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Abstract 

The present paper shows the possibility and the benefit to compute statistical freshold for the 

so-called Guillaume-Kenchaff interestingness measure MGK of association rule and 

compares it with other measures as Confidence, Lift and Lovinger’s one. Afterwards, it 

proposes a theory of normalized interestingness measure unifying a set of rule quality 

measures in a binary context and being surprisingly centered on MGK. 

Keywords : Association rule, Binary context, Statistical implication, Unifying theory, Critical 

values, MGK. 

 

Resume 

Le présent papier montre la possibilité et l’avantage de calculer les valeurs statistiques 

critiques de ladite mesure d’intérêt d’une règle d’association MGK de Guillaume-Kenchaff, 

effectue une étude comparative  de cette dernière avec d’autres mesures de la qualité telles 

Confiance, Lift et celle de Lovinger. Ensuite, il propose une théorie de mesure normalisée 

qui unifie un ensemble des mesures de qualité des règles dans un contexte binaire et qui a 

une propriété d’être centrée sur MGK.  

Mots-clés : Règle d’association, Contexte binaire, Implication statistique, Théorie 

unificatrice, Valeurs critiques, MGK. 

 

Introduction 

Association rules reveal attributes occurring together frequently in a database, their relevance 

being commonly assessed by means of interestingness measures. In addition of the standard 

marketing problem, mining association rules has many application areas like environmental 

science in extracting spatial patterns from image databases or geo-referenced census data, 

mathematic education, taxonomy problems, fraud detection, sociology, psychology, 

epidemiology, medical diagnosis (Alonso et al., 2002), etc. Several interestingness measures 

have been proposed in the literature (Hilderman, 1999), the most popular of them being the 

well-known Support , Confidence , Lift , Conviction , Lovinger . A major problem faced in 

association rule extracting is the huge number of valid rules, ..ei , rules meeting specific 
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constraints relative to given interestingness measures. Such a situation is generally due to the 

presence of many redundant and / or trivial rules in the set of valid ones, and, maybe, because 

of arbitrary threshold adoption. 

Put in the topic of the knowledge discovery, information retrieval  and statistical implication 

analysis, the present paper shows the possibility and the benefit to compute statistical 

freshold for the so-called Guillaume-Kenchaff interestingness measure MGK of association 

rule and talks about its unifying properties. 

Moreover, within a comparing analysis with the famous interestingness measure Condidence 

and others, as mathematical and statistical properties, we explain its intelligibility. It allows 

comparison between MGK and the traditional measure Confidence about pertinence of 

produced rules. We shall talk about an application on a real data. 

 

Motivations and mathematical modelling 

Let us recall that this interestingness measure GKM  has been independently proposed by 

(Guillaume, 2000) during the year 2000 inspired by Loevinger’s index and by (Wu et al., 

2004) in 2004. Through its mathematical properties, this quality measure receives different 

names as ION  by (Totohasina, 2004, 2005) showing its implicative oriented normalized 

property (Brin & al.,1997), CPIR  by (Wu et al, 2004) because of expressing a Conditional 

Probability Increment Ratio and of its efficiency to extract non redundant association rules, 

also GConf  (Guillaume’s Confidence) by S. Ferré (cf. p.139-140 in (Ferré, 2002) showing 

that it is both more precise and more understandable, of course it appears more convenient 

with contextualized analysis of logical information system than the standard Agrawal et al.’s 

Confidence  (Agrawal et al.,1993) ( Confidence  can not distinguish attraction and repulsion), 

CF(Certainty Factor) in (Sanchez et al., 2008).  

Moreover, as shown in the litterature, the association rules extraction techniques make 

sufficient to dealing with somewhat arbitrary and subjective constraint as portminimalsup  

for potential itemsets, maybe excepting Gras’statistical implication method in integrating 

objective fhreshold for the nimplicatioofintensity    ((Gras & al., 1996), p.42-46). In the 

present paper, we propose an objective possibility and advantage in integrating critical values 

for statistical index GKM . As it is still rare works on this interesting association rule quality 
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measure, its advancing analysis is necessary highlithing. We will show through it has 

unifying property for a lot of association rule interestingness measures and it allows to build 

infinity of normalized quality measures.  

Among many probabilistic mathematical modelling seen in the litterature (see for example 

(Lerman, 1984)), here, we consider the context of binary data mining ),,(= RAOK , where 

O  is a finite set of entities or objects, A  is a non empty finite set of attributes and R  a binary 

relation from O  to A . A couple AO),( ao  in the graph of the relation R  means that the 

object o  posses the property a , all attribut beeing identifyed as a function from O  to {0,1}

, where the value 1 measures the presence of the attribut in an object of O . Let us write n  

the cardinality of O  ( |=| On ). All subset X  of A  is called an itemset of A , and its logical 

negation X  is the negative itemset of A . Any subset X  in A  is called an  itemset of A , 

and its logical negation written as X  the negative itemset of the itemset X , and any element 

of O  an object or an entity of O . For all itemset X  in A , let us remark the eight following 

points: aa ,A , i.e. )(1 a  identifies the absence of the attribut a  at an entity ; 

1=)(..,,1=)(, eaeiaeXaeXe RO   ; say aX Xa=  = the conjunction of 

presences of a finite number of attributs of X  ; },|{= xeXxeX RO  ,  i.e. the dual or 

the extension of X  ; dually, for any subset E  of entities in O , the itemset contained in E , 

say the intension of E , symbolized as E  , is defined as 1}=)(,/{= eaEeaE  A , say 

the set of common attributs to the objects belonging to E  ; XXX  ==' O  ; this 

coïncidence explains the calling of negative itemset for X  ; XX = : so we find again the 

involutive property of the negation in formal logic, i.e. the De Morgan law; AX , but 

ÚAX . It is easy to see that for two itemsets X  and Y  in the context, one has: 

YXYX  =)(  et YXYX  =)( . An association rule of ),,(= RAOK  is an 

ordered pair ),( YX  of itemsets wich are both positive or negative, or alternatively negative 

and positive, denoted YX   and read as "If X , then Y ", where XY   is required to be 

empty: the itemsets X  and Y  are respectively called the "Premice" and the "Consequent" 

of the association rule YX  . Since a priori one is not right to refuse it, we naturally 

consider an hypothesis of equiprobability of atomic events of O . Hence we presently 
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consider the discrete probabilized space )),(,( POPO , P  beeing the intuitive uniform 

probability. Consequently, for all X  in )(AP , writing |=| XnX
  the cardinality of X  , 

n

n
XSupp X=)(  represents an estimation of the probability )(XP   of the event X   that X  

would be contained in Xn  entities. Moreover, as justified by the duality between extension  

and intension , it appears natural to adopt the following definitions: two itemsets are said to 

be independent (resp. dependent), if their respective extensions are independent (resp. 

dependent) in the probabilized space .)),(,( POPO  

 

Between the two measures GKM  and Confidence . 

According to the present probabilistic modelling, the following elementary properties allow 

us to easily build the so called quality measure GKM . 

Remark 1  It is obvious that, for any itemsets X  and Y , one has the following double 

inequalities:   

    • If X  favors Y  , ( i.e. ))(>)|( YPXYP   , then  ).(1)()|(<0 YPYPXYP    

    • If X  disfavors Y , ( i.e. ))(<)|( YPXYP   then 0<)()|()( YPXYPYP  .  

    • “ X  disfavors Y  is equivalent to“ X  favors Y ”; thus )|(1<)(1 XYPYP   

if and only if )|(<)( XYPYP  .  

Hence, one puts the following definition.  

Definition 1 Let X  and Y  be two itemsets in a data mining context. One defines:  
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 ,  

where f1  represents the indicator of the event "Premice favors Consequent", d1  the 

indicator of the event "Premice disfavors Consequent".  

The expression of GKM  depending on Confidence  is given by: 



Educ. Matem. Pesq., São Paulo, v.16, n.3, pp.881-900, 2014 885 

.)(1
)(supp

)(supp)(conf
)(1

)(supp1

)(supp)(conf
=)(MGK YX

Y

YYX
YX

Y

YYX
YX df 









 

Thus GKM  is composed of the favoring component 
f

GKM  and of the disfavoring one 
d

GKM

. But for two non independent itemsets X  and Y , we have one of the two alternatives: there 

is mutual attraction, then we talk about a positive dependence, or about negative dependence 

in case of repulsion between the two itemsets X  and Y  ; thus we consider YX   in the 

first hand, and between X  and Y  we consider YX   in the other hand. In the both cases, 

we always will consider a positive dependence. As it is obvious, the favoring component  

f

GKM   guides the semantic of  GKM . Let us remark that  
f

GKM   is the only component of 

GKM  coinciding with the Lovinger’s measure, but 1=MGK Lift
d

 

Proposition 1    

 If X  favors Y , the we obtain the equivalence relation of two 

counteropposite rules: 

 ).(M=)(M GKGK YXXY
ff

  (2) 

 If X  disfavors Y , then we have the relation: 

 

 )(M)(=)(M GKGK YXYXaXY
dd

  (3) 

 where .
))())(1((1

)()(
=)(

YPXP

YPXP
YXa




   

Thus, according to the above remark, on can consider that GKM  is favorly implicative, unlike 

confidence is not implicative. As illustration, the five following tables (see table 1: (1) & (2), 

table 2: (3), table 3: (4) & (5)), highlith the evaluating modes of dependency degree between 

two itemsets, in five references of situation: positive dependence, negative dependence, 

independence, incompatibility, et the logical implication. Unlikely a 
2 , it appears that the 

measure GKM  computes the strength of the oriented dependence on the bounded intervall 

1]1,[  . For instance, in the table 1(2), the very significant dependence between the two 

itemsets as revealed by 
2  is in fact a negative dependence and since 0,1=)(MGK YX

f
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, thus negligible when compared with 0,444,1=4/9=)(MGK YX
f

 : so, only the left-hand 

negative rule YX   is significantly valid. Let us notice that here the 0,75=)(conf YX   

is sufficently high too, but its GKM - value is relatively significantless  (thus, the saturation 

ratio ;
9

5
=

01

M1
=M GK

GK



 

0.25))=
4

1
=

01

conf1
(>0.556




. Really, it is immediate that in case of positive dependence 

partialy implicative, one has 1<
conf

M
<0 GK

f

. Thus GKM  is more discriminant than the 

standard confidence. 

  

Table 1. Case of Positive dependence and wake GKM -value  against Negative dependence 

and negative heavy GKM -value. 

    Y    Y    (1)     Y    Y    (2)  

 X    3000   2000   5000   X    1000   3000   4000  

 X    2500   2500   5000   X    4500   1500   6000  

 (1)   5500   4500   10000   (2)   5500   4500   10000  

    

(1) Positive dependence with 101=2  & 0.11= GKM . 

(2) (Negative dependence with 2424=2  & 0.54= GKM  

 

Table  2. Case of Independence. 

    Y    Y    (3)  

 X    2200   1800   4000  

 X    3300   2700   6000  

 (3)   5500   4500   10000  

 

(3) Independence with 0=2  & 0=GKM    

Table 3. Case of Incompatibility and GKM -value=-1 against Logical implication and 

GKM -value = 1. 

   Y    Y    (4)     Y    Y    (5)  

 X    0   2000   2000   X    3000   0   3000  

 X    6000   2000   8000   X    3000   4000   7000  

 (4)   6000   4000   10000   (5)   6000   4000   10000  

 

(4) Incompatibility with 3750=2  & 1= GKM  
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(5) logical Implication with 2857=2  & 1= GKM  

 The proposition 2 below proves that the interestingness measure GKM  is favorly non 

symetric.  

Proposition 2    

 If X  favors Y , then one has the relation:  

 ).(M
)(

)(

)(1

)(1
=)(M GKGK YX

YP

XP

XP

YP
XY

ff









  (4) 

  

 If X  disfavors Y , then one has the relation:  

 )(M=)(M GKGK YXXY
dd

  (5) 

Concerning the right-hand side negative rules, we have:  

Proposition 3  For any two positive items X  and Y , one has the equality and the 

equivalence below:  

 
1)<)(M<<)(M<1( : 

 ]0,1[, ).(M=)(M

GKGK

GKGK

YXYXaon

EtYXYX

fd

df








 (6) 

Thus, the more the degree of quasi-incompatibility between the two itemsets is high, the more 

the quality of the correspondent negative rule is favorly the best; this equivalence allows to 

prun directly all right-hand side negative rule candidate whose the MGK-value is negative 

and located in the interval[-1, 0] for a fixed freshold in [0, 1]. About the left-handside 

negative rule, one has the proposition below.   

Proposition 4 :  For any two itemsets X and Y, one has the following inequalities:  

  If [(1)] X disfavorsY : , then   )(M)(=)(M GK1GK YXYXYX
ff

   S 

  [(2)] If X  favors Y  ( Xei .,.  disfavors Y  and also X  disfavors Y ), then:  

 )(M)(=)(M GK2GK YXYXYX
dd

   (7) 

  [(3)] For all itemsets pii XXXXX ,...,,,...,, 121   such that 

pii XXXXX   ...... 121 .   

  If pXX 1  est ),M( GK  -valid then }{1,...,, pji   with ji < , 

ji XX   est ),M( GK  -valid.  
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 If it exists }{1,...,, pji   such that ji XX   is non ),M( GK  -valid then 

}{1,...,, pkl   such that il   et kj  , kl XX   is also non ),M( GK  -

valid.  

  where: 
)(1

)(

)(1

)(
=)(1

YP

YP

XP

XP
YX








  ,  and 

.
)(

)(1

))((1

)(
=)(2

YP

YP

XP

XP
YX








  

From the two precedent propositions 3 and 4, one deduces the relation between a left-hand 

side negative rule and the right-hand side positive corresponding one. 

Except the above mentioned five references situations, (Blanchard & al., 2005) consider an 

other reference situation, that is the balancing position or maximum uncertainty position ( 

i.e., ||=|| YXYX  ) : A quality measure is said "measuring  equilibrium deviation” if 

it takes a constante value in case of equality between the number of examples and the number 

of counter-examples of the rule (Blanchard et al.,2005). Since at the equilibrium position, 

one has asymptoticaly: 
2

1
)(MGK  YX

f
 (Diatta & al., 2007). Let cr

GKM  be the freshold 

of 
f

GKM   : in a favoring case, a rule YX    is valid for the fixed freshold  ,   i.e. ),M( GK   

-valid, if cr

GKGK M>)(M YX
f

   ; these critical values are computed from 
2 ’s freshold 

read at the same fixed freshold   . 

Proposition 4  The significance of GKM  depends on three integer parameters, say 

the size n  of the sample, the occurences Xn  and Yn  respectively of the itemsets X  and Y . 

If YX nn <0  and X   favors Y , then 

 2

GK

22

.

.
>)(M> cr

YX

YXf

cr
nn

nn
YX    (8) 

 where 2

cr  is critical value obtained at a fixed freshold 
2  of independence of one degree 

of freedom.  

From the usual relation ),(.= 22 YXn  , one deduces: 
2

GK
..

.
=)(M 

YX

YXf

nnn

nn
YX  . 

This last equality has the advantage to give us the critical values cr

GKM  of GKM , via the critical 
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values 2

cr  of the statistic Khi-square of 1 degree of freedom, without normality condition: 

the critical values of GKM  are obtained by replacing )(MGK YX
f

  by  

 
2cr

GK
..

.
=)(M cr

YX

YX

nnn

nn
YX   (9) 

 For any itemsets that are fiting together, let us remark that GKM  as statistic is writable under 

the form:  

 ,=)(MGK

Y

Y

X

XY

f

nn

n
n

n
n

YX




  (10) 

  The algorithm below gives the computation of the critical values of GKM .  

Algorithm 1 (Gen-Rules)  

 Entrance : mk Hl ,  

Exit: R  set of association rules [1]   1> mk  

)( mm HGenAprioriH 
 

  11   mm Hh
 

2

11

11cr

GK
))(supp)((supp*

)(supp))(supp(
M cr

mmk

mmk

hnhln

hhln









  

))(supp)((supp

)(supp)(supp)(supp*
M

11

11
GK










mmk

mmkk

hnhl

hhlln
 

cr

GKGK MM   

}:{ 11   mmk hhlrRR  

}{ 111   mmm hHH
  

 ),( 1 mk HlrulesGen  

Return R   

  

Proposition 5 Let pii XXXXX ,...,,,...,, 121   be itemsets such that 

iXXX  ...21 pi XX   ...1 .   

 if pXX 1  est ),M( GK  -valid then }{1,...,, pji   avec ji < , 
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ji XX   is ),M( GK  -valid.  

 If it exists }{1,...,, pji   such that ji XX   is not ),M( GK  -valid then 

}{1,...,, pkl   such that il   et kj  , kl XX   is also not ),M( GK  -

valid.  

  As an example, for a binary context of 10 objects and 9 items, below we can see the 

critical values of GKM  at 2,5 % threshold (see Table 4 and Table 5 ).   

Table 4.  Critical values of GKM  at 0.025 threshold for a context of 10 objects and 9 items 

 

 

Table 5. Critical values of GKM  at 0.025 threshold for a context of 10 objects and 9 items 

 

 

As an illustration, let us consider the Table 6 below taken from (Guillaume, 2000) presenting 

a database of bank about its customers’behavior : it is about 10 clients observed on four 

variables extended in 9 binary modalities, say : âge in the two classes ]20 ; 29], ]29 ; 39], and 

modalities of matrimonial situation, say : Married, Occupation and Category.   

 

 

 

 

 

 

 

 

 

�Xn       Yn  1 2 3 4 5 

 0.70879      

 0.47252 0.70879    

 0.36090 0.54135 0.70879    

 0.28936 0.43404 0.56829 0.70879  

 0.23626  0.35439 0.46401 0.57872 0.70879 

 0.19290  0.28936 0.37886 0.47252 0.57872 

 0.15467 0.23200 0.30376 0.37886 0.46401 

 0.11813 0.17719 0.23200 0.28936 0.35439  

 0.07875 0.11813 0.15467 0.19290 0.23626 

�Xn       Yn  6 7 8 9 

 0.70879    

 0.56829 0.70879   

 0.43404 0.54135 0.70879   

 0.28936  0.36090 0.47252 0.70879 
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Table 6. Bank data 

 Variables Age Maried Occupation Category 

Entités     

1e  
24 yes artist bad 

2e  
23 no guide medium  

3e
 

32 yes teaching medium 

4e  
35 yes artist good 

5e
 

39 yes teaching bon 

6e
 

31 yes artist good 

7e
 

29 yes teaching good 

8e
 

30 yes teaching medium 

9e
 

38 yes teaching good 

10e
 

36 yes artist bad 

  

The corresponding result is expressed under the form of valued implicative graph (or valued 

directed graph) (see Figure 1): it interprets a part of the knowledge contained in the data, 

where modalities are represented like following : A29: âge ]20;29] , A39: âge ]29;39] , 

Mari: married, Par: profession artist, Pgu: profession guide, Pte: profession teaching, Cba: 

category bad, Cme: category medium, Cgo: category good. 

 

Figure 1.  Illustration on implicative graph of 2,5% threshold. 
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Interpretation of the implicative graph:  The majority of the regular customers of the 

bank that are not artist are significantly teachers of the medium category, married and 39 

years old.  

Extension and unifying view 

 Normalized rule interestingness measure 

Definition 2  An interestingness measure   is said to be normalized if it satisfies 

the five following conditions, say for any association rule YX  , one has: (i) 

1=)( YX , if 0=)/( XYP   ; (ii) 0<)(<1 YX   , if )(<)/(0 YPXYP  (i.e. X  

and Y   are negatively dependent (or partially repulsive) ; (iii) 0=)( YX  , if 

P(Y’/X’)=P(Y’)( i.e. X   and  Y   are  independent) ; (iv) 1<)(<0 YX  , if 

 ..),(>)/(1 ifeiYPXYP  X   favors Y   , or X   and Y

1=)()(;    YXvpartiallyanotheroneattract  , if 1=)/( XYP   ( either if X   totally  

implies  .Y  

Thus, a normalized interestingness measure has the semantic of an oriented link, which 

can be interpreted as taxonomy, that is implicite in a sylogysm as "if X , then Y ". It is a 

quasi-implication index. Let us notice )(NC  the set of such continued normalized 

probabilistic quality measures of association rule, that is continued function of the 

number of counter-examples (or examples) of the rule.  

 

Remark 2 We have added two other conditions to the three Piatetsky-Shapiro’s 

conditions (See (Piatetsky-Shapiro, 1991), (Hilderman & al., 1999), (Freitaas & al., 1999) ), 

say the value of 1  in case of incompatibility which is considered as the limit of negative 

dependence and the value of 1  in case of logical implication which is considered as the 

limit of positive dependence. These two extreme values of all normalized probabilistic 

interestingness measure of association rule allows comparison of strentgh of rules. For 

instance, an association rule whose normalized quality measure is near 1 (resp. 1 ) 

indicates that there is strong attraction (resp. repulsion) between premise and consequent.  

 

Between the standard measure Confidence  and GKM , one has the proposition below.  
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Proposition 6    

    • GKM   is normalized, but confidence  is not ; at fixed margins, of course 

Confidence   and 
f

GKM   are both increasing functions of the number of examples of the 

association rule, however 
f

GKM   is more slowly increasing than Confidence .  

    • )( YX    such that  X   favors  Y ,  one has:   

        - If their extensions are such that   YX  ,  then   

YXYXYX
f

 :1=)(M=)(conf GK
 is said to be an exact rule .  

        - If  YX Ú ,  then   1<)(conf<)(M<0 GK YXYX
f

 ,  or   

YXYX

f





:1>)(

conf1

M1 GK   is said to be an approximate rule.  

    

Let us write ))()/((=)( YPXYPYXEI   the deviation from independence of Y  

to .X  

Proposition 7 For all normalized interestingness measure  , one has:  

 )())(),(),(,(=)( YXEIYXPYPXPnfYX  , if  X   favors  Y ; 

)())(),(),(,( YXEIYXPYPXPng  , if X   disfavors  Y ,  where f  et g  are 

two real functions strictly positive and less or equall than 1 .  

  

Corollary 1  All continued normalized interestingness measure produces most 

pertinent association rules than the standard measure Confidence .  

 Finally, one obtains the canonical decomposition of any continued normalized 

interestingness measure.  

Proposition 8  All continued normalized interestingness measure   is canonically 

decomposed depending of GKM  as :  

d

d

f

f
1M1M= GKGK   ,  

where f1  is the indicator function of the event "Premise favors Consequent", d1  the 

indicator function of the event "Premise disfavors Consequent",   and    being two real 

function belonging to ]0,1].  
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It is now obvious that we can define many algebra operations in the set )(NC .  

Definition 3   

    •  Addition :   , )(NC ,  

2

)(

2

)(
=

ddff 








  

    •  Barycentric addition: )(, NC  ,  

*,  Rba , 
ba

ba

ba

ba
ba

ddff

B










)()(
=


 .  

    •  Product:  dd

d

ff

f   11=   

    •  Power:  for 1>, ,  

  )(1)(1)(1= 1 d

d

f

f

  

  )(1)(1)(1=),( d

d

f

f  , with 1= , if    is even and  0   if not.  

    •  Supremum et Infimum:  

.11=

,11=,11=

dd

d

ff

f

dd

d

ff

f

dd

d

ff

f









â
  

  

 Let us remark that the addition   is a particular case of the linear convex combination 

B .  

Proposition 9    

    • NC(  is closed in all these algebra operations defined above. Moreover, one has: 

||<|| 1   and ||<||     

    • NC(  is closed in both supremum envelopping and infimum envelopping: 

 , NC( ,  NC()1,()1,(=),(  d

dd

f

ff maxmaxmax  and 

NC()1,()1,(=),(  d

dd

f

ff minminmin 
  

    • 

).(),(),(1)(1)(,,),( ),(12* NCNCNCNNNC   mnn

d

md

f

nfnm    

    • )(NC  is closed in B , product,   and .   
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By the above proposition 9, we deduce the infinity of the set )(NC  and how to construct 

normalized quality measure. And GKM  appears playing an important basis role in )(NC : 

GKM  is likely the simplest continued normalized interestingness measure. Such measures 

have the advantage to be convenient for mining both positive and negative association rules 

(Antonie & al., 2004)) In addition, as 1<=
)(

)(
<,0

1
f

nf

nf

n 


 

 N , it is possible to 

construct a more selective continued normalized quality measure than )(, NC f
. 

However, the optimization problem in choosing the power n  and the freshold must be solved.  

  

Corollary 2 For two continued normalized measures   and  , the canonical 

components of their "sum" are such that: 
*,  Rba , one has:  

f
ff

f

B
ba

ba

ba

ba
ba GKM)

)(
(=

)(
=)(










 
  

and       
d

dd
d

B
ba

ba

ba

ba
ba GKM)

)(
(=

)(
=)(










 
 .  

  

Normalization process and characterization 

Normalization and normalizability 

Since any bounded interval of the type ],[ ba  is homeomorphic to the interval 1,1][ , an 

affine function being the simplest bijection, it appears natural to search an affine function or 

partially affine one with dynamical coefficients eventually transforming an arbitrary non 

normalized interestingness measure. It would be possible to have a unifying view on the set 

of quality measures used in the litterature. We search a necessary and sufficent condition of 

such normalizability of a fixed measure  . Let us write its associate normalized in )(NC  as 

n . Let us consider an association rule YX   from a context. Let fx  and fy  (resp. dx  & 

dy ) be respectively the multiplying coefficient and centering coefficient of  , in case of X  

favoring Y  (resp. X  disfavoring Y ). Thus we have :  
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YdisfavXifyYXx

YfavXifyYXx
YX

dd

ff

n
,)(.

.,)(.
=)(






 

 These four coefficients are determined by passing to unilateral limits in the referencing 

situations as incompatibility, independence (on the left and on the right) and logical 

implication. That is : Let )( YXimp   the value of )( YX   at implication, )( YXind   

the value of )( YX  at independence, and )( YXinc   the value of )( YX   in case 

of incompatibility. In case of X  favoring Y , one has:  

 








rightfromceindependenyYXx

nimplicatiologicalyYXx

findf

fimpf

  0=)(

 1=)(




 

 In case of X  disfavoring Y , one obtains:  

 








ilityincompatibyYXx

leftfromceindependenyYXx

dincd

dindd

1=)(

  0=)(




 

 The corresponding equations system is linear and writed as below;  

 





















1=)(.

0=)(.

0=)(.

1=)(.

dincd

dindd

findf

fimpf

yYXx

yYXx

yYXx

yYXx









 (11) 

 Let M  be the corresponding matrix. One has:  

 




























1)(00

1)(00

001)(

001)(

=

YX

YX

YX

YX

M

inc

ind

ind

imp









 

 

Since, its determinant is det(𝑀) = (𝜇𝑖𝑚𝑝(𝑋 → 𝑌) −  𝜇𝑖𝑛𝑑  (𝑋 → 𝑌)) (𝜇𝑖𝑛𝑑(𝑋 → 𝑌) −

𝜇𝑖𝑛𝑐  (𝑋 → 𝑌)), one has the  strategic theorem below.  

 

Theorem 1  A quality measure μ normalizable if  and only if, for all association rule 

X→Y, the fowing conditions are satisfyed: 

the quantities  𝜇𝑖𝑚𝑝(X→Y), 𝜇𝑖𝑛𝑑(X→Y) and  𝜇𝑖𝑛𝑐(X→Y)  are finite;  

the following inequalities are satisfied 
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𝜇𝑖𝑚𝑝(𝑋 → 𝑌) ≠ 𝜇𝑖𝑛𝑑  (𝑋 → 𝑌); 

𝜇𝑖𝑛𝑑(𝑋 → 𝑌) ≠ 𝜇𝑖𝑛𝑐  (𝑋 → 𝑌). 

 

Corollary 3  For any normalizable measure μ and any association rule X→Y the key 

coefficients are given by expressions below: 

 

.
)()(

)(
= ,

)()(

1
=

;
)()(

)(
= ,

)()(

1
=

YXYX

YX
y

YXYX
x

YXYX

YX
y

YXYX
x

incind

ind
d

incind

d

indimp

ind
f

indimp

f


























 ;  

 

Remark 3   

    • The coefficients dfdf yandyxx   ,,  depend only on the margin probabilities 

)(XP   et )(YP  , and the quantities )(),( YXYX indimp    and )( YXinc   so.  

    • It is easy to obtain that GKGK M=M
n

. More generally, for all normalized 

measure )(NC , one has :  =n .  

    • Let us observe that for all   whose associated normalized measure is 

GKM=n , one has the inverse relation:  

 


















YdisfavXif
x

yYX

YfavXif
x

yYX

YX

d

d

f

f

,
)(M

.

.,
)(M

=)(
GK

GK



 

 This reciprocal relation will allow comparing, via GKM , two normalizable measures   and 

  on a fixed association rule 1R  : for instance, if 1R  is valid according to GKM , but non 

valid according to   and  , then these two measures under-evaluate approximate rules ; 

otherwise, if 1R  is valid according to   and  , but not to GKM  , then they uper-evaluate 

rules. Thus, GKM  plays important unifying role in the subset of normalizable measures 

associated to GKM .  

Example of normalization 
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As illustration of the normalization process, below is presented the example of Confidence . 

Let YX   be a rule from a context. Confidence: )|(=)(conf XYPYX  ,   

10=)(conf YXinc , 0)(=)(conf  YPYXind  and 1=)(conf YXimp  , so 

0)(1=)(  YPMdet . According to the above theorem?, Confidence  is normalizable:  

 

1= ,
)(

1
=

)(1

)(
= ,

)(1

1
= 







ddff y

Yp
x

YP

YP
y

YP
x

 

 Say  

 




















YdisfavXif
YPXP

YPXPYXP

YfavXif
YPXP

YPXPYXP

YXn

   , 
)()(

)()()(

 .  , 
))()(1(

)()()(

=)(conf  

 Thus, )(M=)(conf GK YXYXn  . Moreover, it is easy to show that 

ConfidenceGKM  and for some itemsets independent X  and Y , one can obtain 

0.90>)(conf YX   against the natural 0.=)(MGK YX   Thus, Confidence  uper-

evaluates association rules. In extension, it is easy to verify the result below.  

Proposition 10   

 • The twenty quality measures GKM , Support, Confidence, Recall, Lift, 

laverage, Centered-Confidence, Certitude factor, Laplace,  -coefficient, 

Piatetsky-Shapiro, Cosinus, Accuracy, Little contradiction (Moindre 

contradiction in french), Lovinger, Kappa, Implication index, Specificity and 

negative reliability are normalizable and associated to GKM ;  

 • The five measures Jaccard, Zhang, Q-Yule, Y-Yule, J-measure are 

normalizable but not associated to GKM ;  

 • The seven measures Côte multiplier, Sebag, Conviction, Odd Ratio, 

Klosgen, Gain informationnel et Ratio of counter-example are not affine 

homomorphic normalizable.  

This last proposition confirms the unifying role of GKM , except likely a little set of few 

measures (For other results, see (Totohasina, 2008). 
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Conclusion 

In the present work, it is shown that the normalized interestingness measure GKM  is more 

selective and more pertinent, ..ei , it does not produce redundant rules and it systematically 

avoids independence, than the standard Confidence , for associations rules of the same kind, 

GKM  measures both the distance from independence and the intensity of statistical (or 

approximate) implication between two itemsets. Moreover, unlike Confidence , since GKM  

is asymptoticaly satisfying the condition of equilibrium, GKM  deals conveniently with large 

data bases. Regarding its coherence with mutual attraction and mutual repulsion of two 

itemsets, GKM  is less ambiguous and more understandable than the standard independence 

Khi-square testing and than .Confidence Netherveless, regarding the intuitive word 

Confidence  in the popular language and because of the concept of conditional probability, 

we think it is necessary to keep using Confidence  but only for  M valid-GK  association rules. 

We also think it is profitable to consider critical values of most of interestingness measures 

depending on contingency table, like the continued normalized interestingness measures, for 

increasing such valid rules relevance. To end, the present work has shown that GKM  plays a 

central unifying role in the infinite set of such quality measures and in the set of non 

normalizable probabilistic measures.     
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