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The primary concern of the work is robust control of hybrid mechanical systems under unilateral con-
straints of co-dimension one. Nonlinear H∞ output feedback synthesis is developed in the hybrid setting,
covering collision phenomena. Robustness issues of the proposed synthesis are numerically illustrated
in two benchmark applications. First, the regulation and orbital stabilization of a simple mass-spring-
damper system, impacting a barrier, illustrate the capability of the proposed approach via state feedback
and position feedback designs, respectively. In order to add a practical value to the present investiga-
tion the tracking synthesis of a walking gait is then addressed for a complex bipedal robot with feet. In
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both external disturbances, affecting the collision-free motion phase, and uncertainties that occur in the
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1. Introduction

Significant research interest has been devoted to the stability analysis and control synthesis of
switched systems subject to input, state and output constraints. The progress made in the area
relied on different tools such as multiple Lyapunov functions (?) and predictive control (?) among
others. More recently, barrier Lyapunov functions (functions which grow to infinity when their ar-
guments approach the domain boundaries) have been involved into the tracking control synthesis
of nonlinear switched systems with output constraints (????). Sliding mode control of switched
single-input, output-constrained systems have also been brought into play (?). In addition, ro-
bustness of linear switched systems subject to actuator constraints has been studied in (?) in
terms of the L2-gain, using the LMI-optimization approach. A piece-wise linear H∞ control syn-
thesis was developed for switched systems with output constraints in (?), relying again on the
LMI-optimization.

Switched dynamic systems, which are governed by continuous differential equations and difference
equations provided that the switch between such equations is defined according to output and/or
time constraints, are typically referred to as hybrid systems. Such systems have also attracted a
lot of attention due to the wide variety of their applications and due to the need of special analysis
tools for this type of systems. The interested reader may refer to the relevant works by ????, to
name a few. Particularly, the disturbance attenuation problem for hybrid dynamic systems has
been addressed by ??? where impulsive control inputs were admitted to counteract/compensate
disturbances/uncertainties at time instants of instantaneous changes of the underlying state. It
should be noted, however, that even in the state feedback design, a pair of independent Riccati
equations, separately coming from continuous and discrete dynamics, was required to possess a
solution that satisfies both equations. A restrictive condition was thus involved on the feasibility
of the proposed synthesis. Moreover, the physical implementation of impulsive control inputs was
impossible in many practical situations, e.g., while controlling walking biped robots.

Thus motivated, the present investigation intends to introduce a new control strategy, which
is feasible under certain conditions and which avoids using impulsive control inputs. The control
objective in the question is to asymptotically stabilize the undisturbed hybrid system, while also at-
tenuating external disturbances. The work focuses on impact hybrid systems, which are recognized
as dynamic systems under unilateral constraints (?). Since the dynamic systems with unilateral
constraints possess nonsmooth solutions, which arise due to hitting the constraints, a challenging
problem is to extend the popular nonlinear H∞ approach (???) to this kind of dynamic systems.
It is worth noticing that the Lyapunov characterization of integral Input-to-State Stability (iISS),
recently developed by ? for impulsive systems with state-independent impacts, could form a basis
for such an extension. However, choosing this route would call for further generalization of iISS
concept to hybrid systems (possibly under unilateral constraints) with state-dependent impacts.

The H∞ approach, that has recently been developed by ? towards nonsmooth mechanical appli-
cations with hard-to-model friction forces and backlash effects, is now extended in the presence of
unilateral constraints. Such an extension, recently reported by ? for tracking control of a simple
1-DOF (degree-of-freedom) mechanical system, constitutes a part of this work and it is further gen-
eralized to multi-link mechanical systems with unilateral constraints of co-dimension 1. The general
case of unilateral constraints of higher co-dimensions, possibly, resulting in ill-posed dynamics (??),
remains beyond the scope of the present investigation.

Both the full information case with perfect state measurements and the incomplete information
case with output disturbance-corrupted measurements are addressed and specified for n-DOF fully
actuated mechanical manipulators. An essential feature, adding the value to the present investiga-
tion, is that not only standard external disturbances, but also their discrete-time counterparts are
attenuated with the proposed synthesis. This feature has successfully been justified ad hoc while
testing the robust tracking synthesis of a stable biped periodic gait (??). It is worth noticing that
this is in contrast to the control algorithms, developed so far (cf. that of ?) where the perfect
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knowledge of the restitution rule is assumed at the collision time instants.
To facilitate the exposition capabilities of the developed synthesis and its robustness features

are first illustrated with a simple linear 1-DOF mass-spring-damper system, impacting against a
barrier. In addition to the numerical study, made for the state feedback regulation of this Mass-
Spring-Damper-Barrier (MSDB) testbed, two different scenarios are invented and tested side by
side for the MSDB position feedback tracking of an impact reference model, generating a stable
limit cycle. In the first scenario, an impact reference output to follow is constructed off-line based
on the impact Van der Pol oscillator (?). In the second scenario, the same reference output is
updated on-line to synchronize its impacts to the time instants when the plant hits the unilateral
constraint. As theoretically predicted, the disturbance attenuation is actually enforced and good
performance of the closed-loop system is concluded from the numerical study being conducted for
the former scenario. However, the disturbance-free closed-loop system proves to be asymptotically
unstable because of the potential impact desynchronization (?). In the latter scenario, the reference
trajectory tracking is tested under on-line synchronization of the reference velocity jumps to the
collision time instants of the plant. Simulation runs are additionally conducted for this scenario
to support the theory in that the closed-loop system is capable of retaining attractive robustness
features while also presenting the asymptotic stability in the disturbance-free environment.

In order to add the practical value to the present development it is additionally applied to the
orbital stabilization of a seven-link bipedal robot with feet required to track a walking gait which is
composed of single support phases separated by impacts. The numerical study, made on the biped
emulator from (?), supports good robustness features of the proposed orbital synthesis against both
external disturbances, affecting the collision-free motion phase, and against uncertainties that occur
in the collision phase.

Being numerically justified in the above benchmark testbeds, the robustness features of the
proposed synthesis form the novelty of the paper along with the theoretical development of the
nonsmooth H∞ framework under unilateral constraints. The contribution of the paper into the
existing literature is thus twofold. First, the nonlinear H∞ approach is constructively generalized
under unilateral constraints by means of incorporating an additional condition on the plant reset in
the closed-loop. The resulting robust synthesis is then effectively applied to the afore-given bench-
mark impact testbeds, operating under both external disturbances and restitution uncertainties,
for the purpose of generating periodic motions. Application to the robust tracking synthesis of a
stable biped periodic gate, validated on a real-life biped emulator, is of its own value.

The paper is outlined as follows. Section 2 presents a hybrid model of interest which is subject
to a unilateral constraint. The H∞-control problem is then stated for such a system. Section 3
derives sufficient conditions for a local solution of the underlying problem to exist, and an output
feedback controller is additionally synthesized. In Section 4, the resulting synthesis is applied to n-
DOF mechanical manipulators subject to unilateral constraints and its capabilities are illustrated
in Section ?? in numerical experiments made for the regulation and orbital stabilization of the
impact MSDB testbed. Section ?? presents the numerical results of the application of the developed
synthesis to the orbital stabilization of a seven-link bipedal robot with feet. Finally, conclusions
are collected in Section ??.

1.1 Notation

The notation used throughout is rather standard. The argument t+ is used to denote the right-
hand side value x(t+) of a trajectory x(t) at an impact time instant t whereas x(t−) stands for the
left-hand side value of the same; by default, x(t) is reserved for x(t−), thus implying an underlying
trajectory to be continuous on the left.
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2. Problem Statement

Given a scalar time-varying unilateral constraint F (x1, t) ≥ 0, consider a non-autonomous nonlin-
ear system, evolving within the above constraint, which is governed by continuous dynamics of the
form

ẋ1 = x2

ẋ2 = Φ(x1,x2, t) + Ψ1(x1,x2, t)w + Ψ2(x1,x2, t)u
(1)

z = h1(x1,x2, t) + k12(x1,x2, t)u (2)

y = h2(x1,x2, t) + k21(x1,x2, t)w (3)

beyond the surface F (x1, t) = 0 when the constraint is inactive, and by the algebraic relations

x1(t
+
i ) = x1(t

−
i )

x2(t
+
i ) = µ0(x1(ti),x2(t

−
i ), ti) + ω(x1(ti),x2(t

−
i ), ti)w

d
i

(4)

zdi = x2(t
+
i ) (5)

at a priori unknown collision time instants t = ti, i = 1, 2, . . . , when the system trajectory hits
the surface F (x1, t) = 0.

In the above relations, x> = [x>1 ,x
>
2 ] ∈ R2n represents the state vector with components x1 ∈ Rn

and x2 ∈ Rn; u ∈ Rn is the control input of dimension n; w ∈ Rl and wd
i ∈ Rq collect exogenous

signals affecting the motion of the system (external forces, including impulsive ones, as well as
model and measurement imperfections). The variable y ∈ Rp is the only available measurement
of the state of the system whereas the variables z ∈ Rm and zdi ∈ Rn represent the outputs of
the system to be controlled. Since impulsive control actions were ruled out, the post-impact value
x2(t) of the state component subject to the instantaneous change was chosen as a discrete output
function zdi .

Throughout, the matrix functions Φ, Ψ1, Ψ2, h1, k12, k21, F , µ0, and ω are of appropriate
dimensions, which are continuously differentiable in their arguments and uniformly bounded in t.
Admitting these functions to be time-varying is particularly invoked to deal with tracking problems
where the plant description is given in terms of the state deviation from the reference trajectory to
track (?). In addition, the origin is assumed to be an equilibrium of the unforced system (1)-(5),
i.e., for all t, one has Φ(0,0, t) = 0, h1(0,0, t) = 0, h2(0,0, t) = 0, and µ0(0,0, t) = 0.

Clearly, the above system (1)-(5) is an affine control system of the vector relative degree [2, . . . , 2]>

and it governs a wide class of mechanical systems with impacts. Since the control input u has the
same dimension as that of the generalized position x the present investigation is confined to the
fully actuated case, though it could readily be extended to the over-actuated case with a correct
choice of the control inputs. The treatment in the underactuated case is also possible using the
virtual constraint approach (??) whenever it is applicable (e.g., for the undegraduation degree one
similar to that of ?).

If interpreted in terms of mechanical systems, equation (1) describes the continuous dynamics
before the underlying system hits the reset surface F (x1, t) = 0, which depends on the position
and time variables only. In turn, the restitution law, given by equation (4), is a physical law for
the instantaneous change of the velocity when the resetting surface is hit. Thus, the position is not
instantaneously changed at the collision time instants whereas the post-impact velocity x2(t

+) is
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a function of both the pre-impact state (x1(t),x2(t
−)) and a discrete perturbation wd accounting

for inadequacies of the restitution law.
For later use, the notion of an admissible controller is specified for the underlying system. Con-

sider a causal dynamic feedback controller of the same structure

ξ̇1 = ξ2, ξ̇2 = η(ξ1, ξ2,y, t)

ξ1(t
+
j ) = ξ1(t

−
j ), ξ2(t

+
j ) = ν(ξ1(tj), ξ2(t

−
j ), tj)

u = θ(ξ, t)

(6)

as that of the plant and with the internal state ξ = [ξ1, ξ2]
> ∈ R2s, with the time instants

t = tj , j = 1, 2, . . . , which are not necessarily coinciding with the collision time instants in the
plant equations (1)-(5), and with uniformly bounded in t functions η(ξ,y, t), ν(ξ, t), and θ(ξ, t) of
class C1 such that η(0,0, t) = 0, ν(0, t) = 0, and θ(0, t) = 0 for all t. Such a controller is said to
be a locally admissible controller iff the undisturbed closed-loop system (1)-(5), (6) with w,wd

i = 0
is uniformly asymptotically stable.

The H∞-control problem of interest consists in finding a locally admissible controller (if any)
such that the L2-gain of the disturbed system is less than a certain γ > 0, that is the inequality

∫ T

t0

‖z(t)‖2dt+

NT∑
i=1

‖zdi ‖
2 ≤ γ2

[∫ T

t0

‖w(t)‖2dt+

NT∑
i=1

‖wd
i ‖

2

]
+

NT∑
k=0

βk(x(t−k ), ξ(t−k ), tk) (7)

holds for some positive definite functions βk(x, ξ, t), k = 0, . . . , NT , for all segments [t0, T ] and a
natural NT such that tNT

≤ T < tNT+1, for all piecewise continuous disturbances w(t) and discrete
ones wd

i , i = 1, 2, . . . , for which the state trajectory of the closed-loop system starting from an

initial point (x(t0), ξ(t0)) = (x0, ξ0) ∈ U remains in some neighborhood U ∈ R2(n+s) of the origin
for all t ∈ [t0, T ].

It is worth noticing that the above L2-gain definition is consistent with the notion of dissipativity,
introduced by ? and ?, and with iISS notion ?, and it represents a natural extension to hybrid
systems (see, e.g. the works by ?, ?, ? and ?). In order to facilitate the exposition the underlying
system, chosen for treatment, has been pre-specified with the post-impact velocity value x2(t) in
the discrete output (5) to be controlled. The general case of a certain function κ(x2(t)) of the post
impact velocity value in the discrete output (5) can be treated in a similar manner because the
L2-gain inequality (7) is flexible in the choice of positive definite functions βk(x, ξ, t), k = 0, . . . , NT .

3. Output Feedback Synthesis Under Unilateral Constraints

In this section, we present sufficient conditions for the solution of the underlying disturbance
attenuation problem to exist. For later use, the continuous dynamics (1) are rewritten in the form

ẋ = f(x, t) + g1(x, t)w + g2(x, t)u (8)

whereas the restitution rule is represented as follows

x(t+i ) = µ(x(t−i ), ti) + Ω(x(t−i ), ti)w
d
i , i = 1, 2, . . . (9)

with x> = [x>1 ,x
>
2 ], f>(x, t) = [x>2 ,Φ

>(x, t)], g1
>(x, t) = [0,Ψ>1 (x, t)], g>2 (x, t) = [0,Ψ>2 (x, t)],

µ>(x, t) = [x>1 ,µ
>
0 (x, t)], and Ω>(x, t) = [0,ω(x, t)]. In order to simplify the synthesis to be

5
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developed and to provide reasonable expressions for the controller design, the standard assumptions

h1
>k12 ≡ 0, k12

>k12 ≡ I, k21g1
> ≡ 0, k21k21

> ≡ I, (10)

are brought from the work of ? into play. Relaxing these assumptions is indeed possible, but it
would substantially complicate the formulas to be worked out.

3.1 Non-local state-space solution

Let B2n
δ ∈ R2n be a ball of radius δ > 0, centered around the origin. Given γ > 0, a solution to the

problem in question is derived under the hypotheses, specified below in a domain (x, ξ) ∈ B2n
δ , t ∈ R

of interest:

H1) the norm of the matrix function ω is upper bounded by
√
2
2 γ, i.e.,

‖ω(x, t)‖ ≤
√

2

2
γ. (11)

H2) there exist a smooth, positive definite, decrescent function V (x, t) and a positive definite
function R(x) such that if computed along the trajectories of the system (1)-(5) with initial
conditions within B2n

δ , for all t ∈ (ti−1, ti), i = 1, 2, . . . with t0 being the initial time, and
ti the collision time instants of the disturbed system (1)-(5), the Hamilton–Jacobi–Isaacs
inequality

∂V

∂t
+
∂V

∂x
(f(x, t) + g1(x, t)α1 + g2(x, t)α2) + h1

>h1 +α2
>α2 − γ2α1

>α1 ≤ −R(x) (12)

holds with

α1(x, t) =
1

2γ2
g>1 (x, t)

(
∂V

∂x

)>
, α2(x, t) = −1

2
g>2 (x, t)

(
∂V

∂x

)>
;

H3) there exist a continuous uniformly bounded function G(t), and a positive semidefinite function
Q(x, ξ) subject to Q(0, ξ) which is positive definite, and a smooth, positive semidefinite,
decrescent function W (x, ξ, t) subject to W (0, ξ, t) which is positive definite, and such that
computed along the trajectories of system (1)-(5) with initial conditions within (x(t0), ξ(t0)) ∈
B2n
δ , for all t ∈ (ti−1, ti), the Hamilton-Jacobi-Isaacs inequality

∂W

∂t
+

(
∂W

∂x

∂W

∂ξ

)
fe(x, ξ, t) + he

>he − γ2ψ>ψ ≤ −Q(x, ξ) (13)

holds with

fe(x, ξ, t) =

(
f(x, t) + g1(x, t)α1(x, t) + g2(x, t)α2(ξ, t)

f(ξ, t) + g1(ξ, t)α1(ξ, t) + g2(ξ, t)α2(ξ, t) + G(t)(h2(x, t)− h2(ξ, t))

)

he(x, ξ, t) = α2(x, t)−α2(ξ, t),

6
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ψ(x, ξ, t) =
1

2γ2
ge
>(x, t)


(
∂W

∂x

)>
(
∂W

∂ξ

)>
 ,

ge(x, t) =

(
g1(x, t)

G(t)k21(x, t)

)
;

H4) Hypotheses H2) and H3) are satisfied with the functions V (x, t) and W (x, ξ, t) which decrease
along the direction µ in the sense that the inequalities

V (x, t) ≥ V (µ(x, t), t), (14)

W (x, ξ, t) ≥W (µ(x, t),µ(ξ,t), t) (15)

hold in the domains of V and W .

The following result is in force.

Theorem 1: Given γ > 0, suppose that Hypotheses H1)-H3) are satisfied for system (1)-(5) in a
domain x ∈ B2n

δ , ξ ∈ B2n
δ , t ∈ R with functions V (x, t) and W (x, ξ, t). Then, the closed-loop system

(1)-(5), driven by the dynamic controller

ξ̇ = f(ξ, t) + g1(ξ, t)α1(ξ, t) + g2(ξ, t)α2(ξ, t) + G(t)(y(x, t)− h2(ξ, t))

ξ1(t+i ) = ξ1(t−i ), ξ2(t+i ) = µ0(ξ1(ti), ξ2(t
−
i ), ti)

u = α2(ξ, t),

(16)

locally possesses a L2-gain less than γ. Once Hypothesis H4) is satisfied as well, the function

U(x, ξ, t) = V (x, t) +W (x, ξ, t) (17)

constitutes a Lyapunov function of the disturbance-free closed-loop system (1)-(5), (16) the uniform
asymptotic stability of which is thus additionally guaranteed.

3.1.1 Proof of Theorem 1

The proof of Theorem 1 is preceded with an instrumental lemma which extends the powerful
Lyapunov approach to impact systems. The following result specifies (?, Theorem 2.4) to the
present case with x1 = x and x2 = t.

Lemma 1: Consider the unforced (u = 0) disturbance-free (w = 0, wd
i = 0, i = 1, 2, . . . ) system

(8), (9) with the assumptions above. Let there exist a positive definite decrescent function V (x, t)
such that its time derivative, computed along (8), is negative definite whereas V (x, t) ≥ V (µ(x,t), t)
for all t ∈ R1. Then the system is uniformly asymptotically stable.

Proof of Theorem 1. Since the proof follows the same line of reasoning as that used in ? for the
impact-free case here we provide only a sketch. Similar to the proof of (?, Theorem 7.1), let us
differentiate function (17) along the disturbed closed-loop system (1)-(5) and estimate it between

7
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collision time instants (?, p.138):

dU

dt
≤ −‖z(t)‖2 + γ2‖w‖2 −R(x)−Q(x, ξ)− γ2‖w −α1(x, t)−ψ(x, ξ, t)‖2,

t ∈ (tk, tk+1), k = 0, 1, . . . .
(18)

Then integrating (18) from tk to tk+1, k = 0, 1, . . . , yields∫ tk+1

tk

[γ2‖w‖2 − ‖z(t)‖2]dt ≥
∫ tk+1

tk

[R(x(t)) +Q(x(t), ξ(t))]dt+

∫ tk+1

tk

dU(x(t), ξ(t), t)

dt
dt

+γ2
∫ tk+1

tk

‖w(t)−α1(x(t), t)−ψ(x(t), ξ(t), t)‖2dt > 0.

(19)

Taking (17) into account and skipping positive terms in the right-hand side of (19), it follows that

∫ T

t0

(γ2‖w‖2 − ‖z(t)‖2)dt ≥ U(x(T ), ξ(T ), T ) +

NT∑
i=1

[V (x(t−i ), ti)− V (x(t+i ), ti)]

+

NT∑
i=1

[W (x(t−i ), ξ(t−i ), ti)−W (x(t+i ), ξ(t+i ), ti)]− U(x(t0), ξ(t0), t0).

(20)

Since the functions V and W are smooth by Hypotheses H2) and H3) the following relations

|V (x(t−i ), ti)− V (x(t+i ), ti)| ≤ LVi ‖x(t−i )− x(t+i )‖ ≤ LVi [‖x(t−i )‖+ |x(t+i )‖]
|W (x(t−i ), ξ(t−i ), ti)−W (x(t+i ), ξ(t−i ), ti)| ≤ LWi [‖x(t−i )− x(t+i )‖+ ‖ξ(t−i )− ξ(t+i )‖]

≤ LWi [‖x(t−i )‖+ ‖x(t+i )‖+ ‖ξ(t−i )‖+ ‖ξ(t+i )‖]
(21)

hold true with LVi > 0 and LWi > 0 being local Lipschitz constants of V and W in the domain
B2n
δ ∈ R2n. Relations (20) and (21), coupled together, result in the inequality

∫ T

t0

(γ2‖w‖2 − ‖z(t)‖2)dt ≥ −
NT∑
i=1

[2(LVi + LWi )‖x(t−i )‖+ 2LWi ‖ξ(t−i )‖]− U(x(t0), ξ(t0), t0), (22)

thus being verified in the domain B2n
δ ∈ R2n. Apart from this, inequality

NT∑
i=1

‖zdi ‖
2

=

NT∑
i=1

‖x2(t+i )‖2 ≤ 2

NT∑
i=1

‖µ0(x(t−i ), ti)‖2 + 2

NT∑
i=1

‖ω(x(t−i ), ti)w
d
i ‖2 ≤

2

NT∑
i=1

‖µ0(x(t−i ), ti)‖2 + γ2
NT∑
i=1

‖wd
i ‖2

(23)

8
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is ensured by Hypothesis H1). Thus, combining (22)-(23), one derives

∫ T

t0

‖z(t)‖2dt+

NT∑
i=1

‖zdi ‖
2 ≤ U(x(t0), ξ(t0), t0) + γ2

[∫ T

t0

‖w(t)‖2dt+

NT∑
i=1

‖wd
i ‖

2

]
+

2

NT∑
i=1

‖µ0(x(t−i ), ti)‖2 +

NT∑
i=1

[(2LVi + 2LWi )‖x(t−i )‖+ 2LWi ‖ξ(t−i )‖],
(24)

i.e., the disturbance attenuation inequality (7) is established with the positive definite functions

β0(x(t0), ξ(t0), t0) = U(x(t0), ξ(t0), t0),

βi(x(ti), ξ(ti), ti) = (2LVi + 2LWi )‖x(t−i )‖+ 2LWi ‖ξ(t−i )‖+ 2‖µ0(x(t−i ), ti)‖2,
i = 1, . . . , N.

(25)

To complete the proof it remains to establish the asymptotic stability of the undisturbed version of
the closed-loop system (1)-(5),(16). Indeed, if coupled to Hypothesis H4), the negative definiteness
(18) of the time derivative of the Lyapunov function (17) between the collision time instants, ensures
that Lemma 1 is applicable to the undisturbed version of the closed-loop system (1)-(5),(16). By
applying Lemma 1, the required asymptotic stability is thus validated. Theorem 1 is proved. �

3.2 Local state-space solution

To circumvent the difficulty of solving the Hamilton–Jacobi–Isaacs PDIs (12), (13) their solutions
are further approximated by those to the corresponding Riccati equations that appear in solving
the H∞ control problem for the linearized system which is given by

ẋ = A(t)x + B1(t)w + B2(t)u, (26)

z = C1(t)x + D12(t)u, (27)

y = C2(t)x + D21(t)w, (28)

within impact-free time intervals (ti−1, ti) where t0 is the initial time instant and ti, i = 1, 2, . . .
are the collision time instants whereas

A(t) =
∂f

∂x

∣∣∣∣
x=0

, B1(t) = g1(0, t),B2(t) = g2(0, t), C(t) =
∂h

∂x

∣∣∣∣
x=0

, D12(t) = k12(0, t). (29)

By the time-varying strict bounded real lemma (?, p.46), the following conditions are necessary
and sufficient for the linear H∞ control problem (26)-(28) to possess a solution: given γ > 0,

C1) there exists a positive constant ε0 such that the differential Riccati equation

−Ṗε(t) = Pε(t)A(t) + A>(t)Pε(t) + C1
>(t)C1(t)

+Pε(t)[
1

γ2
B1B1

> −B2B2
>](t)Pε(t) + εI

(30)

has a uniformly bounded symmetric positive definite solution Pε(t) for each ε ∈ (0, ε0);

9
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C2) while being coupled to (30), the differential Riccati equation

Żε(t) = Aε(t)Zε(t) + Zε(t)A
>
ε (t) + B1(t)B1

>(t)

+Zε(t)[
1

γ2
PεB2B2

>Pε −C2
>C2](t)Zε(t) + εI,

(31)

has a uniformly bounded symmetric positive definite solution Zε(t) with Aε(t) = A(t) +
1
γ2 B1(t)B1

>(t)Pε(t).

Next result asserts that these conditions, if coupled to a certain monotonicity condition, are also
sufficient for a local solution to the nonlinear H∞ control problem to exist under unilateral con-
straints.

Theorem 2: Let conditions C1) and C2) be satisfied with some γ > 0. Then Hypotheses H2) and
H3) hold locally around the equilibrium (x, ξ) = (0, 0) of the nonlinear system (1)-(5) with

V (x, t) = x>Pε(t)x (32)

R(x) =
ε

2
‖x‖2 (33)

W (x, ξ, t) = γ2(x− ξ)>Z−1ε (t)(x− ξ) (34)

Q(x, ξ) =
ε

2
γ2 min

t∈R1
‖Z−1ε (t)‖2‖x− ξ‖2 (35)

G(t) = Zε(t)C2
>(t) (36)

and the closed-loop system driven by the output feedback

ξ̇ = f(ξ, t) + G(t)[y − h2(ξ, t)] +

[
1

γ2
g1(ξ, t)g1

>(ξ, t)− g2(ξ, t)g2
>(ξ, t)

]
Pε(t)ξ

ξ1(t+i ) = ξ1(t−i ), ξ2(t+i ) = µ0(ξ1(ti), ξ2(t
−
i ), ti)

u = −g2(ξ, t)>Pε(t)ξ

(37)

locally possesses a L2-gain less than γ provided that Hypothesis H1 holds as well. Moreover, the
disturbance-free closed-loop system (1)-(5), (37) is uniformly asymptotically stable provided that
Hypothesis H4) is satisfied with the quadratic functions (32) and (34).

Proof. Due to (?, Theorem 24), Hypotheses H2) and H3) locally hold with (32)-(36). Then by
applying Theorem 1, the validity of Theorem 2 is concluded.

3.3 Remarks on the synthesis of autonomous and periodic systems

For autonomous systems, all functions in (1)-(5) and (26)-(28) are time-independent, and the
differential Riccati equations (30) and (31) degenerate to the algebraic Riccati equations with
Ṗε(t) = 0 and Żε(t) = 0. For periodic systems, all functions in (1)-(5) and (26)-(28) are time-
periodic, and Theorem 2 admits a time-periodic synthesis (37) which is based on appropriate
periodic solutions Pε(t) and Zε(t) to the periodic differential Riccati equations (30) and (31).

10
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3.4 State feedback synthesis

In the full information case where perfect state measurement is available, Theorem 2 is simplified
to the static feedback design

u = −g2(x, t)>Pε(t)x (38)

and it is summarized as follows.

Theorem 3: Let Hypothesis H1) and Condition C1) be satisfied with some γ > 0. Then the closed-
loop system driven by the state feedback (38) locally possesses a L2-gain less than γ. Moreover, the
disturbance-free closed-loop system (1)-(5), (38) is uniformly asymptotically stable provided that
the function V (x, t) = x>Pε(t)x locally satisfies inequality (14).

The detailed derivation of the state feedback design may be found in (?).

4. Application to Impact Mechanical Systems

The proposed synthesis is now specified for the tracking problem stated for a mechanical manipu-
lator, composed of free-motion phases governed by

D(q)q̈ + H(q, q̇) = Dττ + w1 (39)

beyond a unilateral time-invariant constraint F0(q) = 0 where

F0(q) > 0, (40)

whereas these free-motion phases are separated by transition phases according to the restitution
rule

q(t+i ) = q(t−i ) (41)

q̇(t+i ) = φ(q(ti))q̇(t−i ) + wd
i (42)

when the state trajectory hits the surface

F0(q(ti)) = 0, i = 1, 2, . . . . (43)

Hereinafter, q, q̇ ∈ Rn are generalized position and velocity vectors, the control input τ ∈ Rn is a
vector of external torques, w1 ∈ Rn is an external disturbance, wd

i , i = 1, 2, . . . are discrete per-
turbations of the velocity restitution rule (42) at a priori unknown time instants ti;, φ(q) ∈ Rn×n
is a position-dependent restitution matrix; H(q, q̇) ∈ Rn is the vector of Coriolis, centrifugal and
gravitational torques, the inertia matrix D(q) and the actuation matrix Dτ are of appropriate
dimensions such that D(q) is symmetric and positive definite, and Dτ is invertible and is com-
posed of zero and unit values (thus considering only fully actuated mechanical systems); the scalar
function F0(q) relies on the unilateral constraint, imposed on the robot. As a matter of fact, D(q),
and H(q, q̇), and φ(q) are smooth functions in their arguments.

In what follows, the research is confined to the tracking control problem where the output to
be controlled is given in terms of the state deviation from a reference trajectory qr(t) and it is

11
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composed of the continuous time component

z =

 0
ρp(q− qr)
ρv(q̇− q̇r)

+

 1
0
0

u (44)

with positive weight coefficients ρp, ρv, and its discrete counterpart

zdi = q̇(t+i )− q̇r(t+i ) (45)

whereas the available measurement

y = q− qr + w0 (46)

is affected by the measurement error w0(t). In order to respect (10) the output to be controlled
has been pre-specified in the form (44) where the zero symbols and unit ones stand for zero and
identity matrix entries of appropriate dimensions.

The reference trajectory qr(t) to be tracked is a periodic trajectory subject to an impact that
occurs when the reference trajectory achieves the surface F0(q

r) = 0. The restitution law during
this impact phase is given by

q̇r(t+i ) = φ(qr(ti))q̇
r(t−i ), i = 1, 2, . . . . (47)

This trajectory may be constructed off-line with a priori known impact instants ti, i = 1, 2, . . . .

4.1 Hybrid Error Dynamics

Let us now introduce the state deviation vector x = (x1,x2)
> where x1(t) = q(t) − qr(t) and

x2(t) = q̇(t)− q̇r(t). Then, rewriting the state equations (39)-(43),(44)-(46) in terms of the errors
x1 and x2 yields the continuous dynamics

ẋ1= x2

ẋ2 = D−1(x1 + qr)[−H(x1 + qr,x2 + q̇r) + Dττ + w1]− q̈r (48)

of the error system.
The transitions occur in the error dynamics according to the following scenarios.

T1) The reference trajectory reaches its predefined impact time instant t = tk, k = 1, 2, . . .
when it hits the unilateral constraint whereas the plant remains beyond this constraint, i.e.,
F0(q

r(tk)) = 0, F0(x1(tk) + qr(tk)) 6= 0;
T2) The plant hits the unilateral constraint at t = tj , j = 1, 2, . . . while the reference trajectory

is beyond this constraint, i.e., F0(q
r(tj)) 6= 0, F0(x1(tj) + qr(tj)) = 0;

T3) Both the reference trajectory and the plant hits the unilateral constraint at the same time
instant t = tl, l = 1, 2, . . . (what can deliberately be enforced by modifying the pre-specified
reference trajectory on-line), i.e., F0(q

r(tl)) = 0, F0(x1(tl) + qr(tl)) = 0.

Transition errors are then represented as follows.

Scenario T1:

x1(tk+)= x1(tk−)

x2(tk+) = µ1(x(tk−), tk) + wd
k , (49)

12
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provided that F0(q
r(tk)) = 0 and F0(x1(tk) + qr(tk)) 6= 0, k = 1, 2, . . .;

Scenario T2:

x1(tj+)= x1(tj−)

x2(tj+) = µ2(x(tj−), tj) + wd
j , (50)

provided that F0(q
r(tj)) 6= 0 and F0(x1(tj) + qr(tj)) = 0, j = 1, 2, . . .;

Scenario T3:

x1(tl+)= x1(tl−)

x2(tl+) = µ3(x(tl−), tl) + wd
l , l = 1, 2, . . . (51)

provided that F0(q
r(tl)) = 0 and F0(x1(tl) + qr(tl)) = 0, l = 1, 2, . . .

where wd
k , wd

j , wd
l are discrete perturbations, counting for restitution inadequacies, and functions

µ1, µ2, and µ3 are given by

µ1(x, t) = x2 + [I− φ(qr(t))]q̇r(t−) (52)

µ2(x, t) = φ(x1 + qr(t))[x2 + q̇r(t−)]− q̇r(t−) (53)

µ3(x, t) = φ(x1 + qr(t)[x2 + q̇r(t−)]− φ(qr(t))q̇r(t−). (54)

In order to put the previous equations into the form (4), it suffices to set

F (x, t) = F0(x1 + qr(t)), ω(x, t) = I (55)

and specify the function µ0(x,t) by means of

µ0(x,t) =

 µ1(x, t) if F0(q
r(t)) = 0, F0(x1 + qr) 6= 0

µ2(x, t) if F0(q
r(t)) 6= 0, F0(x1 + qr) = 0

µ3(x, t) if F0(q
r(t)) = 0, F0(x1 + qr) = 0.

(56)

Clearly, the functions µ0(x,t),ω(x, t), F (x, t), thus specified, meet the assumptions, imposed on
the generic system (1)-(5) to be twice continuously differentiable in the state domain for all t and to
be piece-wise continuous and uniformly bounded in t for all state variables x in some neighborhood
around the origin.

4.2 Pre-Feedback Design and Controller Synthesis

In the case where only the generalized positions of the mechanical system are available for mea-
surements, the pre-feedback design

τ = Dτ
−1[D(qr)q̈r + H(qr, q̇r) + u] (57)

computes the Coriolis, centrifugal and gravitational torques on the reference trajectories rather
than those occurring in the plant. Thus, the position feedback controller to be constructed consists
of a disturbance attenuator u, internally stabilizing the biped around the desired trajectory, and the
remainder, which is responsible for the compensation of the reference trajectory and the torques,
associated with this trajectory.

13
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Substituting the position pre-feedback (??) into (48) yields the impact-free error dynamics in
the form

ẋ1= x2

ẋ2 = D−1(x1 + qr)[−H(x1 + qr,x2 + q̇r) + D(qr)q̈r+H(qr, q̇r) + u + w1]− q̈r

(58)

These error dynamics represent a particular form of the generic system (2)-(3), (8)-(9), when
specified with (??)-(??) and

f(x, t) =

[
x2

D−1(x1 + qr)[−H(x1 + qr,x2 + q̇r) + D(qr)q̈r + H(qr, q̇r)]− q̈r

]

g1(x, t) =

[
0 0
0 D−1(x1 + qr)

]
, h1(x) =

 0
ρpx1

ρvx2

 ,

g2(x, t) =

[
0

D−1(x1 + qr)

]
, k12(x) =

 1
0
0



h2(x) =
[

x1 0
]
, k21(x) =

[
1 0

]
, w = [w>0 w>1 ]>. (59)

Theorem 2, which is straightforwardly applicable to the generic system (2)-(3), (8)-(9), specified
with (??)-(??) and (??), constitutes the desired H∞-position feedback tracking of the mechani-
cal manipulator under the unilateral constraints. Theorem 3, applied to the same error system,
constitutes the H∞-tracking synthesis using state feedback.

5. Illustrative Example: Regulation and Orbital Stabilization under Unilateral
Constraints

The objective of this section is to illustrate the effectiveness of the developed synthesis with a
simple example that captures all the essential features of the general treatment under unilateral
constraints.

5.1 MSDB model

A simple testbed of interest is depicted in Fig. ?? where m represents the mass, k the spring
constant, b the damping constant, τ is the applied control force, and q represents the position. For
the free-motion dynamics (q > 0), the plant equation reads

q̈ = − k
m
q − b

m
q̇ +

1

m
τ +

1

m
w1 (60)

14
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whereas for the transition phase (q = 0), the restitution rule is given by

q+ = q−, q̇+ = −eq̇− + wdi , e ∈ [0, 1]. (61)

For brevity, the notation q+ (q−) stands for the post-impact (pre-impact) values q(t+i ) (q(t−i )) at
impact instants t1, i = 1, 2, . . .. The variables w1 and wdi are introduced to account for non-modeled
external forces and model inadequacies such as friction and restitution uncertainties.

In order to address position feedback tracking of a reference trajectory qr(t), the state error
variables

x1 = q − qr, x2 = q̇ − q̇r (62)

and the position measurement

y = x1 + w0 (63)

are involved where w0 stands for the measurement noise. Inspired from (??), the pre-feedback
control law

τ = mq̈r + bq̇r + kqr + u, (64)

is composed of a controller u to be designed and the rest being a trajectory compensator. Then,
setting x = (x1, x2)

>, w = (w0, w1)
>, and rewriting the system (??)-(??) in terms of the tracking

error variables, one derives
free-motion phase error dynamics

ẋ =

[
0 1

− k
m − b

m

]
︸ ︷︷ ︸

A

x +

[
0 0
0 1

m

]
︸ ︷︷ ︸

B1

w +

[
0
1
m

]
︸ ︷︷ ︸

B2

u (65)

within the constraint F0(x, t) = x1 + qr(t) > 0 and
transition phase error system

x+ =

[
x−1

µ0(x, t)

]
+

[
0
1

]
wdi . (66)

on the constraint surface F0(x, t) = x1 + qr(t) = 0 where

µ0(x, t) =

 x2 + (1 + e)q̇r

−e(x2 + q̇r)− q̇r
−ex2

if F0(q
r(t)) = 0, F0(x1 + qr) 6= 0

if F0(q
r(t)) 6= 0, F0(x1 + qr) = 0

if F0(q
r(t)) = 0, F0(x1 + qr) = 0,

(67)

is obtained by specifying (47)-(??) to the present case.
In terms of the tracking errors, the variables to be controlled are specified in the form

z =

 0 0
ρp 0
0 ρv


︸ ︷︷ ︸

C1

x +

 1
0
0


︸ ︷︷ ︸
D12

u (68)

zdi = −ex−2 + wdi , (69)
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Figure 1.: Mass-Spring-Damper-Barrier (MSDB) system

complying with (10).

5.2 State Feedback Regulation

To begin with, the tracking of the MSDB system is treated in a particular case under the perfect
knowledge of the state vector q = (q, q̇)> with the trivial reference trajectory degenerated to the
origin qr = 0, q̇r = 0, q̈r = 0 while the pre-feedback (??) is simplified to the form τ = u with no
trajectory compensation. Just in case, the robust regulation to the origin is synthesized according
to Theorem 3, the applicability of which to the MSDB error system (??)-(??) is verified as follows.

To verify condition C1), the generic time-invariant terms A, B1, B2, C1 in the Riccati equation
(30) are specified from (??)-(??). A constant positive semidefinite solution of the corresponding
time-invariant equation (30) subject to ε = 0 is then obtained by iterating on γ in order to
approach the infimal achievable level γmin ≈ 1.01. The value γ = 2 is subsequently selected to
avoid an undesired high-gain controller design that would appear for a value of γ close to the
infimal γmin ≈ 1.01. With γ = 2, the value ε = 0.01 is obtained so that the corresponding
perturbed Riccati equation (30) possesses a constant positive definite solution, given by

Pε =

[
4.9542 0.0504
0.0504 4.9542

]
. (70)

Inequality (11) of Hypothesis H1) is straightforwardly verified for ω = 1 and for the corresponding
value γ = 2.

Finally, it remains to verify the last condition (14) of Theorem 3. For this purpose, it suffices
to note that only scenario T3) is in force for the state feedback regulation, and therefore in the
disturbance-free case, x+2 = −ex−2 by virtue of (??), and hence ‖x+‖ ≤ ‖x−‖ for an admissible
restitution parameter e ∈ [0, 1]. Thus, Theorem 3, constituting the robust state feedback synthesis
under unilateral constraints, becomes applicable to the stabilization of the MSDB system around
the origin, and function V (x, t) = x>Pεx, specified with (??), is a Lyapunov function for the
undisturbed system.

5.2.1 Numerical Results

The performance of the closed-loop system, driven by the controller, designed according to Theorem
3, is numerically illustrated in the sequel. The parameters, used in the simulation, are presented
in Table ??.

¿From Fig. ??a that depicts the disturbance-free regulation errors, escaping to zero, one concludes
that the MSDB system is actually regulated to the barrier. The monotonically decreasing evolution
(between and across the impacts) of the quadratic Lyapunov function (32), specified with the
Riccati matrix (??), is presented in Fig. ??b. Figure ??a shows that while the disturbing friction
force w1 and deviation wdi in the restitution coefficient are added to MSDB testbed (see Table ??
for their numerical values) these disturbances are actually attenuated by the controller designed.
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Table 1.: Simulation parameters

Param Value Param Value
k 10 N/m ρv 1
b 1 N/m/s ε 0.01

m 1 kg wd
i 0.2q2 m/s

e 0.5 w1 0.1q2 + 0.1sign(q2) N
ρp 1 q(0) 0.5 m
q̇(0) −0.2 m/s − −
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Figure 2.: Numerical results for the disturbance free case of regulation problem. a) Position and
velocity errors. b) Lyapunov function evolution.

In addition, Fig. ??b demonstrates that the output of the system remains bounded to match the
L2-gain inequality (7).

5.3 Position Feedback Tracking

In the remainder, theH∞-orbitally stabilizing output feedback synthesis is developed using a hybrid
version of the Van der Pol oscillator, generating a stable limit cycle to follow.

5.3.1 Periodic Trajectory Generation

In the present study, the periodic trajectory to follow is generated by a Van der Pol oscillator
subject to an unilateral constraint:

Free-motion phase (qr > 0)

q̈r = qr − (1− qr2)q̇r (71)

Transition phase (qr = 0)

qr(t+i ) = qr(t−i ), q̇r(t+i ) = −eq̇r(t−i ) (72)

where qr represents the desired position and q̇r the velocity, ti, i = 1, 2, . . . are impact instants
when the oscillator hits the constraint qr = 0.

It is well-known (?) that such an impact oscillator is capable of generating a discontinuous limit
cycle. In what follows, the restitution parameter is set to e = 0.5, and the method of Poincaré
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Figure 3.: Numerical results for the disturbed case of regulation problem. a) Position and velocity
errors. b) L2-gain behavior for γ = 2: ‖z‖2L2

+‖zd‖2l2 (solid line) versus γ2[‖w‖2L2
+‖wdi ‖2l2 ]+ΣN

k=0βk
(dashed line).

sections is used to ensure that the impact reference model (??)-(??) possesses a stable limit cycle.
The Poincaré map Γ, associated with the Poincaré section qr = 0, is given by

Γ(qrk) = qrk+1 (73)

in terms of the post-impact values qrk = [qrk, q̇
r
k] of the solution of the nonlinear differential equation

(??) subject to the velocity restitution (??) at the impact instants tk, k = 1, 2, . . .. Since it is
hardly possible to design this map analytically a step-by-step numerical integration of (??)- (??)
is subsequently involved. Taking into account that the position component of the state vector
remains zero on the Poincaré section qr = 0 only the evolution of the velocity component along the
Poincaré section, thus specified, is of interest. With this in mind, Fig. ?? depicts the projection of
the Poincaré map (??) onto the velocity subspace where q̇rk+1 is computed as a function of q̇rk by
numerical integration of (??)-(??) initialized on the Poincaré section qr = 0 with the velocity q̇rk.

A fixed point qr
∗

of the the Poincaré map (??) is determined by the relation

qr
∗

= Γ(qr
∗
). (74)

and it is located in the intersection of the Poincaré map with the identity map (see Fig. ??). Solving
the fixed point equation (??) numerically yields qr

∗
= [0, 1.012]>.

In order to demonstrate that this fixed point is locally asymptotically stable, the eigenvalues of
the gradient ∇Γ of the Poincaré map (??) are numerically computed

eig(∇Γ) = [0,−0.224]>,

thus making sure that both eigenvalues are inside the unity circle. Hence (?, Section 5), the fixed
point qr

∗
is locally asymptotically stable. By applying (?, Theorem 1), it follows that the locally

asymptotically stable fixed point qr
∗

of the Poincaré map (??) generates an asymptotically stable
limit cycle of hybrid Van der Pol oscillator (??)-(??), which is depicted in Fig. ??.
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Figure 4.: Cobweb plot of the post-impact velocity. The solid line represents the Poincaré map
projection on the velocity subspace and the dashed line represents the identity map. The arrows
represent the evolution from a random starting point.

Figure 5.: Evolutions of the position qr(t) and velocity q̇r(t) of the impact Van der Pol oscillator
(??)-(??): the vertical dashed lines are for jumps in q̇r when a resetting event occurs.

5.3.2 Controller Synthesis

The position feedback synthesis is based on Theorem 2, which is now applied to the error dynamics
(??), (??)-(??), driven by (??), to ensure robust tracking of the desired trajectory, governed by
(??)-(??). By substituting the right-hand side of (??) into (??) for q̈r, the pre-feedback controller
(??), fed by the output of the impact Van der Pol reference model (??)-(??), is represented in the
form

τ = −m[(1− qr2)q̇r − qr] + bq̇r + kqr + u. (75)

As to the error restitution rule, it is actually given by (??).
The applicability of Theorem 2 to the present case is verified as follows. Similar to the regulation

case, conditions C1) and C2) are verified with the linearizing terms A, B1, B2, C1, C2, which are
required to specify the Riccati equations (30)-(31) and which are identified from (??)-(??), (??). A
constant positive semidefinite solution of the corresponding time-invariant system (30)-(31) subject
to ε = 0 is then derived for sufficiently large γ and by iterating on γ the infimal achievable level
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Table 2.: Simulation parameters

Param Value Param Value
q(0) 0.5 m q̇(0) −0.2 m/s
ξ1(0) 0.1 m ξ2(0) 0.2 m/s
w2 0.1 sin(1.5t) m - -

γmin ≈ 1.01 is approached. The value γ = 2 was however selected to avoid an undesirable high-
gain controller design which would appear for a value of γ close to the optimum γmin ≈ 1.01. With
γ = 2, the corresponding perturbed Riccati equations (30)-(31) are carried out to possess constant
positive definite solutions

Pε =

[
4.9542 0.0504
0.0504 4.9542

]
, Zε =

[
0.0715 −0.0024
−0.0024 0.7107

]
. (76)

under the value ε = 0.01 which is obtained by iterating on ε.
After that, the value γ = 2 is straightforwardly verified to meet Hypothesis H1) with ω = 1,

corresponding to the present investigation. Thus, Theorem 2 ensures that the underlying closed-
loop system possesses L2-gain less than γ = 2.

Since the impact instants of the reference trajectory are not in general synchronized with the
plant impact instants (unless the reference initial state coincides with that of the plant), whichever
scenario T1)-T3) may occur according to the adopted state error restitution rule (??). Therefore,
Hypothesis H4) is ruled out by the resulting synthesis which proves to be incapable to asymptot-
ically stabilize the closed-loop system even in the disturbance-free case as is well-known from ?.
Nevertheless, the proposed controller does attenuate external/restitution disturbances and mea-
surement noise as established by Theorem 2 before, and while being numerically tested, the per-
formance of the closed-loop system is observed to be acceptable.

5.3.3 Numerical results

The simulation results, shown in Figs. ??-??, were performed under the same circumstances of
Section ??, using the parameters from Table ?? and additional parameters from Table ??. The
disturbance-free case is presented in Figs. ??-??. These figures exhibit peaking phenomena since
the plant velocity jumps do not match the reference velocity jumps (as clearly observed in Fig. ??),
thus falling into either Scenario T1 or T2 of Section 4.1. The Lyapunov candidate function (17),
specified with (32), (34), and (??), is thus monotonically decreasing just between impacts while
exhibiting undesired increments at the impact time instants (see Fig. ??), and the asymptotic
stability proof is no longer applicable to the disturbance-free case under both Scenarios T1 and
T2. Despite the discrepancy in the impact instants of the plant velocity and of the reference velocity,
the L2-gain inequality (7) is still guaranteed by Theorem 2, and good behavior of the closed-loop
system with the tracking errors, approaching zero between the impact instants, is concluded from
Fig. ?? in the disturbance-free case. From Figs. ?? and ??, good performance is also concluded for
the periodic tracking synthesis despite the added disturbances, affecting the free-motion (due to
friction) and transition phases (due to uncertainty in the restitution coefficient).

Finally, the estimated velocity q̇obs = ξ2 + q̇r and the observation error x2obs := x2 − ξ2 are
compared in Figs. ?? and ?? for the disturbed and undisturbed cases, respectively. One can observe
that if disturbances are not applied, the filter adequately tracks the system velocity between the
impact times (Fig. ??), whereas a reasonably small observation error persists in the disturbed case
(Fig. ??), such that good tracking performance is achieved.
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Figure 6.: Plots of the position and velocity tracking errors, and of velocity estimation error in the
disturbance-free case.
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Figure 7.: Desynchronization of the reference trajectory with the plant trajectory for the undis-
turbed case.

5.4 Impact Synchronization via Online Reference Model Reset

In order to suppress the peaking phenomena, depicted in Fig. ?? and destroying the asymptotic
stability of the disturbance-free closed loop system, the reference model is now reset online, as it
is shown in the block-diagram of Fig. ??. The idea behind such a reset is in using the same hybrid
Van der Pol reference model of Section ??, but instead of using its own unilateral constraint qr = 0,
the reset event is synchronized with the impact of the plant (q = 0). Thus, the restitution law (??)
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Figure 8.: Lyapunov function evolution in the disturbance-free case of the desynchronized tracking.

is modified to

qr(t+i ) = 0, q̇r(t+i ) = −eq̇r(t−i ), iff q(ti) = 0. (77)

The pre-feedback controller (??) and the same controller u, synthesized in Section ??, are now
coupled to the Van der Pol reference model, thus modified. Hypotheses H1) - H3) are in force
again, and it remains to show that H4) is additionally satisfied in the present case. Since the
reference trajectory is reset when the plant hits the constraint, Scenario T3 is now in order, and
due to (??), the error transition phase is governed by x+2 = −ex−2 . It follows that ‖x+‖ ≤ ‖x−‖
and H4) is thus established with V and W , specified in (32) and (34), respectively. This verifies
the applicability of Theorem 2, by virtue of which, the properly specified dynamical controller (37)
enforces the disturbance-free MSDB system to asymptotically track the reference trajectory while
also attenuating external disturbances.

In order to demonstrate that the closed-loop system (??), (??), (??), (??), (37) generates an
asymptotically stable limit cycle, the Poincaré analysis of Section ?? is revisited, using the Poincaré
map

Γ̃(ζk) = ζk+1 (78)

associated with the Poincaré section q = 0, while considering the post-impact values ζk =
[qk, q̇k, ξk, q

r
k, q̇

r
k] at the impact instants tk, k = 1, 2, . . . . The fixed point ζ∗ = [0, 1.012, 0, 0, 0, 1.012]

of the Poincaré map Γ̃ and the eigenvalues

eig(∇Γ̃) = [−0.1161, 0.1135, 0.0581 + 0.0204i, 0.0581− 0.0204i, 0, 0] (79)

of the gradient ∇Γ̃ around the fixed point are numerically computed. The asymptotic stability
of the a limit cycle, matching to the fixed point of the Poincaré map Γ̃, is then established by
observing that eigenvalues (??) of the gradient ∇Γ̃ are inside of the unit circle.

5.4.1 Numerical results

Figures ??-?? demonstrate the numerical results performed under the same circumstances as in
Section ??, while the synthesized tracking controller is coupled to the Van der Pol reference model,
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Figure 9.: Plots of the of the position and velocity tracking errors, and of the velocity estimation
error for the disturbed case.

whose online reset adaptation is synchronized with the plant impacts. It can be seen from Fig.
?? that in the disturbance-free case, the position, velocity and estimation errors escape to zero
regardless of nonzero initial conditions. The asymptotic stability of the closed-loop system can
additionally be observed from Fig. ?? where the plotted Lyapunov function (17), specified with
(32), (34), and (??), monotonically escapes to zero. The asymptotic stability of the limit cycle,
theoretically predicted by the Poincaré analysis, is illustrated in Fig. ??, where the plant trajectory
(dashed line) converges to a periodic orbit (solid line).

The simulations, performed in the disturbed case, are reflected in Fig. ?? that depicts the plots
of the position and velocity tracking errors as well as the plot of the velocity estimation error. It
is seen that after the transitory, the errors remain small and bounded. As seen in Fig. ??, this
ensures that the plant trajectory evolves around the periodic orbit.

It is worth noticing that in both disturbed and undisturbed cases, the peaking effects of Fig. ??,
matching to the desynchronized impact instants of the plant and of the reference model, disappear
from the velocity tracking and velocity estimation errors of Figs. ?? and ?? where the reference
model resets are synchronized with the plant impact instants. Thus, the superiority of the synthesis
with the online reference model reset adaptation is concluded.
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Figure 10.: L2-gain behavior without online reference model reset: ‖z‖2L2
+ ‖zd‖2l2 (solid line) vs.

γ2[‖w‖2L2
+ ‖wdi ‖2l2 ] + ΣN

k=0βk (dashed line) with γ = 2.

Figure 11.: Block-diagram of online Van der Pol reference model reset
.

6. A Case Study: Tracking of a Biped with Feet Using State Feedback Design

Theoretical results developed so far are now supported in the numerical study made for the robust
trajectory tracking of a seven-link bipedal robot. The bipedal robot considered in this section is
walking on a rigid and horizontal surface. It is modeled as a planar biped, which consists of a
torso, hips, two legs with knees and feet. The walking gait takes place in the sagittal plane and is
composed of single support phases and impacts which occur between two rigid bodies.

In the single support phase, considering a flat foot contact of the stance foot with the ground
(i.e. there is no take off, no rotation, and no sliding during this phase), the dynamic model of the
biped is a particular case of (39) where q = (q1, q2, q3, q4, q5, q6)

> is the 6× 1 vector of generalized
coordinates, D is the symmetric, positive definite 6 × 6 inertia matrix, Dτ is a 6 × 6 constant
and non-singular matrix; τ = Γ = (Γ1,Γ2,Γ3,Γ4,Γ5,Γ6)

> is the 6× 1 vector of joint torques (see
Fig.??); the term H(q, q̇) is the 6× 1 vector of the centrifugal, Coriolis and gravity forces; and w1

is the 6× 1 vector of external disturbances.
Now, assuming a flat foot contact of the swing foot landing on the ground, the double support

phase is instantaneous and it can be modeled through passive impact equations.This impact is
assumed to be absolutely inelastic and the feet are assumed not to slip.

For the sake of brevity, the description of the nonlinear model of the biped and the simulation
method used to get the numerical results have been omitted. For more details reader can see the
work by ?. In turn, the walking gait, which is composed of single support phases and impacts, is
determined using the off-line optimization described in ?, thus generating a reference trajectory
whose position qr(t) and velocity q̇r(t) satisfy the conditions of contact previously described.
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Figure 12.: Plots of the position and velocity tracking errors, and that of the velocity estimation
error in the disturbance-free case when the online reset adaptation of the Van der Pol reference
model is enforced.

.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

t [sec]

U
(x
,ξ
,t
)

Figure 13.: Lyapunov function evolution in the disturbance-free case of the synchronized tracking.
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trajectory, approaching it: the disturbance-free case
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6.1 State Feedback H∞ Tracking Control Synthesis Using Reference Trajectory
Adaptation

The reference trajectory tracking synthesis of Sect. 4, being applied to the seven-link biped, is tested
under the complete knowledge of the state vector. In order to respect Condition C1 of Theorem 3
for the error system (??) the to-be-controlled output (44) is specified with ρp = 500 and ρv = 1, and
then, following the standard H∞ design procedure (see, e.g., (?, Section 6.2.1 )), the disturbance
attenuation level and the perturbation parameter are set to γ = 470 and ε = 0.01 to ensure an
appropriate solvability of the perturbed differential Riccati equation (30), corresponding to (29),
(??)-(??). Hypothesis H1) of Theorem 3 is then straightforwardly verified with γ, thus specified,
and with ω, being an identity matrix. Finally, to comply with the last condition of Theorem 3
(inequality (14)) to be verified at the impact time instants, the reference trajectory is adapted
on-line in such a manner that the state error dynamics possess no jumps. Thus, hypothesis H4)
becomes redundant for the adapted trajectory because only trivial transitions with µ0(x,t) = 0
are feasible in accordance with Scenario 3 of Section 4.1.

The idea of the above adaptation is presented in Fig.?? for the first joint q1. Provided that the
impact is detectable (e.g., by using a force or touch sensor) it happens that either the reference
trajectory hits the constraint before the plant does, or the plant hits the constraint before the ref-
erence trajectory does. In the former scenario, the reference trajectory is continuously extrapolated
until the plant collision occurs whereas in the latter scenario, the reference trajectory is restarted
on-line once the plant collision is detected. Either way, both the plant trajectory and the adapted
reference trajectory exhibit impacts at the same time instants. By adaptation, the nominal refer-
ence trajectory and the adapted one are equivalent before a collision. The position and velocity
tracking errors are measured, and once the impact of the plant is detected, the adapted trajectory
is updated on-line in such a manner that the new post-impact error, x+21 in Fig.??, coincides with
the error measured before the impact (x21(t

l−) in Fig.??), thereby rendering the evolution of the
error to exhibit no jump. Following the idea of ?, a new polynomial is defined for the adapted
trajectory, that starts from this imposed condition, and will join the nominal reference trajectory
at the middle of the step with the same velocity, and will continue to be the same until the end of
the step. While the reference trajectory is recalculated after the impact, the perturbed differential
Riccati equation (30) is also updated and its corresponding solution is recomputed on-line.
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Figure 15.: Plots of the position and velocity tracking errors, and of the velocity estimation error
in the disturbance-free case when the reference model is reset online.
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Figure 16.: Limit cycle of the synchronized impact Van der Pol Oscillator and a closed-loop plant
trajectory, evolving around it in the presence of disturbances.
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Figure 17.: Seven-link bipedal robot
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Figure 18.: Reference velocity adaptation for the first joint, with an impact at tl = 0.5 . After
the impact, the initial value of the adapted velocity is such that the pre-impact (x21(t

l−) =
q̇1(t

l−)− q̇r1(tl−)) and post-impact (x21(t
l+) = q̇1(t

l+)− q̇r1(tl+)) tracking errors are the same, and
at the middle of the step, the adapted reference velocity reaches the nominal one.

6.1.1 Numerical Results

In order to illustrate the performance issues of the developed stable bipedal gait synthesis numerical
simulations were performed for a laboratory prototype whose parameters were drawn from ?. The
contact constraints presented in section 6.1 were verified on-line in order to confirm the validity of
(39)-(43).

The undisturbed system was then simulated, using initial conditions differ-
ent from zero (q0 = [0.1962, 0.2262,−0.0766,−0.1337,−0.1661, 0.0500]>, q̇0 =
[−1.0633,−0.6369, 0.3775,−0.3968,−1.4030,−1.4264]>), so the plant is started away from
the reference trajectory. Figure ?? shows three representative joints positions of the undisturbed
system for twelve consecutive steps. It can be seen that these joints possess periodic trajectories.
Using the reference trajectory adaptation method proposed, the velocity error is smooth and goes
to zero, instead of presenting the peaking phenomena described in ?. This is clearly observed in
Fig.??a). Since there are no jumps in the velocity error, the Lyapunov function monotonically
decreases to zero, as shown in Fig.??b). Figure ?? depicts the resulting heights of the feet. The
periodicity of these heights is a good indicator of a stable motion for the walking gait. In Fig.??,
legends ”P1” and ”P3” represent the ”toe” of the right foot and left foot, respectively; similarly,
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”P2” and ”P4” represent the ”heel” of the right foot and left foot.
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Figure 19.: Joints positions for the undisturbed system: the tracking error is zero for all joints

The robustness of the tracking controller (38) was tested by involving a resultant disturbance
force Fxw = 80 N in the horizontal plane, applied to the hip of the robot. Such a force was used
for the duration of 0.07 s to simulate a disturbance effect. This force, applied at 0.8 s in the
first cycle of the biped, represented a disturbance in the continuous phase of the dynamics (39).
The disturbances in the impact phase are introduced by modifying the velocities a 5% from their
nominal values just after an impact occurs, to simulate the effect of uncertainties in the restitution
law.
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Figure 20.: Velocity error ‖q̇− q̇r‖2 and Lyapunov function (32) for the undisturbed system, ini-
tialized with nonzero conditions
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Figure 21.: Feet height in the walking gait, representing a stable motion with left leg support (LLS)
phases followed by right leg support (RLS) phases, separated by impacts.
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Figure 22.: Position and velocity errors ‖q− qr‖2 and ‖q̇− q̇r‖2 of the disturbed system. The
effect of the disturbance is evident at 0.8 sec, and it is quickly attenuated by the controller.

The effect of the disturbance is observed in Figs.??-??. The disturbance attenuation is readily
concluded from Fig.?? where the effect of the disturbance is quickly attenuated by the controller.
This effect is not evident in the feet heights plot, but the corresponding location of the Zero
Moment Point (ZMP), depicted in Fig.??, directly reflects the disturbance effect which does not
however influence on the stability of the walking gait because (see ? for details) the ZMP location
remains inside the support foot area between the toe and the heel. As predicted, the torques do
not exhibit jumps due to the trajectory adaptation. In addition, one can observe from Fig.??
that while attenuating the applied disturbance, the torques remain within the actuator limitations
(+/ − 150 Nm). Once the discrete disturbance disappears the biped returns to its desired gait.
Good robustness features are thus concluded from Figs.??-??.
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Figure 23.: Zero moment point (ZMP) location along the x-axis for each foot during its support
phase. It is seen that the ZMP is always located between the toe and the heel of the supporting
foot, so the walk is stable ?.

Figure 24.: Torques appearing in joints 5 and 6, where the effects of the disturbance, pointed out
by the arrows, are evident.

7. Conclusion

In this paper, the H∞-tracking/regulation problem is solved for mechanical systems under unilat-
eral constraints via state and output feedback designs. Sufficient conditions for a local solution of
the output feedback tracking problem to exist are obtained in terms of the appropriate solvability
of an independent inequality on discrete disturbance factor that occurs in the restitution rule, and
three coupled inequalities, involving two Hamilton-Jacobi-Isaacs inequalities. The former inequality
ensures that the impulse dynamics (when the state trajectory hits the unilateral constraint) are
ISS whereas the latter inequalities, arising in the continuous time state-feedback and, respectively,
output-injection designs, should impose the desired iISS property on the continuous closed-loop
dynamics between impacts. Once the state feedback is available, the number of the inequalities to
be solved is reduced by one as the output injection is not required anymore.

The effectiveness of the resulting design procedure, which is based on solving disturbed differential
Riccati equations, corresponding to the linearized system, is supported in the numerical study
made for a benchmark (mass-spring-damper-barrier) system. The reference trajectory to follow is
generated by an impact Van der Pol oscillator, possessing an asymptotically stable limit cycle. The
desired disturbance attenuation is satisfactorily achieved under external disturbances during the
free-motion phase and in the presence of uncertainties in the transition phase. An online reference
model reset adaptation is additionally applied in order to synchronize the impacts of the plant
with those of the reference model, thereby enhancing the performance of the closed-loop system.
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The practical value of the resulting local synthesis is additionally validated in the numerical study
of the stable gait synthesis of a seven-link biped emulator. It is shown, that the desired disturbance
attenuation is satisfactorily achieved under external disturbances during the free-motion phase and
in the presence of uncertainty in the transition phase.
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