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Abstract

Although the concept of quantum computing has existed for decades, the technology needed

to successfully implement a quantum computing system has not yet reached the level of so-

phistication, reliability, and scalability necessary for commercial viability until very recently.

Significant progress on this front was made in the past few years, with IBM planning to

create a 1000-qubit chip by the end of 2023, and Google already claiming to have achieved

quantum supremacy. Other major industry players such as Intel and Microsoft have also

invested significant amounts of resources into quantum computing research.

Any viable computing system requires both hardware and software to work together

harmoniously in order to perform useful computations. While the achievements of IBM and

other companies represent a large step forward for quantum hardware, many gaps remain

to be filled with respect to the corresponding software. Specifically, there is currently no

clear path towards a complete process for translating quantum algorithms into physical

operations that are directly executable on quantum hardware. Such a process is analogous to

a compiler that translates programs written in a high-level language into executable machine

instructions on a conventional digital computer, and it is necessary if quantum computers

are to be harnessed to perform practically useful computations. Existing work has addressed

individual components of this process, but so far no unified method for translating the whole

of a quantum algorithm into executable operations has been described.

I make substantial progress towards filling this gap by describing a set of high-level and

low-level quantum circuit design techniques, which when taken together reduce the need of

a circuit designer to be concerned with low-level details. On the high-level side, I describe

i



an approach or strategy to designing quantum oracles for Grover’s algorithm that allows it to

be applied to several types of problems. This approach involves designing oracles in terms

of high-level blocks such as counters, multiplexers, comparators, and arbitrary Boolean

functions. The implementations of these blocks in terms of lower-level quantum gates are

demonstrated in a way that makes it clear that scaled-up versions of them can be generated

in a completely automated fashion. For a specific class of problems, which I call state-space

path planning problems, I also introduce a paradigm for quantum oracle design that involves

representing the problem in terms of individual states and moves. Problems of this sort have

applications in robotics and games.

Low-level techniques that I introduce include methods for realizing both single-output

and multiple-output Boolean functions, as well as reversible functions with multiple-valued

inputs and outputs, on the quantum gate level. These realization methods can be used to

translate the Boolean functions used as high-level blocks in quantum oracle design into low-

level gates. The low-level gates used are two-qubit controlled gates such as controlled-NOT

and controlled-V whose physical realizations have been extensively studied. In particular, I

demonstrate that realizing symmetric functions, which are a subset of Boolean functions,

directly using these low-level gates can give better results than the usual method of using

higher-level Toffoli gates as intermediates. I also demonstrate that the problem of realizing a

reversible Boolean function with many inputs and many outputs “in place”, that is, using the

same qubits to hold the inputs and outputs of the function, can be converted into realizing a

sequence of single-output Boolean functions. I describe the realization methods in sufficient

detail for a skilled programmer to implement them as part of a CAD tool for quantum circuit

design.
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Chapter 1

Introduction and Preliminaries

Proposals to harness quantum phenomena for computing and information processing go

back to at least as far as 1982 [1]. It has been known for a long time that a working quantum

computational device of sufficient scale, if one could be built, would be able to exceed the

theoretical algorithmic-complexity limits for a classical computer on certain tasks [2, 3]. This

ability for a quantum computer to outperform a classical computer is known as quantum

supremacy. The well-known algorithms due to Shor [4, 5] and Grover [6, 7, 8] provide

theoretical examples of quantum supremacy for computational tasks of practical interest.

Shor’s algorithm allows a quantum computer to find the prime factorization of an integer in

polynomial time relative to its number of digits, while Grover’s algorithm allows a quantum

computer to search an unsorted collection of 𝑁 items in 𝒪(√𝑁) time where a classical

computer requires 𝒪(𝑁) time on average.

Despite decades of theoretical interest in quantum computation, practical issues with

the physical realization of a quantum computing device remained unsolved for a long time.

However, recent advances have made much more likely the prospect of a commercially

viable quantum computing system being available in the near future. IBM has plans for

a 1000-qubit chip by the end of 2023 [9], while Google announced the achievement of

quantum supremacy in 2019 [10], although this claim turned out to be controversial [11].
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Assuming that a working quantum computational device of practical scale will become

available in the future, there still remains the question of how quantum algorithms will be

implemented in practice. There has been little published work demonstrating the application

of a quantum algorithm to solve a practical problem in full detail. For instance, Grover’s

algorithm requires a quantum circuit known as a quantum oracle to define the search criteria

that it uses, so in order to use Grover’s algorithm to solve a given problem, one must first

design a quantum oracle for that problem, and the design must ultimately be decomposable

into low-level gates.

Modern digital hardware and software design both involve a high degree of automation.

In particular, CAD tools for very-large-scale-integrated (VLSI) circuit design allow human

designers to only be concerned with high-level specifications, with the CAD tool automating

the process of generating low-level primitives like individual gates or transistors from these

specifications. Similarly, most modern software is written in high-level programming lan-

guages, with a compiler being responsible for automatically generating executable machine

instructions from the high-level code. In contrast, current quantum languages like Qiskit

[12] are low-level, similar to assembly language, and describe quantum circuits on the level

of individual gates. The creation of CAD tools for quantum circuits and algorithms, i.e.,

“quantum compilers”, is currently an underdeveloped area of research. Such tools will be

necessary, or at least very useful, to create complicated quantum circuits containing tens of

thousands of gates or more.

In order to create CAD tools for quantum circuits, and to create a partially-automated

workflow for quantum circuit design, at least two ingredients are necessary: the ability to

realize functions in terms of low-level gates, and the ability to express a problem to be solved

in terms of well-defined functions. The objective of this dissertation is to contribute to the
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creation of CAD tools for quantum circuits by showing how both of these requirements can be

met. First, I demonstrate new methods for realizing non-reversible and reversible functions

using quantum circuits. My realization method for non-reversible functions realizes them

directly using low-level quantum gates which have no classical counterpart, unlike most

existing approaches which are often based on techniques from classical digital logic design

and not specifically optimized for a quantum setting. I show that my approach gives better

results than classically-based techniques for a specific class of functions known as symmetric

functions. For reversible functions, I introduce a new concept of distance gates, which are

used as building blocks in a cycle-based algorithm for realizing functions expressed as

permutations. Distance gates have the very useful property that they are easily generalized

to multiple-valued quantum circuits, which have attracted attention because multiple-valued

qudits are a more natural model than binary qubits for some quantum systems. It is also

known that using multiple-valued qudits to augment an otherwise binary system can allow

for certain binary operations to be performed more efficiently. My synthesis method using

distance gates is well-suited to such systems because it naturally has the ability to work

with multiple-valued quantum systems as well as with quantum systems that mix qudits and

qubits.

The second main achievement of this dissertation is to demonstrate the application of

Grover’s algorithm to problems of practical interest in full detail. “Full detail” means that I

show how the quantum oracles used in Grover’s algorithm can be designed using functional

blocks such as incrementers, multiplexers, and comparators, and then show how to implement

these functional blocks on a lower level. These functional blocks can then be reused for

other problems as well. In this way, I therefore create an approach for solving certain types

of problems using Grover’s algorithm: the quantum oracle for the problem is first expressed
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in terms of high-level blocks, which can then be automatically translated into low-level gates.

This approach contributes to the future development of a partially-automated workflow for

solving problems using Grover’s algorithm, in which a human designer only needs to design

a quantum oracle using high-level functions and does not need to directly deal with low-level

gates.

In Sections 1.1 through 1.4, I review some preliminary background knowledge on quan-

tum computing and define terminology that will be used in the remainder of this dissertation.

Only the topics most relevant to this dissertation are covered; for a more thorough treatment

of quantum computing and quantum information theory, the reader is invited to consult [13].

Section 1.5 gives an overview of the organization of the remainder of this dissertation.

1.1 Quantum information

1.1.1 Qubits and quantum states

In a conventional digital computer, the fundamental unit of information is a bit (a contraction

of “binary digit”). A bit is an entity that may be in one of two states, which can be denoted

0 and 1. The quantum analog of a bit is a qubit (a contraction of “quantum bit”), which

is the fundamental unit of quantum information. A qubit is an entity that may take on

states analogous to those of a bit, denoted |0⟩ and |1⟩. However, a qubit may also take on a

continuum of infinitely many other possible states. Specifically, according to the postulates

of quantum mechanics, a qubit that can take on one of two independent states |0⟩ and |1⟩

can also take on any superposition, or linear combination, of |0⟩ and |1⟩. In other words, the

state of a qubit can be described by the expression

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, (1.1)
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where |𝜓⟩ is the state and 𝛼 and 𝛽 are complex numbers. The notation |⋅⟩ is called a ket and is

often used in quantum mechanics to denote the state of a quantum system. Mathematically,

kets represent vectors in a Hilbert space, which contains all the possible states of a given

quantum system. When the system is a single qubit, the possible states consist of linear com-

binations of |0⟩ and |1⟩, as seen in (1.1), meaning that the Hilbert space is two-dimensional

with |0⟩ and |1⟩ forming a basis for it.

The postulates of quantum mechanics also hold that there is no physical difference

between states that are scalar multiples of one another. In mathematical terminology, the

space of the possible states of a quantum system is a projective space. Thus, if the state of a

qubit is 𝛼|0⟩+𝛽|1⟩, this state is equally well described by any vector of the form 𝑐(𝛼|0⟩+𝛽|1⟩),

where 𝑐 is any nonzero complex number. The zero vector is excluded from the state space

completely; in other words, the zero vector is not a valid representation of any quantum state.

Since all quantum states are represented by nonzero vectors, they may be normalized by

scaling them to a vector magnitude of 1. For example, the vector 3|0⟩ + 4|1⟩ has a vector

magnitude of √|3|2 + |4|2 = 5 and is a non-normalized representation of a quantum state.

This vector may be normalized by dividing by its magnitude, giving 3
5
|0⟩ + 4

5
|1⟩. From now

on, I will assume that all vector representations of quantum states are normalized.

Superpositions between the two basis states |0⟩ and |1⟩ of a qubit cannot be directly

observed. When a qubit is measured—that is, examined to determine its state—the mea-

surement can only return a result of either |0⟩ or |1⟩. Furthermore, quantum measurements

disturb the qubit being measured, collapsing its state to either |0⟩ or |1⟩ (depending on the re-

sult returned by the measurement) and destroying any superposition. Quantum measurement

is postulated to be a probabilistic process that is inherently unpredictable. In other words, it

is in general impossible to predict the outcome of any one particular measurement, but it is
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possible to predict the overall frequencies with which the two basis states will be observed

if a large collection of qubits with identical states is measured. If 𝛼|0⟩ + 𝛽|1⟩ is a normalized

representation of the state of a qubit just prior to measurement, then the probability that the

measurement returns |0⟩ is |𝛼|2 and the probability that the measurement returns |1⟩ is |𝛽|2.

Thus, if a qubit in the state 1
√2
(|0⟩ + |1⟩) is measured, the probability of observing either

outcome is 1
2
, whereas if the qubit is instead in the state 1

2
|0⟩ + √3

2
|1⟩, then the probability

of observing |1⟩ is 3
4
and that of observing |0⟩ is only 1

4
.

Referring to the right-hand side of (1.1), I will call the individual terms 𝛼|0⟩ and 𝛽|1⟩

components of the state |𝜓⟩ and the coefficients 𝛼 and 𝛽 their corresponding amplitudes.

Since the amplitudes are complex numbers, two states can behave indistinguishably with

respect to measurement even though they might be distinguishable by other means. For

instance, if one qubit is in the state 1
√2
(|0⟩ + |1⟩) and another is in the state 1

√2
(|0⟩ − |1⟩),

measurement of either qubit returns |0⟩ with probability 0.5. However, these two states are

said to differ in their relative phase because the complex phase difference between the |0⟩

and |1⟩ components is zero for the first qubit but 180 degrees for the second qubit. These

two states can be distinguished by measurement if the measurement is preceded by action

of an appropriate quantum gate; quantum gates are discussed in Section 1.2. The states
1
√2
(|0⟩ + |1⟩) and 1

√2
(−|0⟩ − |1⟩), though, are not distinguishable by any means and are in

fact just different representations of the same state because they are scalar multiples of each

other, as discussed earlier. This scalar multiple can be made explicit by writing

1
√2

(−|0⟩ − |1⟩) = −1 ⋅ 1
√2

(|0⟩ + |1⟩). (1.2)

The −1 on the right-hand side of (1.2) is referred to as a global phase factor, or simply

a global phase for short, since it carries only a complex phase and does not affect the
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normalization of the state, having a magnitude of 1. Unlike relative phase, a global phase

can always be ignored since it is just a particular type of scalar multiple.

1.1.2 Joint states

When two qubits come together to form a single system, their states can be combined to form

a joint state, which is a single mathematical entity that describes the states of both qubits

simultaneously. The joint state of two initially independent qubits is given by an operation

known as the tensor product or Kronecker product. The tensor product, denoted⊗, of two

quantum states may be computed by multiplying them in the same fashion as multiplying

polynomials, and then combining all possible pairs of basis states from the two qubits to

create a new set of four basis states. For instance, if two qubits are in the states 𝛼|0⟩ + 𝛽|1⟩

and 𝛾|0⟩ + 𝛿|1⟩, respectively, then their joint state is given by

(𝛼|0⟩ + 𝛽|1⟩) ⊗ (𝛾|0⟩ + 𝛿|1⟩)

= 𝛼𝛾|0⟩ ⊗ |0⟩ + 𝛼𝛿|0⟩ ⊗ |1⟩ + 𝛽𝛾|1⟩ ⊗ |0⟩ + 𝛽𝛿|1⟩ ⊗ |1⟩ (1.3)

where |0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩, |1⟩ ⊗ |1⟩ form a set of basis states for the combined

two-qubit system. These four basis states correspond to the four possible states for a system

of two classical bits. Usually, the product |0⟩ ⊗ |0⟩ is abbreviated as |00⟩, and similarly

for the other three basis states, so that the joint state in the previous example could also be

written

𝛼𝛾|00⟩ + 𝛼𝛿|01⟩ + 𝛽𝛾|10⟩ + 𝛽𝛿|11⟩. (1.4)

Joint states are similarly defined for systems containing more than two qubits: the joint

state of an 𝑛-qubit system is given by the tensor product of the individual qubits’ states. For
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instance, given a three-qubit system, where the individual qubits are in the states 3
5
|0⟩ + 4

5
|1⟩,

|1⟩, and 4
5
|0⟩ − 3

5
|1⟩, respectively, the joint state of the system is

(3
5
|0⟩ + 4

5
|1⟩) ⊗ |1⟩ ⊗ (4

5
|0⟩ − 3

5
|1⟩)

= 1
25
(12|010⟩ − 9|011⟩ + 16|110⟩ − 12|111⟩). (1.5)

The basis states for the three-qubit system are |000⟩, |001⟩, |010⟩, and so on up to |111⟩,

where |𝑎𝑏𝑐⟩ is a synonym for |𝑎⟩ ⊗ |𝑏⟩ ⊗ |𝑐⟩ as in the two-qubit case. In general, an 𝑛-qubit

system has 2𝑛 basis states, which are given by |00… 0⟩ through |11… 1⟩. Given a joint state

of an 𝑛-qubit system, I will refer to a term containing a single basis state, such as 𝛼𝛾|00⟩

in (1.4), as a component of the state. The coefficient of a component, such as 𝛼𝛾, will be

called the component’s amplitude, just as in the single-qubit case.

An alternative notation for the basis states of an 𝑛-qubit system uses |0⟩, |1⟩, |2⟩, and so on

up to |2𝑛 − 1⟩. In this notation, if 𝑖 is a natural number less than 2𝑛, then |𝑖⟩ denotes the basis

state corresponding to the base-two representation of 𝑖. For instance, in a three-qubit system,

|5⟩ in this notation is a synonym for |1⟩ ⊗ |0⟩ ⊗ |1⟩ because the base-two representation of 5

is 101. An arbitrary state of an 𝑛-qubit system can then be written as a sum of components

𝑎0|0⟩ + 𝑎1|1⟩ + 𝑎2|2⟩ +⋯ + 𝑎2𝑛−1|2𝑛 − 1⟩ =
2𝑛−1

∑
𝑖=0

𝑎𝑖|𝑖⟩. (1.6)

I will make use of this last notation later when discussing Grover’s search algorithm.

1.1.3 Entangled states

As described in Section 1.1.2, the states of two or more independent qubits may be combined

via the tensor product to obtain the joint state of the qubits considered as a single system.
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The reverse operation is not always possible: a state of a multi-qubit system cannot always

be factorized into the tensor product of single-qubit states. For instance, consider a two-qubit

system in the state
1
√2

(|01⟩ + |10⟩). (1.7)

Suppose that this state could be factorized into the tensor product of two single-qubit states

𝛼|0⟩ + 𝛽|1⟩ and 𝛾|0⟩ + 𝛿|1⟩. Then, comparing (1.4) with (1.7), we have 𝛼𝛾 = 0, 𝛼𝛿 = 1,

𝛽𝛾 = 1, and 𝛽𝛿 = 0. Since 𝛼𝛾 = 0, at least one of 𝛼 or 𝛾 must be zero. But 𝛼 cannot

be zero since 𝛼𝛿 = 1, and 𝛾 cannot be zero either since 𝛽𝛾 = 1. This is a contradiction,

showing that the state represented by (1.7) cannot be factorized into the tensor product of

two single-qubit states. Such a state is called an entangled state: the two qubits’ states are

inseparably connected, and one cannot meaningfully speak of the state of one of the qubits

on its own, but only of the state of the whole two-qubit system.

As a further indication that the state (1.7) is entangled, one can also observe that the

results of measurement of the two qubits are correlated. If a measurement of the first qubit

returns |0⟩, then a subsequent measurement of the second qubit must return |1⟩, because

|00⟩ is not a possible outcome for a measurement of the state (1.7). On the other hand, if

a measurement of the first qubit returns |1⟩, then a subsequent measurement of the second

qubit must return |0⟩, because |11⟩ is not a possible outcome either. In other words, a

measurement of one of the qubits affects the possible outcomes for a measurement of the

other qubit. This phenomenon is counterintuitive and would not occur if the two qubits

constituted independent systems.

I will not make direct use of entanglement phenomena in this dissertation, but it plays a

role in Grover’s algorithm, which I discuss and rely on later. Entanglement is also critical to

other applications of quantum information processing, such as quantum teleportation. For
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details, the reader is invited to consult [13] or any other similar source.

1.1.4 The Bloch sphere

The Bloch sphere is a geometrical device that assists in visualizing the space of possible

states for a single qubit. Any state of the form 𝛼|0⟩ + 𝛽|1⟩ may be represented by a point on

the surface of the Bloch sphere. By convention, the poles of the Bloch sphere, at the points

of intersection with the 𝑧-axis, are taken to represent the basis states |0⟩ and |1⟩, with |0⟩

being at the north and |1⟩ at the south pole. The spherical colatitude (that is, the angle from

the positive 𝑧-axis) of a point on the sphere determines the relative magnitudes of the |0⟩ and

|1⟩ components, while the azimuthal angle (that is, the angle in the 𝑥𝑦-plane) determines

their relative phase. Specifically, if a point on the Bloch sphere has spherical coordinates

(𝜙, 𝜃), where 𝜙 is the colatitude and 𝜃 is the azimuthal angle, then this point represents the

quantum state

|𝜓⟩ = cos
𝜙
2
|0⟩ + sin

𝜙
2

𝑒𝑖𝜃 |1⟩. (1.8)

A depiction of the Bloch sphere with a few points labeled is shown in Figure 1.1a. The

angles 𝜙 and 𝜃 defining an arbitrary quantum state |𝜓⟩ are shown in Figure 1.1b.

1.1.5 Column vector representation of quantum states

Since kets represent vectors, the state of a single qubit can also be written in conventional

column-vector form. Specifically, we can identify the kets |0⟩ and |1⟩ with the standard basis

vectors for a two-dimensional complex vector space:

|0⟩ = [1
0] and |1⟩ = [0

1] . (1.9)
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𝑥

𝑦

𝑧

1
√2
(|0⟩ − |1⟩)

1
√2
(|0⟩ + |1⟩)

1
√2
(|0⟩ − 𝑖|1⟩)

1
√2
(|0⟩ + 𝑖|1⟩)

|1⟩

|0⟩

(a) Representation of the basis states and some superpositions.

𝑥

𝑦

𝑧

𝜃

|𝜓⟩
𝜙

(b) Representation of an arbitrary state.

Figure 1.1: The Bloch sphere.

Upon making this identification, we can then write

𝛼|0⟩ + 𝛽|1⟩ = 𝛼 [1
0] + 𝛽 [0

1] = [𝛼
𝛽] , (1.10)

so the state of a single qubit can be represented by a two-dimensional complex vector whose

components are just the state’s probability amplitudes.

In column-vector form, tensor products can be computed by distributing the second

vector over the components of the first vector:

[𝛼
𝛽] ⊗ [𝛾

𝛿] =
⎡
⎢
⎢
⎢
⎣

𝛼 [𝛾
𝛿]

𝛽 [𝛾
𝛿]

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝛼
𝛽
𝛾
𝛿

⎤
⎥
⎥
⎥
⎦

. (1.11)

The column-vector representation is useful when working with matrix representation of

quantum gates, which are discussed in Section 1.2.
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1.1.6 Multiple-valued qudits

The overwhelming majority of digital computers in use today are based on the bit as the

fundamental unit of information, since an information-carrying unit with two possible states

is the minimum required for a useful information processing system. However, experimental

processors that use information-carrying units with more than two possible states also exist.

Analogously, in principle, a quantum computational system can use quantum information

units with more than two basis states rather than qubits. Such quantum information units

are sometimes called qudits, a contraction of “quantum digit”. For instance, if we consider

a quantum system with three states, |0⟩, |1⟩, and |2⟩, then an arbitrary state of this system

takes the form

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ + 𝛾|2⟩, (1.12)

where 𝛼, 𝛽, and 𝛾 are complex numbers, not all equal to zero. A quantum information unit

with exactly three states can also be called a qutrit. A quantum computational system that

makes use of qudits is described as multiple-valued. The phrase “multiple-valued qudit” is

technically redundant, but I will sometimes use it for emphasis.

The mathematical representations of qudits behave very similarly to their qubit coun-

terparts. Given a vector representation of the state of a qudit, any nonzero scalar multiple

of that vector is also considered to represent the same state. Vector representations can be

normalized to have a magnitude of 1, and from now on all such representations are assumed

to be so normalized. A measurement of a qudit always returns one of the basis states for the

qudit and collapses the qudit’s state to the result that was observed, destroying any superpo-

sition. The probabilities of the possible measurement results are given by the squares of the

magnitudes of the corresponding components of the state. For instance, if a qutrit is in the
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state 1
2
|0⟩ + 1

√2
|1⟩ + 1

2
|2⟩, then a measurement of this qutrit returns |0⟩ with probability 1

4
,

|1⟩ with probability 1
2
, and |2⟩ with probability 1

4
. The state of a system containing multiple

qudits is described by the tensor product of the individual qudits’ states.

There is unfortunately no easily visualizable analog of the Bloch sphere for multiple-

valued qudits. However, the ket representation of a qudit’s state is easily rewritten as a

column vector in the same manner as for a qubit. Given a qutrit with basis states |0⟩, |1⟩,

and |2⟩, we make the identifications

|0⟩ = [
1
0
0
] , |1⟩ = [

0
1
0
] , and |2⟩ = [

0
0
1
] , (1.13)

which leads to the expected representation of an arbitrary qutrit’s state as a column vector:

𝛼|0⟩ + 𝛽|1⟩ + 𝛾|2⟩ = [
𝛼
𝛽
𝛾
] (1.14)

Similar representations can be used for qudits with four, five, or any higher number of basis

states. For a qudit with 𝑛 possible basis states, we will follow the convention of numbering

the states starting from 0, giving {|0⟩, |1⟩,… , |𝑛 − 1⟩} as the set of basis states. The number

𝑛 will be called the radix of the qudit, so for instance a quantum computing system using

qutrits can also be said to use qudits of radix 3. A qudit of radix 𝑛 can also be referred to

as an 𝑛-valued qudit. It is possible for a single quantum computing system to mix qudits

of different radices; such systems are briefly discussed in Section 1.2.10 and the design of

quantum circuits for them is considered in Chapter 6.
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1.2 Quantum gates

Quantum gates are the operations that act on qubits and qudits in order to perform useful

computations. A quantum gate may operate on any number of qubits/qudits; however,

gates that operate on many qubits/qudits simultaneously are unlikely to be primitive (that

is, directly realizable as a low-level physical operation) and may require a large number of

primitive operations to emulate. All quantum gates are reversible: given the output state of

any quantum gate, it is always possible to reconstruct the original input state prior to the

gate’s operation. Equivalently, every quantum gate must have a corresponding inverse gate

that undoes its action.

In addition, every quantum gate can also be represented by a matrix. The matrix repre-

sentation of a quantum gate completely determines all aspects of the gate’s behavior. Given

a gate G represented in matrix form, the effect of the gate on an input state |𝜓⟩ may be

determined by matrix-vector multiplication: G|𝜓⟩ gives the gate’s output state where |𝜓⟩

has been expressed in vector form as described in the preceding subsection. Any matrix

that represents a quantum gate must be unitary, which is a stronger condition than simply

being invertible. A matrix U is said to be unitary if it satisfies the property U†U = I, where

I denotes the identity matrix and U† denotes the Hermitian adjoint of the matrix U, defined

as the complex conjugate of the transpose of U.

1.2.1 The identity gate

A no-op can be considered a quantum “gate” that simply leaves a qubit’s state unchanged.

Mathematically, it is sometimes useful to treat the lack of an operation as a quantum gate in

14



and of itself, the identity gate, which is represented by the 2 × 2 identity matrix:

I = [1 0
0 1] . (1.15)

In a schematic diagram for a quantum circuit, an identity gate amounts to just a “wire”,

although, as will be explained later, these are not actual physical wires. Quantum circuits

are discussed in Section 1.3.

1.2.2 The inverter or NOT gate

The quantum inverter or NOT gate operates on a single qubit and is represented by the

following matrix:

X = [0 1
1 0] . (1.16)

Multiplying this matrix by the vector [𝛼 𝛽]T, we see that the inverter acts on an arbitrary

input state 𝛼|0⟩ + 𝛽|1⟩ to produce 𝛽|0⟩ + 𝛼|1⟩. In other words, the inverter simply exchanges

the amplitudes of the two components of its input state. In particular, the inverter acts on

the state |0⟩ to produce |1⟩, and on |1⟩ to produce |0⟩. This behavior is consistent with that

of an inverter or NOT gate in classical digital logic, therefore allowing the quantum inverter

to be considered an extension of the classical inverter to a quantum setting.

The action of the inverter can also be geometrically visualized using the Bloch sphere:

inverting a qubit corresponds to a 180-degree rotation of the Bloch sphere around the 𝑥-axis.

This visualization is helpful when considering the V gate and other root-of-NOT gates,

discussed in Sections 1.2.4 and 1.2.5.
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1.2.3 The Hadamard gate

The Hadamard gate operates on a single qubit and is represented by the following matrix:

H = 1
√2

[1 1
1 −1] . (1.17)

Unlike the inverter, the Hadamard gate has no classical analog, so it can be considered an

“inherently quantum” gate. The Hadamard gate lacks a classical analog because it acts on

basis states to produce superpositions, which do not exist in a classical setting. Using matrix

multiplication, it is easy to verify in particular that the Hadamard acts on |0⟩ to produce
1
√2
(|0⟩+ |1⟩) and acts on |1⟩ to produce 1

√2
(|0⟩− |1⟩). The Hadamard gate is therefore useful

for initializing a qubit or qubits to a superposition state, such as in Grover’s algorithm, which

is discussed in Section 1.4.

The Hadamard gate is a self-inverse gate: if two Hadamard gates act consecutively on

the same qubit, the second gate undoes the action of the first and restores the qubit to its

original state. This property can be concisely expressed as H2 = I. The Hadamard gate is

denoted by the schematic symbol shown in Figure 1.2b.

(a) The inverter.

H

(b) The Hadamard gate.

V

(c) The V gate.

V†

(d) The V† gate.

Figure 1.2: Several single-qubit gates.
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1.2.4 The V and V† gates

The V gate is similar to the Hadamard gate in that it acts on basis states to produce superpo-

sitions. The V gate is represented by the following matrix:

V = 1
2
[1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖] . (1.18)

Unlike the Hadamard gate, the V gate is not self-inverse. Instead, when two V gates act

consecutively on the same qubit, the cumulative effect on the qubit’s state is the same as

that of the inverter. This property can be expressed as V2 = X, and because of it, the V gate

can be called a “square-root-of-NOT” gate. The fact that V2 = X also implies that V4 = I;

that is, four V gates acting consecutively on one qubit leaves the qubit in the same state in

which it started. These properties of the V gate are used in Chapters 2 through 4 for realizing

symmetric functions using two-qubit gates.

Since the V gate is not self-inverse, it must have a corresponding distinct inverse gate.

This inverse gate is the V† gate, where, as mentioned before, the † sign denotes the Hermitian

adjoint (the complex conjugate of the transpose) of a matrix. Since all quantum gates are

represented by unitary matrices, the Hermitian adjoint of the matrix is also its inverse.

Therefore, the V† gate is represented by the following matrix:

V† = 1
2
[1 − 𝑖 1 + 𝑖
1 + 𝑖 1 − 𝑖] . (1.19)

Because of the inverse relationship between the V and V† gates as well as the fact that

V4 = I, exactly four distinct quantum states may be reached by starting from a basis state

and applying sequences of V and V† gates. These four states may be arranged into a circle,
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as shown in Figure 1.3. One application of a V gate is equivalent to moving 90 degrees

counterclockwise around this circle while one application of a V† gate is equivalent to

moving 90 degrees clockwise. This circle corresponds to a circle on the Bloch sphere,

specifically, the circle of intersection of the Bloch sphere with the 𝑦𝑧-plane. Therefore, the

V gate acts as a 90-degree rotation of the entire Bloch sphere in this plane, or equivalently

around the 𝑥-axis. The square-root-of-NOT property of the V gate then has a clear geometric

interpretation: the composition of two 90-degree rotations around the 𝑥-axis is equivalent

to a single 180-degree rotation around that same axis.

The V and V† gates are denoted by the schematic symbols shown in Figures 1.2c and 1.2d.

|0⟩

1
√2
(|0⟩ − 𝑖|1⟩) 1

√2
(|0⟩ + 𝑖|1⟩)

|1⟩

V

V V

V

V†

V†V†

V†

Figure 1.3: States reachable by applying V and V† gates to |0⟩ and |1⟩, shown as a cross-section of
the Bloch sphere in the 𝑦𝑧-plane.

1.2.5 Rotation gates and higher roots of NOT

As previously mentioned in Sections 1.2.2 and 1.2.4, the actions of the NOT and V gates

can be represented on the Bloch sphere by rotations of 180 and 90 degrees, respectively,

around the 𝑥-axis. Rotations through smaller angles are also possible and can be used to

describe higher root-of-NOT gates. In general, the gate R𝑥(𝜃), whose action corresponds to
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a rotation through the angle 𝜃 around the 𝑥-axis of the Bloch sphere, is represented by the

unitary matrix

R𝑥(𝜃) = exp (−𝑖𝜃
2

X) = [
cos 𝜃

2
−𝑖 sin 𝜃

2
−𝑖 sin 𝜃

2
cos 𝜃

2

], (1.20)

where X is the matrix representation of the NOT gate given in (1.16).

The NOT and V gates can be considered special cases of (1.20) for 𝜃 = 𝜋 and 𝜃 = 𝜋∕2,

respectively. However, the careful reader will notice a small discrepancy: when these values

of 𝜃 are substituted into (1.20), the resulting matrices do not match (1.16) and (1.18) exactly,

but rather are

R𝑥(𝜋) = [ 0 −𝑖
−𝑖 0 ] (1.21)

and

R𝑥(
𝜋
2
) = 1

√2
[ 1 −𝑖
−𝑖 1 ] . (1.22)

Although these matrices appear different from the ones given in (1.16) and (1.18), closer

examination shows that the differences are only constant multiplicative factors, which amount

to introducing extra global phases when these gates act on single qubits. Since global phase

factors are physically irrelevant, the discrepancy can be ignored if we are considering a single-

qubit system. However, in the context of a multi-qubit system, the apparent global phase

factor can become a relative phase factor, as will be explained in Section 1.3.9. Therefore, I

introduce rotation gates with an additional phase-correction factor, defined by

̃R𝑥(𝜃) = 𝑒𝑖𝜃∕2 R𝑥(𝜃). (1.23)

The expression given in (1.23) then has the property that ̃R𝑥(𝜋) = X and R̃𝑥(𝜋∕2) = V

exactly. We also have R̃𝑥(2𝜋) = I and R̃𝑥(−𝜋∕2) = V†, the latter corresponding to the fact
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that the V† acts by rotating the Bloch sphere by 90 degrees around the 𝑥-axis in the opposite

direction to the V gate.

Using (1.23), for any positive integer 𝑛 we can define an 𝑛-th root-of-NOT gate as the

instance of ̃R𝑥(𝜃) where 𝜃 = 𝜋∕𝑛. In Chapters 2 through 4, I will in particular use 𝑛-th

root-of-NOT gates where 𝑛 is a power of two. It will be convenient to have a compact,

specialized notation for such gates, so I will use the notation X𝑘 as a synonym for ̃R𝑥(𝜋∕2𝑘).

In other words, X𝑘 will denote a 2𝑘-th root-of-NOT gate. The 𝑝-th power of this gate, X𝑝
𝑘, is

then a ̃R𝑥(𝜋𝑝∕2𝑘) gate.

To give a few examples of the notation just introduced in the previous paragraph, a X0

gate is the same as an inverter, a X1 gate is the same as a V gate, and a X2 gate would be a

fourth-root-of-NOT gate, with X4
2 = X. A V† gate can be represented as either −X1 or 3X1,

since, as Figure 1.3 shows, it can be treated as either a −90° or 270° rotation (in radians,

−𝜋∕2 or 3𝜋∕2), where a counterclockwise angle in this figure is considered to be positive.

Root-of-NOT gates were previously used for quantum circuit design by Szyprowski and

Kerntopf [14]. The X𝑘 gates defined here are identical to what in Szyprowski and Kerntopf’s

notation would be denoted as R2𝑘.

1.2.6 The controlled-NOT gate

The controlled-NOT gate, also known as the Feynman gate or CNOT gate for short, is a

two-qubit gate. One of the qubits is designated the control qubit and the other, the target

qubit. The gate operates by inverting the target qubit when the control qubit is in the state

|1⟩, while the target qubit remains unchanged if the control qubit is in the state |0⟩. Since the

controlled-NOT gate acts on the joint state of two qubits, it is represented by a 4× 4 matrix,
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which is given by

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎦

. (1.24)

The controlled-NOT gate may be thought of as computing the exclusive-OR of its two

inputs. Specifically, if the control and target qubits of the gate begin in the states |𝑎⟩ and

|𝑏⟩, respectively, where 𝑎, 𝑏 ∈ {0, 1}, then the outputs from the gate are |𝑎⟩ and |𝑎 ⊕ 𝑏⟩,

respectively, where⊕ denotes the exclusive-OR operation of Boolean algebra. (The case

where one or both qubits are not in basis states is discussed in Section 1.3.9.) It is easy to

verify that this is equivalent to the previously given definition in which the the target qubit

is inverted if the control qubit is in the state |1⟩.

The controlled-NOT gate is denoted by the schematic symbol shown in Figure 1.4. In

this symbol, the small black dot identifies the control qubit while the other qubit is the target

qubit.

|𝑎⟩ |𝑎⟩

|𝑏⟩ |𝑎 ⊕ 𝑏⟩

Figure 1.4: The controlled-NOT gate.

1.2.7 The controlled-NOT gate with negative-polarity control

A controlled-NOT gate may also be set up with a “negative-polarity control”, or simply

“negative control” for short: the target qubit is inverted when the control qubit’s state is

|0⟩, instead of when it is |1⟩. This variant of the controlled-NOT gate is represented by the
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matrix
⎡
⎢
⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

. (1.25)

A negative control may be indicated in a schematic diagram by replacing the filled dot

of the standard controlled-NOT gate with an empty dot, as shown in Figure 1.5. If needed

for disambiguation, the ordinary controlled-NOT gate can also be called a “positive-polarity

control” or “positive-control” gate.

|𝑎⟩ |𝑎⟩

|𝑏⟩ |𝑎 ⊕ 𝑏⟩

Figure 1.5: The negative-control Feynman gate.

Both positive- and negative-control variants of the controlled-NOT gate may additionally

appear in a “target-up” configuration as shown in Figure 1.6. These are the same gates as

the ones shown in Figures 1.4 and 1.5, with the only difference being that the target qubit is

now considered the more-significant qubit, resulting in a different ordering of basis states

and therefore a different matrix representation. The matrix representation of the target-up

positive-control CNOT gate is

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥
⎥
⎥
⎦

(1.26)

and that of the target-up negative-control CNOT gate is

⎡
⎢
⎢
⎢
⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

. (1.27)
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|𝑎⟩ |𝑎 ⊕ 𝑏⟩

|𝑏⟩ |𝑏⟩
(a) The positive-control variant.

|𝑎⟩ |¬𝑎 ⊕ 𝑏⟩

|𝑏⟩ |𝑏⟩
(b) The negative-control variant.

Figure 1.6: “Target-up” configurations of controlled-NOT gates.

1.2.8 The Toffoli and multiple-control Toffoli gates

The Toffoli gate is a three-qubit gate. Two of the qubits are designated as control qubits and

the remaining one is designated the target qubit. The Toffoli gate inverts the target qubit

only if both control qubits are in the state |1⟩. It can be represented by the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.28)

The Toffoli gate is denoted by the schematic symbol shown in Figure 1.7a, where the

control qubits are indicated by the two small dots.

Like all the variants of the controlled-NOT gate, the Toffoli gate’s action can also be

expressed using Boolean algebra. If the control and target qubits all begin in basis states,

with values |𝑎⟩, |𝑏⟩ for the control qubits and |𝑐⟩ for the target qubit, then the state of the target

qubit becomes |(𝑎∧𝑏)⊕ 𝑐⟩ after operation of the gate.1 Figure 1.7a shows this interpretation

of the Toffoli gate’s operation in terms of Boolean algebra.

The multiple-control Toffoli gate is a generalization of the Toffoli gate for a variable
1As with the controlled-NOT gate, we assume for now that all qubits begin in basis states.
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|𝑎⟩ |𝑎⟩

|𝑏⟩ |𝑏⟩

|𝑐⟩ |(𝑎 ∧ 𝑏) ⊕ 𝑐⟩

(a) The Toffoli gate.

|𝑐1⟩ |𝑐1⟩

|𝑐2⟩ |𝑐2⟩

|𝑐𝑛⟩ |𝑐𝑛⟩

|𝑡⟩ ||⋀𝑛
𝑖=1 𝑐𝑖 ⊕ 𝑡⟩

(b) A multiple-control Toffoli gate.

Figure 1.7: Toffoli and multiple-control Toffoli gates.

number of qubits. Strictly speaking, it is not a single gate but rather a family of gates, all

of which operate conceptually in the same manner. All but one of the input qubits to a

multiple-control Toffoli gate are designated as control qubits, while the remaining one is

designated as the target. The gate inverts the target qubit only if all control qubits are in

the state |1⟩. The multiple-control Toffoli gate is denoted by the schematic symbol shown

in Figure 1.7b. Its action has a representation in Boolean algebra analogous to that of the

Toffoli gate: if the control qubits begin in states |𝑐1⟩ through |𝑐𝑛⟩, and the target qubit begins

in state |𝑡⟩, then the gate changes the target qubit’s state to ||⋀𝑛
𝑖=1 𝑐𝑖 ⊕ 𝑡⟩, as depicted in

Figure 1.7b.

As with the Feynman gate, the Toffoli and multiple-control Toffoli gates may have any of

their control inputs modified to be negative controls that are “active” when the corresponding

qubit’s state is |0⟩ rather than |1⟩. For instance, the gate shown in Figure 1.8a will invert the

target qubit only if the first, second, and third control qubits are in the states |1⟩, |0⟩, and |1⟩,

respectively. In terms of Boolean algebra, this corresponds to taking the exclusive-OR of the

target qubit with 𝑎 ∧ ¬𝑏 ∧ 𝑐, where |𝑎⟩, |𝑏⟩, and |𝑐⟩ are the states of the control qubits. Just

as the Feynman gate may appear as a “target-up” variant, the Toffoli and multiple-control
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Toffoli gates may also appear with any of the qubits in a circuit being the target qubit, and

any such variant may further be modified to have negative control polarities. Figures 1.8b

and 1.8c display examples of these variant configurations of Toffoli and multiple-control

Toffoli gates.

|𝑎⟩ |𝑎⟩

|𝑏⟩ |𝑏⟩

|𝑐⟩ |𝑐⟩

|𝑑⟩ |(𝑎 ∧ ¬𝑏 ∧ 𝑐) ⊕ 𝑑⟩

(a) A multiple-control Toffoli gate with a negative-
polarity control.

|𝑏⟩ |𝑏⟩

|𝑐⟩ |𝑐⟩

|𝑎⟩ |(𝑏 ∧ 𝑐) ⊕ 𝑎⟩

(b) A Toffoli gate in “target-up” configuration.

|𝑎⟩ |𝑎⟩

|𝑐⟩ |𝑐⟩

|𝑑⟩ |𝑑⟩

|𝑏⟩ |(𝑎 ∧ ¬𝑐 ∧ 𝑑) ⊕ 𝑏⟩

(c) A multiple-control Toffoli gate with target qubit in the middle and a negative-polarity control.

Figure 1.8: Toffoli and multiple-control Toffoli gates with varying control polarities and target
qubits.

The Toffoli and multiple-control Toffoli gates are often used to compute the logical AND

of any number of inputs. In Figure 1.7b, if we let 𝑡 = 0, meaning that the target qubit is

initialized to the state |0⟩, then the final state of this qubit will simply be ||⋀𝑛
𝑖=1 𝑐𝑖⟩, the logical

AND of the input values 𝑐1 through 𝑐𝑛. These same gates can also be used to compute a

logical OR by taking advantage of duality in Boolean algebra: since⋁𝑛
𝑖=1 𝑐𝑖 = ¬(⋀𝑛

𝑖=1 ¬𝑐𝑖),

a Toffoli or multiple-control Toffoli gate with all-negative control polarities and with the
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target qubit initialized to |1⟩, as shown in Figure 1.9, computes the logical OR of its control

inputs. Specifically, the final state of the target qubit in Figure 1.9 is seen to be

(
𝑛

⋀
𝑖=1

¬𝑐𝑖) ⊕ 1 = ¬(
𝑛

⋀
𝑖=1

¬𝑐𝑖) =
𝑛

⋁
𝑖=1

𝑐𝑖. (1.29)

|𝑐1⟩ |𝑐1⟩

|𝑐2⟩ |𝑐2⟩

|𝑐𝑛⟩ |𝑐𝑛⟩

|1⟩ ||⋁𝑛
𝑖=1 𝑐𝑖⟩

Figure 1.9: A multiple-control Toffoli gate computing the logical OR of 𝑛 variables.

The ability of the Toffoli and multiple-control Toffoli gates to compute logical ANDs

and ORs means that they provide a simple path to computational universality, since any

Boolean function may be computed using logical NOT, AND, and OR operations. However,

as Section 1.3.5 explains, this straightforward approach does not always perform very well in

practice, because computing Boolean functions using AND and OR operations implemented

by Toffoli gates requires additional qubits to be added to the circuit, increasing its size. In

Chapters 2 through 4 I propose an alternative path to universality which does not rely on

multiple-control Toffoli gates at all but instead entails realizing functions directly using

two-qubit gates.

Since the multiple-control Toffoli gates are simply extensions of the Toffoli gate with

more control qubits, it is often convenient to refer to them both as simply “Toffoli gates”, and

I will often do so. If there is a need for disambiguation, the number of control qubits or the
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total number of qubits (including the target qubit) can be specified, e.g., a 3-control Toffoli

gate or a 4-qubit Toffoli gate. The Toffoli gate shown in Figure 1.7a is then a 2-control or

3-qubit Toffoli gate. Both the NOT and CNOT gates can also be considered degenerate

Toffoli gates: the NOT gate is a 0-control Toffoli while the CNOT is a 1-control Toffoli.

1.2.9 Generic controlled gates

The controlled-NOT, Toffoli, and multiple-control Toffoli gates are clearly closely related.

Both the controlled-NOT and Toffoli gates can be considered special cases of the multiple-

control Toffoli gate with one and two control qubits, respectively. Conversely, the Toffoli

and multiple-control Toffoli gates can be thought of as extensions of the controlled-NOT

gate to larger numbers of qubits.

Controlled gates are a further extension of the type of operation performed by the

controlled-NOT Toffoli, and multiple-control Toffoli gates. For an arbitrary single-qubit

gate U, which I will call the target gate, a controlled-U gate is defined as a two-qubit gate,

acting on one control qubit and one target qubit, whose behavior is analogous to that of the

controlled-NOT gate. If the control qubit is in the state |1⟩, the gate U is applied to the target

qubit, whereas if the control qubit is in the state |0⟩, the target qubit is unaffected. Such a

gate is depicted in Figure 1.10a.

With a controlled-U gate being analogous to a controlled-NOT gate, a multiple-controlU

gate is then similarly defined by analogy with the Toffoli and multiple-control Toffoli gates.

Specifically, a multiple-control U gate operates by applying the U gate to the target qubit

only if all control qubits are in the state |1⟩. Its schematic symbol is shown in Figure 1.10b.

It is also possible to define controlled-U and multiple-control U gates with negative control

polarities.
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Multiple-controlU gates may be yet further generalized by allowing an arbitrary Boolean

function to determine whether the U gate is applied to the target qubit, instead of requiring

that all control qubits be in the state |1⟩. I call such a gate an 𝑓-controlled U gate, where 𝑓 is

the aforementioned Boolean function that determines whether the U gate is applied. In other

words, the 𝑓-controlled U gate operates by applying the U gate to the target qubit if and

only if 𝑓 evaluates to 1 with the control qubits’ states as its inputs. This form of controlled

gate is illustrated in Figure 1.10c.

Finally, we may also relax the condition that U be a single-qubit gate, thus allowing for

𝑓-controlled U gates where U acts on multiple qubits. For such a gate, all the qubits acted

on by U are designated as target qubits, and the U gate is only actually applied if 𝑓 evaluates

to 1, just as before. This, the most general type of controlled gate, is shown in Figure 1.10d.

I refer to a controlled gate (of any of the previously described types) as “active” when

the control qubits’ states are such that the target gate is applied, and “inactive” otherwise.

This terminology has already been used several times without comment. For instance, a

positive-control CNOT gate is active when its control qubit has state |1⟩ and inactive when

its control qubit has state |0⟩, while the reverse is true for the negative-control CNOT gate.

There is one special case of 𝑓-controlled-U gate that is of particular interest to us, namely,

the case where U is an inverter. An 𝑓-controlled inverter provides a method by which a

single-output function 𝑓 can be realized in a reversible fashion. Specifically, if one lets U be

an inverter and initializes the target qubit to |0⟩ in Figure 1.10c, then the final state of the

target qubit will be |𝑓(𝑥1,… , 𝑥𝑛)⟩, as shown in Figure 1.11. In this respect, the 𝑓-controlled

inverter is analogous to the Toffoli gate, which provides a method of realizing the logical

AND operation of Boolean algebra in a reversible fashion. Gates of this type are also crucial

to the operation of Grover’s algorithm, which is discussed in Section 1.4. Realization of
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U

(a) A controlled-U gate.

U

(b) A multiple-control U gate.

𝑓

U

(c) An 𝑓-controlled U gate.

𝑓

U

(d) An 𝑓-controlled U gate where U acts on multiple qubits.

Figure 1.10: Controlled gates with increasing generality.

Boolean functions using quantum circuits is discussed further in Section 1.3.4.

1.2.10 Multiple-valued gates

All of the gates introduced thus far operate only on qubits. Gates that operate on qudits

function similarly, but they take on a much larger number of variants due to the additional

available states. For instance, one can define an “inverter-like” gate that operates on a

qutrit by exchanging the |0⟩ and |1⟩ components of its state while leaving the |2⟩ component
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|𝑥1⟩ |𝑥1⟩
|𝑥2⟩ |𝑥2⟩
|𝑥3⟩ |𝑥3⟩

|𝑥𝑛⟩ |𝑥𝑛⟩

|0⟩ |𝑓(𝑥1,… , 𝑥𝑛)⟩

𝑓

Figure 1.11: An 𝑓-controlled inverter, which provides a reversible realization of the otherwise
non-reversible function 𝑓.

unchanged. This gate is represented by the following matrix:

T01 = [
0 1 0
1 0 0
0 0 1

] (1.30)

However, two other “inverter-like” gates are also possible: the gate could instead exchange

the |0⟩ and |2⟩ components of the input state while leaving the |1⟩ component unchanged,

or it could exchange the |1⟩ and |2⟩ components and leave the |0⟩ component unchanged.

These two gates are represented by the following matrices:

T02 = [
0 0 1
0 1 0
1 0 0

] (1.31)

T12 = [
1 0 0
0 0 1
0 1 0

] (1.32)

For a qudit with more than three basis states, even more “inverter-like” gates are possible:

for every pair of basis states, one can define a gate that exchanges the components corre-

sponding to those two basis states while leaving all other components unchanged. Therefore,
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𝑎𝑏

Figure 1.12: A transpositional gate T𝑎𝑏.

with four basis states, six “inverter-like” gates are possible, with five basis states, ten are

possible, and in general, with 𝑛 basis states, 𝑛𝐶2 = 𝑛(𝑛 − 1)/2 “inverter-like” gates are

possible. There does not appear to be a standard name for these gates, but I will refer to

them as transpositional gates from now on since their operation can be described as a trans-

position of two of the basis states of a qudit. In general, I will use the notation T𝑎𝑏, which

was previously used without comment, to represent a transposition gate that exchanges the

states |𝑎⟩ and |𝑏⟩. However, in circuit schematics, I will simply use 𝑎𝑏 to represent a T𝑎𝑏 gate,

as shown in Figure 1.12. This notation has the useful property of being radix-agnostic. In

other words, a symbol such as T02 is meaningful for any qudit with radix 𝑛 ≥ 3, regardless

of the precise value of 𝑛, and represents a gate that exchanges the |0⟩ and |2⟩ states of the

qudit. Strictly speaking, a T02 gate for a qutrit and a T02 gate for a ququart (qudit of radix

4) are two different gates, because one is represented by a 3 × 3 and the other by a 4 × 4

matrix. However, it will prove convenient to think of these gates as conceptually the “same”

operation because it will be helpful in Chapter 6 for designing families of circuits that can

be easily adapted for qudits of arbitrary radix. This way of thinking is reinforced by the T𝑎𝑏

notation, as well as by our convention (first introduced at the end of 1.1.6) of labeling the

computational basis states of an 𝑛-valued qudit as |0⟩ through |𝑛 − 1⟩.

The concept of controlled gates also generalizes to qudits in a straightforward manner.

One can define an analog of the controlled-NOT gate that operates on qutrits as follows:

if the control qutrit is in the state |2⟩, then the transpositional gate T12 is applied to the

target qutrit; otherwise, the target qutrit’s state remains unchanged. Figure 1.13a shows the

schematic diagram used to represent such a controlled-transposition gate.
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12

2

(a) A controlled-transposition gate operating on two qutrits.

12

0 02

1

13

3 04

2

(b) Some other possible controlled-transposition gates.

Figure 1.13: Examples of controlled-transposition gates.

Controlled-transposition gates may have different control types similar to the positive-

and negative-control variants of the CNOT gate. However, instead of having positive- and

negative-control variants, controlled-transposition gates operating on qudits can be set up

with a variety of control values and target gates. The control value defines which state

of the control qudit is required to activate the gate, while the target gate represents the

operation to be performed on the target qudit when the control qudit’s state matches the

control value. Like the CNOT gate, target-up variants of controlled-transposition gates also

exist. Figure 1.13b shows some of these possible variants. Since there are 𝑛 possible control

values for a control qubit of radix 𝑛, the control value is simply written as a numeral beside

the control dot in the schematic symbol, rather than using filled and empty dots as in the

binary case.

Like transpositional gates, controlled-transposition gates can operate on qudits of any

radix that is high enough for the basis states that the gate operates on to exist. The control
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and target qudits can even be of different radices. For instance, the gates depicted in the

upper row of Figure 1.13b have control values of 0 and 1, but their target gates both involve

the basis state |2⟩. Therefore, for both gates, the target qudit must have radix at least 3 but the

control qudit only needs to have radix 2. Both gates can operate with a qubit as the control

input and a qutrit as the target input, although they can also operate on two qutrits, or on

qudits of any higher radices. The gate in the lower left of Figure 1.13b requires qudits with

a radix of at least 4 for both its control and target inputs, since it has a control value of 3 and

the target gate also involves |3⟩. The last gate in the lower right of Figure 1.13b requires a

target qudit of radix at least 5, but its control qudit may be of a radix as low as 3.

In Section 1.2.9 it was mentioned that Toffoli and multiple-control Toffoli gates may

be thought of as extensions of the controlled-NOT gate. In a similar way, controlled-

transposition gates may be extended with additional control qudits to create multiple-control

transpositional gates. Such a gate acts on any number of control qudits together with one tar-

get qudit, and is described by specifying a control value for each control qudit together with

a target gate. A multiple-control transpositional gate thus described is acts by applying its

target gate to the target qudit if and only if all control qudits’ states match their corresponding

control values. For instance, the leftmost gate shown in Figure 1.14 applies a T01 gate to

the target qudit if and only if the control qudits’ states are |1⟩ and |2⟩, respectively, and the

middle gate applies a T02 gate to the target qudit if and only if the three control qudits’ states

are |0⟩, |2⟩, and |1⟩, in that order. The third gate shown in Figure 1.14 targets a qudit other

than the bottommost one in the circuit. Like controlled-transposition gates, multiple-control

transpositional gates can operate on qudits of mixed radices, and they are subject to the same

minimum-radix requirements as controlled-transposition gates. For instance, the first gate

shown in Figure 1.14 requires qudits with a minimum radix of 2, 3, and 2, in order from top
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to bottom.

01

1

2

02

0

2

1

12

2

0

0

Figure 1.14: Examples of multiple-control transpositional gates.

1.3 Quantum circuits

1.3.1 The structure of quantum circuits

A quantum circuit consists of a sequence of quantum gates designed to perform some

computational task. Quantum circuits are represented in schematic form by using horizontal

lines to connect the output of one quantum gate to the next. These horizontal lines then

represent the qubits or qudits that participate in the circuit’s operation. Figure 1.15 illustrates

the typical structure of a quantum circuit and its appearance in schematic form.

U1

U2

U3

U4

U5

Figure 1.15: Structure of a typical quantum circuit.

A binary quantum circuit operates in the following manner. First, the qubits participating
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in the circuit are initialized to some predetermined values, usually |0⟩ or |1⟩. Then, the gates

making up the circuit each act on their corresponding qubits. The state of the qubits after all

gates have acted is considered to be the output of the circuit.

Quantum circuits have a more rigid and fixed structure compared with classical digital

logic circuits. Specifically, since all quantum gates are reversible, each gate must have the

same number of inputs as outputs. Quantum gates do not receive input signals and then

produce new output signals in the same way that digital logic gates do. Instead, the gates

act on the qubits “in place”, merely altering their states without changing their number. I

elaborate more on this point in Section 1.3.6. A qubit is a discrete physical entity and cannot

simply disappear from a circuit, although it may be unused after a certain point. Similarly, a

qubit cannot split into two—in other words, no fan-out is allowed in a quantum circuit. The

prohibition on fan-out is due to a well-known theorem, the no-cloning theorem, which states

that it is impossible to perfectly duplicate an arbitrary, unknown quantum state [13, §1.3.5].

This is why, in a schematic diagram for a quantum circuit, the horizontal lines representing

the qubits always extend all the way from the beginning to the end of the circuit and never

split or join.

1.3.2 Analysis of quantum circuits using matrix multiplication

Since the action of a single gate is represented by matrix-vector multiplication, the combined

action of two gates when one operates after the other is represented by the matrix product

of the individual gates’ matrix representations. For instance, consider a simple single-

qubit quantum circuit consisting of a Hadamard gate followed by an inverter, as shown

in Figure 1.16. The matrix representation of the circuit’s operation is then obtained by
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H

Figure 1.16: A single-qubit circuit containing two gates.

multiplication of the matrix representations of the inverter and Hadamard gate:

Ucircuit = X ⋅ H = 1
√2

[0 1
1 0] [

1 1
1 −1] =

1
√2

[1 −1
1 1 ] . (1.33)

In (1.33), the Hadamard gate’s matrix appears second in the matrix product even though it is

first to act in the circuit. This ordering of the matrices is due to the fact that a matrix acts on

a vector to its right via matrix-vector multiplication, so that when a product of two matrices

acts on a vector, the rightmost matrix acts first. In other words, if we explicitly write out the

action of the circuit from Figure 1.16 on an arbitrary state represented as a vector,

Ucircuit [
𝛼
𝛽] =

1
√2

[0 1
1 0] [

1 1
1 −1] [

𝛼
𝛽] , (1.34)

we see that placing the matrix of the Hadamard gate to the right does indeed correctly

represent that gate acting first on the state [𝛼 𝛽]T.

Just as the joint state of a two-qubit system is given by the tensor product of the individual

qubits’ states, the matrix representation of two gates acting in parallel on the individual

qubits of a two-qubit system is given by the tensor product of the individual gates’ matrix

representations. For instance, Figure 1.17 shows a Hadamard gate and an inverter acting on

the first and second qubits, respectively, of a two-qubit system. The action of this circuit is
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Figure 1.17: A quantum circuit containing two gates acting in parallel.

then represented by the tensor product

Ucircuit =
1
√2

[1 1
1 −1] ⊗ [0 1

1 0]

= 1
√2

⎡
⎢
⎢
⎢
⎣

1 [0 1
1 0] 1 [0 1

1 0]

1 [0 1
1 0] −1 [0 1

1 0]

⎤
⎥
⎥
⎥
⎦

= 1
√2

⎡
⎢
⎢
⎢
⎣

0 1 0 1
1 0 1 0
0 1 0 −1
1 0 −1 0

⎤
⎥
⎥
⎥
⎦

. (1.35)

The tensor-product representation of the action of two gates in parallel can also be used

to derive the matrix representation of a gate when it acts on only a subset of the qubits in a

quantum circuit. This is accomplished by inserting identity gates in parallel with the gate of

interest, and then analyzing the parallel combination as explained above. For instance, if

the Hadamard gate acts on the first qubit of a two-qubit system, as shown in Figure 1.18a,

then we can insert an identity gate acting on the second qubit, as shown in Figure 1.18b, in

order to treat the circuit as a combination of two gates acting in parallel. We can then use a

tensor product to compute the matrix representation of the circuit:

Ucircuit =
1
√2

[1 1
1 −1] ⊗ [1 0

0 1] =
1
√2

⎡
⎢
⎢
⎢
⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥
⎥
⎥
⎦

. (1.36)

We can now derive the matrix representation of any quantum circuit using a combination

of matrix and tensor products. For instance, consider the circuit shown in Figure 1.19. The
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(a) A quantum gate acting on one out of two qubits.

H

I

(b) Insertion of an identity gate.

Figure 1.18: Analysis of a gate acting on a subset of the qubits in a circuit.

Hadamard gate in this circuit is analyzed as before—that is, as a combination of Hadamard

gate acting on the first qubit with identity gate acting on the second qubit—and the matrix

representation of the whole circuit is then derived by multiplication of the result with the

matrix of the controlled-NOT gate:

Ucircuit =
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎦

⋅ 1
√2

⎡
⎢
⎢
⎢
⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥
⎥
⎥
⎦

= 1
√2

⎡
⎢
⎢
⎢
⎣

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎤
⎥
⎥
⎥
⎦

. (1.37)

H

Figure 1.19: A two-qubit circuit to be analyzed using matrix multiplication and tensor products.

While the operation of any quantum circuit can in principle be analyzed using matrix

representations, a binary quantum circuit containing 𝑛 qubits requires each gate to be rep-

resented using a 2𝑛 × 2𝑛 matrix. Naive attempts at analyzing quantum circuits entirely in

terms of matrices therefore quickly become computationally intractable as the size of the

circuit increases. Fortunately, many useful circuits can be analyzed using only Boolean

algebra and without using matrix representations at all, as explained in the next subsection.

In Chapters 2 through 4, I also demonstrate the analysis of certain carefully-designed circuits

using symmetric functions.
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1.3.3 Analysis of binary permutative quantum circuits

If a binary quantum circuit contains only NOT, CNOT, and (multiple-control) Toffoli gates,

it can be analyzed using Boolean algebra, taking advantage of the Boolean-algebraic descrip-

tions of those gates introduced in Sections 1.2.6 through 1.2.8. As an example, Figure 1.20

demonstrates the analysis of such a circuit. As a consequence of the ability to express the

outputs entirely using Boolean algebra, if every qubit is initialized to either |0⟩ or |1⟩, then

their final state must also consist of only |0⟩ and |1⟩. In other words, circuits of this type

have the property that when the input is a basis state, the output will also be a basis state,

meaning that their matrix representations are always permutation matrices. Accordingly, I

will refer to such quantum circuits as permutative circuits.

1.3.4 Realization of Boolean functions using quantum circuits

In classical digital logic design, one of the most fundamental and common tasks to be

performed is to realize a desired Boolean function. Realization of a Boolean function means

designing a digital logic circuit that will compute the output or outputs of the function from

its inputs. This usually takes the form of a circuit in which the inputs are transmitted into

the circuit via a collection of input terminals and the outputs are similarly received via a

collection of output terminals, as shown in Figure 1.21a.

Although computing using multiple-valued logic remains mostly experimental, a func-

tion with multiple-valued rather than Boolean inputs and outputs can in theory be realized

by a classical circuit in an analogous manner to a Boolean function: one needs to design a

multiple-valued circuit that will accept a collection of input signals and produce the correct

output signals, again as in Figure 1.21a.

In order to execute quantum algorithms such as Grover’s algorithm (discussed in Sec-
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|𝑎⟩

|𝑏⟩

|𝑐⟩

|𝑑⟩

|𝑒⟩

(a) A quantum circuit containing only NOT, CNOT, and Toffoli gates.

|𝑎⟩ |𝑎⟩

|𝑏⟩ |𝑎 ⊕ 𝑏⟩

|𝑐⟩ |¬𝑐⟩

|𝑑⟩ |𝑑⟩

|𝑒⟩ ||((𝑎 ⊕ 𝑏) ∧ ¬𝑐) ⊕ 𝑒⟩

|𝑎 ⊕ 𝑏⟩

|¬𝑐⟩

||((𝑎 ⊕ 𝑏) ∧ ¬𝑐) ⊕ 𝑒⟩

(b) The same circuit with intermediate and final states labeled.

Figure 1.20: Analysis of a quantum circuit using Boolean algebra

tion 1.4), one requires the capability to realize Boolean functions using quantum circuits.

As previously discussed, quantum circuits are subject to restrictions that classical circuits

are not: all quantum gates must be reversible, and no fan-out is allowed. Because of these

restrictions, one cannot in general realize an arbitrary Boolean function using a quantum

circuit in the same way that one does using a classical circuit. The type of circuit depicted

in Figure 1.21a is usually not possible in a quantum setting, because the circuit will not be

reversible if the numbers of inputs and outputs are unequal. Even if the numbers of inputs

and outputs are equal, reversibility of the function is not guaranteed.

The problem of realizing Boolean functions therefore comprises two distinct problems
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in the quantum setting: one of realizing reversible Boolean functions, and one of realizing

non-reversible Boolean functions. If a Boolean function is reversible, then it can in theory

be realized using a quantum circuit in a manner similar to that of Figure 1.21a, although the

reversibility requirement constrains the numbers of inputs and outputs to be equal, as shown

in Figure 1.21b. If a Boolean function is not reversible, it must instead be transformed into

a reversible form using a construction like that depicted in Figure 1.21c. In this figure, we

see that the inputs to the function are supplied through one collection of qubits while the

outputs are retrieved by supplying a second collection of qubits, where the circuit inverts

the state of an output qubit to indicate an output of 1 from the Boolean function. The

resemblance of the notations used in Figures 1.21c and 1.11 is intentional: under the model

of Boolean function realization described here, an inverter controlled by a single-output

Boolean function 𝑓 can be thought of as a realization of 𝑓, and indeed is a special case of

Figure 1.21c where the function 𝑓 has only one output. The use of multiple “control bars”

(the vertical lines connecting 𝑓 to the inverters) in Figure 1.21c visually indicates that the

circuit can independently invert each of the output qubits depending on the value of the

corresponding output of the Boolean function 𝑓 that it realizes.

The particular case of realizing a single-output Boolean function, as represented by 1.11,

is important enough to warrant its own discussion. Using a so-called exclusive-OR sum-

of-products (ESOP), a Boolean function may be expressed in terms of AND and exclusive-

OR operations, which are then readily implemented using multiple-control Toffoli gates.

Algorithms that have been developed for generating ESOP expressions include EXMIN2

[15] and EXORCISM [16, 17].

As an example of the realization of a Boolean function using an ESOP expression,

consider the function of four variables given as a Karnaugh map in Figure 1.22a. This
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𝑓Inputs Outputs

(a) Classical realization.

𝑓Inputs Outputs

(b) Quantum realization if 𝑓 is reversible.

𝑓Inputs

|0⟩
|0⟩

|0⟩

Outputs

(c) Quantum realization if 𝑓 is non-reversible.

Figure 1.21: Three different types of realizations for a Boolean function 𝑓.

function may be expressed in ESOP form as

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎 ∧ ¬𝑏) ⊕ (𝑎 ∧ ¬𝑐 ∧ ¬𝑑) ⊕ (𝑏 ∧ ¬𝑐) ⊕ (𝑐 ∧ ¬𝑑), (1.38)

which leads to the circuit shown in Figure 1.22b, where each term consisting of the logical

AND of two or more variables is realized using a multiple-control Toffoli gate.

In this dissertation I consider the realization of both reversible and non-reversible Boolean

functions. Realization of non-reversible Boolean functions, especially single-output func-

tions, is covered in Chapters 2 through 4, while realization of reversible Boolean functions

is covered in Chapter 5.
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0 0 0 1

1 1 0 1

0 1 0 1

0 1 1 0

00

01

11

10

00 01 11 10𝑎𝑏
𝑐𝑑

(a) A Karnaugh map representing a Boolean
function of four variables.

|𝑎⟩

|𝑏⟩

|𝑐⟩

|𝑑⟩

|0⟩ |𝑓(𝑎, 𝑏, 𝑐, 𝑑)⟩
(b) Realization of the function using multiple-control
Toffoli gates.

Figure 1.22: Realization of a single-output Boolean function using an ESOP expression.

1.3.5 Ancillary qubits and mirror circuits

Any Boolean function is in principle realizable using the just-described procedure of ex-

pressing the function in ESOP form and translating the terms to multiple-control Toffoli

gates. However, it is often not straightforward, or even outright computationally intractable,

to express a function in such a form. Boolean functions of interest are often not given

explicitly as truth tables, but instead as complicated equations that are not easily transformed

to ESOP form. In some cases, a function of interest is only indirectly defined through a set

of constraints and an equation must be derived using these constraints. If the function is of

a large number of variables, it will be completely impractical to compute a complete truth

table for the function since the number of entries in a truth table is given by 2𝑛 where 𝑛 is

the number of variables of the function. Other realization methods must therefore be used

in such cases.

When a function is given as a Boolean-algebraic expression (in any form), it may be

realized by translating each term in the expression to an appropriate quantum gate. This

however usually requires intermediate results to be stored somewhere while the circuit is
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computing the function. Additional ancillary qubits (often shortened to “ancilla”, and also

known as work qubits) must therefore be added to the circuit for this purpose. For example,

consider the function

𝑦 = 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑). (1.39)

This function can be realized by using Toffoli gates to compute the two logical OR terms and

then using a third Toffoli gate to compute the logical AND of the two intermediate results,

as shown in Figure 1.23. Two ancillary qubits are used to store the intermediate results 𝑎∨ 𝑏

and 𝑐 ∨ 𝑑.

|𝑎⟩

|𝑏⟩

|𝑐⟩

|𝑑⟩

|1⟩

|1⟩

|0⟩ |𝑦⟩ = |𝑓(𝑎, 𝑏, 𝑐, 𝑑)⟩
= |(𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑)⟩

|𝑎 ∨ 𝑏⟩

|𝑐 ∨ 𝑑⟩

Figure 1.23: Realization of a Boolean function using ancillary or work qubits.

In many quantum circuit design scenarios, including (as will be described in Section 1.4)

the realization of Boolean functions for use as oracles in Grover’s algorithm, there is a

requirement that all qubits in the circuit other than the final result-carrying qubit must be

restored to their original values, so that they can be reused later on. This restoration can be

accomplished using a mirror circuit. A mirror circuit consists of inverses of all the gates in

the circuit that do not directly modify the state of the result qubit, applied in the reverse of
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their original order. Figure 1.24a illustrates a mirror circuit for the circuit from Figure 1.23.

The negative controls of the Toffoli gates in this circuit can also be replaced with sequences

of inverters followed by positive-control Toffoli gates to better illustrate the reversed gate

order of a mirror circuit, as in Figure 1.24a. Specifically, a Toffoli gate with negative controls

can be emulated by first applying an inverter to each control qubit with a negative control

polarity, and then using a Toffoli gate with all-positive control polarities. In the mirror

circuit, the Toffoli gate (which is its own inverse) is applied first and then followed by the

inverters, which restore the control qubits to their original states.

|𝑎⟩

|𝑏⟩

|𝑐⟩

|𝑑⟩

|1⟩ |1⟩

|1⟩ |1⟩

|0⟩ |𝑦⟩
(a) The circuit from Figure 1.23 with a mir-
ror circuit added.

|𝑎⟩

|𝑏⟩

|𝑐⟩

|𝑑⟩

|1⟩ |1⟩

|1⟩ |1⟩

|0⟩ |𝑦⟩
(b) The same circuit with negative controls replaced by
inverters.

Figure 1.24: Illustration of mirror circuits used to restore ancillary qubits to their original states.

One particular use of an ancillary qubit is to implement an 𝑓-controlled U gate (intro-

duced in Section 1.2.9) for an arbitrary gate U, assuming that a realization of the function 𝑓

as an 𝑓-controlled inverter is available. This is done using the circuit shown in Figure 1.25.

The ancillary qubit is initialized to |0⟩, and if the function 𝑓 evaluates to 1, then the ancillary

qubit is inverted and attains the state |1⟩. A controlled-U gate with the ancillary qubit as its

control qubit then applies a U gate to the target qubit. If the function 𝑓 evaluates to 0, the
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ancillary qubit is not inverted and retains the state |0⟩, and the controlled-U has no effect on

the target qubit. We therefore see that the overall effect of the circuit is to apply a U gate

to the target qubit when 𝑓 evaluates to 1, which is exactly the behavior expected from an

𝑓-controlled U gate. The second 𝑓-controlled inverter in Figure 1.25 acts as a mirror circuit

to restore the ancillary qubit to its initial state of |0⟩.

|0⟩

𝑓

U

𝑓Control qubits

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Target qubit

Figure 1.25: Implementation of an 𝑓-controlled U gate using an ancillary qubit.

1.3.6 Qubits as quantum memory

The use of ancillary qubits in circuits such as the ones shown in Figures 1.23 and 1.24

demonstrate an important attribute of qubits in a quantum circuit—namely, that they act

as quantum memory rather than “wires”, as the schematic diagrams for quantum circuits

might suggest. While signals are conducted between gates using physical wires in a classical

digital logic circuit, this is not the case for a quantum circuit. The qubits in a quantum

circuit are physical components (possibly microscopic, for instance only single atoms or

particles) that have the ability to maintain a quantum state, and the horizontal axis in a

quantum circuit schematic diagram represents time, not space, so each horizontal line in a

schematic diagram represents a qubit’s progression through time and not a physical wire.
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For instance, in an ion-trap quantum computer as described in [13], the qubits are trapped

ions whose energy states are used to represent the computational basis states |0⟩ and |1⟩. In

a more recent device developed at IBM, as described by Gambetta et al. [18], the qubits are

superconducting electronic circuits with multiple energy states and these energy states are

also used to represent the computational basis states. The fact that quantum states are not

transmitted through wires but are instead carried by the physical qubits themselves explains

why ancillary qubits are necessary to store the intermediate results of a computation: without

wires, the intermediate result can only be transmitted to the next stage of a computation by

allocating an additional qubit to store it.

Just as qubits in a quantum circuit are not physical wires, quantum gates are also not

components of the physical apparatus of a quantum computing system, in contrast to classi-

cal digital logic gates. Since the input to a quantum gate is transmitted by a set of qubits,

and the output of the gate is also carried by those same qubits, a quantum gate is in fact

a manipulation performed on the qubits by the physical apparatus, not the apparatus it-

self. For instance, in an ion-trap quantum computer, quantum gates are implemented by

using carefully-modulated laser pulses directed at the ions to induce state changes, while

in a computer using superconducting qubits, the gates can be implemented by exciting the

superconducting circuits with microwave energy.

Since qubits are not physical wires and gates are not physical components, a quantum

computing system must necessarily also contain a classical computer that controls the

quantum hardware (i.e., the physical quantum computing apparatus). Therefore, a quantum

circuit might in fact better be described as a quantum program, because it is nothing more

than a sequence of instructions for the aforesaid classical computer that is controlling the

quantum hardware. I will continue to use the term “quantum circuit” because it is already
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standard. However, the observation that a quantum circuit is more akin to a program and that

gates are akin to individual instructions of that program is of great importance, because it

means that a quantum circuit can easily be reconfigured on the fly in between executions of a

quantum algorithm. One can thus speak of executing a quantum circuit, as this simply means

executing the instructions corresponding to the gates that make up the quantum circuit. The

ability to freely modify and reconfigure quantum circuits will be exploited in the quantum

algorithms described in Chapters 7 and 8 to solve optimization problems using Grover’s

algorithm.

1.3.7 Quantum gates versus circuits

From a mathematical point of view, there is little distinction between a quantum gates an

a quantum circuit. Both quantum gates and circuits act on sets of qubits to modify those

qubits’ states. As discussed in Section 1.3.2, the operation of a quantum circuit as a whole,

just like that of a gate, can be described by a matrix. In this dissertation, I will use one

word or the other to indicate a difference in conceptual attitude towards the gate or circuit

being discussed. Quantum gates are conceptualized as performing simple, easily understood

operations that are meant to be used as building blocks for more complicated behavior, while

a circuit is a compound entity consisting of a number of these building blocks working

together. I will speak of a quantum gate being implemented by a circuit: this means that

the behavior of the gate in question is identical to that of the circuit, which consists of other

quantum gates. A quantum gate may have multiple implementations by distinct circuits,

since nothing prevents distinct circuits from having the same overall behavior. Therefore,

another way of phrasing the distinction between gates and circuits is that a gate is defined

only by its behavior, while a circuit is defined as a specific implementation of that behavior.

48



1.3.8 Quantum cost

The preceding discussion should not be taken to indicate that quantum gates must necessarily

correspond to individual physical operations that are performed by a quantum computer.

Indeed, work on on the physical realization of a quantum computing system often aims

to realize only a bare-minimum set of operations that is sufficient for universality, with

most quantum gates requiring multiple such operations to implement. When a quantum

gate is implemented by a circuit, the gates making up that circuit themselves need to be

implemented by sequences of multiple physical operations before a quantum computing

system can actually execute the circuit. An implementation of a quantum gate by a circuit

is therefore only useful if all of the gates contained in that circuit themselves have known

implementations in terms of underlying physical operations.

The need to ultimately decompose a quantum circuit into primitive physical operations

before execution leads to the notion of quantum cost. Quantum cost is a metric that attempts

to compare execution times of quantum circuits relative to each other. A variety of quantum

cost models are possible, but one of the most popular and widely used is Maslov and Dueck’s

definition, which takes the quantum cost of a circuit to be the number of single-qubit and

two-qubit controlled gates in the circuit [19]. If the circuit contains other gates (such

as Toffoli gates), they must be decomposed into sequences of single-qubit and two-qubit

controlled gates in order to calculate the quantum cost of the circuit. A gatemay havemultiple

implementations in terms of single-qubit and two-qubit controlled gates, in which case the

quantum cost of a circuit containing that gate will depend on which implementation is chosen.

It might then seem that the obvious course of action is to always choose the implementation

of each gate that results in the lowest cost. However, a lower-cost implementation of a

given quantum gate is usually made possible by the use of a larger number of ancillary
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qubits. For instance, with no ancillary qubits, the implementation of an 𝑛-qubit Toffoli gate

requires 𝒪(𝑛2) two-qubit controlled gates, while with one ancillary qubit, the cost drops

to 𝒪(𝑛) [20]. Therefore, the quantum cost of a circuit depends on the number of ancillary

qubits assumed to be available for implementing Toffoli gates (and any other gates whose

implementations may use ancillary qubits) within the circuit. Since qubits can be thought

of as quantum memory, as explained in Section 1.3.6, the dependence of quantum cost

on number of available ancillary qubits is a trade-off between space and time complexity,

analogous trade-offs being found in nearly all practical hardware and software engineering

problems.

Throughout this dissertation, I will useMaslov and Dueck’s quantum cost as the metric of

choice to evaluate run-time complexities of quantum circuit families and quantum algorithms.

This effectively entails assuming that every two-qubit controlled gate takes approximately

the same time to execute, which is reasonable since every such gate can be implemented

using at most two CNOT and three single-qubit gates [20, Lemma 5.1].

1.3.9 Linearity of quantum circuits

The descriptions of quantum gates such as the controlled-NOT, Toffoli, and other controlled

gates in Section 1.2 implicitly assume that all qubits begin in one of the states |0⟩ or |1⟩,

since they are stated in terms of a gate performing one action if a qubit is in the state |0⟩ and

another action if that qubit is in the state |1⟩. In addition, the CNOT and Toffoli gates are

described as performing logical exclusive-OR and AND operations, which have no meaning

for states other than |0⟩ and |1⟩.

For qubits in states other than |0⟩ and |1⟩, the previously unspecified behavior of con-

trolled gates is determined by linearity. Since all quantum gates have a matrix representation,
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in which the gate acts on an input quantum state via matrix-vector multiplication, and matrix-

vector multiplication is linear, all quantum gates behave in a linear manner. This means

that, for an input state that is a superposition of multiple basis states, the gate’s output is

simply the corresponding superposition of the corresponding output states. As an example,

consider the CNOT gate acting on a control qubit that begins in the state 1
√2
(|0⟩ + |1⟩) and

a target qubit that begins in the state |1⟩. The joint state of the two qubits is

1
√2

(|0⟩ + |1⟩) ⊗ |1⟩ = 1
√2

(|01⟩ + |11⟩). (1.40)

We already know that the CNOT gate acts on the state |01⟩ to produce |01⟩ and on the state

|11⟩ to produce |10⟩. Therefore, by linearity, when acting on the state given in (1.40), the

CNOT gate produces

1
√2

(CNOT(|01⟩) + CNOT(|11⟩)) = 1
√2

(|01⟩ + |10⟩). (1.41)

This is the same entangled state previously seen in Section 1.1.3, and shows that the CNOT

gate is capable of entangling two qubits when they begin in an unentangled state.

As another example of linearity, suppose that we again have a CNOT gate acting on the

same two-qubit system as before, except that the initial state of the target qubit is changed to
1
√2
(|0⟩ − |1⟩). Then, the joint state of the two qubits is

1
√2

(|0⟩ + |1⟩) ⊗ 1
√2

(|0⟩ − |1⟩) = 1
2
(|00⟩ − |01⟩ + |10⟩ − |11⟩), (1.42)
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and the CNOT gate acting on this state produces

1
2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) = 1

√2
(|0⟩ − |1⟩) ⊗ 1

√2
(|0⟩ − |1⟩). (1.43)

From the right-hand side of (1.43), we see that in this case the resulting state is separable.

Furthermore, there is the curious result of the target qubit’s state seemingly being unaffected,

but the control qubit’s state having its relative phase altered. This is surprising because for

basis states, the CNOT gate is defined to leave the control qubit unchanged. We therefore

see that a controlled gate has the ability to alter the relative phase of the state of its control

qubit or qubits, even though these qubits always remain unchanged when the gate acts on a

basis state. This relative-phase-affecting ability is used in Grover’s algorithm, discussed in

Section 1.4, to mark a particular component of a quantum state by inverting its phase.

Linearity applies in the same way to all quantum gates, so the behavior of a Toffoli

gate, controlled-V gate, or any other quantum gate acting on a superposition is similarly

determined by the gate’s behavior when acting on basis states. In particular, suppose that G

is a quantum gate acting on 𝑛 qubits, and let |0⟩ through |2𝑛 − 1⟩ be a basis for the state of

that 𝑛-qubit system. Then, given an initial state |𝜓⟩, expressed in the basis as

|𝜓⟩ =
2𝑛−1

∑
𝑖=0

𝑎𝑖|𝑖⟩, (1.44)

the result of G acting on |𝜓⟩ is given by

G(|𝜓⟩) =
2𝑛−1

∑
𝑖=0

𝑎𝑖G(|𝑖⟩). (1.45)

Therefore, the behavior of G is completely determined by its behavior when acting on each
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of the basis states |𝑖⟩ for 0 ≤ 𝑖 ≤ 2𝑛 − 1.

Because of linearity, when analyzing the behavior of a quantum circuit, it is sufficient to

determine how the circuit behaves when acting on basis states only. If a circuit’s behavior

is known for a complete set of initial basis states, then we can be assured that the circuit

will also behave as expected for all other possible initial states, of which there are infinitely

many. For instance, consider a quantum circuit consisting of two adjacent controlled-V

gates as shown in Figure 1.26. We can easily summarize how this circuit behaves when the

control qubit begins in one of the basis states: if the control qubit begins in state |0⟩, no

action is performed on the target qubit, and if the control qubit begins in state |1⟩, two V

gates are applied to the target qubit, which is equivalent to a single NOT gate as described in

Section 1.2.4. Therefore, the circuit behaves as a controlled-NOT gate when acting on basis

states. Linearity then guarantees that the circuit also behaves as a controlled-NOT gate for

all other initial states, and therefore it is in fact equivalent to a single controlled-NOT gate.

V V

Figure 1.26: Two adjacent controlled-V gates, equivalent to a single CNOT gate.

There is one important caveat to (1.45) and the discussion of the previous paragraph:

global phase factors must be taken into account when evaluating the behavior of the circuit

or gate in question for basis states. Although a global phase by itself is not physically

meaningful, when two or more of the G(|𝑖⟩) terms on the right-hand side of (1.45) are

summed, their global phases become relative phases, which cannot be ignored. This is the

reason for introducing “phase-corrected” rotation gates in Section 1.2.5: when such a gate

is used as the target gate in a controlled gate, a global phase for the uncontrolled gate in

isolation becomes a relative phase. For instance, consider the R𝑥(𝜋∕2) gate defined in (1.22).
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This gate differs from the V gate only by a constant multiple of (1+ 𝑖)/√2, and therefore is

indistinguishable from the V gate in isolation. However, the controlled-R𝑥(𝜋∕2) gate is not

the same as the controlled-V gate: the former has matrix representation

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1

2
− 𝑖

2
0 0 − 𝑖

2
1
2

⎤
⎥
⎥
⎥
⎦

(1.46)

while the latter has representation

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1+𝑖

2
1−𝑖

2
0 0 1−𝑖

2
1+𝑖

2

⎤
⎥
⎥
⎥
⎦

. (1.47)

We can see that what was a global phase has become a relative phase, because the basis

states for which the controlled gate is inactive (i.e., the control qubit is in the state |0⟩) do

not undergo any phase shifts at all. Only the controlled-V gate has the property, described

in the previous paragraph, that two adjacent controlled-V gates acting on the same control

and target qubits are equivalent to a single CNOT gate. The controlled-R𝑥(𝜋∕2) gate does

not have this property, as can be verified by squaring the matrix (1.46). Introducing the

“phase-corrected” R̃𝑥(𝜃) gates fixes this problem: the ̃R𝑥(𝜋∕2) gate is exactly the same as

the V gate, including the global phase factor, and therefore a controlled-R̃𝑥(𝜋∕2) is the same

as the controlled-V gate.

Throughout this dissertation, I will rely on linearity of quantum circuits when demon-

strating that presented circuits or families of circuits behave as claimed. In particular, in

Chapters 2 through 4, I will, without comment, implicitly use arguments similar to the one
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above showing that two adjacent controlled-V gates are equivalent to a single controlled-

NOT gate. In other chapters I will similarly make use of linearity without comment and

analyze the behavior of quantum circuits by only considering their behavior when acting on

initial basis states. For the same reason, I will also sometimes conflate quantum states with

the states of ordinary classical bits, for instance referring to or labeling a qubit as having a

“value of 0” when this really means that the qubit is in the state |0⟩. No confusion can arise

from this use of terminology when only basis states are being considered.

1.4 Grover’s search algorithm

Note: This section was previously published as Section 3.1 of the following journal article:

E. Tsai and M. A. Perkowski, “A quantum algorithm for automata encoding,” Facta Univer-
sitatis, Series: Electronics and Energetics, vol. 33, no. 2, pp. 169–215, 2020.

Grover’s algorithm [6, 7, 8] is a well-known quantum algorithm and was one of the first

theoretical demonstrations of quantum supremacy—that is, Grover’s algorithm runs with

a lower time complexity than any possible classical algorithm for the same task. The task

performed by Grover’s algorithm is to solve the problem of satisfying a Boolean function:

given a Boolean function 𝑓∶ {0, 1}𝑛 → {0, 1}, find 𝑥1 through 𝑥𝑛 such that 𝑓(𝑥1,… , 𝑥𝑛) = 1.

This type of problem is commonly known as a satisfaction or decision problem. Classically,

assuming that nothing is known about the function 𝑓, one can on average do no better than

an exhaustive search of all possible inputs to 𝑓. Such a search requires time 𝒪(𝑁) where

𝑁 = 2𝑛, the total number of possible assignments of values {0, 1} to the variables 𝑥1 through

𝑥𝑛. If a quantum computer is available, however, Grover’s algorithm provides a method to

solve the same problem in 𝒪(√𝑁) time, a quadratic speedup.
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Figure 1.27: A high-level schematic for Grover’s algorithm.

Figure 1.27 shows a high-level schematic of a quantum circuit implementing Grover’s

algorithm. We see that the algorithm consists of an initialization step involving Hadamard

gates, followed by repeated applications of an operation G (the Grover iterate), and then

measurement at the end. First, we examine the Grover iterate, which is the most important

step. The Grover iterate accomplishes the task of amplitude amplification, the central

concept underlying Grover’s algorithm. Amplitude amplification is the process of selectively

increasing the amplitudes of certain component states of a superposition, while decreasing

the amplitudes of others. In Grover’s algorithm, the component states whose amplitudes

are increased correspond to variable assignments satisfying the function 𝑓. By applying

the Grover iterate enough times to a superposition, one obtains a quantum state where the

components corresponding to satisfactory variable assignments have large amplitudes; all

other components have zero or negligibly small amplitudes. A measurement then gives

(with probability near 1) a variable assignment satisfying 𝑓.
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Figure 1.28: Structure of the Grover iterateG from Figure 1.27 with quantum oracleO and zero-state
phase shift Z.

Figure 1.28 depicts a schematic of the Grover iterate, showing that it consists of a quantum

oracle O, followed by the zero-state phase shift Z surrounded by arrays of Hadamard gates.

The quantum oracle is a quantum circuit implementation of the function 𝑓 to be satisfied.

More specifically, the oracle is an 𝑓-controlled inverter as previously defined and illustrated

in Figure 1.11. The quantum oracle essentially defines the search criteria for Grover’s

algorithm and is the only part of Grover’s algorithm whose precise details depend on the

nature of the function 𝑓. Therefore, a quantum computer cannot execute Grover’s algorithm

for a given function 𝑓 unless a quantum oracle for 𝑓 is available. For some if not the

majority of satisfaction problems arising from practical scenarios, the function 𝑓 is not given

explicitly as a formula, but is instead only defined indirectly through a set of conditions or

constraints. In such a case, designing a quantum oracle is far from trivial. Later, we will

examine how to design quantum oracles for two different practical problems. For now, we

examine the quantum oracle’s role in Grover’s algorithm without concern for the details of

its implementation.
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In Grover’s algorithm, the quantum oracle performs a phase flip, essentially “marking”

the components of a superposition corresponding to variable assignments that satisfy the

function 𝑓 (from now on, we will refer to these components as the “solution” components

since they represent solutions to the satisfaction problem). Specifically, one can prove that

if one supplies the state 1
√2
(|0⟩ − |1⟩) on the oracle’s target qubit and supplies any state

|𝜓⟩ on the variable qubits, then the oracle inverts the phase of the solution components of

|𝜓⟩. Figure 1.29a illustrates the quantum circuit diagram for an oracle set up to perform the

phase inversion, showing the output qubit initialized to 1
√2
(|0⟩ − |1⟩). Figure 1.29b then

visualizes the initial and final states, |𝜓⟩ and |𝜓 ′⟩, of the oracle’s variable qubits by plotting

their component amplitudes. In other words, given the state |𝜓⟩ (or |𝜓 ′⟩) expressed as a sum

of components,

|𝜓⟩ =
𝑁−1

∑
𝑖=0

𝑎𝑖|𝑖⟩, (1.48)

the graphs plot 𝑎𝑖 against 𝑖. Comparison between |𝜓⟩ and |𝜓 ′⟩ shows that the phase of a

single component (the solution component) has been inverted. This illustration assumes that

only a single solution component exists; we discuss the case of multiple solutions later on.

𝑓

1
√2
(|0⟩ − |1⟩) 1

√2
(|0⟩ − |1⟩)

|𝜓⟩

⎧
⎪

⎨
⎪
⎩

⎫
⎪

⎬
⎪
⎭

|𝜓 ′⟩

(a) A quantum oracle set up to perform a phase flip.

|𝜓⟩ |𝜓 ′⟩

(b) Amplitude-graph visualization of the phase flip.

Figure 1.29: The phase-flip stage of the Grover iterate.

We observe that the phase inversion can be interpreted to mean that the oracle in a
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sense evaluates the function 𝑓 simultaneously for all possible inputs and finds the solution

immediately. Unfortunately, the solution is encoded as a phase variation which is not

directly observable. Therefore, the amplitude amplification procedure must convert this

phase difference into a measurable amplitude difference. A combination of zero-state phase

shift Z and Hadamard gates, as seen on the right-hand side of 1.28, accomplishes this task.

The zero-state phase shift is defined to invert the phase of the |0⟩ component of any quantum

state on which it acts. Specifically, given a state |𝜓⟩ expressed as a sum of components as

above, the operation of Z on this state produces the state

Z|𝜓⟩ = −𝑎0|0⟩ +
𝑁−1

∑
𝑖=1

𝑎𝑖|𝑖⟩. (1.49)

One can prove that when Hadamard gates are applied before and after a zero-state phase

shift as shown in Figure 1.28, the result is an inversion about the mean, defined as follows:

if 𝜇 denotes the mean amplitude of all the components of a quantum state, then under an

inversion about the mean, each component’s amplitude becomes 2𝜇 − 𝑎 where 𝑎 is the

component’s prior amplitude. This transformation is mathematically represented by the

following equation:

HZH(
𝑁−1

∑
𝑖=0

𝑎𝑖|𝑖⟩) =
𝑁−1

∑
𝑖=0
(2𝜇 − 𝑎𝑖)|𝑖⟩, (1.50)

where HZH denotes the aforementioned combination of Hadamard gates and the zero-state

phase shift.

Figure 1.30 depicts the effect of inversion about the mean when applied immediately

following the quantum oracle. Figure 1.30a shows the portion of the Grover iterate 𝐺

(from Figures 1.27 and 1.28) that performs inversion about the mean. Figure 1.30b then

visualizes the initial and final quantum states in the same manner as Figure 1.29. We see

59



that following inversion about the mean, the amplitudes of the solution components have

increased while those of all other components have decreased. Successive application of

the Grover iterate similarly increases the amplitudes of the solution components further.

After enough iterations, the superposition consists entirely or nearly entirely of solution

components. Specifically, one can prove that the number of iterations required is on the order

of√𝑁, where 𝑁 is the total number of components (i.e., the number of possible assignments

of values to variables). A measurement then gives (with near certainty) a variable assignment

satisfying the function 𝑓.

H
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H
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⎧
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⎪
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⎫
⎪
⎪

⎬
⎪
⎪
⎭

|𝜓 ′⟩

(a) The circuit that performs the inversion.

|𝜓⟩

𝜇

|𝜓 ′⟩

𝜇

(b) Amplitude-graph visualization.

Figure 1.30: Inversion about the mean, the second stage of the Grover iterate.

Sincewe assume that nothing is known in advance about the function 𝑓, the just-described

amplitude amplification procedure should begin with a superposition of all possible variable

assignments, as any of them could potentially satisfy 𝑓. Therefore, before performing the

amplitude amplification procedure, Grover’s algorithm first initializes the qubits that will

serve as inputs to the quantum oracle, 𝑥1 through 𝑥𝑛, to a superposition of all possible states.

Conventionally, this is accomplished by initializing each variable qubit (𝑥1 through 𝑥𝑛) to

|0⟩ and then applying a Hadamard gate to each variable qubit, as shown in 1.27. Similarly,

the quantum oracle’s output qubit is initialized to 1
√2
(|0⟩− |1⟩) by applying a Hadamard gate

to an initial state of |1⟩, also shown in Figure 1.27. Following completion of the amplitude

amplification procedure, the qubits 𝑥1 through 𝑥𝑛 are measured to obtain the final output of
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Grover’s algorithm. We therefore see that the complete Grover’s algorithm consists of the

following steps:

1. Begin with 𝑛 variable qubits and one target qubit, initialized as described in the

preceding paragraph.

2. Perform the amplitude amplification procedure by applying the Grover iterate √𝑁

times as previously described.

3. Measure the variable qubits; the result of measurement forms the output of Grover’s

algorithm.

Since the initialization and measurement steps in Grover’s algorithm are proportional to

the number of qubits used, which is on the order of 𝑛 = log2 𝑁, the number of variables of

𝑓, the 𝒪(√𝑁) time required for the amplitude amplification procedure forms the dominant

contribution to the overall runtime of Grover’s algorithm. Therefore, Grover’s algorithm

requires a time complexity of 𝒪(√𝑁).

If presented with a function 𝑓 that can be satisfied in multiple ways—that is, multiple

solutions exist—Grover’s algorithm can still find one of the solutions, although it must be

slightly modified. Boyer et al. [21] show that if the number of solutions is 𝑘, then Grover’s

algorithm will work if the number of iterations is reduced to 𝒪(√𝑁∕𝑘), with all other

aspects of the algorithm remaining unchanged. Brassard et al. [22] present a quantum

counting algorithm that can be used to estimate the number of solutions. Therefore, given

a function 𝑓 with an unknown number of solutions, one can first estimate the number of

solutions and then apply Grover’s algorithm with the appropriately modified number of

iterations. Even though an additional quantum counting step is introduced, the number of
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Grover iterations is reduced, so this procedure still results in a significant speedup compared

to an uninformed classical search.

Our discussion so far has implicitly assumed that a solution to the satisfaction problem

being solved by Grover’s algorithm exists in the first place. If no solution exists, Grover’s

algorithm can detect this fact with high certainty. A quantum oracle for a satisfaction problem

with no solutions will not perform any phase inversions when it is applied as in 1.29. The

inversion about the mean will then have no effect on the amplitude of any component of

the resulting quantum state. Therefore, at the conclusion of Grover’s algorithm, one will

be measuring a quantum state consisting of a superposition of all possible basis states, and

will therefore obtain a completely random answer. One can check the answer returned by

Grover’s algorithm, using either a classical computer or the same quantum oracle with just

a single basis state as input. If the returned answer is incorrect, one then deduces with high

certainty that no solution exists, because Grover’s algorithm is certain or near-certain to

produce a solution when one exists.

1.5 Organization of this dissertation

The remainder of this dissertation is divided into three parts. In the first part, consisting

of Chapters 2 through 4, I consider the realization of a special class of Boolean functions

known as symmetric functions. Specifically, Chapter 2 first introduces the main concepts

that will be used in all three chapters and illustrates how those concepts can be used to

obtain realizations for a limited class of symmetric functions. Chapter 3 then extends this

limited class to a larger class and also demonstrates one particular application of the realized

symmetric functions as a quantum counter. Chapter 4 introduces a method based on the

Walsh-Hadamard transform that allows all symmetric functions to be realized using the class
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of functions from Chapter 3. Chapter 4 also demonstrates, via the technique of symmetrizing

functions by repeating variables, that even non-symmetric Boolean functions can be realized

using the same method used for symmetric functions.

The second part of this dissertation comprises Chapters 5 and 6, which address the

realization of permutative functions with the same number of inputs and outputs. In Chapter

5, I introduce the concept of distance gates together with a cycle-based algorithm for realizing

permutative Boolean functions using distance gates. In Chapter 6, I extend distance gates to

a multiple-valued setting and show that they can also be used for cycle-based synthesis of

permutative functions with multiple-valued inputs and outputs.

Chapters 7 and 8 deal with the design of quantum oracles for Grover’s algorithm. In

Chapter 7, I demonstrate the detailed design of a quantum oracle to be used with Grover’s

algorithm to solve a state-machine encoding problem. Along the way, I introduce a method

by which Grover’s algorithm can be used to solve an optimization problem, even though it

only directly solves satisfaction problems. In Chapter 8, I demonstrate a quantum oracle

design for a completely different class of problems, which I call state-space path planning

problems. I show detailed oracle designs for two such problems, and based on these examples,

I describe a general approach that can be used to solve other problems of this type as well.

Both chapters combined demonstrate several different uses of quantum counters in oracle

design.

Finally, Chapter 9 summarizes my achievements and contributions and concludes the

dissertation.
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Chapter 2

Direct realization of single-output Boolean symmetric functions using two-qubit gates

Universality is a requirement for any general-purpose computing system. A computing

system is said to be universal if it is capable of computing the value of any function that

can in principle be computed. Universality in hypothetical quantum computing systems has,

for the most part, been achieved using Toffoli gates, which are known to be universal. In

particular, most of the existing literature has built on the work of Barenco et al. [20] and

Maslov and Dueck [19], who demonstrated implementations of 𝑛-qubit Toffoli gates using

two-qubit controlled gates.

Although Toffoli gates are universal, they do not necessarily provide the optimal realiza-

tion for many functions of interest, where “optimal” means using as few primitive operations

as possible. In other words, the possibility of realizing arbitrary Boolean functions (thereby

achieving universality) without using 𝑛-qubit Toffoli gates as intermediates has received

little attention. This is unfortunate because circuit optimizations that are not apparent when

using high-level gates like Toffoli gates can appear when those gates are decomposed to

their constituent primitives [23].

Totally symmetric Boolean functions are a special type of Boolean functions with the

property that they are unchanged by any permutation of their inputs [24, 25, 26]. Symmetric

functions have attracted a wide range of attention, including theoretical complexity analysis
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[27, 28, 29] and synthesis methods for reversible logic [30, 31, 32, 33, 34, 35, 36, 37].

I first introduced the concept of “TISC gates” in [38]. These gates were implemented

using a scalable circuit structure that realized a specific family of symmetric functions. In this

chapter, I demonstrate a far-reaching generalization of the TISC gate concept, which allows

for the realization of a class of functions that I call zero-offset dyadic indicator-periodic

symmetric functions using only two-qubit controlled gates. I introduce a recursively-defined

circuit structure for this purpose, in which symmetric functions are arranged in a hierarchy

beginning with the exclusive-OR function, and a function at any point in the hierarchy is

realized with the help of functions lower in the hierarchy. This circuit structure is naturally

scalable to any number of qubits, allowing it to realize infinite families of symmetric functions

consisting of what are essentially different versions of the same function for different numbers

of inputs.

2.1 Preliminary definitions and notations

A symmetric function is a function with the property that its output remains unchanged under

any permutation of its inputs.1 For instance, the function of two real numbers 𝑓(𝑥, 𝑦) = 𝑥+𝑦

is symmetric because addition of real numbers is commutative, so 𝑓(𝑥, 𝑦) = 𝑥+𝑦 = 𝑦+𝑥 =

𝑓(𝑦, 𝑥). The function 𝑔(𝑥, 𝑦) = 𝑥 + 𝑥𝑦, on the other hand, is not symmetric because

𝑔(𝑦, 𝑥) = 𝑦 + 𝑦𝑥, which is not equal to 𝑔(𝑥, 𝑦) when 𝑥 ≠ 𝑦.

In this and the next chapter, I will consider Boolean symmetric functions in particular;

that is, symmetric functions with the output and all inputs being Boolean variables that only
1The term “symmetric function” is commonly used to denote functions satisfying only a weaker property:

that the function’s output remains unchanged under permutations of some subset or subsets of its input variables.
For instance, a function of three variables 𝑎, 𝑏, and 𝑐 could be described as “symmetric” (with respect to
the subset {𝑎, 𝑏}) if it remains unchanged under exchange of 𝑎 and 𝑏 but not 𝑎 and 𝑐. Functions that remain
unchanged under any permutation of inputs are then called “totally symmetric”. Here, I consider only totally
symmetric functions, and therefore I will refer to such functions as simply “symmetric” for simplicity.
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take on the values 0 and 1. Therefore, from now on, “symmetric function” without further

qualification will refer to a Boolean symmetric function unless otherwise specified. The

standard NOT, AND, and OR operations of Boolean algebra are all symmetric functions:

NOT(𝑥) = ¬𝑥 is trivially symmetric since it takes only a single input, while AND(𝑥, 𝑦) =

𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 and OR(𝑥, 𝑦) = 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 are symmetric by commutativity.

The requirement that a symmetric function’s output remain unchanged under any per-

mutation of its inputs implies that the output of a Boolean symmetric function can only

depend on the number of 1s (or equivalently, the number of 0s) present among its input

variables. Following Maslov’s terminology [33], I will refer to any collection of specific

input values to a symmetric function as an “input pattern”, and the number of 1s in an input

pattern as its weight. I will write∑𝑛
𝑖=1 𝑥𝑖 for the weight of the input pattern 𝑥1 … 𝑥𝑛, where

𝑥1 through 𝑥𝑛 are all Boolean variables. This notation derives from treating the possible

values for a Boolean variable, 0 and 1, as integers as opposed to abstract labels (which can

be synonymous with other labels such as “true/false” or “on/off”). The sum∑𝑛
𝑖=1 𝑥𝑖 then

represents an ordinary arithmetic sum of integers, as opposed to the logical OR operation

in Boolean algebra, which is sometimes also written as a sum. I will sometimes drop the

limits from this sum and simply write∑ 𝑥𝑖, with the understanding that the sum is always

over all 𝑥𝑖.

The following definition formalizes the concept of a symmetric function according to

the preceding discussion and also introduces some additional terminology:

Definition 1. A function 𝑓∶ {0, 1}𝑛 → {0, 1} that takes 𝑛 Boolean variables and returns

another Boolean value is a symmetric function if it satisfies the following condition: letting

ℕ≤𝑛 denote the set of natural numbers not greater than 𝑛, there exists another function
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𝐼∶ ℕ≤𝑛 → {0, 1} for which

𝑓(𝑥1,… , 𝑥𝑛) = 𝐼(
𝑛

∑
𝑖=1

𝑥𝑖) (2.1)

for all 𝑥1,… , 𝑥𝑛 ∈ {0, 1}. The function 𝐼 will then be called an indicator function for the

symmetric function 𝑓. The set of natural numbers 𝑆ON = {𝑤 ∈ ℕ≤𝑛 || 𝐼(𝑤) = 1} will be

called an ON-set for 𝑓.

Essentially, an indicator function is a function that expresses a symmetric function

in terms of the weight of its input pattern rather than the inputs themselves. The name

“indicator function” comes from the fact that it can be thought of as the set-theoretic indicator

function2 of a certain set, an ON-set, which contains those input pattern weights for which

the symmetric function outputs 1. For a fixed number of inputs, an indicator function or

ON-set uniquely determines a symmetric function via Definition 1. One can see that the

converse is also true: if one has an 𝑛-input symmetric function 𝑓, it is easy to produce an

input pattern having any weight from 0 through 𝑛.3 Then, the value of the indicator function

for any 𝑤 is found by evaluating 𝑓 on an input pattern of weight 𝑤, and the ON-set contains

𝑤 if and only if 𝑓 evaluates to 1. This observation is restated as the following proposition

for convenience.

Proposition 2. For a fixed number of inputs 𝑛, there is a one-to-one correspondence between

𝑛-input symmetric functions, indicator functions, and ON-sets. In other words, given a

function 𝐼∶ ℕ≤𝑛 → {0, 1} or a set 𝑆ON ⊂ ℕ≤𝑛, there exists exactly one 𝑛-input symmetric

function with 𝐼 as an indicator function or 𝑆ON as an ON-set, and vice versa.

From now on, I will therefore refer to the indicator function or ON-set of a symmetric
2In set theory, the indicator function of a set 𝑆 is a function which outputs 1 if its input is an element of 𝑆

and 0 otherwise. A set is completely determined by its indicator function and vice versa.
3For instance, to get a weight of 𝑤, take 𝑥𝑖 = 1 for 𝑖 < 𝑤 and 𝑥𝑖 = 0 otherwise.
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function.

The concept of an ON-set allows for the following convenient notation for symmetric

functions: S𝑆ON
𝑛 will denote the 𝑛-input symmetric function with ON-set 𝑆ON. For instance,

S{1,2}3 denotes a symmetric function of three variables that returns 1 when its input pattern

has a weight of 1 or 2; that is, when one or two of its inputs are 1. Because of the one-to-one

correspondence between ON-sets and symmetric functions, this notation is unambiguous

and can represent all possible symmetric functions. I will drop the 𝑛 subscript when the

number of inputs is clear from the context: S{1,2}3 (𝑎, 𝑏, 𝑐) becomes S{1,2}(𝑎, 𝑏, 𝑐). I will also

drop the braces from the ON-set when it is presented as a list of its elements, so S{1,2}(𝑎, 𝑏, 𝑐)

further simplifies to S1,2(𝑎, 𝑏, 𝑐). Combining this notation with Definition 1 leads to the

following equivalence:

S𝑤1,𝑤2,…,𝑤𝑚(𝑥1,… , 𝑥𝑛) = 1 if and only if
𝑛

∑
𝑖=1

𝑥𝑖 = 𝑤𝑗 for some 𝑗, (2.2)

where 𝑤1 through 𝑤𝑚 are natural numbers with 𝑤𝑗 ≤ 𝑛 for all 𝑗.

In Proposition 2, the condition that a number of inputs 𝑛 be fixed is important. If this

condition is removed, it is possible for a single ON-set to correspond to more than one

symmetric function, because one can have a whole family of symmetric functions, each with

differing number of inputs, that all share the same ON-set. For instance, given the ON-set

{1, 2}, the symmetric functions S1,2
3 , S1,2

4 , and indeed S1,2
𝑛 for any 𝑛 ≥ 2 all share the same

ON-set, {1, 2}.

A related concept to a family of symmetric functions sharing the same ON-set is a family

of symmetric functions that would share the same ON-set, if not for some members of the

family not having enough inputs to cover the whole ON-set. For instance, given the set

{3, 4, 5, 6}, the corresponding family of symmetric functions includes S3
3, S3,4

4 , S3,4,5
5 , and
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S3,4,5,6
6 , where the ON-sets of the first three members have been “truncated” due to them not

having enough inputs. It is even possible for such a family to be defined by an infinite ON-set;

in such a case, the ON-set is truncated to a finite set for every member of the family. An

indicator function can also be defined for the family as a whole, rather than for its individual

members, in which case the indicator function’s domain consists of all natural numbers

with no upper limit. Such families will feature prominently in this chapter, to the point

where I essentially only consider such families as a whole rather than considering individual

symmetric functions. This is because the circuit structures that I introduce are naturally

scalable to any number of qubits and so realize such families all at once. In a slight abuse of

terminology, I will sometimes use phrases like “the symmetric function S2,3,4,…
𝑛 ” when I am

really referring to the whole infinite family of functions for all 𝑛, with the understanding that

the statement applies to all members of the family. Similarly, I will speak of the indicator

function or the ON-set of such a “function” when I am really referring to the shared indicator

function or ON-set of the whole family. There is little opportunity for confusion because,

as already stated, this and the following chapter will be concerned almost exclusively with

such families of symmetric functions rather than with their individual members.

Using the concepts and notations introduced above, we can express some standard

operations of Boolean algebra in terms of symmetric functions. The logical AND of 𝑛

Boolean variables, 𝑥1 through 𝑥𝑛, is given by ⋀𝑛
𝑖=1 𝑥𝑖 = S𝑛(𝑥1,… , 𝑥𝑛) since the result of

a logical AND is 1 only when all 𝑛 inputs are 1. The corresponding indicator function is

defined by 𝐼∧(𝑛) = 1 and 𝐼∧(𝑤) = 0 for all other 𝑤. Similarly, the logical OR of the same

𝑛 Boolean variables is given by⋁𝑛
𝑖=1 𝑥𝑖 = S1,2,…,𝑛(𝑥1,… , 𝑥𝑛) since the result of a logical

OR is 1 when at least one of the inputs is 1. The corresponding indicator function is then

defined by 𝐼∨(0) = 0 and 𝐼∨(𝑤) = 1 for all other 𝑤. Of particular interest is the exclusive
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OR: the exclusive OR of 𝑥1 through 𝑥𝑛 is 1 whenever an odd number of 𝑥1 through 𝑥𝑛 are 1,

so it has the symmetric-function representation ⨁𝑛
𝑖=1 𝑥𝑖 = S1,3,5,…(𝑥1,… , 𝑥𝑛), where the

ON-set {1, 3, 5,…} contains the odd natural numbers up to 𝑛. The corresponding indicator

function is

𝐼⊕(𝑤) = 𝑤 mod 2 = {
0 𝑤 even,
1 𝑤 odd.

(2.3)

Equation (2.3) will play an important role in the realization method for symmetric functions

described in this chapter.

2.2 Realization of symmetric functions with controlled-V and V† gates

2.2.1 Extension of circuit structure for realizing the Toffoli gate

It is a well-known result [20] that a Toffoli gate may be implemented using controlled-NOT

and controlled-V gates, using the circuit shown in Figure 2.1a. In the same work, Barenco

et al. also demonstrated that 𝑛-bit Toffoli gates for any 𝑛 could be implemented by extended

variants of this circuit. Here, I will demonstrate a different way in which this circuit may be

extended so as to realize symmetric functions other than the logical AND of a collection of

variables, which is the function that is realized by an 𝑛-bit Toffoli gate.

𝑎

𝑏

𝑐 V V† V

(a) Original implementation by Barenco et al.

𝑎

𝑏

𝑐 V V V†

(b) Rearrangement of gates in Figure 2.1a.

Figure 2.1: Two implementations of a Toffoli gate.

Beginning from the original circuit in Figure 2.1a, rearranging the gates yields the circuit

shown in Figure 2.1b. It is not immediately clear that this rearrangement does not alter the
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circuit’s overall operation, but the analysis later in this section will show that it does not.

The circuit in Figure 2.1b can be divided into two stages: the first stage, consisting of the

first two gates, is a sequence of controlled-V gates in which the last qubit is always the target

qubit and all other qubits are used in turn as control qubits. The second stage, consisting of

the remainder of the circuit, is a controlled-V† gate whose control input is the exclusive OR

of the first two qubits, which is computed using a CNOT gate. A second CNOT gate is used

to restore qubit 𝑏 to its initial state.

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑦 V V V V V†

Figure 2.2: Extension of Figure 2.1b to an arbitrary number of qubits.

Based on the division of the circuit from Figure 2.1b into two stages, I introduce the

circuit structure shown in Figure 2.2, which follows the same two-stage pattern. The first

stage consists of a sequence of controlled-V gates in which qubit 𝑦 is always the target qubit

and qubits 𝑥1 through 𝑥𝑛 are each used once as a control qubit. The second stage is then

the remainder of the circuit, which consists of a sequence of CNOT gates that compute the

exclusive OR of 𝑥1 through 𝑥𝑛, followed by a controlled-V† gate that uses this exclusive OR

as its control input and targets qubit 𝑦, followed by another sequence of CNOT gates that

acts as a mirror circuit to restore qubits 𝑥1 through 𝑥𝑛 to their original states. I refer to the

contents of Figure 2.2 as a “circuit structure” rather than just a circuit because it actually

represents an infinite family of circuits. Specifically, the number of qubits in Figure 2.2 is
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variable and has no upper limit, so the figure represents one circuit for each positive integer

𝑛, with the number of qubits in the circuit being 𝑛+1. I will call any such circuit an instance

of the circuit structure. In other words, an instance of the circuit structure from Figure 2.2 is

any particular circuit with a definite number of qubits that follows this structure.

2.2.2 Analysis of circuit structure by counting 1s

Consider an instance of the circuit structure from Figure 2.2 with 𝑛 + 1 qubits. We may

think of this circuit as realizing a function 𝑓 of the variables 𝑥1 through 𝑥𝑛, where 𝑓 is

unknown and to be characterized. The qubit 𝑦 is not an input to 𝑓 and is instead used to

receive its output. The only gates targeting qubit 𝑦 are controlled V and V† gates, meaning

that the effect of the circuit will be to apply some sequence of V and V† gates to 𝑦. Qubits 𝑥1

through 𝑥𝑛 are unaffected by the circuit due to the presence of mirror gates (the CNOT gates

at the end of the circuit) that restore these qubits to their initial state at the end of the circuit.

Therefore, analyzing the circuit’s operation amounts to determining how the sequence of V

and V† gates applied to 𝑦 depends on the values of 𝑥1 through 𝑥𝑛.

As discussed in Section 1.2.4, we can visualize the effect of the V and V† gates as

rotations of the Bloch sphere around its 𝑥-axis, where a V gate acts by rotating 90° clockwise

and a V† gate acts by rotating 90° counterclockwise. A rotation of 90° counterclockwise

can also be thought of as a rotation of −90° clockwise, and consecutive rotations around the

same axis simply combine their angles additively. Therefore, given any sequence of V and

V† gates, the effect of this sequence does not depend on the order in which the individual

gates are applied, but only on the sum of the rotation angles contributed by those gates. We

may define a quantity, the total effective number of V gates, as the number of V gates minus

the number of V† gates in the sequence. The sum of the angles of all rotations performed
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by the sequence is then equal to this total effective number times 90°. For instance, in a

sequence of three V gates and two V† gates, the total effective number of V gates is 3−2 = 1

and the sum of the rotation angles is 90°. Since a single V gate also performs a 90° rotation,

the entire sequence is equivalent to a single V gate, and this is true regardless of the order of

gates in the sequence. Because V4 = I, the total effective number of V gates can be reduced

modulo 4, so that it is always one of 0, 1, 2, or 3.

Table 2.1 now shows an analysis that applies to any instance of the circuit structure from

Figure 2.2. The first column of this table lists the possible input weights ∑ 𝑥𝑖, which are

simply all the natural numbers. The second and third columns show, for each input weight,

the number of V gates applied by the first and second stages of the circuit, respectively. As

before, “first stage” refers to the sequence of controlled-V gates at the start of the circuit,

and “second stage” refers to the remainder of the circuit, which consists of the controlled-V†

gate whose control input is the exclusive-OR of 𝑥1 through 𝑥𝑛. The entries in the second

and third columns of Table 2.1 are determined as follows. In the first stage, since each of 𝑥1

through 𝑥𝑛 acts as a control input to exactly one of the controlled-V gates, the number of

V gates applied in this stage is simply equal to the input weight,∑ 𝑥𝑖. In the second stage,

the exclusive-OR of 𝑥1 through 𝑥𝑛 will be equal to 0 if the input weight is even and 1 if the

input weight is odd, as expressed by (2.3). A V† gate is therefore applied if the input weight

is odd. As discussed previously, in a sequence of V and V† gates, the total effective number

of V gates is the number of V gates minus the number of V† gates, so a single V† gate is

considered to contribute −1 to this total effective number. The third column of Table 2.1

accordingly contains a 0 for even input weights and a −1 for odd input weights.

The fourth column of Table 2.1 shows the total effective number of V gates resulting from

each input weight, which is obtained by adding the entries in the second and third columns.
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Table 2.1: Calculation of total effective number of V gates applied by instances of the circuit structure
from Figure 2.2.

Stage 1 Stage 2

0 0 0 0 0 I
1 1 −1 0 0 I
2 2 0 2 2 X
3 3 −1 2 2 X
4 4 0 4 0 I
5 5 −1 4 0 I
6 6 0 6 2 X
7 7 −1 6 2 X
8 8 0 8 0 I
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖
Applied V gates Total effective

number of V gates
Effective number of
V gates modulo 4

Operation applied
to qubit 𝑦

As per the earlier discussion about this total effective number, the entries of this column

may be reduced modulo 4, giving the fifth column. The sixth and final column then shows

the equivalent single gate for each total effective number of V gates. Specifically, since the

V gate is a square-root-of-NOT gate, a total effective number of 2 V gates is equivalent to

a single NOT gate (denoted X). A total effective number of 0 is of course equivalent to an

identity gate by definition.

To summarize, the result of the preceding discussion is that the last column of Table 2.1

shows the equivalent gate applied to qubit 𝑦 for each possible input weight. We can see that

qubit 𝑦 is inverted when the input weight is an element of the set {2, 3, 6, 7, 10,… }, which

consists of the natural numbers that are congruent to either 2 or 3 modulo 4. If the input

weight is not in this set, then the circuit applies the equivalent of an identity gate to qubit

𝑦; i.e., no change is made to 𝑦. Therefore, the operation of the circuit is described by the
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equation

𝑦′ = {
𝑦 if ∑𝑛

𝑖=0 𝑥𝑖 mod 4 = 2 or 3
¬𝑦 otherwise

(2.4)

= {
𝑦 if S2,3,6,…(𝑥1,… , 𝑥𝑛) = 1
¬𝑦 otherwise

(2.5)

= 𝑦 ⊕ S2,3,6,…(𝑥1,… , 𝑥𝑛), (2.6)

where 𝑦′ denotes the new state of qubit 𝑦 at the end of the circuit. The equivalence (2.2) is

used to establish the equality of (2.4) and (2.5). We see that the circuit is equivalent to an

inverter controlled by the function S2,3,6,…(𝑥1,… , 𝑥𝑛), as shown in Figure 2.3, and therefore

it realizes this function.

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑦

S2,3,6,7,…
𝑛

Figure 2.3: Equivalent controlled-gate representation of Figure 2.2, based on Table 2.1.

It is important to observe that the preceding analysis applies to any instance of the circuit

structure from Figure 2.2, regardless of the number of inputs 𝑛. This means that all such

circuits realize symmetric functions of the same general form, S2,3,6,7,…
𝑛 , differing only in

the number of inputs to the function.
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2.2.3 Representation of circuit using an operational equation

To investigate further modifications and extensions to the circuit structure from Figure 2.2,

it is helpful to represent the information in Table 2.1 as an equation. Let 𝑁V denote the

number of V gates that the first stage of the circuit applies to qubit 𝑦, 𝑁V† denote the number

of V† gates that the second stage applies, and 𝑁eff denote the resulting total effective number

of V gates. Then we have

𝑁V − 𝑁V† = 𝑁eff. (2.7)

As previously observed, the number of V gates applied in the first stage is equal to the input

weight∑ 𝑥𝑖, since one V gate is applied for every 𝑥𝑖 that begins in the state |1⟩. Therefore,

𝑁V =
𝑛

∑
𝑖=1

𝑥𝑖. (2.8)

The V† gate in the second stage is controlled by the exclusive-OR of 𝑥1 through 𝑥𝑛. Since

an exclusive OR can be represented as a symmetric function, S1,3,5,7,…(𝑥1,… , 𝑥𝑛), we can

then write

𝑁V† = S1,3,5,7,…(𝑥1,… , 𝑥𝑛). (2.9)

Finally, we can represent the total effective number of V gates applied by the circuit using

another symmetric function:

𝑁eff ≡ 2S2,3,6,7,…(𝑥1,… , 𝑥𝑛) (mod 4) (2.10)

where the coefficient of 2 indicates that two effective V gates are applied when the symmetric

function S2,3,6,7,…(𝑥1,… , 𝑥𝑛) evaluates to 1. In this notation, the output of the symmetric

function is treated as an integer to which all standard arithmetic operations can be applied,
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and not just as a Boolean variable.

Substituting (2.8), (2.9), and (2.10) into (2.7) yields

𝑛

∑
𝑖=1

𝑥𝑖 − S1,3,5,…(𝑥1,… , 𝑥𝑛) ≡ 2S2,3,6,…(𝑥1,… , 𝑥𝑛) (mod 4), (2.11)

which compactly summarizes the information presented in Table 2.1 in equation form. As

in (2.10), the output of the symmetric function S1,3,5,…(𝑥1,… , 𝑥𝑛) is treated as an integer,

representing the number of V† gates applied by the circuit, even though it can only take on

the values 0 and 1. The minus sign on the left-hand side of (2.11) thus denotes an ordinary

arithmetic subtraction of integers (and not an operation of Boolean algebra), just as it does

in (2.7).

We may obtain a simpler form of (2.11) by rewriting it in terms of an input pattern weight

and indicator functions. Recall from Definition 1 that the indicator function of a symmetric

function expresses the symmetric function in terms of the weight of its input pattern. In

(2.11), the first term on the left-hand side is simply the input pattern weight itself and the

other terms are symmetric functions, which can be replaced with indicator functions of the

input pattern weight. Making these replacements gives

𝑤 − 𝐼⊕(𝑤) ≡ 2𝐼2,3,6,…(𝑤) (mod 4), (2.12)

where 𝑤 is the input pattern weight and may therefore be any natural number, 𝐼⊕ is the

indicator function of the exclusive-OR function (first introduced in 2.1), and 𝐼2,3,6,… is the

indicator function of the symmetric function S2,3,6,…
𝑛 . This last indicator function can be
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explicitly written as

𝐼2,3,6,…(𝑤) = {
1 if 𝑤 ≡ 2 or 𝑤 ≡ 3 (mod 4),
0 otherwise .

(2.13)

I refer to (2.11) as an operational equation for the circuit structure shown in Figure 2.2

because it expresses the overall operation performed by an instance of this circuit structure

as a combination of the operations performed in each stage, where these operations are

specified as effective number of V gates.

2.3 Recursive realization of symmetric functions using multi-stage circuits

2.3.1 Replacement of controlled-V and controlled-V† gates with other root-of-NOT

gates

The analysis of the circuit structure from Figure 2.2, as shown in Table 2.1 and compactly

summarized by equations (2.11), (2.12), and (2.24), can still be used even if the target

gates applied to the output qubit 𝑦 are replaced with other gates. In Figure 2.2, these target

gates are controlled-V and controlled-V† gates. However, Table 2.1 simply counts the total

effective number of gates applied to qubit 𝑦 in Figure 2.2 and does not depend on what those

gates actually are. In other words, if V and V† are replaced with some other gate U and its

inverse U†, then the observation made at the start of Section 2.2.2 remains valid—namely,

the behavior of any resulting circuit only depends on the total effective number of U gates

applied to qubit 𝑦, where this total effective number is defined as the number of applied U

gates minus the number of appliedU† gates. The only difference from the analysis conducted

in Section 2.2.2 is that the total effective number can no longer be reduced modulo 4, since

that ability comes from the status of the V gate as a square-root-of-NOT, which is lost when
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V is replaced by a different gate.

To see this principle in action, suppose that we replace V and V† in Figure 2.2 with X2

and X−1
2 gates, recalling from Section 1.2.5 that X2 is a fourth-root-of-NOT gate. I have

chosen to denote the inverse of X2 as X−1
2 rather than X2

† to emphasize that a X−1
2 contributes

−1 to the total effective number of X2 gates. The two notations are equivalent since all

quantum gates are unitary. The resulting circuit structure is shown in Figure 2.4, and its

analysis via calculation of the total effective number of X2 gates is shown in Table 2.2.

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑦 X2 X2 X2 X2 X−1
2

Figure 2.4: Replacement of V and V† in Figure 2.2 with X2 and X−1
2 gates.

In accordance with the discussion at the start of this section, the first two columns of

Table 2.2 are identical to the first and fourth4 columns of Table 2.1, since these columns

show the total effective number of gates as a function of input weight. However, the total

effective number of X2 gates in Table 2.2 cannot be reduced modulo 4. Instead, since X2 is a

fourth-root-of-NOT and therefore an eighth-root-of-identity (i.e., X8
2 = 𝐼), the total effective

number can be reduced modulo 8, giving the third column of Table 2.2. The last column of

Table 2.2 then shows the equivalent gates that the total effective numbers translate into.

Table 2.2 shows that the circuit structure from Figure 2.4 does not produce permutative
4Table 2.2 omits the breakdown of applied gates by stage, since there would be no change from the second

and third columns of Table 2.1.
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Table 2.2: Calculation of total effective number of X2 gates applied by instances of the circuit
structure from Figure 2.4.

𝑛

∑
𝑖=1

𝑥𝑖

0 0 0 X0
2 = I

1 0 0 X0
2 = I

2 2 2 X2
2 = V

3 2 2 X2
2 = V

4 4 4 X4
2 = X

5 4 4 X4
2 = X

6 6 6 X6
2 = V†

7 6 6 X6
2 = V†

8 8 0 X0
2 = I

⋮ ⋮ ⋮ ⋮

Total effective
number of X2 gates

Effective number of
X2 gates modulo 8

Operation applied
to qubit 𝑦

circuits, unlike the one from Figure 2.2. For example, when presented with an input weight

of 2, any instance of the circuit structure from Figure 2.4 applies a total effective number of

2 X2 gate, which is equivalent to a single V gate, to qubit 𝑦. Similarly, when presented with

an input weight of 6, instances of Figure 2.4 apply an total effective number of 6 X2 gates,

which is equivalent to a single V† gate. Since neither the V nor V† gates are permutative, any

instance of Figure 2.4 will perform a non-permutative operation on qubit 𝑦 when presented

with input weights of 2, 3, 6, 7, etc. Therefore, the circuit structure from Figure 2.4 cannot

be used on its own to realize Boolean functions.

2.3.2 Three-stage circuit structure

Although the circuit structure from Figure 2.4 on its own does not directly produce permu-

tative circuits, it can do so with a slight modification. This modification takes the form of

a third stage in which a X−2
2 = V† gate is controlled by the function S2,3,6,7,…(𝑥1,… , 𝑥𝑛).
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The function S2,3,6,7,…(𝑥1,… , 𝑥𝑛) is realized using the circuit structure from Figure 2.2. It

is made to act as a control function to a X−2
2 gate using the method illustrated in Figure 1.25,

which requires one ancillary qubit. Figure 2.5 shows the resulting circuit structure. In this

figure, the blocks labeled with a circled plus sign (⊕) are abbreviations for cascades of

CNOT gates used to compute the exclusive-OR of 𝑥1 through 𝑥𝑛, previously shown in full

in Figures 2.2 and 2.4. Note that this structure is in a sense recursive, because it extends

Figure 2.2 while using copies of Figure 2.2 itself as subcircuits. For reference, Figure 2.6

shows the same circuit structure as Figure 2.5, but with all subcircuits expanded in full using

two-qubit controlled gates.

𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

|0⟩

𝑦 X2 X2 X2 X2 X2

⨁

X−1
2

⨁
S2,3,6,…

𝑛

X−2
2

S2,3,6,…
𝑛

Figure 2.5: The circuit structure from Figure 2.4, with an additional stage added to restore permuta-
tivity.

Table 2.3 shows the analysis of the circuit structure from Figure 2.5. This table is

analogous to Table 2.1 and tracks the number of X2 gates applied by the stages of instances of

Figure 2.5. The columns “Stage 1” and “Stage 2” are identical to those from Table 2.1, while

the column “Stage 3” shows the contribution that the new third stage shown in Figure 2.5

makes to the total effective number of X2 gates. Since this third stage is controlled by a
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𝑥1

𝑥2

𝑥3

𝑥𝑛

|0⟩

𝑦 X2 X2 X2 X2 X−1
2

X1

X1 X1 X1 X−1
1

X−2
2

X−1
1 X1X1 X1 X1

Figure 2.6: The circuit structure from Figure 2.5 fully expanded in terms of two-qubit controlled
gates.
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function of the form S2,3,6,7,…
𝑛 , it is only active when the input weight is congruent to either

2 or 3 modulo 4. In addition, since its target gate is a X−2
2 gate, its contribution is −2 when

active, instead of −1 as in Stage 2. From the second-to-last column of Table 2.3, we can see

that the total effective number of X2 gates is always a multiple of 4, so when reduced modulo

8, as shown in the last column, the result is always either 0 or 4. Since X0
2 = I and X4

2 = X,

we conclude that instances of the circuit structure from Figure 2.5 therefore performs an

operation equivalent to a single NOT gate on qubit 𝑦 when the input weight is 4, 5, 6, 7, 12,

13, etc., these weights being those natural numbers that are congruent to 4, 5, 6, or 7 modulo

8. Therefore, an instance of Figure 2.5 with 𝑛 input qubits (not counting the ancillary qubit

and qubit 𝑦) realizes the symmetric function S4,5,6,7,12,…(𝑥1,… , 𝑥𝑛).

2.3.3 Operational equation for the three-stage circuit structure

Analogously to Section 2.2.3, we may condense the information presented in Table 2.3 down

to a single operational equation that describes the operation of all instances of the circuit

structure from Figure 2.5. We write

𝑁1 + 𝑁2 + 𝑁3 = 𝑁eff, (2.14)

where 𝑁1, 𝑁2, and 𝑁3 are respectively the contributions that the first, second, and third stages

in Figure 2.5 make to the total effective number of X2 gates applied to qubit 𝑦. As in (2.7),

𝑁eff denotes the total effective number itself. 𝑁1, 𝑁2, 𝑁3, and 𝑁eff therefore correspond

to the second through fifth columns in Table 2.3. Equation (2.14) looks slightly different

from equation (2.7)—specifically, the terms on the left-hand side are added rather than

subtracted—because 𝑁2 and 𝑁3 now represent negative contributions to the total effective

number of X2 gates rather than the (positive) number of X−1
2 gates applied. Since 𝑁1
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Table 2.3: Calculation of total effective number of X2 gates applied by instances of the circuit
structure from Figure 2.5.

Stage 1 Stage 2 Stage 3

0 0 0 0 0 0 X0
2 = I

1 1 −1 0 0 0 X0
2 = I

2 2 0 −2 0 0 X0
2 = I

3 3 −1 −2 0 0 X0
2 = I

4 4 0 0 4 4 X4
2 = X

5 5 −1 0 4 4 X4
2 = X

6 6 0 −2 4 4 X4
2 = X

7 7 −1 −2 4 4 X4
2 = X

8 8 0 0 8 0 X0
2 = I

9 9 −1 0 8 0 X0
2 = I

10 10 0 −2 8 0 X0
2 = I

11 11 −1 −2 8 0 X0
2 = I

12 12 0 0 12 4 X4
2 = X

13 13 −1 0 12 4 X4
2 = X

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖
Applied W gates Tot. eff. num.

of X2 gates
Eff. num. of X2
gates modulo 8

Operation applied
to qubit 𝑦
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corresponds to the first column of Table 2.3, it is simply the input weight, 𝑁1 = 𝑤 = ∑ 𝑥𝑖.

𝑁2 and 𝑁3 may be expressed in terms of indicator functions,

𝑁2 = −𝐼⊕(𝑤) and 𝑁3 = −2𝐼2,3,6,7,…(𝑤), (2.15)

where 𝐼⊕(𝑤) and 𝐼2,3,6,7,…(𝑤) are as defined before. Similarly, referring to the fifth and

sixth columns of Table 2.3, we see that 𝑁eff may also be expressed in terms of an indicator

function when reduced modulo 8:

𝑁eff ≡ 4𝐼4,5,6,7,12,13,⋯(𝑤) (mod 8), (2.16)

where 𝐼4,5,6,7,12,13,⋯ is the indicator function corresponding to the family of symmetric

functions S4,5,6,7,12,13,…
𝑛 . Substituting (2.15) and (2.16) into (2.14) gives

𝑤 − 𝐼⊕(𝑤) − 2𝐼2,3,6,7,…(𝑤) ≡ 4𝐼4,5,6,7,12,13,⋯(𝑤) (mod 8), (2.17)

which is analogous to (2.12).

2.3.4 Rewriting of operational equations in terms of bit-level operations on input

weight

At this point, it is convenient to introduce some additional notation to concisely represent

the indicator functions seen in (2.12) and (2.17). Observe that the indicator function of the

exclusive-OR function, 𝐼⊕(𝑤) = 𝑤 mod 2, is periodic with period 2. Since the function

alternates between 0 and 1 with each successive 𝑤, it takes on the value 0 for half of each

period and takes on 1 for the other half. Next, the indicator function 𝐼2,3,6,7,…(𝑤) is also
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periodic but with period 4. It also takes on the value 0 for half of its period and 1 for the

other half: it takes on 0 for 𝑤 = 0 and 𝑤 = 1, takes on 1 for 𝑤 = 2 and 𝑤 = 3, takes on 0

for 𝑤 = 4 and 𝑤 = 5, and so on. Informally, this can be described as a “2-off, 2-on” pattern.

Finally, 𝐼4,5,6,7,12,13,⋯(𝑤) has a period of 8 and takes on 0 for half that period and 1 for the

other half, therefore following a “4-off, 4-on” pattern.

These “𝑚-off, 𝑚-on” patterns, where 𝑚 is a power of 2, have a very simple description

when the input weight is represented in base two. Specifically, an indicator function following

a “2𝑘-off, 2𝑘-on” pattern can be obtained as the 𝑘-th bit in the base-two representation of

the input weight 𝑤, where the least significant bit is considered the zeroth bit, the next

least significant bit is considered the first bit, and so on. From now on, I will denote the

𝑘-th bit of the base-two representation of 𝑤 by b𝑘(𝑤), and I will refer to b𝑘 as the 𝑘-th bit-

extraction function. Then each of the indicator functions appearing in (2.17) is identical to

a bit-extraction function: 𝐼⊕(𝑤) = b0(𝑤), 𝐼2,3,6,7,…(𝑤) = b1(𝑤), and 𝐼4,5,6,7,12,13,⋯(𝑤) =

b2(𝑤).

Using the b𝑘(𝑤) notation, the third, fourth, and sixth columns of Table 2.3, as well as

the second and fourth columns of Table 2.1, can be represented, which is to be expected

since these columns are just integer multiples of indicator functions and correspond to

the terms of (2.12) and (2.17). For instance, the fourth column of Table 2.3 is given by

−2𝐼2,3,6,7,…(𝑤) = −2b1(𝑤). The fifth column of Table 2.3 and the fourth column of

Table 2.1, which show the total effective number of X2 (resp. V) gates prior to reduction

modulo 8 (resp. 4), cannot be easily represented with the b𝑘(𝑤) notation, but they are still

related to the base-two representation of the input weight 𝑤. The following definition

introduces a notation that helps make this relationship clear.

Definition 3. For natural numbers 𝑁 and 𝑘, we define tr𝑘(𝑁), the 𝑘-th right truncation of
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Table 2.4: Values of tr𝑘(𝑁) and b𝑘(𝑁) for 𝑘 = 0, 1, 2, 3 and 0 ≤ 𝑁 ≤ 10.

𝑁 tr0(𝑁) b0(𝑁) tr1(𝑁) b1(𝑁) tr2(𝑁) b2(𝑁) tr3(𝑁) b3(𝑁)
0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
2 2 0 2 1 0 0 0 0
3 3 1 2 1 0 0 0 0
4 4 0 4 0 4 1 0 0
5 5 1 4 0 4 1 0 0
6 6 0 6 1 4 1 0 0
7 7 1 6 1 4 1 0 0
8 8 0 8 0 8 0 8 1
9 9 1 8 0 8 0 8 1
10 10 0 10 1 8 0 8 1

𝑁, to be the natural number obtained by truncating to zero the last 𝑘 bits in the base-two

representation of 𝑁. In equation form, we have

tr𝑘(𝑁) =
∞
∑
𝑖=𝑘

b𝑖(𝑁)2𝑖, (2.18)

where all but finitely many terms of the sum on the right-hand side must be zero because

the base-two representation of 𝑁 can only contain finitely many nonzero bits.

The total effective numbers of X2 and V gates shown in Tables 2.3 and 2.1 can be

expressed using right truncations: in Table 2.3, the total effective number of X2 gates is

tr2(𝑤), while in Table 2.1, the total effective number of V gates is tr1(𝑤). Intuitively, tr𝑘(𝑁)

may be thought of as rounding the natural number 𝑁 down to the nearest multiple of 2𝑘. For

illustration, Table 2.4 displays the values of tr0(𝑁), tr1(𝑁), tr2(𝑁), and tr3(𝑁) for 𝑁 from 1

to 10. The values of b𝑘(𝑁) for 𝑘 = 1, 2, 3 are also shown for comparison. We observe that

tr0(𝑁) = 𝑁, and that tr𝑘(𝑁) is always a multiple of 2𝑘. For instance, tr1(𝑁) is always even,

and tr2(𝑁) is always a multiple of 4. These properties follow directly from Definition 3,
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because a natural number whose base-two representation ends in 𝑘 zeros is divisible by 2𝑘.

We can also see from Table 2.4 that

tr𝑘(𝑁) mod 2𝑘+1 = 2𝑘b𝑘(𝑁) (2.19)

for 𝑘 from 0 to 3. The following reasoning shows that this is true for all 𝑘. Reducing a natural

number modulo 2𝑘+1 is equivalent to taking only its rightmost 𝑘 + 1 bits and discarding the

rest. If 𝑁 is a natural number with an 𝑛-bit base-two representation 𝑁𝑛𝑁𝑛−1 …𝑁2𝑁1𝑁0,

then tr𝑘(𝑁) keeps only 𝑁𝑘 and the bits to its left, while tr𝑘(𝑁) mod 2𝑘+1 additionally discards

all bits to the left of 𝑁𝑘, therefore leaving only 𝑁𝑘 itself. In other words, the base-two

representation of tr𝑘(𝑁) mod 2𝑘+1 is 𝑁𝑘00… , with 𝑘 zeroes, which is equal to 2𝑘b𝑘(𝑁).

Finally, tr𝑘(𝑁) can also be expressed as tr𝑘(𝑁) = 𝑁 − (𝑁 mod 2𝑘). To see this, we

observe that 𝑁 mod 2𝑘 consists of the rightmost 𝑘 bits of 𝑁, and so subtracting 𝑁 mod 2𝑘

from 𝑁 simply sets those bits to zero, which is exactly the definition of tr𝑘(𝑁). Then, we

can derive the identity

tr𝑘(𝑁) + 2𝑘 = 𝑁 − (𝑁 mod 2𝑘) + 2𝑘

= (𝑁 + 2𝑘) − ((𝑁 + 2𝑘) mod 2𝑘) = tr𝑘(𝑁 + 2𝑘). (2.20)

The following proposition summarizes the observations made in the preceding discus-

sion:

Proposition 4. For all natural numbers 𝑁 and 𝑘, the following two properties hold:

1. tr𝑘(𝑁) is divisible by 2𝑘.

2. tr𝑘(𝑁) mod 2𝑘+1 = 2𝑘b𝑘(𝑁).
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3. tr𝑘(𝑁) + 2𝑘 = tr𝑘(𝑁 + 2𝑘).

We can now rewrite (2.17) using bit-extraction functions:

𝑤 − b0(𝑤) − 2b1(𝑤) ≡ 4b2(𝑤) (mod 8). (2.21)

Additionally, using a right-truncation function, we can also write a variant of this equation

using an exact equality rather than a congruence modulo 8:

𝑤 − b0(𝑤) − 2b1(𝑤) = tr2(𝑤). (2.22)

We are able to state (2.22) as an exact equality because its right-hand side corresponds to

the fifth column of Table 2.3, which shows the total effective number of X2 gates prior

to reduction modulo 8. In contrast, the right-hand side of (2.21) corresponds to the sixth

column of Table 2.3, which has been reduced modulo 8, so (2.21) can only be stated as a

congruence. In fact, equation (2.21) can be immediately derived from (2.22) using (2.19).

Equation (2.12) can be rewritten in the same way as well, giving

𝑤 − b0(𝑤) ≡ 2b1(𝑤) (mod 4), (2.23)

and the corresponding variant equation using an exact equality is

𝑤 − b0(𝑤) = tr1(𝑤). (2.24)
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2.3.5 Four-stage circuit using controlled-X3 gates

It may seem that the rewriting of equations in Section 2.3.4 has not accomplished anything

useful. However, expressing the equations in terms of bit-extraction and right-truncation

operations makes it easier to see how they can be generalized. In addition, while the op-

erational equations for the circuit structures shown in Figures 2.2 and 2.5 were derived

after the behavior of those circuit structures had already been analyzed, it is also possible

to go the other way around; i.e., starting from an operational equation, we can generate a

corresponding circuit structure and use the operational equation itself to analyze that circuit

structure’s behavior.

As an example of generating and analyzing a new circuit structure starting from an

operational equation, consider the following equality, which has the same general form

as (2.22) and (2.22):

𝑤 − b0(𝑤) − 2b1(𝑤) − 4b2(𝑤) = tr3(𝑤). (2.25)

It may not be obvious that this equality even holds at all, but it fits into a pattern that I will

prove later on to always hold, so we may simply assume its validity for now. From (2.25),

we would like to generate a circuit structure that operates by applying some sequence of

gates to a single target qubit, just as the circuit structures from Figures 2.2 and 2.5 operate by

applying sequences of V = X1 and X2 gates and their inverses to a target qubit 𝑦. The gates

applied to the target qubit will all be powers of U, which is a placeholder for a gate whose

identity will be determined later. Each term on the left-hand side of (2.25) will correspond

to a stage in the circuit structure to be generated, and in particular each term will represent

the contribution of its corresponding stage to the total effective number of U gates applied
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by the circuit, where a U𝑝 gate makes a contribution of 𝑝.

The first term of (2.25), which is just the input weight 𝑤 itself, corresponds to a cascade

of controlled-U gates analogous to the initial cascades of controlled-V and controlled-X2 gate

in Figures 2.2 and 2.5, respectively. The second term on the left-hand side of (2.25), −b0(𝑤),

corresponds to a U−1 gate that is controlled by a symmetric function with indicator function

b0(𝑤), since this will contribute −1 to the total effective number of U gates when b0(𝑤) = 1

and contribute 0 otherwise. But the 𝑛-input symmetric function with indicator function b0(𝑤)

is just the exclusive-OR of 𝑛 variables, so the second stage is just a U−1 gate controlled by

the exclusive-OR of all inputs. Using similar reasoning, the third and fourth terms on the

left-hand side of (2.25) correspond to U−2 and U−4 gates controlled by symmetric functions

with indicator functions b1(𝑤) and b2(𝑤), respectively. These symmetric functions are also

familiar: they are S2,3,6,7,…
𝑛 and S4,5,6,7,12,13,…

𝑛 , whose realizations were demonstrated in

Sections 2.2 and 2.3.2, respectively. The circuit structure that results from combining all

four stages is shown in Figure 2.7. Like Figure 2.5, this circuit structure is recursive because

it uses the circuit structures from Figures 2.2 and 2.5 as subcircuits but is itself a larger

variant of those structures.

𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

|0⟩

𝑦 U U U U U

⨁

U−1

⨁
S2,3,6,…

𝑛

U−2

S2,3,6,…
𝑛 S4,5,6,…

𝑛

U−4

S4,5,6,…
𝑛

Figure 2.7: Four-stage circuit structure generated from eq. (2.25).
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What we have done is essentially the reverse of what was done in Sections 2.2.3 and 2.3.3:

instead of deriving an operational equation based on the analysis of a circuit structure, we

have created a circuit structure based on an operational equation. The right-hand side of

the operational equation (2.25) then immediately tells us the behavior of the newly-created

circuit structure; namely, the total effective number of U gates applied to qubit 𝑦 will be

tr3(𝑤). From Proposition 4 we know that tr3(𝑤) is always a multiple of 8. Therefore, to

create permutative instances of Figure 2.7, we should choose U = X3, an eighth-root-of-

NOT gate. With this choice, we then have U16 = I, so the total effective number of U gates

can be reduced modulo 16. Using (2.19) again, we see that tr3(𝑤) mod 16 = 8b3(𝑤) and

substituting into (2.25) gives

𝑤 − b0(𝑤) − 2b1(𝑤) − 4b2(𝑤) ≡ 8b3(𝑤) (mod 16). (2.26)

Equation (2.26) allows us to deduce the form of the symmetric functions realized by

instances of Figure 2.7 with U = X3. When b3(𝑤) = 1, the total effective number of

U gates applied to 𝑦 is congruent to 8 modulo 16, so the operation performed on 𝑦 is

equivalent to a NOT gate (since X3 is an eighth-root-of-NOT gate). When b3(𝑤) = 0, the

total effective number is congruent to 0 modulo 16, so no overall change is made to 𝑦. Hence,

the symmetric functions realized have indicator function b3(𝑤) and are therefore of the form

S8,9,10,…,15,24,25,…
𝑛 . We can arrive at the same conclusion by calculating the total effective

number of U gates using a table analogous to Tables 2.1 and 2.3. Such a table is unnecessary

at this point, because all the information contained therein is already represented by (2.25)

and (2.26). Nevertheless, it is included here as Table 2.5 for completeness.
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Table 2.5: Calculation of total effective number ofU gates applied by instances of the circuit structure
from Figure 2.7. When U = X3, then an effective number of 8 U gates is equivalent to applying a
single NOT gate to qubit 𝑦.

Stage 1 Stage 2 Stage 3 Stage 4

0 0 0 0 0 0 0
1 1 −1 0 0 0 0
2 2 0 −2 0 0 0
3 3 −1 −2 0 0 0
4 4 0 0 −4 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
7 7 −1 −2 −4 0 0
8 8 0 0 0 8 8
9 9 −1 0 0 8 8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
15 15 −1 −2 −4 8 8
16 16 0 0 0 16 0
17 17 −1 0 0 16 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
23 23 −1 −2 −4 16 0
24 24 0 0 0 24 8
25 25 −1 0 0 24 8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖

Applied U gates Tot. eff. num.
of U gates

Eff. num.
of U gates
modulo 16
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2.4 General circuit structure with arbitrary number of stages

2.4.1 General form of realized symmetric functions and operational equations

All of the symmetric functions realized so far have indicator functions that are identi-

cal to a bit-extraction function. Specifically, S2,3,6,7,…
𝑛 and S4,5,6,7,12,13,…

𝑛 have indicator

functions b1(𝑤) and b2(𝑤), respectively, as observed in Section 2.3.4, and the functions

S8,9,10,…,15,24,25,…
𝑛 realized in Section 2.3.5 have the indicator function b3(𝑤). The following

definition introduces a name and systematic notation for these symmetric functions

Definition 5. Given natural numbers 𝑘 and 𝑛, the 𝑛-input dyadic indicator-periodic sym-

metric function (DIPS5) with order k and zero offset, which we denote by SDIP(𝑘,0)
𝑛 , is the

𝑛-input symmetric function with indicator function

𝐼DIP(𝑘,0)(𝑤) = b𝑘(𝑤). (2.27)

The name “dyadic indicator-periodic symmetric function” describes the “𝑚-off, 𝑚-on”

nature of these functions, as previously mentioned in Section 2.3.4: “indicator-periodic”

means that the indicator function of a DIPS is always periodic, while “dyadic” means that

the period is always a power of 2, with 𝑚 being exactly half of the period. The meaning of

“zero offset” and the 0 in DIP(𝑘, 0) will be discussed in Chapter 3; before then, I will omit

the phrase “zero offset” entirely when describing DIPS. The symmetric functions realized

in Sections 2.2, 2.3.2, and 2.3.5 are zero-offset DIPS with orders 1, 2, and 3, respectively,

which in the notation of 5 are SDIP(1,0)
𝑛 , SDIP(2,0)

𝑛 , and SDIP(3,0)
𝑛 . The order-0 DIPS SDIP(0,0)

𝑛

has indicator function b0(𝑤) and is therefore just the exclusive-OR function of 𝑛 variables.
5The acronym “DIPS” is both singular and plural, as the “S” can stand for “symmetric function” or

“symmetric functions”. I will thus use both phrases such as “the DIPS” and “collection of DIPS”.
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The operational equations (2.24), (2.22), and (2.25) also form a series that follows a

clear pattern. Specifically, it appears that

𝑤 − b0(𝑤) − 2b1(𝑤) −⋯ − 2𝑘−1b𝑘−1(𝑤) = tr𝑘(𝑤) (2.28)

for any nonnegative integer 𝑘. If true, then a whole infinite series of circuit structures can

be generated from (2.28), in the same way that the circuit structure from Figure 2.7 was

generated from the operational equation (2.25).

One straightforward way to see that (2.28) is always true is to observe that 2𝑖b𝑖(𝑤)

simply discards all bits of 𝑤 other than the 𝑖-th one, while keeping the 𝑖-th bit in its original

position with trailing zeroes. In other words, if 𝑤 has a 𝑗 + 1-bit base-two representation

𝑤𝑗𝑤𝑗−1 …𝑤2𝑤1𝑤0, then 2𝑖b𝑖(𝑤) is given by 𝑤𝑖0… 00, with 𝑖 trailing zeroes. Then, the

left-hand side of (2.28) simply subtracts away the rightmost 𝑘 bits of 𝑤, setting them to zero

and leaving only bits from the 𝑘-th bit and leftwards, which is exactly what tr𝑘(𝑤) does.

Hence, (2.28) does indeed hold for all natural numbers 𝑘.

While the foregoing proof of (2.28) is simple and straightforward, it does not showcase

an important connection between (2.28) and the recursive nature of the circuit structures

from Figures 2.5 and 2.7. This deeper connection will be used in Chapter 3. To illustrate it,

I now consider the left-hand side of (2.28) one term at a time, which corresponds to building

up a circuit structure such as the ones from Figures 2.5 and 2.7 one stage at a time.

2.4.2 Representation of adding one stage in the operational equation

The circuit structures from Figures 2.2, 2.5, and 2.7 form a series with each one being an

extension of the one before it. Specifically, the circuit structure shown in Figure 2.5 was

obtained by extending the one from Figure 2.2 with an additional stage. The circuit structure
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from Figure 2.7 was not derived this way, instead being generated directly from an operational

equation, but comparing Figure 2.7 with Figure 2.5 makes it clear that Figure 2.7 can also be

thought of as an extension of Figure 2.5. The corresponding operational equations likewise

form such a series, as do Tables 2.1, 2.3, and 2.5. The first two terms on the left-hand side

of (2.22) are the same as the left-hand side of (2.24), and the first three terms on the left-hand

side of (2.25) are the same as the left-hand side of (2.22). Similarly, the columns under the

“Stage 1” and “Stage 2” headings in Table 2.3 are identical to the corresponding columns

of Table 2.1, and the columns under the “Stage 1”, “Stage 2”, and “Stage 3” headings in

Table 2.5 are identical to the corresponding columns of Table 2.3.

The process of extending an existing circuit with a new stage can itself be represented

by an operational equation. For instance, consider the process of adding an additional stage

to the circuit structure in Figure 2.5 to create the one in Figure 2.7. In Table 2.5, we can

replace the columns for the first three stages with a single column representing the combined

contribution of these three stages, because they are the same as in Figure 2.5 (other than

altered target gates on qubit 𝑦) and their behavior is therefore already known from Table 2.3.

This gives Table 2.6, where the second column represents the combined contribution of the

first three stages in Figure 2.7 and is taken from the second-to-last column of Table 2.3.

Table 2.6 clearly shows how the behavior of the circuit structure from Figure 2.5, repre-

sented by the second column, is modified by the addition of a new stage, represented by the

third column, to create a new behavior, represented by the last column. Whereas the original

circuit structure from Figure 2.5 applies a number of gates to the target qubit 𝑦 that is always

a multiple of 4, the addition of the new stage causes the effective number of applied gates

to instead always be a multiple of 8. Table 2.6 has an analogue as an operational equation,

96



Table 2.6: Calculation of total effective number ofU gates applied by instances of the circuit structure
from Figure 2.7, treating Figure 2.7 as an extension of Figure 2.5 and explicitly using the already-
known behavior of the latter.

Stages 1–3 Stage 4

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 4 −4 0
⋮ ⋮ ⋮ ⋮
7 4 −4 0
8 8 0 8
⋮ ⋮ ⋮ ⋮
11 8 0 8
12 12 −4 8
⋮ ⋮ ⋮ ⋮
15 12 −4 8
16 16 0 16
⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖
Applied U gates Total effective

number of U gates
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which can be derived by substituting (2.22) into (2.25):

tr2(𝑤) − 4b2(𝑤) = tr3(𝑤). (2.29)

Equation (2.29) clearly shows that the existing behavior of the circuit structure from Fig-

ure 2.5—as expressed by the tr2(𝑤) term, which gives the effective number of applied gates

as a function of input weight—is modified by the new stage—which contributes −4b2(𝑤)

to the total effective number of applied gates—to create a new behavior expressed by the

tr3(𝑤) term.

The preceding discussion can be generalized in the following way. Suppose that we have

an existing circuit structure with the following properties:

1. It operates on a variable number 𝑛 of input qubits 𝑥1 through 𝑥𝑛 together with a result

qubit 𝑦. Any number of ancilla qubits may also be used.

2. All qubits other than 𝑦 are restored to their original states at the end of the circuit.

3. All gates in the structure that can affect the state of qubit 𝑦 are controlled gates whose

target gates are powers of a single gate U. Therefore, in any circuit derived from this

structure, the effective operation performed on qubit 𝑦 can always be expressed as a

number of U gates.

4. The effective number of U gates applied to qubit 𝑦 depends only on the input weight,

𝑤 = ∑ 𝑥𝑖, and is given by tr𝑘(𝑤) for some fixed 𝑘.

Properties 1 and 2 are just another way of stating that any circuit derived from the structure

satisfying these properties acts as a controlled gate whose target qubit is 𝑦 and whose control

function takes 𝑥1 through 𝑥𝑛 as inputs. All of the circuit structures shown in this chapter
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for realizing DIPS satisfy properties 3 and 4 as well. Conversely, given a circuit structure

satisfying the above conditions, any instance of the structure with U = X𝑘 will realize an

order-𝑘 DIPS. If U = X𝑘, then U2𝑘+1 = I, meaning that the total effective number of U

gates applied to qubit 𝑦 can be reduced modulo 2𝑘+1. From property 4 above, and using

(2.19), we see that this effective number is just tr𝑘(𝑤) mod 2𝑘+1 = 2𝑘b𝑘(𝑤). Since U is a

2𝑘-th-root-of-NOT gate, U2𝑘 = X, so the overall operation performed on 𝑦 is equivalent to

a NOT gate when b𝑘(𝑤) = 1. It then follows from Definition 5 that the circuit realizes an

order-𝑘 DIPS.

Now, given a circuit structure satisfying all of the properties above, I claim that it is always

possible to extend the structure, appending more gates at its end, to obtain a new structure

that also satisfies all of the properties above but with 𝑘 increased by one. Specifically, the

existing circuit structure should be extended as follows:

1. Add an additional ancilla qubit, initialized to 0.

2. Use another copy of the existing circuit structure with U = X𝑘 to realize an order-𝑘

DIPS, as described above. This copy targets the new ancilla qubit so that the output

of the realized DIPS is stored on that qubit.

3. Add a controlled-U−2𝑘
gate targeting 𝑦, with the new ancilla qubit as its control qubit.

4. Repeat step 2 to generate a mirror circuit that restores the ancilla qubit to its original

value of 0.

The new circuit structure resulting from the above procedure trivially satisfies property 1,

and it also satisfies property 2 since the additional ancilla bit is restored to its original value

using a mirror circuit. The controlled gate added in step 3 is the only one that targets qubit 𝑦,

and its target gate is indeed a power of U, so the new circuit structure also satisfies property
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Table 2.7: Generalization of Table 2.6 to the scenario of adding a new stage to an existing circuit
structure, where the existing structure applies a total effective number of tr𝑘(𝑤) U gates.

0 0 0 0
1 0 0 0
⋮ ⋮ ⋮ ⋮

2𝑘 − 1 0 0 0
2𝑘 2𝑘 −2𝑘 0
⋮ ⋮ ⋮ ⋮

2𝑘+1 − 1 2𝑘 −2𝑘 0
2𝑘+1 2𝑘+1 0 2𝑘+1

⋮ ⋮ ⋮ ⋮
3 ⋅ 2𝑘 − 1 2𝑘+1 0 2𝑘+1

3 ⋅ 2𝑘 3 ⋅ 2𝑘 −2𝑘 2𝑘+1

⋮ ⋮ ⋮ ⋮

𝑤 =
𝑛

∑
𝑖=1

𝑥𝑖

Applied U gates
Total effective

number of U gatesExisting circuit
tr𝑘(𝑤)

New stage
−2𝑘b𝑘(𝑤)

3. To see that the new structure satisfies property 4, we consult Table 2.7 and observe that

the second column of this table is just tr𝑘(𝑤), so it represents the effective number of U

gates applied to qubit 𝑦 by any circuit derived from the given, preexisting structure. The

third column shows the effective number of U gates applied by the controlled gate from step

3 of the above procedure. Since this controlled gate is controlled by a DIPS of order 𝑘 and

has target gate U−2𝑘
, the effective number of U gates is −2𝑘b𝑘(𝑤). Adding the effective

number of U gates contributed by the existing circuit structure and the new stage gives

the last column of Table 2.7, which we can see is just tr𝑘+1(𝑤). Therefore, the new circuit

structure satisfies property 4 with 𝑘 replaced by 𝑘 + 1.

In equation form, the information presented in Table 2.7 can be represented as

tr𝑘(𝑤) − 2𝑘b𝑘(𝑤) = tr𝑘+1(𝑤). (2.30)
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The following proposition formalizes (2.30) as a result with an explicit proof.

Proposition 6. For all natural numbers 𝑁 and 𝑘, the following equality holds:

tr𝑘(𝑁) − 2𝑘b𝑘(𝑁) = tr𝑘+1(𝑁), (2.31)

where, as before, b𝑘(𝑁) denotes the 𝑘-th bit of 𝑁, i.e., the bit with a positional value of 2𝑘.

Proof. If 𝑁 has the 𝑛 + 1-bit base-two representation 𝑏𝑛𝑏𝑛−1 … 𝑏2𝑏1𝑏0, then tr𝑘(𝑁) has the

base-two representation

tr𝑘(𝑁) = 𝑏𝑛 … 𝑏𝑘+1𝑏𝑘00… 0. (2.32)

(If 𝑛 < 𝑘, then 𝑁’s base-two representation can simply be padded on the left with zeros until

𝑛 = 𝑘, in which case (2.32) simply gives tr𝑘(𝑁) = 0.) Meanwhile, b𝑘(𝑁) = 𝑏𝑘 by definition,

so 2𝑘b𝑘(𝑁) has the base-two representation 𝑏𝑘00… 0, with 𝑘 zeros. Performing subtrac-

tion in base-two arithmetic, we see that tr𝑘(𝑁) − 2𝑘b𝑘(𝑁) has the base-two representation

𝑏𝑛 … 𝑏𝑘+1000… 0 and is therefore equal to tr𝑘+1(𝑁).

Using Proposition 6 we can easily prove (2.28) using induction: the case 𝑘 = 0 reduces

to 𝑤 = tr0(𝑤), which was already observed in Section 2.3.4, while if (2.28) is true for some

𝑘, then we can add b𝑘(𝑤) to both sides to obtain

𝑤 − b0(𝑤) − 2b1(𝑤) −⋯ − 2𝑘−1b𝑘−1(𝑤) − 2𝑘b𝑘(𝑤)

= tr𝑘(𝑤) − 2𝑘b𝑘(𝑤) = tr𝑘+1(𝑤) (2.33)

where Proposition 6 is used for the second equality. Eq. (2.28) is therefore true for 𝑘 + 1 as

well, completing the induction step.
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2.4.3 General circuit structure for realizing DIPS

Figure 2.8 shows how (2.30) translates to circuit form. This figure illustrates the earlier

described procedure of adding an additional stage to an existing circuit structure. The first

gate on the left of figure represents the existing circuit structure, which is assumed to apply

an effective number of tr𝑘(𝑤) U gates to qubit 𝑦. I have introduced the new notation of a

double line connecting the control function tr𝑘(𝑤) to its target gate U to indicate that U may

be effectively applied multiple times to 𝑦. This can be thought of as a generalization of a

controlled gate: instead of applying the target gate U either zero or one time to the target

qubit 𝑦 based on the output of a Boolean-valued control function, the target gate is effectively

applied a number of times determined by an integer-valued control function, which in this

case is tr𝑘(𝑤).

The remaining part of Figure 2.8 is the new stage being added, which corresponds to

the −2𝑘b𝑘(𝑤) term in (2.30). This stage consists of a U−2𝑘
gate controlled by the function

SDIP(𝑘,0)
𝑛 , which has indicator function b𝑘(𝑤). In accordance with (2.30), the whole circuit

structure shown in Figure 2.8 then applies a total effective number of U gates equal to

tr𝑘+1(𝑤).

𝑥1

𝑥2

𝑥𝑛

|0⟩

𝑦

tr𝑘(𝑤)

U

SDIP(𝑘,0)
𝑛 SDIP(𝑘,0)

𝑛

U−2𝑘

tr𝑘+1(𝑤)

U

=

Figure 2.8: Recursion relation used to realize a DIPS of order 𝑘 + 1 from one of order 𝑘.

Figure 2.9 shows a circuit structure generated from (2.28) in the same way that the circuit
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structure from Figure 2.7 was generated from the operational equation (2.25). This figure

uses the same double-lined control notation from Figure 2.8 as an abbreviation for a cascade

of controlled-U gates like the one at the start of the circuit structure shown in Figure 2.7.

The control function is labeled as “∑” because the number of U gates applied by such a

cascade is equal to the input weight, ∑ 𝑥𝑖. The proof of (2.28) from (2.30) by induction,

given at the end of Section 2.4.2, can also be translated into circuit terms to show that, for

all 𝑘, the circuit structure from Figure 2.9 applies a total effective number of tr𝑘(𝑤) U gates

to qubit 𝑦. Specifically, the base case 𝑘 = 0 corresponds to a single cascade of controlled-U

gates in which the number of U gates applied to 𝑦 is 𝑤 = tr0(𝑤). The induction step then

corresponds to using the identity represented by Figure 2.8 to show that, if all instances of

Figure 2.9 for some value of 𝑘 operate as claimed, then all instances with 𝑘 increased by

one also operate as claimed.

For clarity and future reference, the following theorem states the final result of the

preceding reasoning.

Theorem 7. For any positive integer 𝑘, an instance of the circuit structure from Figure 2.9

applies to qubit 𝑦 a total effective number of tr𝑘(𝑤) U gates, where 𝑤 is the input weight. In

other words, the overall operation performed on qubit 𝑦 will be U tr𝑘(𝑤).

As previously discussed in Section 2.4.2, if we take U = X𝑘 in Figure 2.9, then the total

effective number of U gates can be reduced modulo 2𝑘+1, and from (2.19) we then see that

this total effective number can be expressed as 2𝑘b𝑘(𝑤). Since U is a 2𝑘-th-root-of-NOT,

any instance of the resulting circuit structure will therefore invert qubit 𝑦 when b𝑘(𝑤) = 0,

meaning that such an instance realizes the symmetric function SDIP(𝑘,0)
𝑛 . We therefore see

that instances of Figure 2.9 are able to realize all functions of the form SDIP(𝑘,0)
𝑛 for any

positive 𝑛 and 𝑘. In fact, 𝑘 can even be zero: in this case, SDIP(𝑘,0)
𝑛 = SDIP(0,0)

𝑛 is just the
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exclusive-OR of 𝑛 variables, and Figure 2.9 reduces to just its first stage consisting of a

cascade of controlled-U gates. Since we take U = X𝑘, U will in fact just be an inverter for

𝑘 = 0, so that the resulting instance of Figure 2.9 is a cascade of CNOT gates, which does

indeed realize the exclusive-OR of 𝑥1 through 𝑥𝑛.

Corollary 8. For any nonnegative integer 𝑘 and positive integer 𝑛, the symmetric function

SDIP(𝑘,0)
𝑛 can be realized by an instance of Figure 2.9 with the given 𝑘 and 𝑛, and with

U = X𝑘.

∑

U

⨁ ⨁

U−1

SDIP(1,0) SDIP(1,0)

U−2

SDIP(2,0) SDIP(2,0)

U−4

SDIP(𝑘−1,0) SDIP(𝑘−1,0)

U−2𝑘−1

𝑥1

𝑥2

𝑥𝑛−1

𝑥𝑛

|0⟩

|0⟩

|0⟩

|0⟩
𝑦

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑘 − 1
ancillary

qubits

Figure 2.9: General circuit structure for an order-𝑘 DIPS.

2.5 Conclusion

In this chapter, I introduced the following:

• The general idea of constructing a circuit with a single output qubit 𝑦 in which only

one type of gate, plus its inverse and their powers, act on 𝑦. These types of circuits

can be analyzed by simply counting the effective number of gates applied to 𝑦.
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• The idea of considering such circuits to be a generalization of controlled gates. Like

a controlled gate, such circuits may or may not apply a target gate to the target qubit

𝑦 depending on the value of a control function. Unlike a controlled gate, the target

gate can be applied multiple times or even an effective negative number of times

(corresponding to applying the gate’s inverse). The control function determines the

effective number of times the target gate is applied, so its output may be any integer

instead of just a Boolean value as in a controlled gate. In particular, I introduced

circuits with a control function dependent on the base-two representation of the input

weight. Chapter 3 will make further use of such circuits.

• The new concept of dyadic indicator-periodic symmetric functions (DIPS), which are

denoted SDIP(𝑘,0)
𝑛 .

• A recursive method for realizing DIPS for any number of inputs, which makes use of

circuits of the above-described type.

As a complete example of the method for realizing DIPS, Figure 2.10 demonstrates

the realization of the nine-variable symmetric function S8,9
9 = SDIP(3,0)

9 . This circuit is a

fully-expanded instance, of the circuit structure from Figure 2.7 with 𝑛 = 9, Figure 2.7 itself

being a particular case of Figure 2.9 with 𝑘 = 3 and U = X3. To improve the legibility of

what would otherwise be very small labels in Figure 2.10, each of the target gates on qubit 𝑦

is labeled with just a single integer, which represents a power of X3. In other words, a target

gate labeled 𝑝 represents a X𝑝
3 gate, so for instance the label −2 represents a X−2

3 = X−1
2 gate.

From this figure, it is apparent that the recursive expansion causes the final circuit

to contain a large number of gates. However, it can also be seen that there are many

opportunities for CNOT gates to be canceled, which could dramatically reduce the number
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𝑦
|0⟩
|0⟩
𝑥9

𝑥8

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

1 1 1 1 1 1 1 1 1 −1

4 4 4 4 4 4 4 4 4 −4

−2

4 −4−4−4−4−4−4−4−4−4
2 2 2 2 2 2 2 2 2 −2

4 4 4 4 4 4 4 4 4 −4
−2

4 −4−4−4−4−4−4−4−4−4

−4

−4 −4 −4 −4 −4 −4 −4 −4 −4 4
2

−4 444444444

2 −2−2−2−2−2−2−2−2−2

Figure 2.10: Realization of the symmetric function S8,9
9 using the method presented in this chapter.
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of gates. Nevertheless, it is unclear how this cancellation can be performed optimally in the

general case for any circuit of the form shown in Figure 2.9, due to the multiple levels of

recursion. In the next chapter, I show that circuits such as the one in Figure 2.10 may indeed

be drastically simplified to ones with much fewer gates. I also use the concepts introduced

in this chapter to create realizations for a larger class of symmetric functions.

𝑦
𝑥9

𝑥8

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

Figure 2.11: A straightforward, naive realization of the symmetric function S8,9
9 using multiple-

control Toffoli gates.

By way of comparison, Figure 2.11 shows how the same symmetric function, S8,9
9 , may

be realized using multiple-control Toffoli gates in the most straightforward and naive possible

manner. This realization can be obtained by simply enumerating all possible input patterns

with a weight of 8 or 9: there are nine possible weight-8 input patterns with eight 1s and one

0, and one weight-9 input pattern which simply consists of all inputs set to 1. In equation

form, these input patterns allow the symmetric function to be expressed as

S8,9(𝑥1,… , 𝑥9) =⨁
1≤𝑖≤9

(¬𝑥𝑖 ∧⋀
1≤𝑗≤9

𝑗≠𝑖

𝑥𝑗) ⊕⋀
1≤𝑖≤9

𝑥𝑖, (2.34)
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the exclusive-OR of ten logical-AND terms that are realized by the ten 9-control Toffoli

gates of Figure 2.11. Using Maslov and Dueck’s quantum cost values for multiple-control

Toffoli gates [19], if we assume that no more than two ancillary qubits (the amount used

in Figure 2.10) are allowed, then each such 9-control Toffoli gate has a quantum cost of

154, meaning that the 9-control Toffoli gate must be implemented using a sequence of

154 two-qubit controlled gates. Therefore, the whole circuit in Figure 2.11 requires 1540

two-qubit controlled gates. In contrast, the circuit in Figure 2.10 requires only 236 two-qubit

controlled gates, even without making any of the obvious simplifications such as cancellation

of neighboring CNOT gates.
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Chapter 3

Realization of dyadic indicator-periodic symmetric functions with arbitrary offset

The main result from Chapter 2 was a method for realizing an infinite family of symmetric

functions, the zero-offset dyadic indicator-periodic symmetric functions. However, these

functions comprise only an infinitesimally small fraction of all possible symmetric functions.

Therefore, the immediate practical utility of this method is limited, even if one is considering

only symmetric functions, because an arbitrarily chosen symmetric function is very unlikely

to be a member of this family.

The objective of this chapter is to demonstrate that the method of Chapter 2 can, with

some minor modifications, be extended to realize a significantly larger family of symmetric

functions. As with the symmetric functions whose realizations were demonstrated in Chapter

2, these new functions have the property that their indicator functions are periodic with the

period being a power of two. However, unlike the symmetric functions discussed in Chapter

2, the indicator functions may now start at any point within their period, which I call the

offset of the symmetric function.

I will show that any symmetric function with the properties described above can be

realized using circuit structures very similar to those demonstrated in Chapter 2, with the

only difference being that some of controlled rotation gates in the structure may be replaced

with their inverses. Furthermore, the pattern of rotation directions can be determined from
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the base-two expansion of a symmetric function’s offset.

3.1 Motivating examples

3.1.1 Modification of circuit structure with altered rotation signs

The realization method presented in Chapter 2 began with the circuit structure shown in

Figure 2.2. Here, I consider a modification to this circuit structure that was not considered in

Chapter 2: replacement of the controlled-V† gate with a controlled-V gate, which produces

the circuit structure shown in Figure 3.1.

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑦 V V V V V

Figure 3.1: Result of replacing the controlled-V† gate in Figure 2.2 with a controlled-V gate.

As in Chapter 2, we may analyze this circuit structure by first counting the number of V

gates applied in each stage of the circuit and then adding the contributions from both stages

to obtain a total effective number of V gates for each possible input pattern weight. Table 3.1

shows the result. From this table, we can see that all instances of the circuit structure

in Figure 3.1 are permutative, because the total effective number of V gates is always a

multiple of 2. In fact, the total effective number of V gates applied to qubit 𝑦 is given by

𝑁eff = tr1(𝑤 + 1). In comparison, for the original circuit structure introduced in Chapter 2,

shown in Figure 2.2, the total effective number of V gates was given by 𝑁eff = tr1(𝑤).

110



Table 3.1: Calculation of total effective number of V gates applied by instances of the circuit structure
from Figure 3.1.

Stage 1 Stage 2

0 0 0 0 0 𝐼
1 1 1 2 2 𝑉 2 = 𝑋
2 2 0 2 2 𝑉 2 = 𝑋
3 3 1 4 0 𝐼
4 4 0 4 0 𝐼
5 5 1 6 2 𝑉 2 = 𝑋
6 6 0 6 2 𝑉 2 = 𝑋
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖
Applied V gates Tot. eff. num.

of V gates
Eff. num. of V
gates modulo 4

Operation applied
to qubit 𝑦

Therefore, the effect of replacing the last controlled-V† gate in Figure 2.2 with a V gate is to

reduce the input weight required to achieve any given 𝑁eff by 1.

The information contained in Table 3.1 can be represented as an operational equation

expressing the relationship between the number of V gates applied in each stage, exactly as

in (2.24):

𝑤 + b0(𝑤) = tr1(𝑤 + 1). (3.1)

Since V4 = I, we can reduce 𝑁eff = tr1(𝑤 + 1) modulo 4, giving tr1(𝑤 + 1) mod 4 =

2b1(𝑤 + 1). Therefore, an instance of Figure 3.1 applies the equivalent of two V gates to

qubit 𝑦 when b1(𝑤+1) = 1. This occurs when 𝑤 is congruent to either 1 or 2 modulo 4, and

the first few values of 𝑤 satisfying that condition are 1, 2, 5, 6, etc. The family of symmetric

function realized by instances of Figure 3.1 is hence S1,2,5,6,…
𝑛 . Since the indicator function,

b1(𝑤 + 1), of this family of symmetric functions is just a shifted b1(𝑤) function, it still

exhibits the same “2-on, 2-off” property previously noted in Chapter 2.
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𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

|0⟩

𝑦 X2 X2 X2 X2 X2

⨁

X2

⨁
S1,2,5,…

𝑛

X2
2

S1,2,5,…
𝑛

Figure 3.2: Extended variant of Figure 3.1 with V replaced by X2, analogous to Figure 2.5.

3.1.2 Use of various combinations of rotation signs in circuits with three and four

stages

The family of symmetric functions realized by instances of the circuit structure from Fig-

ure 3.1, S1,2,5,6,…
𝑛 , is not really new because it can be obtained as the exclusive-OR of

S2,3,6,7,…
𝑛 with S1,3,5,7,…

𝑛 , where S1,3,5,7,…
𝑛 is itself an exclusive-OR of all its input variables.

However, we can extend the circuit structure of Figure 3.1 by analogy with the procedure used

in Section 2.3.2, replacing the V gates of Figure 3.1 with X2 gates and adding a third stage

controlled by a symmetric function with a known realization. In Section 2.3.2, specifically

as shown in Figure 2.5, the symmetric function controlling the third stage was S2,3,6,7,…
𝑛 , but

here we will use S1,2,5,6,…
𝑛 instead, for a reason that will be discussed shortly. This function

has a known realization, that being just demonstrated in Figure 3.1. The target gate of the

third stage was a X−2
2 = V† gate in Figure 2.5, but here we replace it with X2

2 by analogy

with the change from Figure 2.2 to 3.1, where the V† gate was replaced with V .

Figure 3.2 shows the result of the changes described in the previous paragraph, and

Table 3.2 shows the corresponding calculation of the total effective number of X2 gates
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Table 3.2: Calculation of total effective number of X2 gates applied by instances of the circuit
structure from Figure 3.2.

Stage 1 Stage 2 Stage 3

0 0 0 0 0 0 I
1 1 1 2 4 4 X4

2 = X
2 2 0 2 4 4 X4

2 = X
3 3 1 0 4 4 X4

2 = X
4 4 0 0 4 4 X4

2 = X
5 5 1 2 8 0 I
6 6 0 2 8 0 I
7 7 1 0 8 0 I
8 8 0 0 8 0 I
9 9 1 2 12 4 X4

2 = X
10 10 0 2 12 4 X4

2 = X
11 11 1 0 12 4 X4

2 = X
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖
Applied X2 gates Tot. eff. num.

of X2 gates
Eff. num. of X2
gates modulo 8

Operation applied
to qubit 𝑦

applied to 𝑦. Again following the same reasoning used in Chapter 2, we reduce the total

effective number of X2 gates modulo 8 because X8
2 = I. From the last column of Table 3.2,

we see that an instance of Figure 3.2 inverts 𝑦 when the input weight is in the list 1, 2, 3, 4,

9, 10, 11, etc., so it realizes the symmetric function S1,2,3,4,9,10,11,…
𝑛 .

A operational equation similar to (3.1), and also analogous to the operational equations

(2.24), (2.22), and (2.25) introduced in Chapter 2, can now be written for Figure 3.2:

𝑤 + b0(𝑤) + 2b1(𝑤 + 1) = tr2(𝑤 + 3), (3.2)

where the terms in this equation correspond to the second through fifth columns of Table 3.2.

Reducing the right-hand side of (3.2) modulo 8 gives tr2(𝑤+3) mod 8 = 4b2(𝑤+3), which

corresponds to the sixth (second-to-last) column of Table 3.2. Therefore, the symmetric
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Table 3.3: Comparison of total effective number of X2 gates applied by instances of the circuit
structure from Figure 3.2 for third-stage control functions S2,3,6,7,…

𝑛 vs. S1,2,5,6,…
𝑛

0 0 0 0 0 0
1 2 0 2 2 4
2 2 2 4 2 4
3 4 2 6 0 4
4 4 0 4 0 4
5 6 0 6 2 8
6 6 2 8 2 8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖

Applied gates
from first
two stages

With Stage 3 control
func. S2,3,6,7,…

𝑛

With Stage 3 control
func. S1,2,5,6,…

𝑛

Stage 3
applied gates

Tot. eff. num.
of gates

Stage 3
applied gates

Tot. eff. num.
of gates

functions S1,2,3,4,9,10,11,…
𝑛 realized by instances of Figure 3.2 have indicator function b2(𝑤+3).

This indicator function follows a “4-on, 4-off” pattern. Note that these symmetric functions,

unlike the functions S1,2,5,6,…
𝑛 realized in Section 3.1.1, are “completely new” in the sense

that (for sufficiently large 𝑛) one cannot obtain them using exclusive-OR operations starting

from the symmetric functions whose realizations were presented in Chapter 2.

Why use S1,2,5,6,…
𝑛 instead of S2,3,6,7,…

𝑛 in the third stage of Figure 3.2? If we were to

use S2,3,6,7,…
𝑛 , then the resulting total effective number of X2 gates applied to 𝑦 would be as

shown in Table 3.3. From this table, it is apparent that only S1,2,5,6,…
𝑛 produces permutative

circuits when used as the control function for the third stage of Figure 3.2: with S2,3,6,7,…
𝑛 ,

an instance of the resulting circuit structure might apply an effective number of 2 or 6 X2

gates to 𝑦, which produce non-permutative operations.

We can extend the circuit structure in Figure 3.2 even further with additional stages,

as was done in Section 2.3.5 of Chapter 2. Also as in Section 2.3.5, this can be done by

starting with an operational equation and thence generating the circuit structure, rather than

114



obtaining the operational equation only as a result of analysis of an already-known circuit

structure generated by other means. For instance, consider the equation

𝑤 + b0(𝑤) + 2b1(𝑤 + 1) + 4b2(𝑤 + 3) = tr3(𝑤 + 7). (3.3)

The validity of this equation for all 𝑤 will be proved later as a case of Theorem 11, but

it can easily be verified for some small values of 𝑤. From this operational equation we

obtain the circuit structure shown in Figure 3.3, where the four stages of this circuit structure

correspond to the four terms on the left-hand side of (3.3). In particular, the third stage of

Figure 3.3 is derived from the 2b1(𝑤 + 1) term in (3.3) and therefore must apply a U2 gate

(equivalent to 2 U gates) when b1(𝑤 + 1) = 1, which it does by using a control function

with indicator function b1(𝑤+1), namely S1,2,5,6,…
𝑛 . Similarly, the fourth stage of Figure 3.3

is derived from the 4b2(𝑤 + 3) in (3.3) and therefore applies a U4 gate with the control

function S1,2,3,4,9,10,11,…
𝑛 .

𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

|0⟩

|0⟩

𝑦 U U U U U

⨁

U

⨁
S1,2,5,…

𝑛

U−2

S1,2,5,…
𝑛

S1,2,3,…
𝑛

U−4

S1,2,3,…
𝑛

Figure 3.3: Circuit structure derived from eq. (3.3).

Eq.(3.3) tells us that instances of Figure 3.3 apply a total effective number of tr3(𝑤 + 7)
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U gates to qubit 𝑦. If we take U = X3, then U8 = X and U16 = I, so this total effective

number can be reduced modulo 16, giving tr3(𝑤 + 7) mod 16 = 8b3(𝑤 + 7). Hence, an

instance of Figure 3.3 with U = X3 inverts 𝑦 when b3(𝑤 + 7) = 1 and therefore realizes the

symmetric function S1,2,…,8,17,18,…,24,33,34,…
𝑛 , where the indicator function follows an “8-on,

8-off” pattern. The ON-set of this symmetric function consists of positive integers of the

form 16𝑚 + 𝑝, where 𝑚 is any integer and 1 ≤ 8 ≤ 𝑝.

The operational equations (3.1), (3.2), and (3.3) all follow the pattern

𝑤 + b0(𝑤) + 2b1(𝑤) +⋯ + 2𝑘−1b𝑘−1(𝑤) = tr𝑘(𝑤 + 2𝑘 − 1). (3.4)

However, the next example breaks this pattern by allowing an arbitrary sign for the rotation

in each stage. For instance, Figure 3.4 shows another circuit structure that differs from

Figure 3.2 only in the target gate used for the third stage, which is now X−2
2 . This circuit

structure has the operational equation

𝑤 + b0(𝑤) − 2b1(𝑤 + 1) = tr2(𝑤 + 1), (3.5)

which shows that instances of this structure realize symmetric functions with indicator

function tr2(𝑤 + 1) mod 8 = b2(𝑤 + 1) and therefore of the form S3,4,5,6,11,12,13…
𝑛 .

3.1.3 DIPS with nonzero offset

At this point, we can see that the symmetric functions generated by allowing a different

rotation sign in each stage all appear to have indicator functions of the form b𝑘(𝑤 + 𝑠). In

other words, these indicator functions have an additional shift 𝑠 compared with the indicator

functions b𝑘(𝑤) of the DIPS realized in Chapter 2. The following definition extends the
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𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

|0⟩

𝑦 X2 X2 X2 X2 X2

⨁

X2

⨁
S1,2,5,…

𝑛

X−2
2

S1,2,5,…
𝑛

Figure 3.4: The circuit structure from Figure 3.2 with the last controlled-X2
2 gate replaced by a

controlled-X−2
2 .

SDIP(𝑘,0) notation from Chapter 2 to incorporate the new shift 𝑠, giving the notation SDIP(𝑘,𝑠):

Definition 9. Given natural numbers 𝑘, 𝑛, and 𝑠, the 𝑛-input dyadic indicator-periodic sym-

metric function (DIPS) with order 𝑘 and offset 𝑠, denoted SDIP(𝑘,𝑠)
𝑛 , is the 𝑛-input symmetric

function with indicator function

𝐼DIP(𝑘,𝑠)(𝑤) = b𝑘(𝑤 + 𝑠). (3.6)

Therefore, an order-𝑘 DIPS with nonzero offset has a periodic indicator function that

follows a “2𝑘-on, 2𝑘-off” pattern, like the zero-offset DIPS from Chapter 2, but the point

at which the indicator function switches from 0 to 1 or vice versa is different than for a

zero-offset DIPS. The indicator function b𝑘(𝑤) of a zero-offset DIPS first attains the value 1

as 𝑤 = 2𝑘, but that of an order-𝑘 offset-𝑠 DIPS, b𝑘(𝑤+ 𝑠), first attains the value 1 earlier, at

𝑤 = 2𝑘 − 𝑠, assuming that 𝑠 ≤ 2𝑘.

To give some examples of this new notation, the symmetric functions realized by in-

stances of Figure 3.2, S1,2,5,6,…
𝑛 , can be denoted SDIP(1,1)

𝑛 . In comparison with SDIP(1,0)
𝑛 =
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S2,3,6,7,…
𝑛 , we can see that the members of the ON-set have been shifted or offset by 1,

illustrating the reason for the name “offset”. Similarly, the functions S1,2,3,4,9,10,11,…
𝑛 and

S3,4,5,6,11,12,13…
𝑛 can be denoted SDIP(2,3)

𝑛 and SDIP(2,1)
𝑛 , respectively, and comparison with

SDIP(2,0)
𝑛 = S4,5,6,7,12,13,14,…

𝑛 shows that the members of ON-sets of the first two functions are

indeed offset by 3 and 1, respectively. The functions S1,2,…,8,17,18,…,24,33,34,…
𝑛 , realized by

instances of Figure 3.3, are order-3 DIPS SDIP(3,7)
𝑛 .

Any order-𝑘 DIPS with an offset greater than 2𝑘 is either identical to or an inversion of

an order-𝑘 DIPS with an offset less than 2𝑘. Specifically,

SDIP(𝑘,𝑠)
𝑛 = SDIP(𝑘,𝑠 mod 2𝑘+1)

𝑛 (3.7)

for any natural numbers 𝑘 and 𝑠. This can be seen from (3.6) and some basic properties of

base-two arithmetic: adding 2𝑘+1, which has base-two representation 100… 00 with 𝑘 + 1

zeroes, to any natural number 𝑁 cannot possibly affect the last 𝑘+1 bits of 𝑁, so b𝑘(𝑤+𝑠+

2𝑘+1) = b𝑘(𝑤 + 𝑠) for all 𝑠, from which it follows that b𝑘(𝑤 + 𝑠) = b𝑘(𝑤 + (𝑠 mod 2𝑘+1)).

Similarly, 2𝑘 has base-two representation 100… 00 with 𝑘 zeroes, putting the 1 in the 𝑘-th

bit position, so adding 2𝑘 to a natural number 𝑁 always inverts the 𝑘-th bit of 𝑁. Therefore,

b𝑘(𝑤 + 𝑠 + 2𝑘) = ¬b𝑘(𝑤 + 𝑠), (3.8)

which implies via Definition 9 that

SDIP(𝑘,𝑠+2𝑘)
𝑛 = ¬SDIP(𝑘,𝑠)

𝑛 (3.9)

for all 𝑛, 𝑘 and 𝑠. Combining (3.7) and (3.9), it is easy to see that an order-𝑘 DIPS with
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arbitrary offset can always be expressed in terms of an order-𝑘 DIPS with offset less than 2𝑘

using at most one logical NOT and no other operations. For instance, SDIP(1,5)
𝑛 is the same

as SDIP(1,1)
𝑛 = S1,2,5,6,…

𝑛 , and SDIP(1,3)
𝑛 is its negation.

3.2 General circuit structure with arbitrary rotation signs

3.2.1 Mathematical analysis of adding one stage with arbitrary rotation sign

In Section 3.1.2, it was observed that the operational equations for the considered circuit

structures all followed the pattern (3.4), until this pattern was broken by (3.5). However, the

following more general pattern includes both (3.4) and (3.5) as cases:

𝑤 ± b0(𝑤) ± 2b1(𝑤 + 𝑠1) ± 4b2(𝑤 + 𝑠2)

±⋯ ± 2𝑘−1b𝑘−1(𝑤 + 𝑠𝑘−1) = tr𝑘(𝑤 + 𝑠𝑘), (3.10)

where 𝑠1 through 𝑠𝑘 are arbitrary natural numbers and each of the terms on the left-hand side

after the first may independently have a positive or negative sign. Eq. (3.10) corresponds to

and can be used to generate the circuit structure shown in Figure 3.5. This circuit structure

is similar to Figure 2.9 from Chapter 2 but has the following changes: the control function in

each stage from the third onwards now incorporates an offset 𝑠𝑖, and the target gates include

a plus-or-minus sign in their exponent, corresponding to the plus-or-minus signs in (3.10)

and representing the possibility of a positive or negative rotation when U itself is a rotation.

Unfortunately, we do not yet know how the parameters 𝑠𝑖 and the signs of the terms on

the left-hand side of (3.10) must relate to each other in order for the equation to be true. It is

also not yet clear whether all possible values of 𝑠𝑘 on the right-hand side of (3.10) can be

obtained through appropriate combinations of the other parameters. If all possible values
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∑

U

⨁ ⨁

U±1

SDIP(1,𝑠1) SDIP(1,𝑠1)

U±2

SDIP(2,𝑠2) SDIP(2,𝑠2)

U±4

SDIP(𝑘−1,𝑠𝑘−1) SDIP(𝑘−1,𝑠𝑘−1)

U±2𝑘−1

𝑥1

𝑥2

𝑥𝑛−1

𝑥𝑛

|0⟩

|0⟩

|0⟩

|0⟩
𝑦

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑘 − 1
ancillary

qubits

Figure 3.5: Circuit structure corresponding to (3.10).

of 𝑠𝑘 can be obtained, then (3.10) can be used to generate circuit structures that realize

order-𝑘 DIPS with any offset, by instantiating Figure 3.5 with the appropriate parameters

and U = X𝑘. In this section I will show that this is indeed the case.

Following the lead of Section 2.4, it is useful to examine the effect of adding a single

new stage to an existing circuit structure. Suppose that we have an existing circuit structure

satisfying the following properties, which are identical to the ones introduced in Section 2.4

except for one small change:

1. It operates on any number 𝑛 of input qubits 𝑥1 through 𝑥𝑛 together with a result qubit

𝑦. Any number of ancillary qubits may also be used.

2. All qubits other than 𝑦 are restored to their original states at the end of the circuit.

3. All gates in the structure that can affect the state of qubit 𝑦 are controlled gates whose

target gates are powers of a single gate U. (For this purpose, U† and powers of it are

considered negative powers of U.) Therefore, in any instance of the structure, the
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effective operation performed on qubit 𝑦 can always be expressed as a number of U

gates.

4. The effective number of U gates applied to qubit 𝑦 depends only on the input weight,

𝑤 = ∑ 𝑥𝑖, and is given by tr𝑘(𝑤 + 𝑠) for some fixed 𝑘 and 𝑠 < 2𝑘.

The change from Section 2.4 is that property 4 now allows the total effective number of U

gates to be tr𝑘(𝑤 + 𝑠), with some possibly nonzero offset 𝑠, instead of just tr𝑘(𝑤). Consider

the process of adding one additional stage to this existing structure, where the new stage

consists of either a controlled-U2𝑘
or controlled-U−2𝑘

gate with a symmetric function as its

control function. Tables 3.4 and 3.5 demonstrate the two possibilities for the target gate of

the new stage. In both cases, if the new circuit structure is to also satisfy properties 1 through

4 above, with 𝑘 replaced by 𝑘 + 1, then there is only one possibility for the control function

of the new stage: it must be SDIP(𝑘,𝑠)
𝑛 , because any other control function would result in the

total effective number of U gates (as seen in the last columns of Tables 3.4 and 3.5) taking

on values other than multiples of 2𝑘+1, which would violate property 4 above.

From Tables 3.4 and 3.5 we can make the following observations. When the added stage

has a negative rotation U−2𝑘
as its target gate, then the resulting total effective number of

gates jumps from 0 to 2𝑘+1 at an input weight of 𝑤 = 2𝑘+1 − 𝑠, so this total effective number

appears to be given by tr𝑘+1(𝑤+ 𝑠). On the other hand, when the added stage has a positive

rotation U2𝑘
as its target gate, then the resulting total effective number of gates jumps from

0 to 2𝑘+1 at an input weight of 𝑤 = 2𝑘 − 𝑠, so it appears to be given by tr𝑘+1(𝑤+ 𝑠+ 2𝑘). In

sum, the offset 𝑠 appears to increase by 2𝑘 with a positive rotation but remain the same for a

negative rotation. This phenomenon can be concisely formulated in mathematical terms in

the following way. Let 𝑑 = 0 if the new stage’s target gate is a positive rotation and 𝑑 = 1 if

it is a negative rotation, so that (−1)𝑑 represents the sign of the target gate’s rotation. Then,
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Table 3.4: Total effective number of U gates resulting from addition of a new stage with negative
target rotation to an existing circuit structure.

Existing circuit New stage

0 0 0 0
⋮ ⋮ ⋮ ⋮

2𝑘 − 𝑠 − 1 0 0 0
2𝑘 − 𝑠 2𝑘 −2𝑘 0

⋮ ⋮ ⋮ ⋮
2𝑘+1 − 𝑠 − 2 2𝑘 −2𝑘 0
2𝑘+1 − 𝑠 − 1 2𝑘 −2𝑘 0

2𝑘+1 − 𝑠 2𝑘+1 0 2𝑘+1

2𝑘+1 − 𝑠 + 1 2𝑘+1 0 2𝑘+1

⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖
Applied U gates Tot. eff. num.

of U gates

Table 3.5: Total effective number of U gates resulting from addition of a new stage with positive
target rotation to an existing circuit structure.

Existing circuit New stage

0 0 0 0
⋮ ⋮ ⋮ ⋮

2𝑘 − 𝑠 − 1 0 0 0
2𝑘 − 𝑠 2𝑘 2𝑘 2𝑘+1

⋮ ⋮ ⋮ ⋮
2𝑘+1 − 𝑠 − 2 2𝑘 2𝑘 2𝑘+1

2𝑘+1 − 𝑠 − 1 2𝑘 2𝑘 2𝑘+1

2𝑘+1 − 𝑠 2𝑘+1 0 2𝑘+1

2𝑘+1 − 𝑠 + 1 2𝑘+1 0 2𝑘+1

⋮ ⋮ ⋮ ⋮

𝑛

∑
𝑖=1

𝑥𝑖
Applied U gates Tot. eff. num.

of U gates
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when the target gate is active, the amount it contributes to the total effective number of U

gates is −(−1)𝑑2𝑘. Since the new stage’s control function is SDIP(𝑘,𝑠)
𝑛 , which has indicator

function b𝑘(𝑤 + 𝑠), that stage therefore contributes the amount of −(−1)𝑑2𝑘b𝑘(𝑤 + 𝑠) to

the total effective number of U gates. The offset 𝑠 increases by 𝑑 ⋅ 2𝑘 when the new stage is

added. The whole process of adding an additional stage to an existing circuit structure is

therefore mathematically described by the following proposition.

Proposition 10. For all natural numbers 𝑤, 𝑠, and 𝑘, and 𝑑 ∈ {0, 1}, the following equality

holds:

tr𝑘(𝑤 + 𝑠) − (−1)𝑑2𝑘b𝑘(𝑤 + 𝑠) = tr𝑘+1(𝑤 + 𝑠 + 𝑑 ⋅ 2𝑘). (3.11)

Proof. First, suppose that 𝑑 = 0. Then, substituting 𝑁 = 𝑤 + 𝑠 into (2.31) from Chapter 2,

Proposition 6, we have

tr𝑘(𝑤 + 𝑠) − 2𝑘b𝑘(𝑤 + 𝑠) = tr𝑘+1(𝑤 + 𝑠), (3.12)

which is the form of (3.11) when 𝑑 = 0.

Now consider the case 𝑑 = 1. In this case, we have

tr𝑘(𝑤 + 𝑠) + 2𝑘b𝑘(𝑤 + 𝑠) = tr𝑘(𝑤 + 𝑠) + 2𝑘(1 − ¬b𝑘(𝑤 + 𝑠)) (3.13)

= tr𝑘(𝑤 + 𝑠) + 2𝑘 − 2𝑘b𝑘(𝑤 + 𝑠 + 2𝑘) (3.14)

= tr𝑘(𝑤 + 𝑠 + 2𝑘) − 2𝑘b𝑘(𝑤 + 𝑠 + 2𝑘) (3.15)

= tr𝑘+1(𝑤 + 𝑠 + 2𝑘), (3.16)

where (3.13) uses the fact that the logical NOT of a bit 𝑏 ∈ {0, 1} can also be expressed

arithmetically as 1 − 𝑏, and uses (3.8) to replace ¬b𝑘(𝑤 + 𝑠) with b𝑘(𝑤 + 𝑠 + 2𝑘); (3.14)
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follows from (2.20) of Chapter 2; and (3.16) is the same as (3.12) with 𝑤 + 𝑠 replaced by

𝑤 + 𝑠 + 2𝑘.

Proposition 10 can be represented in circuit form as shown in Figure 3.6, which is

analogous to Figure 2.8 from Chapter 2. Figure 3.6 shows that given an existing circuit

structure that applies a total effective number of tr𝑘(𝑤 + 𝑠) U gates to qubit 𝑦, adding

U±2𝑘
gate controlled by an order-𝑘 offset-𝑠 DIPS creates a new structure that applies a total

effective number of either tr𝑘(𝑤 + 𝑠) or tr𝑘(𝑤 + 𝑠) U gates to 𝑦, depending on the rotation

sign of the target gate.

𝑥1

𝑥2

𝑥𝑛

|0⟩

𝑦

tr𝑘(𝑤 + 𝑠)

U

SDIP(𝑘,𝑠)
𝑛 SDIP(𝑘,𝑠)

𝑛

U−1𝑑2𝑘

tr𝑘+1(𝑤 + 𝑠 + 𝑑 ⋅ 2𝑘)

U

=

Figure 3.6: Recursion relation used to realize a DIPS of order 𝑘 + 1 from one of order 𝑘, showing
relationship between rotation sign and offsets.

3.2.2 General circuit structure for realizing DIPS of any order and offset

The following theorem, which characterizes the combinations of signs and offsets that will

satisfy (3.10), can now be proved using Proposition 10 as an induction step.

Theorem 11. Let 𝑘 and 𝑠 be natural numbers with 𝑠 < 2𝑘. Then the following equality

holds:

𝑤 −
𝑘−1

∑
𝑖=0

(−1)b𝑖(𝑠)2𝑖b𝑖(𝑤 + (𝑠 mod 2𝑖)) = tr𝑘(𝑤 + 𝑠) (3.17)

for all natural numbers 𝑤.
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Proof. We proceed by induction on 𝑘. First, for 𝑘 = 0, the sum in (3.17) is empty, so

the left-hand side reduces to just 𝑤. To satisfy 𝑠 < 2𝑘, 𝑠 must be zero, and we know that

tr0(𝑤) = 𝑤. Therefore, the right-hand side of (3.17) also reduces to 𝑤.

For the induction step, suppose that (3.17) holds for a particular 𝑘 and all 𝑠 < 2𝑘. We

wish to show that (3.17) also holds for 𝑘 + 1 and all 𝑠 < 2𝑘+1. To avoid confusion, we will

relabel this “new” 𝑠 as 𝑠′. Now let 𝑠 = 𝑠′ mod 2𝑘; i.e., 𝑠 is obtained by discarding the most

significant bit, b𝑘+1(𝑠′), of 𝑠′. Then 𝑠 < 2𝑘, so by the induction hypothesis, (3.17) holds.

Add the new term −(−1)b𝑘+1(𝑠′)2𝑘b𝑖(𝑤 + 𝑠) to both sides of (3.17) to obtain

𝑤 − [
𝑘−1

∑
𝑖=0

(−1)b𝑖(𝑠)2𝑖b𝑖(𝑤 + (𝑠 mod 2𝑘))] − (−1)b𝑘(𝑠′)2𝑘b𝑘(𝑤 + 𝑠)

= tr𝑘(𝑤 + 𝑠) − (−1)b𝑘(𝑠′)2𝑘b𝑘(𝑤 + 𝑠). (3.18)

Since 𝑠 was obtained by discarding the most significant bit from 𝑠′, the base-two representa-

tions of 𝑠 and 𝑠′ agree in all bits up to the (𝑘 − 1)-th one. In other words, b𝑖(𝑠) = b𝑖(𝑠′) for

𝑖 < 𝑘. Additionally, since 𝑠 < 2𝑘, 𝑠 mod 2𝑘 = 𝑠, so the new term on the left-hand side of

(3.18) can be absorbed into the sum, giving

− [
𝑘−1

∑
𝑖=0

(−1)b𝑖(𝑠)2𝑖b𝑖(𝑤 + (𝑠 mod 2𝑖))] − (−1)b𝑘(𝑠′)2𝑘b𝑘(𝑤 + 𝑠)

= −[
𝑘−1

∑
𝑖=0

(−1)b𝑖(𝑠′)2𝑖b𝑖(𝑤 + (𝑠 mod 2𝑖))] − (−1)b𝑘(𝑠′)2𝑘b𝑘(𝑤 + (𝑠 mod 2𝑘))

= −
𝑘

∑
𝑖=0

(−1)b𝑖(𝑠′)2𝑖b𝑖(𝑤 + (𝑠 mod 2𝑖))

= −
𝑘

∑
𝑖=0

(−1)b𝑖(𝑠′)2𝑖b𝑖(𝑤 + (𝑠′ mod 2𝑖)). (3.19)

In the last line of (3.19), we have furthermore used the fact that, since 𝑠 and 𝑠′ agree in all
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bits up to the (𝑘 − 1)-th, 𝑠 mod 2𝑖 = 𝑠′ mod 2𝑖 for all 𝑖 ≤ 𝑘.

Now observe that, again since 𝑠 was obtained by discarding the most significant bit

from 𝑠′, 𝑠′ can be obtained by adding this bit with its appropriate place value back to 𝑠, i.e.,

𝑠′ = 𝑠 + b𝑘(𝑠′) ⋅ 2𝑘. Use this fact and apply Proposition 10 to the right-hand side of (3.18)

to get

tr𝑘(𝑤 + 𝑠) − (−1)b𝑘(𝑠′)2𝑘b𝑘(𝑤 + 𝑠)

= tr𝑘+1(𝑤 + 𝑠 + b𝑘(𝑠′) ⋅ 2𝑘) = tr𝑘+1(𝑤 + 𝑠′). (3.20)

Substituting (3.19) and (3.20) into (3.18) gives

𝑤 −
𝑘

∑
𝑖=0

(−1)b𝑖(𝑠′)2𝑖b𝑖(𝑤 + (𝑠′ mod 2𝑖)) = tr𝑘+1(𝑤 + 𝑠′), (3.21)

which completes the induction step.

Theorem 11 is a generalization of Theorem 7 that shows how (3.10) can be satisfied for

any 𝑠𝑘. Specifically, to get a desired 𝑠𝑘 on the right-hand side of (3.10), take 𝑠𝑖 = 𝑠𝑘 mod 2𝑖

for 1 ≤ 𝑖 ≤ 𝑘− 11 on the left-hand side and let the sign of the b𝑖 term be positive if and only

if the 𝑖-th bit of 𝑠 is 1. Substituting these parameters into Figure 3.5 then allows DIPS of any

order 𝑘 and offset 𝑠 < 2𝑘 to be realized. As observed at the end of Section 3.1, eqs. (3.7)

and (3.9) then allow DIPS of all other offsets to be obtained, since they are either identical

to a DIPS with offset 𝑠 < 2𝑘 or can be obtained by inverting such a DIPS.

Corollary 12. Given natural numbers 𝑛, 𝑘, and 𝑠 with 𝑠 < 2𝑘, the quantum circuit obtained

as an instance of Figure 3.5 with the following parameters realizes the symmetric function
1Note that there is no 𝑠0 in (3.10) because it would always be 0, which is consistent with Theorem 11:

𝑠𝑘 mod 20 = 𝑠𝑘 mod 1 = 0 for all 𝑠𝑘.
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Table 3.6: Parameter values used to reproduce the circuit structures from Section 3.1 using Corol-
lary 12.

Order 𝑘 Offset 𝑠 Values of 𝑠𝑖 Rotation signs

Figure 3.1 1 1 𝑠0 = 0 Positive

𝑠0 = 0 Positive
𝑠1 = 1 Positive

𝑠0 = 0 Positive
𝑠1 = 1 Positive
𝑠2 = 3 Positive

𝑠0 = 0 Positive
𝑠1 = 1 Negative

Circuit structure
from figure

Figure 3.2 2 3

Figure 3.3 3 7

Figure 3.4 2 1

SDIP(𝑘,𝑠)
𝑛 :

• 𝑛 is as given;

• U = X𝑘;

• 𝑠𝑖 = 𝑠 mod 2𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1; and

• The target gate of the stage controlled by SDIP(𝑖,𝑠𝑖)
𝑛 is U2𝑖 = X2𝑖

𝑘 = X𝑘−𝑖 if b𝑖(𝑠) = 1

and is U−2𝑖 = X−2𝑖

𝑘 = X−1
𝑘−𝑖 otherwise.

Table 3.6 shows parameter values that can be used in Corollary 12 to reproduce each of

the examples from Section 3.1. For each circuit structure examined in Section 3.1, Table 3.6

gives the order and offset of the realized DIPS, the value of each 𝑠𝑖,2 and the rotation signs

of the circuit stages corresponding to those 𝑠𝑖’s.
2An 𝑠0 = 0 entry is included for each example in order to specify the rotation direction for the corresponding

stage, which is the one controlled by the exclusive-OR of all inputs.
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3.3 Optimized circuit structure for realization of arbitrary DIPS

3.3.1 Derivation of the optimized structure

Corollary 12 provides a method to realize a DIPS with any order and offset. However,

the circuit structure used to accomplish this, shown in Figure 3.5, still suffers from the

same problem pointed out at the end of Chapter 2. Specifically, when fully expanded, the

structure from Figure 3.5 results in a very large number of two-qubit controlled gates for

even moderately large 𝑘, as demonstrated by Figure 2.10. While some of the CNOT gates in

Figure 2.10 can clearly be canceled, it is not clear to what extent this cancellation is possible

in general for large 𝑘, because of the many recursive steps needed to fully expand Figure 3.5.

Corollary 12 is based on (3.10) and Theorem 11, which show how an appropriate op-

erational equation can be obtained to realize any desired DIPS. Figure 3.5 is only one way

of mapping this operational equation to a circuit. Here I show that a different method of

mapping (3.10) to a circuit provides a much more efficient realization of DIPS compared

with recursively expanding Figure 3.5 fully.

To see how such a mapping might work, suppose that we wish to realize a DIPS of order

𝑘 and offset 𝑠 with 𝑠 < 2𝑘. Theorem 11 then tells us that we first require a DIPS of order

𝑖 and offset 𝑠 mod 2𝑖 for every 𝑖 from 0 to 𝑘 − 1. Assume that these DIPS have already

been realized; we will for the moment be unconcerned with the details of how this prior

realization takes place. Then the desired DIPS of order 𝑘 and offset 𝑠 can be realized using

an instance of the circuit structure shown in Figure 3.7 with appropriate rotation signs, where

the prerequisite DIPS of lower orders are assumed to be available on separate qubits.

If we now consider how the prerequisite DIPS of order 𝑘 − 1, SDIP(𝑘−1,𝑠 mod 2𝑘−1)
𝑛 , can

be realized, it becomes apparent that all of its own prerequisite DIPS are prerequisites of
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𝑥1

𝑥𝑛

SDIP(0,0)(𝑥1,… , 𝑥𝑛)

SDIP(1,𝑠 mod 2)(𝑥1,… , 𝑥𝑛)

SDIP(2,𝑠 mod 4)(𝑥1,… , 𝑥𝑛)

SDIP(𝑘−1,𝑠 mod 2𝑘−1)(𝑥1,… , 𝑥𝑛)

|0⟩ SDIP(𝑘,𝑠)(𝑥1,… , 𝑥𝑛)

∑

X𝑘 X±1
𝑘 X±2

𝑘 X±4
𝑘 X±2𝑘−1

𝑘

Figure 3.7: Realization of an order-𝑘, offset-𝑠 DIPS assuming that appropriate DIPS of lower orders
have already been realized.

SDIP(𝑘,𝑠)
𝑛 as well and so are already present in Figure 3.7. Specifically, to realize a DIPS of

order 𝑘 − 1 and offset 𝑠 mod 2𝑘−1, Theorem 11 tells us that we first require a DIPS of order

𝑖 and offset (𝑠 mod 2𝑘−1) mod 2𝑖 for every 𝑖 from 0 to 𝑘 − 2. But since 2𝑘−1 is an integer

multiple of 2𝑖 for 𝑖 ≤ 𝑘−2, we have (𝑠 mod 2𝑘−1) mod 2𝑖 = 𝑠 mod 2𝑖, so we require a DIPS

of order 𝑖 and offset 𝑠 mod 2𝑖 for 𝑖 from 0 to 𝑘−2, which are already assumed to be available

in Figure 3.7. SDIP(𝑘−1,𝑠 mod 2𝑘−1)
𝑛 can therefore be realized in the same way that SDIP(𝑘,𝑠)

𝑛 is

realized in Figure 3.7. Furthermore, this realization can be inserted back into Figure 3.7

itself, so that we do not have to assume SDIP(𝑘−1,𝑠 mod 2𝑘−1)
𝑛 is already available from the start.

The result is shown in Figure 3.8. In Figure 3.8, it is only assumed that the prerequisite

DIPS of orders 0 through 𝑘 − 2 have already been realized (as opposed to 0 through 𝑘 − 1

in Figure 3.7), and the circuit structure realizes the DIPS of both orders 𝑘 − 1 and 𝑘 − 2.

Continuing in this manner, the next step would be to realize the DIPS of order 𝑘 − 2,

SDIP(𝑘−1,𝑠 mod 2𝑘−2)
𝑛 . Theorem 11 tells us that we first require DIPS of order 𝑖 and offset

(𝑠 mod 2𝑘−2) mod 2𝑖 for 0 ≤ 𝑖 ≤ 𝑘 − 3, and like before we have (𝑠 mod 2𝑘−2) mod 2𝑖 =
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𝑥1

𝑥𝑛

SDIP(0,0)

SDIP(1,𝑠 mod 2)

SDIP(2,𝑠 mod 4)

|0⟩ SDIP(𝑘−1,𝑠 mod 2𝑘−1)

|0⟩ SDIP(𝑘,𝑠)

∑

X𝑘

∑

X𝑘−1 X±1
𝑘−1 X±2

𝑘−1 X±4
𝑘−1 X±2𝑘−2

𝑘−1

X±1
𝑘 X±2

𝑘 X±4
𝑘 X±2𝑘−1

𝑘

Figure 3.8: Realization of an order-𝑘, offset-𝑠 and order-(𝑘−1), offset-(𝑠 mod 2𝑘−1)DIPS, assuming
that appropriate DIPS of lower orders have already been realized.

𝑠 mod 2𝑖, so the prerequisite DIPS are again the ones that are already present in Figures 3.7

and 3.8. After that, the DIPS of order 𝑘 − 3 can be realized, and so on until the only DIPS

needed as a prerequisite is SDIP(0,0)
𝑛 , which is just the exclusive-OR of 𝑥1 through 𝑥𝑛 and so

is easily realized. The final resulting circuit structure is shown in Figure 3.9.

The circuit structure of Figure 3.9 not only realizes the originally desired function

SDIP(𝑘,𝑠)
𝑛 , but also simultaneously realizes a whole sequence of DIPS of the form SDIP(𝑖,𝑠 mod 2𝑖)

𝑛

for 0 ≤ 𝑖 ≤ 𝑘. This ability to realize a sequence of DIPS with orders from 0 to 𝑘 all at once

is very useful—particular uses will be demonstrated in 3.4 and in Chapter 4. However, if

only SDIP(𝑘,𝑠)
𝑛 is wanted, then the other qubits can be returned to their original states using

mirror gates.

A further optimization can be made to Figure 3.9 by noting that SDIP(0,0)
𝑛 , which is

the exclusive-OR of 𝑥1 through 𝑥𝑛, does not require its own ancillary qubit but rather can

be directly realized on the the qubit 𝑥𝑛 using the same cascade of CNOT gates seen in

every circuit structure from Chapter 2 and in this chapter prior to this section. Making

this modification produces the circuit structure shown in Figure 3.10, which uses one less
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𝑥1

𝑥𝑛

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

SDIP(0,0)(𝑥1,… , 𝑥𝑛)

SDIP(1,𝑠 mod 21)(𝑥1,… , 𝑥𝑛)

SDIP(2,𝑠 mod 22)(𝑥1,… , 𝑥𝑛)

SDIP(𝑘−1,𝑠 mod 2𝑘−1)(𝑥1,… , 𝑥𝑛)

SDIP(𝑘,𝑠)(𝑥1,… , 𝑥𝑛)

∑

X𝑘

∑

X𝑘−1

∑

X2

∑

X1

⨁

X±1
1

X±1
2 X±2

2

X±1
𝑘−1 X±2

𝑘−1

X±4
𝑘−1 X±2𝑘−2

𝑘−1

X±1
𝑘 X±2

𝑘 X±4
𝑘 X±2𝑘−1

𝑘

Figure 3.9: End result of continuing the realization process started in Figures 3.7 and 3.8.

ancillary qubit than the one from Figure 3.9.

As an example to demonstrate the efficiency of the circuit structure shown in Figure 3.10

in realizing DIPS, consider the DIPS SDIP(3,0)
9 whose realization was demonstrated at the

end of Chapter 2. Using Figure 3.10 to realize this DIPS produces the circuit shown in

Figure 3.11. As in Figure 2.10, to improve legibility of the already-small labels, the target

gates are labeled with a single integer representing a power of X3. Comparing this circuit

with the one from Figure 2.10 makes the improvement obvious—the circuit of Figure 3.11
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𝑥1

𝑥𝑛−1

𝑥𝑛

|0⟩

|0⟩

|0⟩

|0⟩

SDIP(0,0)(𝑥1,… , 𝑥𝑛)

SDIP(1,𝑠 mod 21)(𝑥1,… , 𝑥𝑛)

SDIP(2,𝑠 mod 22)(𝑥1,… , 𝑥𝑛)

SDIP(𝑘−1,𝑠 mod 2𝑘−1)(𝑥1,… , 𝑥𝑛)

SDIP(𝑘,𝑠)(𝑥1,… , 𝑥𝑛)

∑

X𝑘

∑

X𝑘−1

∑

X2

∑

X1

⨁

X±1
1

X±1
2 X±2

2

X±1
𝑘−1 X±2

𝑘−1

X±4
𝑘−1 X±2𝑘−2

𝑘−1

X±1
𝑘 X±2

𝑘 X±4
𝑘 X±2𝑘−1

𝑘

Figure 3.10: Elimination of one ancillary qubit from Figure 3.9 by realizing SDIP(0,0)(𝑥1,… , 𝑥𝑛) =
⨁𝑛

𝑖=1 𝑥𝑖 directly on qubit 𝑥𝑛 instead of on a separate ancillary qubit.

uses 41 two-qubit gates while the one from Figure 2.10 uses 236. In addition, the circuit

of Figure 3.11 also produces the DIPS of lower orders SDIP(0,0)
9 , SDIP(1,0)

9 , and SDIP(2,0)
9 as

outputs, which the circuit from Figure 2.10 does not. If these additional functions are not

wanted, then the quantum cost of Figure 3.11 actually increases because all gates other

than those targeting 𝑦 must be mirrored. Nevertheless, even in that case, the circuit from

Figure 3.11 with mirror gates would only use 70 gates, which is still a drastic improvement

over the 236 gates used in Figure 2.10.
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𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9 SDIP(0,0)

9 = S1,3,5,7,9
9

|0⟩ SDIP(1,0)
9 = S2,3,6,7

9

|0⟩ SDIP(2,0)
9 = S4,5,6,7

9

|0⟩ SDIP(3,0)
9 = S8,9

91 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 −4

−2 −4

−1 −2 −4

Figure 3.11: Realization of SDIP(3,0)(𝑥1,… , 𝑥9) = S8,9(𝑥1,… , 𝑥9) using the circuit structure of
Figure 3.10.

A second example that demonstrates the realization of a DIPS with nonzero offset is

given in Figure 3.12, where the function SDIP(3,5)
9 = S3,4,5,6,7,8,9

9 is realized. Since the offset

5 has base-two representation 101, applying Theorem 11 gives the operational equation

𝑤 + b0(𝑤) − 2b1(𝑤 + 1) + 4b2(𝑤 + 1) = tr3(𝑤 + 5), (3.22)

so the lower-order DIPS realized are SDIP(0,0)
9 = S1,3,5,7,9

9 , SDIP(1,1)
9 = S1,2,5,6,9

9 , and SDIP(2,1)
9 =

S3,4,5,6
9 .

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9 SDIP(0,0)

9 = S1,3,5,7,9
9

|0⟩ SDIP(1,1)
9 = S1,2,5,6,9

9

|0⟩ SDIP(2,1)
9 = S3,4,5,6

9

|0⟩ SDIP(3,5)
9 = S3,4,5,6,7,8,9

91 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4 4

2 −4

1 −2 4

Figure 3.12: Realization of SDIP(3,5)(𝑥1,… , 𝑥9) = S3,4,5,6,7,8,9(𝑥1,… , 𝑥9) using the circuit structure
of Figure 3.10, showing mixed rotation signs in the last part of the circuit.
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3.3.2 Analysis of quantum cost

Since the circuit structure of Figure 3.10 is already expressed entirely in terms of controlled-

root-of-NOT gates (keeping in mind that the blocks labeled “∑” and “⨁” are just abbre-

viations for cascades of controlled gates), its quantum cost complexity can be determined

by simply counting the total number of gates. Each of cascade of X𝑖 gates (with 𝑖 running

from 1 to 𝑘) at the start consists of 𝑛 gates, and there are 𝑘 such cascades, so they incur a

combined quantum cost of 𝑘𝑛. The following cascade of CNOT gates contains 𝑛 − 1 gates,

bringing the total cost up to 𝑘𝑛 + 𝑛 − 1 = (𝑘 + 1)𝑛 − 1. Finally, in the last part of the

circuit, we can see that there is a single gate targeting the first ancillary qubit, a two gates

targeting the second ancillary qubit, and so on up to 𝑘 gates targeting the final output qubit

for SDIP(𝑘,𝑠)
𝑛 , so the total number of gates in this part of the circuit is a triangular number

1 + 2 + ⋯ + 𝑘 = ∑𝑘
𝑖=1 𝑖 = 𝑘(𝑘 + 1)∕2. The total quantum cost of the whole circuit is

therefore

(𝑘 + 1)𝑛 − 1 + 𝑘(𝑘 + 1)
2

= (𝑘 + 1)(𝑛 + 𝑘
2
) − 1. (3.23)

Figure 3.10 was optimized from Figure 3.9 by observing that the exclusive-OR of 𝑥1

through 𝑥𝑛 could be realized on the same qubit where the input 𝑥𝑛 is provided. For some

purposes, like the counter circuit described in Section 3.4, we may need all output DIPS

to be produced on separate qubits from the inputs 𝑥1 through 𝑥𝑛, which necessitates the

use of Figure 3.9. The cascade of CNOT gates in Figure 3.9 contains one more gate than

the analogous cascade in Figure 3.10, and there is otherwise a one-to-one correspondence

between the gates of the two circuit structures, so the quantum cost of an instance of Figure 3.9

is one more than (3.23), i.e.,

(𝑘 + 1)(𝑛 + 𝑘
2
). (3.24)
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If a mirror circuit is used with Figure 3.10 to restore all qubits except the last to their

original states, so that only the output SDIP(𝑘,𝑠)
𝑛 is produced, then all gates not targeting the

last qubit must be mirrored. These mirror gates consist of 𝑘 − 1 cascades of controlled-X𝑖

gates, where each cascade contains 𝑛 gates, plus a cascade of 𝑛 − 1 CNOT gates, plus

1 + 2 +⋯+ (𝑘 − 1) = 𝑘(𝑘 − 1)∕2 additional controlled gates, giving a total quantum cost

of (𝑘 − 1)𝑛 + (𝑛 − 1) + 𝑘(𝑘 − 1)∕2 = 𝑘𝑛 + 𝑘(𝑘 − 1)∕2 − 1 for the mirror circuit. Adding

this cost onto (3.23) gives a total cost of

(2𝑘 + 1)𝑛 + 𝑘2 − 2 (3.25)

for a circuit that realizes only SDIP(𝑘,𝑠)
𝑛 and restores all other qubits to their original states.

Figure 3.10 is additionally seen to require 𝑘 ancillary qubits. The circuit complexity for

realizing a DIPS using Figure 3.10 can therefore be summarized as follows: quantum cost

is linear with respect to the number of inputs and quadratic with respect to the order of the

DIPS being realized, and the number of ancillary qubits needed is constant with respect to

the number of inputs and linear with respect to the order of the DIPS.

3.3.3 Algorithm to generate quantum circuits for DIPS

The circuit structure shown in Figure 3.10 is highly regular, so it is straightforward to produce

an algorithm that will generate an instance of this structure for given parameters 𝑛, 𝑘, and 𝑠.

Such an algorithm is given as Algorithm 1. Algorithm 2 is a modification of Algorithm 1

that adds a mirror circuit to Figure 3.10, so that only the single function SDIP(𝑘,𝑠)
𝑛 is realized

and all other qubits are restored to their original states.

If we assume that extracting a single bit from an integer is an 𝒪(1) operation, which

is the case on virtually all modern digital computers, then both Algorithms 1 and 2 have
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Algorithm 1: Realize the set of DIPS {SDIP(𝑗,𝑠 mod 2𝑗)
𝑛

|
| 0 ≤ 𝑗 ≤ 𝑘} for given 𝑛, 𝑘, 𝑠.

Function RealizeDips(𝑛, 𝑘, 𝑠)
Input: A positive integer 𝑛, nonnegative integer 𝑘, and nonnegative integer 𝑠
with 𝑠 < 2𝑘.

Output: A quantum circuit, operating on 𝑛 input qubits 𝑥1 through 𝑥𝑛 together
with 𝑘 ancillary qubits 𝑦1 through 𝑦𝑘, that behaves as follows: 𝑥𝑛 is left in a
state corresponding to the exclusive-OR of 𝑥1 through 𝑥𝑛, and when each 𝑦𝑗
begins in the state |𝑐𝑗⟩, with 𝑐𝑗 ∈ {0, 1}, the circuit leaves it in the state
||𝑐𝑗 ⊕ SDIP(𝑘,𝑠 mod 2𝑗)(𝑥1,… , 𝑥𝑛)⟩.

Let 𝑄 be a quantum circuit, initially containing no gates, that operates on qubits
𝑥1 through 𝑥𝑛 and 𝑦1 through 𝑦𝑘.

for 𝑗 from 𝑘 to 1 do
for 𝑖 from 1 to 𝑛 do

Append a controlled-X𝑗 gate with control 𝑥𝑖 and target 𝑦𝑗 to 𝑄.
end

end
for 𝑖 from 1 to 𝑛 − 1 do

Append a controlled-NOT gate with control 𝑥𝑖 and target 𝑥𝑖+1 to 𝑄.
end
Designate 𝑦0 as an alias for the qubit 𝑥𝑛.
for 𝑗 from 1 to 𝑘 do

for 𝑗′ from 0 to 𝑗 − 1 do
if b𝑗′(𝑠) = 1 then

Let U = X𝑗−𝑗′.
else

Let U = X−1
𝑗−𝑗′.

end
Append a controlled-U gate with control 𝑦𝑗′ and target 𝑦𝑗 to 𝑄.

end
end
Output the circuit 𝑄.

end
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run-time complexities proportional to the total number of gates in the circuits that they

generate. In other words, since neither algorithm involves any searching or backtracking,

each gate is generated in 𝒪(1) time. The total number of gates generated by Algorithms 1

and 2 are given by (3.23) and (3.25), respectively, which are both 𝒪(𝑘𝑛 + 𝑘2). Therefore,

both algorithms run in 𝒪(𝑘𝑛 + 𝑘2) time.

3.4 Use of DIPS as a counter circuit

3.4.1 Counter derived from DIPS of multiple orders

The ability to realize not only a DIPS of order 𝑘 but also DIPS of lower orders in a single

circuit structure can be used to create a counter circuit. Specifically, consider the DIPS

realized by the circuit structure from Figure 3.10 for offset 0. When realizing SDIP(𝑘,0)
𝑛 ,

the functions SDIP(0,0)
𝑛 through SDIP(𝑘−1,0)

𝑛 will also be realized. The order-𝑖 DIPS in this

sequence has indicator function b𝑖(𝑤), meaning that it outputs 1 when the 𝑖-th bit of its input

weight is 1. Therefore, if we collect the outputs of all the DIPS in the sequence, we can

produce the base-two representation of the input weight 𝑤.

Table 3.7 shows an example of the the above with 𝑘 = 2. From this table we see

that the combination of SDIP(2,0)
𝑛 , SDIP(1,0)

𝑛 , and SDIP(0,0)
𝑛 , in that order, gives the base-two

representation of the input weight 𝑤 when it is in the range 0 to 7. For larger input weights,

DIPS of higher orders SDIP(4,0)
𝑛 , SDIP(5,0)

𝑛 etc. have to be incorporated as well, since the

base-two representation of the input weight then exceeds three bits in length. In general an

instance of Figure 3.10 with offset 0 and a given 𝑘 outputs the base-two representation of the

input weight 𝑤 = ∑ 𝑥𝑖 as long as 𝑤 < 2𝑘+1; this is what is meant by a “counter” circuit. In

Chapters 7 and 8 I will make use of counter circuits in several ways when designing quantum

oracles for Grover’s algorithm.
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Algorithm 2: Realize a single DIPS by adding mirror gates to a circuit produced
by Algorithm 1.
Function RealizeDipsWithMirror(𝑛, 𝑘, 𝑠)

Input: A positive integer 𝑛, nonnegative integer 𝑘, and nonnegative integer 𝑠
with 𝑠 < 2𝑘.

Output: A quantum circuit, operating on 𝑛 input qubits 𝑥1 through 𝑥𝑛 together
with 𝑘 ancillary qubits 𝑦1 through 𝑦𝑘, that behaves as follows: all 𝑥𝑖 and 𝑦1
through 𝑦𝑘−1 are left in the same states in which they started, while if 𝑦𝑘
begins in the state |𝑐𝑘⟩, then the circuit leaves it in the state
||𝑐𝑘 ⊕ SDIP(𝑘,𝑠)(𝑥1,… , 𝑥𝑛)⟩.

Let the quantum circuit 𝑄 = RealizeDips(n, k, s).
Designate 𝑦0 as an alias for the qubit 𝑥𝑛.
for 𝑗 from 𝑘 − 1 to 1 do

for 𝑗′ from 𝑗 − 1 to 0 do
if b𝑗′(𝑠) = 1 then

Let U = X𝑗−𝑗′.
else

Let U = X−1
𝑗−𝑗′.

end
Append a controlled-U gate with control 𝑦𝑗′ and target 𝑦𝑗 to 𝑄.

end
end
for 𝑖 from 𝑛 − 1 to 1 do

Append a controlled-NOT gate with control 𝑥𝑖 and target 𝑥𝑖+1 to 𝑄.
end
for 𝑗 from 1 to 𝑘 do

for 𝑖 from 𝑛 to 1 do
Append a controlled-X𝑗 gate with control 𝑥𝑖 and target 𝑦𝑗 to 𝑄.

end
end
Output the circuit 𝑄.

end
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Table 3.7: Computation of the base-two representation of the input weight 𝑤 using a collection of
DIPS.

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

𝑤 =
𝑛

∑
𝑖=1

𝑥𝑖

SDIP(2,0)(𝑥1,… , 𝑥𝑛)
= S4,5,6,7,…(𝑥1,… , 𝑥𝑛)

= b2(𝑤)

SDIP(1,0)(𝑥1,… , 𝑥𝑛)
= S2,3,6,7,…(𝑥1,… , 𝑥𝑛)

= b1(𝑤)

SDIP(0,0)(𝑥1,… , 𝑥𝑛)
= S1,3,5,7,…(𝑥1,… , 𝑥𝑛)

= b0(𝑤)

The concept of a counter circuit is not new, and one can be constructed more simply

by using incrementer circuits of the type shown in Figure 3.13. An incrementer circuit is

defined to operate as follows: the circuit accepts one control qubit as together with some

number 𝑟 of additional qubits, designated register qubits, and increments the natural number

represented in base-two by the register qubits when the control qubit has value 1. In other

words, if the register qubits’ values initially form the base-two representation of a number

𝑛, then the circuit updates their values to form the base-two representation of 𝑛 + 1 if the

control qubit has value 1. Otherwise, the register qubits remain unchanged. The incrementer

circuit of Figure 3.13 has 𝑐 as its control qubit, 𝑥𝑟 as its most significant register qubit, and

𝑥1 as its least significant register qubit.

By beginning with 𝑟 register qubits initialized to 0 and repeatedly applying the incre-

menter circuit from Figure 3.13 with a different control qubit each time, we can create a

circuit that counts the total number of ones present among the control qubits. However,

since each incrementer circuit uses Toffoli gates with 1 through 𝑟 − 1 control qubits, such a

circuit has the disadvantage of using many 𝑟− 1-control Toffoli gates, which result in a large
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𝑐

𝑥1

𝑥2

𝑥3

𝑥𝑟−1

𝑥𝑟

Figure 3.13: An incrementer circuit constructed from a sequence of Toffoli gates.

number of two-qubit gates when decomposed. In contrast, a DIPS-based circuit derived

from the structure shown in Figure 3.10 accomplishes the same function but does not require

any Toffoli gates at all, being already specified at the level of two-qubit gates.

With some modification, the counter circuit previously described can also be used to

count the number of 1s from the outputs of any number of arbitrary Boolean functions. In

other words, given Boolean functions 𝑓1 through 𝑓𝑚, each of 𝑛 variables 𝑥1 through 𝑥𝑛, the

counter circuit will output the base-two representation of

𝑚

∑
𝑖=1

𝑓𝑖(𝑥1,… , 𝑥𝑛) (3.26)

where, as elsewhere in this chapter and Chapter 2, the sum denotes an arithmetic sum where

the output of each Boolean function is simply treated as an integer, either 0 or 1. One way

to construct such a function-counting circuit is to simply allocate 𝑚 ancillary qubits, one to

store the output of each function, and then feed these 𝑚 qubits to a normal counter circuit.

This has the disadvantage of requiring a number of ancillary qubits equal to the number of

functions whose outputs are being counted. Instead, using the circuit structure shown in

Figure 3.14, the 1s present among the outputs of 𝑓1 through 𝑓𝑚 can be counted using only
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one ancillary qubit, not including the qubits used as the counter’s final output. In Figure 3.14,

each output 𝑦𝑗 for 0 ≤ 𝑗 ≤ 𝑘 can be expressed as

𝑦𝑗 = X∑𝑚
𝑖=1 𝑓𝑖(𝑥1,…,𝑥𝑛)

𝑗 (|0⟩); (3.27)

in other words, the circuit applies an X𝑗 gate∑𝑚
𝑖=1 𝑓𝑖(𝑥1,… , 𝑥𝑛) times to the qubit labeled

𝑦𝑗. Figure 3.14 therefore performs the same overall operation as the first part of Figure 3.10

consisting of the “∑” and “⨁” blocks, but with 𝑥1 through 𝑥𝑛 replaced by arbitrary Boolean

functions 𝑓1(𝑥1,… , 𝑥𝑛) through 𝑓𝑚(𝑥1,… , 𝑥𝑛). Adding the second part of Figure 3.10

(consisting of the controlled-X±𝑗
𝑖 gates) to the end of Figure 3.14 then produces the final

output of the counter.

𝑥1
𝑥2

𝑥𝑛

|0⟩ |0⟩
|0⟩ 𝑦0
|0⟩ 𝑦1
|0⟩ 𝑦2

|0⟩ 𝑦𝑟

𝑓1

X1

X2

X𝑟

𝑓1 𝑓2

X1

X2

X𝑟

𝑓2 𝑓𝑚

X1

X2

X𝑟

𝑓𝑚

Figure 3.14: Circuit structure used to count 1s from the outputs of arbitrary functions using only
one ancillary qubit. The controlled-X±𝑗

𝑖 gates from the second part of Figure 3.10 must be added to
the end of this structure to generate the final output of the counter.

3.4.2 Performance of the DIPS-based counter

Szyprowski and Kerntopf [14] demonstrated realizations for incrementer circuits of any

size, like the one from Figure 3.13 (which they call a “generalized Peres gate”), using two-
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qubit controlled gates. Their realizations have significantly lower quantum cost than that

obtained by simply decomposing the individual Toffoli gates in Figure 3.13 into two-qubit

gates. Interestingly, the approach used by Szyprowski and Kerntopf is similar in spirit

to the approach I independently presented in this and the previous chapter for realizing

DIPS, because it also directly uses controlled-2𝑘-th-root-of-NOT gates in a recursive circuit

structure. However, Szyprowski and Kerntopf’s objective is different than mine, because

they are concerned only with the family of generalized Peres gates and not with symmetric

functions at all. Although the method of Szyprowski and Kerntopf is targeted towards a

different ultimate goal than the method I present here, it is worthwhile to compare the two

methods since they both use two-qubit controlled-rotation gates and they may both be used

to create counter circuits.

Quantum cost of counter based on Szyprowski and Kerntopf’s method

Szyprowski and Kerntopf report a quantum cost of 𝑟2 for a circuit equivalent to the single

incrementer circuit shown in Figure 3.13 [14, Table I]. However, a counter circuit that counts

the number of ones present among 𝑛 input qubits requires 𝑛 incrementer circuits, since each

incrementer circuit can only count one of the input qubits. Therefore, the total quantum cost

is 𝑟2𝑛. Furthermore, with 𝑛 input qubits, the maximum possible number of 1s is of course

𝑛, so the output register of the counter requires 𝑟 = ⌈log2(𝑛 + 1)⌉ qubits (since an 𝑟-qubit

register is capable of representing integers up to 2𝑟 − 1). Therefore, using Szyprowski and

Kerntopf’s generalized Peres gates to implement a counter results in a total quantum cost of

𝑟2𝑛 = ⌈log2(𝑛 + 1)⌉2𝑛 (3.28)

when counting the 1s from 𝑛 input qubits.
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If the 1s are to be counted from the outputs of 𝑚 Boolean functions instead of directly

from input qubits, then a single ancillary qubit can be used, as shown in Figure 3.15. In this

figure, the notation of a double line with slash is used to indicate that the line in the schematic

represents a whole register of 𝑟 qubits. In other words, this double line corresponds to the

collection of qubits 𝑥1 through 𝑥𝑟 in Figure 3.13. We can see that 𝑚 incrementer circuits are

required, but addition, each of the included functions must be realized twice: once to compute

its output and once as a mirror circuit to restore the ancillary qubit to its original value.

Hence, if we let 𝐶𝑖 denote the quantum cost of realizing the function 𝑓𝑖, then the quantum

cost of the entire counter circuit becomes 2∑𝑚
𝑖=1 𝐶𝑖 + 𝑟2𝑚 = 2∑𝑚

𝑖=1 𝐶𝑖 + ⌈log2(𝑚 + 1)⌉2𝑚.

𝑥1

𝑥2

𝑥𝑛

|0⟩ |0⟩

|00… 0⟩ Count𝑟

𝑓1 𝑓1

+1

𝑓2 𝑓2

+1

𝑓𝑚 𝑓𝑚

+1

Figure 3.15: A counter of 𝑚 Boolean functions using incrementer circuits.

Quantum cost of my method

Again, to count the 1s from 𝑛 input qubits requires an output register of size 𝑟 = ⌈log2(𝑛 +

1)⌉, since this is just a property of the base-two representation of integers and does not

depend on any details of how the counter itself is implemented. As previously mentioned

in Section 3.3.2, to match the behavior of an incrementer-based counter, we may want

the outputs of the counter to be produced on completely separate qubits from the inputs,

necessitating the use of the circuit structure from Figure 3.9 instead of Figure 3.10. For
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Table 3.8: Quantum cost comparison of a DIPS-based counter and an incrementer-based counter
using Szyprowski and Kerntopf’s generalized Peres gates.

𝑛 𝑟 = ⌈log2(𝑛 + 1)⌉ DIPS-based Szyprowski & Kerntopf

3 2 7 12
4 3 15 36
5 3 18 45

10 4 46 160
15 4 66 240
20 5 110 500

a given 𝑘, the number of outputs produced in Figure 3.9 is 𝑘 + 1; therefore, we require

𝑘 = 𝑟 − 1. Substituting into (3.24) then gives the total quantum cost of the counter as

𝑟 (𝑛 + 𝑟 − 1
2

) = ⌈log2(𝑛 + 1)⌉ (𝑛 +
⌈log2(𝑛 + 1)⌉ − 1

2
). (3.29)

From Figure 3.14, we can see that my method also allows the counting of 1s from

arbitrary functions by realizing each function twice and otherwise without any additional

gates. Therefore, the cost of count the outputs from 𝑚 Boolean functions, where 𝐶𝑖 denotes

the quantum cost of realizing the function 𝑓𝑖, is 2∑𝑚
𝑖=1 𝐶𝑖 + 𝑟 (𝑛 + (𝑟 − 1)∕2).

3.4.3 Comparison of costs

For both methods, the quantum cost of counting the outputs of a collection of Boolean

functions is 2∑𝑚
𝑖=1 𝐶𝑖 more than the cost of simply counting inputs. Therefore, we only

need to compare the latter costs, which are given by (3.28) and (3.29). Table 3.8 shows that

the quantum cost of the DIPS-based counter design is lower in all cases, and that the amount

of improvement increases with the number of inputs 𝑛.
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3.5 Conclusion

In this chapter, I demonstrated an extension to the realization method presented in Chapter

2 that allows for arbitrary sequences of positive and negative gates to be used as target

gates. I introduced the concept of offset of a DIPS to characterize the types of symmetric

functions that can be realized with this extension. I also presented a simplified and optimized

circuit structure that performs the same function as the circuit structures from Chapter 2, but

requires far fewer gates. This simplified circuit structure has the additional advantage that it

is able to realize a whole sequence of symmetric functions at no additional cost compared

to realizing only the final member of the sequence. In other words, when realizing a DIPS

of a given order, the circuit structure also provides DIPS of lower orders “for free”.

I demonstrated one potential application for the ability to realize multiple orders of DIPS

at once with no additional cost, in the form of a quantum counter circuit that counts the

number of 1s present among its inputs and outputs the result as an integer represented in

base-two form. I further showed how this counter circuit could, with a minor modification,

also count the 1s present among the outputs of any number of arbitrary Boolean functions

while using only one additional ancillary qubit. The performance of these counter circuits,

as measured by their quantum cost, was compared to that of a counter circuit based on

Szyprowski and Kerntopf’s optimized realization of a “generalized Peres gate”, which is

essentially the same as an incrementer circuit. Under the same conditions—only one ancillary

qubit used and a gate library consisting of two-qubit controlled-root-of-NOT gates—the

DIPS-based counter I demonstrated in this chapter gives quantum costs that are significantly

lower.
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Chapter 4

Realization of arbitrary symmetric functions using the Walsh-Hadamard transform

In the previous two chapters, I introduced a method for realizing any dyadic indicator-

periodic symmetric function (DIPS) of any number of variables using only two-qubit gates.

I furthermore demonstrated that it is possible to realize a whole sequence of DIPS of orders

0 through 𝑘, where 𝑘 is some positive integer, all at once using an efficient circuit structure.

This circuit structure has a quantum cost, and therefore execution time complexity, that grows

linearly with the number of variables. The number of ancillary qubits required grows linearly

with 𝑘. This means that, using only the methods presented in Chapters 2 and 3, it is already

possible to realize many useful symmetric functions with low quantum cost. However, the

set of all DIPS still does not include the majority of possible symmetric functions—any

symmetric function whose indicator function does not follow the “2𝑘-on, 2𝑘-off” pattern

that characterizes DIPS cannot be realized using only the methods from Chapters 2 and 3.

For instance, S0,1,3,6
7 (𝑥1,… , 𝑥7) is one such function.

The first objective of this chapter is to remedy the above shortcoming by showing how,

using a method based on the Walsh-Hadamard transform, DIPS can be combined to realize

any symmetric function of any number of variables. I show that this combining of DIPS can

itself be done in a highly efficient manner that maintains the linear growth in quantum cost

of the resulting circuits and requires only a logarithmically-growing number of ancillary
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qubits (both with respect to the number of variables). In the second part of this chapter,

I also show how the method presented in the first part can be made even more powerful

through repetition of variables, which allows arbitrary Boolean functions, symmetric or not,

to be realized by “symmetrizing” them. Remarkably, this symmetrization process can be

done with absolutely no increase to the quantum cost of the final circuit whatsoever, at least

in an idealized quantum computer where all gates can be performed with no error.

4.1 The Walsh-Hadamard transform

4.1.1 Walsh-Hadamard basis functions

The Walsh-Hadamard transform (a.k.a. simply the “Walsh” or “Hadamard” transform)

[39, 40] is a discrete spectral transform which is similar to the Discrete Fourier Transform

(DFT). Like the DFT, the Walsh-Hadamard transform decomposes an input function or

signal into a linear combination of basis functions. In the DFT, the basis functions are

complex exponentials, or equivalently combinations of sines and cosines, but in the Walsh-

Hadamard transform the basis functions are all real-valued, and in fact only take on the

values 1 and −1. Since the Walsh-Hadamard transform is a discrete transform, its input

data is a discrete signal, which can also be thought of as a sequence of real numbers or a

real-valued function whose domain is a subset of the natural numbers: given a sequence of

real numbers 𝑥0, 𝑥1,… , 𝑥𝑛, the corresponding function has domain {0, 1,… , 𝑛} and maps a

natural number 𝑖 ≤ 𝑛 to 𝑥𝑖. The transform always operates on input data whose length is a

power of two, and the number of basis functions is equal to the length of the input data.

Several definitions of the basis functions for the Walsh-Hadamard transform are possible,

all of which are equivalent. Here I follow the definition given by Golubov et al. [40, §1.1].

Although Golubov et al. formulate the basis functions as continuous functions on a real
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interval, their definition can easily be converted to a discrete version. For a transform

operating on data of size 2𝑘, where 𝑘 is a positive integer, let the 2𝑘 basis functions be

indexed by natural numbers from 0 through 2𝑘 − 1. Then, if 𝑖 is a power of two, 𝑖 = 2𝑗

where 𝑗 < 𝑘, the 𝑖-th basis function ℎ𝑖 is defined as a square wave with a period of 2𝑖 = 2𝑗+1.

Specifically, using the notation from Chapters 2 and 3 where b𝑗(𝑥) denotes the 𝑗-th bit of

the base-two representation of 𝑥, we define

ℎ𝑖(𝑥) = (−1)b𝑗(𝑥). (4.1)

If 𝑖 is not a power of two, then we define ℎ𝑖 as a product of square waves of the form given

in (4.1). Specifically, we have

ℎ𝑖(𝑥) =
𝑘−1

∏
𝑗=0

ℎ2𝑗(𝑥)b𝑗(𝑖). (4.2)

In other words, ℎ𝑖(𝑥) is a product of some subset of ℎ1, ℎ2, ℎ4, ℎ8, etc., where each of these

is included in the product if and only if the corresponding bit in the base-two representation

of 𝑖 is 1, and the empty product (which occurs for 𝑖 = 0) is considered to evaluate to 1.

Figure 4.1 shows the basis functions for the example of 𝑘 = 3, corresponding to a transform

that operates on data of size 8. We may observe that the functions ℎ1, ℎ2, and ℎ4 are square

waves with periods of 2, 4, and 8, respectively, as defined by (4.1), while all other 𝑓𝑖 can be

expressed as products of 𝑓1, 𝑓2, and 𝑓4. For instance, for 𝑖 = 5, the base-two representation

of 5 is 5 = (101)2, so ℎ5(𝑥) = ℎ4(𝑥)1ℎ2(𝑥)0ℎ1(𝑥)1 = ℎ4(𝑥)ℎ1(𝑥). The above statement

that an empty product is considered to evaluate to 1 is reflected in the fact that ℎ0 is just a

constant function, ℎ0(𝑥) = 1.

The basis functions of the Walsh-Hadamard transform are all orthogonal to each other,
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𝑥ℎ0(𝑥) 0 1 2 3 4 5 6 7

−1

1

𝑥ℎ1(𝑥) 0 1 2 3 4 5 6 7

−1

1

𝑥ℎ2(𝑥) 0 1 2 3 4 5 6 7

−1

1

𝑥ℎ3(𝑥) 0 1 2 3 4 5 6 7

−1

1

𝑥ℎ4(𝑥) 0 1 2 3 4 5 6 7

−1

1

𝑥ℎ5(𝑥) 0 1 2 3 4 5 6 7

−1

1

𝑥ℎ6(𝑥) 0 1 2 3 4 5 6 7

−1

1

𝑥ℎ7(𝑥) 0 1 2 3 4 5 6 7

−1

1

Figure 4.1: The Walsh-Hadamard basis functions for 𝑘 = 3, corresponding to a transform operating
on input data of size 8.

so given an input function or signal, its spectral coefficients can be obtained by taking its

inner product with each of the basis functions. This is equivalent to arranging the basis

functions as rows of a matrix and multiplying that matrix by the input signal represented

as a column vector. For a transform operating on data of size 2𝑘, this matrix is therefore a

2𝑘 × 2𝑘 matrix. It is known that this matrix is always symmetric [40, §1.3], which implies

that its columns are also the Walsh-Hadamard basis functions and it is self-inverse up to a

multiplicative normalization constant. The forward and inverse Walsh-Hadamard transforms

are therefore identical up to this normalization constant.

As an example, consider the matrix representation of the Walsh-Hadamard transform
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for 𝑘 = 3, which is an 8 × 8 matrix

𝐇8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.3)

Each row and column of this matrix has a squared norm of 8, so a normalization factor

of 1
8
must be applied to either the forward or inverse transform in order for the combined

forward-inverse sequence to exactly recover the input data. For instance, given the input

vector 𝐯 = [1 −2 3 0 −1 −5 1 −2]T, matrix-vector multiplication gives

𝐇8𝐱 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−2
3
0
−1
−5
1
−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−5
13
−9
1
9
−1
1
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.4)

If 𝑓𝐯 is the function representation of 𝐯, i.e., 𝑓𝐯(0) = 1, 𝑓𝐯(1) = −2, 𝑓𝐯(2) = 3, etc., then

(4.4) gives the decomposition of 𝑓𝐯 into a weighted sum of Walsh-Hadamard basis functions:

𝑓𝐯(𝑥) =
1
8
(−5ℎ0(𝑥) + 13ℎ1(𝑥) − 9ℎ2(𝑥) + ℎ3(𝑥)

+ 9ℎ4(𝑥) − ℎ5(𝑥) + ℎ6(𝑥) − ℎ7(𝑥)). (4.5)
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4.2 Realization of arbitrary Boolean symmetric functions using theWalsh-Hadamard

transform

4.2.1 Correspondence between Walsh-Hadamard basis functions and indicator func-

tions of DIPS

The link between the Walsh-Hadamard transform and symmetric functions lies in the in-

dicator functions of the DIPS defined and realized in Chapters 2 and 3. If we plot the

indicator functions of zero-offset DIPS of the first few orders, as shown in Figure 4.2, we see

a striking resemblance with some of the Walsh-Hadamard basis functions from Figure 4.1.

Specifically, the indicator functions of SDIP(0,0)
𝑛 , SDIP(1,0)

𝑛 , and SDIP(2,0)
𝑛 appear to have the

same “shape” as the Walsh-Hadamard basis functions ℎ1, ℎ2, and ℎ4 from Figure 4.1.

𝑤

SDIP(0,0)
𝑛

0 1 2 3 4 5 6 70

1

𝑤

SDIP(1,0)
𝑛

0 1 2 3 4 5 6 70

1

𝑤

SDIP(2,0)
𝑛

0 1 2 3 4 5 6 70

1

Figure 4.2: Indicator functions of SDIP(𝑗,0)
𝑛 for 𝑗 = 0, 1, 2, showing resemblance with Walsh-

Hadamard basis functions ℎ1, ℎ2, and ℎ4 from Figure 4.1.

To make the notion of functions having the “same shape” more precise, observe that the

correspondence between the aforementioned indicator functions and Walsh-Hadamard basis

functions can be expressed a mapping between their output values. The indicator function

of SDIP(0,0)
𝑛 , for instance, takes on a value of 0 (resp. 1) whenever ℎ1 takes on a value of 1

(resp. −1), and the same applies to the pairs of SDIP(1,0)
𝑛 with ℎ2 and SDIP(2,0)

𝑛 and ℎ4. This
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relationship becomes obvious when we consider the definition of a DIPS and the definition

of the Walsh-Hadamard basis functions: SDIP(𝑘,0)
𝑛 has the indicator function b𝑘(𝑤), while

the Walsh-Hadamard basis function ℎ2𝑘 is defined by ℎ2𝑘(𝑥) = (−1)b𝑘(𝑥). We can express

the relationship in equation form by defining a mapping 𝑡∶ {0, 1} → {1, −1} by

𝑡(𝑦) = (−1)𝑦. (4.6)

Then for all natural numbers 𝑗 we have

𝑡(𝐼DIP(𝑗,0)(𝑤)) = (−1)b𝑗(𝑤) = ℎ2𝑗(𝑤), (4.7)

where 𝐼DIP(𝑗,0)(𝑤) denotes the indicator function of SDIP(𝑗,0)
𝑛 , 𝐼DIP(𝑗,0)(𝑤) = b𝑗(𝑤).

The mapping 𝑡 defined in (4.6) is furthermore an isomorphism between the group {0, 1}

under modulo-2 addition, which is the same as the exclusive-OR operation, and the group

{1, −1} under multiplication. Since the Walsh-Hadamard basis functions whose indices are

not powers of two are defined as products of those whose indices are powers of two, as

per (4.2), the isomorphism 𝑡 allow us to obtain a correspondence between the remaining

Walsh-Hadamard basis functions and exclusive-ORs of indicator functions of DIPS. For

instance, ℎ5(𝑥) = ℎ1(𝑥)ℎ4(𝑥), which corresponds to an exclusive-OR of indicator functions

via 𝑡:

𝑡(𝐼DIP(0,0)(𝑤) ⊕ 𝐼DIP(2,0)(𝑤)) = 𝑡(b0(𝑤) ⊕ b4(𝑤))

= 𝑡(b0(𝑤))𝑡(b4(𝑤))

= ℎ1(𝑤)ℎ4(𝑤). (4.8)
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More generally, if 𝑖 is any natural number, let Ones(𝑖) be the set consisting of the positions

in the base-two representation of 𝑖 where 1s occur. In other words, Ones(𝑖) = {𝑗 ∈ ℕ |

b𝑗(𝑖) = 1}. Then ℎ𝑖 corresponds via 𝑡 to the exclusive-OR of the indicator functions of the

DIPS whose orders are in Ones(𝑖):

𝑡( ⨁
𝑗∈Ones(𝑖)

𝐼DIP(𝑗,0)(𝑤)) = 𝑡( ⨁
𝑗∈Ones(𝑖)

b𝑗(𝑤))

= ∏
𝑗∈Ones(𝑖)

𝑡(b𝑗(𝑤)) = ∏
𝑗∈Ones(𝑖)

ℎ2𝑗(𝑤) = ℎ𝑖(𝑤). (4.9)

Thus, everyWalsh-Hadamard basis function corresponds to the exclusive-OR of the indicator

functions of some set of DIPS. The constant function ℎ0 corresponds to the exclusive-OR of

the empty set, that being conventionally defined as 1 in that same way that an empty product

in (4.2) is defined as 1.

The correspondence between Walsh-Hadamard basis functions and indicator functions

of DIPS can be exploited to create circuits that realize Walsh-Hadamard basis functions as an

effective number of gates applied to a target qubit. Consider the circuit shown in Figure 4.3,

where U is an arbitrary single-qubit gate. If the function SDIP(𝑗,0)(𝑥1,… , 𝑥𝑛) evaluates to 1,

then the circuit applies a U gate followed by a U−2 gate to qubit 𝑦, therefore applying an

effective number of −1 U gates. If SDIP(𝑗,0)(𝑥1,… , 𝑥𝑛) = 0, then the controlled-U−2 gate

is inactive, so the circuit applies only the single uncontrolled U gate, which amounts to an

effective number of 1. The mapping from the output of SDIP(𝑗,0)(𝑥1,… , 𝑥𝑛) to the effective

number of U gates applied to 𝑦 is the same as 𝑡 from (4.6), so the circuit shown in Figure 4.3

in fact applies an effective number of U gates equal to ℎ2𝑗(𝑤), where 𝑤 is the input weight

𝑤 = ∑ 𝑥𝑖. We can represent the operation of the circuit from Figure 4.3 using an operational
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equation in the same spirit as those from Chapters 2 and 3,

1 − 2b𝑗(𝑤) = 𝑡(b𝑗(𝑤)) = ℎ2𝑗(𝑤). (4.10)

This equation shows that the circuit effectively implements the mapping 𝑡 using 𝑡(𝑦) = 1−2𝑦,

where the constant term 1 corresponds to the uncontrolled U gate and the factor of −2 in

the second term corresponds to the target gate of the controlled gate being U−2.

𝑥1

𝑥2

𝑥3

𝑥𝑛

|0⟩

𝑦

SDIP(𝑗,0)
𝑛

U U−2

Figure 4.3: A circuit that uses the correspondence between indicator functions of DIPS and Walsh-
Hadamard basis functions to apply an effective number of U gates to qubit 𝑦 equal to ℎ2𝑗(𝑤), where
𝑤 = ∑ 𝑥𝑖 is the input weight.

The circuit from Figure 4.3 can also be represented by the equivalent circuit of Figure 4.4,

which uses the same “double-bar” notation from Figures 2.8 and 3.6. We recall that this

notation indicates that ℎ2𝑗(𝑤) is not a normal control function that simply activates or

deactivates the target gate U, but rather is an integer-valued function that controls the

effective number of U gates applied to 𝑦 and can take on values other than 0 and 1.

A similar construction to Figure 4.3 can be used for Walsh-Hadamard basis functions

with indices other than powers of two. For instance, based on (4.8), we can construct the

circuit shown in Figure 4.5, which applies to 𝑦 an effective number of U gates equal to
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𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑦

ℎ2𝑗(𝑤)

U

Figure 4.4: Equivalent representation of the circuit from Figure 4.3 using the “double-bar” notation
from Chapters 2 and 3 to represent an effective number of U gates applied to qubit 𝑦.

ℎ5(𝑤). This circuit has the operational equation

1 − 2(b0(𝑤) ⊕ b2(𝑤)) = 𝑡(b0(𝑤) ⊕ b4(𝑤)) = ℎ2𝑗(𝑤) (4.11)

and can be represented by an equivalent circuit like the one in Figure 4.4 with the control

function replaced by ℎ5(𝑤).

𝑥1

𝑥2

𝑥3

𝑥𝑛

|0⟩

𝑦

SDIP(0,0)
𝑛 SDIP(2,0)

𝑛

U U−2

Figure 4.5: A circuit analogous to Figure 4.3 using the exclusive-OR of two DIPS to apply an
effective number of U gates to qubit 𝑦 equal to ℎ5(𝑤).

Since everyWalsh-Hadamard basis function corresponds to an exclusive-OR of indicator

functions of some set of DIPS, as given by (4.9), every basis function can be realized as an

effective number of U gates applied to a target qubit 𝑦 using circuits like the ones shown in
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Figures 4.3 and 4.5.

4.2.2 Realization of single-output symmetric functions

Figure 4.5 is drawn in a way that suggests that the two DIPS SDIP(0,0)
𝑛 and SDIP(2,0)

𝑛 are

independently realized by separate circuits, but this does not need to be the case. Recall that

the circuit structure derived in Chapter 3 and shown in Figure 3.10 simultaneously realizes

DIPS of all orders from 0 to 𝑘, and in particular can realize SDIP(0,0)
𝑛 through SDIP(𝑘,0)

𝑛 when

𝑠 = 0. If this circuit structure is first used to realize the DIPS SDIP(0,0)
𝑛 through SDIP(𝑘,0)

𝑛 ,

then we can obtain the exclusive-OR of any subset of those DIPS using only CNOT gates.

This in turn allows any Walsh-Hadamard basis function up to ℎ2𝑘+1−1 to be obtained using

a Figure 4.5-like construction, but without needing to realize the DIPS separately. For

instance, suppose that we have already used an instance of Figure 3.10 with 𝑘 = 2 and 𝑠 = 0

to simultaneously realize SDIP(0,0)
𝑛 , SDIP(1,0)

𝑛 , and SDIP(2,0)
𝑛 . Then the effect of the circuit from

Figure 4.5 can be achieved using the very simple circuit shown in Figure 4.6, which consists

of only three two-qubit controlled gates.

SDIP(0,0)
𝑛 (𝑥1,… , 𝑥𝑛)

SDIP(1,0)
𝑛 (𝑥1,… , 𝑥𝑛)

SDIP(2,0)
𝑛 (𝑥1,… , 𝑥𝑛)

𝑦 U U−2

Figure 4.6: A circuit that achieves the same effect as the one from Figure 4.5, assuming that an
instance of Figure 3.10 has first been used to realize SDIP(0,0)

𝑛 through SDIP(2,0)
𝑛 .

By concatenating circuits like the one from Figure 4.6, we can effectively create linear

combinations of Walsh-Hadamard basis functions, which through the Walsh-Hadamard

transform allows us to reproduce any desired function of the input weight. In particular,
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the indicator function of any desired symmetric function can be decomposed into a linear

combination of Walsh-Hadamard basis functions and each of those basis functions realized

using a Figure 4.6-like circuit. This process allows for the realization of any symmetric

function whatsoever.

To illustrate the process described above in more detail, consider the symmetric function

S0,1,3,6(𝑥1,… , 𝑥7), which was given at the beginning of this chapter as an example of a

function that is not a DIPS and so cannot be realized using only the methods presented in

Chapters 2 and 3. The indicator function of this symmetric function can be represented in vec-

tor form as 𝐯 = [1 1 0 1 0 0 1 0]T, and its Walsh-Hadamard spectral coefficients

are therefore given by

𝐇8𝐯 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
1
0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4
0
0
0
2
−2
2
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.12)

The indicator function 𝐼0,1,3,6 therefore has the representation

𝐼0,1,3,6(𝑤) = 1
8
(4 + 2ℎ4(𝑤) − 2ℎ5(𝑤) + 2ℎ6(𝑤) + 2ℎ7(𝑤)) (4.13)

as a linear combination of Walsh-Hadamard basis functions. Multiplying (4.13) by 8 and

switching the two sides gives

4ℎ0(𝑤) + 2ℎ4(𝑤) − 2ℎ5(𝑤) + 2ℎ6(𝑤) + 2ℎ7(𝑤) = 8𝐼0,1,3,6(𝑤), (4.14)
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which can be used as an operational equation that specifies exactly what circuits of the form

shown in Figure 4.6 should be combined to realize the desired symmetric function. If we

think of this operational equation as representing the total number of W gates applied to a

target qubit 𝑦, where the identity of W is yet to be determined, then the first term of (4.14)

represents an uncontrolled W4 gate acting on the target qubit 𝑦 because this always adds 4

to the total effective number of W gates. The second term, 2ℎ4(𝑤), represents a subcircuit

that applies 2 W gates, or equivalently a single W2 gate, to qubit 𝑦 when ℎ4(𝑤) = 1 and

applies a W−2 gate otherwise. Such a subcircuit can be created by removing the CNOT gate

from Figure 4.6 and letting U = W2 (which implies U−2 = W−4). Similarly, the third term,

−2ℎ5(𝑤), of (4.14) represents a subcircuit that applies a W−2 gate to 𝑦 when ℎ4(𝑤) = 1

and a W2 gate otherwise. This subcircuit is obtained by letting U = W−2 in Figure 4.6.

Continuing in this manner allows the whole of (4.14) to be translated into a sequence of

Figure 4.6-like subcircuits where U is a possibly different power of W in each subcircuit.

It remains to determine the identity of W . The right-hand side of (4.14) tells us that a

circuit constructed as described in the previous paragraph will apply a total effective number

of 8𝐼0,1,3,6(𝑤) W gates to its target qubit 𝑦. Since our goal is to realize the symmetric

function S0,1,3,6(𝑥1,… , 𝑥7), this effective number of W gates should be equivalent to a NOT

gate when 𝐼0,1,3,6(𝑤) = 1. In other words, we should have W8 = X, which means that W

is an eighth-root-of-NOT gate, W = X3. Figure 4.7 shows the final circuit that realizes

S0,1,3,6(𝑥1,… , 𝑥7) assuming that SDIP(0,0)
𝑛 , SDIP(1,0)

𝑛 , and SDIP(2,0)
𝑛 are available at the start.

These three DIPS of course have to be realized using an instance of the circuit structure

from Figure 3.10. The full circuit that realizes S0,1,3,6(𝑥1,… , 𝑥7) therefore consists of an

instance of Figure 3.10 with 𝑘 = 2 and 𝑠 = 0, followed by the circuit shown in Figure 4.7. I

will refer to the former as the DIPS-initialization stage and the latter as the output stage.
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SDIP(0,0)
7

SDIP(1,0)
7

SDIP(2,0)
7

𝑦 X4
3 X2

3 X−4
3 X−2

3 X4
3 X2

3 X−4
3 X2

3 X−4
3⏟

4ℎ0(𝑤)
⏟⎵⏟⎵⏟

2ℎ4(𝑤)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

−2ℎ5(𝑤)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

2ℎ6(𝑤)
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

2ℎ7(𝑤)

Figure 4.7: Output stage for realization of S0,1,3,6(𝑥1,… , 𝑥7), with subcircuits corresponding to
terms of (4.14) labeled.

The procedure demonstrated by the preceding example readily applies to symmetric

functions with more variables. With a 7-input function like S0,1,3,6(𝑥1,… , 𝑥7), the vector

representation of the indicator function contains 8 components, so the Walsh-Hadamard

transform of size 8 is sufficient to handle 7-input symmetric functions. A transform of size

16 is needed to handle symmetric functions with up to 15 inputs, a transform of size 32 is

needed for up to 31 inputs, and so on. When using a Walsh-Hadamard transform of size

2𝑘, zero-offset DIPS of orders of 0 through 𝑘 − 1 are needed to be able to realize all of the

Walsh-Hadamard basis functions. Since a transform of size 2𝑘 handles functions with up to

2𝑘 − 1 inputs, we see that the number of DIPS needed grows only logarithmically with the

number of inputs to the symmetric function being realized.

Note that if the vector representation of a symmetric function’s indicator function does

not have a size that is a power of two, it can be padded with zeroes to increase its size

to next power of two. For instance, a 5-variable symmetric function, say S1,2,4
5 , has an

indicator function that is represented in vector form as [0 1 1 0 1 0]T, which only

has 6 components. To apply the Walsh-Hadamard transform to this function, we pad it with

zeroes to form the 8-component vector [0 1 1 0 1 0 0 0]T.

One issue that was not addressed in Figure 4.7 is the question of how to most efficiently
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create the exclusive-ORs of subsets of DIPS needed to realize the Walsh-Hadamard basis

functions. In Figure 4.7 this was simply done by generating the exclusive-OR for each basis

function individually and immediately using a mirror circuit to restore the original values of

SDIP(0,0)
𝑛 through SDIP(2,0)

𝑛 in between subcircuits, but this is not the most efficient method.

In the general case, for a given value of 𝑘, the DIPS used are SDIP(0,0)
𝑛 through SDIP(𝑘−1,0)

𝑛 .

There are 2𝑘 possible subsets of these DIPS, and the exclusive-ORs of all of them might

potentially be needed if every Walsh-Hadamard basis function has a nonzero coefficient.

(This was not the case in 4.7, as the coefficients of ℎ1 through ℎ3 were zero, so only 5 out

of the 8 possible exclusive-ORs were used.) To see how these exclusive-ORs might be

generated in the most efficient way possible, first consider the case where 𝑘 = 1, so that only

SDIP(0,0)
𝑛 is present. This is trivial, since then the only exclusive-OR of interest is just this

one function itself, so no additional controlled-NOT gates are needed. Next, for 𝑘 = 2, two

functions are present, SDIP(0,0)
𝑛 and SDIP(1,0)

𝑛 . I will label these as 𝑔0 and 𝑔1, respectively, for

convenience. Then the only exclusive-OR that needs to be generated is 𝑔0 ⊕ 𝑔1, which is

easily achieved with a single controlled-NOT gate, plus a second controlled-NOT gate that

restores both qubits to their original values. This case is shown in Figure 4.8.

𝑔0

𝑔1
𝑔0 ⊕ 𝑔1

Figure 4.8: Computation of all exclusive-ORs of two functions.

It might appear that Figure 4.8 does not accomplish anything useful, since the two

controlled-NOT gates clearly cancel, but the key is that the value SDIP(0,0)
𝑛 ⊕ SDIP(1,0)

𝑛 is

created between the two controlled-NOT gates, where other gates can be inserted to use this

value as a control input.

Continuing to the case 𝑘 = 3, we now have three functions—𝑔0 = SDIP(0,0)
𝑛 , 𝑔1 =
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SDIP(1,0)
𝑛 , and 𝑔2 = SDIP(2,0)

𝑛 —and we need to generate four nontrivial exclusive-ORs: 𝑔0⊕𝑔1,

𝑔0 ⊕ 𝑔2, 𝑔1 ⊕ 𝑔2, and 𝑔0 ⊕ 𝑔1 ⊕ 𝑔2. We can use the existing circuit from Figure 4.8 to

generate 𝑔0⊕𝑔1, leaving only the exclusive-ORs containing 𝑔2 to be generated. These can be

generated by making use of a cyclic Gray code: a sequence of binary words where each word

differs in only one bit from the next, the last word in the sequence differs in only one bit from

the first, and each possible word appears once. In this case, we can use a 2-bit Gray code, one

possibility being given by the sequence 00, 01, 11, 10. The 2-bit words of this sequence will

correspond to combinations of 𝑔0 and 𝑔1: 00 indicates that neither 𝑔0 nor 𝑔1 is present, giving

only 𝑔2, while 01 indicates that 𝑔0 is not present but 𝑔1 is, giving 𝑔1 ⊕ 𝑔2. Since each word

of the Gray code differs in only one bit from the next, each corresponding exclusive-OR only

differs from the previous one in the presence or absence of a single function 𝑔𝑖. Therefore,

each of these exclusive-ORs may be obtained by either adding or removing a single 𝑔𝑖 from

the previous one, which can be accomplished with a single controlled-NOT gate. The circuit

resulting from this procedure is shown in Figure 4.9.

𝑔0

𝑔1

𝑔2

𝑔0 ⊕ 𝑔1 𝑔1

𝑔1 ⊕ 𝑔2 𝑔0 ⊕ 𝑔1 ⊕ 𝑔2 𝑔0 ⊕ 𝑔2 𝑔2

Figure 4.9: Computation of all exclusive-ORs of three functions.

The first two gates in Figure 4.9 are the same as in Figure 4.8. The remaining gates are

obtained using the Gray code as described above: the first two words of the code are 00

and 01, which differ in only the second bit, so we add a controlled-NOT gate with target 𝑔2

and control 𝑔1, which adds 𝑔1 to the subset of functions whose exclusive-OR is currently

being generated. The next word is 11, which differs from 01 in the first bit, so we use a

controlled-NOT gate with target 𝑔2 and control 𝑔0 to add 𝑔0 to this subset. After that is 10,

161



which differs from 11 in the second bit, so we use a controlled-NOT gate with target 𝑔2 and

control 𝑔1 again, which now removes 𝑔1 from the subset. Finally, one more controlled-NOT

gate is used to restore the last qubit to its original value of 𝑔2.

The following theorem shows that the above-described procedure using a Gray code

can be extended to any number of functions or variables whose exclusive-ORs are to be

computed, and also gives a formula for the number of controlled-NOT gates required.

Theorem 13. Given 𝑛 qubits 𝑥1 through 𝑥𝑛, it is possible to construct a quantum circuit

that consists of 2𝑛 − 2 controlled-NOT gates and has the following properties:

1. The circuit uses only the 𝑛 provided qubits and no others; i.e., it uses no ancillary

qubits.

2. The circuit leaves all 𝑛 qubits in the same states in which they started.

3. For each nonempty subset of {𝑥1,… , 𝑥𝑛}, the exclusive-OR of this subset appears on

one of the qubits at some point in the circuit.

Proof. We proceed by induction on 𝑛. The case 𝑛 = 1 is trivial, since in that case the only

subset is {𝑥1} itself and no gates are required. Since 21 − 2 = 0, the statement of the theorem

is satisfied.

Now suppose that statement of the theorem is satisfied for some 𝑛, so that 2𝑛−2 controlled-

NOT gates suffice to compute the exclusive-OR of every nonempty subset of {𝑥1,… , 𝑥𝑛}.

Take a circuit that performs this task and call it Subcircuit 1. By definition, Subcircuit 1

consists of 2𝑛 − 2 controlled-NOT gates.

Let the sequence 𝐺1,𝐺2,… ,𝐺2𝑛 be a cyclic Gray code on 𝑛 bits, where each 𝐺𝑖 is an

𝑛-bit binary word and 𝐺1 = 000… 0. Since {𝐺𝑖} is a Gray code, 𝐺𝑖 and 𝐺𝑖+1 differ in exactly

one bit for 1 ≤ 𝑖 ≤ 2𝑛 − 1, and since {𝐺𝑖} is also cyclic, 𝐺𝑛 and 𝐺1 also differ in exactly
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one bit. Define a function 𝑑(𝑖) as follows: 𝑑(𝑖) is the position of the bit that differs between

𝐺𝑖 and 𝐺𝑖+1 for 1 ≤ 𝑖 ≤ 2𝑛 − 1, and 𝑑(2𝑛) is the position of the bit that differs between

𝐺𝑛 and 𝐺1. For instance, if 𝐺1 and 𝐺2 differ in their first bits, then 𝑑(1) = 1. From this

definition, we always have 1 ≤ 𝑑(𝑖) ≤ 𝑛. Construct an 𝑛+ 1-qubit quantum circuit with 2𝑛

controlled-NOT gates, where the 𝑖-th gate in this circuit targets qubit 𝑥𝑛+1 and is controlled

by qubit 𝑥𝑑(𝑖). Call this circuit Subcircuit 2.

I claim that Subcircuit 2 has the following property (call it Property A for convenience):

for 1 ≤ 𝑖 ≤ 𝑛, just prior to the 𝑖-th gate of the circuit, qubit 𝑥𝑛+1 contains the exclusive-OR

of 𝑥𝑛+1 together with the subset of {𝑥1,… , 𝑥𝑛} indicated by the word 𝐺𝑖. By “indicated by

the word 𝐺𝑖”, I mean that this subset contains a particular 𝑥𝑗 if and only if the corresponding

bit in 𝐺𝑖 is 1. For instance, the word 110… 0 indicates the subset {𝑥1, 𝑥2}, since only the

first two bits of the word have the value 1. In other words, if 𝐺𝑖 = 𝑔𝑖,1𝑔𝑖,2 … 𝑔𝑖,𝑛, then I claim

that just prior to the 𝑖-th gate in Subcircuit 2, qubit 𝑥𝑛+1 contains the value

𝑥𝑛+1 ⊕ (⨁
1≤𝑗≤𝑛

𝑔𝑖,𝑗 𝑥𝑗). (4.15)

Property A is certainly true for 𝑖 = 1: 𝐺1 = 00… 0 by definition, which indicates the empty

set, and at the start of the circuit, the qubit 𝑥𝑛+1 does indeed contain the exclusive-OR of

𝑥𝑛+1 together with the empty subset of {𝑥1,… , 𝑥𝑛}, this exclusive-OR being just 𝑥𝑛+1 itself.

Furthermore, if Property A is true for a particular 𝑖, then, since the 𝑖-th gate of Subcircuit 2

targets 𝑥𝑛+1 and is controlled by 𝑥𝑑(𝑖), qubit 𝑥𝑛+1 will contain the value

𝑥𝑛+1 ⊕ (⨁
1≤𝑗≤𝑛
𝑗≠𝑑(𝑖)

𝑔𝑖,𝑗 𝑥𝑗) ⊕ 𝑔𝑖,𝑑(𝑖)𝑥𝑑(𝑖), (4.16)
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where 𝑔𝑖,𝑑(𝑖) denotes the logical negation of 𝑔𝑖,𝑑(𝑖), 𝑔𝑖,𝑑(𝑖) = ¬𝑔𝑖,𝑑(𝑖). Since, by definition, 𝐺𝑖

and 𝐺𝑖+1 differ in their 𝑑(𝑖)-th bits and no others, we have

𝑔𝑖+1,𝑗 = {
𝑔𝑖,𝑗 if 𝑗 ≠ 𝑑(𝑖),
𝑔𝑖,𝑗 = 𝑔𝑖,𝑑(𝑖) otherwise.

(4.17)

Substituting (4.17) into (4.16)—in other words, replacing both 𝑔𝑖,𝑗 in the second term

of (4.17) and 𝑔𝑖,𝑑(𝑖) in the last term with 𝑔𝑖+1,𝑗—we obtain

𝑥𝑛+1 ⊕ (⨁
1≤𝑗≤𝑛

𝑔𝑖+1,𝑗 𝑥𝑗), (4.18)

which is the value of qubit 𝑥𝑛+1 following the 𝑖-th gate and before the (𝑖 + 1)-th gate of

Subcircuit 2, which means that Property A is true for 𝑖 + 1 as well. Therefore, Property A

is true for 1 ≤ 𝑖 ≤ 𝑛. Figure 4.11 illustrates how (4.15) being true prior to the 𝑖-th gate of

Subcircuit 2 implies that (4.18) is true following that gate.

In addition, since 𝐺𝑛 and 𝐺1 differ only in their 𝑑(𝑛)-th bits, an identical argument to the

above shows that qubit 𝑥𝑛+1 contains the value

𝑥𝑛+1 ⊕ (⨁
1≤𝑗≤𝑛

𝑔1,𝑗 𝑥𝑗) = 𝑥𝑛+1 (4.19)

after the 𝑛-th and final gate of Subcircuit 2, which means that at the end of Subcircuit 2, all

qubits retain their original values from the start of the circuit. (Qubits 𝑥1 through 𝑥𝑛 are

unchanged since they are only used as control qubits in Subcircuit 2.)

To summarize, Property A implies that, for 1 ≤ 𝑖 ≤ 𝑛, qubit 𝑥𝑛+1 attains a value equal to

the exclusive-OR of 𝑥𝑛+1 together with the subset of {𝑥1,… , 𝑥𝑛} indicated by the word 𝐺𝑖 at

some point in Subcircuit 2. Since {𝐺𝑖} is an 𝑛-bit Gray code, this means that all possible 𝑛-bit
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binary words appear as one of the 𝐺𝑖, so that qubit 𝑥𝑛+1 attains the values of all possible

exclusive-ORs of 𝑥𝑛+1 with a subset of {𝑥1,… , 𝑥𝑛} at some point in Subcircuit 2. This is

the same as saying that qubit 𝑥𝑛+1 attains the exclusive-OR of each subset of {𝑥1,… , 𝑥𝑛+1}

containing 𝑥𝑛+1.

To complete the induction step, construct a 𝑛 + 1-qubit circuit by concatenating Sub-

circuits 1 and 2. (Subcircuit 1 was defined as an 𝑛-qubit circuit, so it operates on qubits

𝑥1 through 𝑥𝑛 while ignoring qubit 𝑥𝑛+1 completely.) Since Subcircuit 1 contains 2𝑛 − 2

gates and Subcircuit 2 contains 2𝑛 gates, this new circuit contains 2𝑛 + 2𝑛 − 2 = 2𝑛+1 − 2

controlled-NOT gates. Furthermore, by the induction hypothesis, the exclusive-ORs of all

nonempty subsets of {𝑥1,… , 𝑥𝑛} are attained at some point in Subcircuit 1—these are the

same as the nonempty subsets of {𝑥1,… , 𝑥𝑛+1} that do not contain 𝑥𝑛+1. Property A then

shows that the exclusive-ORs of all subsets of {𝑥1,… , 𝑥𝑛+1} that do contain 𝑥𝑛+1 are attained

at some point in Subcircuit 2. Therefore, the exclusive-ORs of all nonempty subsets of

{𝑥1,… , 𝑥𝑛+1} are attained at some point in this new circuit. In addition, both Subcircuits 1

and 2 individually leave all qubits in the same states in which they started, so the combination

of the two subcircuits also leaves all the qubits in their starting states.

To help illustrate the use of this theorem, I now show a few cases for small 𝑛. As

mentioned in the proof, 𝑛 = 1 is trivial. For 𝑛 = 2, the proof instructs us to take the circuit

for 𝑛 = 1 as Subcircuit 1, which in this case is empty. We then consider a 1-bit Gray code

starting with 0, which is trivially given by the sequence 0, 1. We have 𝑑(1) = 𝑑(2) = 1

since the code is on only one bit. Therefore, the final circuit consists of two identical

controlled-NOT gates with control qubit 𝑥1 and target 𝑥2, as shown in Figure 4.8.

For 𝑛 = 3, we take the circuit from Figure 4.8 as Subcircuit 1, and use a 2-bit Gray code

to generate Subcircuit 2. One possible Gray code is given by the sequence 00, 01, 11, 10,
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𝑥1

𝑥2

𝑥𝑛−1

𝑥𝑛

𝑥𝑛+1

Subcircuit 1

⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
Subcircuit 2

Figure 4.10: Circuit to compute all exclusive-ORs of 𝑛 + 1 variables as described in the proof of
Theorem 11: the circuit for 𝑛 variables is recursively used as Subcircuit 1, while the additional
Subcircuit 2 computes exclusive-ORs containing the new variable 𝑥𝑛+1.

which gives 𝑑(1) = 2, 𝑑(2) = 1, 𝑑(3) = 2, and 𝑑(4) = 1. Then, Subcircuit 2 consists

of a sequence of four controlled-NOT gates, all targeting 𝑥3, where the 𝑖-th gate of this

sequence is controlled by 𝑥𝑑(𝑖). This leads to the circuit shown in Figure 4.9. Notice that

the first two gates in this circuit, which make up Subcircuit 1, compute the exclusive-OR

of 𝑥1 and 𝑥2, while the remaining gates, which make up Subcircuit 2, compute all of the

exclusive-ORs that contain 𝑥3. In addition, the order in which the exclusive-ORs containing

𝑥3 appear corresponds to the Gray code used: first, 𝑥3 is present at the start, corresponding

to 00 (neither 𝑥1 nor 𝑥2 are present); second, 𝑥2 ⊕ 𝑥3 appears, corresponding to 01 (𝑥1 not

present but 𝑥2 is); third, the exclusive-OR of all three variables appears, corresponding to

11 (both 𝑥1 and 𝑥2 present); and finally, 𝑥1 ⊕ 𝑥3 appears, corresponding to 10 (𝑥1 present

but 𝑥2 is not). The fact that 𝑥3 is restored at the end also corresponds to the fact that the

Gray code is cyclic, so that 10 can be followed by 00 again.

The case 𝑛 = 4 is similar to 𝑛 = 3, and Subcircuit 2 can be generated using the Gray

code 000, 001, 011, 010, 110, 111, 101, 100, which results in the circuit shown in Figure 4.12.
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𝑥1

𝑥2

𝑥𝑑(𝑖)

𝑥𝑛+1 ⊕ (⨁
1≤𝑗≤𝑛

𝑔𝑖,𝑗 𝑥𝑗)

𝑥𝑛+1 ⊕ (⨁
1≤𝑗≤𝑛
𝑗≠𝑑(𝑖)

𝑔𝑖,𝑗 𝑥𝑗) ⊕ 𝑔𝑖,𝑑(𝑖)𝑥𝑑(𝑖)

= 𝑥𝑛+1 ⊕ (⨁
1≤𝑗≤𝑛

𝑔𝑖+1,𝑗 𝑥𝑗)

Figure 4.11: Illustration of (4.15) through (4.18) in the proof of Theorem 13.

In Figure 4.12, the exclusive-ORs computed by Subcircuit 1 are not shown because the

subcircuit is identical to the 𝑛 = 3 circuit shown in Figure 4.9. We may observe that the

circuits for 𝑛 = 2, 𝑛 = 3, and 𝑛 = 4 require 2, 6, and 14 gates, respectively, in accordance

with Theorem 13.

𝑔1

𝑔2

𝑔3

𝑔4
𝑔2 ⊕ 𝑔3 𝑔1 ⊕ 𝑔2 ⊕ 𝑔3 𝑔1 ⊕ 𝑔3

𝑔0

𝑔1

𝑔2

𝑔1 ⊕ 𝑔3 𝑔0 ⊕ 𝑔1 ⊕ 𝑔3 𝑔0 ⊕ 𝑔1 ⊕ 𝑔2 ⊕ 𝑔3 𝑔0 ⊕ 𝑔2 ⊕ 𝑔3 𝑔0 ⊕ 𝑔3

Figure 4.12: Computation of all exclusive-ORs of four variables.

Using the circuit from Figure 4.9 as a template, we can rearrange Figure 4.7 to reduce
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the number of CNOT gates required. Specifically, keeping in mind that 𝑔0 = SDIP(0,0)
𝑛 ,

𝑔1 = SDIP(1,0)
𝑛 , and 𝑔2 = SDIP(2,0)

𝑛 , the exclusive-ORs of DIPS used in Figure 4.7 correspond

to 𝑔2, 𝑔0⊕𝑔2, 𝑔1⊕𝑔2, and 𝑔0⊕𝑔1⊕𝑔2. This leads to the circuit shown in Figure 4.13. Note

that the parts of the circuit corresponding to individual Walsh-Hadamard basis functions are

not in the same order as in Figure 4.7. This is a consequence of the use of a Gray code in

generating Figure 4.9.

SDIP(0,0)
7

SDIP(1,0)
7

SDIP(2,0)
7

𝑦 X4
3 X2

3 X−4
3 X2

3 X−4
3 X2

3 X−4
3 X−2

3 X4
3

Figure 4.13: The output stage from Figure 4.7 with number of CNOT gates reduced using the scheme
of Figure 4.9.

Figure 4.13 can be further simplified by removing the first two CNOT gates, which are

unused and cancel. These CNOT gates were taken from the first two gates of Figure 4.9, and

they would be used if the Walsh-Hadamard spectral coefficient of ℎ3, which corresponds to

𝑔0 ⊕ 𝑔1 = SDIP(0,0)
𝑛 ⊕ SDIP(1,0)

𝑛 , were nonzero. In addition, all of the uncontrolled gates on

qubit 𝑦 can be combined into a single gate, giving the circuit shown in Figure 4.14. Note

that in this figure, X8
3 is just a NOT gate and X4

3 and X−4
3 are V and V† gates, respectively,

but I have chosen to keep the X𝑚
3 notation to emphasize the derivation of these gates from

Figure 4.7 and ultimately from the coefficients in (4.14). Of course, all of the procedures

described here can be applied to any other symmetric function as well, giving an output-stage

circuit with a similar form to Figure 4.14.
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SDIP(0,0)
7

SDIP(1,0)
7

SDIP(2,0)
7

𝑦 X8
3 X−4

3 X−4
3 X−4

3 X4
3

Figure 4.14: Further simplification of Figure 4.13 by removing unused CNOT gates and combining
all uncontrolled gates acting on 𝑦.

4.2.3 Realization of multi-output symmetric functions

The circuit structure exemplified by Figures 4.7, 4.13, and 4.14 lends itself very well to the

realization of multi-output symmetric functions. Amulti-output Boolean symmetric function

is one that satisfies the same condition of symmetry defined in Chapter 2, but produces

multiple Boolean value as outputs. It is thus mathematically equivalent to a collection of

several single-output symmetric functions. The additional challenge in realizing multi-output

symmetric functions is to find methods of sharing the same subcircuits between different

outputs, as doing so reduces the complexity of the resulting circuits compared to realizing

each output independently as a separate function.

The realization method for single-output symmetric functions described in Section 4.2.2

allows for drastic sharing of subcircuits if used for multi-output functions. Specifically, the

entire DIPS-initialization stage can be shared between all outputs, since it is always the same

for every symmetric function with a given number of inputs—it is always just an instance

of Figure 3.10 with 𝑠 = 0 and with 𝑘 being sufficiently large to handle a Walsh-Hadamard

transform of the size needed for that number of inputs. Part of the output stage can be

shared as well, in particular the arrangement of CNOT gates used to compute all possible

exclusive-ORs of the DIPS being used, as shown in Figures 4.9 and 4.12. Therefore, the only

parts of the circuit that differ between outputs are the gates that directly target the output
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qubits, like the five gates targeting qubit 𝑦 in Figure 4.14.

As an example of the reuse of circuit components possible with the realization method

described in Section 4.2.2, consider now realizing a two-output symmetric function in which

the first output is the same function S0,1,3,6
7 from before and the second output is S1,2,3,5,7

7 .

The Walsh-Hadamard spectral coefficients of the second output are found to be (in order) 5,

−3, −1, −1, 1, 1, −1, and −1, and applying the same procedure used for S0,1,3,6
7 eventually

produces the output stage shown in Figure 4.15a. This circuit can be combined with the one

from Figure 4.14 to form the output stage for the two-output symmetric function shown in

Figure 4.15b.

SDIP(0,0)
7

SDIP(1,0)
7

SDIP(2,0)
7

𝑦 X6
3 X2

3 X2
3 X−2

3 X2
3 X2

3 X−2
3

(a) Output stage for S1,2,3,5,7
7 .

SDIP(0,0)
7

SDIP(1,0)
7

SDIP(2,0)
7

𝑦1

𝑦2

X8
3

X6
3 X2

3 X2
3

X−4
3

X−2
3

X−4
3

X2
3

X−4
3

X2
3

X4
3

X−2
3

(b) Combined output stage for a two-output symmetric function incorporating (a) together with
Figure 4.14.

Figure 4.15: Example of realization of a two-output symmetric function showing reuse of DIPS and
CNOT gates.

While the reuse of a few CNOT gates in Figure 4.15b may not seem like much, one

should also keep in mind that the entire DIPS-initialization stage that produces the three

functions SDIP(0,0)
7 , SDIP(1,0)

7 , and SDIP(2,0)
7 , which consists of an instance of Figure 3.10 with
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𝑛 = 7, 𝑘 = 2 and 𝑠 = 0, is reused as well because the DIPS themselves are shared between

the two outputs. In other words, realizing the two outputs independently would require two

copies of the DIPS-initialization stage while the realization using Figure 4.15b only requires

one. Therefore, Figure 4.15b in fact demonstrates a significant reduction in quantum cost

when realizing the two outputs together as compared to realizing them independently as

separate functions. Another way to see the efficiency of this multi-output realization method

is to note that Figure 4.15b contains 18 gates as compared to 9 gates in Figure 4.14 and 13

gates in Figure 4.15a. Hence, an entirely new output has been added to a 7-input symmetric

function for the cost of less than 10 additional two-qubit gates.

4.2.4 Algorithms for generating circuits to realize symmetric functions

I now formulate the methods described in this chapter in terms of two algorithms that together

generate the realization of a symmetric function from its specification. First, the constructive

proof of Theorem 13 leads directly to an algorithm for generating a circuit, containing only

CNOT gates, that computes exclusive-ORs of all nonempty subsets of a set of existing qubits.

From such a circuit, an output stage for a desired symmetric function, like the ones shown in

Figures 4.14 and 4.15, can then be created by inserting appropriate controlled-root-of-NOT

gates between the CNOT gates. The target gates for these controlled gates are determined

as follows: since each controlled-root-of-NOT gate in Figures 4.14 and 4.15 originates from

a subcircuit of the form shown in Figure 4.6, the target gate of each such gate must have

exponent equal to −2 times the corresponding Walsh-Hadamard spectral coefficient.

In addition to controlled-root-of-NOT gates, the output stage may contain an initial

uncontrolled root-of-NOT gate for each output, as seen in Figure 4.14. This uncontrolled root-

of-NOT gate derives from combining all of the uncontrolled root-of-NOT gates originating
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from Figure 4.6, as shown by the simplification of Figure 4.13 to Figure 4.14. The exponent

of the initial uncontrolled root-of-NOT gate for a given output is therefore obtained as the

sum of all Walsh-Hadamard spectral coefficients for that output.

Based on the above discussion, Algorithm 3 creates an output stage for an 𝑚-output

symmetric function when given Walsh-Hadamard spectral coefficients for each output of the

function. This algorithm has converted the recursion from the proof of Theorem 13 into a

loop with the loop variable 𝑞 running from 2 to 𝑘. The qubits 𝑢0 through 𝑢𝑘−1 in Algorithm 3

are used to feed the DIPS SDIP(0,0)
𝑛 through SDIP(𝑘−1,0)

𝑛 , respectively, into the output stage.

Algorithm 4 now performs the task of combining a DIPS-initialization stage and output

stage to create a circuit that realizes a desired single- or multi-output symmetric function.

The DIPS-initialization stage is created using Algorithm 1 from Chapter 3 as a subroutine,

while the output stage is created using Algorithm 3. Algorithm 4 also creates a mirror circuit

𝑄mirror to restore the input qubits 𝑥1 through 𝑥𝑛 and all ancillary qubits to their original

states. If the mirror circuit is not needed, the steps involving 𝑄mirror can simply be skipped.

The run-time complexities of Algorithm 3 and 4 are easily analyzed. First, considering

Algorithm 3, it is known [41] that a 𝑗-bit Gray code can be generated in 𝒪(2𝑗) time, i.e.,

requiring only 𝒪(1) time to output each code word. For a given 𝑘, Algorithm 3 generates

Gray codes of 1 through 𝑘 − 1 bits, so the total time required to generate these codes is

𝒪(∑𝑘−1
𝑗=0 2𝑗) = 𝒪(2𝑘). The algorithm given in [41] also allows the bit-position differing

between each pair of consecutive code words (𝑑 in Algorithm 3) to be obtained in 𝒪(1)

time per code word. Therefore, once all the necessary Gray codes have been generated,

Algorithm 3 generates each CNOT gate of its circuit in 𝒪(1) time. From Theorem 13, the

total number of CNOT gates is 2𝑘− 2, so generation of the CNOT gates requires 𝒪(2𝑘) time.

Remaining contributions to the run time of Algorithm 3 are the calculation of the 𝛽𝑗
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Algorithm 3: Create an output stage for a symmetric function.
Function CreateOutputStage(𝑘,𝑚, 𝛼)

Input: Integers 𝑘,𝑚 ≥ 1 together with a set of integers 𝛼 = {𝛼𝑖,𝑗} with
0 ≤ 𝑖 ≤ 2𝑘 − 1, 1 ≤ 𝑗 ≤ 𝑚, where 𝛼0,𝑗 through 𝛼2𝑘−1,𝑗 represent the
Walsh-Hadamard spectral coefficients of the indicator function of the 𝑗-th
output of a Boolean symmetric function.

Output: A quantum circuit that acts as an output stage to realize the symmetric
function.

External subroutines: GrayCode(𝑗), which generates the code words 𝐺0
through 𝐺2𝑗−1 of a 𝑗-bit cyclic Gray code, beginning with 𝐺0 = 00… 0.

Let 𝑄 be a quantum circuit, initially containing no gates, that acts on qubits 𝑢0
through 𝑢𝑘−1 and 𝑦1 through 𝑦𝑚.

for 𝑗 from 1 to 𝑚 do
Let 𝛽𝑗 = ∑2𝑘−1

𝑖=0 𝛼𝑖,𝑗.
Append an X

𝛽𝑗
𝑘 gate, acting on 𝑦𝑗, to 𝑄.

Append a controlled-X
−2𝛼1,𝑗
𝑘 gate, with control 𝑢0 and target 𝑦𝑗, to 𝑄.

end
for 𝑞 from 2 to 𝑘 do

Let (𝐺0,𝐺1,… ,𝐺2𝑞−1−1) = GrayCode(𝑞 − 1).
Let 𝐺2𝑞−1 = 00… 0.
for 𝑝 from 1 to 2𝑞−1 do

Let 𝑑 be the position of the unique bit that differs between 𝐺𝑝−1 and 𝐺𝑝,
where the least significant bit has position 0.

Append a controlled-NOT gate, with control 𝑢𝑑 and target 𝑢𝑞−1, to 𝑄.
Let 𝑖 be the integer whose base-two representation is obtained by adding
an initial bit 1 to 𝐺𝑝.
for 𝑗 from 1 to 𝑚 do

Append a controlled-X
−2𝛼𝑖,𝑗
𝑘 gate, with control 𝑢𝑞−1 and target 𝑦𝑗, to

𝑄.
end

end
Output the circuit 𝑄.

end
end
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and the generation of controlled-root-of-NOT gates. Each 𝛽𝑗 is a sum of 2𝑘 integers, and 𝑗

runs from 1 to 𝑚, so calculation of all 𝛽𝑗 requires 𝒪(2𝑘𝑚) time. Similarly, each controlled-

root-of-NOT gate requires 𝒪(1) time to generate, and there are 𝒪(2𝑘) of them per output,

so generation of all such gates also requires 𝒪(2𝑘𝑚) time. Since 𝒪(2𝑘𝑚) dominates all of

the other contributions to the run time of Algorithm 3, we see that the total run time of

Algorithm 3 is 𝒪(2𝑘𝑚) as well.

Algorithm 4: Realize a Boolean symmetric function with an arbitrary number of
inputs and outputs.
Input: An 𝑛-input, 𝑚-output symmetric Boolean function, specified as a collection
of bits 𝑎𝑤,𝑗 for 0 ≤ 𝑤 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, where the 𝑗-th output of the function has
the indicator function 𝐼𝑗∶ ℕ≤𝑛 → {0, 1} defined by 𝐼𝑗(𝑤) = 𝑎𝑤,𝑗.
Output: A quantum circuit, operating on qubits 𝑥1 through 𝑥𝑛 and 𝑦1 through 𝑦𝑚
together with a number of ancillary qubits, that realizes the given function in the
following manner: for 1 ≤ 𝑗 ≤ 𝑚, the circuit inverts qubit 𝑦𝑗 when the 𝑗-th output
of the function is 1.
External subroutines: WHTransform(𝐴, 𝑘), which computes the size-2𝑘

Walsh-Hadamard transform of input data expressed as an array of real numbers 𝐴
and outputs the spectral coefficients as another array of size 2𝑘.

Let 𝑘 = ⌈log2(𝑛 + 1)⌉.
Let the quantum circuit 𝑄init = RealizeDips(𝑛, 𝑘 − 1, 0).
Relabel the qubits 𝑦1 through 𝑦𝑘−1 of 𝑄init as 𝑢1 through 𝑢𝑘−1.
Designate 𝑢0 as an alias for the qubit 𝑥𝑛 of 𝑄init.
Let 𝑄mirror be the inverse of 𝑄init.
Let ̃𝑛 = 2𝑘.
for 𝑗 from 1 to 𝑚 do

Let 𝐴𝑗 = [𝑎0,𝑗, 𝑎1,𝑗,… , 𝑎𝑛,𝑗].
Enlarge 𝐴𝑗 to size ̃𝑛 by padding with zeroes on the right.
Let [𝛼0,𝑗, 𝛼1,𝑗,… , 𝛼 ̃𝑛−1,𝑗] = WHTransform(𝐴, 𝑘).

end
Let 𝛼 = {𝛼𝑖,𝑗} with 0 ≤ 𝑖 ≤ ̃𝑛 − 1 and 1 ≤ 𝑗 ≤ 𝑚.
Let 𝑄out = CreateOutputStage(𝑘,𝑚, 𝛼).
Let 𝑄 be the concatenation of 𝑄init, 𝑄out, and 𝑄mirror, in that order.
Output the circuit 𝑄.

174



For Algorithm 4, theWalsh-Hadamard transform of a single input vector can be computed

in 𝒪(𝑛 log 𝑛) time [42], and for an 𝑚-output function, 𝑚 such transforms must be computed.

Generation of the output stage is performed by Algorithm 3, which runs in 𝒪(2𝑘𝑚) time.

Since 𝑘 = 𝒪(log 𝑛), the output stage requires 𝒪(𝑚𝑛) time to generate. Meanwhile, the

DIPS-initialization stage of the circuit, which is generated using Algorithm 1 from Chapter 3,

requires𝒪(𝑘𝑛+𝑘2) = 𝒪(𝑛 log 𝑛+(log 𝑛)2) time, hence𝒪(𝑛 log 𝑛) since (log 𝑛)2 is dominated

by 𝑛 log 𝑛. The mirror circuit is just the inverse of the DIPS-initialization stage, so it also

requires 𝒪(𝑛 log 𝑛) time to generate. We see that the time required to compute the Walsh-

Hadamard transforms, 𝒪(𝑚𝑛 log 𝑛), dominates all other contributions to the run time of

Algorithm 4, and therefore gives the run-time complexity of the whole algorithm.

4.3 Realization of non-symmetric Boolean functions using repeated variables

So far, in this chapter as well as in Chapters 2 and 3, I have considered only the realization

of totally symmetric Boolean functions. However, the circuit structures I introduced for this

purpose can also be used for realizing arbitrary non-symmetric functions through repetition

of variables. Given a symmetric function of 𝑛 variables, 𝑓(𝑥1, 𝑥2,… , 𝑥𝑛), if one lets some of

𝑥1 through 𝑥𝑛 in fact be repetitions of the same variable, then one obtains another function

of less than 𝑛 variables that is not necessarily symmetric. In this section I show that the

circuit structures I previously introduced for the realization of symmetric functions work

especially well with this repetition of variables—in particular, variables can be repeated

with no increase in quantum cost at all.
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4.3.1 Repetition of variables

To give a concrete example of a repeated variable used to derive a non-symmetric Boolean

function from a symmetric one, consider the function S2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4). A Karnaugh

map for this function is shown in Figure 4.16a. Suppose that we let 𝑥1 and 𝑥2 in fact be

the same variable, call it 𝑎, while 𝑥3 and 𝑥4 are distinct variables 𝑏 and 𝑐 respectively.

The identification of 𝑥1 and 𝑥2 with a single variable 𝑎 is reflected in Figure 4.16a by the

shaded rows of the Karnaugh map: the shaded rows represent combinations where 𝑥1 ≠ 𝑥2,

impossible when 𝑥1 = 𝑥2 = 𝑎. Removing the shaded rows and relabeling the resulting

three-variable Karnaugh map with 𝑎, 𝑏, and 𝑐, as shown in Figure 4.16b, gives the new

function S2,3,4(𝑎, 𝑎, 𝑏, 𝑐) = 𝑎∨ (𝑏∧ 𝑐), which is a non-symmetric function of three variables.

We therefore see that repetition of the variable 𝑎 has created a three-input non-symmetric

function from a four-input symmetric function.

0 0 1 0
0 1 1 1
1 1 1 1
0 1 1 1

00

00

01

01

11

11

10

10𝑥1𝑥2

𝑥3𝑥4

(a) A Karnaugh map for the symmetric function
S2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4).

0 0 1 0
1 1 1 1

0

1

00 01 11 10𝑎
𝑏𝑐

(b) The function created by repeating a variable:
𝑥1 = 𝑥2 = 𝑎, 𝑥3 = 𝑏, and 𝑥4 = 𝑐.

Figure 4.16: Karnaugh maps for a symmetric function with a repeated variable.

The circuit structures introduced in this and the previous chapters can readily implement

repeated variables with no increase, and in some cases even a decrease, in quantum cost. To

see this, observe that gates directly involving the input qubits fall into one of two types: they

are either part of a cascade of controlled-U gates, where U is some root-of-NOT gate, in
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which each controlled-gate targets the same qubit, or they are part of a cascade of CNOT

gates that is used to compute the exclusive-OR of the inputs. In both cases, when a variable

is repeated, the involved gates can be simplified in such a manner as to emulate the effect of a

repeated variable without actually using additional qubits to hold copies of that variable. For

instance, Figure 4.17a shows how, when the variable 𝑎 is repeated twice, the two controlled-V

gates both controlled by 𝑎 collapse into a single CNOT gate, while three repetitions result in

a controlled-V† gate. More generally, Figure 4.17b shows how any two controlled-X𝑘 gates

with the same control variable and same target qubit collapse into a single controlled-X𝑘−1

gate, and any three such gates collapse into a controlled-X3
𝑘−1 gate. Similar simplifications

can be made if a variable is repeated four or more times. For instance, if the variable 𝑎 is

repeated 𝑚 times, then a cascade of 𝑚 controlled-X𝑘 gates, all controlled by 𝑎, collapses to a

controlled-X𝑚
𝑘 gate.

Cascades of CNOT gates simplify slightly differently: in a cascade of CNOT gates, if a

variable is repeated an odd number of times, then it is included in the cascade and otherwise

excluded. This follows from the fact that the exclusive-OR of a variable 𝑎 with itself an

odd number of times is simply 𝑎, while the exclusive-OR of 𝑎 with itself an even number

of times is 0. Examples of the simplification of CNOT cascades for a variable 𝑎 repeated

two or three times are shown in Figure 4.17c. In any case, no more than one instance of

the variable is needed. From these examples it is clear that, no matter how many times a

variable is repeated, that variable’s involvement in any cascade of gates can be reduced to

either one gate or no gates at all.

We may now consider an example of how these simplifications apply within an actual

circuit that realizes a symmetric function, to be made non-symmetric through a repeated

variable. Figure 4.18a shows the realization of the symmetric function S2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4)
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𝑎

𝑎

𝑏

𝑎

𝑏
V V

𝑎

𝑎

𝑎

𝑏

𝑎

𝑏
V V V

V†

(a) Simplification of two or three controlled-V gates when controlled by the same variable.

𝑎

𝑎

𝑏

𝑎

𝑏
X𝑘 X𝑘

X𝑘−1

𝑎

𝑎

𝑎

𝑏

𝑎

𝑏
X𝑘 X𝑘 X𝑘

X3
𝑘

(b) Simplification of two or three controlled-X𝑘 gates when controlled by the same variable.

𝑎

𝑎

𝑏

𝑎

𝑏

𝑎

𝑎

𝑎

𝑏

𝑎

𝑏

(c) Simplification of cascades of CNOT gates containing a repeated variable.

Figure 4.17: Simplifications of gate cascades that allow a variable to be repeated without using
additional qubits.
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according to the method presented in Chapter 3. When 𝑥1 = 𝑥2 = 𝑎, the pairs of adjacent

X1 (= V) and X2 gates that are both controlled by 𝑎 can be simplified as in Figure 4.17,

giving a CNOT and controlled-X1 gate respectively. The cascade of CNOT gates is also

simplified, by excluding 𝑎 entirely since it is repeated an even number of times. This results

in the circuit shown in Figure 4.18b. In this case, we can see that the final resulting circuit

has a quantum cost that is no greater than the original—in fact, the quantum cost is even

less than that required to realize an order-2 DIPS of three variables.

𝑥1 = 𝑎

𝑥2 = 𝑎

𝑥3 = 𝑏

𝑥4 = 𝑐

0

𝑦

X1 X1 X1 X1

X2 X2 X2 X2

X−1
1

X−1
2 X1

(a) Realization of the four-variable symmetric function S2,3,4(𝑥1, 𝑥2, 𝑥3, 𝑥4).

𝑎

𝑏

𝑐

0

𝑦

X1 X1

X1 X2 X2

X−1
1

X−1
2 X1

(b) Result of simplifying gate cascades with repeated variables as in
Figure 4.17.

Figure 4.18: Demonstration of simplification of the resulting circuit following repetition of variables
in a symmetric function.

Variables can also be repeated in non-DIPS symmetric functions that require the use

of the Walsh-Hadamard transform to realize. In this case, the output stage of the circuit is
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completely unaffected because it does not involve any of the inputs to the symmetric function

directly, instead only working with DIPS that are produced by the DIPS-initialization stage.

The DIPS-initialization stage then simplifies as previously described and demonstrated in

Figures 4.18.

There remains the issue of how an arbitrary Boolean function can be expressed as a

symmetric function with repeated variables. This question has received significant attention

in the past [43, 44, 45, 46, 47], and in particular, experimental results from Chrzanowska-

Jeske et al. [48] show that each variable on average only needs to be repeated about twice for

several standard benchmark functions. Therefore, when such a symmetrization procedure is

combined with my method for realizing symmetric functions, any arbitrary Boolean function

can be realized. In fact, the symmetrization algorithm presented in Chrzanowska-Jeske et

al. also handles multiple-output symmetric functions and symmetrizes them using the same

number of repetitions of each variable for all outputs. This result allows my method to be

applied to arbitrary multiple-output Boolean functions as well: as long as each variable is

repeated the same number of times across all outputs, such a function can be realized in the

same manner as a multiple-output symmetric function.

4.3.2 Quantum cost impact of repeating variables

At the beginning of this section, and in the introduction to this chapter, I claimed that

repetition of variables can be done with no increase in quantum cost at all. In the example

given in the previous subsection, we saw that the resulting circuit for a three-input non-

symmetric function, generated by repeating a variable in a four-input order-2 DIPS, in fact

has a lower quantum cost than a circuit for a three-input order-2 DIPS.

In the general case, suppose that we have an order-𝑘 DIPS of 𝑛′ variables, SDIP(𝑘,𝑠)
𝑛′ , some
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of which are repeated. Suppose that the number of distinct variables is 𝑛. For the example

given in Figure 4.18, 𝑛′ = 4 and 𝑛 = 3. To realize this DIPS, we begin with an appropriate

instance of the circuit structure from Figure 3.10 and simplify the gate cascades at the start

of the circuit (represented by the “∑” and “⨁” blocks in Figure 3.10). After simplification,

each input variable can act as a control input to at most one gate per cascade. In other words,

the number of gates per cascade is no more than 𝑛, and the number of gates in the cascade

of CNOT gate is no more than 𝑛 − 1. But realizing an 𝑛-input DIPS using Figure 3.10 also

requires 𝑛 gates for each of the X𝑖 cascades and 𝑛 − 1 gates for the cascade of CNOT gates.

Therefore, the first part of the circuit for SDIP(𝑘,𝑠)
𝑛′ , containing the gate cascades, is no more

expensive than the first part of the circuit for SDIP(𝑘,𝑠)
𝑛 . The second parts of both circuits,

containing the controlled-X𝑗
𝑖 gates in Figure 3.10 have identical gate counts because the size

of this part of the circuit depends only on 𝑘 and not on the number of inputs. As a result,

after simplification according to the scheme shown in Figure 4.17, the circuit for SDIP(𝑘,𝑠)
𝑛′

contains no more two-qubit controlled gates than the circuit for SDIP(𝑘,𝑠)
𝑛 .

If the function to be realized is not symmetric, the above result is unaffected since, as

previously noted, the DIPS-initialization stage of the resulting circuit simplifies in the same

way while the output stage does not directly involve the inputs at all, and so is insensitive to

variable repetitions.

4.3.3 Algorithm to realize symmetric functions with repeated variables

Based on the discussion in Section 4.3.1 and the simplifications illustrated in Figure 4.17, I

introduce Algorithm 5, which generates circuits to realize DIPS with repeated variables. This

algorithm is a slight modification of Algorithm 1 from Chapter 3. Specifically, the algorithm

takes an additional input 𝑅, which is an array of integers [𝑟1, 𝑟2,… , 𝑟𝑛] that specifies how

181



many times each variable is repeated.

One particular aspect of Algorithm 5 requires further elaboration: the requirement that

at least one of the 𝑟𝑖 is odd. This requirement is needed to ensure that the loop of 𝑖 over the

range 1 to 𝑛− 1, which generates a cascade of CNOT gates that computes the exclusive-OR

of those variables with an odd number of repetitions, works properly. This requirement does

not lead to any loss of generality because, as the following reasoning shows, any symmetric

function with repeated variables can be expressed in a form where at least one variable

is repeated an odd number of times. Suppose that we have a symmetric function where

each variable is repeated an even number of times. Then the input weight is always even

as well, so odd elements of the function’s ON-set have no relevance. We can therefore

simplify this function by discarding all odd elements of the ON-set, dividing the remaining

elements by 2, and also dividing the number of repetitions by 2 for each variable. If the

new resulting function still has an even number of repetitions for each variable, this process

can be repeated until at least one variable has an odd number of repetitions. For instance,

given the function S3,4,6,7(𝑎, 𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑐, 𝑐), we can discard 3 and 7 from the ON-set, giving

S4,6(𝑎, 𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑐, 𝑐). Dividing both the elements of the ON-set and the variable repetitions

by 2 then produces the equivalent function S2,3(𝑎, 𝑏, 𝑐, 𝑐).

Algorithm 4 can be adapted to handle repeated variables as well by replacing the call to

RealizeDips(𝑛, 𝑘−1, 0) with a call to RealizeDipsWithRepeatedVars(𝑛, 𝑘−1, 0,𝑅),

where 𝑅 defines the repetition count of each variable as in Algorithm 5. There is one small

caveat: if the function to be realized has 𝑛 unique input variables but 𝑛′ variables when

counting all repetitions, then this 𝑛 is the same as the 𝑛 in Algorithm 5, but the 𝑘 in both

Algorithms 4 and 5 is calculated based on 𝑛′, i.e., 𝑘 = ⌈log2(𝑛′ + 1)⌉. (This same caveat is

encountered when analyzing quantum cost, as discussed in Section 4.4.) Combining this
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Algorithm 5: Realize a set of DIPS with repeated variables.
Function RealizeDipsWithRepeatedVars(𝑛, 𝑘, 𝑠,𝑅)

Input: A positive integer 𝑛, nonnegative integer 𝑘, nonnegative integer 𝑠 with
𝑠 < 2𝑘, and a length-𝑛 array of positive integers 𝑅 = [𝑟1, 𝑟2,… , 𝑟𝑛], where at
least one of the 𝑟𝑖 is odd.

Output: A circuit that realizes SDIP(𝑘,𝑠 mod 2𝑗)(𝑥1
𝑟1,… , 𝑥𝑛

𝑟𝑛) for 0 ≤ 𝑗 ≤ 𝑘,
where the notation 𝑥𝑖

𝑟𝑖 indicates that the variable 𝑥𝑖 is repeated 𝑟𝑖 times.

Let 𝑄 be a quantum circuit, initially containing no gates, that operates on qubits
𝑥1 through 𝑥𝑛 and 𝑦1 through 𝑦𝑘.

for 𝑗 from 𝑘 to 1 do
for 𝑖 from 1 to 𝑛 do

Append a controlled-X𝑟𝑖
𝑗 gate with control 𝑥𝑖 and target 𝑦𝑗 to 𝑄.

end
end
Let 𝑖′ = 0.
for 𝑖 from 1 to 𝑛 − 1 do

if 𝑟𝑖 is odd then
if 𝑖′ ≠ 0 then

Append a controlled-NOT gate with control 𝑥𝑖′ and target 𝑥𝑖 to 𝑄.
end
Let 𝑖′ = 𝑖.

end
end
Designate 𝑦0 as an alias for the qubit 𝑥𝑖′.
for 𝑗 from 1 to 𝑘 do

for 𝑗′ from 0 to 𝑗 − 1 do
if b𝑗′(𝑠) = 1 then

Let U = X𝑗−𝑗′.
else

Let U = X−1
𝑗−𝑗′.

end
Append a controlled-U gate with control 𝑦𝑗′ and target 𝑦𝑗 to 𝑄.

end
end
Output the circuit 𝑄.

end
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modified Algorithm 4 with an algorithm for symmetrizing Boolean functions, such as that

described in [48], gives an algorithm for realizing any Boolean function using controlled-

root-of-NOT gates.

Like Algorithm 1 from Chapter 3, Algorithm 5 generates quantum gates in a straight-

forward way without performing any searching or backtracking, so its run-time complexity

is the same as the number of gates in the circuit that it generates, namely 𝒪(𝑘𝑛 + 𝑘2). If

Algorithm 4 is modified to handle repeated variables, as described in the previous paragraph,

then its run-time complexity can be analyzed as in Section 4.2.4. As in that section, the time

required to compute the Walsh-Hadamard transforms is found to dominate the run time of

the algorithm, so it runs in 𝒪(𝑚𝑛′ log 𝑛′) time, where, as in the previous paragraph, 𝑛′ is the

number of variables of the function to be realized, including all repetitions.

4.4 Calculation and comparison of circuit complexity

We can now derive an upper bound on the quantum cost required to realize any single-output

or multi-output symmetric function. To realize a symmetric function of 𝑛 input variables

using the Walsh-Hadamard transform-based method of Section 4.2, a transform of size 2𝑘

such that 𝑛 ≤ 2𝑘 − 1 is required. This means that 𝑘 = ⌈log2(𝑛 + 1)⌉. Now, recall that the

circuit used to realize an arbitrary symmetric function consists of a DIPS-initialization stage

followed by an output stage, where the DIPS-initialization stage is an instance of the circuit

structure from Figure 3.10 and the output stage is of the form shown in Figures 4.14 and 4.15.

For a Walsh-Hadamard transform of size 2𝑘, DIPS of orders 0 through 𝑘 − 1 are required,

so from the formula given in (3.23), we get a cost of

𝑘(𝑛 + 𝑘 − 1
2

) − 1 (4.20)
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for the DIPS-initialization stage. From Theorem 13, the output stage requires up to 2𝑘 − 2

CNOT gates to compute all possible exclusive-ORs of subsets of DIPS, and it also requires

one gate per output for each nonzero Walsh-Hadamard spectral coefficient, so the total cost

of the output stage can be up to

2𝑘(𝑚 + 1) − 2 (4.21)

for an 𝑚-output function. Adding (4.21) to (4.20) results in a total cost of

𝑘(𝑛 + 𝑘 − 1
2

) + 2𝑘(𝑚 + 1) − 3 (4.22)

for an 𝑛-input, 𝑚-output symmetric function. The space complexity, as measured by the

number of ancillary qubits, is simply 𝑘 − 1 because one ancillary qubit is required to hold

each of the DIPS from order 1 to 𝑘 − 1. If these ancillary qubits are additionally to be

restored to their original state of |0⟩, then a mirror circuit must be used. The mirror circuit is

simply the inverse of the DIPS-initialization stage; the output stage does not require a mirror

circuit since, when designed using a pattern of CNOT gates obtained from Theorem 13, it

leaves the ancillary qubits in the same states in which they started. Therefore, when a mirror

circuit is included, the cost of (4.20) must be counted twice, which brings the total cost up to

𝑘(2𝑛 + 𝑘 − 1) + 2𝑘(𝑚 + 1) − 3. (4.23)

We can make the following observations with respect to the growth rate of the costs

given in both (4.22) and (4.23):

• Since 𝑘 = 𝒪(log 𝑛), the total cost of realizing an 𝑛-input symmetric function grows

as 𝒪(𝑛 log 𝑛).
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• For a fixed value of 𝑛 and therefore a fixed 𝑘, the cost per output is constant, regardless

of the number of outputs.

• As 𝑛 increases, 𝑘 only increases by 1 every time 𝑛 reaches a power of two, so the cost

per output in fact stays constant over wide ranges of 𝑛.

For non-symmetric functions realized through repetition of inputs in a symmetric func-

tion, the result from 4.3.2 can be applied to get an upper bound for quantum cost expressed

in terms of the numbers of inputs when repetitions are and are not counted. If 𝑛 is the

number of unique input variables and 𝑛′ is the number of inputs including repetitions, then a

Walsh-Hadamard transform of size 2𝑘 where 𝑘 = ⌈log2(𝑛′ + 1)⌉ is required. In other words,

the size of the required transform depends on the number of inputs including repetitions,

since that is the actual number of inputs to the symmetric function being realized. The

maximum cost of the output stage in turn depends on 𝑘 via (4.21). However, the cost of

the DIPS-initialization stage depends on 𝑛, not 𝑛′, because the simplifications shown in

Figure 4.17 ensure that repetitions of inputs do not increase the total cost—this was the

essence of the result from Section 4.3.2. Therefore, the maximum quantum cost of realizing

an arbitrary non-symmetric Boolean function is also given by (4.22) or (4.23), depending

on whether a mirror circuit is used, but with the caveat that 𝑘 = ⌈log2(𝑛′ + 1)⌉ and not

⌈log2(𝑛 + 1)⌉. Based on the experimental findings of Chrzanowska-Jeske et al. [48], it

appears that 𝑛′ is often in the neighborhood of 2𝑛.

Table 4.1 presents some sample values obtained for various values of 𝑛 and 𝑚 in (4.22)

and (4.23). These upper bounds can be compared to the ones obtained by Maslov [33] with

a realization method that only uses NOT, CNOT, and Toffoli gates. Whereas Maslov’s

upper bound [33, Theorem 4] on quantum cost for an 𝑛-input, 𝑚-output symmetric function

grows at least as fast as 𝑛2 + 𝑛𝑚 log 𝑛, the bounds (4.22) and (4.23) contain no 𝑛𝑚 term
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Table 4.1: Upper bounds on quantum cost for symmetric functions realized using the Walsh-
Hadamard transform-based method presented in this chapter.

1 2 3 1 2 3

5 3 17 8 31 39 47 48 56 64
10 4 45 16 75 91 107 120 136 152
15 4 65 16 95 111 127 160 176 192
20 5 109 32 171 203 235 280 312 344
25 5 134 32 196 228 260 330 362 394
30 5 159 32 221 253 285 380 412 444
35 6 224 64 350 414 478 574 638 702

𝑛 𝑘
Cost of DIPS-

init. stage
= (4.20)

Cost per
add’l output

= 2𝑘

Total cost for num. outputs
without mirror with mirror

and only increase as 𝒪(𝑛 log 𝑛) when 𝑛 is increased with 𝑚 fixed. In addition, Maslov’s

method uses up to 𝑛 + 2⌊log 𝑛⌋ − 1 ancillary qubits1 while the method presented here uses

only 𝑘 − 1 = ⌈log2(𝑛 + 1)⌉ − 1. The costs given in Table 4.1 also compare favorably to the

costs obtained by Maslov for some actual benchmark functions [33, Table 2]. For instance,

the 15-input, single-output function “sym15” is realized with a cost of 569 while the upper

bound of 95 from Table 4.1 is nearly six times smaller. Even for 15 inputs and 3 outputs with

a mirror circuit, my upper bound of 192 is still about a third of Maslov’s cost for the 15-input,

single-output function. For the 35-input, single-output function “dbruijn_5”, Maslov reports

a cost of 2990, which is more than eight times higher than my upper bound of 350 for such

a function. These findings therefore support the idea that realizing functions directly on the

level of two-qubit gates can provide significant improvements over realization methods that

use only Toffoli gates together with concepts from Boolean algebra.
1Maslov calls these “garbage bits” because they are not restored to their original states using a mirror

circuit. Hence, I use the upper bound given by (4.22), which assumes no mirror circuit, for comparison.
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4.5 Conclusion

In this chapter, I accomplished two objectives that greatly increase the power of the realization

methods presented in Chapters 2 and 3. In the first part of the chapter, I showed that there

is a close correspondence between DIPS and the basis functions of the Walsh-Hadamard

transform. I showed that by taking advantage of this correspondence, the indicator function of

an arbitrary symmetric function can be broken down into a combination of Walsh-Hadamard

basis functions, which in turn allows the arbitrary symmetric function to be realized using

a combination of DIPS. The ability to realize DIPS of multiple orders simultaneously,

introduced at the end of Chapter 3, is especially useful for this purpose as the DIPS obtained

in that way can conveniently be combined using exclusive-OR operations (implemented by

CNOT gates) to create the corresponding symmetric functions for every Walsh-Hadamard

basis function without any additional ancillary qubits.

I also considered the realization of multiple-output symmetric functions. This appears

to be the first time that the realization of multiple-output symmetric functions directly using

non-permutative two-qubit gates has been studied. For multiple-output symmetric functions,

the newly introduced Walsh-Hadamard transform-based method again performs very well

because it allows each additional output to be realized with an increase in quantum cost of at

most twice the number of inputs. This upper bound for the quantum cost applies regardless

of the functions being realized. In other words, there are no “pathological” symmetric

functions that result in abnormally high quantum costs (compared to most other functions)

when realized using my method. I calculated an upper bound for the cost of realizing any

symmetric Boolean function, and this upper bound was found to compare favorably with the

bound obtained by a method of Maslov that only uses Toffoli gates.

In the second part of the chapter, I further increased the power of the presented realization
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method by showing that it can also be applied to non-symmetric functions through repetition

of variables. Every Boolean function can be symmetrized, that is, it can be expressed as

a symmetric function with repeated variables. Previous work has shown that in practice,

this can often be done using only two or three repetitions of each variable, making it a

viable method of realizing arbitrary Boolean functions if low-cost realizations of symmetric

functions are available. My method provides these low-cost realizations of symmetric

functions and in fact is able to repeat variables without any increase in quantum cost of the

resulting circuit at all. In fact, multiple-output Boolean functions can also be symmetrized

using the same number of repetitions for each variable, which consequently allowsmymethod

to apply to multiple-output Boolean functions as well. I have therefore now demonstrated

a realization method for arbitrary Boolean functions directly using two-qubit controlled

gates.
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Chapter 5

Cycle-based synthesis of binary permutative quantum circuits

The ability to synthesize permutative circuits is of paramount importance in realizing a

viable quantum computing system. Realizing permutative functions using quantum circuits

is analogous to constructing Boolean functions using AND, OR, and NOT gates in classical

digital logic; it is a crucial step in designing and constructing circuits for use in quantum

algorithms, such as oracles for Grover’s algorithm.

In Chapters 2 through 4, I demonstrated a realizationmethod for both single- andmultiple-

output functions, which may or may not be reversible. Here, I consider the different scenario

of realizing a function that is specified as a permutation and is therefore inherently reversible.

Such a function could simply be treated as a multiple-output function that happens to have

the same number of inputs and outputs, and could therefore be realized using the methods

presented in the previous chapters as well. However, doing so entails essentially treating the

function as just a collection of single-output functions, and therefore requires allocating an

ancillary qubit for each output. In contrast, the realization method I present here realizes

permutative functions “in place”, that is, using the same qubits for both the inputs and outputs

of the function. This requires treating the function as a permutation and not as a collection

of single-output functions, and therefore involves a wholly different set of concepts to those

presented in Chapters 2 through 4.

190



Previously proposed approaches to the synthesis of binary reversible and quantum circuits

are of a variety of different types. One notable class of synthesis methods are transformation-

based methods, which operate on the truth table of a reversible function and attempt to

transform the truth table in such a way as to produce the identity map. The sequence

of transformations performed is then mapped in some way to a reversible circuit. The

well-known MMD method [49] and its numerous variants are examples of transformation

based-methods.

Another class of synthesis methods are cycle-based methods, which first express a

permutation as a set of cycles and then realize individual cycles or small sets of cycles at a

time. These methods often use a predetermined set of subcircuits, each designed to realize a

specific type of cycle or set of cycles. Examples of cycle-based methods include those of

Shende et al. [50] and Saeedi et al. [51].

Yet other synthesis methods for permutative functions include positive-polarity Reed-

Muller (PPRM)- and search-based methods such as that proposed by Gupta et al. [52], and

binary decision diagram (BDD)-based methods such as the one by Wille and Drechsler [53].

For a more thorough discussion of these and other methods, I refer the reader to [54].

Although, as can be seen from the preceding examples, there exists diversity of pro-

posed methods for reversible circuit synthesis, they generally assume that the circuit to

be synthesized is binary. Much less work has been done on the synthesis of quantum cir-

cuits involving multiple-valued qudits. In particular, there is little to no published work on

synthesis algorithms for binary functions that can also be generalized to a multiple-valued

setting. To address this gap, in this chapter I present a systematic method for synthesizing

binary quantum circuits to realize arbitrary permutative functions. I introduce a new type

of reversible gate, the distance gate, which is defined to realize a permutation consisting

191



of exactly one transposition. Distance gates generalize in a straightforward manner to the

case of multiple-valued quantum circuits, and they can even be used in mixed circuits that

contain both binary and multiple-valued elements. I examine multiple-valued distance gates

in detail in Chapter 6.

5.1 Representation of a permutation in terms of cycles

Throughout this chapter, I assume that a reversible function with 𝑛 Boolean inputs and

outputs, where 𝑛 is any positive integer, is to be realized using a quantum circuit. Such

a function can be given in the form of a truth table, but in order to apply a cycle-based

synthesis algorithm, it is necessary to first express the function in terms of cycles. A cycle

is a specific type of permutation that can be expressed as a sequence of items, in which

each item in the sequence maps to the next and the last item maps to the first, forming a

closed cycle (hence the name). A cycle containing 𝑛 elements is written as (𝑥1 𝑥2 𝑥3 … 𝑥𝑛),

so that 𝑥1 maps to 𝑥2, 𝑥2 to 𝑥3, and so on. Because 𝑥𝑛 also maps to 𝑥1, such a cycle can

be written in 𝑛 different ways, all of which are equivalent: (𝑥1 𝑥2 𝑥3 … 𝑥𝑛) denotes the

same cycle as (𝑥2 𝑥3 … 𝑥𝑛 𝑥1), (𝑥3 … 𝑥𝑛 𝑥1 𝑥2), and so on all the way to (𝑥𝑛 𝑥1 𝑥2 𝑥3 …).

A cycle consisting of only one element—e.g., (𝑥)—is called a singleton and represents a

trivial permutation. A cycle consisting of two elements, (𝑥1 𝑥2), is called a transposition

and represents a permutation that swaps 𝑥1 and 𝑥2.

Table 5.1 gives an example of a three-input, three-output reversible function in the form

of a truth table. Here, I first review how a permutation can be expressed as a sequence

of cycles, using this function as an example. It is convenient for the sake of discussion

to interpret the bit-sequences in Table 5.1 as base-two representations of integers. This

interpretation is only for convenience and is unimportant to the operation of a cycle-based
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Table 5.1: A reversible Boolean function to be expressed in terms of cycles.

𝑎 𝑏 𝑐 𝑎′ 𝑏′ 𝑐′

0 0 0 0 0 1
0 0 1 1 0 0
0 1 0 1 1 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 0 1 1

Input bits Output bits

synthesis method. In order to express the permutation represented by the truth table as a

sequence of cycles, we consider a possible input value and trace out the cycle produced

starting from that value. First, beginning with an input value of 0 (corresponding to the input

bit-sequence 000), Table 5.1 shows that the output value 1 (corresponding to the bit-sequence

001) is generated. Similarly, with the input value 1, the output value 4 (corresponding to

100) is generated. With the input value 4, the output value 0 is generated, which completes

the cycle. Hence, the resulting cycle is (0 1 4).

Other cycles are obtained in a similar manner. If we choose 2 as an initial input value,

then the cycle (2 6 7 3) is produced, and with 5 as the initial input value the cycle (5)

is produced. Therefore, the cycle representation of the function defined by Table 5.1 is

(0 1 4)(2 6 7 3)(5). Usually, by convention, singleton cycles (5) may be omitted (since any

input value not written in the cycle notation is assumed to map to itself and therefore form a

singleton cycle), which results in the cycle representation (0 1 4)(2 6 7 3).

In general, the following algorithm represents a permutation, defined by the function 𝑓,

as a sequence of cycles.

193



Algorithm 6: Express a permutation as a list of cycles
Input: A permutative function 𝑓 with domain and range 𝑆.
Output: A list of cycles 𝐶.
begin

Create a list of cycles 𝐶, and initialize it to an empty list.
Create a list 𝐿, the already-visited list, and initialize it to an empty list.
while there exists an element of 𝑆 not in 𝐿 do

Let 𝑥0 be an element of 𝑆 not in 𝐿.
Let 𝑖 = 0.
while 𝑓(𝑥𝑖) ≠ 𝑥0 do

Let 𝑥𝑖+1 = 𝑥𝑖.
Add 𝑥𝑖+1 to 𝐿.
Increment 𝑖 by 1.

end
Add the cycle (𝑥0 𝑥1 … 𝑥𝑖) to the list 𝐶.

end
Output 𝐶.

end

5.2 Realization of transpositions using distance gates

5.2.1 Uncontrolled distance gates

I now introduce the concept of a distance gate and show how distance gates may be imple-

mented using quantum circuits consisting of controlled-NOT and Toffoli gates.

Definition 14. A quantum gate 𝐺 that acts on 𝑛 qubits, 𝑥1 through 𝑥𝑛, is an uncontrolled

distance gate if there exist 𝑎𝑖, 𝑏𝑖 ∈ {0, 1} for 1 ≤ 𝑖 ≤ 𝑛 satisfying the following properties:

1. ¬𝑎𝑖 = 𝑏𝑖 for all 𝑖.

2. The gate 𝐺 acting on the state |𝑎1⟩ ⊗⋯⊗ |𝑎𝑛⟩ (in other words, the qubit 𝑥𝑖 has initial

state |𝑎𝑖⟩) produces the state |𝑏1⟩ ⊗⋯⊗ |𝑏𝑛⟩, and vice versa.

3. The gate 𝐺 acting on any other basis state leaves that state unchanged.
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The bit strings 𝑎1𝑎2 … 𝑎𝑛 and 𝑏1𝑏2 … 𝑏𝑛 are called the active values of the distance gate.

In other words, a distance gate is a gate that realizes the function expressed by the single

transposition (𝑎1𝑎2 … 𝑎𝑛 𝑏1𝑏2 … 𝑏𝑛).

Figure 5.1 shows the structure of circuits that implement uncontrolled distance gates.

In this figure, 𝑝 is an arbitrary index with 1 ≤ 𝑝 ≤ 𝑛. The CNOT gates in this structure

may either be positive- or negative-control variants. Figure 5.1 represents these allowed

variants by showing the control inputs with half-filled dots. However, all CNOT gates must

be of the same type. In other words, the CNOT gates may be all positive-control or all

negative-control, but a mixture of the two types is not allowed. The central Toffoli gate may

have any combination of positive and negative controls, with no constraints. In words, the

circuit structure represented by Figure 5.1 may be described as follows:

• A particular qubit 𝑥𝑝 is chosen from the qubits participating in the circuit.

• The circuit then begins with a sequence of CNOT gates, all with 𝑥𝑝 as their control

qubit and targeting each of the other qubits in turn. Every CNOT gate in this sequence

has the same control polarity.

• These CNOT gates are followed by a Toffoli gate that targets 𝑥𝑝 and has all other

qubits in the circuit as control qubits.

• Finally, the circuit ends with another sequence of CNOT gates identical to the first. In

Figure 5.1, to highlight the symmetry of the circuit structure, these gates are shown

in reverse order compared to the ones at the start of the circuit, but the order is

unimportant since each of them targets a different qubit.

Suppose that we have a particular instance of the circuit structure from Figure 5.1.

“Particular instance” means that a number of inputs 𝑛 is chosen and the control polarities
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𝑥1

𝑥2

𝑥𝑝−1

𝑥𝑝

𝑥𝑝+1

𝑥𝑛−1

𝑥𝑛

Figure 5.1: A circuit structure that implements uncontrolled distance gates.

(positive or negative) are specified for all gates, so a single quantum circuit is created. This

circuit then contains one Toffoli gate and 2(𝑛 − 1) CNOT gates. Define Boolean variables

𝑐1, 𝑐2,… , 𝑐𝑛 as follows: for 𝑖 ≠ 𝑝, 𝑐𝑖 = 1 if the corresponding control input to the Toffoli

gate is of positive polarity and 𝑐𝑖 = 0 if it is of negative polarity. Define 𝑐𝑝 = 1 if the CNOT

gates are of positive-control type and 𝑐𝑝 = 0 if they are of negative-control type. Figure 5.2

graphically shows how 𝑐1 through 𝑐𝑛 correspond to control polarities in the circuit structure

from Figure 5.1: each control input is of positive (resp. negative) polarity if the 𝑐𝑖 it is

labeled with has a value of 1 (resp. 0).

Given the conditions stated in the previous paragraph, the following proposition then

characterizes the behavior of the circuit:

Proposition 15. Let a quantum circuit be an instance of the circuit structure from Figure 5.1

and let 𝑐1 through 𝑐𝑛 be as defined above. Then this quantum circuit implements an un-

controlled distance gate with active values 𝑐1𝑐2 … 𝑐𝑝−1 𝑐𝑝 𝑐𝑝+1 … 𝑐𝑛−1𝑐𝑛 and 𝑐1 𝑐2 … 𝑐𝑝−1 𝑐𝑝

𝑐𝑝+1 … 𝑐𝑛−1 𝑐𝑛, where 𝑥 denotes the logical negation of 𝑥, 𝑥 = ¬𝑥.

Proof. We first make the following observation: referring to Figure 5.1, if the central Toffoli
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𝑥1

𝑥2

𝑥𝑝−1

𝑥𝑝

𝑥𝑝+1

𝑥𝑛−1

𝑥𝑛

𝑐𝑝 𝑐𝑝 𝑐𝑝

𝑐𝑝 𝑐𝑝 𝑐𝑝

𝑐1

𝑐2

𝑐𝑝−1

𝑐𝑝+1

𝑐𝑛−1

𝑐𝑛

𝑐𝑝𝑐𝑝𝑐𝑝

𝑐𝑝𝑐𝑝𝑐𝑝

Figure 5.2: The circuit structure from Figure 5.1 with control polarities indicated by 𝑐1 through 𝑐𝑛.

gate in the circuit is not active, then the entire circuit will perform no net change to any

of the qubits’ states. This fact is clear from the symmetrical arrangement of CNOT gates

around the Toffoli gate: since the CNOT gate is self-inverse, when the Toffoli gate is not

active, each CNOT gate on the left cancels with the corresponding identical CNOT gate on

the right. Therefore, we only need to consider the cases where the Toffoli gate is active.

If 𝑐1 through 𝑐𝑛 are as defined above, then the central Toffoli gate is only active when,

just prior to this gate, each qubit 𝑥𝑖 is in the state |𝑐𝑖⟩, with the exception of 𝑥𝑝, which may

be in any state. We can then work backwards to determine the starting state of the qubits.

Qubit 𝑥𝑝 only acts as a control qubit to the CNOT gates and never as a target qubit, so its

state just prior to the Toffoli gate is the same as its state at the start of the circuit. The CNOT

gates on the left side of the circuit are active if 𝑥𝑝 begins in the state |𝑐𝑝⟩ and not active if 𝑥𝑝

begins in the state |𝑐𝑝⟩.

First consider the case where 𝑥𝑝 begins in the state |𝑐𝑝⟩. None of the CNOT gates on

the left side of the circuit are active, so the starting state of each 𝑥𝑖 for 𝑖 ≠ 𝑝 must be |𝑐𝑖⟩ in

order for the Toffoli gate to be active. The Toffoli gate then inverts the state of the qubit 𝑥𝑝,
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bringing it to |𝑐𝑝⟩. As a result, the CNOT gates on the right side of the circuit are active, and

the states of all of the other qubits are inverted as well, resulting in a final state |𝑐𝑖⟩ for qubit

𝑥𝑖. To summarize, when the qubit 𝑥𝑝 begins in the state |𝑐𝑝⟩ and every other qubit 𝑥𝑖 begins

in the state |𝑐𝑖⟩, the final states of the qubits after the circuit will be |𝑐𝑝⟩ for 𝑥𝑝 and |𝑐𝑖⟩ for all

other 𝑥𝑖.

Now consider the case where 𝑥𝑝 begins in the state |𝑐𝑝⟩. In this case, the CNOT gates

on the left side of the circuit are all active. Every qubit 𝑥𝑖, for 𝑖 ≠ 𝑝, must then begin in the

state |𝑐𝑖⟩ in order for the Toffoli gate to be active: the active CNOT gates will invert these

qubits so that qubit 𝑥𝑖 is in the state |𝑐𝑖⟩ just prior to the Toffoli gate. The Toffoli gate then

inverts the state of qubit 𝑥𝑝, bringing it to |𝑐𝑝⟩. This causes the CNOT gates on the right side

of the circuit to be inactive, so no further changes are made to the states of any of the qubits.

Therefore, when 𝑥𝑝 begins in the state |𝑐𝑝⟩ and every other qubit 𝑥𝑖 begins in the state |𝑐𝑖⟩,

the final states of the qubits after the circuit will be |𝑐𝑝⟩ for 𝑥𝑝 and |𝑐𝑖⟩ for all other 𝑥𝑖.

In all other cases besides the above two, the Toffoli gate is not active and therefore the

circuit makes no overall change to any qubit’s state, as discussed above. The circuit acting

on the state |𝑐1𝑐2 … 𝑐𝑝−1 𝑐𝑝 𝑐𝑝+1 … 𝑐𝑛−1𝑐𝑛⟩ produces |𝑐1 𝑐2 … 𝑐𝑝−1 𝑐𝑝 𝑐𝑝+1 … 𝑐𝑛−1 𝑐𝑛⟩ and vice

versa, so it satisfies the definition of a distance gate with those active values.

Proposition 15 gives a recipe for implementing an uncontrolled distance gate acting on

any number of qubits, for any pair of active values. If one wishes to implement an 𝑛-qubit

uncontrolled distance gate with active values 𝑎1𝑎2 … 𝑎𝑛 and 𝑏1𝑏2 … 𝑏𝑛, where ¬𝑎𝑖 = 𝑏𝑖

in accordance with Definition 14, one may use an instance of the circuit structure from

Figure 5.2 with 𝑐𝑖 = 𝑎𝑖 for 𝑖 ≠ 𝑝 and 𝑐𝑝 = 𝑏𝑝. For instance, consider the task of implementing

an uncontrolled distance gate acting on three qubits, with active values 𝑎1𝑎2𝑎3 = 011 and

𝑏1𝑏2𝑏3 = 100. Taking 𝑝 = 2, 𝑐1 = 𝑎1 = 0, 𝑐2 = 𝑏2 = 0, and 𝑐3 = 𝑎3 = 1 gives the circuit
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shown in Figure 5.3a.

𝑥1

𝑥2

𝑥3

(a) 𝑝 = 2.

𝑥1

𝑥2

𝑥3

(b) 𝑝 = 2, variant circuit.

𝑥1

𝑥2

𝑥3

(c) 𝑝 = 1.

𝑥1

𝑥2

𝑥3

(d) 𝑝 = 3.

Figure 5.3: Instances of the structure from Figure 5.1 with different choices of 𝑝, all implementing a
distance gate with active values 011 and 100.

The same uncontrolled distance gate may be implemented by multiple distinct circuits.

Considering the same active values as before, 𝑎1𝑎2𝑎3 = 011 and 𝑏1𝑏2𝑏3 = 100, one can also

take 𝑐1 = 𝑏1 = 1, 𝑐2 = 𝑎2 = 1, and 𝑐3 = 𝑏3 = 0, giving the circuit shown in Figure 5.3b.

From Proposition 15, this circuit still implements the same uncontrolled distance gate with

active values 011 and 100. One also has the freedom to choose any value of 𝑝 for the circuit

structure from Figure 5.1, leading to yet more implementations of the same distance gate,

such as those shown in Figures 5.3c and 5.3d.

In general, when implementing a distance gate with active values 𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛,

one has the freedom to make the following choices when implementing an uncontrolled

distance gate using a circuit of the type shown in Figure 5.1:

1. One can choose any 𝑝 with 1 ≤ 𝑝 ≤ 𝑛.

2. One can take either 𝑐𝑖 = 𝑎𝑖 for 𝑖 ≠ 𝑝 and 𝑐𝑝 = 𝑏𝑝, or 𝑐𝑖 = 𝑏𝑖 for 𝑖 ≠ 𝑝 and 𝑐𝑝 =
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𝑎𝑝. Proposition 15 shows that the circuits corresponding to both of these choices

implement the same distance gate.

The first degree of freedom stated above gives 𝑛 distinct choices for an uncontrolled distance

gate acting on 𝑛 qubits. When a distance gate is implemented with a particular choice of 𝑝, I

will refer to 𝑥𝑝 (as shown in Figures 5.1 and 5.2) as the pivot qubit. The second degree of

freedom gives 2 possible implementations for every choice of pivot qubit—in one of these

implementations, 𝑐𝑝 = 𝑎𝑝, and in the other, 𝑐𝑝 = 𝑏𝑝. Since ¬𝑎𝑝 = 𝑏𝑝, it follows that one

of the implementations has 𝑐𝑝 = 0 and the other has 𝑐𝑝 = 1. The choice of 𝑐𝑝 determines

the control polarity of the CNOT gates as seen in Figure 5.2. Therefore, for a given choice

of pivot qubit, a distance gate has one implementation using negative-control CNOT gates

and another using positive-control CNOT gates. I will refer to these two implementations as

CNOT-negative and CNOT-positive respectively. For instance, the circuit from Figure 5.3a

is a CNOT-negative implementation of a distance gate with active values 011 and 100,

while the circuit from Figure 5.3b is a CNOT-positive implementation of the same distance

gate. From item 2 of the above list, we can see that CNOT-negative and CNOT-positive

implementations can be obtained from each other by inverting the control polarity of every

control input of every gate in the circuit.

An exception to the above reasoning occurs when 𝑛 = 1. In this case, there is only one

possible distance gate, which has active values 0 and 1. The whole circuit structure from

Figure 5.1 reduces to just a single inverter: 𝑥𝑝 must be the only qubit in the circuit, the

CNOT gates disappear since there are no other qubits to be targeted by them, and the Toffoli

gate has zero control qubits and degenerates into an inverter. Since there are no CNOT gates,

there is no distinction between CNOT-negative and CNOT-positive implementations, so a

single inverter is the only possible implementation of this distance gate.
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To summarize, Proposition 15 leads to 2𝑛 different implementations for every uncon-

trolled distance gate acting on 𝑛 qubits with 𝑛 ≥ 2, and for 𝑛 = 1, the only possible distance

gate and its implementation is the NOT gate.

5.2.2 Controlled distance gates

The circuit structure from Figure 5.1 has a very useful property. If an uncontrolled distance

gate is implemented by an instance of this structure, call it 𝐺, then one can implement a

controlled-G gate using a corresponding instance of the circuit structure shown in Figure 5.4.

This structure is clearly derived from the earlier one shown in Figure 5.1 by adding additional

control qubits 𝑞1 through 𝑞𝑚. However, the control qubits act as control inputs only to the

central Toffoli gate and do not participate in any of the other gates at all. This is contrary to

the expectation that, in order to create a controlled variant of 𝐺, one needs to add control

inputs to every gate in the circuit that implements 𝐺.

The circuit structure shown in Figure 5.4 operates correctly with the control qubits

participating only in the central Toffoli gate for the following reason. As previously observed

in the proof of Proposition 15, if this Toffoli gate is not active, then the remaining CNOT

gates will cancel with each other, therefore producing no overall change to the qubits’ states.

This observation remains valid when the Toffoli gate is deactivated as the result of one or

more of the newly introduced control qubits 𝑞1 through 𝑞𝑚 not being in the appropriate state.

If these qubits are not all in the appropriate states, the Toffoli gate will not be active, the

CNOT gates will cancel with each other, and the effect will be the same as if the qubits 𝑞1

through 𝑞𝑚 also acted as control inputs to the CNOT gates (making them into Toffoli gates as

well). I call this phenomenon implicit control: the CNOT gates in Figure 5.4 are implicitly

controlled because the circuit acts as if 𝑞1 through 𝑞𝑚 participated as control inputs for these
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𝑥1

𝑥2

𝑥𝑝−1

𝑥𝑝

𝑥𝑝+1

𝑥𝑛−1

𝑥𝑛

𝑞1

𝑞2

𝑞𝑚

Figure 5.4: A variant of the circuit structure from Figure 5.1 with 𝑚 additional control qubits.

gates, even though they do not actually so participate. In general, whenever a quantum

gate 𝐺 is implemented by a circuit with the structure 𝐴𝐵𝐴−1, where 𝐴 and 𝐵 are arbitrary

subcircuits, a controlled-G gate can be implemented by a controlled-𝐵 gate surrounded by

an uncontrolled 𝐴 and 𝐴−1 gate, as shown in Figure 5.5. The 𝐴 and 𝐴−1 gates are implicitly

controlled because, when the controlled-B gate is not active, the 𝐴 and 𝐴−1 gates cancel,

acting as if they were also controlled by 𝑞1 through 𝑞𝑚 even though they are not.

Any controlled distance gate realizes a function expressed by a single transposition. For

instance, consider the three-qubit uncontrolled distance gate with active values 011 and 100,

implemented as in Figure 5.3a. Adding a single control qubit 𝑞1 gives the circuit shown

in Figure 5.6a. Since the behavior of the original uncontrolled distance gate is known, the

behavior of the circuit from Figure 5.6a immediately follows. When 𝑞1 is in the state |1⟩, the

circuit acts as an uncontrolled distance gate on qubits 𝑥1 through 𝑥3, exchanging the states
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𝑥1

𝑥2

𝑥𝑛

𝑞1

𝑞2

𝑞𝑚

𝐴 𝐵 𝐴−1

Figure 5.5: The general setup for an implicitly controlled gate.

|011⟩ and |100⟩. When 𝑞1 is in the state |0⟩, the circuit is deactivated and no net change is

made to any of the qubits’ states. Therefore, considering the state of all four qubits together,

the circuit acts to exchange the states |1011⟩ and |1100⟩, which means that it realizes the

function expressed by the transposition (1011 1100).

Controlled distance gates with multiple control qubits operate in a similar fashion. If

another control qubit 𝑞2 is added to the circuit from Figure 5.6a, the same reasoning as before

shows that the resulting doubly-controlled distance gate realizes the function expressed by

(11011 11100). If 𝑞2 is modified to have negative polarity, the resulting transposition is

instead (10011 10100). There is no requirement that the control qubits must be considered

the most significant qubits in the circuit. If, for instance, 𝑞1 and 𝑞2 are now assigned to

the second and fourth most significant positions, respectively, so that the order of qubits

from most to least significant is 𝑥1, 𝑞1, 𝑥2, 𝑞2, 𝑥3, then the order of bits in the resulting

transposition is correspondingly affected, giving (01101 11000). All of these possibilities

are shown in Figures 5.6b through 5.6d.

The following proposition provides a generalized form of the observations made in the
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𝑞1

𝑥1

𝑥2

𝑥3

(a) One control qubit.

𝑞1

𝑞2

𝑥1

𝑥2

𝑥3

(b) Two control qubits.

𝑞1

𝑞2

𝑥1

𝑥2

𝑥3

(c) Mixed control polarities.

𝑥1

𝑞1

𝑥2

𝑞2

𝑥3

(d) Control qubits in other positions.

Figure 5.6: Controlled variants of the circuit from Figure 5.3a.

previous examples.

Proposition 16. Let G be an uncontrolled distance gate that acts on qubits 𝑥1 through

𝑥𝑛, with active values 𝑎1𝑎2 … 𝑎𝑛 and 𝑏1𝑏2 … 𝑏𝑛. Suppose that a controlled-G gate has 𝑚

additional control qubits, 𝑞1 through 𝑞𝑚, with corresponding control polarities 𝑝1 through

𝑝𝑚, so that 𝑝𝑖 = 1 if 𝑞𝑖 acts as a positive-polarity control and 𝑝𝑖 = 0 otherwise. Then such a

controlled-G gate realizes the function expressed by the single transposition

(𝑝1𝑝2 … 𝑝𝑚𝑎1𝑎2 … 𝑎𝑛 𝑝1𝑝2 … 𝑝𝑚𝑏1𝑏2 … 𝑏𝑛) (5.1)
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when the qubits are arranged in the order 𝑞1,… , 𝑞𝑚, 𝑥1,… , 𝑥𝑛.

Proof. If every qubit 𝑞𝑖 is in the corresponding state |𝑝𝑖⟩, then the controlled gate is active, so

it acts as the uncontrolled distance gate G on qubits 𝑥1 through 𝑥𝑛. Therefore, if 𝑥1 through

𝑥𝑛 begin in the states |𝑎1⟩ through |𝑎𝑛⟩, respectively, then they will end in the states |𝑏1⟩

through |𝑏𝑛⟩, respectively, and vice versa. The controlled gate thus acts to exchange the

states |𝑝1𝑝2 … 𝑝𝑚𝑎1𝑎2 … 𝑎𝑛⟩ and |𝑝1𝑝2 … 𝑝𝑚𝑏1𝑏2 … 𝑏𝑛⟩. If 𝑥1 through 𝑥𝑛 begin in any other

states, from Definition 14, their states will remain unchanged.

If one or more of the qubits 𝑞𝑖 is not in the corresponding state |𝑝𝑖⟩, then the controlled

gate is not active, so it will not make any net change to the states of 𝑥1 through 𝑥𝑛. We see that

the controlled gate exchanges |𝑝1𝑝2 … 𝑝𝑚𝑎1𝑎2 … 𝑎𝑛⟩ and |𝑝1𝑝2 … 𝑝𝑚𝑏1𝑏2 … 𝑏𝑛⟩ and leaves all

other states unchanged, which means that it realizes the function expressed by (5.1).

If the qubits in Proposition 16 are arranged in an order other than 𝑞1,… , 𝑞𝑚, 𝑥1,… , 𝑥𝑛,

then the transposition realized by the gateG is obtained by rearranging the bits of (5.1) in the

corresponding order. For instance, if the order is 𝑞1,… , 𝑥1, 𝑞𝑚,… , 𝑥𝑛, then 𝑞𝑚 and 𝑥1 have

been swapped, so the transposition realized is (𝑝1𝑝2 … 𝑎1𝑝𝑚𝑎2 … 𝑎𝑛 𝑝1𝑝2 … 𝑏1𝑝𝑚𝑏2 … 𝑏𝑛).

5.2.3 Realization of arbitrary transpositions using uncontrolled and controlled dis-

tance gates

From Propositions 15 and 16, we can see that uncontrolled and controlled distance gates

are together capable of realizing any transposition with any number of bits. Specifically,

suppose that one wishes to realize the 𝑛-bit transposition (𝑢1𝑢2 … 𝑢𝑛 𝑣1𝑣2 … 𝑣𝑛).1 One can

then separate the 𝑢𝑖’s and 𝑣𝑖’s into two sets: one for which 𝑢𝑖 = 𝑣𝑖 and another for which
1The new letters 𝑢 and 𝑣 are used here to avoid suggesting a fixed relationship with the 𝑎𝑖’s, 𝑏𝑖’s, and 𝑝𝑖’s

used before. In other words, 𝑢1 does not necessarily correspond to an 𝑎1, 𝑏1 or 𝑝1 from before, but may end up
corresponding to 𝑎𝑖 (or 𝑏𝑖, or 𝑝𝑖) for any index 𝑖 when the procedure described in the main text is applied.

205



𝑢𝑖 ≠ 𝑣𝑖 (which implies ¬𝑢𝑖 = 𝑣𝑖). If the first set is empty, i.e., 𝑢𝑖 ≠ 𝑣𝑖 for all 𝑖, then the

transposition can be realized by an uncontrolled distance gate, because 𝑢1 through 𝑢𝑛 and

𝑣1 through 𝑣𝑛 then correspond to 𝑎1 through 𝑎𝑛 and 𝑏1 through 𝑏𝑛 in Definition 14. On the

other hand, if the first set is nonempty, i.e., 𝑢𝑖 = 𝑣𝑖 for one or more 𝑖, then the transposition

(𝑢1𝑢2 … 𝑢𝑛 𝑣1𝑣2 … 𝑣𝑛) is of the form (5.1), possibly with different ordering of bits: letting 𝑚

be the size of the first set and 𝑛 be the size of the second set, the 𝑢𝑖’s in the first set, which

are equal to the corresponding 𝑣𝑖’s by definition, correspond to 𝑝1 through 𝑝𝑚 in (5.1), while

the remaining 𝑢𝑖’s and 𝑣𝑖’s correspond to 𝑎1 through 𝑎𝑛 and 𝑏1 through 𝑏𝑛, respectively. The

transposition can then be realized using the controlled-G gate described in Proposition 16.

As an example, consider again the controlled distance gate from Figure 5.6a. We previ-

ously saw that this controlled distance gate realizes the transposition (1011 1100). However,

suppose that we were instead presented with this transposition without knowledge of the

distance gate used to realize it. To realize the transposition using a distance gate, we proceed

as follows. Letting (1011 1100) = (𝑢1𝑢2𝑢3𝑢4 𝑣1𝑣2𝑣3𝑣4), we see that 𝑢1 = 𝑣1 while 𝑢𝑖 ≠ 𝑣𝑖

for 𝑖 = 2, 3, 4. This transposition is therefore of the form (5.1) with 𝑚 = 1 and 𝑛 = 3: we can

take 𝑝1 = 𝑢1 = 𝑣1 and 𝑎𝑖 = 𝑢𝑖+1, 𝑏𝑖 = 𝑣𝑖+1 for 𝑖 = 1, 2, 3. Proposition 16 then tells us that

the transposition can be realized by a controlled-G gate where G is an uncontrolled distance

gate: G should have active values 𝑎1𝑎2𝑎3 = 𝑢2𝑢3𝑢4 = 011 and 𝑏1𝑏2𝑏3 = 𝑣2𝑣3𝑣4 = 100, and

it should be controlled by a single control qubit with positive polarity.

Note that the above procedure does not give a unique realization of the transposition

in terms of CNOT and Toffoli gates, because the resulting uncontrolled distance gate G

itself has multiple possible implementations. The circuit from Figure 5.6a is one possible

realization of the transposition (1011 1100). Other realizations can be obtained by adding a

control qubit to any of the circuits from Figure 5.3, since all of them realize a distance gate
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with active values 011 and 100, which is the gate G that was needed in the above example.

A controlled distance gate therefore has as many implementations as its target gate, because

control qubits can be added to any of the target gate’s possible implementations to produce

an implementation of the controlled gate.

There is one case in which a controlled distance gate has only one implementation, that

being when the two elements of the transposition realized by the gate differ in only a single

bit. In that case, the target uncontrolled distance gateG is then just a NOT gate. For instance,

the transposition (1010 1011) is put into the form of (5.1) by letting 𝑚 = 3 and 𝑛 = 1,

which means that 𝑝1 through 𝑝3 correspond to the first three bits and the target uncontrolled

distance gate G realizes the transposition (𝑎1 𝑏1) = (0 1). Then, G is just an inverter acting

on the fourth qubit and the other three qubits are control qubits, which makes the whole

controlled distance gate just a Toffoli gate. This reasoning also happens to show that Toffoli

gates are a special case of controlled distance gates appearing when the two elements of a

transposition differ by a single bit.

Like uncontrolled distance gates, the implementation of a controlled distance gate can

be described in terms of a choice of pivot qubit and whether the implementation is CNOT-

negative or CNOT-positive. These parameters simply apply to the target gate of the controlled

distance gate, which is an uncontrolled distance gate. The choice of pivot qudit is therefore

limited to the qubits that participate in that target gate. In other words, when implementing

a controlled distance gate that realizes a transposition (𝑢1𝑢2 … 𝑢𝑛 𝑣1𝑣2 … 𝑣𝑛), the possible

pivot qubits are limited to the positions 𝑖 for which 𝑢𝑖 ≠ 𝑣𝑖. For a fixed choice of pivot

qubit, the CNOT-negative and CNOT-positive implementations of a controlled distance gate

differ in that the control polarities for the gate’s control qubits are not inverted, while all

other control polarities are. For example, the circuit from Figure 5.6b is a CNOT-negative
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implementation of a controlled distance gate that has 𝑥1, 𝑥2 and 𝑥3 as target qubits and 𝑞1

and 𝑞2 as control qubits. The corresponding CNOT-positive implementation is therefore

obtained by inverting the control polarities for 𝑥1, 𝑥2, and 𝑥3 everywhere in the circuit, as

demonstrated by Figure 5.7, but the control polarities for 𝑞1 and 𝑞2 are unaffected because

they are control qubits for the controlled distance gate.

𝑞1

𝑞2

𝑥1

𝑥2

𝑥3

Figure 5.7: CNOT-positive counterpart of the CNOT-negative implementation of a controlled
distance gate from Figure 5.6b.

In summary, if the two elements of a transposition differ in all of their bits, then the

transposition can be realized using an uncontrolled distance gate; otherwise, the transposition

can be realized using a controlled distance gate where the control qubits correspond to the

bits that do not differ between the two elements of the transposition. The measure of number

of bits that differ between two binary strings is known as the Hamming distance. We

may therefore say that an uncontrolled distance gate always realizes a transposition where

the Hamming distance between the two elements is the maximum possible. This is the

origin of the name “distance gate”. If the Hamming distance between the two elements

of a transposition is 𝑑, then the uncontrolled or controlled distance gate that realizes that

transposition has 2𝑑 possible implementations, unless 𝑑 = 1, in which case there is only one

possible implementation.
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We can see that uncontrolled and controlled distance gates perform similar functions, so

from now on, I will refer to both as “distance gates” without further qualification unless the

distinction is necessary. In Chapter 6, I will demonstrate how, in a multiple-valued setting,

uncontrolled and controlled distance gates can be both seen as particular instances of a single

circuit structure.

5.3 Straightforward realization of permutative functions using distance gates

In Section 5.1, I reviewed how a permutative function can be expressed as a set of cycles, and

in Section 5.2, I showed that all transpositions can be realized using distance gates, which can

in turn be implemented using CNOT and Toffoli gates. Therefore, any permutative function

can be realized by breaking down its constituent cycles into transpositions. Since every

cycle is itself a permutative function, an arbitrary sequence of cycles can be combined via

the operation of function composition. Conversely, breaking down a cycle into a sequence

of other cycles is equivalent to decomposing a function into the composition of two or more

other functions. For instance, any cycle of length 𝑛 with 𝑛 ≥ 3 can be broken down into a

sequence2 of a transposition followed by a cycle of length 𝑛 − 1 using the formula

(𝑥1 𝑥2 𝑥3 … 𝑥𝑛) = (𝑥1 𝑥2) ⋅ (𝑥1 𝑥3 𝑥4 … 𝑥𝑛), (5.2)
2In group theory and other areas of mathematics where cycles are encountered, it is customary to notate

the composition of cycles (and all other permutations) in a right-to-left manner. For instance, if 𝑃1 and 𝑃2 are
two permutations, then 𝑃1𝑃2 denotes the result of applying 𝑃1 following 𝑃2. This convention is by analogy
with function composition, which is usually also notated in a right-to-left manner; e.g., 𝑓(𝑔(𝑥)) denotes the
result of applying the function 𝑓 following the function 𝑔. However, notating the composition of cycles in a
left-to-right fashion is more convenient here because it matches the notation used for quantum circuits: gates
in a quantum circuit execute from left to right. I therefore use a left-to-right convention for combining cycles
throughout this and the following chapter. I describe this notation as a sequence rather than composition of
cycles to acknowledge that it is a deviation from the established convention with regards to the ordering of
cycles when they are composed.

209



which can be verified by observing that the permutations on both sides act identically on

the values 𝑥1 through 𝑥𝑛.

By repeatedly applying (5.2), any cycle can eventually be reduced to a sequence of trans-

positions. For instance, consider the function given by Table 5.1, whose cycle representation

was obtained in Section 5.1 as (0 1 4)(2 6 7 3). The two cycles making up this permutation

can be broken down using (5.2) as

(0 1 4) = (0 1) ⋅ (0 4), (5.3)

(2 6 7 3) = (2 6) ⋅ (2 7 3) = (2 6) ⋅ (2 7) ⋅ (2 3), (5.4)

whereupon the resulting transpositions can be realized using distance gates, resulting in the

circuit shown in Figure 5.8.

(0 1)
=(000 001)

(0 4)
=(000 100)

(2 6)
=(010 110)

(2 7)
=(010 111)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(2 3)
=(010 011)

Figure 5.8: Realization of (0 1 4)(2 6 7 3) using distance gates, with the transposition realized by
each individual distance gate marked.

The decomposition of a cycle into a sequence of transpositions is not unique, and the

circuit resulting from distance-gate-based realization of a permutative function is sensitive

to the choice of decompositions. The cycle (0 1 4), for instance, can also be decomposed

into transpositions as (0 4) ⋅ (1 4). Using this decomposition for (0 1 4) but keeping the
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same decomposition from (5.4) for (2 6 7 3) produces another realization of the function

(0 1 4)(2 6 7 3), which is shown in Figure 5.9. Comparing Figures 5.8 and 5.9, we can

see that the use of a different decomposition has increased the size of the circuit because

the distance gate corresponding to (1 4) requires three gates to implement, while the ones

corresponding to (0 1) and (0 4) are just single Toffoli gates.

(0 4)
=(000 100)

(1 4)
=(001 100)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(2 6)
=(010 110)

(2 7)
=(010 111)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(2 3)
=(010 011)

Figure 5.9: Another realization of (0 1 4)(2 6 7 3) using a different decomposition of (0 1 4) than
the one used in Figure 5.8.

Another degree of freedom in distance-gate-based realization is the selection of an

implementation for each distance gate. Consider realizing the permutation (4 7)(5 6) using

distance gates. In terms of individual bits, these transpositions are (100 111) and (101 110).

In both transpositions, the Hamming distance between the two elements is greater than one,

so both corresponding distance gates have multiple implementations. If the distance gates

are implemented as shown in Figure 5.10a, then two adjacent CNOT gates are formed at the

juncture between the two distance gates, and these CNOT gates can be canceled to produce

the circuit shown in Figure 5.10b. If, on the other hand, the distance gates are implemented

using different pivot bits, as in Figure 5.10c, then this simplification is not possible.

From the preceding examples, we see that distance-gate-based realization of a permu-

tative function involves many choices, all of which potentially affect the quantum cost of
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𝑎

𝑏

𝑐

(4 7)
=(100 111)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(5 6)
=(101 110)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(a) Two distance gates implemented with the same pivot bit.

𝑎

𝑏

𝑐

(b)Result of canceling adjacent CNOT gates
in Figure 5.10a.

𝑎

𝑏

𝑐

(4 7)
=(100 111)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(5 6)
=(101 110)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(c) The same two distance gates but implemented with different pivot bits.

Figure 5.10: Different implementations of the same distance gates, showing that the choice of
implementation affects whether simplifications are possible.

the circuit that is ultimately produced. The next section describes an algorithm that at-

tempts to make choices allowing for simplifications of the resulting circuit, similar to the

one demonstrated in Figure 5.10.

5.4 Distance gate reduction and compound distance gates

5.4.1 Motivation for and demonstration of distance gate reduction

In some cases, attempting to realize a Boolean permutative function in a straightforward

manner using distance gates leads to a clearly and drastically suboptimal result. For instance,

consider a permutative function that takes three inputs 𝑎, 𝑏, 𝑐 and transforms them as follows:

𝑎′ = 𝑎 𝑏′ = 𝑏 𝑐′ = ¬𝑐 (5.5)
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where 𝑎′, 𝑏′, and 𝑐′ are the outputs of the function. In other words, the function simply

leaves inputs 𝑎 and 𝑏 unchanged and inverts 𝑐. The optimal realization of this function using

a quantum circuit is obviously a single inverter acting on qubit 𝑐, as shown in Figure 5.11a.

However, consider what happens when the function is realized using distance gates. In

permutation form, this function is represented by the cycles (0 1)(2 3)(4 5)(6 7). These

transpositions are realized using controlled distance gates, which in this case turn out to just

be Toffoli gates as qubits 𝑎 and 𝑏 both function as control qubits, leaving a single inverter

as the distance gate targeting 𝑐. The realization procedure using distance gates leads to the

circuit shown in Figure 5.11b. This circuit is obviously highly non-optimal as it uses four

Toffoli gates for a function that can be realized by just a single inverter.

𝑎

𝑏

𝑐

(a) Optimal realization of the function.

𝑎

𝑏

𝑐

(b) Circuit generated by realizing individual
transpositions using distance gates.

Figure 5.11: Comparison of realizations of the function described in (5.5).

To remedy the shortcoming exemplified by Figure 5.11, I introduce the concept of dis-

tance gate reduction in this section. Distance gate reduction allows multiple transpositions to

be realized simultaneously by combining their corresponding distance gates into a simplified

form, which I call a compound distance gate.

We have in fact already seen a glimpse of distance gate reduction, in the form of the

simplification demonstrated in Figure 5.10. After cancellation of the CNOT gates in Fig-

ure 5.10a, which produces the circuit of Figure 5.10b, a further simplification can in fact be

made. The two adjacent Toffoli gates in Figure 5.10b both target qubit 𝑐 and both have 𝑎 and
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𝑏 as control qubits, so the operations they perform can be combined using Boolean algebra.

Specifically, the first Toffoli gate is active when 𝑎 ∧ ¬𝑏 = 1 and the second is active when

𝑎 ∧ 𝑏 = 1, so one of the two gates is active when

(𝑎 ∧ ¬𝑏) ∨ (𝑎 ∧ 𝑏) = 𝑎 ∧ (¬𝑏 ∨ 𝑎) = 𝑎 = 1. (5.6)

(It is impossible for both Toffoli gates to be simultaneously active since the conditions

𝑎 ∧ ¬𝑏 = 1 and 𝑎 ∧ 𝑏 = 1 are mutually exclusive.) These two Toffoli gates may therefore

be replaced by a CNOT gate with 𝑎 as its control qubit and 𝑐 as its target qubit, as shown in

Figure 5.12, removing qubit 𝑏 entirely from the involvement of the gate.

𝑎

𝑏

𝑐

𝑎

𝑏

𝑐

⏟⎵⏟⎵⏟

Figure 5.12: Further simplification of the circuit from Figure 5.10b.

The type of simplification demonstrated in Figures 5.10a, 5.10b, and 5.12 can in general

be applied to any sequence of distance gates having the form depicted in Figure 5.13a. This

figure shows a sequence of distance gates that are all implemented as CNOT-positive using

the same pivot qubit, 𝑥𝑛. The Toffoli gates used to implement the distance gates might have

any combination of control polarities, so their control inputs are represented with half-filled
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dots like in Figure 5.1. In such a sequence, the CNOT gates from every neighboring pair

of distance gates may be canceled, leaving only the CNOT gates at the start and end with

consecutive Toffoli gates in the middle. As Figure 5.13b demonstrates, these Toffoli gates

then all share the same target qubit and same set of control qubits, so they can be replaced

by the realization of a Boolean function 𝑓. This function 𝑓 is determined by the control

polarities of the original Toffoli gates—𝑓 evaluates to 1 when one of the Toffoli gates would

be active and 0 otherwise. The idea is that 𝑓 will likely have a realization with lower quantum

cost than the combined cost of of the original Toffoli gates. For instance, in Figure 5.10a,

𝑓(𝑎, 𝑏) = (𝑎 ∧¬𝑏) ∨ (𝑎 ∧ 𝑏), and as (5.6) shows, this can be simplified to 𝑓 = 𝑎, which then

has a realization as a single CNOT gate as shown in Figure 5.12.

In general, then, distance gate reduction is the process of combining certain sets of

distance gates into a circuit that looks like the implementation of a single distance gate, but

with the central Toffoli gate replaced by the realization of a Boolean function 𝑓, as shown

in Figure 5.13b. Such a circuit, being equivalent to the original sequence of distance gates

from which it is derived, therefore realizes a whole set of transpositions at once. This set

of transpositions always satisfies certain properties that are discussed in the next section. I

will refer to any gate that realizes such a set of transpositions as a compound distance gate,

and I will call the function 𝑓 in Figure 5.13 the compounding function of the corresponding

compound distance gate. In an 𝑛-qubit circuit, the compounding function always takes

𝑛 − 1 inputs. Using this terminology, Figure 5.13 then shows how an implementation

of a compound distance gate that realizes a set of transpositions 𝑇 can be derived from

implementations of the distance gates that realize the individual transpositions belonging to

𝑇. Specifically, an implementation of the compound distance gate is obtained by realizing

its compounding function and then surrounding the resulting circuit with CNOT gates as in
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𝑥1

𝑥2

𝑥𝑛−2

𝑥𝑛−1

𝑥𝑛

(a) A sequence of distance gates showing CNOT gates that can be canceled.

𝑥1

𝑥2

𝑥𝑛−2

𝑥𝑛−1

𝑥𝑛

𝑥1

𝑥2

𝑥𝑛−2

𝑥𝑛−1

𝑥𝑛

⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑓

(b) The circuit resulting from cancellation of the CNOT gates, which produces a sequence of adjacent Toffoli
gates that can be realized as a Boolean function 𝑓.

Figure 5.13: Distance gate reduction in the general case.
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Figure 5.13b.

5.4.2 Compatible transpositions

The simplification demonstrated in Figure 5.13 is only possible when all of the distance

gates in the sequence are implemented using CNOT gates with the same control and target

qubits, since only then can those CNOT gates be canceled. Therefore, the use of distance

gate reduction requires the following conditions to be met:

1. Each distance gate must have the same sets of control and target qubits. For the

purpose of this discussion, an uncontrolled distance gate can be thought of as having

an empty set of control qubits.

2. Each distance gate must be implemented using the same choice of pivot qubit.

3. Each distance gate must be implemented using the same CNOT type, i.e., the distance

gates must either be all CNOT-positive or CNOT-negative.

Conditions 2 and 3 are only concerned with choosing appropriate implementations for

the distance gates, but condition 1 places restrictions on what sets of transpositions can be

realized together using distance gate reduction. Specifically, it implies, via Proposition 16 and

the discussion following it, that in every transposition being realized, the two elements must

differ in the same bit-positions. For instance, the two transpositions realized in Figure 5.10a

are (4 7) = (100 111) and (5 6) = (101 110). In both of these transpositions, the two

elements differ in their second and third bits and agree in their first bits, so that when realized

using distance gates, both distance gates have the first qubit (labeled 𝑎 in Figure 5.10a) as

their control qubit and 𝑏 and 𝑐 as their target qubits. In contrast, if we replace the second

transposition (5 6) by (3 6) = (011 110), then the resulting distance gate has 𝑏 as its
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control qubit and 𝑎 and 𝑐 as its target qubits. This distance gate can never undergo distance

gate reduction when combined with the distance gate for (4 7), because of the mismatch

between the two gates’ sets of target qubits. Figure 5.14 shows how the neighboring CNOT

gates from the two distance gates are unable to cancel. Although Figure 5.14 shows only

one specific implementation for each distance gate, using other implementations makes

no difference—no matter what implementations are used, the CNOT gates from the first

distance gate must act on qubits 𝑏 and 𝑐 while the CNOT gates from the second distance

gate act on qubits 𝑎 and 𝑐, so they can never cancel.

If two transpositions do meet the above-described condition, that is, the two element

of both transpositions differ in the same set of bits, then distance gate reduction for the

corresponding distance gates is always possible. One can choose any pivot qubit and use

CNOT-positive implementations for both distance gates. In Figure 5.10c, distance gate

reduction is blocked because the two distance gates are implemented using different pivot

qubits, but the transpositions realized by those gates agree in the set of bits that differ between

their elements. Therefore, distance gate reduction can take place if both distance gates are

instead implemented using the same pivot qubit, which is what was done in Figure 5.10a.

𝑎

𝑏

𝑐

(4 7)
=(100 111)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

(3 6)
=(011 110)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

⏟⎵⏟⎵⏟
No cancellation possible

Figure 5.14: Distance gate reduction is blocked when two distance gates have different sets of target
qubits.
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The preceding discussion applies equally well to sets of more than two transpositions. If

the two elements of every transposition in a set differ in the same set of bits, distance gate

reduction for the corresponding distance gates will be possible when they are all implemented

in CNOT-positive fashion using the same pivot qubit. One can also use CNOT-negative

implementations for every distance gate, but this makes no significant difference compared

to the CNOT-positive option. In Figure 5.13, for example, switching to CNOT-negative

implementations will simply result in the control polarities of 𝑥𝑛−1 and 𝑥𝑛−2 being inverted

in every Toffoli gate, so the resulting compounding function 𝑓 will be the same as before

but with 𝑥𝑛−1 and 𝑥𝑛−2 replaced by ¬𝑥𝑛−1 and ¬𝑥𝑛−2.

Definition 17. Two transpositions are compatible if, for both transpositions, the two elements

of the transposition differ in the same set of bits. A set of transpositions is compatible if

every transposition in the set is compatible with every other transposition in the set.

Therefore, a compatible set of transpositions is one where the two elements of every

transposition in the set differ in the same set of bits. With this definition, a set of transpositions

can be realized using distance gate reduction if and only if it is a compatible set. Conversely,

a compound distance gate always realizes a compatible set of transpositions. It is easy to

see that every transposition is compatible with itself.

Compatible sets of transpositions have the following important property.

Proposition 18. Suppose that a transposition (𝑎 𝑏) is given, where 𝑎, 𝑏 ∈ {0, 1}𝑛 for some 𝑛.

Then the set of all transpositions compatible with (𝑎 𝑏) forms a partition of {0, 1}𝑛.

Proof. Define 𝛿 to be the bitwise exclusive-OR of 𝑎 and 𝑏, denoted 𝑎 ⊕ 𝑏. Then 𝛿 ∈ {0, 1}𝑛

and the 𝑖-th bit of 𝛿 is equal to 1 if and only if 𝑎 and 𝑏 differ in their 𝑖-th bits. Now suppose

that an arbitrary 𝑥 ∈ {0, 1}𝑛 is given. Define 𝑦 = 𝑥 ⊕ 𝛿. Then 𝛿 = 𝑥 ⊕ 𝑦. But this means
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that the 𝑖-th bit of 𝛿 is equal to 1 if and only if 𝑥 and 𝑦 differ in their 𝑖-th bits. Therefore,

𝑥 and 𝑦 differ in the same set of bits as 𝑎 and 𝑏 do, so (𝑥 𝑦) is compatible with (𝑎 𝑏).

Since 𝑥 was an arbitrary member of {0, 1}𝑛, this means that every member of {0, 1}𝑛 belongs

to a transposition that is compatible with (𝑎 𝑏). Furthermore, no member of {0, 1}𝑛 can

belong to more than one transposition that is compatible with (𝑎 𝑏): if both (𝑥 𝑦) and (𝑥 𝑧)

are compatible with (𝑎 𝑏), then we must have 𝑥 ⊕ 𝑦 = 𝛿 and 𝑥 ⊕ 𝑧 = 𝛿, which implies

𝑥 ⊕ 𝑦 = 𝑥 ⊕ 𝑧 and 𝑦 = 𝑧. Since every member of {0, 1}𝑛 therefore belongs to exactly one

transposition that is compatible with (𝑎 𝑏), the set of all such transpositions forms a partition

of {0, 1}𝑛.

The above proof shows that given a transposition (𝑎 𝑏) and an 𝑥 (with 𝑎, 𝑏, 𝑥 ∈ {0, 1}𝑛),

it is easy to find 𝑦 such that (𝑥 𝑦) is compatible with (𝑎 𝑏), and furthermore this 𝑦 is unique.

5.5 Realization of permutative functions with distance gate reduction

5.5.1 Extraction of compatible transpositions from cycles

If we have managed to represent a permutative function as a sequence of compatible sets of

transpositions, then every set in this sequence can be realized using a compound distance

gate, thereby realizing the whole function. However, it is not yet clear how a function,

represented as a set of cycles, can be transformed into such a sequence of sets of compatible

transpositions.

In order to form a set of compatible transpositions from an arbitrary set of cycles, we

may suppose that we select one transposition from the set of cycles and attempt to find other

transpositions that are compatible with the selected transposition. Of course, it may be the

case that the set of cycles contains no transpositions at all. In that case, we may select any
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cycle from the set and decompose it via (5.2) into a transposition plus another cycle. Once

we have obtained a transposition, call it 𝑡, we then search for other transpositions that are

compatible with 𝑡 and extract them from the cycles making up the function to be realized.

Proposition 18 shows that it is easy to find all transpositions compatible with 𝑡. Why

not then take every single one of these transpositions? Doing so would lead to a sequence

of distance gates, as in Figure 5.13, where the Toffoli gates together represent all possible

combinations of control polarities, giving a compounding function that is just a constant

1. This would produce a compound distance gate where the entire block labeled 𝑓 in

Figure 5.13b reduces to just a single inverter, which would of course have a very low quantum

cost. The answer to the above question is that transpositions cannot just be conjured out of

thin air—their elements must already be present in the cycle representation of the function

to be realized, or else extracting them from the function will only increase the total size of

its cycles.

The following example serves to clarify the reasoning of the previous paragraph. Suppose

that we are given the 3-bit permutative function with cycle representation (0 3)(1 2 4) and

we wish to extract a set of compatible transpositions from this function. We choose 𝑡 = (0 3)

since it is the only transposition present. The two elements of (0 3) = (000 011) differ in

their last two bits, so the other transpositions that are compatible with 𝑡 are (1 2) = (001 010),

(4 7) = (100 111), and (5 6) = (101 110), all of which contain two elements that also differ

in their last two bits. Attempting to extract all of these compatible transpositions from the
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function produces

(0 3)(1 2 4) = (0 3)(1 2)(4 7)(5 6)(5 6)(4 7)(1 2)(1 2 4)

= (0 3)(1 2)(4 7)(5 6)(5 6)(4 7)(1 4)

= [(0 3)(1 2)(4 7)(5 6)] (5 6)(1 4 7), (5.7)

where the bracketed part of (5.7) indicates the transpositions that have been extracted from

the function. If we remove the bracketed transpositions, realizing them with a compound

distance gate, we are left with (5 6)(1 4 7). Realizing this set of compatible transpositions

has therefore not really made any progress towards realizing the original function: there is

still one transposition and one cycle of length 3, and the elements 5, 6, and 7, which did not

appear in the original cycles (0 3)(1 2 4) at all, have been introduced.

In contrast, if we restrict ourselves to only extracting transpositions whose elements

already appear in the original set of cycles, then we obtain much better results. Of the

transpositions that are compatible with 𝑡 = (0 3) above, only two are made up entirely of

elements that are already present in the function: 𝑡 itself and (1 2) = (001 010). Extracting

only these two transpositions from the original set of cycles gives

(0 3)(1 2 4) = (0 3)(1 2)(1 2)(1 2 4)

= [(0 3)(1 2)] (1 4), (5.8)

which expresses those cycles as a compatible set of transpositions (0 3)(1 2) followed by

another single transposition (1 4). This compatible set can then be realized by a compound

distance gate and the single transposition realized by another distance gate, successfully

producing a realization of the original function as shown in Figure 5.15.
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𝑎

𝑏

𝑐

(0 3)(1 2)
=(000 011)(001 010)

⏞⎴⎴⏞⎴⎴⏞

⏟⎵⎵⏟⎵⎵⏟
(1 4)

=(001 100)

Figure 5.15: Realization of the function (0 3)(1 2 4) by extracting a compatible set of transpositions.

In some cases, extracting all of the transpositions whose elements appear in the existing

cycles may not be advantageous either. For instance, suppose we are now faced with a

4-bit function with the cycle representation (0 15)(1 14 3 6)(2 4 11)(5 10 13). Again,

this set of cycles contains only one transposition, (0 15), so we take 𝑡 = (0 15). Besides 𝑡

itself, there are four other transpositions compatible with 𝑡 and with both elements already

appearing in the set of cycles: (1 14), (2 13), (4 11), and (5 10). To avoid tedious

repetition of “both elements already appearing in the set of cycles” and similar phrases, I

will from now on describe these transpositions as being available in the set of cycles. I will

also use 𝑡-compatible as an abbreviation for “compatible with 𝑡”. Using this terminology,

the four transpositions previously listed, together with 𝑡 itself, are all of the 𝑡-compatible

transpositions available in (0 15)(1 14 3 6)(2 4 11)(5 10 13).

Now first consider what happens if we realize all five transpositions at once using a

single compound distance gate. To do so, we must first select a pivot qubit to be used

when implementing the compound distance gate; for the sake of demonstration, suppose

that the qubits are labeled 𝑎 through 𝑑 in order and we select 𝑑 (the last qubit). Then the

correspondence between transpositions and terms of the compounding function is as given
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Table 5.2: Terms of the compounding function for a compound distance gate realizing the transposi-
tions (0 15)(1 14)(2 13)(4 11)(5 10), assuming that 𝑑 is the pivot qubit used to implement that gate.

𝑎 𝑏 𝑐

(0 15) = (0000 1111) neg. neg. neg. ¬𝑎 ∧ ¬𝑏 ∧ ¬𝑐
(1 14) = (0001 1110) pos. pos. pos. 𝑎 ∧ 𝑏 ∧ 𝑐
(2 13) = (0010 1101) neg. neg. pos. ¬𝑎 ∧ ¬𝑏 ∧ 𝑐
(4 11) = (0100 1011) neg. pos. neg. ¬𝑎 ∧ 𝑏 ∧ ¬𝑐
(5 10) = (0101 1010) pos. neg. pos. 𝑎 ∧ ¬𝑏 ∧ 𝑐

Transposition

Control polarities of Tof. gate
in CNOT-pos. implementation
of distance gate with pivot 𝑑

Corresponding term in
compounding function

in Table 5.2, from which we obtain the compounding function

𝑓(𝑎, 𝑏, 𝑐) = (¬𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ 𝑏 ∧ 𝑐)

∨ (¬𝑎 ∧ ¬𝑏 ∧ 𝑐) ∨ (¬𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ ¬𝑏 ∧ 𝑐). (5.9)

A Karnaugh map for this function is shown in Figure 5.16a, from which we see that an

ESOP expression for the function is

𝑓(𝑎, 𝑏, 𝑐) = ¬𝑎 ⊕ 𝑐 ⊕ (¬𝑎 ∧ ¬𝑏 ∧ 𝑐). (5.10)

Mapping the terms of this ESOP expression to Toffoli gates and substituting the resulting

realization of 𝑓 into a Figure 5.13b-like circuit gives an implementation of the desired com-

pound distance gate, which is shown in Figure 5.17a. Extracting the realized transpositions
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from the original set of cycles gives

(0 5)(1 14)(2 13)(4 11)(5 10)(5 10)(4 11)(2 13)(1 14)(2 4 11)(5 10 13)(1 14 3 6)

= [(0 5)(2 13)(4 11)(5 10)(1 14)] (1 3 6)(2 5 13 4), (5.11)

which shows that after realizing the five bracketed transpositions, the remaining cycles to be

realized are (1 3 6)(2 5 13 4).

0 1
00

01

11

10

1 1

1 0

0 1

0 1

𝑎𝑏
𝑐

(a) The function from (5.9).

0 1
00

01

11

10

1 0

1 0

0 1

0 1

𝑎𝑏
𝑐

(b) The function from (5.12).

Figure 5.16: Karnaugh maps for compounding functions arising from realizing either all or some of
the transpositions from Table 5.2.

𝑎

𝑏

𝑐

𝑑

¬𝑎⊕𝑐⊕(¬𝑎∧¬𝑏∧𝑐)

⏞⎴⏞⎴⏞

(a) Compounding function (5.9).

𝑎

𝑏

𝑐

𝑑

¬𝑎⊕𝑐
⏞

(b) Compounding function (5.12).

Figure 5.17: Implementations of compound distance gates resulting from the compounding functions
shown in Figure 5.16.

The last term in the ESOP expression (5.10) contains all three variables 𝑎, 𝑏, and 𝑐,

and therefore produces a 3-control Toffoli gate as seen in Figure 5.17a. This term can be
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eliminated if, instead of realizing all five 𝑡-compatible transpositions that are available in

the original set of cycles, we choose to realize only four of them: (0 15), (1 14), (4 11),

and (5 10). If we realize these four transpositions using a compound distance gate, then the

compounding function becomes

𝑓(𝑎, 𝑏, 𝑐) = (¬𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ 𝑏 ∧ 𝑐) ∨ (¬𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ ¬𝑏 ∧ 𝑐), (5.12)

whose Karnaugh map is shown in Figure 5.16b, and which can be expressed in ESOP form

as

𝑓(𝑎, 𝑏, 𝑐) = ¬𝑎 ⊕ 𝑐. (5.13)

Figure 5.17a shows the resulting implementation of the compound distance gate. Extracting

the realized transpositions from the original cycles,

(0 5)(1 14)(4 11)(5 10)(5 10)(4 11)(1 14)(2 4 11)(5 10 13)(1 14 3 6)

= [(0 5)(2 13)(4 11)(5 10)(1 14)] (1 3 6)(2 4)(5 13), (5.14)

we see that the remaining cycles to be realized are (1 3 6)(2 4)(5 13).

Comparing Figures 5.17a and 5.17b, we see that the compound distance gate from

Figure 5.17b has the implementation with the lower quantum cost, since it lacks the 3-control

Toffoli gate seen in Figure 5.17a. Of course, these two compound distance gates are not

equivalent since one realizes five transpositions and the other only four. However, if we then

compare eqs. (5.11) and (5.14), we see that the remaining cycles in both cases are comparable

in size: in (5.11), the remaining cycles consist of one cycle of length 3 and another of length

4, while in (5.14), they consist of a cycle of length 3 and two transpositions. Therefore, given
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that the two options—realizing either the set of five or the set of four transpositions—produce

comparable sets of remaining cycles, the second option appears to be the better choice since

it corresponds to the compound distance gate from Figure 5.17b, whose implementation has

lower quantum cost.

The transposition-extraction strategy demonstrated by the preceding example is then to

extract not necessarily all 𝑡-compatible transpositions that are available in the original set of

cycles, but rather to extract a subset of these transpositions that results in a compounding

function realizable with low quantum cost. In order to find such subsets of 𝑡-compatible

transpositions, the compounding function can be given as a so-called incompletely-specified

function. An incompletely-specified function is not a function in the mathematical sense;

rather, it is merely a relation or a specification that can be satisfied by many different

mathematical functions. Like a normal Boolean function, an incompletely-specified single-

output Boolean function takes a number of Boolean-valued inputs, but in addition to output

values of 0 and 1, any of the output values may also be unspecified. Such unspecified values

are often called “don’t-cares”. When realizing an incompletely-specified Boolean function,

one has the freedom to assign values of either 0 or 1 to any of the don’t-cares in order to

achieve a realization with low cost.

If we specify the terms of the compounding function as don’t-cares, then a method for

realizing Boolean functions using quantum circuits can automatically decide which terms

to take in order to produce a circuit with low quantum cost. However, we cannot make

every single term a don’t-care because then the minimum-quantum-cost realization of the

function trivially just makes the function a constant zero, which realizes no transpositions and

accomplishes nothing. Instead, since our transposition-extraction strategy is based on first

extracting a single transposition 𝑡 and then searching for other 𝑡-compatible transpositions,
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we can stipulate that at minimum, the transposition 𝑡 itself must be realized, but all other

𝑡-compatible transpositions are optional. This corresponds to specifying the output of the

compounding function as 1 for the term corresponding to 𝑡, but as a don’t-care for all other

terms corresponding to 𝑡-compatible transpositions that are available in the original set of

cycles.

To see how an incompletely-specified compounding function works in practice, consider

the same scenario as before, where we wish to extract a compatible set of transpositions

from (0 15)(1 14 3 6)(2 4 11)(5 10 13) starting with 𝑡 = (0 15). Referring to Table 5.2, we

assign the compounding function an output of 1 for the term corresponding to 𝑡,¬𝑎∧¬𝑏∧¬𝑐,

which itself corresponds to the combination of inputs 𝑎 = 𝑏 = 𝑐 = 0. All the other terms

listed in Table 5.2 are assigned a don’t-care output. This produces the Karnaugh map shown

in Figure 5.18. An appropriate algorithm for finding ESOP representations of Boolean

functions, such as EXORCISM-MV-2 [16, 55], can then determine that the optimal ESOP

representation for this function is the one given in (5.13). In doing so, the don’t-cares in

Figure 5.18 are replaced with 0s and 1s, thereby recreating the previous Karnaugh map

shown in Figure 5.16b. We can then determine that the transpositions actually realized are

(0 5)(1 14)(4 11)(5 10) and that (2 13) is not realized.

0 1
00

01

11

10

1 –

– 0

0 –

0 –

𝑎𝑏
𝑐

Figure 5.18: Karnaugh map for an incompletely specified compounding function, derived from the
terms listed in Table 5.2.
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Although the end result of the procedure described in the previous paragraph is the same

as in the example before that—in both cases, the transpositions (0 5)(1 14)(4 11)(5 10) are

extracted from the original set of cycles and realized—the cause and effect are reversed from

before. In the prior example, an a priori decision was made to only extract and realize the

four transpositions (0 5)(1 14)(4 11)(5 10), while in this case, an incompletely-specified

compounding function was created first and the set of transpositions to be extracted was

determined from the result of realizing the compounding function. The task of deciding

which 𝑡-compatible transpositions to realize is therefore delegated to the method or algorithm

used for realizing the compounding function.

In all of the previous examples, the compounding function was realized by representing

it in ESOP form, but this was simply done for convenience and there is no reason why

other realization methods cannot be used. The only requirements are that the realization

method must realize single-output Boolean functions using quantum circuits, and it must be

capable of handling incompletely-specified functions. Notably, the DIPS-based realization

of Boolean functions presented in Chapter 4 meets these requirements, since it relies on the

symmetrization algorithm from [48], which works with incompletely-specified functions.

Therefore, the compounding function can be realized using the DIPS-basedmethod, although

doing so does introduce additional ancillary qubits while a purely ESOP-based approach

does not. Other possible choices of method to realize the compounding function include

those described in [56, 57, 58, 59].

Finally, there is one more variable in play when deciding on a set of transpositions to be

extracted from a permutative function and realized using a compound distance gate, and that

is the choice of pivot qubit for the compound distance gate. Specifically, different choices of

pivot qubit produce different compounding functions, and it is possible that the compounding
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Table 5.3: Terms of the compounding function for a compound distance gate realizing the transposi-
tions (0 15)(1 14)(2 13)(4 11)(5 10) or a subset thereof, assuming that 𝑐 is the pivot qubit used to
implement that gate.

𝑎 𝑏 𝑑

(0 15) = (0000 1111) neg. neg. neg. ¬𝑎 ∧ ¬𝑏 ∧ ¬𝑑
(1 14) = (0001 1110) neg. neg. pos. ¬𝑎 ∧ ¬𝑏 ∧ 𝑑
(2 13) = (0010 1101) pos. pos. pos. 𝑎 ∧ 𝑏 ∧ 𝑑
(4 11) = (0100 1011) neg. pos. neg. ¬𝑎 ∧ 𝑏 ∧ ¬𝑑
(5 10) = (0101 1010) neg. pos. pos. ¬𝑎 ∧ 𝑏 ∧ 𝑑

Transposition

Control polarities of Tof. gate
in CNOT-pos. implementation
of distance gate with pivot 𝑐

Corresponding term in
compounding function

function for one pivot qubit will have a lower-cost realization than the compounding function

for another. For instance, consider again the same example from before, where the available

𝑡-compatible transpositions are given in Table 5.2. In Table 5.2, 𝑑 was used as the pivot qubit,

but since the two elements of 𝑡, 0 = 0000 and 15 = 1111, differ in all four bits, any qubit may

be used as the pivot qubit to implement a compound distance gate realizing these compatible

transpositions or a subset of them. If we choose 𝑐 (the second-to-last qubit) as the pivot qubit

instead, then the correspondence of transpositions to terms of the compounding function is

as shown in Table 5.3. Following the same procedure as before, assigning an output of 1 to

the term¬𝑎∧¬𝑏∧¬𝑑 that corresponds to the transposition 𝑡 and assigning don’t-cares to the

other terms, we arrive at the Karnaughmap shown in Figure 5.19. The compounding function

can then be realized using the expression 𝑓(𝑎, 𝑏, 𝑐) = ¬𝑎, which corresponds to a circuit

containing just a single CNOT gate. The realization of the compounding function in turn

produces the circuit shown in Figure 5.20 as the implementation of the resulting compound

distance gate, which has even lower quantum cost than the circuit from Figure 5.17b. As a

result, when extracting a compatible set of transpositions from a set of cycles, we should
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also try all possible pivot qubits and choose the one that results in the compound distance

gate implementation with the lowest quantum cost.

0 1
00

01

11

10

1 –

– –

0 –

0 0

𝑎𝑏
𝑑

Figure 5.19: Karnaugh map for the compounding function corresponding to the terms listed in
Table 5.3.

One last issue that has not been addressed is how the set of all 𝑡-compatible transpositions

available in a given set of cycles can be found. It is possible to simply make a list of all

𝑡-compatible transpositions and then select only the ones that are available in the set of cycles,

but from Proposition 18, such a list will contain 2𝑛−1 transpositions where 𝑛 is the number

of inputs to the permutative function being realized. It is therefore more computationally

efficient to use the following method. For an element 𝑥 appearing in the set of cycles, there

is a unique 𝑦 such that (𝑥 𝑦) is 𝑡-compatible, which is easily computed as described in the

proof of Proposition 18. If 𝑦 also appears in the set of cycles, then (𝑥 𝑦) is available in that

set. Repeating this process for every 𝑥 appearing in the set of cycles gives all 𝑡-compatible

transpositions available in that set, and only requires an amount of time proportional to the

total number of elements appearing in the set of cycles, which is the same as the sum of

their lengths.

The procedures described in this section can be formulated in terms of several algorithms.

First, Algorithm 7 is a subroutine that finds all of the 𝑡-compatible transpositions available in

a given set of cycles, using the method described in the previous paragraph. Algorithm 8 is
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𝑎

𝑏

𝑐

𝑑

Figure 5.20: Compound distance gate implementation obtained by realizing the compounding
function from Figure 5.19 as 𝑓(𝑎, 𝑏, 𝑐) = ¬𝑎.

another subroutine that maps transpositions to the terms of a compounding function, as was

done in Tables 5.2 and 5.3. Finally, Algorithm 9 uses these two subroutines to choose a set

of 𝑡-compatible transpositions to be realized using a compound distance gate. It assumes that

an external subroutine for realizing incompletely-specified Boolean functions is available,

and incorporates the process of trying all possible pivot qubits and choosing the one that

produces the compounding function realizable with the lowest quantum cost.

5.5.2 Complete realization algorithm for permutative Boolean functions

Using Algorithm 9, it is now easy to see how any permutative Boolean function, represented

as a set of cycles, can be realized using compound distance gates. Given a set of cycles, we

first select any transposition 𝑡 from the set and then use Algorithm 9 to generate a compound

distance gate. If the set of cycles contains no transpositions, then, as mentioned at the

beginning of Section 5.5.1, we may select any cycle from the set and select a transposition

that can be extracted from that cycle via (5.2). In practice, this amounts to letting 𝑡 be

a transposition composed of any two consecutive elements of any cycle in the given set.

After obtaining a compound distance gate an associated set of realized transpositions from

Algorithm 9, we then extract those transpositions from the original set of cycles, thereby

obtaining a new remaining set of cycles to be realized. This process is repeated until no more

cycles are left, and the sequence of compound distance gates thus created is the realization
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Algorithm 7: Find transpositions that are compatible with a given transposition
and available in a given set of cycles.
Function FindCompatibleTranspositions(𝐶, 𝑡)

Input: A nonempty set of cycles 𝐶 whose elements are members of {0, 1}𝑛 for
some positive integer 𝑛, and a transposition 𝑡 .

Output: The set 𝑇 of all 𝑡-compatible transpositions that are available in 𝐶.

Create a set 𝑇 of transpositions, initially empty.
Let 𝑡1 and 𝑡2 be the two elements of 𝑡.
Let 𝛿 = 𝑡1 ⊕ 𝑡2 (the bitwise exclusive-OR of 𝑡1 and 𝑡2).
Let 𝑈 be the set containing all elements of all cycles in 𝐶.
while 𝑈 is nonempty do

Let 𝑢 be any member of 𝑈.
Remove 𝑢 from 𝑈.
Let 𝑢′ = 𝑢 ⊕ 𝛿.
if 𝑢′ is in 𝑈 then

Add the transposition (𝑢 𝑢′) to 𝑇.
Remove 𝑢′ from 𝑈.

end
end
Output 𝑇.

end
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Algorithm 8: Get the term of a compounding function corresponding to a given
transposition.
Function GetCompoundingFunctionTerm(𝑛, 𝑝, 𝑡)

Input: A positive integer 𝑛, a transposition 𝑡 with elements in {0, 1}𝑛, and an
integer 𝑝 with 1 ≤ 𝑝 ≤ 𝑛.

Output: The input value corresponding to 𝑡 in the compounding function when
𝑡 is one of the transpositions realized by an 𝑛-qubit compound distance gate
implemented using the 𝑝-th bit as the pivot bit.

Let 𝐺 be the distance gate acting on 𝑛 qubits 𝑥1 through 𝑥𝑛 that realizes 𝑡.
Let 𝐺Tof be the central Toffoli gate of the CNOT-positive implementation of 𝐺.
foreach 𝑖 from 1 to 𝑛 with 𝑖 ≠ 𝑝 do

Let 𝑐𝑖 be the control polarity of 𝑥𝑖 in 𝐺Tof, where 𝑐𝑖 = 1 and 𝑐𝑖 = 0 indicate
positive and negative polarities, respectively.

end
Output 𝑐1𝑐2 … 𝑐𝑝−1𝑐𝑝+1 … 𝑐𝑛−1𝑐𝑛.

end

of the original function. The entire procedure is described in Algorithm 10.

The choice of transposition 𝑡 in Algorithm 10 ensures that the total number of elements

of the remaining cycles decreases with each iteration. Specifically, when 𝐶 contains one

or more transpositions, then one of them is selected as 𝑡 and is guaranteed to be realized,

removing it from the list of cycles. The total number of elements thus decreases by at

least two. If 𝐶 does not contain any transpositions, then consider the cycle 𝜅 selected in

Algorithm 10. Since 𝑡 is composed of two consecutive elements of 𝜅, extraction of 𝑡 from

𝐶 will cause 𝜅 to be decomposed as in (5.2), therefore removing one element from 𝜅. In

either case, as discussed in Section 5.5.1, no new elements can be introduced to 𝐶 because

the subroutine RealizeTranspositions of Algorithm 9 only ever realizes transpositions

that are available in 𝐶. We therefore obtain the following result.

Theorem 19. If 𝐶 is a set of cycles whose total length is 𝐿, then Algorithm 10 terminates in

at most 𝐿 iterations and realizes 𝐶 using at most 𝐿 compound distance gates.
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Algorithm 9: Find and realize a set of compatible transpositions that are all avail-
able in a given set of cycles.
Function RealizeTranspositions(𝑛, 𝐶, 𝑡)

Input: A positive integer 𝑛 and a set of cycles 𝐶 and transposition 𝑡 with
elements in {0, 1}𝑛, where 𝑡 is available in 𝐶.

Output: A set of compatible transpositions 𝑇 that contains 𝑡 and are all
available in 𝐶, together with a quantum circuit that realizes 𝑇.

External subroutines: RealizeFunction(𝑓, 𝑛, 𝑝), which realizes the
incompletely-specified, 𝑛 − 1-input Boolean function 𝑓 and outputs a quantum
circuit acting on qubits 𝑥1 through 𝑥𝑛. The circuit must accept the inputs to the
function through all of the qubits other than 𝑥𝑝 and indicate an output of 1 by
inverting 𝑥𝑝.

Let 𝑇 ′ = FindCompatibleTranspositions(𝐶, 𝑡).
Let 𝑃 be the set of all integers 𝑝, 1 ≤ 𝑝 ≤ 𝑛, such that the elements of 𝑡 differ in
their 𝑝-th bits.

foreach 𝑝 in 𝑃 do
Let 𝑓 be an incompletely-specified Boolean function with all outputs
initially set to 0.

foreach 𝑡′ in 𝑇 ′ do
Let 𝑋 = GetCompoundingFunctionTerm(n, p, t’).
if 𝑡′ = 𝑡 then

Specify the output of 𝑓(𝑋) as 1.
else

Let the output of 𝑓(𝑋) be unspecified/a don’t-care.
end

end
Let 𝑄𝑝 = RealizeFunction( f, n, p).

end
Let 𝑝min be the member of 𝑃 for which 𝑄𝑝min

has the lowest quantum cost. If
multiple such members of 𝑃 exist, let 𝑝min be any one of them.

foreach 𝑝 in 𝑃 with 𝑝 ≠ 𝑝min do
To the beginning and end of 𝑄𝑝min

, add a positive-control CNOT gate with
control qubit 𝑥𝑝min

and target qubit 𝑥𝑝.
end
Let 𝑇 be the set of transpositions realized by 𝑄𝑝min

.
Output 𝑇 and 𝑄𝑝min

.
end
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Algorithm 10: Realize a set of cycles using a quantum circuit composed of com-
pound distance gates.
Input: A positive integer 𝑛 and a set of cycles 𝐶 with elements in {0, 1}𝑛.
Output: A quantum circuit that realizes the permutative 𝑛-input, 𝑛-output Boolean
function represented by 𝐶.

Create an 𝑛-qubit quantum circuit 𝑄 initially containing no gates.
while 𝐶 is nonempty do

if 𝐶 contains at least one transposition then
Let 𝑡 be any transposition contained in 𝐶.

else
Let 𝜅 be any cycle contained in 𝐶.
Let 𝑡 be any transpositions composed of two consecutive elements of 𝜅.

end
Let (𝑇,𝑄′) = RealizeTranspositions(𝑛,𝐶, 𝑡).
Append 𝑄′ to the end of 𝑄.
Compute 𝐶 ′ such that 𝐶 = 𝑇 ⋅ 𝐶 ′.
Let 𝐶 = 𝐶 ′.

end
Output 𝑄.
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5.6 Conclusion

The first part of this chapter introduced the concept of distance gates for binary reversible

and quantum circuits. Distance gates are defined to exchange exactly two of their possible

input values, i.e., they realize transpositions. I demonstrated the implementation of distance

gates using a symmetrical circuit structure consisting of CNOT and Toffoli gates. This

symmetrical structure allows a controlled distance gate to be implemented by adding a

control input to only one, rather than all, of the gates in the implementation of the original

uncontrolled distance gate. Since any permutative function can be expressed as a set of

cycles, and cycles can be broken down into transpositions, distance gates are capable of

realizing all permutative functions.

The second part of the chapter introduced the concept of distance gate reduction, which

allows the implementations of sets of distance gates meeting certain conditions to be com-

bined. Distance gate reduction creates a circuit that realizes a set of compatible transpositions

all at once with lower quantum cost compared to realizing the individual transpositions sep-

arately with one distance gate each. I presented an algorithm for realizing permutative

Boolean functions that works by searching for sets of compatible transpositions and realiz-

ing them using compound distance gates, which are the result of distance gate reduction.

The algorithm uses as a subroutine a realization method for single-output, incompletely

specified Boolean functions. Therefore, using the presented algorithm, the task of realizing

a permutative multiple-input, multiple-output Boolean function can be reduced to realizing a

sequence of single-output functions. This achievement will allow future advancements in re-

alization methods for single-output, incompletely specified Boolean functions to potentially

also benefit the realization of permutative functions.
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Chapter 6

Cycle-based synthesis of multiple-valued permutative quantum circuits

The majority of existing work on quantum computation and information processing assumes

the use of qubits, which have two possible basis states. Quantum computation with multiple-

valued qudits, which have more than two possible basis states, has been proposed [60, 61,

62, 63, 64, 65] but has not received nearly as much attention. Qudit-based systems possess

several potential advantages over their qubit-based counterparts. A qudit-based system

stores more information per qudit than a binary system does per qubit; consequently, the

qudit-based system requires less qudits than the binary system does qubits to perform a given

computation [61, 66]. The execution of a single multiple-valued gate on a qudit-based system

may also require less time than an equivalent sequence of binary gates on a qubit-based

system [61].

Current efforts toward physically realizing a viable quantum computing system appear

to be directed mostly at binary systems. However, physical realizations of multiple-valued

qudits, including the ability to manipulate three independent quantum states, have been

demonstrated using approaches such as ion trap [61], optical [67], and superconducting [68]

systems. Amore recently proposed quantum computational framework, topological quantum

computation, is in fact naturally represented by a ternary, not binary, model [69, 70]. Even if

it is only possible to measure, or read out, two different states at the end of a computation, the
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use of more than two states during intermediate stages of the computation can still simplify

quantum gates [71].

As pointed out in the introduction to Chapter 5, diverse approaches have been proposed to

the problem of realizing permutative functions with binary quantum and reversible circuits.

These approaches include transformation-based, cycle-based, PPRM-based, and BDD-based

methods. However, the task of synthesizingmultiple-valued reversible circuits frommultiple-

valued specifications is poorly-studied compared to its binary counterpart. Due to the

potential advantages of qudit-based quantum information processing, further investigation

into the synthesis of multiple-valued reversible circuits may prove valuable to the continued

development of quantum computers.

In Chapter 5, I introduced the concept of distance gates and showed how they may be

implemented using CNOT and Toffoli gates. In this chapter, I will show how distance

gates can be generalized to a multiple-valued setting and implemented using controlled-

transposition andmultiple-control transpositional gates, which are multiple-valued analogues

of CNOT and Toffoli gates. As in the binary case, multiple-valued distance gates realize

individual transpositions and therefore can be used to realize any permutative function by

expressing it as a sequence of transpositions. This distance gate-based realization approach

has the advantage of being applicable to multiple-valued systems of any radix. Multiple-

valued distance gates can even be used with quantum computing systems containing arbitrary

mixtures of qudits with different radices. No existing published method for the realization

of permutative functions using a multiple-valued quantum computing system has this level

of generality and flexibility.
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6.1 Generalization of distance gates to a multiple-valued setting

The following definition generalizes the distance gates introduced in Chapter 5 to a multiple-

valued setting.

Definition 20. A multiple-valued quantum gate 𝐺 that acts on 𝑛 qudits, 𝑥1 through 𝑥𝑛, is

called a distance gate if there exist values 𝑎1 through 𝑎𝑛 and 𝑏1 through 𝑏𝑛 with the following

properties:

1. The gate 𝐺 acting on the state |𝑎1⟩ ⊗ ⋯⊗ |𝑎𝑛⟩ (that is, each qudit 𝑥𝑖 is in the state

|𝑎𝑖⟩) produces the state |𝑏1⟩ ⊗⋯⊗ |𝑏𝑛⟩, and vice versa.

2. The gate 𝐺 acting on any other basis state leaves that state unchanged.

3. There exists at least one 𝑖 for which 𝑎𝑖 ≠ 𝑏𝑖.

The 𝑛-digit values 𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛 are called the active values of the distance gate.

This definition is nearly identical to Definition 14, which defines uncontrolled distance

gate in the binary case, except that the gate now acts on multiple-valued qudits instead of

qubits. As in the binary case, this definition can be summarized by saying that a distance gate

is any gate that realizes a permutative function consisting of exactly a single transposition

(𝑎1𝑎2 … 𝑎𝑛 𝑏1𝑏2 … 𝑏𝑛). Definition 20 intentionally does not specify the radices of the qudits

𝑥1 through 𝑥𝑛. This is because the radices of the qudits are irrelevant: none of the analyses

and arguments presented in this chapter rely on any assumptions about the radices of the

qudits. It is even possible for the radix of each 𝑥𝑖 to be different.

There is one notable difference between Definition 20 and the corresponding definition of

an uncontrolled distance gate in the binary case, Definition 14: 𝑎𝑖 ≠ 𝑏𝑖 is only required for at

least one 𝑖 instead of for all 𝑖. As we will see, this modification allows both the uncontrolled

240



and controlled distance gates introduced in Chapter 5 to be seen as just different instances

of the same fundamental structure.

Figure 6.1 illustrates a circuit that implements a distance gate with active values 𝑎1 … 𝑎𝑛

and 𝑏1 … 𝑏𝑛. The similarity with Figures 5.1 and 5.2 in the binary case is immediately clear.

In this figure, the circuit contains 𝑛 qudits, 𝑥1 through 𝑥𝑛. The index 𝑝 must be chosen so

that 𝑎𝑝 ≠ 𝑏𝑝; property 3 in the definition of a distance gate ensures that at least one such 𝑝

always exists. Note that for some choices of 𝑝, some of the qudits and gates depicted in the

figure may not actually be present. For instance, if 𝑝 = 𝑛, then 𝑥𝑝 would be the bottommost

qudit in the circuit; the qudits shown below 𝑥𝑝 in the figure and the controlled-transposition

gates targeting them would not be present. In addition, if 𝑎𝑖 = 𝑏𝑖 for some 𝑖 ≠ 𝑝, then the

corresponding controlled-transposition gates that target qudit 𝑥𝑖 would disappear since their

target gates would reduce to T𝑎𝑖𝑎𝑖
. For instance, if 𝑎1 were equal to 𝑏1, then the target gates

of the first and last gates in Figure 6.1 would become T𝑎1𝑎1
, which is a no-op.

The following are some noteworthy features of the circuit shown in Figure 6.1:

• It contains a single, central multiple-control transpositional gate, which is surrounded

by controlled-transposition gates in a symmetrical manner.

• Every controlled-transposition gate shares the same control qudit and control value.

• This common control qudit also functions as the target qudit for the multiple-control

transpositional gate.

• One of the two values affected by the target gate of the multiple-control transpositional

gate is also the common control value for the controlled-transposition gates.

• For each qudit that functions as the target qudit of a controlled-transposition gate,

one of the two values affected by that controlled-transposition gate’s target gate is
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also the control value for that same qudit when it functions as a control qudit for the

multiple-control transpositional gate.

𝑥1

𝑥𝑝−1

𝑥𝑝

𝑥𝑝+1

𝑥𝑛

𝑎1𝑏1

𝑏𝑝

𝑎𝑝−1𝑏𝑝−1
𝑏𝑝
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Figure 6.1: A circuit that implements a multiple-valued distance gate with active values 𝑎1 … 𝑎𝑛 and
𝑏1 … 𝑏𝑛.

To demonstrate that the circuit depicted in Figure 6.1 correctly implements a distance

gate with active values 𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛, we analyze its operation as follows. All of the

controlled-transposition on the left side of Figure 6.1 are active if and only if the initial state

of qudit 𝑥𝑝 is |𝑏𝑝⟩; therefore, if the initial states of the qudits 𝑥1 through 𝑥𝑛 are |𝑎1⟩ through

|𝑎𝑛⟩, respectively, then they will remain unaltered by the controlled-transposition gates on

the left side. The central multiple-control transpositional gate will then induce a transition

of the qudit 𝑥𝑝 from the state |𝑎𝑝⟩ to the state |𝑏𝑝⟩. Following the controlled-transposition

gates on the right side, the final states of the qudits are then |𝑏1⟩ through |𝑏𝑝⟩. A similar

analysis demonstrates that when the initial state is |𝑏1⟩ ⊗⋯⊗ |𝑏𝑛⟩, the final state will be

|𝑎1⟩ ⊗⋯⊗ |𝑎𝑛⟩.

If the initial state is any basis state other than the two already considered, the circuit from

Figure 6.1 will leave it unchanged. To see this, first observe that if the action of the central

multiple-control transpositional gate does not alter the state of the circuit just prior to that

gate, then the circuit as a whole will leave the initial state (prior to the circuit) unchanged,
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because the symmetrical arrangement of controlled-transposition gates will cause them to

cancel themselves out. Next, note that the state of the circuit just prior to the multiple-control

transpositional gate will be unchanged by that gate if that state is not one of

|𝑎1⟩ ⊗⋯⊗ |𝑎𝑝−1⟩ ⊗ |𝑎𝑝⟩ ⊗ |𝑎𝑝+1⟩ ⊗⋯⊗ |𝑎𝑛⟩ (6.1)

or

|𝑎1⟩ ⊗⋯⊗ |𝑎𝑝−1⟩ ⊗ |𝑏𝑝⟩ ⊗ |𝑎𝑝+1⟩ ⊗⋯⊗ |𝑎𝑛⟩. (6.2)

Since the circuit is reversible, both of these cases correspond to exactly one initial state: the

state just prior to the Toffoli gate will be as given in (6.1) if and only if the initial state is

|𝑎1⟩⊗⋯⊗|𝑎𝑛⟩, and it will be as given in (6.2) if and only if the initial state is |𝑏1⟩⊗⋯⊗|𝑏𝑛⟩.

These two initial states are precisely the ones that we considered previously. It follows that

for any other initial state, the state just prior to the multiple-control transpositional gate will

be unchanged following that gate, and therefore the circuit as a whole will leave the initial

state unchanged.

Observe that the preceding argument applies even if 𝑎𝑖 = 𝑏𝑖 for one or more 𝑖, as long

as 𝑎𝑝 ≠ 𝑏𝑝. If so, then, as previously observed, the corresponding controlled-transposition

gates in Figure 6.1 become no-ops and can be removed. This does not affect the validity of

the previous reasoning, since it was not assumed anywhere that 𝑎𝑖 and 𝑏𝑖 must be distinct

for any 𝑖 other than 𝑝.

To formalize the preceding discussion, we introduce the following notation for repre-

senting controlled-transposition and multiple-control transpositional gates. Every such gate
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will be denoted by an expression of the form

CT𝑎𝑏(𝑥1
𝑐1, 𝑥2

𝑐2, ..., 𝑥𝑛−1
𝑐𝑛−1; 𝑥𝑛), (6.3)

where:

1. “CT” stands for “controlled transposition”;

2. 𝑥1 through 𝑥𝑛−1 are the gate’s control qudits;

3. 𝑐1 through 𝑐𝑛−1 are its control values, with 𝑐𝑖 being the control value associated with

𝑥𝑖;

4. 𝑥𝑛 is its target qudit; and

5. 𝑎 and 𝑏 are the labels of the states exchanged by the target gate, i.e., the target gate is

T𝑎𝑏.

Observe that a controlled-transposition gate is represented by a special case of this notation

with only one control qudit,

CT𝑎𝑏(𝑥𝑐
𝑐; 𝑥𝑡), (6.4)

where 𝑥𝑐 and 𝑥𝑡 are the control and target qudits (respectively) of the controlled-transposition

gate, 𝑐 is its control value, and T𝑎𝑏 is its target gate.

Using the notation of (6.3) and (6.4), we may then represent the circuit shown in Fig-
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ure 6.1 as the sequence of gates

⎛
⎜
⎜
⎝

∏
1≤𝑖≤𝑚

𝑖≠𝑝

CT𝑎𝑖𝑏𝑖
(𝑥𝑏𝑝

𝑝 ; 𝑥𝑖)
⎞
⎟
⎟
⎠

⋅ CT𝑎𝑝𝑏𝑝
(𝑥1

𝑎1,… , 𝑥𝑝−1
𝑎𝑝−1, 𝑥𝑝+1

𝑎𝑝+1,… , 𝑥𝑛
𝑎𝑛; 𝑥𝑝)

⋅
⎛
⎜
⎜
⎝

∏
1≤𝑖≤𝑚

𝑖≠𝑝

CT𝑎𝑖𝑏𝑖
(𝑥𝑝

𝑏𝑝; 𝑥𝑖)
⎞
⎟
⎟
⎠

, (6.5)

where the products denote series concatenation of gates.

The previous analysis of the circuit from Figure 6.1 is now summarized by the following

proposition.

Proposition 21. The sequence of gates given by (6.5) implements a distance gate with active

values 𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛; that is, this sequence of gates acting on the states |𝑎1⟩⊗⋯⊗|𝑎𝑛⟩

and |𝑏1⟩ ⊗⋯⊗ |𝑏𝑛⟩ produces the states |𝑏1⟩ ⊗⋯⊗ |𝑏𝑛⟩ and |𝑎1⟩ ⊗⋯⊗ |𝑎𝑛⟩, respectively,

and the same sequence acting on any other basis state leaves that state unchanged.

We are thus able to implement a distance gate with any desired pair of active values by

using the circuit depicted in Figure 6.1 and represented by (6.5). As this is the key result of

this chapter, I restate it in a manner that explicitly and constructively shows how, given a

desired pair of active values, one can generate a circuit that implements a distance gate with

those active values.

Corollary 22. A distance gate with active values 𝑎1 ⋯ 𝑎𝑛 and 𝑏1 ⋯ 𝑏𝑛 can be implemented
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by the circuit specified in (6.5) or by the circuit

⎛
⎜
⎜
⎝

∏
1≤𝑖≤𝑚

𝑖≠𝑝

CT𝑎𝑖𝑏𝑖
(𝑥𝑎𝑝

𝑝 ; 𝑥𝑖)
⎞
⎟
⎟
⎠

⋅ CT𝑎𝑝𝑏𝑝
(𝑥1

𝑏1,… , 𝑥𝑝−1
𝑏𝑝−1, 𝑥𝑝+1

𝑏𝑝+1,… , 𝑥𝑛
𝑏𝑛; 𝑥𝑝)

⋅
⎛
⎜
⎜
⎝

∏
1≤𝑖≤𝑚

𝑖≠𝑝

CT𝑎𝑖𝑏𝑖
(𝑥𝑝

𝑎𝑝; 𝑥𝑖)
⎞
⎟
⎟
⎠

, (6.6)

where 𝑝 is any index in the range 1 ≤ 𝑝 ≤ 𝑛 such that 𝑎𝑝 ≠ 𝑏𝑝.

The difference between (6.6) and (6.5) is that an 𝑎𝑖 appears in (6.6) wherever a 𝑏𝑖 appears

in (6.5), and vice versa. Corollary 22 reflects the fact that, just as in the binary case, every

distance gate has two implementations for each possible value of 𝑝 because the active values

may be specified in either order. Figure 6.2 shows the alternative implementation described

by (6.6).

𝑥1

𝑥𝑝−1

𝑥𝑝

𝑥𝑝+1

𝑥𝑛

𝑎1𝑏1

𝑎𝑝

𝑎𝑝−1𝑏𝑝−1
𝑎𝑝

𝑎𝑝+1𝑏𝑝+1

𝑎𝑝

𝑎𝑛𝑏𝑛

𝑎𝑝 𝑎𝑝𝑏𝑝

𝑏1

𝑏𝑝−1

𝑏𝑝+1

𝑏𝑛

𝑎1𝑏1

𝑎𝑝

𝑎𝑝−1𝑏𝑝−1
𝑎𝑝

𝑎𝑝+1𝑏𝑝+1

𝑎𝑝

𝑎𝑛𝑏𝑛

𝑎𝑝

Figure 6.2: Alternative implementation of a distance gate corresponding to (6.6), obtained by
replacing every 𝑎𝑖 with a 𝑏𝑖 and vice versa in Figure 6.1.

Analogously to the binary case, when implementing a distance gate using the circuit

from Figure 6.1 or 6.2 to implement a distance gate, we also have the freedom to choose
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any value of 𝑝 for which 𝑎𝑝 ≠ 𝑏𝑝. I will adopt the same terminology used in Chapter 5 and

call 𝑥𝑝 the pivot qudit. Given two active values 𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛, define the Hamming

distance between them to be the number of indices 𝑖 such that 𝑎𝑖 ≠ 𝑏𝑖; this is analogous to the

definition of Hamming distance for binary values. If the Hamming distance between 𝑎1 … 𝑎𝑛

and 𝑏1 … 𝑏𝑛 is 𝑑, then one has 𝑑 choices for the pivot qudit when implementing a distance

gate with active values 𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛. There are therefore 2𝑑 possible implementations

of this distance gate, when 𝑑 ≥ 2. When 𝑑 = 1, the circuits shown in Figures 6.1 and 6.2

become identical and reduce to just a single multiple-control transpositional gate, so in that

case there is only one possible implementation of the distance gate with active values 𝑎1 … 𝑎𝑛

and 𝑏1 … 𝑏𝑛.

6.2 Examples of multiple-valued distance gates and their operation

I now provide several examples to illustrate the theory introduced in Section 6.1. Figure 6.3

provides several concrete examples of distance gates implemented using the circuit structure

from Figure 6.1. These examples demonstrate the appearance of the resulting circuit for a

variety of Hamming distances between the active values, and for different choices of pivot

qudit. In Figure 6.3a, the Hamming distance between the active values 𝑎1 … 𝑎5 = 22031 and

𝑏1 … 𝑏5 = 22033 is 1, so there is only one 𝑝 such that 𝑎𝑝 ≠ 𝑏𝑝, namely 𝑝 = 5. Therefore, the

pivot qudit must be 𝑥5. Since 𝑎𝑖 = 𝑏𝑖 for 𝑖 = 1, 2, 3, 4, the controlled-transposition gates in

Figure 6.3a have trivial target gates that are no-ops and can therefore be removed, giving the

circuit shown in Figure 6.3b. We see that the implementation of a distance gate reduces to

just a single multiple-control transpositional gate when the Hamming distance between the

active values is one. Figures 6.3c and 6.3d are analogous to 6.3a and 6.3b, but for a distance

gate where the Hamming distance between the active values is 3. In this case, some but not
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all of the controlled-transposition gates turn out to be trivial. Finally, Figure 6.3e shows the

implementation of a distance gate with a Hamming distance 5 between its active values, the

maximum possible for 5-qudit values. In this case, all of the controlled-transposition gates

from Figure 6.1 are nontrivial and remain in the circuit. Figures 6.3f and 6.3g demonstrate,

respectively, that the same distance gate can also be implemented with the active values

swapped1 and with a different choice of pivot qudit, in accordance with Corollary 22.

Figure 6.3 also helps demonstrate how the implementation of a distance gate is completely

independent of the radices of the underlying qudits. In Figure 6.3b, the radix of the first qudit

may be any integer greater than or equal to 3, since a control value of 2 requires a minimum

radix of 3. Similarly, 𝑥2 through 𝑥5 have minimum radices of 3, 2, 4, and 4, respectively,

and may otherwise be of any radix. Furthermore, regardless of the radices of the underlying

qudits, the circuit depicted in Figure 6.3b realizes the transposition (22031 22033); note

that this transposition itself specifies a permutative function in a radix-ignorant manner.

Similarly, the circuit shown in Figure 6.3d always realizes the transposition (33014 30020)

regardless of the radices of the qudits. There is also nothing to stop the qudits from having

different radices; as long as the underlying controlled-transposition and multiple-control

transpositional gates can be physically realized for qudits of the appropriate radices, distance

gate implementations such as the ones in Figure 6.3 can be used.

The circuit from Figure 6.3d provides excellent opportunity to illustrate the proof of

Theorem 21 by example. Conceptually, the circuit may be divided into three groups of

gates: the set of controlled-transposition gates on the left, the central multiple-control

transpositional gate, and the set of controlled-transposition gates on the right. For brevity,

I will refer to the controlled-transposition gates on the left and right as the left and right
1Or equivalently, using the circuit structure from Figure 6.2 instead of Figure 6.1.
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𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

22

3

22

3

00

3
33

3
13

2

2

0

3

22

3

22

3

00

3
33

3

(a) A distance gate with active values 22031 and
22033 implemented according to Figure 6.1, show-
ing controlled-transposition gates with trivial target
gates.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5 13

2

2

0

3

(b) Result of removing the trivial controlled-
transposition gates in (a).

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

33

0

03

0

00

0
12

0
04

3

3

0

1

33

0

03

0

00

0
12

0

(c) The same as (a) but for active values 33014 and
30020.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

03

0
12

0
04

3

3

0

1

03

0
12

0

(d) Result of removing the trivial controlled-
transposition gates in (c).

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

24

4
15

4

03

4

02

4
34

4

1

3

2

24

4
15

4

03

4

02

4

(e) Active values 41332 and 25400 with pivot qudit
𝑥3.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

24

3
15

3

03

3

02

3
34

2

5

0

0

24

3
15

3

03

3

02

3

(f) The same as (e), but implemented with active
values swapped.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

15

2

34

2

03

2

02

2
24

1

3

3

2

15

2

34

2

03

2

02

2

(g) The same as (e), but with pivot qudit 𝑥1.

Figure 6.3: Assorted implementations of multiple-valued distance gates.
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groups, respectively. In informal terms, the central multiple-control transpositional gate acts

as a “filter” which selectively allows the circuit to alter the initial state. Without this multiple-

control transpositional gate, the effects of the left and right groups would always cancel so

as to have no overall effect on the state. The action of the multiple-control transpositional

gate can prevent this cancellation if it alters the state of the bottommost qudit in Figure 6.3d.

If the bottommost qudit’s state changes from |0⟩ to |4⟩, then the left group is active but the

right group is not; conversely, if the bottommost qudit’s state changes from |4⟩ to |0⟩, then

the right group is active but the left group is not.

The preceding discussion implies that the circuit from Figure 6.3d can operate in three

distinct modes, which are illustrated in Figure 6.4. For each mode of operation, the inactive

portion of the circuit is drawn in gray while the active portion is drawn normally. In the

first mode, as shown in Figure 6.4a, the bottommost qudit’s state changes from |0⟩ to |4⟩

across the multiple-control transpositional gate, and hence the left group is active but the

right group is not. In the second mode, as shown in Figure 6.4b, the bottommost qudit’s

state changes from |4⟩ to |0⟩; the right group is active but the left group is not. In the third

mode, as shown in Figure 6.4c, the bottommost qudit’s state does not change at all because

the multiple-control transpositional gate is inactive, and therefore the effects of left and right

groups cancel. In this mode, if the initial state is |𝑥1𝑥2𝑥3𝑥4𝑥5⟩ and the state following the

left stage is |𝑥′1𝑥′2𝑥′3𝑥′4𝑥′5⟩, then the state following the multiple-control transpositional gate

is still |𝑥′1𝑥′2𝑥′3𝑥′4𝑥′5⟩ and the right stage reverts the state back to |𝑥1𝑥2𝑥3𝑥4𝑥5⟩. Of these three

modes, the first and second correspond to the two active values of the distance gate, while

the third corresponds to any other value, which the distance gate leaves unchanged.

Figure 6.5 offers an alternative visualization of the same circuit’s operation using the

state space. The state space is the set of all possible basis states of the qudits on which the
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(a) Left group active, right group inactive.
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(b) Right group active, left group inactive.
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0
12

0
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|𝑥′5⟩ 04
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1
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|𝑥′3⟩

|𝑥′4⟩

|𝑥′5⟩

03

0
12

0

|𝑥1⟩

|𝑥2⟩

|𝑥3⟩

|𝑥4⟩

|𝑥5⟩

(c) Central multiple-control transpositional gate inactive.

Figure 6.4: Modes of operation of the circuit shown in Figure 6.3d.

circuit operates. Although the circuit itself does not depend on the qudits having a specific

radix, the state space does, since the number of possible basis states increases with the

radices of the qudits. For the sake of illustration, suppose that every qudit in the circuit from

Figure 6.3d has radix 5, which is the minimum radix for the bottommost qudit. Then, since

there are five qudits in the circuit, the state space consists of 55 states running from |00000⟩

to |44444⟩. In Figure 6.5, the state space is plotted on the vertical axis against time on the

horizontal axis, showing how several choices of initial state evolve as they pass through

the circuit. Once again, we see that the effects of the left and right stages cancel unless the

multiple-control transpositional gate is active, which only occurs for the two active values

as shown by the bolded lines.
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Figure 6.5: State-space visualization of the operation of circuit from Figure 6.3d.

6.3 Binary distance gates as a special case of multiple-valued distance gates

Both binary uncontrolled and controlled distance gates can be seen to be special cases of

multiple-valued distance gates where the radix of all qudits happens to be 2. Specifically,

comparing Definition 14 with Definition 20, it is apparent that an uncontrolled binary

distance gate is just a multiple-valued distance gate acting on qudits of radix 2 (i.e., qubits)

in which the active values differ in every bit. Similarly, from Proposition 16, a controlled

binary distance gate also satisfies Definition 20, but with active values that agree in at least

one bit.
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The implementations of binary distance gates (both uncontrolled and controlled) can also

be derived from the implementations of multiple-valued distance gates shown in Figures 5.1

and 5.2. In particular, if we apply Proposition 15 combined with Definition 14 to Figure 5.2,

then we see that 𝑐𝑝 = 𝑏𝑝 and 𝑐𝑖 = 𝑎𝑖 for 𝑖 ≠ 𝑝, where 𝑎1 … 𝑎𝑛 and 𝑏1 … 𝑏𝑛 are the active values

of the distance gate realized by an instance of Figure 5.2. Keeping in mind that a CNOT

gate is the same as a controlled-T01 gate applied to qubits, this mapping makes Figure 5.2

identical to Figure 6.1 when the qudits of the latter have radix 2. Similarly, Figure 5.4 is seen

to be identical in structure2 to Figure 6.1 when 𝑎𝑖 = 𝑏𝑖 for one or more 𝑖 in the latter, since

in that case the corresponding controlled-transposition gates disappear, like in the examples

of Figure 6.3. For instance, letting 𝑛 = 5, 𝑎1𝑎2𝑎3𝑎4𝑎5 = 01101, and 𝑏1𝑏2𝑏3𝑏4𝑏5 = 11000 in

Figure 6.1 produces the circuit of Figure 6.6 after trivial controlled-transposition gates have

been removed. This circuit matches the one from Figure 5.6d, which does indeed realize the

transposition (01101 11000).

01

0

01

0
01

0

1

0

1

01

0

01

0

Figure 6.6: The binary controlled distance gate from Figure 5.6d obtained as a multiple-valued
controlled distance gate where all qudits have radix 2.

As a result, both binary and multiple-valued distance gates can be unified under the

single concept of distance gates, whose applicability to a quantum computing system is

totally insensitive to the radices of the qubits and/or qudits used by that system. In particular,
2I say “identical in structure” because the naming and indexing of qubits differs between the two figures,

although this of course has no bearing on the circuits’ behavior.
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distance gates can be used with purely binary systems, purely multiple-valued systems with

the same radix for all qudits, and mixed systems combining qubits and qudits of any radices.

6.4 Distance-gate-based realization of permutative functions using multiple-valued

circuits

In order to realize a reversible function using distance gates, the function must first be

expressed in terms of cycles. This is done in the same manner already described in Chapter 5,

Section 5.1. Once the function to be realized is in the form of a collection of cycles, each

cycles can then be decomposed into a product of transpositions, and the transpositions

realized using distance gates.

As an example, let us consider how to realize the function represented by the permutation

(121 131 032)(003 133) using a quarternary circuit. The 3-cycle (121 131 032) is equiv-

alent to the sequence of transpositions (121 131)(121 032). Each of these transpositions

can be realized using a distance gate. To implement the distance gates using controlled-

transposition and multiple-control transpositional gates, we must choose a pivot qudit to be

used for each transposition. One possible choice is to use the second qudit as the pivot for

all three distance gate, which produces the circuit shown in Figure 6.7.

𝑥1

𝑥2

𝑥3

23

1

1

01

3

12

3
23

1

1

01

3

12

3

01

0
03

1

3

01

0

(121 131)
⏞

(121 032)

⏞⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏞
(003 133)

⏞⎴⎴⎴⏞⎴⎴⎴⏞

Figure 6.7: Distance gate-based realization of the reversible function represented by the permutation
(121 131 032)(003 133).

254



As previously noted in the discussion following Corollary 22 and demonstrated by

Figures 6.3e, 6.3f, and 6.3g, a distance gate has more than one possible implementation

if the Hamming distance between its active values is greater than 1. Therefore, the circuit

shown Figure 6.7 is not the only possible distance-gate-based realization of the permutation

(121 131 032)(003 133). For instance, we may choose to implement the third distance gate,

whose active values are 𝑎1𝑎2𝑎3 = 003 and 𝑏1𝑏2𝑏3 = 133, with the 𝑎𝑖’s and 𝑏𝑖’s swapped, in

other words switching from the implementation of Figure 6.2 to that of Figure 6.1. Figure 6.8

shows the realization obtained in this fashion. We can see that the final distance gate

in Figure 6.8a is implemented with different control values compared to the circuit from

Figure 6.7. This alternative realization has the advantage that it contains a pair of adjacent

and identical controlled-transposition gates, which can therefore be canceled, resulting in

the circuit shown in Figure 6.8b.
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(a) Circuit with the active values of the last distance gate swapped relative to Figure 6.7.
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(b) Simplified version of Figure 6.8a obtained by canceling two controlled-transposition gates.

Figure 6.8: An alternative realization of (121 131 032)(003 133).
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Yet other realizations are possible as well. We may choose to implement one of the

distance gates using a different pivot bit, as shown in Figure 6.9a, or we may use a differ-

ent breakdown of the 3-cycle (121 131 032) into a sequence of transpositions, as shown

in Figure 6.9b. In the latter case, the circuit actually becomes more costly—requiring a

greater number of controlled-transposition gates and the same number of multiple-control

transpositional gates—than the original realization from Figure 6.7.
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(a) Result of using a different pivot bit to implement the second distance gate.
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(b) Result of breaking down the 3-cycle (121 131 032) as (121 032)(032 131).

Figure 6.9: Two more alternative realizations of (121 131 032)(003 133).

Collectively, the realizations shown in Figures 6.7, 6.8, and 6.9 illustrate that many

different distance gate-based realizations of a given function are possible. For each cycle

with three or more elements, one may choose between many possible decompositions of the

cycle into a sequence of transpositions. Similarly, for each transposition, one may choose

the pivot bit and order of active values (again as per the discussion following Corollary 22)
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to be used in implementing the corresponding distance gate. Furthermore, depending on

these choices, additional simplifications may become possible between adjacent distance

gates in the final circuit. We observed an example of such a simplification in Figure 6.8.

Thus, the choices made in realizing a particular permutation using distance gates can have a

significant impact on the optimality of the resulting circuit.

6.5 Conclusion

In this chapter, I generalized the distance gates first introduced in Chapter 5 to the setting of

multiple-valued quantum circuits and showed how they can be implemented using controlled-

transposition and multiple-control transpositional gates. I showed that in this setting, the

implementation of a binary distance gate is simply a special case of the implementation of

a multiple-valued distance gate where all of the qudits have radix 2 and are therefore just

qubits. In fact, the method used to implement distance gates is completely insensitive to

the radix of the qudits being used, allowing distance gates to be easily implemented using

circuits containing qudits of any radix or mixture of radices. Since distance gates realize

individual transpositions, any permutative function can then be realized by representing it in

terms of cycles, breaking the cycles down into transpositions, and realizing the transpositions

using distance gates.

One notable issue that was not considered in this chapter is the question of how the

controlled-transposition and multiple-control transpositional gates themselves are imple-

mented. This issue was previously addressed by Muthukrishnan and Stroud [61], whose 𝚪𝑛

gates are physically realizable using ion traps and are essentially equivalent to the controlled-

transposition and multiple-control transpositional gates used here. The question of imple-

menting multiple-control transpositional gates using two-qudit interactions has also been
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addressed more recently by others [72, 73, 74, 75]. Although Muthukrishnan and Stroud

originally only demonstrated the implementation of their proposed gates using ion traps, it

is reasonable to expect that they should also be physically realizable in any other system

of practical interest, since such gates or other gates with similar function are required for

universality. This assumption is not unprecedented; in the case of topological quantum

computation, Bocharov et al. [76] make use of a controlled-T01 gate, from which other

controlled-transposition gates are also easily obtained. In conjunction with these known

results, distance gates can function as an intermediate step in the realization of reversible

functions using physical multiple-valued quantum systems.
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Chapter 7

A quantum algorithm for automata encoding

Note: This chapter was previously published as the following journal article:

E. Tsai and M. A. Perkowski, “A quantum algorithm for automata encoding,” Facta Univer-
sitatis, Series: Electronics and Energetics, vol. 33, no. 2, pp. 169–215, 2020.

As stated in Chapter 1, one of the objectives of this dissertation is to demonstrate in detail

the design of quantum oracles that allow Grover’s algorithm to be applied to problems of

practical interest. In this chapter, I consider one such problem, namely that of state encoding

for finite state machines (FSMs). A well-known problem in digital logic design, which has

been recognized for over 50 years [77, 78] and today remains important and relevant to

the design of virtually all very-large-scale integrated (VLSI) circuits and systems including

microprocessors, state encoding (a.k.a. state assignment) is the assignment of binary states

in a digital logic circuit to represent the internal states of an FSM. Distinct encodings for the

same FSM produce distinct implementations in digital logic, which may differ considerably

in complexity [77]. Usually, one wishes to find a state encoding which is minimal with

respect to some metric, e.g., power [79, 80] or silicon area [81, 82] of the resulting digital

circuit.

Our goal is to find the exact minimum (with respect to one particular metric) solution

for state and input encoding of finite state machines. So far, only one previous work [83]
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has attempted to find exact minimum solutions to this problem. Furthermore, the methods

in [83] find solutions for only state and not input encoding. There is currently no published

result that finds the exact minimum solution for concurrent state and input assignment. The

methods in [83] rely on finding prime implicants and solving a covering problem on the set

of all prime implicants. This would be difficult to implement using Grover’s algorithm on a

quantum computer because at least one qubit would be required for each prime implicant and

the total number of prime implicants can be extremely large. Therefore, we do not attempt

to directly adapt the approach presented in [83] for a quantum computer. Instead, we use

a simplified cost metric from [77, 78], in which the cost of an encoding is defined as the

total number of dependencies of the next-state functions on current state and input variables.

The use of this metric makes it easier to construct the quantum circuits necessary to use

Grover’s algorithm to search for encodings. Since Grover’s algorithm effectively performs

an exhaustive search, our method is always able to find an encoding with exact minimum

cost. The techniques that we use to adapt Grover’s algorithm for the purpose of encoding

finite state machines may prove useful for other purposes as well.

7.1 Finite state machines and state encodings

7.1.1 Review of finite state machines

We assume that the reader is familiar with the concept of finite state machines (FSMs) and

how they are realized using digital logic, as well as with the state encoding (a.k.a. state

assignment or secondary state assignment) problem. For the sake of self-containment we

briefly review these subjects here. An FSM consists of a set of internal states (call it S)

together with sets of inputs and outputs (call them I and O, respectively); at all times, it

maintains a single internal state which is an element of S, is presented with an input value
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which is an element of I, and produces an output value which is an element of O. The

machine’s operation is idealized as a discrete-time process; with each successive unit of

time, it updates its internal state and output in a deterministic fashion based on its current

internal state and the input value that is being presented. Thus, the internal state of the

machine at time 𝑡 + 1 is a function of the internal state at time 𝑡 and the input at time 𝑡:

S𝑡+1 = 𝛿(S𝑡, I𝑡), (7.1)

where S𝑡 ∈ S is the internal state at time 𝑡, I𝑡 ∈ I is the input value at time 𝑡, and S𝑡+1 ∈ S is

the internal state at time 𝑡 + 1. We refer to the function 𝛿 as the transition function for the

FSM. This function is also commonly called the excitation function or next-state function.

The output of an FSM can either directly depend on only its internal state, or it can

directly depend on both the internal state and the input. The former scenario corresponds

to a so-called Moore machine [84, 85] whereas the latter corresponds to a so-called Mealy

machine [86, 85]. Here, as will be discussed in more detail below, we only consider the

problem of encoding internal states; thus, the type of the machine is irrelevant and our work

is equally applicable to both.

From now on, for the sake of brevity, we will simply use “states” to refer to the internal

states of an FSM. The phrase “internal states” avoids confusion with other objects also

referred to as “states”, in particular the input and output values which are sometimes called

input and output states, respectively. We will always use the phrases “input (output)” or

“input (output) values” here, so that there is no risk of confusion in using simply “states” to

refer to internal states.

FSMs are commonly implemented using digital logic circuits consisting of an array of

flip-flops, which stores the current state, together with combinational logic (often referred
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to as the next-state logic), which computes the next state from the current state and current

input. To design this combinational logic, one must select a state encoding, a mapping

which associates each state of the FSM with a state of the flip-flop array. More precisely,

since the state of a flip-flop array is simply a binary string, a state encoding is a function

𝑐S ∶ S → {0, 1}𝑛 that maps each state of the FSM to a vector of flip-flop states that represents

the FSM state in a digital logic circuit. Here, 𝑛 denotes the number of flip-flops in the circuit.

Similarly, in order to implement an FSM with a digital logic circuit, one must also select

an input encoding, which maps each input value of the FSM to an array of Boolean values,

where each Boolean value represents the value supplied on an input wire to the digital logic

circuit. In other words, an input encoding is a function 𝑐𝐼 ∶ I → {0, 1}𝑚 where 𝑚 is the

number of input wires.

Finally, in addition to the state and input encoding, one must select an output encoding

to fully implement an FSM with digital logic. However, we do not consider the problem

of encoding outputs in this paper and consequently, we will ignore the outputs of an FSM

from now on. We will use “encoding” without further qualification to mean the combination

of a state and input encoding. We may also use the phrase “encoding of [a state or input

value]” to mean the combination of state or input variable values corresponding to that state

or input value under a given encoding. In other words, given a state encoding as a function

𝑐S as described above, the encoding of a state S is simply 𝑐S(S); the situation is analogous

for inputs. Finally, we also use “encoding” as a verb to mean the process of selecting or

generating an encoding. Thus, we describe the main objective of this paper as solving an

FSM encoding problem.

From now on, when considering a digital logic circuit implementation of an FSM, we

will follow the common convention of using 𝑄𝑖 to denote the state of the 𝑖-th flip-flop at

262



a given point in time. We will also use 𝑥𝑗 to represent the value on the 𝑗-th input wire at

a given point in time. We refer to the variables 𝑄1 through 𝑄𝑛 as state variables and the

variables 𝑥1 through 𝑥𝑚 as input variables. Figure 7.1 illustrates this notation in the context

of a digital logic circuit that implements an FSM.

We distinguish carefully between input values, which are the symbolic inputs of an FSM

and elements of the set I, and input variables, which are the Boolean variables 𝑥1 through

𝑥𝑚 used in a digital logic circuit to represent input values. Similarly, we also distinguish

between states and state variables—states are the symbolic internal states of an FSM and

elements of the set S, while state variables are the variables 𝑄1 through 𝑄𝑛 that correspond

to the states of individual flip-flops and together represent the symbolic state. To help avoid

confusion, we will always follow a consistent notational convention where, in addition to

using 𝑄𝑖 and 𝑥𝑗 for states and input values respectively, we also use S or S1, S2, etc. to

represent states and I, I1, I2, etc. to represent input values. In the context of an FSM, the

word “input” without further qualification will always refer to an input value and not an

input variable.

A state encoding may be bijective, that is, each flip-flop array state represents exactly

one FSM state, or it may not. Non-bijective encodings might arise (for instance) if the

number of possible flip-flop array states is greater than the number of FSM states, in which

case some of the possible flip-flop states will not represent any FSM state at all. Similarly,

input encodings may also be bijective, or not. For a bijective input encoding, each possible

combination of assignments to input variables corresponds to exactly one input value. We

say that an encoding (the combination of both state and input encodings) is bijective if both

the state and input encodings are bijective.

If an encoding is bijective, then any combination of assignments to the variables 𝑄1
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D1 Q1

D2 Q2

D𝑛 Q𝑛

𝛿1(𝑄1,… ,𝑄𝑛,
𝑥1,… , 𝑥𝑚)

𝛿2(𝑄1,… ,𝑄𝑛,
𝑥1,… , 𝑥𝑚)

𝛿𝑛(𝑄1,… ,𝑄𝑛,
𝑥1,… , 𝑥𝑚)

𝑥1 𝑥𝑚

Figure 7.1: General structure of an FSM implemented as a digital logic circuit; output logic not
shown.
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through 𝑄𝑛 and 𝑥1 through 𝑥𝑚 corresponds to a unique state and input value of the FSM.

Therefore, the next state is also uniquely determined by the transition function 𝛿. In this case,

we define a collection of encoded transition functions 𝛿1 through 𝛿𝑛, where 𝛿𝑖 represents

the next state of the 𝑖-th flip-flop in terms of the variables 𝑄1 through 𝑄𝑛 and 𝑥1 through

𝑥𝑚. In other words, the values of 𝑄1 through 𝑄𝑛 and 𝑥1 through 𝑥𝑚 uniquely determine a

state S and input value I. If these are the current state of and input to the FSM, then the next

state of the FSM will be 𝛿(S, I) and the encoding of this next state is 𝑐S(𝛿(S, I)) where 𝑐S is

the functional representation of a state encoding as previously described. We then define

𝛿𝑖(𝑄1,… ,𝑄𝑛, 𝑥1,… , 𝑥𝑚) to be the 𝑖-th component of 𝑐S(𝛿(S, I)).

Encoded transition functions represent the computations to be performed by the next-

state logic in a digital logic circuit implementation of an FSM. In other words, given a

particular state encoding for an FSM, each encoded transition function gives the next state

of a single flip-flop in terms of the current states of all flip-flops and the current input.

Thus, digital logic design for an FSM involves realizing the encoded transition functions as

digital logic circuits. Figure 7.1 graphically demonstrates this relationship between encoded

transition functions and the digital logic implementation of an FSM. In the remainder of this

paper, we will concentrate on evaluating the cost of realizing encoded transition functions

and how this cost can be minimized.

If a state encoding is not bijective, one can still define a set of encoded transition functions

using the same concept—each encoded transition function represents the next state of a

single flip-flop in terms of the current states of all flip-flops and the current values of all input

variables. However, the encoded transition “functions” defined in this way are no longer

functions in the mathematical sense; they are relations instead. If the flip-flops’ current state

does not correspond to any FSM state or the input variables’ values do not correspond to any
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FSM input value, then the next state is indeterminate (a.k.a. a “don’t-care”). In practice,

digital logic design for FSMs commonly involves non-bijective encodings. Nevertheless,

for reasons to be discussed later, we will only consider bijective encodings, for which all

encoded transition functions are actual functions in the mathematical sense. Observe that this

restriction implies that we are only considering FSMs where the number of states is a power

of two, since no bijective encodings exist otherwise. It also implies the assumption that the

machine is state-minimized, meaning that there are no equivalent states in the machine, so

that no two distinct states may have the same encoding.

It is common to use the notation 𝑄+
𝑖 to represent the next state of the 𝑖-th flip-flop,

where 𝑄1 through 𝑄𝑛 represent the current states of all flip-flops. In other words, 𝑄+
𝑖 =

𝛿𝑖(𝑄1,… ,𝑄𝑛, 𝑥1,… , 𝑥𝑚) for all 𝑖. This means that 𝑄+
𝑖 is simply a more compact notation

for the function 𝛿𝑖 that can be used when it is not necessary to explicitly show that 𝛿𝑖 is a

function of 𝑄1 through 𝑄𝑛 and 𝑥1 through 𝑥𝑚. From now on, we will use both the 𝑄+
𝑖 and 𝛿𝑖

notations interchangeably, with the choice of notation being simply a matter of convenience.

7.1.2 Metric for evaluating cost of state encodings

The reader may observe that, by considering the implementation of FSMs using digital logic

circuits, we have created a distinction between a symbolic FSM itself and its implementation

using flip-flops and combinational logic. The former is simply an abstract mathematical

concept, while the latter is a physical realization of that abstract concept. From now on,

when the meaning is clear from the context, we will use “finite state machine” to refer to both

an FSM in the abstract conceptual sense and physical implementations of that FSM. When

the need to avoid confusion arises, we will use “FSM specification” to refer specifically to

the abstract mathematical concept of an FSM.
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There always exist many possible implementations of any single FSM specification,

since an implementation of an FSM is always associated with some encoding and there

are many possible encodings for any given set of states or inputs. The differences between

implementations obtained with different encodings are of great interest to the digital logic

designer. In particular, the combinational circuit complexity (as measured, for instance, by

the number of logic gates or the maximum delay) of implementations may greatly vary for

different encodings. Consider the FSM whose transition function is as given in Figure 7.2a.

Figure 7.2b depicts a possible encoding for the FSM where the four possible two-bit strings

are simply allocated in the usual base-two counting order (00 first, then 01, 10, and 11).

Figure 7.2c then shows the resulting encoded transition functions. These functions may be

represented by the following logical expressions:

𝑄+
1 = (𝑄1 ∧ 𝑥2) ∨ (𝑄1 ∧ ¬𝑄2 ∧ 𝑥1) ∨ (¬𝑄1 ∧ 𝑄2 ∧ 𝑥1)

∨ (𝑄2 ∧ ¬𝑥1 ∧ ¬𝑥2) ∨ (𝑥1 ∧ 𝑥2), (7.2)

𝑄+
2 = (𝑄1 ∧ 𝑄2 ∧ ¬𝑥1) ∨ (𝑄1 ∧ 𝑄2 ∧ ¬𝑥2) ∨ (¬𝑄1 ∧ ¬𝑄2 ∧ ¬𝑥1)

∨(¬𝑄1 ∧ ¬𝑄2 ∧ ¬𝑥2) ∨ (¬𝑥1 ∧ ¬𝑥2), (7.3)

which show that both 𝑄+
1 and 𝑄+

2 depend on all four state/input variables (𝑄1, 𝑄2, 𝑥1, and

𝑥2). In comparison, if the encoding shown in Figure 7.2d is used instead, then the encoded
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transition functions are as shown in Figure 7.2e and may be represented by the expressions

𝑄+
1 = 𝑄2 ∨ ¬𝑥1, (7.4)

𝑄+
2 = (𝑄1 ∧ ¬𝑥1) ∨ (𝑄1 ∧ 𝑥2) ∨ (¬𝑥1 ∧ ¬𝑥2), (7.5)

where we observe that 𝑄+
1 depends on only two variables (𝑄2 and 𝑥1) and 𝑄+

2 depends on

three (𝑄1, 𝑥1, and 𝑥2).

I1 I2 I3 I4

S1

S2

S3

S4

S2 S2 S2 S3

S4 S1 S3 S3

S2 S3 S3 S3

S4 S4 S2 S3

(a) Transition table for an FSM.

𝑄1𝑄2S
S1 0 0
S2 0 1
S3 1 0
S4 1 1

𝑥1 𝑥2I
I1 0 0
I2 0 1
I3 1 0
I4 1 1

(b) An encoding for the FSM.

00
01
11
10

00 01 11 10
0 0 1 0
1 0 1 1
1 1 1 0
0 1 1 1

𝑄1𝑄2

𝑥1𝑥2

𝑄+
1

00
01
11
10

00 01 11 10
1 1 0 1
1 0 0 0
1 1 0 1
1 0 0 0

𝑄1𝑄2

𝑥1𝑥2

𝑄+
2

(c) Encoded transition functions resulting from the encoding in (b).

𝑄1𝑄2S
S1 0 1
S2 1 0
S3 1 1
S4 0 0

𝑥1 𝑥2I
I1 1 0
I2 1 1
I3 0 1
I4 0 0

(d) Another encoding for the FSM.

00
01
11
10

00 01 11 10
1 1 0 0
1 1 1 1
1 1 1 1
1 1 0 0

𝑄1𝑄2

𝑥1𝑥2

𝑄+
1

00
01
11
10

00 01 11 10
1 0 0 0
1 0 0 0
1 1 1 0
1 1 1 0

𝑄1𝑄2

𝑥1𝑥2

𝑄+
2

(e) Encoded transition functions resulting from the encoding in (d).

Figure 7.2: Illustration of different encodings for an FSM resulting in different costs.

We therefore see that between these two encodings, the encoding from Figure 7.2d results

268



in encoded transition functions that depend on less variables. If we make the reasonable

assumption that the complexity of a digital logic circuit is correlated with its number of

inputs, then we would expect the encoding from Figure 7.2d to ultimately result in a less

complex digital logic circuit, since the next-state logic for both flip-flops would involve fewer

variables. Of course, this correlation between complexity and number of inputs depends on

the precise definition of complexity used, and is not perfect in any case. There is no guarantee

that the encoding from Figure 7.2d would actually produce a digital logic circuit that better

suits the design goals (whatever they may be) of a digital logic designer. Nevertheless, in

the remainder of this paper we will use the simple metric of defining cost as the total number

of variables on which a Boolean function depends, for two reasons. First, this cost metric

simplifies the problem of finding the optimal encoding for an FSM enough that we can

always find the exact minimum solution. The only published work so far that achieves exact

minimum results for FSM encoding is [83]. However, the authors in [83] use a different cost

metric, which is based on the number of product terms when digital logic is implemented

using a programmable logic array (PLA). This brings us to our second reason for using a

cost metric based on number of dependencies: minimizing the number of product terms in a

PLA has little to no relevance if an FSM is not implemented using PLAs, as they are not (for

instance) in most modern VLSI chips. Minimizing the number of variable dependencies of

a Boolean function, on the other hand, is a reasonable goal for virtually any digital logic

technology, and will likely remain reasonable even for future technologies.

Based on the preceding discussion, we therefore formulate as follows the problem to be

solved in the remainder of this paper—given an FSM that satisfies the following conditions:

• the number of states in the machine is a power of 2;

• the number of possible input values to the machine is a power of 2;
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• the machine is state-minimal, meaning that no two distinct states are equivalent and

therefore no two distinct states may be assigned the same encoding;

• no two input values are equivalent and therefore no two distinct input values may be

assigned the same encoding;

find an encoding for the FSM with the lowest possible cost, where the cost of an encoding

is defined as the sum of the costs of the encoded transition functions resulting from that

encoding, and the cost of a single function is the number of variables on which the function

depends. A function is considered to depend on a variable if and only if the function cannot

be computed without knowledge of the value of that variable. Our cost model thus defined

is the same as that used in [77] and [78].

7.2 Use of Grover’s algorithm to solve optimization problems

At this point, before turning to the design of a quantum oracle to solve the state encoding

problem, we first consider an interesting issue regarding the usage of Grover’s algorithm for

this problem, as it will affect the design of the quantum oracle. Specifically, some difficulty

arises from the fact that, while state encoding cost minimization is an optimization problem,

Grover’s algorithm directly solves only satisfaction problems (a.k.a. decision problems).

In other words, we wish to find the minimum value of a certain function (the cost function)

while Grover’s algorithm can only find a point at which a function evaluates to 1. In order

to use Grover’s algorithm for optimization, we reformulate optimization problems in terms

of a sequence of satisfaction problems of the form: “find a point at which the value of the

function 𝑓 is less than 𝑟”, where 𝑟 is an arbitrary threshold. By executing Grover’s algorithm

for different values of the threshold 𝑟, one can conduct a search to find the minimum value

of 𝑓. For example, such a search might proceed according to the following procedure:
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1. Choose an initial value for the threshold 𝑎. Ideally, this initial value should be close to

the minimum value of 𝑓, if an estimate of the minimum is available; if not, the search

procedure will still function correctly with any initial value.

2. Execute Grover’s algorithm for the chosen threshold as previously described.

3. If Grover’s algorithm finds a solution, proceed to step 4. Otherwise, double the

threshold 𝑎 and repeat from step 2.

4. The preceding steps give a lower and upper bound for the minimum of 𝑓. In other

words, one obtains threshold values 𝑎min and 𝑎max such that the function 𝑓 never takes

on any value less than 𝑎min (as determined using Grover’s algorithm) but takes on a

value less than 𝑎max at one or more points.

5. Execute Grover’s algorithm for a threshold value of (𝑎min + 𝑎max)/2.

6. If Grover’s algorithm finds a solution, then (𝑎min + 𝑎max)/2 gives a new upper bound

for the minimum of 𝑓; otherwise, it gives a new lower bound. Repeat from step 4 until

the minimum value of 𝑓 is determined. The final output of Grover’s algorithm gives

the input to 𝑓 at which the minimum occurs.

The above sequence of steps essentially describes the well-known binary search strategy.

We give this strategy merely as an example showing that such a search is indeed possible.

In particular, we do not claim that this strategy is optimal with respect to expected runtime

or any other measure. The question of evaluating different search strategies, as well as what

standard should be used to evaluate them in the first place, falls outside the scope of this

paper. We leave this avenue of exploration open for future work.
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We make the crucial observation that the above procedure involves executing Grover’s

algorithm using not a single, static quantum oracle, but a sequence of quantum oracles

that are dynamically created on-the-fly for different thresholds. In particular, the threshold

value 𝑟 is not itself an input to the oracle, meaning that Grover’s algorithm does not directly

search for the threshold. Grover’s algorithm is in fact incapable of directly searching for the

threshold since, as previously discussed, that constitutes an optimization, not satisfaction,

problem. Instead, the threshold value is built into the oracle, meaning that a different oracle

is created for each threshold value. Consequently, to successfully use the above procedure,

one requires not just a single quantum oracle but a method for generating quantum oracles

for arbitrary threshold values.

We additionally observe that repeated execution of Grover’s algorithm using a sequence

of dynamically generated quantum oracles makes use of the freely reconfigurable nature

of quantum circuits. More specifically, a quantum circuit is not a hardware circuit in the

same sense as a classical digital logic circuit—in a quantum circuit, information is not

transmitted through physical wires from gate to gate. Instead, the “wires” in a quantum

circuit represent individual qubits that are stored on some physical medium, and the gates

are not physical components but rather are manipulations performed on the physical medium

using implementation-dependent hardware (e.g., lasers, electromagnets, superconducting

circuits). This means that a quantum “circuit” is in fact a sequence of software operations

stored on a classical computer that controls the quantum hardware, and this sequence of

operations can easily be modified at will. Thus, executing Grover’s algorithm using a

newly-generated quantum oracle simply involves having the classical computer perform the

appropriate, newly-generated sequence of operations on the quantum hardware.

Based on the preceding observations, we introduce a distinction between compile time
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and run time for quantum circuits. In classical computing, compile time is the time at

which instructions for the computer are generated, while run time is the time at which those

instructions are actually executed. By analogy, compile time of a quantum circuit will refer

to the generation process of the quantum circuit (which, as previously noted, takes place on

a classical computer). Run time of a quantum circuit, in contrast, will refer to the process of

actually executing the quantum circuit on quantum hardware (which, as also noted, involves

a classical computer controlling the quantum hardware with an appropriate sequence of

commands).

Therefore, our objective in the subsequent sections of this paper becomes: given an FSM

specification, demonstrate a procedure that can generate a quantum oracle for an arbitrary

threshold value 𝑟, where the quantum oracle accepts as input an encoding for the FSM and

answers the question “is the cost of the encoding (as defined in Section 7.1.2) less than 𝑟?”

The process described in this section then constitutes a complete algorithm for finding an

encoding for the given FSM with exact minimum cost.

7.3 Procedure to calculate the cost of a given encoding

7.3.1 Computing cost by considering pairs of states

We now consider a systematic procedure for computing the cost, as defined in Section 7.1.2,

of a given encoding for a given FSM. This procedure will form the basis for the design

of a quantum oracle that determines whether the cost of a given encoding is less than a

predetermined threshold, therefore allowing the use of Grover’s algorithm to find the exact

minimum-cost encoding for an FSM.

To calculate the cost of a given encoding, we require a method to determine whether the

value of a given state variable, say 𝑄𝑖, at time 𝑡 + 1 depends on the value of any (possibly
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the same or different) state variable, say 𝑄𝑗, at time 𝑡. By definition, the value of 𝑄𝑖 at time

𝑡 + 1 is given by the function 𝛿𝑖; thus,

𝑄+
𝑖 = 𝛿𝑖(𝑄1,… ,𝑄𝑛, 𝑥1,… , 𝑥𝑚) (7.6)

where 𝑛 and 𝑚 are the number of state and input variables, respectively. Now, 𝑄+
𝑖 only

depends on 𝑄𝑗 if, in at least one case, a change in 𝑄𝑗 and in no other variables causes a

change in 𝑄+
𝑖 . In other words, if there exist distinct states S, S′ and an input value I such

that 𝑄𝑗 is the only state variable assigned different values for S and S′, and 𝑄𝑖 is assigned

different values for 𝛿(S, I) and 𝛿(S′, I), then 𝑄+
𝑖 depends on 𝑄𝑗.

As an example, consider the state machine from Figure 7.2 and the encoding in Fig-

ure 7.2b. The encoded transition function 𝑄+
1 = 𝛿1(𝑄1,𝑄2, 𝑥1, 𝑥2) resulting from this

encoding, shown in Figure 7.2c, depends on all four variables. The dependency on 𝑄1 can

be seen from the fact that 𝛿1(0, 0, 0, 1) = 0 but 𝛿1(1, 0, 0, 1) = 1; i.e., a change in only 𝑄1

causes a change in 𝛿1. In terms of states and input values, 𝑄1𝑄2 = 00 corresponds to a

current state of S1 and 𝑄1𝑄2 = 10 corresponds to S3. We then see that given the pair of

states (S1, S3), whose encodings differ only in 𝑄1, for at least one input value—in this case,

I2, which corresponds to 𝑥1𝑥2 = 01—the corresponding pair of next states, (S2, S3), is such

that the value of 𝑄1 differs between the two states in the pair.

The result of the preceding discussion may be more formally expressed as follows. For

any two distinct states S and S′, let 𝐷𝑗(S, S′) mean “the encodings of S and S′ differ only in

the value of 𝑄𝑗” and let 𝐴𝑖(S, S′) mean “the encodings of S and S′ agree in the value of 𝑄𝑖”.

Then, check whether

𝐷𝑗(S,S′) ⇒ ∀I ∈ I 𝐴𝑖(𝛿(S, I), 𝛿(S′, I)) (7.7)
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for all pairs of distinct states (S,S′). If so, then 𝑄+
𝑖 does not depend on 𝑄𝑗; otherwise, it

does.

We determine the dependency of a given 𝑄+
𝑖 on an input variable 𝑥𝑗 in a similar manner.

Specifically, 𝑄+
𝑖 depends on 𝑥𝑗 if and only if, in at least one case, a change in 𝑥𝑗 and in no

other state or input variables causes a change in 𝑄+
𝑖 . Therefore, we consider all pairs of

distinct input values and determine whether, for those pairs whose encodings differ only

in 𝑥𝑗, the encodings of the corresponding pair of next states can ever differ in 𝑄𝑖. In other

words, for any two distinct input values I and I′, let 𝐷𝑗(I, I′) mean “the encodings of I and I′

differ only in the value of 𝑥𝑗”, and for any two states S and S′, let 𝐴𝑖(S, S′) mean (as before)

“the encodings of S and S′ agree in the value of 𝑄𝑖”. Then, we wish to check whether the

condition

𝐷𝑗(I, I′) ⇒ ∀S ∈ S 𝐴𝑖(𝛿(S, I), 𝛿(S, I′)) (7.8)

holds for every pair of distinct input values (I, I′). If so, 𝑄+
𝑖 does not depend on 𝑥𝑗; otherwise,

it does.

Equipped with a procedure to determine the dependency of a given 𝑄+
𝑖 on any single

state or input variable, it is now straightforward to compute the total cost of an encoding.

We calculate the cost of each 𝑄+
𝑖 in accordance with our cost model—the total number of

state and input variables on which 𝑄+
𝑖 depends gives the cost of 𝑄+

𝑖 . Then, the sum of costs

of 𝑄+
𝑖 for 1 ≤ 𝑖 ≤ 𝑛 gives the total cost of a given encoding.

7.3.2 Necessity for transition functions to be completely specified

The just-described procedure only gives the correct cost if the encoding is bijective. If this

condition is not satisfied, problems can arise from the fact that the “functions” 𝛿𝑖 are no

longer functions in the mathematical sense, but rather relations or so-called incompletely
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I1 I2 I3

S1
S2
S3
S4
S5

S2 S4 S5
S1 S1 S1
S3 S3 S1
S3 S3 S3
S1 S3 S1

(a) Transition table of the FSM.

𝑄1𝑄2𝑄3S
S1 0 0 0
S2 0 1 1
S3 1 0 1
S4 1 1 0
S5 1 1 1

𝑥1𝑥2I
I1 0 0
I2 0 1
I3 1 0

(b) A possible encoding for the FSM.
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(c) Resulting form of 𝑄+
2 .

Figure 7.3: Don’t-cares in a transition function for an FSM with numbers of states and inputs not
powers of 2.

specified functions. In general, when 𝛿𝑖 is incompletely specified, the question of whether

or not 𝛿𝑖 depends on a given variable cannot be answered by the simple procedure described

above.

Figure 7.3 illustrates an instance where the procedure from the previous section fails

to correctly determine the dependencies of a function 𝛿𝑖 on 𝑄1 through 𝑄𝑛 and 𝑥1 through

𝑥𝑚. In this figure we have a state machine where the number of states (5) is not a power

of two. Consequently, we require at least three flip-flops to implement this state machine.

However, since eight distinct states exist for an array of three flip-flops, three flip-flop array

states remain unused. In other words, three of the eight possible flip-flop array states do not

represent any FSM state at all. Similarly, the number of input values (3) is also not a power

of two, and hence the input is encoded by two bits with one of the four possible combinations

remaining unused. The effects of these unused states and input combinations can be seen in

the encoded transition function 𝛿2, where the value of 𝛿2 for the unused states is recorded

as a “−”, indicating a “don’t-care”. A “don’t-care” output indicates that the digital logic

implementing the FSM may output a value of either 0 or 1 for that combination of flip-flop

states and inputs, since the combination should never occur during normal operation.
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We now observe that at least three possible implementations exist for 𝛿2:

𝑄+
2 = ¬𝑄1 ∧ ¬𝑄2, (7.9)

𝑄+
2 = ¬𝑄1 ∧ ¬𝑄3, (7.10)

𝑄+
2 = ¬𝑄2 ∧ ¬𝑄3. (7.11)

Thus, it is clearly possible to implement 𝛿2 with a dependency on only two variables. On

the other hand, one can see from inspection that any one of 𝑄1, 𝑄2, 𝑄3, 𝑥1, or 𝑥2 alone is

not enough to determine the value of 𝛿2. Hence, our cost model assigns 𝛿2 a cost of 2.

However, the procedure from the previous section finds the cost of 𝛿2 to be 0. For

instance, when considering whether 𝛿2 depends on 𝑄1, the procedure considers all pairs of

states (S,S′) whose encodings differ only in 𝑄1, and then examines whether the encodings

of 𝛿(S, I) and 𝛿(S′, I) differ in 𝑄2 for any input value I. In this case, the only such pair of

states is (S2,S5), and under 𝛿 with I = I1, I = I2, and I = I3, the images of this pair are

(S1,S1), (S1,S3), and (S1,S1), respectively. For all three image pairs, 𝑄2 does not differ

between the encoded values of the two states in the pair. Thus, the procedure determines

that 𝛿2 does not depend on 𝑄1. In a similar fashion, the procedure also determines that 𝛿2

does not depend on 𝑄2, 𝑄3, 𝑥1, or 𝑥2, and consequently calculates the cost of 𝛿2 as 0. This

conclusion is clearly incorrect since 𝛿2 is not constant and must therefore depend on at least

one variable. Indeed, we previously determined the minimum number of dependencies to

be 2.

Our procedure’s failure to correctly determine cost in this case ultimately arises from the

fact that, considered individually, 𝛿2 need not depend on any particular one of 𝑄1, 𝑄2, and 𝑄3.

For instance, (7.11) implements 𝛿2 without a dependency on 𝑄1. Similarly, (7.10) and (7.9)
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implement 𝛿2 without dependencies on 𝑄2 and 𝑄3, respectively. It is however not possible

to simultaneously avoid two of these dependencies. In other words, any implementation

of 𝛿2 that lacks a dependency on 𝑄1 must then depend on both 𝑄2 and 𝑄3. So, although

the implementation given by (7.11) does not depend on 𝑄1, it depends on both 𝑄2 and 𝑄3.

The procedure from the previous section assumes (in this case incorrectly) that any two

dependencies can always be simultaneously avoided if they can be individually avoided,

which results in an incorrect computed cost.

The scenario described here can never occur if all encoded transition functions are

actual functions (not relations) in the mathematical sense. To see this, observe that any

mathematical function lacking a dependency on each of two variables individually must

also lack a dependency on those variables simultaneously. In other words, suppose that a

function 𝑓 of variables1 𝑥1 through 𝑥𝑛 lacks a dependency on 𝑥1, meaning that a change in

only 𝑥1 cannot affect the value of 𝑓 and 𝑓 can be computed without knowledge of the value

of 𝑥1. Furthermore suppose that 𝑓 similarly lacks a dependency on 𝑥2. Then if the value

of 𝑥1 changes to a different value 𝑥′1 and the value of 𝑥2 simultaneously changes to 𝑥′2, we

have2

𝑓(𝑥1, 𝑥2,… , 𝑥𝑛) = 𝑓(𝑥1, 𝑥′2,… , 𝑥𝑛) = 𝑓(𝑥′1, 𝑥
′
2,… , 𝑥𝑛), (7.12)

showing that simultaneous changes in 𝑥1 and 𝑥2 cannot affect the value of 𝑓. Hence, 𝑓 can

be computed without knowledge of the values of either 𝑥1 or 𝑥2. This argument breaks down

if 𝑓 is not actually a function but a relation, because then the value of 𝑓 may not be uniquely

defined at a given point.
1The variables 𝑥1 through 𝑥𝑛 here are unrelated to the input variables of an FSM; here, they are simply

variables in an arbitrary function 𝑓.
2Here we use the notation 𝑥′1 simply to indicate that the value of 𝑥1 has changed. In particular, we do not

use the prime (′) symbol to indicate logical negation, as is sometimes done.
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We therefore see that the procedure from the previous section, which only evaluates

dependency on a single variable at a time, correctly computes cost when all encoded transition

functions are actual functions (i.e., there are no “don’t-cares”) butmay fail if those “functions”

are actually relations. No “don’t-cares” will exist if the state and input encodings are bijective.

Bijectivity of an encoding is equivalent to the condition that the numbers of states and inputs

are both powers of two, the minimum possible number of state and input variables are used,

and no two distinct states or inputs may be assigned the same encoding.

7.4 Design of a quantum oracle to find optimal encodings

7.4.1 Binary representation of encodings in the quantum oracle

We now demonstrate how to, given an FSM and a threshold value 𝑟, construct a quantum

oracle that, when given an encoding for that FSM as input, determines whether the cost of the

encoding is less than 𝑟. Using this quantum oracle, the procedure described in Section 7.2

then constitutes a complete algorithm for finding the exact minimum solution to the FSM

encoding problem under the assumptions and conditions described before. As the first design

step, we must agree on the manner in which a candidate encoding is to be supplied as input

to the oracle. We will use the following scheme to represent an encoding as binary data:

letting 𝑛 be the number of bits used by the encoding, we allocate an array of 𝑛 qubits for

each element of the set being encoded (either the state or input set of an FSM), and assign to

each such array the encoded value of the corresponding set element. For instance, suppose

that S1 through S4 are the internal states of an FSM. Since we require all encodings to be

bijective, only 2-bit state encodings will be considered for this FSM. We therefore create

four arrays of two qubits each, where the input supplied to each array is the encoded value

of the corresponding state. Thus, if S1, S2, S3, and S4 are encoded by 01, 10, 00, and 11,
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𝑄1𝑄2S
S1 0 1
S2 1 0
S3 0 0
S4 1 1

𝑥1𝑥2I
I1 1 0
I2 1 1
I3 0 1
I4 0 0

(a) State and input encodings for an FSM.

𝑓

0

0

0
0

0

0
0

1

1

1
1

1

𝑄1(S1)
𝑄2(S1)

{Encoding
of S1

𝑄1(S2)
𝑄2(S2)

{Encoding
of S2

𝑄1(S3)
𝑄2(S3)
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of I1

𝑥1(I4)
𝑥2(I4)

{Encoding
of I4

(b) Their representations as supplied to the oracle.

Figure 7.4: The quantum oracle’s representation of an encoding as binary data.

respectively, then we represent this encoding by supplying 01 on the first array of two qubits,

10 on the second array, 00 on the third array, and 11 on the fourth array. Input encodings

are also represented in a similar manner.

Figure 7.4 provides an example of an encoding represented as binary data that can be

input to a quantum oracle. In this figure as well as others in this section, the notation 𝑄𝑖(S𝑗)

denotes the value assigned to 𝑄𝑖 in the encoding of S𝑗. Similarly, 𝑥𝑖(I𝑗) denotes the value

assigned to 𝑥𝑖 in the encoding of I𝑗.

The number of input qubits to a quantum oracle is of great importance as it determines the

run time of Grover’s algorithm. If an FSM has 2𝑛 internal states, each state will be encoded

using 𝑛 bits, and therefore, our scheme for representing encodings requires 2𝑛 arrays of 𝑛

qubits each, for a total of 𝑛 ⋅ 2𝑛 qubits. Similarly, for an FSM with 2𝑚 input values, our
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scheme requires 𝑚 ⋅ 2𝑚 qubits. Thus, an FSM with 2𝑛 internal states and 2𝑚 input values

requires a grand total of 𝑛 ⋅ 2𝑛 + 𝑚 ⋅ 2𝑚 qubits.

7.4.2 Quantum circuit to detect dependencies

We next demonstrate a quantum circuit design that uses the procedure from Section 7.3.1 to

determine whether the next state of a single flip-flop (i.e., one of 𝑄+
1 through 𝑄+

𝑛 ) depends

on the current state of another flip-flop (i.e., one of 𝑄1 through 𝑄𝑛) or the current value of

a single input bit (i.e., one of 𝑥1 through 𝑥𝑚). Recall that this procedure involves checking

the conditions given by (7.7) and (7.8) for each pair of states or input values, respectively.

In turn, (7.7) and (7.8) involve checking the conditions 𝐷𝑗(S, S′), 𝐴𝑖(S, S′), and 𝐷𝑗(I, I′) for

pairs of states or input values, where 𝐷𝑗 and 𝐴𝑖 are as defined in Section 7.3.1.

Using the binary representation described in Section 7.4.1, one can easily construct

quantum circuits to check 𝐷𝑗(S,S′), 𝐴𝑖(S,S′), and 𝐷𝑗(I, I′) for any pair of states or inputs.

For example, Figure 7.5a shows a quantum circuit that evaluates 𝐷1(S, S′) for any two distinct

states S and S′.3 This circuit operates on just a subset of the complete binary representation

of an encoding; specifically, it uses the qubits carrying information about the encoded values

of S and S′. It uses CNOT gates to perform comparisons and a Toffoli gate to evaluate the

logical AND of two comparison results. The final output of the circuit is given by the logical

expression ¬(𝑄2(S) ⊕ 𝑄2(S′)) ∧ ¬(𝑄3(S) ⊕ 𝑄3(S′)), which evaluates to 1 if and only if
3Technically, this circuit only works correctly if the states S and S′ have distinct encodings, as required by

the conditions stated at the end of Section 7.1.2. If S and S′ happen to have the same encoding, the circuit
will erroneously output 1. However, later on, in Section 7.4.5, we describe a circuit that enforces the condition
that distinct states have distinct encodings. This circuit is incorporated into the final oracle, as described in
Section 7.4.6, so that it forces the oracle’s output to 0 whenever this condition is violated. The operation
of the circuit described in the present section therefore becomes irrelevant in such a case, since Grover’s
algorithm will never find such a distinctness-violating encoding as a solution. From now on, we therefore
proceed with the implicit assumption that distinct states have distinct encodings. The same applies to input
values as well—the operation of the circuit described here is similarly irrelevant if distinct input values do not
have distinct encodings.
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the encodings of S and S′ agree in all state variables except 𝑄1, exactly the definition of

𝐷1(S,S′).

Although we assumed for the purpose of this particular illustration that each state is

encoded by three bits, the general circuit structure applies to encodings of any size. Like-

wise, although this particular circuit evaluates 𝐷1(S, S′), similar circuits suffice to evaluate

𝐷𝑗(S,S′) for any 𝑗, as well as 𝐷𝑗(I, I′) for two input values I and I′ instead of two states.

In a similar vein, Figure 7.5b shows a quantum circuit that evaluates 𝐴1(S,S′). This

circuit is extremely simple, as it simply evaluates ¬(𝑄1(S) ⊕ 𝑄1(S′)), which amounts to

just a one-bit comparison. As before, the same circuit structure is usable for encodings of

any size, not just three bits.

𝑄1(S)

𝑄1(S′)

𝑄2(S)

𝑄2(S′)

𝑄3(S)

𝑄3(S′)

|0⟩ 𝐷1(S,S′)

⎧⎪
⎨⎪
⎩

Encoding
of S

⎧⎪
⎨⎪
⎩

Encoding
of S′

(a) Circuit to check 𝐷1(S,S′).
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𝑄3(S)
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(b) Circuit to check 𝐴1(S,S′).

Figure 7.5: Quantum circuits to check 𝐷1(S,S′) and 𝐴1(S,S′).

Next, to check the conditions specified by (7.7) and (7.8), our quantum circuit must be

able to evaluate a logical implication. Recalling that the expression 𝑎 ⇒ 𝑏 is defined as

¬𝑎 ∨ 𝑏, we observe that a single Toffoli gate suffices to evaluate a logical implication, as

shown in Figure 7.6.

Finally, we are ready to turn to the design of the full quantum circuit for checking (7.7)
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𝑎

𝑏

|1⟩ 𝑎 ⇒ 𝑏

Figure 7.6: Logical implication evaluated using a Toffoli gate.

or (7.8). This task is complicated by the fact that checking (7.7) or (7.8) involves evaluating

𝐴𝑖(S,S′) simultaneously for many pairs of states. For instance, consider the state machine

from Figure 7.2, and suppose that we wish to design a quantum circuit to evaluate (7.8)

for 𝑖 = 1, 𝑗 = 2, and the pair of input values (I, I′) = (I1, I2). The circuit must then check

whether 𝐴1(𝛿(S, I), 𝛿(S, I′)) holds for all states S. In this case, given I = I1 and I′ = I2,

the corresponding pairs (𝛿(S, I), 𝛿(S, I′)) of next states are (S2,S2), (S4,S1), (S2,S3), and

(S4, S4) for S = S1, S2, S3, and S4, respectively. Since 𝐴1(S2, S2) and 𝐴1(S4, S4) are trivially

true, we can ignore them. Thus, the quantum circuit must check whether 𝐴1(S4,S1) and

𝐴1(S2,S3) simultaneously hold. The upper portion of Figure 7.7 demonstrates a subcircuit

that accomplishes this task. The lower portion of Figure 7.7 then combines this subcircuit

with another subcircuit (from Figure 7.5b) to evaluate the full (7.8). In other words, the final

output of this circuit, on the bottommost qubit, will be 1 if (7.8) is satisfied, and 0 if it is

not. We reiterate that for an FSM with more than four input values (so that each input value

is encoded by at least three bits), one would replace the simplified circuit for evaluating

𝐷2(I1, I2) with the full one from Figure 7.5a.

In some cases, checking eq. (7.7) or (7.8) may involve evaluating 𝐴𝑖(I, I′) simultaneously

for two or more overlapping pairs of inputs (or states). In these scenarios, one must construct

the quantum circuit for checking eq. (7.7) or (7.8) using a slightly different design. For

example, suppose that we now wish to design a quantum circuit to evaluate (7.8) for the

same state machine and 𝑖 = 1, 𝑗 = 2 as before, but a different pair of input values (I1, I3).

283



𝑄1(S1)

𝑥1(I1)

𝑄2(S1)

𝑥2(I1)

𝑄1(S2)

𝑥1(I2)

𝑄2(S2)

𝑥2(I2)

𝑄1(S3)

𝑥1(I3)

𝑄2(S3)

𝑥2(I3)

𝑄1(S4)

𝑥1(I4)

𝑄2(S4)

𝑥2(I4)

|0⟩

|0⟩

|1⟩

𝐷2(I1, I2)

𝐴1(S1,S4)
∧𝐴1(S2,S3)

𝐷2(I1, I2) ⇒ 𝐴1(S1,S4) ∧ 𝐴1(S2,S3)

Figure 7.7: Quantum circuit to evaluate (7.8) for input pair (I1, I2).
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The pairs of next states corresponding to current states of S1, S2, S3, and S4 are (S2,S2),

(S4,S3), (S2,S3), and (S4,S2), respectively. Therefore, the quantum circuit must evaluate

𝐷2(I1, I3) ⇒ 𝐴1(S4,S3) ∧ 𝐴1(S2,S3) ∧ 𝐴1(S4,S2). (7.13)

We then observe that, since the pairs of states on the right-hand side overlap, the entire

right-hand side is equivalent to the condition that the encodings of S2, S3, S4 must all agree

in the value of 𝑄1.4 We denote this condition by 𝐴1(S2,S3,S4), a natural generalization of

our earlier 𝐴𝑖(S,S′) notation for pairs of states. Figure 7.8 illustrates the quantum circuit

for evaluating (7.8) in this case. The critical difference between Figures 7.7 and 7.8 is that

the CNOT gates in the upper portion of Figure 7.8 operate on the encodings of overlapping

pairs of states, and must therefore be applied in the correct order. Additionally, although

the right-hand side of (7.13) contains the term 𝐴1(S4,S2), the circuit in Figure 7.8 does

not contain a corresponding CNOT gate to evaluate this term. Such a gate is unnecessary

because of transitivity—it is enough to check both 𝐴1(S2, S3) and 𝐴1(S3, S4) since they are

together equivalent to 𝐴1(S2,S3,S4), which implies 𝐴1(S4,S2).

More generally, one can construct similar circuits to evaluate 𝐴𝑖(S,S′) for any num-

ber of overlapping pairs of states. One simply takes the union of all such pairs to obtain

an arbitrarily-sized set of states and then constructs a quantum circuit according to the

pattern shown in Figure 7.9a. Figure 7.9b then shows a circuit that checks whether 𝐴𝑖 is

simultaneously satisfied for multiple sets of states. These circuit structures are sufficient to

algorithmically construct a quantum circuit for evaluating (7.7) or (7.8) in any case. Specifi-

cally, given any FSM with any number of states and input values, the following procedure
4For this particular example, this condition is impossible because, since we require encodings to be bijective,

the encodings of at most two states can agree in the value of 𝑄1. However, this condition could be satisfied in
an FSM with more states.
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𝑄1(S1)

𝑥1(I1)

𝑄2(S1)

𝑥2(I1)

𝑄1(S2)

𝑥1(I2)

𝑄2(S2)

𝑥2(I2)

𝑄1(S3)

𝑥1(I3)

𝑄2(S3)

𝑥2(I3)

𝑄1(S4)

𝑥1(I4)

𝑄2(S4)

𝑥2(I4)

|0⟩

|0⟩

|1⟩

𝐷2(I1, I3)

𝐴1(S2,S3,S4)

𝐷2(I1, I2) ⇒ 𝐴1(S2,S3,S4)

Figure 7.8: Quantum circuit to evaluate (7.8) for input pair (I1, I3).
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constructs a quantum circuit to evaluate (7.7) for any 𝑖, 𝑗, and pair of states5 (S,S′):

1. List all of the pairs of states appearing on the right-hand side of (7.7) when expanded.

In other words, create a list containing the pair of states (𝛿(S, I), 𝛿(S′, I)) for every

possible input value I.

2. In this list, merge any overlapping pairs of states together to obtain a collection of

mutually disjoint sets of states.

3. Using the circuit structures from Figure 7.9, construct a circuit that checks whether

𝐴𝑖 is simultaneously satisfied for every set of states produced by the previous step.

4. Using the circuit created in step 3 as a subcircuit, construct a circuit that checks the

full (7.7), following the general pattern illustrated in Figures 7.7 and 7.8.

From now on, we will refer to any circuit generated by this procedure as a partial

dependency checker for the given pair of states, because it checks (7.7) for a single pair of

states while the existence of a dependency is determined by checking (7.7) for all possible

pairs of states.

We observe that crucially, the quantum circuit design procedure described in this section

requires at compile time only knowledge of the transition function of the FSM being encoded.

In particular, the quantum circuit cannot be modified depending on the encoding whose

cost is being evaluated, because individual encodings are not considered at compile time.

Individual encodings are only considered at run time, when Grover’s algorithm is used to

simultaneously evaluate the cost of every possible encoding in the search space. Thus, in

a single run of Grover’s algorithm, the same quantum circuit must be able to evaluate any

encoding in the search space without any modifications.
5We describe the procedure here using (7.7) with a pair of states, but it functions equally well for (7.8)

with a pair of input values.
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𝑄1(S1)
𝑄2(S1)

𝑄𝑛(S1)

𝑄1(S2)
𝑄2(S2)

𝑄𝑛(S2)

𝑄1(S3)
𝑄2(S3)

𝑄𝑛(S3)

𝑄1(S𝑁)
𝑄2(S𝑁)

𝑄𝑛(S𝑁)

|0⟩ 𝐴1(S1,… , S𝑁)

(a) Circuit to evaluate 𝐴1(S1,… , S𝑛) for an arbitrary number of states.

𝑄𝑖(S1)
𝑄𝑖(S2)
𝑄𝑖(S3)
𝑄𝑖(S4)
𝑄𝑖(S5)
𝑄𝑖(S6)
𝑄𝑖(S7)
𝑄𝑖(S8)

|0⟩ 𝐴𝑖(S1,S2,S3) ∧ 𝐴𝑖(S4,S5,S6) ∧ 𝐴𝑖(S7,S8)

(b) Circuit for multiple sets of states.

Figure 7.9: Construction of quantum circuits to evaluate any number of 𝐴𝑖 terms.
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7.4.3 Quantum circuit to calculate total cost of an encoding

With the ability to generate a quantum circuit to evaluate eqs. (7.7) or (7.8) for any 𝑖, 𝑗, and

pair of states or inputs, we now consider the task of designing a quantum circuit to calculate

the full cost of a given encoding. Following the procedure from Section 7.3.1, the quantum

circuit determines whether a given 𝑄+
𝑖 depends on 𝑄𝑗 by checking if (7.7) is satisfied for all

possible pairs of states.6 Figure 7.10 shows a circuit structure that accomplishes this task.

From now on, we will refer to this circuit as a dependency checker.

In Figure 7.10, the labeled “input qubits” represent the entire collection of qubits storing

the binary representation of an encoding, as described in Section 7.4.1. Each block represents

a partial dependency checker that checks (7.7) for the given 𝑖, 𝑗, and the pair of states with

which it is labeled. “Ancilla qubits” represents the ancilla qubits that are used by these

partial dependency checkers, as shown in Figures 7.7 and 7.8. For illustrative purposes,

we have assumed an FSM with four states, resulting in six possible pairs of states; partial

dependency checkers for three of them are shown. The same circuit structure, scaled up

to accommodate the correspondingly larger number of subcircuits, would be used for an

FSM with more states. The output from each partial dependency checker is stored on an

ancilla qubit so that the final result can be obtained by taking their logical AND. Each partial

dependency checker must be applied again after the result is computed to restore the ancilla

qubits to their original states, which, as discussed in Chapter 1, Section 1.4, is required for

Grover’s algorithm to work correctly. The final output from the dependency checker is 1 if

and only if 𝑄+
𝑖 depends on 𝑄𝑗.

Next, we require another quantum circuit to calculate the total cost of the encoding by
6Once again, although we use dependencies on state variables for the sake of explanation, the whole

discussion applies to dependencies on input variables as well.
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⎧
⎪
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⎩

Input
qubits

{Ancilla
qubits

Figure 7.10: Quantum circuit to check dependency of 𝑄+
𝑖 on a single state or input variable.

counting the total number of dependencies over all 𝑄+
𝑖 . We introduce a quantum counter for

this purpose. The quantum counter consists of a register of qubits, which stores an integer

in base-two representation, together with incrementer circuits that add one to this stored

integer when a control qubit is in the state |1⟩.

Figure 7.11a shows a three-qubit incrementer. If the input qubits represent an integer

𝑎2𝑎1𝑎0, with 𝑎2 being the most significant and 𝑎0 being the least significant bit, then the

output of the incrementer is (the base-two representation of) 𝑎2𝑎1𝑎0 + 1 mod 23. The result

is taken modulo 23 because due to reversibility, the maximum value of 23 − 1 must wrap

around to 0 upon increment. Figure 7.11b illustrates how the incrementer is extended to any

number of qubits. Figure 7.11c then demonstrates how, by adding an additional control qubit

to each individual gate making up the incrementer, a controlled incrementer is produced. As

the name suggests, the controlled incrementer only increments the register 𝑎𝑛 … 𝑎2𝑎1𝑎0 if
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𝑎2

𝑎1

𝑎0

⎫⎪
⎬⎪
⎭

(𝑎2𝑎1𝑎0)2 + 1 mod 23

(a) A three-qubit incrementer.

𝑎𝑛

𝑎2

𝑎1

𝑎0

(b) General 𝑛-qubit incrementer.

𝑎𝑛

𝑎2

𝑎1

𝑎0

𝑐

(c) Controlled three-qubit incrementer.

𝑐

𝑎𝑛𝑎𝑛−1 … 𝑎1𝑎0 𝑛 +1

(d) Schematic symbol for the controlled incrementer.

Figure 7.11: Incrementer circuits.

the control qubit 𝑐 is in the state |1⟩. Figure 7.11d depicts the schematic symbol that we will

use from now on to compactly represent a controlled incrementer. Observe that the lower

line in this schematic represents not a single qubit but an entire register or array of 𝑛 qubits.

Using controlled incrementers, Figure 7.12 illustrates how a quantum counter is formed

by a sequence of controlled incrementers all acting on the same target register. This register

stores a running count which will be incremented once for each control qubit in the state

|1⟩. Since the register is initialized to |000⟩, the final value on the register is simply the total

number of control qubits in the state |1⟩, represented as a base-two integer as before. We

observe that the quantum counter depicted here is limited to a maximum of seven control

qubits because the maximum value of the three-qubit target register is |111⟩. Attempting to

count further than this would simply result in the counter wrapping around back to |000⟩, as

previously mentioned. This limit can be raised by increasing the size of the target register; a
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target register consisting of 𝑛 qubits will allow the quantum counter to count up a maximum

value of 2𝑛 − 1.

𝑎1

𝑎2

𝑎7

|000⟩ +1 +1 +13

Figure 7.12: An example of a quantum counter.

With quantum counters, it is easy to construct a quantum circuit that calculates the total

cost of an encoding. We recall that cost is equal to the total number of dependencies of

each 𝑄+
𝑖 on state and input variables 𝑄𝑗 and 𝑥𝑘, summed over all 𝑖. Therefore, we create

a quantum circuit consisting of many dependency checkers, one to evaluate each possible

dependency, where the outputs of the dependency checkers are fed to a quantum counter that

counts the total number of dependencies. The final value of the quantum counter then gives

the cost of the encoding represented by the input qubits. Figure 7.13 depicts the structure of

the resulting circuit.

In Figure 7.13, each block labeled “D.C. 𝑄+
𝑖 , 𝑄𝑗” or “D.C. 𝑄+

𝑖 , 𝑥𝑗” represents a depen-

dency checker that checks whether 𝑄+
𝑖 depends on 𝑄𝑗 or 𝑥𝑗, respectively. Due to space

constraints, only a few checkers are shown in Figure 7.13, but the full circuit requires depen-

dency checkers for every possible combination of a 𝑄+
𝑖 and a 𝑄𝑗 or 𝑥𝑗. In other words, the

circuit contains dependency checkers for 𝑄+
1 depending on each of 𝑄1 through 𝑄𝑛 and 𝑥1

through 𝑥𝑚, 𝑄+
2 depending on each of 𝑄1 through 𝑄𝑛 and 𝑥1 through 𝑥𝑚, and so on up to 𝑄+

𝑛

depending on each of 𝑄1 through 𝑄𝑛 and 𝑥1 through 𝑥𝑚, where 𝑛 is the number of state vari-

ables and 𝑚 is the number of input variables. Thus, the total number of dependency checkers
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Figure 7.13: Quantum circuit to calculate total cost using a quantum counter.

is 𝑛(𝑛 + 𝑚). This number is actually quite small relative to the size of the state machine

being encoded, since the number of state and input variables grow only logarithmically with

the number of states and input values, respectively, in the FSM.

We additionally observe that the quantum counter used in Figure 7.13 is constructed

slightly differently from the example shown in Figure 7.12. Specifically, the quantum counter

in Figure 7.13 is able to count using only one control qubit, while the one in Figure 7.12

counts the number of ones present in a whole collection of control qubits. The reason for

this difference is that the circuit in Figure 7.13 counts the number of ones not in a collection

of qubits, but appearing on a single qubit at different times. In other words, the circuit places

the result of a given dependency checker onto the single counter control qubit and uses it to

update the counter, but crucially, the circuit then applies the dependency checker again to

restore that control qubit to its original state so that the next dependency checker can also

use it to update the counter as well. In this way, the circuit is able to count dependencies

without using a separate ancilla qubit to store the result of each dependency checker.
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As previously mentioned, the maximum value that a quantum counter can reach before

wrapping around to zero is determined by the number of qubits in the counter’s target register.

In Figure 7.13, the size of the quantum counter’s target register is not explicitly indicated

because it depends on the maximum possible cost. The maximum possible cost is equal to

the total number of possible dependencies, which as we previously saw is 𝑛(𝑛 + 𝑚) where

𝑛 and 𝑚 are the number of states and input values, respectively. Therefore, the quantum

counter’s target register must contain at least ⌈𝑙𝑜𝑔2(𝑛(𝑛 + 𝑚) + 1)⌉ qubits to guarantee that

no wrap-around can occur, which would cause the circuit to produce an incorrect result.

7.4.4 Quantum threshold circuit

With a quantum circuit for calculating the cost of an encoding, we now add a threshold

circuit to create a quantum oracle that determines whether the cost of the encoding is less

than 𝑟, where 𝑟 is the threshold for which the oracle is being generated. The threshold circuit

accepts a set of qubits representing a base-two integer as input and produces an output that

depends on whether the input is less than or equal to 𝑟. Designing such threshold circuits

is a well-known and solved problem in classical digital logic. For instance, the following

recursive procedure allows one to generate a logical expression that determines whether a

given base-two integer (𝑎𝑛𝑎𝑛−1 … 𝑎1𝑎0)2 is less than or equal to a threshold (𝑟𝑛𝑟𝑛−1 … 𝑟1𝑟0)2:

1. If the threshold and value to be compared against it consist of only a single bit, the

expression is ¬𝑎0 if 𝑟0 = 0 and a constant 1 if 𝑟0 = 1. In this case, stop immediately

as we are finished.

2. Otherwise, recursively use this procedure to generate a logical expression that deter-

mines whether (𝑎𝑛−1 … 𝑎0)2 ≤ (𝑟𝑛−1 … 𝑟0)2.
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3. If 𝑟𝑛 = 1, take the logical OR of ¬𝑎𝑛 with the expression generated in step 2. Other-

wise, if 𝑟𝑛 = 0, take the logical AND. Return the resulting expression as the output of

this procedure.

4. At the very end, when all recursive steps are complete, it may be possible to simplify

the expression using the identities 𝑥 ∨ 1 = 1 and 𝑥 ∧ 1 = 𝑥.

For example, suppose we wish to generate a logical expression that determines whether

𝑎2𝑎1𝑎0 is less than or equal to 5, whose base-two representation is 101. Then, since 𝑟2 = 1,

we take the logical OR of¬𝑎2 with an expression recursively generated to determine whether

𝑎1𝑎0 is less than or equal to (01)2 = 1. Since 𝑟1 = 0, we take the logical AND of ¬𝑎1 with

the expression that determines whether 𝑎0 is less than 1. This is the base case for which

the procedure above returns a constant 1. Therefore, the complete generated expression is

¬𝑎2 ∨ (¬𝑎1 ∧ 1), which simplifies to ¬𝑎2 ∨ ¬𝑎1.

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5

|1⟩
|0⟩

|1⟩ 𝑦

Figure 7.14: Quantum circuit implementing the expression 𝑦 = ¬𝑎5∨(¬𝑎4∧¬𝑎3∧¬𝑎2∧(¬𝑎1∨¬𝑎0)).

Once a logical expression is obtained, constructing a quantum threshold circuit is simply

a matter of implementing that logical expression with quantum gates. This can be achieved

using a cascade of Toffoli gates as shown in Figure 7.14, where consecutive logical operations
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of the same type (either AND or OR) can be combined into a single Toffoli gate to reduce

the number of ancilla qubits required. We observe that the threshold is “hard-coded” into the

circuit (i.e., it is built into the circuit structure itself and can only be changed by changing

the circuit) and therefore, generating a quantum oracle for a different threshold involves

generating a new threshold circuit, as discussed in Section 7.2.

7.4.5 Quantum circuit to enforce bijectivity of encodings

In Section 7.3.2, we saw that it is necessary for all encodings to be bijective, which implies

that no two states or inputs of an FSM may be encoded by the same value. Therefore, the

quantum oracle must include a circuit to check for and rule out encodings where the same

encoded value is usedmore than once. This can be achieved by comparing the encoded values

for every possible pair of states/inputs and verifying that the encoded values are different

for every such pair. We therefore construct the circuit shown in Figure 7.15. Since there

are four states in this figure, six pairs of states must be checked, of which three are shown.

Similarly, checks for three out of the six pairs of inputs are shown, with the understanding

that the full circuit requires checks on all six. A mirror circuit (not shown) is also required to

restore the ancilla qubits to their original states. Observe that the exact same circuit applies

for checking both state and input encodings, and that although Figure 7.15 assumes four

states, the same structure may of course be scaled up for FSMs with any number of states or

inputs.

7.4.6 The complete quantum oracle

Finally, we consider how the quantum circuits we have demonstrated thus far are assembled

to form a complete quantum oracle. Recall that the cost calculation circuit (Section 7.4.3),
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𝑄1(S1)
𝑄2(S1)

𝑄1(S2)
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𝑄1(S3)
𝑄2(S3)
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|1⟩
|1⟩

|1⟩

𝑥1(I1)
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𝑥1(I3)
𝑥2(I3)

𝑥1(I4)
𝑥2(I4)

|1⟩
|1⟩

|1⟩

|0⟩

Figure 7.15: Quantum circuit to verify uniqueness of encoding for each state/input.

which is itself assembled using a quantum counter and dependency checkers outputs the cost

of an encoding expressed as a base-two integer, which is then passed to the threshold circuit

(Section 7.4.4). The threshold circuit produces a single-qubit answer indicating whether the

calculated cost is below the threshold or not. At the same time, an encoding must be bijective

in order to be considered at all. This condition is enforced by a circuit that checks uniqueness

of each state or input’s encoding (Section 7.4.5). We therefore see that our quantum oracle

should only output 1 (true) if both the threshold and uniqueness checking circuits output 1.

The complete quantum oracle therefore requires one additional Toffoli gate to produce its

final output, as shown in Figure 7.16.
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Figure 7.16: High-level view of the quantum oracle.

In Figure 7.16, the block labeled “Cost” denotes the cost calculation circuit, “Th(𝑟)”

denotes a threshold circuit with threshold 𝑟, and “U.C.” (“uniqueness checker”) denotes the

uniqueness checking circuit. The oracle also requires additional mirror circuits to restore

the ancilla qubits to their original values. These are denoted by overbars; e.g., “U.C”

denotes the mirror circuit for the uniqueness checker. In particular, the mirror of the cost

calculation circuit contains decrementer instead of incrementer circuits; these decrementer

circuits naturally arise from reversing the order of the gates in the incrementer circuits from

Figure 7.11.

Observe that the design of the oracle allows us to omit additional mirror circuits that

would be necessary if these subcircuits were being used as stand-alone circuits. For instance,

as a stand-alone circuit, the threshold circuit shown in Figure 7.14 would require additional

mirror gates (as shown in Figure 7.17) if one wished to preserve the states of the two ancilla

qubits for later reuse. However, when used in the quantum oracle, these additional mirror

gates become unnecessary because the Th(𝑟) and Th(𝑟) subcircuits already act as mirrors

to each other. Hence, the circuit structure shown in Figure 7.14, without additional mirror
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gates, can be used for both of these subcircuits (except, of course, that the Th(𝑟) subcircuit

is reversed compared to its counterpart). This simplification effectively halves the size of

both of these subcircuits, as compared with their stand-alone form as seen in Figure 7.17.

The exact same observation also applies to the uniqueness checking subcircuits U.C. and

U.C.—their stand-alone forms would require additional mirror gates on top of the circuit

structure shown in Figure 7.15, which become unnecessary when the subcircuits are used as

components of the oracle in Figure 7.16.

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5

|1⟩
|0⟩

|1⟩

Figure 7.17: Threshold circuit from Figure 7.14 with mirror gates. The mirror gates turn out to be
unnecessary as explained in the main text.

We observe that the threshold circuit is the only part of the oracle that must be regenerated

for each run of Grover’s algorithm as described in Section 7.2. The other parts of the oracle

are generated depending on the FSM being encoded, but are independent of the chosen

threshold; thus, they remain unchanged throughout the entire search procedure described in

Section 7.2. With this oracle,7 we have met the objective stated at the end of Section 7.2

and therefore, the procedure described in Section 7.2 gives a complete algorithm for finding
7To be more precise, we have described not a single oracle but a design according to which a whole

sequence of oracles (for different thresholds) can be generated for any given FSM. This ability to generate a
sequence of oracles is exactly what we need, as discussed in Section 7.2.
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an exact optimal encoding of an FSM with the help of Grover’s algorithm.

7.5 Run-time complexity analysis

7.5.1 Run-time complexity of the proposed quantum algorithm

We now wish to determine the run time complexity of our proposed quantum algorithm,

in order to compare its performance against that of an analogous exhaustive search-based

classical algorithm for the same problem. In this determination, we make certain simplifying

assumptions, as described below. These simplifications are justified because our goal is

not to perform the most detailed and nuanced analysis possible, but rather to show that our

proposed algorithm can reasonably be expected to outperform the classical algorithm.

When computing the run time complexity of a quantum circuit, we must take into account

the differing quantum cost [19] of the various quantum gates used in the circuit—in our

case, these are CNOT, Toffoli, and multiple-control Toffoli gates. We recall that quantum

gates are not physical hardware components like classical digital logic gates; instead, they

are manipulations of the physical qubits, consisting of sequences of fundamental physical

operations on those qubits. The quantum cost of a quantum gate is then the number of

physical operations required to implement that gate, which roughly corresponds to the run

time complexity of the gate if we assume that each fundamental physical operation requires

approximately the same amount of time. Authors in the quantum computing literature

have proposed a variety of quantum cost models, based on differing assumptions about the

physical implementation of a quantum computing system and the fundamental operations

available therein. For instance, a well-known result due to Barenco et al. [20] suggests8

8We say “suggests” because, although the results of Barenco et al. are widely used throughout the literature
as a standard quantum cost function for multiple-control Toffoli gates, we do not know of a conclusive proof
that it is impossible to implement a multiple-control Toffoli gate with lower cost complexity (assuming that no
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that the quantum cost of a multiple-control Toffoli may be up to 𝒪(2𝑛), where 𝑛 is the size

of the gate. However, this result assumes that no ancilla qubits are used. With the use of

ancilla qubits, it is easy to see that multiple-control Toffoli gates of arbitrary size may be

implemented with a quantum cost that is linear with respect to the size of the gate. A cascade

of Toffoli gates, as shown in Figure 7.18, accomplishes this task.

𝑎

𝑏

|0⟩

𝑐

|0⟩

𝑑

|0⟩ 𝑎 ∧ 𝑏 ∧ 𝑐 ∧ 𝑑

Figure 7.18: Implementation of a multiple-control Toffoli gate with quantum cost scaling linearly
with gate size.

Throughout the following analysis, we will assume that an arbitrary number of ancilla

qubits are available, and therefore the quantum cost of a multiple-control Toffoli gate is linear

with respect to the gate’s size. We make this assumption as it simplifies our calculations and

is most conducive to our goal of obtaining a rough estimate of the run time complexity of

our proposed quantum algorithm. The question of how the run time complexity varies in

other quantum cost models is an interesting one, but outside the scope of the present paper.

We leave further investigation of this question open for future work.

Our algorithm operates under the condition that the numbers of states and input values

of the FSM must both be powers of two. Let us denote the number of states by 𝑁S and

the number of input values by 𝑁I. Then, 𝑁S = 2𝑛S and 𝑁I = 2𝑛I for some nonnegative

ancilla qubits are used). In any case, our results are unaffected since we assume instead that ancilla qubits are
used to implement multiple-control Toffoli gates with 𝒪(𝑛) quantum cost, as illustrated in the main text.
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integers 𝑛S and 𝑛I, where 𝑛S and 𝑛I are respectively the number of state and input variables.

Conversely, 𝑛S = log2 𝑁S = 𝒪(log𝑁S) and 𝑁I = log2 𝑁I = 𝒪(log𝑁I). We first consider

the run time complexity for the dependency checking quantum circuits described in Sec-

tions 7.4.2 and 7.4.3. Calculation of this complexity is complicated by the fact that the partial

dependency checkers described in Section 7.4.2 do not have a fixed complexity; rather, as

discussed in that section, their internal structure depends on the particular details of the

state machine under consideration. However, we may still calculate an upper bound for the

complexity of each partial dependency checker.

In the following paragraph, we use the example circuits shown in Figures 7.5, 7.7, and 7.8

as a reference. Evaluating 𝐷𝑗(S,S′) for a pair of states requires 𝒪(𝑛S) = 𝒪(log𝑁S) time,

since 𝑛S − 1 CNOT gates are required together with a multiple-control Toffoli gate of size

𝑛S (𝑛S − 1 control qubits and one target qubit). By analogous reasoning, evaluating 𝐷𝑗(I, I′)

requires 𝒪(𝑛I) = 𝒪(log𝑁I) time. Meanwhile, evaluating 𝐴𝑖(S,S′) is an 𝒪(1) operation,

since only a single CNOT gate is needed. Observe that the upper portion of every partial

dependency checker (as in Figures 7.7 and 7.8) must evaluate 𝐴𝑖(S, S′) for up to 𝑁S−1 state

pairs, with this maximum being obtained when all state pairs are overlapping, as in (S1, S2),

(S2, S3), (S3, S4), etc. The lower portion of each partial dependency checker always evaluates

𝐷𝑗(S,S′) or 𝐷𝑗(I, I′) for only one pair of inputs/states. The total complexity of a partial

dependency checker is therefore (𝑁S−1)⋅𝒪(1)+1⋅𝒪(log𝑁S) = 𝒪(𝑁S+log𝑁S) = 𝒪(𝑁S),

for a partial dependency checker that evaluates 𝐷𝑗(S, S′) for a pair of states and checks (7.7),

or (𝑁S − 1) ⋅ 𝒪(1) + 1 ⋅ 𝒪(log𝑁S) = 𝒪(𝑁S + log𝑁I), for a partial dependency checker

that evaluates 𝐷𝑗(I, I′) for a pair of inputs and checks (7.8).

From Figure 7.10 we can see that checking the dependencies of the next state of a single

flip-flop on a single state or input variable requires either 𝑁S(𝑁S−1)∕2 (for a state variable)
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or 𝑁I(𝑁I − 1)∕2 (for an input variable) partial dependency checkers. Combining with the

previously derived complexity for a single partial dependency checker gives 𝒪(𝑁S
3) (for a

state variable) or 𝒪(𝑁I
2 (𝑁S + log𝑁I)) (for an input variable). The central Toffoli gate in

Figure 7.10 has either 𝑁S(𝑁S− 1)∕2 or 𝑁I(𝑁I− 1)∕2 control qubits, so its time complexity

is dominated by that of the partial dependency checkers.

In Figure 7.13, we can see that there are 𝑛S
2 = (log𝑁S)2 checks for dependency of 𝑄+

𝑖

(for any 𝑖) on a state variable, and 𝑛S𝑛I = log𝑁S log𝑁I checks for dependency on an input

variable. Therefore, the total complexity of all the dependency checkers in the circuit from

Figure 7.13 is

(log𝑁S)2 ⋅ 𝒪(𝑁S
3) + log𝑁S log𝑁I ⋅ 𝒪(𝑁I

2 (𝑁S + log𝑁I))

= 𝒪(𝑁S
3 (log𝑁S)2 + 𝑁I

2 (𝑁S + log𝑁I)(log𝑁S log𝑁I)). (7.14)

The complexity of the incrementer circuits in Figure 7.13 is clearly dominated by that of the

dependency checkers, so the preceding expression gives the time complexity for the entire

cost-calculating portion of the quantum oracle.

Finally, we must consider the complexity of the two other components of the oracle, as

shown in Figure 7.16—the threshold circuit and uniqueness-checking circuit. The complexity

of the cost-calculating circuit clearly dominates that of the threshold circuit, but the situation

with respect to the uniqueness-checking circuit is less clear. As seen in Figure 7.15, the

uniqueness-checking circuit performs a comparison for every possible pair of states, of

which there are 𝑁S(𝑁S − 1)∕2, and every possible pair of input values, of which there

are 𝑁I(𝑁I − 1)∕2. Furthermore, a comparison of a pair of states has complexity 𝒪(𝑛S) =

𝒪(log𝑁S), since each individual state variable assignment must be compared between the

two states, and a comparison of a pair of inputs similarly has complexity𝒪(𝑛I) = 𝒪(log𝑁I).
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The final Toffoli gate in Figure 7.15 has 𝑁S(𝑁S − 1)∕2 + 𝑁I(𝑁I − 1)∕2 control qubits,

giving the entire uniqueness-checking circuit a complexity of

𝑁S(𝑁S − 1)
2

⋅ 𝒪(log𝑁S) +
𝑁I(𝑁I − 1)

2
⋅ 𝒪(log𝑁I)

+𝒪(
𝑁S(𝑁S − 1)

2
+

𝑁I(𝑁I − 1)
2

)

= 𝒪(𝑁S
2 log𝑁S + 𝑁I

2 log𝑁I). (7.15)

Comparison with (7.14) shows that the cost-calculating circuit dominates the uniqueness-

checking circuit in terms of complexity. Therefore, the run time complexity of the entire

quantum oracle is still given by (7.14).

As we recall from Section 7.2, our proposed quantum algorithm involves executing

Grover’s algorithm multiple times to find an optimal encoding for an FSM. It is uncertain

exactly how many executions of Grover’s algorithm are required, as we do not consider the

details of the search procedure used to find the minimum cost. However, we may consider

the time complexity of just a single execution of Grover’s algorithm. This does not affect our

ability to compare the performance of quantum and classical algorithms because they both

must perform a search procedure as described in Section 7.2 in order to find the minimum

possible cost.

We discussed in Chapter 1, Section 1.4 how Grover’s algorithm (together with its exten-

sions for the case of multiple solutions) is able to find a solution to a satisfaction problem,

or detect the non-existence of a solution, with 𝒪(√𝑀) executions of the quantum oracle,

where 𝑀 is the size of the search space. (We have used 𝑀 to avoid confusion with the

numbers of states and input values.) As discussed in Section 7.4.1 and shown in Figure 7.4b,

our proposed oracle requires 𝑁S𝑛S + 𝑁I𝑛I = 𝒪(𝑁S log𝑁S + 𝑁I + log𝑁I) input qubits,
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corresponding to a search space of size 𝒪(2𝑁S log𝑁S+𝑁I+log𝑁I) = 𝒪(𝑁S
𝑁S𝑁I

𝑁I). Hence, a

single execution of Grover’s algorithm requires 𝒪(√𝑁S
𝑁S𝑁I

𝑁I) executions of the quantum

oracle. The total complexity of one execution of Grover’s algorithm, taking into account the

previously determined complexity of the oracle, is then

𝒪(√𝑁S
𝑁S𝑁I

𝑁I [𝑁S
3 (log𝑁S)2 + 𝑁I

2 (𝑁S + log𝑁I)(log𝑁S log𝑁I)]). (7.16)

Eq. (7.16) is rather unwieldy for a simple, rough comparison between the performance

of quantum and classical algorithms. If we assume that 𝑁S = 𝑁I, that is, the FSM has the

same number of states as input values, then (7.16) simplifies to the much more manageable

𝒪(√𝑁S
𝑁S𝑁I

𝑁I [𝑁S
3 (log𝑁S)2 + 𝑁I

2 (𝑁S + log𝑁I)(log𝑁S log𝑁I)])

= 𝒪(𝑁S
𝑁S [𝑁S

3 (log𝑁S)2 + 𝑁S
2 (𝑁S + log𝑁S)(log𝑁S log𝑁S)])

= 𝒪(𝑁S
𝑁S [𝑁S

3 (log𝑁S)2])

= 𝒪(𝑁S
𝑁S+3 (log𝑁S)2). (7.17)

7.5.2 Comparison with a classical algorithm

A comparable classical algorithm to solve the FSM encoding problem would operate in

much the same way as our proposed quantum algorithm, with the main difference being

that a classical computer of course cannot use Grover’s algorithm and must instead use a

straightforward exhaustive search. In particular, a classical computer must also use eqs. (7.7)

and (7.8) to calculate the cost of a given encoding. Most, if not all, modern digital computers

are capable of performing so-called bitwise logical operations on words of significant length

(at least 32 or 64 bits), which allows them to evaluate 𝐷𝑗(S, S′) and 𝐴𝑖(S, S′) for any pair of
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states or 𝐷𝑗(I, I′) for any pair of inputs in 𝒪(1) time. (We need not consider state machines

with more than 232 states or input values, as such a machine would be far too large to be

of practical interest.) It follows that a classical computer can evaluate (7.7) in 𝒪(𝑁I) time,

since it requires iterating over all input values. Then, determining whether 𝑄+
𝑖 depends

on 𝑄𝑗, for any values of 𝑖 and 𝑗, requires evaluating (7.7) for all 𝑁S(𝑁S − 1)∕2 pairs of

states and therefore takes 𝒪(𝑁S
2𝑁I) time. Similarly, a single evaluation of (7.8) requires

𝒪(𝑁S) time and determining whether 𝑄+
𝑖 depends on 𝑥𝑘, for any values of 𝑖 and 𝑘, requires

𝒪(𝑁S𝑁I
2) time.

Calculating the total cost of an encoding involves checking the dependency of 𝑄+
𝑖 on

𝑄𝑗 for all combinations of 𝑖 and 𝑗, of which there are (log2 𝑁S)2, and the dependency of

𝑄+
𝑖 on 𝑥𝑘 for all combinations of 𝑖 and 𝑘, of which there are (log2 𝑁S)(log2 𝑁I). There-

fore, the complete calculation of the cost of an encoding on a classical computer requires

𝒪(𝑁S
2𝑁I (log𝑁S)2 + 𝑁S𝑁I

2 (log𝑁S)(log𝑁I)) time. The number of possible encodings is

𝑁S!𝑁I!, so a full exhaustive search on a classical computer has a total time complexity of

𝒪(𝑁S!𝑁I![𝑁S
2𝑁I (log𝑁S)2 + 𝑁S𝑁I

2 (log𝑁S)(log𝑁I)]). (7.18)

Just as for the quantum algorithm, we can simplify this expression if we assume that 𝑁S = 𝑁I;

in this case, (7.18) reduces to

𝒪(𝑁S!𝑁S![𝑁S
3 (log𝑁S)2 + 𝑁S

3 (log𝑁S)(log𝑁S)])

= 𝒪((𝑁S!)2𝑁S
3 (log𝑁S)2). (7.19)

Comparing eqs. (7.17) and (7.19), we see that the factor of 𝑁S
3 log𝑁S is common to

both. We may therefore compare the relative complexities of the quantum and classical
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Table 7.1: Comparison of relative complexities of quantum and classical algorithms, assuming
𝑁S = 𝑁I.

𝑁S

4 2.56 × 102 5.76 × 102 2.25
8 1.68 × 107 1.63 × 109 96.9

16 1.84 × 1019 4.38 × 1026 2.37 × 107

32 1.46 × 1048 6.92 × 1070 4.74 × 1022

𝑁S
𝑁S

(Quantum)
(𝑁S!)2

(Classical)
(𝑁S!)2

𝑁S
𝑁S

algorithms, if 𝑁S = 𝑁I, by looking only at the terms 𝑁S
𝑁S (for the quantum algorithm)

and (𝑁S!)2 (for the classical algorithm). Table 7.1 shows the results for a few values of

𝑁S. We immediately see that the quantum algorithm appears to be significantly faster

than the classical algorithm. Care must be taken in this comparison because we are only

comparing the relative complexities of the two algorithms and not their actual run times. In

particular, the actual ratio of run times between the two algorithms is better approximated

as 𝐶 (𝑁S!)2∕𝑁S
𝑁S, where 𝐶 is an unknown constant. For example, 𝐶 = 1∕1000 indicates,

very roughly speaking, that the classical computer’s “clock speed”—by which we mean

not necessarily the hardware’s physical clock speed, but rather the number of low-level

instructions executed per second—is on the order of 1000 times faster than the quantum

computer’s. From Table 7.1, we can see that for 𝑁S = 16, our proposed quantum algorithm

is expected to be faster even if the quantum computer on which it is running has a clock

speed a million times slower than the competing classical computer. For 𝑁S = 32, our

proposed quantum algorithm will, nearly unquestionably, run many orders of magnitude

faster than the comparable classical algorithm using an exhaustive search. This gives us

a high degree of confidence in our expectation that our proposed quantum algorithm will

outperform the classical algorithm for state machines of reasonable size.
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It is interesting to observe that the quantum algorithm actually contains a significant

inefficiency in comparison to the classical algorithm. The inefficiency arises from the fact

that Grover’s algorithm can only search through a space consisting of all possible binary

strings of a given length. Therefore, the quantum algorithm searches through all possible

combinations of inputs to the oracle as illustrated in Figure 7.4b, even those that do not

represent a valid encoding. This means that a large portion of the search space is effectively

extraneous, and is excluded by the uniqueness checking circuit from Figure 7.15. The

classical algorithm has no such difficulty as it can simply search through only the set of valid

encodings, and is not forced to search through a space of all possible binary strings of a

given length, as Grover’s algorithm is. The fact that the quantum algorithm still outperforms

the classical algorithm, with a lower run time complexity, shows that this disadvantage is

outweighed by the quadratic speedup in searching obtained from using Grover’s algorithm.

7.6 Conclusion

We presented a quantum algorithm for finding an exact solution to the problem of encoding a

finite state machine with the lowest cost possible. Specifically, our algorithm finds an optimal

encoding for any FSM with numbers of inputs and states that are powers of two, under the

assumptions that the number of state and input variables must be the smallest possible

and that the cost of an encoding is given by the total number of variables on which the

encoded transition functions resulting from that encoding depend. Our algorithm contains

the following notable features:

1. It uses a quantum computer with Grover’s algorithm as a subroutine to perform ex-

haustive searches with lower time complexity than that which is achievable using a

classical computer alone, thus making those exhaustive searches more practical. Little
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to no published work exists on the subject of applying Grover’s algorithm to directly

solve a practically useful problem, and the present work is the first to apply Grover’s

algorithm to the problem of finding optimal encodings, based on the simple metric of

dependencies for completely specified finite state machines where both the number of

states and the number of input values are a power of 2.

2. It simultaneously optimizes both state and input encodings for an FSM. Currently,

[83] is the only other published method that finds exact minimum solutions; however,

[83] only solves the problem of state, and not input, encoding. Additionally, the

method presented in [83] is specialized for FSMs implemented using PLAs because it

minimizes the total number of PLA product terms. In comparison, we use the cruder

but more generally applicable cost metric of the total number of variables on which a

function depends.

3. It uses Grover’s algorithm to solve an optimization, rather than satisfaction, problem. It

achieves this by solving a sequence of satisfaction problems using Grover’s algorithm;

each such satisfaction problem is of the form “find an encoding with cost at most 𝑟”

where 𝑟 is a threshold that is varied. By repeatedly executing Grover’s algorithm for

different thresholds, where the threshold is varied according to an appropriate strategy

(e.g., a binary search strategy), the algorithm eventually finds the exact minimum

possible cost and an encoding with that cost.

4. We introduced the concept of using a quantum counter in tandem with a threshold

circuit as part of a quantum oracle. Such oracles check whether the value of a certain

function (in this case, our cost function) lies below a given threshold and are exactly

what is needed to solve an optimization problem using the procedure described in
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Section 7.2. The use of quantum counters and threshold circuits in quantum oracles

is not limited to solving the FSM encoding problem. It can be applied to many other

optimization problems such as MAXSAT, in which the objective is to satisfy as many

terms of a Boolean expression as possible.

We compared the run time complexity of the proposed quantum algorithm against that of

the analogous exhaustive search-based classical algorithm. This analysis does not tell us the

absolute run times of either algorithm, as calculating such would require much more detailed

information regarding the precise specifications of the quantum and classical computers

being used. Nevertheless, the comparison of run time complexities provides strong evidence

that the quantum algorithm can significantly outperform the classical algorithm for FSMs

of reasonable size that might be encountered in practice.

In addition, our work may serve as the basis for further investigation in a number of

different directions. We leave these possibilities open to future exploration. Among them,

the most promising include:

Incompletely specified transition functions—a significant limitation of our method is

that it requires all encoded transition functions to be completely specified, which means that

it is only applicable to FSMs with a number of states that is a power of two. Extending our

method for encoded transition functions that are incompletely specified would allow it to

apply to all FSMs.

Output encodings—in a realistic digital logic design scenario, the outputs of a state

machine of course cannot be ignored. We believe that the methods presented here can,

without too much difficulty, be extended to the problem of encoding outputs of FSMs as

well. Such an extension would represent the first quantum algorithm to solve the FSM

encoding problem simultaneously for states, inputs, and outputs.
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A more detailed cost model—we used a simple cost model which only takes into

account the number of dependencies of each encoded transition function on state and input

variables. While this simple model possesses the advantage of not being closely tied to

a single digital logic implementation technology, it is still clearly desirable to extend our

method to more realistic cost models that take into account additional factors.

Comparison of threshold search strategies—one of the key elements of our method

is the execution of Grover’s algorithm multiple times with a sequence of quantum oracles

generated for different thresholds as described in 7.2. We did not attempt to compare different

strategies for varying the threshold. Such a comparison could significantly improve our

algorithm, because the selected strategy affects the expected number of Grover runs needed

to find the minimum possible threshold, which in turn affects the run time of our entire

algorithm. An analysis of threshold search strategies would also be applicable to problems

other than FSM encoding (see also the following paragraph).

Application to other problems—as mentioned before, the principle of solving an

optimization problem by running Grover’s algorithm multiple times using a sequence of

quantum oracles can be applied to other problems. One such problem, for example, is

MAXSAT, where the objective is to maximize the number of simultaneously satisfied clauses

in a Boolean formula expressed in conjunctive normal form. Further investigation into this

and other such problems would greatly increase the generality of the method presented

here.
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Chapter 8

A quantum algorithm for state-space path planning problems

Chapter 7 demonstrated the detailed design of a quantum oracle to be used with Grover’s

algorithm to solve a problem of practical interest, namely the problem of finding optimal

encodings for finite state machines. In this chapter, I present a strategy or approach for the

design of quantum oracles targeted at another class of problems with practical applications,

which I call state-space path planning problems. These types of problems can be informally

summarized as involving a system with a number of states, where the objective is to find

one’s way to a desired ending state from a specified starting state while only making certain

allowed moves from state to state.

In Section 8.1, I first introduce the concept of a state-space path planning problem in

more detail. I introduce two examples of such problems, which will be used to demonstrate

aspects of the general oracle-designing strategy. The first such problem is to solve a tile-

or block-sliding puzzle commonly known as the “8-puzzle” or “15-puzzle”. In this puzzle,

the player is presented with a 3 × 3 or 4 × 4 square grid containing tiles or blocks labeled

from 1 to 8 or 1 to 15, depending on the size of the grid, with one empty space. The second

problem I consider is a labyrinth-solving problem where the player must find a path between

two designated locations. This problem may be complicated by the addition of obstacles

such as a closed door that the player cannot pass unless they first activate a switch that opens
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the door, located elsewhere in the labyrinth.

In Section 8.2, I first give a high-level overview of the structure of the quantum oracle

that will be used with Grover’s algorithm to solve state-space path planning problems.

Specifically, I use a type of oracle based on a quantum state machine, which simulates a

sequence of moves and checks if the desired ending state has been reached after those moves.

This quantum state machine is based on a single subcircuit, the next-state circuit, which

is simply repeated as many times as necessary to simulate a desired number of moves. In

Sections 8.3 and 8.4, I then consider the design of quantum oracles in more detail for each

of the two problems described above.

Finally, in Section 8.5, using the concepts and principles introduced in the previous

examples, I define a general approach to designing a quantum oracle for any state-space

path planning problem that meets a few requirements. Several problems with applications

in robotics and machine learning are seen to meet these requirements and can therefore be

solved using this approach.

8.1 State-space path planning problems

A state-space path planning problem conforms to the following description:

• One has a set of states together with a set of moves, which describe the allowed

transitions between these states, and the objective is to reach a desired ending state

from a specified starting state in as few moves as possible.

• The moves should have some degree of uniformity. Uniformity in this context is

defined as having a single set of moves that remains the same regardless of the current

state. In other words, the available moves should appear the same from state to state.

313



Some exceptions are permitted: certain moves may be prohibited for certain states

only, so that for those states, the available moves are only a subset of the normal set

of moves.

• The function that maps the current state and chosen move to the next state should be

reversible. Knowledge of the current state and the previous move that was made to

reach the current state should be sufficient to determine the previous state. Certain

exceptions, discussed in Section 8.4.2, are permitted to this requirement as well.

This description is intentionally left slightly vague. In particular, the uniformity require-

ment is subject to interpretation as to the precise definition of moves “appearing the same”.

This is because the initial step of formulating a problem of interest in a manner that follows

the above description requires the ingenuity of a human designer and cannot be done in a

strictly formulaic way. It is ultimately only important that a problem has been formulated

in a way that makes it clear how the approach described in this chapter can be applied.

The following sections will provide context and motivation for the uniformity requirement

and will also give an intuitive idea of what is needed to conform to this requirement. In

Section 8.5, assisted by the examples presented in Sections 8.3 and 8.4, I give a more precise

description of the types of problems that can be solved using the concepts introduced by

those examples.

8.1.1 Example: the 8-puzzle and 15-puzzle

Figure 8.1 depicts a well-known puzzle involving tiles or blocks that can slide within a

square grid. In theory, the square grid may be of any size, but I will consider the 3 × 3 and

4 × 4 variants, which are the most well known. The tiles are numbered sequentially starting

from 1 and there is always one less of them than the number of squares in the grid, therefore
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leaving one empty space. The objective of the puzzle is to slide the tiles to reach the “home

position” depicted in either Figure 8.1a (for the 3 × 3 variant) or Figure 8.1b (for the 4 × 4

variant), where the tiles are in sequential order from left to right and top to bottom with the

empty space in the lower right corner. The problem of finding the shortest solution to the

𝑛 × 𝑛 version of this puzzle is known to be NP-hard [87, 88], and it has therefore been used

as a test case for heuristic search algorithms [89].
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1

8

5

2
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3

(a) 3 × 3 variant (8-puzzle).
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11

7

3

12

8

4

(b) 4 × 4 variant (15-puzzle).

Figure 8.1: Examples of the (𝑛2 − 1)-puzzle.

Both the 3×3 and 4×4 variants of the puzzle can be formulated in terms of the description

given at the start of Section 8.1. The set of states consists of all possible arrangements of

tiles within the grid. This is equivalent to the set of all permutations of 9 or 16 objects for

the 3 × 3 and 4 × 4 variants, respectively. For instance, any possible position of the 3 × 3

puzzle can be described by a permutation of the integers 0 through 8, where 1 through 8

represent their respective tiles and 0 represents the empty space.

For any state of either puzzle, there are up to four possible moves, because one can

choose to slide any of the four tiles adjacent to the empty space into that space. This provides

an example of uniformity in possible moves: regardless of where the empty space is currently

located, and how the tiles are currently arranged, these four moves are the only ones that

are ever possible. However, in some positions, only two or three moves are possible. If the
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empty space is currently at an edge or in a corner, then there is no tile that can move into

the empty space from the direction or directions in which it is adjacent to the boundary. For

instance, if the empty space is at the right edge, no tile is available on the right, so only three

moves are possible. This restriction on available moves is an example of an exception to

uniformity: some of the four usually-possible moves are prohibited in certain states.

Finally, we may note that this formulation of the puzzle in terms of states and moves

also satisfies the reversibility condition stated at the start of Section 8.1. Given the current

state of the puzzle and the most recent move, it is easy to reconstruct the state of the puzzle

prior to that move by simply undoing it. For instance, if the most recent move was to slide

the tile above the empty space into that space, then this move is undone by sliding that same

tile (which is now below the empty space) back up into its previous position.

8.1.2 Example: labyrinth with a closed door

The second example of a state-space planning problem that I consider in this chapter is that

of solving the labyrinth depicted in Figure 8.2. The objective is to navigate from the starting

point, labeled B1 in Figure 8.2, to the ending point, labeled E. The solid lines represent walls

while the dashed line is a door that is initially closed, but may be opened by means of a

switch located at the position labeled S. Once the switch has been activated, the door will

remain open indefinitely and can freely be passed through.

To formulate the labyrinth as a state-space path planning problem, we define a state to

consist of two components: the current position in the labyrinth and whether or not the door

has been opened. In order to keep the problem simple for demonstrative purposes, position

can be discretized to a 4× 4 grid so that there are 16 possible positions. A position may then
1B stands for “begin” because S has been used for “switch”.
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B

E

S

Figure 8.2: A labyrinth that must be solved by opening a closed door with a switch.

be defined by an 𝑥- and 𝑦-coordinate, each being an integer ranging from 0 to 3, as shown

in Figure 8.3.

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

Figure 8.3: A coordinate system for the labyrinth from Figure 8.2.

With position being discretized, the possible moves then include moving one square in

any of the four cardinal directions. In addition, there is a fifth move, which is to activate

the switch and thus open the door. As with the 8-puzzle/15-puzzle, not all of the moves are

available if one’s current position is adjacent to a wall. In fact, in the particular labyrinth

considered here, every square is adjacent to at least one wall, so there is no state in which it

is possible to move in all four directions. The number of available directions may be as few

as one if the current position is surrounded by three walls. The move of activating the switch

is also only available under specific circumstances; namely, when one’s current position is

at the switch.
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If we consider only movement moves (excluding the move of activating the switch), then

the labyrinth problem satisfies the reversibility condition perfectly. Given a current position

and the most recent move, that move can simply be undone to reconstruct the previous

position. However, the switch-activating move is not reversible because the door is defined

to remain open indefinitely once the switch has been activated. In other words, additional

activations of the switch beyond the first have no effect. If the current state is position (3, 0)

(the location of the switch) and door open, and the most recent move was to activate the

switch, we cannot determine whether the door was closed or open in the previous state,

because this information does not tell us whether the switch was already activated earlier. If

the switch was already activated earlier, then the door must be open in the previous state. If

the switch was not activated earlier, then the activation in the most recent move was the first

one and therefore the door must be closed in the previous state. This type of irreversible

move receives special treatment when designing a quantum oracle to solve the problem using

Grover’s algorithm, as will be described in Section 8.4.2.

8.2 Outline of oracle design for state-space path planning problems

An outline of the circuit structure used to create quantum oracles for state-space path planning

problems is shown in Figure 8.4. This type of oracle makes use of two subcircuits: a next-

state circuit, labeled “NS”, and an ending-state-checking circuit, labeled “= E”. The oracle

operates as a quantum state machine that computes the states visited by a sequence of moves,

and uses the ending-state-checking circuit to determine whether the desired ending state has

been reached. Specifically, one first chooses an encoding scheme for the states and moves of

the problem to be solved. The inputs to the oracle—that is, the qubits whose possible states

will be searched by Grover’s algorithm—then represent a sequence of moves. These are
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the groups of qubits labeled “Move 1” through “Move 𝑁” in Figure 8.4; each such group

represents a single move according to the chosen encoding scheme.

NS NS NS = E NS−1NS−1NS−1

Move 1 {

Move 2 {

Move N {

State

⎧
⎪
⎨
⎪
⎩

Decision qubit

Figure 8.4: The basic circuit structure of quantum oracles for state-space path planning problems.

Given a sequence of moves, the oracle computes the states visited by that sequence of

moves and determines whether the desired final state has been reached. It does this by using

another group of qubits, labeled “State” in Figure 8.4, to represent and track the current

state. These state-tracking qubits are initialized to values that represent the initial state of the

problem, again according to the chosen encoding scheme. Each next-state circuit is identical,

and a single such circuit is designed to take a current state together with a current move

and compute the next state. In this way, the sequence of next-state circuits in Figure 8.4

computes the sequence of states visited by the specified moves. The next-state circuits are

drawn using a special notation where the qubits representing the move look like control

qubits, which however have separate connections to the “NS” block rather than a single
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connection as in a Toffoli or other multiply-controlled gate. This is because the next-state

circuit does not function as a controlled gate, with a single target gate that is either active

or inactive. Instead, the circuit may perform multiple different actions depending on the

current move, since each possible move may result in a different next state.

Following the sequence of next-state circuits, the state-tracking qubits contain a rep-

resentation of the final state reached by the sequence of moves given to the oracle. The

ending-state-checking circuit is designed to invert the oracle’s decision qubit, indicating a

correct solution, if and only if the desired ending state has been reached. Therefore, when

used with Grover’s algorithm, the oracle will find a move-sequence that successfully reaches

the desired ending state, if such a sequence exists.

From the point of view of Grover’s algorithm, the state-tracking qubits are simply

ancillary or work qubits used by the oracle, so the oracle must ultimately restore them to

their original state. The oracle does this by using a mirror circuit, which consists of the

inverses of the next-state circuits applied in reverse order.

It is important to observe that an oracle of the type shown in Figure 8.4 does not directly

solve a state-space path planning problem. Instead, when used with Grover’s algorithm, the

oracle only solves the more limited problem “find a path from the starting state to the ending

state in 𝑁 moves, if one exists”. Grover’s algorithm must then be executed multiple times,

adjusting the value of 𝑁 and creating a new oracle each time as described in Chapter 7,

Section 7.2. The smallest value of 𝑁 for which Grover’s algorithm is able to find a path then

gives the overall solution to the state-space path planning problem.
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8.3 Design of quantum oracles for the 8- and 15-puzzles

8.3.1 Encoding scheme for states and moves

As discussed in Section 8.1.1, the possible states of the puzzle can be represented by permu-

tations of the integers from 0 through 8 (for the 3× 3 version) or 0 through 15 (for the 4× 4

version). Such a permutation can in turn be represented with 9 or 16 groups of four qubits

each, where each group of qubits is assigned to one of the cells in the grid and carries the

base-two representation of the number of the tile in that cell. For instance, if the group of

qubits assigned to the upper-left corner has values 0011, this indicates that tile 3 is currently

in that corner. A value of 0 (base-two representation 0000) indicates the empty space. Each

group consists of four qubits because that is the minimum number needed to represent all

integers from 0 through 8 or 0 through 15. This encoding scheme can be extended to larger

puzzles by using more qubits per group: a 5 × 5 puzzle would require 25 groups of five

qubits each, five being the minimum number needed to represent all integers from 0 through

24. For future reference, I will refer to these qubits collectively as the permutation qubits.

Each individual group of four qubits will be called a tile register, being a register of qubits

that encodes the identity of the tile located at a particular cell.

In addition to the permutation qubits, an additional set of qubits is used to track the

current position of the empty space. For this purpose we use the same coordinate system

that was introduced for the labyrinth problem in Figure 8.3; in the 3×3 case, both the 𝑥- and

𝑦-coordinates have a maximum value of 2. Four qubits are then sufficient to represent the

position of the empty space: one pair representing the 𝑥-coordinate and one pair representing

the 𝑦-coordinate. I will refer to these qubits as the position qubits. The information carried by

the position qubits is redundant because the state of the puzzle is already entirely determined
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Table 8.1: Encoding of moves for the 8-puzzle/15-puzzle.

Move Action
𝑚𝑖,1𝑚𝑖,0

Left 0 0 Decrement 𝑥-coordinate by 1
Right 0 1 Increment 𝑥-coordinate by 1
Up 1 0 Decrement 𝑦-coordinate by 1
Down 1 1 Increment 𝑦-coordinate by 1

Encoding

by the permutation qubits, and in particular, the position of the empty space is determined

since it is the onewhose corresponding tile register has a value of 0000. However, the position

qubits assist in the operation of the next-state circuit, as detailed in Section 8.3.2, because

they allow for manipulation of the permutation qubits using a multiplexing/demultiplexing

circuit design, which simulates a move of the puzzle where one tile is shifted.

The encoding of moves is substantially simpler since there are only four possible moves.

Table 8.1 shows an encoding of the possible moves using two qubits, denoted 𝑚𝑖,1 and 𝑚𝑖,0.

The subscript 𝑖 indicates that the two qubits encode the 𝑖-th move, and it is included to

emphasize that every move is encoded in an identical fashion with its own pair of qubits. In

other words, for an 𝑁-move oracle, the encoding of the whole sequence of 𝑁 moves consists

of 2𝑁 qubits, labeled 𝑚1,1, 𝑚1,0, 𝑚2,1, 𝑚2,0, 𝑚3,1, etc. up to 𝑚𝑁,0. The entries listed under

the “Move” column of Table 8.1 represent the directions in which the empty space moves;

the tile sliding into the position of the empty space then moves in the opposite direction. For

instance, from the starting configuration of the 3 × 3 puzzle shown in Figure 8.1a, if tile 8

slides rightwards into the empty space, then the empty space moves leftwards to the original

location of tile 8. In the scheme specified by Table 8.1, this move would be considered a

leftwards move and would therefore be encoded as 00.
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8.3.2 Design of the next-state circuit

Based on the encoding scheme described in Section 8.3.1, we can see that the next-state

circuit must accomplish two tasks. First, it must simulate the movement of a tile by swapping

the contents of two tile registers: the one corresponding to the current location of the empty

space and the one corresponding to the tile being moved. Second, the next-state circuit must

also update the position of the empty space. We consider this second task first because it is

simpler.

Since the empty space always moves to an adjacent cell with each move, exactly one of its

two coordinates must change by either +1 or −1 in a single move. For instance, a movement

of the empty space to the left is represented by decrementing its 𝑥-coordinate by 1. The

“Action” column of Table 8.1 shows the action performed on the position qubits for all four

possible moves. Based on this information, we can create the circuit shown in Figure 8.5a,

which takes a move and performs the appropriate action on the position qubits. The position

qubits are 𝑥1, 𝑥0, 𝑦1, and 𝑦0, where 𝑥1𝑥0 and 𝑦1𝑦0 are the base-two representations of

the 𝑥- and 𝑦-coordinates, respectively. The circuit shown in Figure 8.5a uses controlled

decrementers and incrementers to implement the actions specified in Table 8.1 in a case-

by-case manner. For example, the first decrementer in Figure 8.5a acts on the 𝑥-coordinate

and is active when both move qubits are 0, so it handles the case given by the first row of

Table 8.1.

Using the implementations of a two-qubit decrementer and incrementer shown in Fig-

ure 8.5b, we can expand the circuit from Figure 8.5a in terms of CNOT and Toffoli gates,

producing the circuit shown in Figure 8.5c. This circuit can in turn be simplified: the pairs

of adjacent 3-control Toffoli gates share the same set of control qubits and differ only in

the control polarity of a single qubit, so they collapse into 2-control Toffoli gates, giving
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the circuit shown in Figure 8.5d. This is the next-position circuit, which computes the next

position of the empty space given its current position and the current move.

It should be noted that the circuit shown in Figure 8.5d is applicable to both the 3 × 3

and 4 × 4 variants of the puzzle. This follows from the fact that Table 8.1 applies to both

variants, since the effect of each possible move on the 𝑥- and 𝑦-coordinates (and therefore

on the position qubits) does not depend on the puzzle size.

𝑚0

𝑚1

𝑥0

𝑥1

𝑦0

𝑦1

−1 +1

−1 +1

(a) Outline of the circuit using incrementers
and decrementers.

−1 =

+1 =

(b) Implementation of an incrementer
and decrementer.

𝑚0

𝑚1

𝑥0

𝑥1

𝑦0

𝑦1

(c) The circuit expanded in terms of Toffoli gates.

𝑚𝑖,0

𝑚𝑖,1

𝑥0

𝑥1

𝑦0

𝑦1

(d) The final circuit after simplification.

Figure 8.5: Design of a circuit for updating 𝑥- and 𝑦-coordinates according to a provided move.

The next-position circuit from Figure 8.5d is only one component of the next-state circuit,

since the next-state circuit must also perform the first task stated at the beginning of this
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section. Namely, the remaining part of the next-state circuit should update the tile registers

to reflect the move that is being made. Figure 8.6 shows an example of how this operation

on the tile registers is conceptually performed. In this figure, the ad hoc notation of two

empty blocks connected by a double-ended arrow is used to represent a swap between two

registers. Assume for the sake of argument that the tile to be moved is in cell (0, 0) and

that cell (0, 1) is empty. Then a swap could simply be performed on the two corresponding

tile registers to compute the next state. However, for reasons that will become clear in a

moment, the circuit design presented here instead performs the swap in two steps using an

ancillary register, which is simply a group of four ancillary qubits. The first tile register,

corresponding to the tile to be moved, is swapped with the ancillary register, and then the

ancillary register is swapped with the second tile register, corresponding to the empty cell.

Figure 8.6 shows the values of the relevant registers at each step, where 𝑥 is the number of

the tile being moved. We can see that 𝑥 moves to the register for cell (0, 1), formerly empty,

while the register it vacates, corresponding to cell (0, 0), becomes empty instead.

(0, 0)
4

(0, 1)
4

(2, 2)
4

Ancilla register (init. 0)
4

𝑥

0

0

0

𝑥

𝑥

0

Tile registers

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Figure 8.6: Representation of a move by swapping tile registers.

Figure 8.6 only represents a conceptual model of how the tile registers are updated

and cannot actually be used as a circuit. This is because the registers to be swapped will

325



depend on the move and on the location of the empty space. In Figure 8.6, the empty space

was assumed to be at the position (0, 1), but this will of course not always be the case.

The actual circuit for updating the tile registers therefore uses a multiplexer-demultiplexer

design to achieve a swap between the appropriate tile registers depending on the move, as

shown in Figure 8.7. In this figure, the multiplexer and demultiplexer are represented by

ad hoc notations similar to the notation used for the swap operations in Figure 8.6. The

multiplexer selects one of the tile registers and transfers it to the ancillary register at the

bottom of the circuit, this selection being controlled by the contents of the position qubits.

The demultiplexer is the inverse of the multiplexer, so it transfers the ancillary register

back to one of the tile registers, again depending on the contents of the position qubits, and

restores the ancillary register to its initial value of 0. “NP” and “NP−1” denote, respectively,

the next-position circuit from Figure 8.5d and its inverse. An inverse next-position circuit

may be obtained by simply reversing the order of gates in Figure 8.5d.

𝑚𝑖,0

𝑚𝑖,1

4

4

4

4

4

NP

M
U
X

NP−1

D
EM

U
X

NPPosition qubits

0

Tile registers

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Figure 8.7: Multiplexer-demultiplexer design of the next-state circuit.
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The circuit from Figure 8.7 operates in the following manner. Given a move and the

current state of the puzzle, consisting of the position qubits together with the tile registers,

a next-position circuit is first used to compute the next position of the empty space. This

position is the same as the current position of the tile that is being moved. Then, the

multiplexer transfers the corresponding tile register to the ancillary register, corresponding

to the first swap operation in Figure 8.6. An inverse next-position circuit restores the position

qubits to their original values in preparation for the demultiplexer, which then transfers the

ancillary register to the tile register that is currently empty, corresponding to the second

swap in Figure 8.6. Finally, a second next-position circuit is used to once again update

the position qubits to their new values. From this circuit design, it is apparent why two

swaps were used in Figure 8.6 instead of a single one: the multiplexer-demultiplexer design

requires an ancillary register to act as temporary storage so that the value selected by the

multiplexer can be fed into the demultiplexer.

𝑥 𝑦

0 𝑧

𝑐

(a) A controlled “half swap”.

𝑥0

𝑥1

𝑦0

𝑦1

0

MUX
inputs

⎧⎪⎪
⎨
⎪⎪
⎩

(b) A single-qubit multiplexer using controlled half swaps.

Figure 8.8: Implementation of a quantum multiplexer.
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It remains to consider how the multiplexer and demultiplexer are implemented. Fig-

ure 8.8a shows a circuit that I will refer to as a controlled “half swap”. Assuming that the

bottommost qubit in this figure is initialized to 0, the circuit swaps the states of the bottom

two qubits when the control input 𝑐 is 1; otherwise, the qubits are unaffected. In other words,

the behavior of the controlled half swap is described by the following equations:

𝑦 = {
𝑥 if 𝑐 = 0,
0 if 𝑐 = 1

and 𝑧 = {
0 if 𝑐 = 0,
𝑥 if 𝑐 = 1,

(8.1)

where 𝑐, 𝑥, 𝑦, and 𝑧 are as labeled in Figure 8.8a. This behavior is easily verified by simply

checking both cases in (8.1). When 𝑐 = 0, the Toffoli gate in Figure 8.8a is inactive, so the

bottommost qubit retains its value of 0, causing the following CNOT gate to be inactive as

well. When 𝑐 = 1, the Toffoli gate produces a value of 𝑐 ∧ 𝑥 = 𝑥 on the bottommost qubit,

so that the bottom two qubits are both set to 𝑥. The following CNOT gate then produces

outputs of 𝑦 = 0 and 𝑧 = 𝑥. The name “half swap” reflects the fact that the circuit does not

swap two arbitrary values, but requires the bottommost qubit to be initialized to 0 in order

to function as intended.

Figure 8.8b shows amultiplexer implemented using controlled half swaps. The controlled

half swaps have been extended with additional control qubits. Each controlled half swap

uses a different combination of control polarities, with the result that exactly one of them

is active for each possible combination of values of 𝑥1, 𝑥0, 𝑦1, and 𝑦0. For instance, if

𝑥1 = 𝑥0 = 𝑦1 = 0 and 𝑦0 = 1, then the second controlled half swap is active and it swaps the

corresponding input onto the ancillary qubit. In this way, the multiplexer selects one of the

qubits labeled “MUX inputs” in Figure 8.8b and transfers its value onto the ancillary qubit,

with the selection being controlled by 𝑥1, 𝑥0, 𝑦1, and 𝑦0. A demultiplexer is the inverse of a

multiplexer, so it can be implemented by the circuit from Figure 8.8b with the gates applied
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in reverse order.

The multiplexer implementation from Figure 8.8b only selects a single qubit at a time.

In order to create a multiplexer that operates on registers consisting of multiple qubits, as

used in Figure 8.7, multiple copies of the circuit from Figure 8.8b can be used, with each

copy operating on a specific qubit from each register. In particular, four copies of the circuit

from Figure 8.8b are sufficient to implement the multiplexer seen in Figure 8.7. In the first

copy, the qubits labeled “MUX inputs” in Figure 8.8b consist of the first qubit from each

tile register in Figure 8.7, and the ancillary qubit of Figure 8.8b is the first qubit in the

ancillary register of Figure 8.7. In the second copy, the “MUX inputs” in Figure 8.8b consist

of the second qubit from each tile register, and so on. The demultiplexer of Figure 8.7 is

implemented analogously.

For the 3× 3 puzzle, the multiplexer circuit from Figure 8.8b may be simplified slightly:

since both coordinates are limited to values from 0 through 2, the controlled half swaps

corresponding to an 𝑥- or 𝑦-coordinate of 3 can be omitted. This means that only 9 controlled

half swaps are needed, instead of all 16 possible combinations of control polarities that are

used for the 4 × 4 puzzle. Figure 8.7 represents a complete next-state circuit for either

the 3 × 3 or 4 × 4 puzzle when the multiplexer is implemented as just described and the

next-position circuit is implemented as shown in Figure 8.5.

8.3.3 Use of move-restriction circuits in the oracle

The quantum oracle design described in Section 8.2 is sufficient to solve any state-space path

planning problem that strictly conforms to the description given at the start of Section 8.1,

without any of the mentioned exceptions. However, both of the example problems considered

in this chapter do have such exceptions: in both problems, not all moves are available for all
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states, as previously discussed in Sections 8.1.1 and 8.1.2. In order to handle this scenario,

I introduce another component to the oracle design in addition to the next-state circuit: a

move-restriction circuit. A move-restriction circuit is one that takes as input the current state

and current move, as the next-state circuit does, but instead of computing the next state, it

determines whether the move is legal for the particular current state.

If one imagines programming a classical computer to compute the states visited by a

given sequence of moves, as the oracle does, it is fairly easy to detect invalid moves. One

can simply instruct the classical computer to check the validity of each move, and terminate

the simulation immediately if an invalid move is found. This approach cannot be used for the

quantum oracle—neither the current state nor the current move can be checked during the

execution of the oracle, as they would both be in superposition states when running Grover’s

algorithm and attempting to measure their values would collapse the superpositions and

cause the entire algorithm to fail. One can then instead imagine programming the classical

computer with a variable that acts as a flag for invalid moves, where this variable is set to

an initial value of 0, set to 1 when an invalid move is detected, and checked after all moves

have been simulated. This approach is better suited to the quantum setting, because it does

not require mid-computation measurement of the current position or move. However, it still

has one problem: the process of setting the flag to 1 upon detection of an invalid move is

not reversible. In particular, if a sequence of moves contains more than one invalid move,

then it is not possible to reverse any step where an invalid move is detected, because there is

no way of knowing whether the invalid-move flag should be set back to 0 or remain with a

value of 1, which it would if the current move is not the first invalid move in the sequence.

In order to solve these problems with invalid move detection in the oracle, an invalid-

move counter is introduced. This invalid-move counter performs the same function as
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the “invalid-move flag” described in the previous paragraph, but it avoids the problem of

irreversibility by being a counter, as its name suggests, rather than just a single-bit flag. The

invalid-move counter uses an additional group of ancillary qubits, the invalid-move counter

register, added to the quantum oracle and initialized to a value of 0. At every step, if an

invalid move is detected, the oracle increments the invalid-move counter register by 1, and

after simulation of all moves, the oracle only outputs 1 if, in addition to the desired ending

state being reached, the register’s value remains at 0. In the inverse stage of the oracle, when

the state-tracking qubits are being returned to their original states, the invalid-move counter

register is then decremented once each time an invalid move is detected. This guarantees

that the invalid-move counter register is reset to its initial value of 0 following operation of

the quantum oracle. The register then performs the same role as the hypothetical invalid-

move flag discussed earlier, but is compatible with the reversibility requirement for quantum

circuits.

To see this concept in practice, consider how a move-restriction circuit may be designed

for the 3 × 3 puzzle. The criteria for determining whether a move is legal can be stated

simply: any move that would cause the 𝑥- or 𝑦-coordinate of the empty space to become

negative or exceed 2 is disallowed, while all other moves are legal. This means that the

simplest way to check the legality of a move is to check whether at least one of the coordinates

has value 3 after the move is made. By a fortunate coincidence, this check handles both

underflow and overflow of the coordinates: if a coordinate has value 2 and the next move

has the effect of incrementing this coordinate, then it becomes 3, while if a coordinate has

value 0 and the next move decrements this coordinate, then the value wraps around and also

becomes 3 (since 3 has the base-two representation 11). Therefore, the move-restriction

circuit should be inserted into the oracle after each next-state circuit, and it should increment
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the invalid-move counter register when either 𝑥1 = 𝑥0 = 1 or 𝑦1 = 𝑦0 = 1. Figure 8.9 shows

a circuit that accomplishes this last task.

𝑥1

𝑥0

𝑦1

𝑦0

0

0

1

Invalid-move
counter register +1

Figure 8.9: A move-restriction circuit for the 3𝑥3 puzzle.

There is no requirement that the invalid-move counter register must be incremented

exactly once upon detection of an invalid move. The move-restriction circuit may also be

designed to perform more than one increment for some invalid moves. This can be useful

to avoid the need to compute the logical OR of several conditions, all of which render a

move invalid. For instance, the circuit from Figure 8.9 uses two ancillary qubits to hold

intermediate values: one is used for the result of checking the condition 𝑥1 = 𝑥0 = 1, and the

other is used for the result of checking 𝑦1 = 𝑦0 = 1. A Toffoli gate is then used to compute

the logical OR of these two conditions. These two ancillary qubits can be eliminated if the

invalid-move counter register is allowed to be incremented twice: the circuit can simply

increment the register once if 𝑥1 = 𝑥0 = 1 and increment it again if 𝑦1 = 𝑦0 = 1. Since any

nonzero value of the invalid-move counter register signals an invalid move, the oracle will

still correctly recognize a move as invalid if the register is incremented twice. Figure 8.10
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shows a move-restriction circuit using two incrementers based on this concept.

𝑥1

𝑥0

𝑦1

𝑦0

0

Invalid-move
counter register +1 +1

Figure 8.10: An alternative move-restriction circuit using two incrementers to eliminate two ancillary
qubits.

As a further enhancement to the invalid-move counter concept, the DIPS-based quantum

counter described in Chapter 3, Section 3.4 can be used in place of the incrementer circuits

seen in Figures 8.9 and 8.10. Recall that the DIPS-based counter does not operate by

incrementing the counter register in discrete steps; rather, controlled root-of-NOT gates are

applied to the qubits of the counter register for every signal that is to be counted, and at the

end, another sequence of controlled root-of-NOT gates is used to extract the final count from

the counter register. Figure 8.11 shows the move-restriction circuit adapted for a DIPS-based

counter. The aforementioned final stage of the counter that extracts the actual count is not

included because it is only applied when the oracle is generating its final output, after all

moves have been simulated.

So far we have only considered move-restriction circuits for the 3× 3 puzzle. The design

of a move-restriction circuit for the 4 × 4 puzzle is slightly different. In the 3 × 3 puzzle, as

previously observed, any invalid move will necessarily cause one of the coordinates of the

empty space to attain a value of 3, and the move-restriction circuits presented above rely on
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⎧
⎪
⎪

⎨
⎪
⎪
⎩

Counter
(𝑘 qubits)

Figure 8.11: The move-restriction circuit adapted for a DIPS-based counter.

this fact. The 4 × 4 puzzle lacks this property because both coordinates may validly attain

values from 0 through 3.

We may use the following reasoning to design a move-restriction circuit for the 4 × 4

puzzle. If the 𝑥-coordinate of the empty space is 3, then it cannot increase any further, so

a rightwards move is invalid. Similarly, if the 𝑥-coordinate is 0, then a leftwards move is

invalid, and the situation is analogous for the 𝑦-coordinate. All other moves are valid, since

the only invalid moves are those that would move the empty space in an out-of-bounds

direction. Referring to Table 8.1, we therefore determine that a move is invalid if and only if

(¬𝑚𝑖,1 ∧ ¬𝑚𝑖,0 ∧ ¬𝑥1 ∧ ¬𝑥0) ∨ (¬𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ 𝑥0)

∨ (𝑚𝑖,1 ∧ ¬𝑚𝑖,0 ∧ ¬𝑦1 ∧ ¬𝑦0) ∨ (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑦1 ∧ 𝑦0) = 1. (8.2)

This is a Boolean function of six variables, which can be realized in several different ways.
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The simplest method is to map the logical AND and OR operations of (8.2) directly to Toffoli

gates, although this requires four ancillary qubits, one for each of the four terms that are

OR-ed together. Another possibility is to use the DIPS-based realization method described

in Chapter 4 or any other method for realizing Boolean functions using quantum circuits.

Finally we can also map the terms of (8.2) to Toffoli gates but take advantage of the ability

to increment the invalid move counter register more than once, as was done in Figure 8.10,

which avoids the need for four ancillary qubits. If we suppose for demonstrative purposes

that the last option is used, then the resulting circuit is shown in Figure 8.12. This circuit

may also be adapted for a DIPS-based counter, analogously to Figures 8.11.

𝑚𝑖,1

𝑚𝑖,0

𝑥1

𝑥0

𝑦1

𝑦0

0

Invalid-move
counter register +1 +1 +1 +1

Figure 8.12: A move-restriction circuit for the 4 × 4 puzzle.

An important difference between the move-restriction circuit for the 3 × 3 and 4 × 4

puzzles is that in the 3× 3 case, the move-restriction circuit for a given move is placed after

the next-state circuit for that move, while in the 4 × 4 case, the move-restriction circuit is

placed before the next-state circuit. For other state-space path planning problems, the choice

335



of whether to place the move-restriction circuit before or after the next-state circuit will

depend on which option allows the circuit to be designed more easily, or which option results

in a more efficient circuit. Here, “more efficient” may mean that the circuit has a lower

quantum cost or that it uses fewer ancillary qubits, depending on the resources available in

the quantum computing system that is being used. It may even be the case that a combined

circuit that performs the functions of both the next-state and move-restriction circuits at

the same time gives superior results over designing the two circuits separately. Figure 8.13

illustrates the resulting structure of the quantum oracle when the move-restriction circuit

for a move is placed either after or before the next-state circuit for that same move. The

move restriction circuits other than the last one are represented by two blocks connected

by a line, both labeled “MR”, because they do not operate on a set of qubits that happen to

be contiguous in the circuit. For example, the first move-restriction circuit in Figure 8.13a

uses the qubits representing move 1 and the state-tracking qubits to determine whether the

first move is invalid, but does not use the qubits representing any of the other moves, so the

notation used in this figure visually shows that the circuit “skips over” the qubits for moves 2

through 𝑁. The mirror circuits are not shown, but they can easily be derived as they simply

consist of the same next-state and move-restriction circuits applied in reverse order.

In order to create a quantum oracle incorporating move-restriction circuits, wemust know

the number of qubits to be used for the invalid-move counter. The counter cannot be allowed

to overflow, because if it does, then its value will wrap around to 0, creating the illusion that

there were no invalid moves when in fact there were many. As previously discussed, the

move-restriction circuit may be designed to increment the invalid-move counter more than

once. If the move-restriction circuit increments the counter up to 𝑝 times, and the oracle

is to simulate 𝑁 moves, then the highest value the counter can reach is 𝑝𝑁. Since 𝑘 bits
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(a) Move-restriction circuit placed after the next-state circuit.

MR NS MR NS
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Move 1 {

Move 2 {

Move N {
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⎧⎪
⎨⎪
⎩

Decision qubit

Invalid-move
counter register

(b) Move-restriction circuit placed before the next-state circuit.

Figure 8.13: Possibilities for incorporating move-restriction circuits into the oracle design from
Figure 8.4.
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are sufficient to represent positive integers up to 2𝑘 − 1, it follows that the invalid-move

counter register must consist of ⌈log2(𝑝𝑁 + 1)⌉ qubits to ensure that it does not overflow.

This consideration shows that the use of multiple incrementers in Figures 8.10 and 8.12 to

eliminate ancillary qubits is not entirely “free”, since it increases the required size of the

counter register, whose constituent qubits are after all also ancillary qubits for the oracle.

Nevertheless, since the required counter register size only increases with the logarithm of the

number of incrementers per move-restriction circuit, this increase is far outweighed by the

number of ancillary qubits that can be saved by using those incrementers. For instance, the

use of four incrementers in Figure 8.12 eliminates four ancillary qubits that would otherwise

be needed to compute a logical OR of four terms, but only increases the size of the counter

register by two qubits (as compared to the register size that would be required if the move-

restriction circuit only used one incrementer). In a scenario where a logical OR of eight

terms is needed, the use of eight incrementers would eliminate eight ancillary qubits while

only increasing the size of the counter register by three qubits, and so on for higher numbers

of terms.

8.3.4 Ending-state-checking circuit

The desired solved state of the puzzle, as depicted in Figure 8.1, has the empty space in the

lower right-hand corner and all numbered tiles arranged sequentially in order. It is easy to

formulate the solved state as a set of conditions that must be checked for the state-tracking

qubits in the oracle. In particular, suppose we denote the position qubits by 𝑥1, 𝑥0, 𝑦1, and

𝑦0 as before; denote the qubits making up the 𝑖-th tile register as 𝑡𝑖,3𝑡𝑖,2𝑡𝑖,1𝑡𝑖,0, where the

registers are numbered starting from 1 and proceeding in order from left to right then top to

bottom; and denote the qubits making up the invalid-move counter register as 𝑐𝑖. Then the
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3 × 3 puzzle is solved when the following conditions are all met:

𝑥1 = 1 𝑥0 = 0 𝑦1 = 1 𝑦0 = 0 (8.3)

(𝑡𝑖,3𝑡𝑖,2𝑡𝑖,1𝑡𝑖,0)2 = 𝑖 for 1 ≤ 𝑖 ≤ 8 (8.4)

𝑡9,3 = 𝑡9,2 = 𝑡9,1 = 𝑡9,0 = 0 (8.5)

𝑐𝑖 = 0 for all 𝑖, (8.6)

where (𝑡𝑖,3𝑡𝑖,2𝑡𝑖,1𝑡𝑖,0)2 denotes the integer represented in base-two by 𝑡𝑖,3𝑡𝑖,2𝑡𝑖,1𝑡𝑖,0. We have

(8.3) because the coordinates of the lower-right corner are (2, 2) in the 3 × 3 puzzle, and an

𝑥-coordinate (resp. 𝑦-coordinate) of 2 is represented by 𝑥1𝑥0 = 10 (resp. 𝑦1𝑦0 = 10.) For

the 4 × 4 puzzle, the coordinates of the lower-right corner are instead (3, 3), so (8.3) must

be amended so that 𝑥0 = 𝑦0 = 1 instead.

Eq. (8.4) represents the requirement that the numbered tiles must be in sequential order.

Since the 𝑖-th tile register contains the base-two representation of the number of the tile in

the 𝑖-th position (again, counting from left to right and top to bottom), it must contain the

base-two representation of 𝑖 in the solved state of the puzzle. We have 1 ≤ 𝑖 ≤ 8 for the

3 × 3 puzzle since there are 8 tiles; for the 4 × 4 puzzle, the range of 𝑖 in (8.4) should be

amended to 1 ≤ 𝑖 ≤ 15. In a similar vein, (8.5) represents the requirement for the empty

space to be in the lower-right corner, since the empty space is represented by a tile register

with a value of 0. For the 4 × 4 puzzle, the lower-right corner corresponds to the 16th tile

register, so the first index of the 𝑡’s in (8.5) should instead be 16.

Finally, (8.6) will be satisfied when no invalid moves have been made. A solution to the

puzzle of course requires all moves to be valid. As described in Section 8.3.3, any non-zero

value of the invalid-move counter register indicates that at least one invalid move has been
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made, so we require that all qubits making up this register have a value of zero.

In practice, it is not necessary to check all of the above conditions. In particular, it is

enough to check that (8.4) and (8.6) are satisfied. This is because under normal operation,

when no invalid moves are made, the next-state circuit from Figure 8.7 only permutes the

contents of the tile registers, so if the first 8 (or 15 for the 4 × 4 puzzle) registers have the

correct values, then the last one must have the correct value as well. Similarly, the position

qubits represent information (the location of the empty space) that is already contained in the

tile registers, so they do not need to be checked either. If at least one invalid move is made,

the state can become “corrupted”—that is, the values of the position qubits are no longer

consistent with those of the tile registers, or the tile registers no longer represent a valid

permutation of the tiles—since the the next-state circuit is not designed to handle invalid

moves. However, in this case, the move-restriction circuit will recognize the move as invalid

and increment the invalid-move counter, preventing (8.6) from being satisfied. Therefore,

the ending state-checking circuit can be designed to only check (8.4) and (8.6). Since these

conditions amount to checking that each qubit in some collection has a particular expected

value, it can be done using a single Toffoli gate, which is shown for the 3 × 3 puzzle in

Figure 8.14. The ending-state-checking circuit for the 4 × 4 puzzle is nearly identical, but

uses 15 tile registers.

8.3.5 The full oracle and extension to larger puzzle sizes

Complete quantum oracles for either the 3 × 3 or 4 × 4 puzzles can now be created by

inserting the next-state, move-restriction, and ending-state-checking circuits into one of the

templates from Figure 8.13. As discussed in Section 8.3.3, the move-restriction circuit for

the 3 × 3 puzzle is designed to be placed after the next-state circuit, so the template from
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Figure 8.14: Ending-state-checking circuit for the 3 × 3 puzzle.
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Figure 8.13a should be used in that case. For the 4× 4 puzzle, the move-restriction circuit is

designed to be placed before the next-state circuit, so the template from Figure 8.13b should

then be used.

Most of the circuits described in this section are easily scaled up to handle an (𝑛2 − 1)-

puzzle. Regardless of the size of the puzzle, there are always the same four possible moves,

so each move is always represented by two move qubits. For an 𝑛 × 𝑛 puzzle, the position

qubits must be able to handle coordinates of up to 𝑛−1, so log2 𝑛 qubits are required for each

coordinate, giving a total of 2 log2 𝑛 position qubits. The incrementers in the next-position

circuit are then accordingly scaled up as well. The number of tile registers for an 𝑛 × 𝑛

puzzle is 𝑛2, and each one of them must be able to represent the integers from 0 through

𝑛2 − 1. Each tile register must therefore have a size of log2(𝑛2) = 2 log2 𝑛 qubits. The

multiplexers used in the next-state circuit are then also easily scaled up to handle these larger

tile registers. As for the ending-state-checking circuit, it straightforward to extend eqs. (8.3)

through (8.6) to larger puzzle sizes as well, so the reasoning used in Section 8.3.4 serves to

create ending-state-checking circuits for these puzzles.

The one circuit whose scaling-up is not completely straightforward is the move-restriction

circuit, because different design approaches were used for the 3 × 3 and 4 × 4 versions of

this circuit. For an 𝑛 × 𝑛 puzzle, if 𝑛 is not a power of 2, then the design used for the 3 × 3

puzzle can be generalized: the circuit should be placed after the next-state circuit, and it

should check whether either the 𝑥- or 𝑦- coordinate is out of bounds, keeping in mind that

the decrementers used in the next-state circuit to update the position qubits will cause a

coordinate to wrap around if it is decremented when at 0. For instance, in a 5×5 puzzle, each

coordinate is represented by three position qubits, and the move-restriction circuit should

check whether either of the coordinates has attained a value of 5 or 7 (7 being the maximum
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integer representable by three bits, and therefore being the value that a coordinate will wrap

around to on underflow). If 𝑛 is one less than a power of 2, then the values attained by

overflowing and underflowing coordinates coincide, as they did for the 3 × 3 puzzle, which

simplifies the move-restriction circuit. For instance, in a 7 × 7 puzzle, the valid range for a

coordinate is 0 through 6, so on either overflow or underflow, a coordinate will attain the

value 7. The move-restriction circuit therefore only needs to check whether either coordinate

has a value of 7, just as the move-restriction circuit for the 3 × 3 puzzle checks whether

either coordinate has a value of 3.

If 𝑛, the size of the puzzle, is a power of two, then the entire range of representable

coordinates is valid, so the move-restriction circuit design for the 4 × 4 puzzle must be

used instead. Specifically, the move-restriction circuit should check, for each coordinate,

whether either one of the following is true: the coordinate has a value of 0 and the next move

would have the effect of decrementing it, or the coordinate has a value of 2𝑛 − 1 and the

next move would have the effect of incrementing it. This description can easily be converted

into a Boolean-algebraic expression, which can then be realized using any of the options

described in Section 8.3.3. In this case, the move-restriction circuit must be placed before

the next-state circuit, as in Figure 8.13b.

In sum, the oracle design described in this section can be scaled up for puzzles of any

size, and it can be described in terms of low-level gates by using a realization method for

Boolean functions together with the known scalable implementations for functional blocks

like incrementers and multiplexers.
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8.4 Design of a quantum oracle to solve the labyrinth problem

8.4.1 Encoding scheme for states and moves

A state in the labyrinth problem consists of a position together with the state of the door

(open or closed). Position may be encoded using the same method used for the 8- and

15-puzzles: the 𝑥- and 𝑦-coordinates are represented by two qubits each, for a total of four

position qubits. This scheme is easily extended to labyrinths of larger sizes, so three qubits

per coordinate is sufficient for an 8 × 8 labyrinth, four qubits per coordinate is sufficient

for 16 × 16, and so on. Since there are only two possible states of the door, it could be

represented by only a single qubit. However, for reasons that are discussed in Section 8.4.2,

the oracle design presented here will use multiple qubits to represent the state of the door,

where a nonzero value on any of these qubits indicates that the door is open.

Possible moves consist of a one-cell movement in any of the four cardinal directions,

together with a fifth move of activating the switch for the door. A minimum of three qubits

is therefore required to encode a single move. Following the same notational convention

used in Section 8.3.1, the three qubits are labeled 𝑚𝑖,2, 𝑚𝑖,1, and 𝑚𝑖,0. The moves are then

encoded by the following scheme: 𝑚𝑖,2 = 1 indicates that the current move is to activate the

switch, regardless of the values of 𝑚𝑖,1, and 𝑚𝑖,0, while if 𝑚𝑖,2 = 0, then 𝑚𝑖,1 and 𝑚𝑖,0 specify

a direction in the same manner as in Table 8.1. This encoding scheme is summarized by

Table 8.2, where dashes (–) indicate that the corresponding qubit may have any value.

8.4.2 Next-state circuit and handling of non-reversible moves

Since the movement moves (i.e., all moves except for activating the switch) are encoded

in the same manner as the moves for the 8- and 15-puzzles, the next-position circuit for
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Table 8.2: Encoding of moves for the labyrinth problem.

𝑚𝑖,2𝑚𝑖,1𝑚𝑖,0 Move

0 0 0 Left
0 0 1 Right
0 1 0 Up
0 1 1 Down
1 – – Activate switch

that problem, described in Section 8.3.2 and shown in Figure 8.5, can be reused. One

minor modification must be made, however. Since there is a third move qubit, 𝑚𝑖,2, and

𝑚𝑖,2 = 1 indicates activating the switch rather than a movement move, we must add 𝑚𝑖,2 as

a negative-polarity control qubit to every gate in the next-position circuit from Figure 8.5d.

This modification ensures that the position qubits are not subject to change if the move is to

activate the switch. Figure 8.15 shows the circuit with these additional controls added.

𝑥0

𝑥1

𝑦0

𝑦1

𝑚𝑖,0

𝑚𝑖,1

𝑚𝑖,2

Figure 8.15: Next-position circuit for the labyrinth, obtained by adding another control qubit to the
circuit from Figure 8.5d.

We are now faced with the question of how to design a circuit to update the state of

the door when the switch is activated. In Section 8.1.2, it was observed that the move of

activating the switch and opening the door constitutes a non-reversible state change. Since
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activating the switch more than once has no additional effect, the next-state function fails to

be reversible, because if the most recent move was to activate the switch, then one cannot

tell whether or not the door was already open prior to that move. This presents a problem

since all quantum circuits are reversible.

The same counter-based approach used in Section 8.3.3 to implement a move-restriction

system can also be used here. Specifically, we may allocate a register of qubits, the door-

open counter register, to track the state of the door, where a non-zero value of this register

indicates that the door is open. The next-state circuit should then be designed to increment

this counter every time the switch is activated. This mechanism allows a reversible next-state

circuit to simulate the desired non-reversible behavior where the door remains open when

the switch is activated multiple times.

One must be at the switch, which has coordinates (3, 3), in order to activate it. Therefore,

the circuit that increments the door-open counter register should check whether the 𝑥- and

𝑦-coordinates, which are part of the state register, both have values 11 (the base-two repre-

sentation of 3). Of course, even when at the coordinates (3, 3), the switch is only activated

if the current move is the switch-activation move. According to the encoding scheme given

in Section 8.4.1, this move is represented by setting the bit 𝑚𝑖,2 to 1. In sum, the bits 𝑥1, 𝑥0,

𝑦1, 𝑦0, and 𝑚𝑖,2 must all have values 1 in order for the current move to activate the switch.

This logic is implemented by a 5-control Toffoli gate, as shown in Figure 8.16.

A difference between the door-open counter and the invalid-move counter is that the

former cannot be implemented using a DIPS-based counter. A DIPS-based counter is not

based on incrementer circuits and does not allow the current value of the counter register

to be accessed partway through the counting process, and such access is required for the

door-open counter because the move-restriction circuit must be able to check whether the
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Figure 8.16: A circuit for updating the door-open counter register.

door is open, as detailed in the next section.

With the state of the door represented by the door-open counter, the complete state of

the labyrinth problem is then encoded by the combination of position qubits and door-open

counter. The complete next-state circuit consists of the circuits from Figures 8.15 and 8.16

concatenated in either order. The order of concatenation is unimportant because the two

circuits operate on independent parts of the state: the next-position circuit (Figure 8.15)

affects only the position qubits while the door-opening circuit (Figure 8.16) affects only the

door-open counter register.

8.4.3 Move-restriction circuit

Invalid moves for the labyrinth come in two types. The first type are moves that attempt to

move through a wall. These moves are always invalid, so they can be detected by checking

the combination of the current move and current position. For instance, if the position qubits

have values 𝑥1𝑥0𝑦1𝑦0 = 1001, then the current position is (2, 1), and if the move qubits are

𝑚𝑖,2𝑚𝑖,1𝑚𝑖,0 = 010, then the current move is to move upwards. Referring to Figure 8.3, we
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can see that this move is attempting to move through a wall, so it is invalid.

The second type of invalid move is one that attempts to move through the door when it

has not yet been opened. Unlike the first type of invalid move, correct detection of these

moves therefore requires the oracle to also check the state of the door, in addition to the

current position and current move. As described in Section 8.4.2, the state of the door is

represented by a door-open counter in which a value of zero represents a closed door and

any nonzero value represents an open door. If the qubits making up the door-open counter

register are denoted 𝑑𝑘D−1, 𝑑𝑘D−2,… , 𝑑1, 𝑑0, where 𝑘D is the number of qubits making up

this register, then the oracle must evaluate⋀𝑘D−1
𝑗=0 ¬𝑑𝑗 to determine the state of the door, with

this expression evaluating to 1 if and only if the door is closed.

There is in fact a third type of move that could potentially be considered invalid, although

I choose not to do so. These are moves that attempt to activate the switch when the current

position is anything other than (3, 3), the position of the switch. We could design the move-

restriction circuit to treat such moves as invalid, but we can also ignore themwith no ill effect:

the next-position circuit from Figure 8.15 will simply do nothing when 𝑚𝑖,2 = 1, while the

door-opening circuit from Figure 8.16 refuses to update the door-open counter when any of

𝑥1, 𝑥0, 𝑦1, or 𝑦0 are not equal to 1. The oracle as-is therefore already ignores moves that

attempt to activate the switch when not at the correct position, treating such moves as no-ops.

We can gain a significant advantage from ignoring these moves rather than treating them

as invalid. Recall from Chapter 1, Section 1.4 that, when faced with a function that can be

satisfied in multiple ways, Grover’s algorithm has a run time of 𝒪(√𝑁∕𝑘), where 𝑁 is the

size of the search space and 𝑘 is the number of solutions. If we treat all switch-activation

moves as invalid when not in the correct position, then out of all possible sequences of moves,

a very large fraction will be considered invalid, causing Grover’s algorithm to require a long
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run time. This issue is exacerbated by the fact that, due to the switch-activation move having

four different encodings while the other moves only have one encoding each, as shown in

Table 8.2, sequences of moves containing many switch activations are disproportionately

represented in the search space. In contrast, if switch-activation moves are simply ignored

for incorrect positions, then the number of move sequences that the oracle considers to

be valid solutions greatly increases: a solution can in that case consist of any number of

switch-activation moves interspersed among moves that actually solve the labyrinth. This

allows Grover’s algorithm to find a solution in a shorter amount of time.

The move-restriction circuit must now be designed to detect the two types of invalid

moves described previously. Based on the discussion in the previous paragraph, a switch-

activation move will never be considered invalid. The switch-activation move is encoded

by assigning a value of 1 to 𝑚𝑖,2, so a move can only be considered invalid if 𝑚𝑖,2 = 0. This

leads to the following expression that defines invalid moves:

¬𝑚𝑖,2 ∧ (𝑓walls(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0)

∨ 𝑓door(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0, 𝑑𝑘D−1, 𝑑𝑘D−2,… , 𝑑0)), (8.7)

where the expression evaluates to 1 if a move is invalid. The functions 𝑓walls and 𝑓door define

the two types of invalid moves: 𝑓walls evaluates to 1 when a move attempts to move through

a wall, while 𝑓door evaluates to 1 when a move attempts to move through the door and the

door has not been opened yet. The output of 𝑓door depends on the state of the door, so it

takes the qubits of the door-open counter register, 𝑑𝑘D−1 through 𝑑0, as inputs. The output

𝑓walls does not depend on the state of the door and so it does not take these qubits as inputs.

Furthermore, 𝑓door does not depend on the values of 𝑑𝑘D−1 through 𝑑0 individually but only

on whether the door is open or closed. As previously discussed, the door is closed only
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when all of these qubits are set to zero. When the door is open, no move that attempts to

move through the door can be invalid. Therefore, 𝑓door can be expressed as

𝑓door(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0, 𝑑𝑘D−1, 𝑑𝑘D−2,… , 𝑑0)

= (
𝑘D−1

⋀
𝑗=0

¬𝑑𝑗) ∧ 𝑓closed door(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0), (8.8)

where 𝑓closed door is a function that checks whether the move defined by 𝑚𝑖,1 and 𝑚𝑖,0 is

attempting to move through the door. If 𝑓closed door evaluates to 1, then the move is only

considered invalid if the door-open counter register has a value of 0, which is reflected in

(8.8) by the first term after the equals sign.

The design of the move-restriction circuit now reduces to obtaining specifications of and

realizing the two functions 𝑓walls and 𝑓closed door. I consider the second function first because

it is slightly simpler. There are only two possible combinations of move and position that

result in attempting to move through the door. Either the move is upwards and the position

is (1, 2), or the move is downwards and the position is (1, 1). Mapping these moves and

positions to the corresponding values of 𝑚𝑖,1, 𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, and 𝑦0, we therefore obtain

𝑓closed door(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0) = (𝑚𝑖,1 ∧ ¬𝑚𝑖,0 ∧ ¬𝑥1 ∧ 𝑥0 ∧ 𝑦1 ∧ ¬𝑦0)

∨ (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ ¬𝑥1 ∧ 𝑥0 ∧ ¬𝑦1 ∧ 𝑦0), (8.9)

which can be realized by the circuit shown in Figure 8.17.

Note that the circuit from Figure 8.17 avoids using additional ancillary qubits to take

the logical OR of the two terms from (8.9), as was done in Figure 8.9. The two terms of

(8.9) are mutually exclusive—they cannot both evaluate to 1 at the same time—so their

logical (inclusive) OR is the same as their exclusive-OR, the latter being easily realized
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𝑚𝑖,1

𝑚𝑖,0

𝑥1

𝑥0

𝑦1

𝑦0

|0⟩ 𝑓closed door(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0)

Figure 8.17: A circuit that realizes the function 𝑓closed door using (8.9).

using Toffoli gates. Using Figure 8.17 as a subcircuit together with (8.8) then leads to the

circuit of Figure 8.18.

Moving on to the function 𝑓walls from (8.7), this function can be expressed as the logical

OR of a large number of logical-AND (conjunctive) terms, each of which corresponds to a

combination of move and position that results in moving through a wall. I list a few of them

here:

𝑓walls(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0) = (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ 𝑥0 ∧ 𝑦1 ∧ 𝑦0)

∨ (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ 𝑥0 ∧ 𝑦1 ∧ ¬𝑦0)

∨ (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ ¬𝑥0 ∧ 𝑦1 ∧ 𝑦0)

∨ ⋯

∨ (¬𝑚𝑖,1 ∧ ¬𝑚𝑖,0 ∧ ¬𝑥1 ∧ ¬𝑥0 ∧ ¬𝑦1 ∧ ¬𝑦0). (8.10)

For instance, the first term of (8.10) corresponds to a downwards move at position (3, 3),

and referring to Figure 8.3, we can see that this move does indeed attempt to move through

a wall and so is invalid. As in (8.9), all of the terms on the right-hand side of (8.10) are
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Figure 8.18: A circuit that realizes the function 𝑓door using (8.8).

mutually exclusive, so 𝑓walls can be realized by simply mapping each term to a Toffoli gate,

with all such gates targeting the same output qubit. This produces the circuit shown in

Figure 8.19. However, we can immediately see that this circuit is non-optimal, because the

terms of (8.10) can be combined in ways that clearly result in a circuit with lower quantum

cost. For instance, the first two terms of (8.10) can be combined as

(𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ 𝑥0 ∧ 𝑦1 ∧ 𝑦0) ∨ (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ 𝑥0 ∧ 𝑦1 ∧ ¬𝑦0)

= (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ 𝑥0 ∧ 𝑦1 ∧ (𝑦0 ∧ ¬𝑦0))

= (𝑚𝑖,1 ∧ 𝑚𝑖,0 ∧ 𝑥1 ∧ 𝑥0 ∧ 𝑦1), (8.11)

which allows the first two 6-control Toffoli gates in Figure 8.19 to be replaced by a single
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5-control Toffoli gate. Combining terms of (8.10) to produce a realization of 𝑓walls with

low quantum cost is a task that can be performed by a program such as EXMIN2 [15] or

EXORCISM [17]. Alternatively, as previously pointed out in Section 8.3.3 for the function

given by eq. (8.2), the DIPS-based realization method from Chapter 4 can also be used to

realize the function 𝑓walls.

𝑚𝑖,1

𝑚𝑖,0

𝑥1

𝑥0

𝑦1

𝑦0

|0⟩ 𝑓walls(𝑚𝑖,1,𝑚𝑖,0, 𝑥1, 𝑥0, 𝑦1, 𝑦0)

Figure 8.19: A circuit that realizes the function 𝑓walls using (8.10).

Once the function 𝑓walls has been realized, regardless of what method is used to do

so, the full move-restriction circuit can then be created as shown in Figure 8.20. This

circuit uses realizations of 𝑓walls and 𝑓closed door, and also uses Figure 8.18 as a subcircuit to

compute 𝑓door. The realization of 𝑓closed door is presented as a “black box” rather than using

the circuit from Figure 8.17 because it is also possible that one of the realization methods

mentioned before can produce a circuit for 𝑓closed door with lower quantum cost than the one

from Figure 8.17. The use of “black boxes” in Figure 8.20 additionally helps to highlight

the fact that the move-restriction circuit has been described in terms of Boolean functions

(𝑓walls and 𝑓closed door) whose specifications (eqs. (8.10) and (8.9)) are directly derived from

the layout of the labyrinth, plus some simple connecting logic. From this point on, the
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Figure 8.20: Full move-restriction circuit for the labyrinth problem, using realizations of 𝑓walls and
𝑓closed door as subcircuits.

move-restriction circuit can be automatically generated in full detail down to the level of

two-qubit controlled gates using any realization method for single-output Boolean functions.

8.4.4 Ending-state-checking circuit and summary of full oracle

Compared to the move-restriction circuit, the ending-state-checking circuit for the labyrinth

problem is extremely simple. The desired ending state is simply one with a position of (2, 0),

which has the position-qubit representation 𝑥1 = 1 and 𝑥0 = 𝑦1 = 𝑦0 = 0. This condition

can be checked using a single Toffoli gate, as shown in Figure 8.21.

Note that the state of the door does not participate in the ending-state-checking circuit at
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Figure 8.21: Ending-state-checking circuit for the labyrinth problem.

all. From the layout of the labyrinth as shown in Figure 8.2, it is clear that the ending position

cannot be reached without opening the door, but this fact is irrelevant to the design of a

quantum oracle for this problem: since solving the labyrinth is defined simply as reaching

the position (2, 0), that is all that the oracle needs to check. However, the state of the door

does form part of the overall state when the labyrinth problem is formulated as a state-space

path planning problem. This means that, strictly speaking, the labyrinth problem actually

has more than one possible ending state: one can have position (2, 0) with the door open,

or position (2, 0) with the door closed. The latter state turns out to be unreachable from the

given starting state, but it is still a valid element of the state space. The possibility to have

more than one ending state is incorporated into the more precise definition of a state-space

path planning problem given in Section 8.5.

Having designed the next-state, move-restriction, and ending-state-checking circuits, the

full quantum oracle for the labyrinth problem is obtained by inserting these circuits into

Figure 8.13b. The move-restriction circuit designed here works with the current state before

it is updated and should therefore be placed before the next-state circuit.

As with the oracles for the 8- and 15-puzzles, the oracle design described here is scalable

and works for labyrinths of any size. The number of position qubits can be increased and the
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incrementers and decrementers scaled up accordingly to handle larger ranges of coordinates.

The move-restriction circuit can be generated as before by realizing Boolean functions whose

specifications are directly derived from the layout of the labyrinth; the number of inputs to

these functions will simply increase. It is also possible to create an oracle for a labyrinth

with multiple doors and switches. In this case, each door is assigned its own door-open

state counter and a door-opening circuit like the one from Section 8.4.2 is created for every

switch. The expression given in (8.7), which is used to generate the move-restriction circuit,

then has to incorporate additional terms, one for each door. Just as for the 8- and 15-puzzles,

any such oracle can be automatically described in terms of low-level gates once its high-

level design has been created, by realizing the appropriate Boolean functions used in the

move-restriction circuit and using the known scalable implementations of the incrementers

and decrementers.

8.5 General strategy to design oracles for state-space path planning problems

Modern digital logic design follows a strategy or approach of designing circuits from high-

level functional blocks, where a human designer uses such blocks to design circuits and a

CAD tool automatically generates low-level implementations of these blocks on the transistor

level. The high-level blocks include components such as adders, multipliers, comparators,

multiplexers, counters, etc. This procedure is not completely automatic because the human

designer must still rely on their own experience and intuition to decide, given a set of

requirements, how to design a circuit satisfying those requirements using the available high-

level components. Such a strategy or approach might be called a “methodology”, although

it is not a methodology in a narrow sense because it does not consist of a sequence of fully

systematic steps.
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In a similar manner, the examples I presented in this chapter lead to a strategy or ap-

proach for designing quantum oracles for state-space path planning problems, where a human

designer uses high-level blocks to design a next-state circuit, move-restriction circuit, and

ending-state-checking circuit. As with classical digital logic design, this strategy might be

called a “methodology” in a broad sense but not in the narrow sense of a fully systematic

sequence of steps. The human designer must rely on experience and intuition to determine

how to translate the parameters of a given state-space path planning problem into a high-level

oracle design. However, once the high-level design has been created, its implementation in

terms of low-level gates can be automatically created because components such as incre-

menters and multiplexers can be implemented by regular circuit structures that are easily

generated algorithmically, while Boolean functions can be realized using algorithms such

as those described in Chapters 3 through 5. Furthermore, the human designer may be able

to parameterize the high-level oracle design so that its low-level implementation can be

automatically updated with no further intervention if the parameters of the original problem

change slightly. For instance, the move-restriction circuit for the labyrinth problem, as shown

in Figure 8.20, uses Boolean functions (𝑓walls and 𝑓closed door) whose precise specifications

depend on the layout of the labyrinth. In the future, if a sufficiently powerful quantum

circuit description language is created, a human designer will be able to use this language

to describe how the specifications of these functions are derived from the labyrinth layout,

and a compiler for the language will be able to automatically update the functions if the

labyrinth layout is changed.

In order to describe the general oracle-design strategy for state-space path planning

problems in more detail, I first give a revised and more precise definition of a state-space

path planning problem, based on the considerations encountered while designing oracles for
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both the 8-/15-puzzle and labyrinth problems:

1. One has a set of states and a set of moves that define allowed transitions between these

states. The objective is to reach a desired ending state, or one state out of a set of

desired ending states, from a given starting state in as few moves as possible.

2. For every state, a subset of the set of moves is legal. This subset can be improper, i.e.,

the whole set of moves can be legal for some or all states. The legal moves can be

defined by a move-legality function that takes as input a state and a move, and outputs

0 if the move is legal for that state and 1 otherwise.

3. Each state 𝑆 is representable as a combination of a reversible component, 𝑆𝑅, plus a

fixed number of flags, 𝑠1 through 𝑠𝑛, which take on Boolean values.

4. Every legal state-move combination is mapped to exactly one next state. Given a

state with components 𝑆𝑅, 𝑠1, 𝑠2,… , 𝑠𝑛, together with a legal move 𝑀 for that state,

denote the next state’s components as 𝑆′
𝑅, 𝑠

′
1, 𝑠

′
2,… , 𝑠′𝑛. Then these components can

be obtained using functions 𝑓𝑅, 𝑓1, 𝑓2,… , 𝑓𝑛, which have the following properties:

(a) 𝑓𝑅 takes the reversible component of the state together with the move and pro-

duces the reversible component of the next state. In other words, 𝑓𝑅(𝑆𝑅,𝑀) =

𝑆′
𝑅. 𝑓𝑅 must be reversible in the sense that given 𝑆′

𝑅 and 𝑀, it is always possible

to recover the value of 𝑆.

(b) For 1 ≤ 𝑖 ≤ 𝑛, 𝑓𝑖 takes the reversible component of the state together with all

of the flags except for 𝑠𝑖, and produces a Boolean output. The new value of the

𝑖-th flag, 𝑠′𝑖, is then given by 𝑠′𝑖 = 𝑠𝑖 ∨ 𝑓𝑖(𝑆𝑅, 𝑠1,… , 𝑠𝑖−1, 𝑠𝑖+1,… , 𝑠𝑛).

Item 1 above is essentially the same as before, although the possibility of multiple ending
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states has been added based on the observation from Section 8.4.4 that the labyrinth problem

effectively has two possible ending states. If there are multiple ending states, they may or

may not be related to each other in some way. In the labyrinth problem, the two ending states

arose from the possibility of the door being either open or closed, but it is also possible to

have multiple ending states that are conceptually unrelated.

Item 2 replaces the somewhat-vague notion of “uniformity” originally used in Section 8.1.

That notion is replaced by having a fixed set of potential moves that remains the same for

every state, but allowing only a subset of the moves to actually be legal for each state.

Items 3 and 4 reflect the possibility for the next-state function to not be completely

reversible. In particular, items 4a and 4b essentially separate the next-state function into a

reversible component, 𝑓𝑅, plus a number of non-reversible components, the 𝑓𝑖’s, that can

set the value of a flag to 1. Note that the equation for the evolution of a flag from one state to

the next, 𝑠′𝑖 = 𝑠𝑖 ∨ 𝑓𝑖(𝑆𝑅, 𝑠1,… , 𝑠𝑖−1, 𝑠𝑖+1,… , 𝑠𝑛), guarantees that a flag must remain with a

value of 1 permanently once set. A flag therefore behaves like the state of the door in the

labyrinth problem: once the door is opened, it remains open permanently. A labyrinth with

multiple doors, as mentioned at the end of Section 8.4.4, can be represented by multiple

flags, with each flag corresponding to the state of one door. The flag-updating function 𝑓𝑖

corresponding to a flag 𝑠𝑖 can depend on other flags as well. This possibility was not used

in the labyrinth problem considered in this chapter, since there was only one door there, but

it could be used to model a labyrinth with multiple doors in which one of the doors can only

be opened after another one has been opened first.

We can now readily see how the quantum oracle design strategy used in this chapter can

be applied to other state-space path planning problems and partially automate the creation

of quantum oracles for them. The move-legality function is represented in the oracle by the
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move-restriction circuits, which in general can be automatically synthesized as long as a

high-level specification of this function is available. The flag-updating functions are similar

and are represented in the oracle by circuits like the door-opening circuit from Section 8.4.2,

while the flags themselves are represented using counters like the door-open counter. Just

like the move-restriction circuits, these flag-updating circuits can also be automatically

synthesized from a high-level specification of the flag-updating functions. If the state-space

path planning problem in question has multiple possible ending states, then the ending-state-

checking circuit can be represented as yet another Boolean function to be automatically

synthesized. Finally, the reversible part of the next-state function, 𝑓𝑅, corresponds to all

other portions of the next-state circuit other than the flag-updating circuits. The strategy for

designing this part of the oracle is to represent the function 𝑓𝑅 in terms of operations such

as addition, subtraction, comparison, and copying of values between registers, which can

then be implemented by functional blocks such as incrementers, counters, multiplexers, and

comparators. Other useful functional blocks such as quantum arithmetic circuits [90] can

be included to further increase the generality and applicability of this strategy.

8.6 Conclusion

In this chapter, I presented detailed designs for quantum oracles to solve two problems, the

8-/15-puzzle and a labyrinth problem. The similarity in oracle design strategy used for

these problems led to the formulation of a whole class of problems, the state-space path

planning problems, for which quantum oracles can also be designed using similar strategies.

Specifically, I created an oracle design approach for state-space path planning problems

where the oracle at the highest level is composed of several types of subcircuits: a next-

state circuit, a move-restriction circuit, and an ending-state-checking circuit. These circuits
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are in turn designed using high-level components: functional blocks such as incrementers,

decrementers, comparators, and multiplexers, as well as “black boxes” that are defined by

a Boolean function and can be automatically decomposed into low-level gates using any

realization method for Boolean functions. In the future, this type of approach will allow

human designers to therefore design quantum oracles to solve state-space path planning

problems by working only with these high-level components; the details of implementing

these components on a lower level will be handled automatically by a CAD tool or quantum

“compiler”. This workflow for quantum circuit design is analogous to modern computer-

aided design of digital logic circuits or software programming in high-level languages,

where the human designer never needs to work directly with low-level primitives—individual

transistors in the case of hardware and machine-language instructions in the case of software.

In the process of designing quantum oracles for the two considered problems, I also

demonstrated two other uses for quantum counters. In Chapter 7, a quantum counter was used

to compute the cost of an encoding by adding the outputs of multiple dependency checkers

together, but here, a quantum counter is instead used as a flag to model an irreversible process

using a reversible circuit. This use of a quantum counter also allows a Boolean function

represented as the logical OR of many terms to effectively be evaluated without the need to

allocate one ancillary qubit to every term.

The class of state-space path planning problems includes problems that are of interest in

the areas of robotics and artificial intelligence. For instance, robot path-planning or motion

planning problems [91, 92, 93, 94], which involve navigating a robot or a part of a robot

like an arm through an environment containing obstacles, can be naturally expressed as

state-space path planning problems. The set of states is the configuration space of the robot,

discretized to a sufficient degree of precision, and the set of moves consists of the actions
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and movements that the robot is capable of performing. Legality of moves is then defined

by the obstacles that are present as well as inherent limits to the robot’s range of motion.

Another example of a state-space path planning problem is the Wumpus World game [95],

which is essentially a more complicated version of the labyrinth problem considered in this

chapter and has been used as an example to demonstrate artificial intelligence algorithms. In

Wumpus World, the player must search for treasure in an environment containing pits and a

wumpus, both of which will kill the player. The player also has a single arrow that can kill

the wumpus, but can only be used once. When formulated as a state-space path planning

problem, the state space for Wumpus World consists of the player’s position together with

several status variables such as whether they are dead, whether they have shot their arrow,

etc. These status variables correspond to flags in the terminology of Section 8.5, since they

represent irreversible state changes—once the player has died, they are permanently dead,

once they have used up the arrow, they cannot use it again, etc. We therefore see that the

approach I introduced in this chapter is applicable to both the robot motion planning and

Wumpus World problems as well.
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Chapter 9

Summary of contributions

In this dissertation, I presented a general approach to designing quantum algorithms for

certain problems of practical interest using Grover’s algorithm as a subroutine. I examined

the implementations of these algorithms at both low and high levels. At a low level, I created

synthesis methods for both non-reversible and reversible Boolean functions, and formalized

these methods as algorithms. At a high level, I described a strategy for quantum oracle

design in terms of high-level blocks, although this strategy is not completely systematic—it

still requires a human designer relying on experience and intuition to perform the first step

of creating a high-level design of a quantum oracle. Once such a high-level design has been

created, the process of implementing it at a low level is systematic because this process

involves realizing Boolean functions as well as using known regular circuit structures to

implement components such as counters and multiplexers. To solve optimization problems,

I introduced a “hybrid” algorithm that uses Grover’s algorithm as a subroutine in a classi-

cal algorithm. This algorithm provides an example of cooperation between classical and

quantum computing systems, because it would not be possible with only one or the other.
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9.1 Contributions to logic synthesis for quantum circuits

The realization of Boolean functions using quantum circuits is of great interest for several

reasons. Universality, the ability to compute any arbitrary function that can in principle be

computed, is an essential trait of any useful computational system. If the computational

system is a quantum device that uses qubits, then universality requires that any Boolean

function must be realizable using quantum gates. Furthermore, for a quantum computational

device to be as useful as possible, these realizations should be as resource-efficient as

possible.

The ability to realize Boolean functions is also a basic capability needed for the creation

of CAD tools, and will therefore be an essential ingredient of future automated workflows

for quantum algorithm design. Modern digital logic design, especially of VLSI (very-large-

scale integrated) chips, relies heavily on design automation. A human designer only needs

to write a high-level description of a desired circuit, and CAD tools perform the tasks of

synthesizing that circuit on the gate level and generating a transistor layout, transistors being

the ultimate low-level primitives of modern digital logic circuits. Similarly, most modern

software is written in high-level programming languages, with a compiler automatically

translating high-level statements into low-level machine language instructions. An analogous

automated workflow for quantum circuit design will allow future designers to work on a

larger scale and on a higher level than is currently possible with quantum languages like

Qiskit, which describe quantum circuits in terms of low-level gates.

The vast majority of existing strategies for the realization of Boolean functions by

quantum circuits use Toffoli gates along with inverters and CNOT gates because they are

quantum counterparts of the classical AND, NOT, and exclusive-OR gates and therefore

allow some existing Boolean logic realization techniques for classical digital circuits to
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be applied to quantum circuits as well. In Chapters 2, 3, and 4, I proposed a completely

different alternative approach to universality where symmetric functions are directly realized

using low-level quantum gates that have no classical counterpart. Other non-symmetric

functions are realized by “symmetrizing” them through the use of repeated variables. Instead

of relying on existing Boolean logic realization techniques, my approach uses controlled

rotation gates to effectively count the number of 1s present in a given collection of input

qubits and thereby realize symmetric functions in a highly efficient manner. In this way, I

take full advantage of the quantum nature of the underlying computational system, because

rotation gates with angles of less than 180° have no classical counterpart.

More specifically, I first demonstrated in Chapters 2 and 3 that a particular class of

symmetric functions, which I call dyadic index-periodic symmetric functions (DIPS), can

be realized in an especially efficient manner using only two-qubit controlled root-of-NOT

gates. Chapter 4 then showed that symmetric functions could be realized by combining

DIPS using a method based on the Walsh-Hadamard transform. This is the first time that the

Walsh-Hadamard transform has been used to realize symmetric functions using quantum

circuits. This method involved using additional controlled rotation gates to effectively add

multiple DIPS together arithmetically, which is difficult and would require complicated adder

circuits in classical Boolean logic since all variables therein may only take on binary values.

My realization of symmetric functions therefore actually takes advantage of quantum-only

gates, the controlled root-of-NOT gates, in two distinct ways. Other than [14], very little

existing published work directly leverages quantum-only gates to realize arbitrary Boolean

functions in ways that are not possible with classical digital logic circuits.

The concept of realizing arbitrary Boolean functions by “symmetrizing” them, converting

them to symmetric functions with repeated variables, was previouslymentioned in the context
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of quantum circuits by Maslov [33], and such a symmetrization algorithm was described in

[48]. However, when combined with DIPS-based realization of symmetric functions, the

realization of non-symmetric Boolean functions through symmetrization becomes especially

powerful. The nature of the circuit structure used to realize DIPS allows variables to be

repeated without the use of ancillary qubits and with no increase in quantum cost whatsoever.

As a consequence, any 𝑛-variable Boolean function can be realized at a quantum cost no

greater than that required to realize an 𝑛′-variable symmetric function, where 𝑛′ is the

number of variables (including all repetitions) after the function has been symmetrized. In

Chapter 4, I calculated a rigorous upper bound for the quantum cost and number of ancillary

qubits required to realize any symmetric function. These upper bounds can be extended to

all Boolean functions, symmetric or not, if the number of variable repetitions required to

symmetrize the function is known. For symmetric functions, the calculated metrics compare

favorably to the results reported by Maslov [33]. Since Maslov’s method only uses NOT,

CNOT, and Toffoli gates, my results show that advantages can indeed be gained by designing

quantum circuits directly on the level of two-qubit controlled rotation gates without using

Toffoli gates as intermediates.

I also made contributions to the problem of realizing multiple-input, multiple-output

reversible functions “in place” using quantum circuits. “In place” means that the same qubits

are used for the inputs and outputs of the function, and such realizations are only possible

when the function to be realized is itself reversible. Due to the constraint of reversibility,

several types of methods which are not available for single-output functions become available

in the multiple-output case. In particular, for reversible functions, there is a whole category

of cycle-based methods, which are often well-suited for functions in which only a small

fraction of the possible input values are altered. In Chapter 5, I introduced the new concept of
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distance gates, which form the foundation for my own cycle-based method. These distance

gates realize arbitrary transpositions, which are the smallest possible cycles and can form all

other cycles via composition. I also introduced a method of distance gate reduction, which

greatly reduces the quantum cost of certain sets of distance gates by combining them into

a simplified form. Distance gate reduction effectively reduces the problem of realizing a

multiple-input, multiple-output reversible function to that of realizing a sequence of multiple-

input, single-output reversible functions. These single-output functions can then be realized

using either my proposed symmetric function-based method from Chapters 2, 3, and 4, or

other existing methods, making the distance gate-based synthesis approach very flexible.

In Chapter 6, I further expanded on the flexibility of distance gates by showing that they

can also be adapted for multiple-valued quantum computation. This ability is particularly

valuable because of the shortage of published work on realizing reversible functions for

multiple-valued quantum computers. Distance gates can be adapted for quantum computers

using qudits of any radix, and even for one that combines qubits of different radices in the

same circuit. This dissertation is the first published work to demonstrate a reversible circuit

synthesis method with this ability.

9.2 Contributions to quantum algorithm design

My contributions to the area of high-level quantum algorithm design include a method by

which Grover’s algorithm, which directly solves only satisfaction problems, can also be

used in solving optimization problems. This is achieved by repeatedly executing Grover’s

algorithm using different quantum oracles to determine the minimum possible value of

whatever cost function is being optimized. My method takes advantage of the reconfigurable

nature of quantum circuits, which could be better described as quantum “programs” rather
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than “circuits” because they consist of software instructions rather than physical hardware

components. This reconfigurability plays a critical role in my “hybrid” algorithm, because

it allows the classical computer that is controlling the quantum hardware executing Grover’s

algorithm to modify the oracle used in a subsequent execution of Grover’s algorithm based

on the result of a previous execution.

In Chapters 7 and 8, I also demonstrated the method that the classical computer in

such a hybrid algorithm uses to modify the quantum oracle. For two important classes

of practical problems, I showed that appropriate quantum oracles can be created using

modular designs that reuse a small set of functional circuits and are easily scaled up and

down. The process of scaling up and down is completely systematic and can therefore be

automated. The ability to automatically generate different versions of an oracle from the

same overall design enables hybrid classical-quantum algorithms to work—if every iteration

of Grover’s algorithm required a new oracle to be designed manually from scratch, the

process of executing Grover’s algorithm multiple times in an adaptive manner would be

impossible to automate.

For instance, in Chapter 7, for the state encoding problem, I presented an oracle design

that is easily modified to search for encodings with any given maximum cost by simply

changing a single threshold circuit. This oracle design is also easily scalable to solve the

encoding problem for state machines with any number of states and encodings with any

number of bits. The state encoding problem is one of themost important problems in classical

automata theory and my algorithm finds the exact minimum solution using an exhaustive

search. An exhaustive search on a classical computer quickly becomes impractical as the

number of states increases, but the quadratic speedup provided by Grover’s algorithm will

allow the exhaustive search to remain practical for a larger number of states, as long as a
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quantum computer with sufficiently many qubits is available.

Another contribution made in Chapter 7 was to demonstrate the utility of quantum

counters in quantum oracle design. This provides a practical use for the DIPS-based quantum

counter design introduced in Chapter 3. Quantum counters are resource-efficient because the

size of the counter only grows logarithmically with the maximum value it must handle, and

the DIPS-based counter design from Chapter 3 has a quantum cost that grows linearly with

the number of signals being counted and quadratically with the number of counter qubits.

In Chapter 8, I created an approach to the design of quantum oracles for state-space path

planning problems. Like the oracle design from Chapter 7, the resulting quantum oracles

have a modular design based on next-state circuits, move-restriction circuits and an ending-

state-checking circuit. They may similarly be scaled up and down to search for paths with any

given maximum number of moves—the maximum number of moves is increased by simply

adding additional next-state circuits and move-restriction circuits to the oracle and increasing

the size of the invalid move counter, if needed. The next-state circuits are designed using

functional blocks like counters and multiplexers, while the move-restriction and ending-state-

checking circuits can be obtained by realizing one or more Boolean functions and possibly

adding some simple connecting logic between them. All of the component subcircuits

used in the oracle can therefore be designed using a partially-automated workflow, where a

human designer produces a high-level design of the next-state circuit and specifications of

the Boolean functions used in the move-restriction and ending-state-checking circuits, and a

CAD tool automatically generates their low-level realizations using quantum gates. In the

future, this type of workflow will allow very large quantum oracles, perhaps involving tens

of thousands of qubits and hundreds of thousands of gates or more, to be designed without

too much difficulty.
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