Q);cp Vj and let {Va | }aerp\(p} be a representation of a reflexive Banach
tensor space VDH-HD = Ilp ®jeD V; , in the topological tree-based format and assume that [@I0) holds.
Then the set FT <:(Vp) is weakly closed in VDHD and hence for each v € VDH-HD there exists Upest €
FT<(Vp) such that

HV*ubest”D = min ||V*11HD.
uE]:TS‘—(VD)

4.2 Is FT.(Vp) an immersed submanifold?

Assume that the tensor product map @) is Tp-continuous and that we have a natural ambient space for

FT(Vp) given by a Banach tensor space V_D”‘”D =Vp, - Since the natural inclusion
i: .FTt(VD) — VDH‘HD’

given by i(v) = v, is an injective map we will study i as a function between Banach manifolds. To this end
we recall the definition of an immersion between manifolds.

Definition 4.20 Let F : X — Y be a morphism between Banach manifolds and let x € X. We shall say
that F' is an immersion at x, if there exists an open neighbourhood X, of x in X such that the restriction of
F to X, induces an isomorphism from X, onto a submanifold of Y. We say that F is an immersion if it is
an immersion at each point of X.

Our next step is to recall the definition of the differential as a morphism which gives a linear map between
the tangent spaces of the manifolds involved with the morphism.

Definition 4.21 Let X and Y be two Banach manifolds. Let F: X —Y be a C" morphism, i.e.,
YoFoptipU)— (W)

is a C"-Fréchet differentiable map, where (U, ) is a chart in X at x and (W,v) is a chart in' Y at F(z).
For x € X, we define

ToF : To(X) — Try(Y), v [(¥o Fog™) ().
For Banach manifolds we have the following criterion for immersions (see Theorem 3.5.7 in [26]).
Proposition 4.22 Let X, Y be Banach manifolds of class C? (p > 1). Let F : X — Y be a CP morphism
and x € X. Then F is an immersion at x if and only if T, F is injective and T, F(T(X)) € G(Tp ) (Y)).
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A concept related to an immersion between Banach manifolds is the following definition.

Definition 4.23 Assume that X and Y are Banach manifolds and let f : X — Y be a C" morphism. If f
is an injective immersion, then f(X) is called an immersed submanifold of Y.

Recall that there exists injective immersions which are not isomorphisms onto manifolds. It allows us to
introduce the following definition.

Definition 4.24 An injective immersion f : X — Y which is a homeomorphism onto f(X) with the
relative topology induced from Y is called an embedding. Moreover, if f : X — Y 1is an embedding, then
f(X) is called an embedded submanifold of Y.

A classical example of an immersed submanifold which is not an embedded submanifold is given by the
map f : (37/4,77/4) — R? written in polar coordinates by 7 = cos 26. It can be see that f is an injective
immersion however f(37/4,7m/4) is not an open set in R?, because any neighbourhood of 0 in R? intersects
f(3w/4,7m/4) in a set with ”corners” which is not homeomorphic to an open interval (see Figure [d3]). Before
to give an example with tensors we need the following lemma.

Lemma 4.25 For each o € Tp\{D}, the set LU (v), WRin(v)) is a complemented subspace of L(Vay. s Vo)

Hence for each v € Vp and 8 ¢ L(Tp) the set X 4eg(5) LUS™(v), W™ (v))) is a complemented subspace
of the Banach space X oes8) L(Vay s Vay. . )-

Proof. Observe that the map

Mot £ (Vo Vay.) = £ (Vo Vag,)
defined by
o (La) = Py ginw)ovginw) LaPuginwawpin )
is a projection onto L(UM(v), Wit (v)). |

Example 4.26 Consider the morphism

f:Uv) CFT(Vp) — X E(Vau»ua’Vau»Ha) x R
acLl(Tp)

defined locally for each v € FT(Vp) by f(w) = (Oy o x:(v))(w) = (£,&). Then in local coordinates we
have that f is the identity map. Clearly, f is injective and

Tof( X LUF), W (v)) xRY) = X LUI™(v), W (v)) x R".
a€L(Tp) a€L(Tp)

From Lemma[{.25 we have that

X E(Uglin(v)’W(;nin(v)) € G( X K(V‘)‘H*Ha’VO‘H‘HQ))
OzE[:(TD) OzE[:(TD)

and hence . _
>< E(U;nln(v>, Walznm(v)) xR" € G( >< E(VD‘H-HQ s VD‘H'HQ) X Rt)
a€L(Tp) a€L(Tp)

Then by Proposition[1.22 f is an immersion. Moreover, f(U(v)) with the topology induced by

>< E(VO‘H‘HQ’VO‘H‘HQ) x R
a€Ll(Tp)

is homeomorphic to U(v) when we consider in U(v) the initial topology induced by f. We point out that we
can consider {U(v) : v € FT«(Vp)} as a basis for a topology in FT(Vp). Then, f is an embedding and
f(FT(Vp)) is an embedded submanifold of X ncrrpy £L(Vay s Vo) < R
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Figure 4.3: The set f(37/4,7m/4) in R2. The "0” means that the lines approach without touch.

From the above example we have that even the manifold F7.(Vp) is a subset of Vbp,,, its geomet-
ric structure is fully compatible with the topology of the Banach space X ,cg(s) E(VQHAHQ,VQHAHQ) x RE.
Moreover, it is not difficult to see that the same argument runs for the manifold F7 <.(Vp).

In consequence, to prove that the standard inclusion map i is an immersion we shall prove, under the
appropriate conditions, that if i is a differentiable morphism then for each v € FT(Vp) the linear map T+i
is injective and Tvi(Tv(FT(Vp))) belongs to G(Vp,  )-

4.2.1 The derivative as a morphism of the standard inclusion map

To describe i as a morphism, we proceed as follows. Given v € FT(Vp), we consider U(v), a local
neighbourhood of v, and then

o0 ox ' () X LUFv), WM (v)) x RY = Vi,
a€eL(Tp)

is given by

(D) () (k) (k)
(£,€) = Z Z C(ia)aesw) H Cim(iﬂ)ﬁes(m ® (ulk JrLk(uik );

1<ip<rp | 1<ia<ra HwETH\{D} keL(Tp)
keL(Tp) \ aeTp\{D} S(u)#£0
agL(Tp)
that is,
: -1 .,-1 o — (D) (@)
oot O -w= 3 ), @ Wi
1<iq <1 a€eS(D)
aeS(D)
where for each p € Tp \ {D} we write
(id + Ly,)(ul) if e L(Tp)

wgu) _
I

(1) (8) :
Zl;é‘;(g;f Cifv(iﬂ)ﬁes(u) Rpes) Wiy otherwise,
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for 1 <i, <7,
Assume that (i0 ©;! o x1(v)) is Fréchet differentiable, then

Tvi: X LUM(v),WI(v)) x RE — V|,
a€L(Tp)

is given by
Ti(£,€) = [(i0 0y o x; ' (v)) ((Ov o xe (V) (M)](L£,€) = [(i0 05" 0 x;H(v))'(0, O] (L, ©),
where (Oy 0 x:(v))(v) = (0, ), because Uy (U (v))rer(ry)) = (0)recrsn) = ©-
The next lemma describes the tangent map Tyi.

Proposition 4.27 Assume that the tensor product map @) is Tp-continuous. Letv € FT(Vp) be such that
Oy (v) = (0,&(v)), where €(v) = (C(O‘))aeTD\[;(TD) ER', 0= (0)acs(rp) € X aeL(Th) L(UD™(v), W (v))
and

UMin(v) = span {ugj) 01 <ig <7y}
for a € Tp \ {D}. Then the following statements hold.

(a) The map (1003 oxc(v)) from X qep(ry) LIUSN™(v), W™ (v)) xR} to Vip, | is Fréchet differentiable,
and hence
Tvi€ £ (Tu(FTe(VD)). Vi, ) -

(b) Assume (£,¢) € Ty(FT(Vp)), where € = (C(a))aETD\L(TD) € RY and £ = (La)aeL(TD) is in
X aer(rp) LOURR(V), WHn(v)). Then w = Ti(€, £) if and only

w= Y L, @uls Y Y (aPeul). (4.11)

1<i6<Tq a€S(D) a€S(D)1<ia<ra
aeS(D)
where (a) (D) (8)
Ui = Z C(iﬁ)BeS(D) ® Yig (4.12)
1<ig<rg BeS(D)
BES(D)
B#a

and for each v € Tp \ {D} we have

Lu(u)) if e L(Tp)
u(V) —
N () (8) (B ol .
Zlﬂgeigs%r)g Cija(iﬂ)ﬂesw) Qpesiy) Wiy + 2 8es(y) 2u1<ip<rs (uiﬂ ® Ui%iﬁ) otherwise,
0l
where " . "
— il
Ui“*’iﬂ o Z Ciw(ié)aesw) ® Wi (4.13)
1<is<rs P
deS(y) 5e5(y)
5B

for1 <iy <ryandl <ig<rg.
Proof. To prove statement (a), observe that for each u, € U™ (v), a € L(Tp), the map
Qu, + LUZM(V), W™ (v)) = Wa™(v),  La = La(ua),
is linear and continuous, and hence Fréchet differentiable. Clearly, its differential is given by

[Q)’ (La)l(Ha) = Ho(ug).

Ux
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Also, if the tensor product map ) is Tp-continuous, by Proposition [£12] the tensor product map

X (Vﬂ“‘uﬂa” H,@ ® Vﬂ“ “B’ ’ 'y ,

BES(7) BES(Y)

for v € Tp \ L(TDp), is also Fréchet differentiable. Then, by the chain rule, the map O3 1is Fréchet differen-
tiable. Since Tyi(C, £) = [(i0 ©7' o x71(v))(€,0)](€, £), (a) follows. Using the chain rule, we obtain (b).
|

Let ve FT«(Vp) C Vb, be such that

_ (D) (o)
V= Z C(ia)aesw) ® ;.5
1<i0 <ra aes(D)

aeS(D)

where for each p € Tp \ ({D}U L(Tp)) we have

U-z('ff): Z Z(:La)(lﬂ)ﬂes(u) ® u

1<ig<rg BeS(u
BES(n)

for 1 <1, <r,. Recall that for a € S(D) we have
Ug“(ig)\{a}(v) = span {UE:) 01 <ig <7ty
and for p € Tp \ ({D} U L(Tp)) we know that Ugli“(uz(-’:)) = Up™(v) and

Ug’(f)\{ﬁ}(uz(.:‘)) = span {U(B,w 1 <ig <rg}
for 1 <14, <r, and g € S(u). Hence
W (v) = Wéni“(uz(-:‘)) for 1 <1, <r, and g € S(p).

In the next proposition we prove that T\i injective when we consider v in the manifold M,(Vp). It allows
us to characterise the tangent space for Tucker tensors inside the tensor space V Dy

Proposition 4.28 Assume that S(D) = L(Tp) and the tensor product map Q) is Tp-continuous. Let
v € M (Vp), then the linear map Tyi is injective and

TA(Ty(Me(VD)) =0 Q) UI"(v) & | @ WI™) @ U§H) 1y (V)
aeS(D) a€S(D)

is linearly isomorphic to Ty(M,(VDp)).

Proof. First, observe that if v .€ My(Vp) and w = Tyi(¢, £), then by Proposition EZ7(b)

w= > ¢, ®u+ > > (al@eul),

1<ia <rqa a€eS(D) a€S (D) 1<ia<ra
a€eS (D)

where

(a) _ (D)
U= 3 o) Q ul eUsp ),
1<ig<rg BeS(D)

BES(D)
B#a
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and u\® = L(uz(-j))) € Wmin(y) for all @ € L(Tp). Hence Tyi(Ty(M,(Vp))) C Z(P)(v) where

ZP)(v) =, ® U™ (v) @ @ W (v) ®, Usr,n(iznj)\{a}(")
aeS(D) aeS(D)

Next, we claim that Z(P)(v) C Tyi(Ty(M(Vp))). To prove the claim take w € Z(P)(v). Then we can write

w = Z (C(D))(ia)aes(m ® ul('j)+ Z Z (W§S)®U§S))’

1<ig<rq aeS(D) a€S(D)1<iq<ra
aeS(D)

where ng) = Wmin(v) for 1 < i, <7, and a € S(D). Recall that

Ug“(ig)\{a}(v) = span {UE:) 11 <ig <7t

Now, define L, € L(UM"(v), Wi (v)) by L.a(ul(.j)) = WE:) for 1 < i <7 and a € S(D). Then the claim
follows from w = Tvi((La)aeS(D)7 CP)). To conclude the proof of the proposition we need to show that the
map Tyiis an injective linear operator. To prove this consider that

Toi ((Ep)seccrn) CP) = 0,

that is,
J (@) () (@)
0 - Z (C(D))(ia)QGS(D) ® uia + Z Z (uia ®Uia ) .
1Siasra a€S(D) a€S(D) 1<ia<ra
aeS(D)
Thus,

(D (a) _
Y Cesry, @ wit =0,
19'%(9; a€s(D)
aceS(D
> (6 eul)=0foracsD)
1<iq<ra

and hence C(P) = o, because {®a€S(D) uz(-z)} is a basis of ¢ @,cs(p) Umin(v) and La(ul(.j)) ® Ul(-j) =0

for 1 < i, < 74, because the {UZ(-:‘) : 1 <iq < 7o} are linearly independent for a € S(D). Then Ly, =0 for
all @ € S(D). We conclude that

((Ls)seecrn) CP) = (O)secirno)
and, in consequence, T\ is injective. [ |

Our next step is to show, by using the above proposition, that if the tensor product map ) is Tp-
continuous then the linear map Ty i is always injective for all v.€ FT(Vp).

Proposition 4.29 Assume that the tensor product map @ is Tp-continuous. Let v € FT(Vp), then the
linear map Tvi: X geprpy LU (V), W (v)) X R® = Vp | is injective.

Proof. From Proposition L.28 the statement holds when S(D) = £(Tp). Thus assume that S(D) # L(Tp).
Then we can write the standard inclusion map i : F7(Vp) — VDMD as ip oi;,p where

.0 FTe(VD) — M(rg)ses | @ ® Vg |, vev
pes(D)
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is a standard inclusion map and

D M@s)peso | a ® Vs | — Vb,

BES(D)
is given by o) “
vV=1p (V) = Z (ig)pes(y) ® W,
1<ig<rp BES(D)
BeS(a)

Using the chain rule, we have
Tyi=Tyipo Tvir,D;

where '
Tvip: X LUFTW),WEN(v)) x RXses0™ 5 V|
BES(D)
is given by
C (7 “(D)y _ P (a) i (a) (@)
Tvip((La)aes(p), €)= Z ('LQ)QGS(D) ® u, Z Z ( ® U, )’
1<ia <rq aeS(D) a€S(D)1<ia<rqo
a€eS (D)
and . .
Tvir,D . >< L(UEHIH( ) Wmln(v)) X Rr RN >< E(Uglm( ) Wmln( )) X RXBES(D) T3
BEL(TDp) BeS(D)
is given by

Tvie,p((Lg)secirn)s (C)aerprerp)) = ((Sp)sesp), CP),
where S, = L., if v € £L(Tp), otherwise
ut () (B) " o u®
S = Y Cllies, @ wi'+ > > wleuly
1<ig<rg BES(v) BeS(v) 1<ig<rs

BES(v)

and where for each v € Tp \ {D} we have

Ly(uf?) if e L(Th)

al? =
" > ¢ 029 u ) + > > ul? o Uul?) otherwise
126’%(@)‘3 iy,(ig)pes(y) S BES(Y) BES(y) £~1<ig<rp \ “ip iyl )

Let W = Tvi((Lg)gers(rp), (C)aerp\c(rp)) = 0. Since Tyi = Tyip o Tyiy,p and, by Proposition E28] the
linear map Tyip is injective, then

Toie.p(Lg) ey (C)aerorc(rn)) = (0)ses(rp): 0)-

In particular C(P) = 0 and by Proposition Z27(b), we have

N ERYY ('“>®U“>) (4.14)

a€S(D)1<ia<rqo

(o) _ c®) (8)
Uza Z (ig)pes(p) ® Wig ™
1<ig<rg BeS(D)
BES(D)
B#a

where
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and for each v € Tp \ {D} we have

o)) =50 =0 .
al” =
) “ B) (8) .
Zl;ezg?ma Czj (i8)pes(y) ®ﬂeS(7) u + Z,@es('y) Zl<’bg<r5 ( ig @ inﬂ) otherwise,
where

8 () (9)
inﬂlﬂi Z Ciw(ié)aes(w) ® His

1<is<rs 5#pB
s€S(p) deS(v)
3#B

for 1 <i, <r,and 1 <ig<rg. Weremark that if S(v) C L(Tp) then

() _ e (8)
uiw - Z iy,(i8)pes(y) ® u ’

1<ig<rg BES(Y)
BES(v)

From @T2) and the fact that 3 es(p) Siciy <ry (017 @ UL) € B yesip) W) S0 USS), (o) (v) w
obtain that
> (aeul)=o
1<i0 <ra

for each o € S(D). Finally, 1'152‘) = 0, because {UE:) : 1 < iy < 1y} are linearly independent vectors for
each a € S(D). In consequence, if & € L(Tp) then nothing has to be done, otherwise we have that for all
v ¢ L(Tp) the equality

_ () (B) ) (ﬂ)
0= > Ty, @ ul+ Y Y (Weul)
1<ig<rg BeS(v) BES(v) 1<ig<rp
BES(Y)
holds for all 1 < i, < r,. We remark that when S(v) C £L(Tp) we have

_ () ()
0= Z Ciw(iﬁ)ﬂesm) ® Wi,

1<ig<rg BES(Y)
BES(v)

and hence we obtain that C'(") = 0. Proceeding from the leaves to the root in the tree, we check that c =0
holds for all v € Tp \ £L(Tp) and the proposition follows. ]

Now, we want to construct for each v € FT(Vp) C Vp = a linear subspace ZP)(v) C Vp,,, to
prove that Z(P)(v) = Tyi(Ty(FT(Vp))). To this end assume that

v=(67'oxi' W= Y ¢ & u

1<ia <ra aeS(D)
a€eS (D)

where for each p € Tp \ ({D}U L(Tp)) we have

(1) _ (M) (B)
v, = Z iu,(ig)pes(u) ® Wip -

1<ig<rg BES(n)
BES(a)

Then to define Z(P) (v) we proceed by the following steps.
Step 1: For v € Tp \ L(Tp) we observe that

ugj): Z zw(lﬂ)ﬂes(a ® u eM(Tﬂ)Bes(W ® Vs

1<ig<rg BES(Y) BES(v)
BES(v)
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for 1 <iy <r, and 8 € S(v). In particular, ugD) =v. Let

by Mgy sese ® Vo | = Vo, Uy,
BeS(v)

be the standard inclusion map. Thanks to the proof of Proposition .28 we have a linear injective map

T iy X LUF™), WH™(v)) x RXsesn T8 sV
w B

¢ Y-l
v BES(7)
given by
o . . : 8
Tugv)l’y((LB)ﬁGS(’y)a C'L(;Y)) = Z C'L(jv)(iﬂ)ﬁes(w) ® ugf) + Z Z LB(“EE Ugw )ma
i 1<ig<rg BES(v) BES(v) 1<ip<rp
BeS(v)
where Ug'ﬁ)m Y 1<is<rs :)(16)563( ) Rses) u ) for 1 <ig <rz and B € S(7) and also a linear subspace
5€S(y) ’ v
5#13

J'v

ZO W) =T W)"y( X LUF™(v), WE™(v)) xRXﬂeswﬂ“ﬂ)

BES(7)
= X LU (), W (v)) x RX sestn 75
BES(7)
for 1 < j, < r, such that
Z(v) ® Umln v) @ @ Wmm ) ®q span {Ugf?w 1<ig < TB}
BES(7) BES(7)

for 1 < j, < r,. Since for each v € Tp \ L(Tp) we can write

ut () (B) (1:(8)
W)= 3 AL, ® A (.15
1<ip<rg BES(7)
BES(a)
for 1 < i, <1y, where
u? if 5 € L(Tp)
(B) (vy(B)y . '
DY ) = Dicien O L ®pesy i) otherwise

nes(8)

represents that either uz(-f) € Vﬁu-ug it e L(Tp) or ugf) € M(r,), cs(m (V), otherwise. We remark that in

(ugf)) = uz(-f). In particular, for each v € FT(Vp) we have

: _ (D) (B) (1,(B)
1D(V>7 Z C(iﬁ)ﬁes(D) ® z (uiﬂ ) (4'16>

1<ip<rp BeS(D)
BES(D)

any case Z(B)

Assume that . . ' .
W = Tui((L)ker(rn)s (Cactpr o)) = Tvin((Lg)ses(py, CP),
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where ((Lﬂ)ﬂeS(D)v c)y = Tvir,D((Lk)keL(TD), (C(a))aeTD\ﬁ(TD)). Then, using the chain rule in (ZI6) and
taking into account (EI3]), we have

W =Tvin((Ls)sesp), CP) = > éf;’m ® a?+ > Y (a?eul?)

1<ig<rg BeS(D)1<ig<rg
pes(D)

where for all p € Tp \ {D} either 1'155) = L#(uz(-fj)) if p € L(Tp) or there exists a unique

(L) yesqy € X LUMM(v), W2in(v))
v¢L(Tp) YES (1)
v¢L(Tp)

such that

) = T i (Ly)yesn: C1)

W
= Z Z(u[?zzw)'yes(u) ® u(’Y + Z Z ( ng)zv)

1Si§(§[§§ v€S(1) YES(u) 1<iy<ry

ne

_ ~(D) (7) ) o U

- Z Ciuv(i'y)'yes(u) ® + Z Z ( ® 'L# iv) ’
19'5(%; vE€S(n) yEeS(p) 1siy STy
pne

where the last equality is given by Lemma [£27(b). In consequence, we obtain that

al?) € W (v) for all y € Tp \ {D}.
Step 2: Now, for each v € Tp \ {D} we define a linear subspace H,(v) C WM™ (v)™ as follows. Let
Hy(v) := Win(v)™ if y € L(Tp). For v ¢ L(Tp) we construct - (v) in the following way. Let

T%V s R X ges(y) T8 % >< Hp (V) N W;nin(v)TW
BeS()

be a linear map defined by

T (COL (W) gesy) == (W),

Ty
where Q)] ) (8) (8)
) . v
Wi”’ T Z iy, (i8)ses(y) ® 11 + Z Z W ®U1~, i3
1<ig<rg BES(v) BES(y) 1<ig<rg
BES(v)

for 1 <i, <r,. Let 7 : R X Xsesn ™8 — RX6es( T8 be given by m;_ (C‘('V)) = C"-(W) for 1 < iy <y,
Observe that if we define Lv(ugj)) = WE;Y) for 1 < iy, < ry and Lg(uiﬂ) = (ﬁ) for 1 <ig < rg and
B € S(v), then

Ty

W =T iy (mi, (CO), (Lg)pesiny) € Z0 (u?)
el

for 1 <4, < ry, and hence by Proposition [4.27] the map Y, . is injective. Finally, we define the linear
subspace

Hy(v) =7,y (R”XX%SW) "x X Hﬁ(V)) .
BeS()
For § € Tp \ {D} let IL;; : W™m(v)"™s — W™ (v) be given by IL;, (w2 )i _,) == wi" for 1 < i5 < rs.
Observe, that for each 8 € S(v), we can identify (w (ﬁ))zﬁ 1 € Hp(v) with

ig
(B B B B
Z Wi )® lwa)lﬂ: Z II; ((W’(%‘))kﬂ 1)®Ul('m)iﬂ
1<ig<rg 1<ig<rg
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for 1 <i, <r,. It allows us to construct an injective linear map

fﬂ,iw - H ( ) N V’YH s ( 8) Tﬁ_l — Z W(ﬂ) U(B)

’Lg Z[-; Ty s Z[-;’
1<ig<rg

for 1 < i, <r,.Hence fg; (Hp(v)) is alinear subspace of V,
Thus,

1.1, linearly isomorphic to Hp(v) for 1 < iy <is.

L, (7, (v)) = { e ®jes UF™(¥) & (Bpesiy) fou, (Ha(v)))  if 7 ¢ L(Tb),
nymn(v) if S E(TD),
where )
. _ @’Lg 1 lﬂ (Hﬂ( ) ®a Span{U ,ig} if ¢ L(Tp
Ta.1, (Hp(¥)) { @il Wi (v) ®a span{UZ m} if B e L(Tp)
for 1 <, <r,.

Step 3: Finally, we construct a linear subspace ZP )(V) C VDHD by using a linear injective map

Yoo R X aes() Ta « X Halv) — Vo,
a€eS(D)

defined by . o
T ,V(C(D)a (( N )za_l)OLGS(D)) w

ta

wi= Y ) @ u+ Y Y wPeul,

1<iq <rq a€eS(D) a€S(D) 1<iq<rqa
a€eS (D)

where

Then Z(P)(v) := Tp.y (Rxaesm T X X pes(o) ’Ha(v)) and from Step 1 we have that

Tyi(Ty(FT+(Vp))) € ZP)(v)

holds. Moreover, we can introduce for each « € S(D) a linear injective map

footHa(V) = Vo, o (Wil = Y wi e ul®.

1<ia <ra

Then fp,a(Ha(v)) is a linear subspace in Vp, | - linearly isomorphic to Ha(v). It is not difficult to show
that
By 1 i, (Ha(v) @aspan{ U} if o ¢ L(Tp)

fDa(Ha(v)) = { D, Wit (v) @, span{Ugj)} if a € L(Tp)

for ae € S(D). By construction, we have

2O =0 @ UMW 0| @D foalHav)

aGS(D) a€S(D)

Proposition 4.30 Assume that S(D) # [,( D) and the tensor product map @ is Tp-continuous. Let
v € FT(Vp), then TW(Ty(FT(Vp))) = ZP)(v) and hence it is linearly isomorphic to Ty (FT(Vp)).
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{1,2,3}
{1 {23)

{2 {3}

Figure 4.4: A binary tree Tp.

Proof. From Step 1 and the construction of Z(P)(v), the inclusion Tyi(Ty(FT(Vp))) € ZP)(v) holds.
Now, take w € Z(P)(v). Then we can write

S—— Z (CP) i) csim ® u! >+ Z Z ( (o) @U(C‘))

1<ia<rq OLGS(D) OLGS(D) 1<iqg<rq
aeS(D)

where C(P) € R ™ aes) " and ng) € W2in(v) for 1 < iy < ro. Then we can define L, € LU (v), WXin(v))

by L.a(uz(-z)) = ng) for 1 < i, < 7o, and we have

(CP), (La)acsioy) € RXecsmme x X LU (v), W™ (v)).
aeS(D)

Moreover, Yy, -, wi") @ U\") € fpa(Ha(v)) for a € S(D). If a ¢ L(Tp), then (wi™)i*_; € Ha(v) =
Tov (RT“X Xpes s x X ges(a) ’Hg(v)) . Hence there exists

(O (WP pesiay) € RT=XXses@ ™ X Hg(v)

BES(a)
such that . ) )
Wia = Z la,(lﬂ)ﬂesm) ® u + Z Z Wig ® Ula ,ig
1<ig<rp BeS(a) BeS(a)1<ig<rg

BeS(a)

for 1 < i, < 7. Define Lg(ugf)) = wgf) for 1 <ig <rg and € S(a). Then

(C), (L) pesiay) € R Z o508 - X LUF™(v), WE™(v)).
peS(a)
Moreover, >, . w? U e f4, (Hp(v)) for 1 < i, < 1. If B ¢ L(Tp), then (w (ﬁ)) €
’ 1<ig<rg zg iayt8 Biig B — "o —= loar D) ig Jig=1
Ha(v) =Tsv (RWX Xyese) ™ x X yes(8) Hv(v)) . Proceeding in a similar way from the root to the leaves,
we construct (£,€) € Ty(FT(Vp)), where € = (C(a))aeTD\ﬁ(TD) €R'and £ = (L a)aerp\{D} € L1y (V)
such that w = Tyi(€, £). Thus, we can conclude that Z(P)(v) C Tyi(Ty(FT(Vp))) and the equality
follows. "

Example 4.31 Consider the binary tree Tp given in Figure[{.4] and consider TB rankst = (1,71,723,72,73).
Let v € FT (Vi ®q Va ®, V3) and assume that the tensor product map Q) is Tp-continuous. Then

202 (v) = (UPR(v) @4 UBP(V)) @ fro31 (H1(V)) © fi23,23(Haz(v)),

where
fi23,1(Ha(v)) = @ W (v) @4 SPaH{UE’j)} C Vi, @a (‘/2\\'\\2 ®a V3H-Hs) )
=1
23

f123,23(Has (v @ span {U(%)} ®a iny (Haz(v)) C Vi, ®a (VQMQ ®a V3u»u3) ’

123 1
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and

Iy, (Ha3(v)) = (US™(v) @4 U3"™(v))
(@ Wi (v) @, span {UL) |, } ) (@ span {ULY . 1 @, Wihn(v )) :

which is a linear subspace in VgMZ Ra ‘/}’H‘HS-

4.2.2 Is the standard inclusion map an immersion?

Finally, to show that i is an immersion, and hence F7(Vp) is an immersed submanifold of V Dy, » We need
to prove that Tyvi(Tv(FT(Vp))) € G(Vy,)- Let {Va, . tacrp\{p} be a representation of the Banach
tensor space Vp, | = ||, ®jeD V; , in the topological tree-based format and take Vp := & Vi A
first useful result is the following lemma.

JjeD

Lemma 4.32 Assume that [@I0) holds. Let o« € Tp\ L(Tp) and take B € S(a). If Wg € G(Vﬁu»ug) satisfies
Vﬁ”’”ﬂ = Ug © Wg for some finite-dimensional subspace Ug in VﬁH-Hg’ then Wp ®q Ujg) € G(Vq,.,.) for
every finite-dimensional subspace Ujg) C 4 ®6€S(a)\ﬁ V(;Ma .

Proof. First, observe that if W is a finite-dimensional subspace, then Wz ®, Ujg) is also finite dimensional,
and hence the lemma follows. Thus, assume that W3 is an infinite-dimensional closed subspace of VBH«HB’

and to simplify the notation write

X

B = llivisns ® V5\|»\|s :

seS(@)\{s}

If Ujg) € X is a finite-dimensional subspace, then there exists Wi € G(Xp) such that X = Uz © Wig).
Since the tensor product map

® : (Vﬁu-uﬂv H ’ ”ﬁ) X (Xﬁﬂ ” ’ ”V(S(a)\B)) - (VaH.Ha; ” ’ Ha)

is continuous and by Lemma 3.18 in [11], for each elementary tensor vs ® vig € Vﬁu-ug ®q X3 we have

s ® Py oy )V © Vig)lla < Cyfdim Upgy [vsllslivigvesians)
= C/dim U [vg @ vigllv(s(a))

< C',/dim U[ﬁ] HVB ® V[ﬁ]”a.

Thus, (idg @ P, ) is continuous over V5.1, ®a Xp, and hence in Vo, . Now, take into account the

(815 We]
fact that
idg = Py qw, + Pu,ou,:
so that
iy ® Uls)®Wie) PUﬂ@Wﬂ ® PUm]@W[B + PWﬂ@Uﬂ ® PUm]@W[m'
Observe that idg ® P, W and Py gy, ® PU[B]@W[B] are continuous linear maps over Vﬁu-ug ®aq Xg, and
then Py, .., ® P O is a continuous linear map over VﬁH-Hg ®q Xg. Thus,
Po =Py op, ® PU[B]®W[ﬂ] € L(Vayy.» Vo)
and P, o P, = P,. Since P, (VQH_HQ) = Wjs ®4 Upg), the lemma follows by Proposition [3.41 n
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Lemma 4.33 Let X be a Banach space and assume that U,V € G(X). IfUNV = {0}, then UV € G(X).
Moreover, UNV € G(X) holds.

Proof. To prove the first statement assume that UNV = {0}. Since U,V € G(X) there exist U', V' € G(X),
suchthat X =U®U' =V @V . ThenU = XNU = (VaeV)NU =UNV andV =XNV = UaU' )NV =
V' NU’. In consequence, we can write

UaVaU nNnV)=UnVHYe(VnUYeU'nNV)=UaU)Nn(VaeV)=

and the first statement follows. To prove the second one, observe that X = (UNV)@ (UNV )@ (VNU') &
U nv). n

A very useful consequence of the above two lemmas is the following Theorem.

Theorem 4.34 Let {VQMQ }aETD\{D} be a representation of a tensor Banach space VDMD = Iip ®j€D V;
in the topological tree-based format and assume that @I0) holds. Then Z(P)(v) € G(Vpy., ). and hence
FT:(Vp) is an immersed submanifold of VDHAHD

Proof. Since the tensor product map is Tp-continuous, Proposition [£.27] gives us the differentiability of T'y4.
Assume first that S(D) = £L(Tp). From Corollary 28 we have

Z(D) ® Umln )@ @ Wrmn ®a Us(m)\{a}( )
aeS(D) a€eS (D)

For each o € S(D) we have Wr"(v) € G(V,,, ) and Ug’(‘g)\{a}( V) C 0 Qses(p)\fa} Vo, 15 a finite-
dimensional subspace. From Lemma E32 we have W2 (v) @, US| $(p)\{a} (V) €EG(Vp, ) for all a € S(D).

Since o Q,cs(p) Umin(y) e G(Vpy, ) by Lemma {33 we obtain that ZP)(v) € G(Vpy,,)-

Now, assume that S(D) # L(Tp). Then

® Umin(y) ¢ @ fD,a(Ha(v))

aeS(D) aeS(D)

and
@ L, (Ha (V) @aspan{U}  if a ¢ £(TD)

el = { Biooy WI™(v) @aspan{U[Y}if o€ £(Tp)

for « € S(D). For a € L(Tp) we have WM (v) € G(V,, ) and span{Ul(.j)} is a finite-dimensional
subspace for 1 < i, < 74, and from Lemma F32, W™ (v) @, span{UZ(-:‘)} € G(Vp,, ) for 1 <iq <rs. By
Lemma @33 fp,o(Ha(v)) € G(Vp ). Otherwise, if a ¢ L(Tp) then

Ta=1
where
I, (H =0 @ U e | @ foi.(Hsv)
BeS(a) BeS(a)

for 1 <i, < ry. Now,

fo. (Hp(v)) = { @’Lg 1 Hig (Hp(v)) ®a Span{UZ m} if 8¢ L(Tp)

D7, W (v) ®a span{U”, }  if B € L(Tp)

Tastp
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for 1 <iy < 7. Clearly, if 8 € L(Tp) then fg.,(Hp(v)) € G(Vq,, ) for 1 <ia <1, Then we can write,

0, (Ha(W) =0 @ UV & | P foiHsv) || B foi.(Hs(v))
ﬁeS(a BeS(a) BeS(a)
BEL(TD) BEL(TD)

for 1 < iy < rq. Starting from the leaves, that is v € L(Tp), we have that II; (H,(v)) = W™ (v) €
G(Vy,,,) for 1 < iy <r,, and hence for § € Tp such that v € 5(0) we obtain f,, 15( L(v)) € G(V(;H ) for
1 <is < rs. Proceeding inductively from the leaves to the root, we obtain that fg ., (Hs(v)) € G(Va,.. ),
for 8 € S(a) with 8 ¢ L(Tp) and 1 < iy < 7q. Lemmam says us that II;, (Ha(v)) € G(Vq,,, ) for
1 < iy < rq. From Lemma and Lemma we obtain that fp o(Ha(v )) G(Vp,,, ). Also by

Lemma E33, we have Z(P) (v) € G(Vp,., ), that proves the theorem. |

Example 4.35 Let us recall the topological tensor spaces introduced in Example[{.3 Let I; CR (1 < j <d)
and 1 < p < oco. Guwen tree Tp, let 1o := X e, Ij for oo € Tp. Hence L*(1,) is a tensor Banach space for
all « € Tp. In this example we denote the usual norm of LP(1,) by || - |la,p. Since || - ||ap is a reasonable

crossnorm (see Example 4.72 in [19]), then (EI0) holds for all « € Tp. From Theorem [{.3]] we obtain that
FT. (a X% LP(I]—)) is an immersed submanifold of LP(Ip).

Jj=1

Example 4.36 Now, we return to Example[{.1l From Ezample 4.42 in [19] we know that the norm

I ll0,1),p is a crossnorm on HY“P(Iy) ®q H'?(I3), and hence it is not weaker than the injective norm. In
consequence, from Theorem we obtain that FT (HP(I1) @, HYP(13)) is an immersed submanifold in
HYP (1) @) g, HP(I2)-

Since in a reflexive Banach space every closed linear subspace is proximinal (see p. 61 in [13]), we have
the following corollary.

Corollary 4.37 Let {VQH_Ha}aeTD\{D} be a representation of a reflerive tensor Banach space VDHD =
Ilp @jep Vi in the topological tree-based format and assume that @I0)holds. Let v € FT(Vp), then for
each u € VDH-HD there exists Viest € Z(D)(V) such that

= Vesr| = _min o=l
Z(D) (v

Using the standard inclusion map i : FT<.(Vp) — VDH-HD the following result can be shown.

Corollary 4.38 Let {Va,. . tactp\{D} be a representation of a tensor Banach space Vo, = Mo ®j€D Vi,
in the topological tree-based format and assume that [LI0) holds. Then FT <.(Vp) is an immersed subman-
ifold of VDHD.

5 On the Dirac—Frenkel variational principle on tensor Banach
spaces

5.1 Model Reduction in tensor Banach spaces

In this section we consider the abstract ordinary differential equation in a reflexive tensor Banach space
VDHD, given by

u(t) =F(t,u(t)), fort >0 (5.1)
u(0) = uy, 5.2

where we assume ug # 0 and F : [0,00) X Vp,,, — Vb, satisfying the usual conditions to have
existence and unicity of solutions. Let {Va,  }aerp\(p} e a representation of Vp | =, ®;cpV; in
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the topological tree-based format and assume that (£I0) holds. As usual we will consider Vp = ¢ @;cp Vj -
We want to approximate u(t), for ¢t € I := (0,¢) for some € > 0, by a differentiable curve ¢ — v, (¢) from I
to FT(Vp), where v € NP is such that v,.(0) = u(0) = up € F7(Vp).

Our main goal is to construct a Reduced Order Model of (&I)—(E2) over the Banach manifold F7(Vp).
Since F(t,v.(t)) € Vp, . for each t € I, and ZP)(v,(t)) is a closed linear subspace in Vb, we have

the existence of a v,.(t) € Z(P)(v,(t)) such that

V(1) — F(t, v, (t = i v(t) — F(t,v.())|p.
[¥0(t) = F(t.ve(O)lp = min ¥(0) ~ F(tve )]

It is well known that, if Vip  is a Hilbert space, then v,(t) = Py, (1) (F(t,v,(t))), where

Py, 1) = Pz (v, (£))@2P) (v, (1)) -

is called the metric projection. It has the following important property: v, (t) = Py, ) (F(t, v, (t))) if and
only if
(Vo (t) = F(t, v, (1)), v(t)) p = 0 for all v(t) € ZP)(v,.(t)).

The concept of a metric projection can be extended to the Banach space setting. To this end we recall

the following definitions. A Banach space X with norm || - || is said to be strictly convez if ||z + y||/2 < 1
for all z,y € X with ||z|| = |ly|| = 1 and z # y. It is uniformly convez if lim, o |2 — yn|| = 0 for any two
sequences {Zp }nen and {yn pnen such that [z, = |lyn| = 1 and lim, oo (|25 + ynll/2 = 1. It is known that

a uniformly convex Banach space is reflexive and strictly convex. A Banach space X is said to be smooth if
the limit
t _
L e+t~ o]
t—0 t

exists for all x,y € U := {z € X : ||z| = 1}. Finally, a Banach space X is said to be uniformly smooth if its

modulus of smoothness
o(r) = sup {I»’HWII +llz =7yl 1} >0,
z,yeU 2

satisfies the condition lim,_,o p(7) = 0. In uniformly smooth spaces, and only in such spaces, the norm is
uniformly Fréchet differentiable. A uniformly smooth Banach space is smooth. The converse is true if the
Banach space is finite dimensional. It is known that the space L? (1 < p < o0) is a uniformly convex and
uniformly smooth Banach space.

Let {-,) : X x X* — R denote the duality pairing, i.e.,
(x, f) = f(a).
The normalised duality mapping J : X — 2% is defined by
J(x) = {f € X" a, ) = ll=II” = (IF1")*},
and it has the following properties (see [2]):
(a) If X is smooth, the map J is single-valued;
(b) if X is smooth, then J is norm—to—weak* continuous;

(c) if X is uniformly smooth, then J is uniformly norm—to-norm continuous on each bounded subset of
X.

Remark 5.1 Notice that, in a Hilbert space and after identifying X with X*, it can be shown (see Propos-
ition 4.8(3) in [7]) that the normalised duality mapping is the identity operator.
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Let {V‘lu N }aeTn\{p} be arepresentation of a reflexive and strictly convex tensor Banach space Vo, o =

Ilp Q;ep Vi » in the topological tree-based format and assume that (£10) holds. For F(¢,v,(t)) in Vp |
with a fixed ¢ € I, it is known that the set

{wu):nvr(t)F(t,vr@))nD i ||v<t>F<t,vr<t>>||D}

Y(HEZP) (v,())

is always a singleton. Let Py () be the mapping from Vp = onto ZP)(v,(t)) defined by v,.(t) :=
Py, ) (F(t,v(t))) if and only if

V(1) — F(t, v, (t = i v(t) — F(t,v.(1))||p.
[90() = F(t.ve(O)lp = min N0~ F(t v 0]

It is also called the metric projection. The classical characterisation of the metric projection allows us to
state the next result.

Theorem 5.2 Let {Va”.”a}aeTD\{D} be a representation of reflerive and strictly convexr tensor Banach
space Vp, = ||p V; in the topological tree-based format and assume that ({.10) holds. Then for
each t € I we have

jeD

Vr (t) = /Pvr(t) (F(ta Vi (t)))

if and only if
(Vo (t) = v(t), JF(t, v, (t)) — v, (1)) > 0 for all v(t) € ZP) (v,.(t)).

An alternative approach is the use of the so-called generalised projection operator (see also [2]). To
formulate this, we will use the following framework. Let Tp a given tree and assume that for each o € T
we have a Banach space V , such that (£I0) holds and where VD”_”D is a reflexive, strictly convex and
smooth tensor Banach space. Following [21], we can define a function ¢ : Vo, X Vb, — Rby

¢(u,v) = [lul[} - 2(u, J(v)) + [ v]|D,

where (-, -) denotes the duality pairing and J is the normalised duality mapping. It is known that the set

7o () H(v (1), F(t, v () = i 7(t), F(t, v, (t

{o o0 FCwo) = | i o0 Fev o))

is always a singleton. It allows us to defineamap Iy, () : Vp, ,  — ZP) (v, (1) by Vi (t) := Ly, (1) (F(t, v, (1))
if and only if

O (O F (v (0) = min (), F( v (1)

The map Il ;) is called the generalised projection. It coincides with the metric projection when VDH-HD is
a Hilbert space.

Remark 5.3 We point out that, in general, the operators Py, () and Il ) are nonlinear in Banach (not
Hilbert) spaces.

Again, a classical characterisation of the generalised projection gives us the following theorem.

Theorem 5.4 Let {VQWHQ}OCETD\{D} be a representation of reflexive, strictly conver and smooth tensor
Banach space VD”‘”D = lp ®j€D V; in the topological tree-based format and assume that [@IQ) holds.
Then for each t € I we have

Vi (t) = 1_[vr(t) (F(ta Vi (t)))

if and only if
(Vo (t) = (t), JE(t, v, (1) = T (v, () >0 for all v(t) € ZP) (v, (t)).
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5.2 The time—dependent Hartree method

Let (-, ~>j be a scalar product defined on V; (1 < j <d), i.e., V; is a pre-Hilbert space. Then V = , ®?:1 V;
is again a pre-Hilbert space with a scalar product which is defined for elementary tensors v = ®?:1 v and

w = ®?:1 w@ by

d

d d
(v,w) = <® v(j),®w(j)> = H <v(j),w(j)>‘ for all v, w) € V;. (5.3)
j=1 j=1

j=1 ’

This bilinear form has a unique extension (-,-) : V. x V — R. One verifies that (-,-) is a scalar product,
called the induced scalar product. Let V be equipped with the norm ||-|| corresponding to the induced scalar

product (-,-). As usual, the Hilbert tensor space V.| = | ®?:1 V; is the completion of V with respect
to ||-||. Since the norm ||-|| is derived via ([B.3)), it is easy to see that ||-|| is a reasonable and even uniform
CTOSSNOrmM.

Let us consider in V. a flow generated by a densely defined operator A € L(V|.;, V|.;|). More precisely,
there exists a collection of bijective maps ¢, : D(A) — D(A), here D(A) denotes the domain of A, satisfying

(i) ¢o =1id,
(ii) @i =@y 0@, and
(iii) for up € D(A), the map t + ¢, is differentiable as a curve in V., and u(t) := ¢,(up) satisfies

u=Au

)

u(0) = uo.

In this framework we want to study the approximation of a solution u(t) = ¢;(ug) € V). by a curve
vi(t) := A(t) @4, v;(t) in the Hilbert manifold M . 1)(V), also called in [25] the Hartree manifold. The
time—dependent Hartree method consists in the use of the Dirac—Frenkel variational principle on the Hartree
manifold. More precisely, we want to solve the following Reduced Order Model:

Vr(t) = Py, t)(Av,(t)) for t € I,
V"'(O) = Vo,

.....

metric projection in a Hilbert space, for each ¢ > 0 we would like to find v,.(t) € Ty, ()i (Ty, 1) (M,...1)(V)))
such that

(Vi (t) — Av,.(t), V() = 0 for all v(t) € Ty, (p)i (Tvr(t)(/\/l(l,___J)(V))) , (5.4)

v(0) =vo =X ®§l:1 ’U(()j),

and where, without loss of generality, we may assume Hv(()j ) |l; =1for 1 <j <d. A first result is the following
Lemma.

Lemma 5.5 Let v € C'(I,U(vq)), where v(0) = vo € My, . 1y(V) and (U(vo),Oy,) is a local chart for vq
in M. 1)(V). Assume that v is also a Ct-morphism between the manifolds I C R and U(vo) C M,..1(V)
such that v(t) = A(t) ®?:1 v;(t) for some A € CY(I,R) and v; € C*(1,V;) for 1 <j <d. Then

d d

V() = A) Qv (8) + A1) Y 95(1) @ Q) vn(t) = Ty i(Tev(1)). (5-5)

j=1 j=1 ki

Moreover, if vi(t) € Sy,, i.e., |[vj(t)l[; =1, fort € I and 1 < j < d, then ¥;(t) € Ty, 1y(Sy;) fort € I and
l<j<d

6Indeed, vg can be chosen as the best approximation of ug in M

,,,,,,,,,,

46



Proof. First at all, we recall that by the construction of U(vy) it follows that iji“(vo) = iji“(v(t))
and that U]’-mi“(vo) = span{v(()j)} is linearly isomorphic to U]’-mi“(v(t)) forallt € [ and 1 < j < d. Assume
O (v(1)) = (A1), La(£). .. Lalt)), i,

d
v(t) = A(t) R) (id; + L; (1)) (v5),

j=1

where A € CY(I,R\ {0}), L; € CY(I,L(UM™(vo), WM™ (vy))) and (id; + L;(t))(v§) € UM (v(t)) for
1 < j < d. We point out that the linear map T;v : R — Ty (M(1,...,1)(V)) is characterised by

.....

Tev(1) = (Oy, 0 v) () = (A(t), L1 (), ..., La(t)). (5.6)
Since L; € C'(I, L(U™"(vo), W™ (vg))) then Lje COI, L(UM™™ (vo), W™ (vg))). Observe that U™ (vo)
and U™ (v(t)) have W (v() as a common complement. From Lemma 3.6 we know that

Pymin (vo)ewin (vo) lUmin(v(1)) * UM (v(t)) — U™ (vo)
is a linear isomorphism. We can write
Lj(t) = Lj(t) Pymin (vo)owmin(vo) and Lj(t) = Lj(t) Pymin ) wmin vy,
and then in (58) we identify L;(t) € E(U]’-mi“(vo), W]min(vo))) with
Lj(t)PU;ﬂi“(vo)eaW;ﬂi“(vo)|U;ﬂi“(v(t)) € £(Ujmin(v(t)), W;nin(vo))).

Introduce v;(t) := (id; + L, (t))(véj)) for 1 < j <d. Then

Ly(t)(v5(1)) = Ly(t) Pywin gy awminwoy lomin w06 + La(D)(06”)) = L5 (0)(0”)

holds for all £ € I and 1 < j < d. Hence

0i(t) = Li(0)(w§") = Li(t)(v;(2)) (5.7)

holds for all t € T and 1 < j < d. From Lemma [L.27(b) and (5.6]), we have

d
Tyi(Tev(1) = MO Q) v (0 + M) Y- L0, (0) @ @ uild)

j=1 ki

and, by using (57) for v(t) = A(t) ®7_, v;(t), we obtain (53).
To prove the second statement, recall that U™ (v(t)) = span{v;(t)} and V; = U™ (v(t)) & W™ (v)
for 1 < j < d. Then we consider
W (vo) = span {v; (t)}* = {u; € Vj : (u;,v;(t)); = 0} for 1 < j <d,
and hence (v;(t)),v;(t)); = 0 holds for 1 < j < d. From Remark B20, we have (01(¢),...,04(t)) €
C(I, X1 Ty, 5)(Sv,)), because W™ (vq) = T, (1y(Sy;) for 1 < j < d. n

Before stating the next result, we introduce for v,.(t) = A(t) ®;l:1 v;j(t) the following time dependent

bilinear forms
ak(t; K ) : Vk X Vk — Ra

by
ar(t; 2, y) = <A 2 ® ®Uj(t) s | yr ®®Uj(t) >
Pt ot
for each 1 < k < d. Now, we will show the next result (compare with Theorem 3.1 in [25]).
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Theorem 5.6 (Time dependent Hartree method) The solution v, (t) = A(t) ®‘j 105 (t) for (v1(t),...,va4(t)) €
X9, Sy, of

Vi (t) = Py, 1) (Avi(t)) fort € 1,

v,(0) = vy,

satisfies
(05 (1), (t)); — a;(t;v5(t), w5 (t) =0 for all w;(t) € Ty, 1)(Sy;), 1<j<d,

and .
A(t) = Mg exp (/ <A (®‘]7-l:1vj (s)) ,®?:1vj(s)> ds) .
0
Proof. From Lemma we have Ty (M(l _____ 1)(V)) =R x X?Zl Ty, t)(Sv;), Thus, for each w(t) €
Tyt (']Tv(t) (/\/l( ,,,,, 1)(V))) there exists (B(t), W (t),...,wq(t)) € R x X;l:1 Ty, +)(Sv;), such that

d d

Ww(t) = A0 @ vy (0) + A0 Dby (1) © @ v (0):

Jj=1 J:1 k#j

Then ([5.4) holds if and only if

d d
<vr<t> - A 0,50 @) w0+ 30 Y (08 @ e >
j=1 j=1 k#j
for all (B(£),n (1), ..., wa(t)) € R x X_; T, (Sv,). Then

d d
(1) Z (@j(t), w;i(t)); — (A ® vs(t), w;(t) ® ® vk(t)>)

s=1 kg

“ABBEAR) v; (1), R) v; (1)) =0,

j=1 j=1
ie.,
B0 (M) - MDAy vt ) 658)
FA? Ty (0 (0), 1 (¢ >> <A ®é e ®ppy (1)) =0
holds for all A(t) € R and (ur (t),...,wa(t)) € ><j:1 Ty, (#)(Sv; ). If A(t) solves the differential equation
At) = (A (®F_10;(1)) , @F_10;(1)) A1)
A0) = Ao,
ie.,
t
A(t) = Ao exp (/ <A (®‘;:11)j (s)) ,®?:1vj(s)> ds) ,
0
then the first term of (58] is equal to 0. Therefore, from (E.8]) we obtain that for all j € D,
d
(b5 (8), 13 (1)) — (A Qs (t), s (£) © @ wr(t)) =
s=1 k#j
that is,
(05 (), (£)) 5 — a; (E v;(t), w; () = O
holds for all w;(t) € T,, (1) (Sv;), and the theorem follows. ]
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