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ABSTRACT 

An abstract of the dissertation of Oleg Edward Roderick for the Doctor of Philosophy 

in Mathematical Sciences presented October 15, 2009. 

Title: Model Reduction for Simulation, Optimization and Control 

Many tasks of simulation, optimization and control can be performed more 

efficiently if the intermediate complexity of the numerical model is reduced. In our 

work, we investigate model reduction, as applied to reaction-transport systems of 

atmospheric chemistry. We use a Proper Orthogonal Decomposition-based approach 

to extract information from a set of model observations, and to project the model 

equations onto a reduced order space chosen in such a way that the essential model 

behavior is preserved in the solution of the reduced version. We examine and improve 

many features of the method. In particular, we show how to measure sensitivities of 

the model reduction process, and use the results to select the placement and weighting 

of observations to best reproduce specific events in the full model behavior; we also 

develop novel techniques allowing to take into account multiple events. We show 

how to construct reduced models to replace the full model in iterative parameter 

optimization procedures so that fewer steps and lower computational budget are 

needed. The result of the study is a more complete understanding of how to perform 

tasks of simulation and optimization of nonlinear models using model reduction tools. 
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CHAPTER 1 

INTRODUCTION 

The main theoretical motivation of our study is the existence of basic, 

sometimes well-studied problems of applied mathematics with a numerical solution 

that becomes very computationally expensive with the increase in the size of the 

problem. Colloquially, the problems "do not scale well': the increased number of 

dimensions, degrees of freedom, or points in the discretization grid results in too 

many intermediate variables and operations for a numerical solution to be obtained 

within an available computational budget. 

There is, however, a possibility that the intermediate complexity of such 

problem is not necessary to obtain the answer. The list of variables, in particular, 

can be reduced, due to redundancy (many of the variables are strongly correlated to 

each other through linear combinations or a general functional dependency), or 

irrelevance (many of the variables have an influence on the answer that is smaller 

than the required precision). Correspondingly, the inputs, intermediate parameters, 

and the solutions of the involved equations can be limited (at least approximately) to 

manifolds of much smaller dimension than the spaces declared in the definition of 

the problem. Then numerical solutions can be directly improved through the 

combined use of factor importance analysis (to decide which features of the 

problem are negligible), and model reduction (to replace the complete problem with 

a simplified version). 



Model reduction can be treated as projection of the data set, extraction of 

statistical information, data compression, or a form of factor importance analysis. 

Altogether, there are 8-10 distinct approaches to reduction [38]. We use a process 

based on projection of the model dynamics onto a reduced dimension subspace 

chosen to best capture the observed information on the full model behavior at a 

selection of time instances. The method we used to select the subspace is based on 

Proper Orthogonal Decomposition, POD (a mathematical procedure that transforms 

a number of possibly correlated variables into a smaller number of uncorrelated 

variables). The correlation matrix for the POD is based on a selection of observed 

model states. This approach has appeared in areas such as image processing [36], 

fluid dynamics [115], acoustics [68], circuit development [90], behavioral science 

[93]. 

In our study, we extend the POD-based model reduction procedure to 

include traditional and novel tools for an improved representation of various 

features of the full model dynamics in the reduced model. We perform factor 

importance analysis (i.e ranking of variables, or data components by importance in 

the context of a particular output) using first-order sensitivity information, and 

elements of sampling-based statistical learning. In addition, we perform factor 

importance analysis on the reduction process itself, obtaining the sensitivity 

information that was not available explicitly previously. As an additional 

contribution to the field of study, we show how model reduction may be used to 

improve iterative solution methods for model-constrained optimization problems. 

2 



We shall now describe our applied area of interest in more detail; and then 

overview the organization of the thesis. 

Our specific models of interest are the reaction-transport systems that arise 

in the study of atmospheric chemistry processes and air pollution forecasting. The 

main subjects of study are large-dimensional ODEs modeling chemical processes. 

We assume the solutions to be smooth with respect to such system parameters as the 

initial conditions, with no bursting behavior. The chemical reaction ODEs may be 

augmented by simple transport terms, resulting in advection-diffusion-reaction 

PDEs. The problems of this class appear in many areas of applied industrial 

significance, and the mathematical content of our work can be extended to complex 

problems of other forms. 

Some research was performed recently on improved model reduction, 

associated error estimation and sensitivity analysis (Petzold et. al. [54], [85]; 

Willcox et. al. [9], [19]), but many technical questions remain unanswered. To our 

knowledge, the application of model reduction to optimization problems of 

atmospheric chemistry was not examined. 

In a general framework, we consider a dynamical system modeled by a 

parameter-dependent system of ordinary differential equations: 

du 

dt 
M/o) = MoO) 
a=AUttlP) (i.D 
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where n is the dimension of the system; u = (ux,u2,...,un)
T is the state of the model, 

that is, a vector of individual chemical species concentrations ut; f(u,t,p) is the 

chemical reaction term, and initial conditions u0(p) are dependent on the 

parameters p = (pl,p2,...,pm). 

If the parameters are time-independent, the equations (1.1) can be 

reformulated without the loss of generality so that that parameters only appear in the 

initial conditions. The reformulation can be done by appending all the parameters 

appearing in the expression f(u,t,p) to the list of variables u. For an appropriately 

redefined term / and the list of parameters p , the ODE (1.1) is written as 

du j . , . 

Tt=f{uA (i.2) 
u(t0) = p 

The full model (including transport effects) is based on a generic scalar 

transport equation 

3u 
—+V-<p(x,u,t,Vu) = 3(x,u,t) (1.3) 
dt 

where cp is called the flux, and & the source. The advection-diffusion-reaction 

model is a particular case of (1.2), with advection and diffusion taken into account 

in the flux term, and chemical reactions included in the source term. The convection 

vector field a> and a diffusion coefficient matrix K are generally allowed to depend 

on time t and spatial variable x, but not on the model state u. The system of 

equations is written as follows: 



u = u(x,t) 

— = -V.((m) + V-(KVu) + f(u,t) (1.4) 
8t 
u(x,t0) = p 

for x e Q c / f 3 , t> t0, with the appropriate boundary conditions on x e 8Q. 

The described system is used in the studies of atmospheric pollution. The 

vector u lists concentrations of chemically active species, such as ozone, nitrogen 

oxides, hydrocarbons and radicals. The wind patterns are described by co, hence 

the spatial dependence. The chemical reaction term / may include emissions and 

depositions, and is typically quadratic with respect to components of u. Stiff 

transients in the time evolution of the model state are related to daylight cycle and 

photolytic reactions. 

The computational task of solving the advection-diffusion-reaction system 

essentially consists of integrating a very large ODE. A standard approach follows 

the method of lines. The system of partial differential equations (1.4) with the 

chosen boundary conditions is discretized on a fixed spatial grid (Eulerian; uniform, 

adaptive, or related to geographical features). The resulting system of ODEs, with 

an explicitly available, sparse Jacobian is then passed to a numerical solver. 

Technical difficulties arise due to stiffness (time derivative of u has 

components that may vary by several orders of magnitude); and a large 

dimensionality of the system. This has led to the use of special time integration 

techniques (time or operator splitting, implicit-explicit methods, approximate matrix 

factorization approaches) [116]. 
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Meaningful problems could have a number of species in the 30-100 range, 

and a discrete state vectorf of the size on the order of 107 due to the size of the 

spatial grid. For example, a family of General Circulation Models for global weather 

prediction uses horizontal resolution of down to 250 kilometers, and up to 30 

horizontal layers, resulting in about 800,000 grid points. One typical benchmark test 

of GEOS-chem [129], [130], a global model of atmospheric composition includes 

350 reactions with 90 chemical species, 30 horizontal layers with 6500 grid points 

in each, and simulated a time interval of 1 year. Even for the smaller problems that 

we use as examples, and modest requirements on accuracy, the number of grid 

points can exceed 10,000. 

The usual tasks associated with large models include prediction of the future 

behavior; recovery of the true state of the system based on the incomplete 

observations; inverse problems such as recovery of the parameters that lead to a 

particular state of the system; and analysis of sensitivity of the problem solution to 

changes in the components and parameters. We are particularly interested in the 

parameter optimization problem in the context of data assimilation. 

The subject of data assimilation in atmospheric science is well-described in 

[59]. In general, data assimilation is a process of estimation of a true state of the 

system based on (imprecise) observational or simulated data. Some form of data 

assimilation is required in all environmental sciences, studies of ocean dynamics, 

and weather prediction. The idea is to use the existing actual observations of the 

environment to gradually adjust the values of the parameters until the model is 
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stable and consistent with the available data over shorter periods of time, then use it 

for long-term predictions. The process is multi-step, and there may be many criteria 

of reliability that a model has to satisfy. 

In Figure 1.1 we provide a simplified visualization of the assimilation 

process. At each step of the cycle, a current estimate of correct parameters is 

obtained as a solution to an optimization problem. Our main research interest is the 

following basic form of this optimization problem. Given a general model 

F(u,t,p) = 0 (1.5) 

with a particular example given by (1.4), find such values of parameters p that the 

difference 

3 = | |«(X,?)-M 0 (X,^) | (1-6) 

between the simulated state of the system u{x,t), and the observed state u0{x,t) is 

minimal in some appropriate norm ||..|. In other words, the task is to fit the model 

parameters (in our case, model initial conditions) to observations. 

The computational difficulty of the optimization problem depends on the 

number of parameters and the complexity of the underlying model. As stated in 

(1.4), the complex dependence on parameters is present only in the reaction part of 

the model. We mean to use a very simple description of transport, so that the large 

size of the grid merely amplifies the computational cost of the ODE. Therefore, we 

shall primarily study the behavior, sensitivities, and opportunities for complexity 

reduction for the model (1.1), and then apply the results in the context of the PDE. 
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For many chemical systems with reactions and transport, the large 

dimension of the equations (1.1) does not reflect the true number of degrees of 

freedom of the model. The chemical dynamics can be simplified: it may be done 

even as the reaction equations are derived. The components that produce a small 

overall effect on the state of the system could be partially absorbed ('data lumped', 

[80]) into the constructed state variables, and partially neglected. The same could be 

done for the components that remain almost constant, for the components that 

oscillate rapidly around some mean value, and for components that (due to various 

reasons) are not described reliably by the numerical model. Because of the 

simplification, the precision of the simulation will suffer, but we may be allowed a 

moderate error anyway, because in practice the equation parameters and the initial 

conditions are deduced from the already imprecise observations. 

Any model reduction method ranks either the involved state components, the 

interactions between the state components, or the particular times in the evolution of 

the system by importance, and eliminates the less important ones from the system. 

There is a variety of ways to reduce complexity suggested in the literature: see [38], 

[33], [45], [52] for the overview. They include approaches based on the 

experimental insight, omission of components chosen by sensitivity analysis, 

omission of components chosen by a greedy algorithm that minimizes the loss of 

quality after reduction, and simplification of the model equations. In addition, for 

linear ODEs, the optimal control theory offers a number of additional techniques, 

such as Hankel reduction and balanced truncation (see [2], [3], [103], [114]). 
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In this study, we simplify the dynamics of the model by projecting the 

equations onto a reduced subspace. A model reduction process results in a reduced 

system of (ordinary differential, partial differential, or algebraic) equations with the 

solution u eS <= i?", that is an approximation of the solution ueR" of the full 

system. Informally, we shall refer to u,u as the, full, and the reduced versions of the 

same mathematical model. The reduced system solution u evolves in an optimal 

subspace S of dimension k <n: 

S = span{^,<j)2,...,(/)k) (1.7) 

where the basis vectors $ are chosen so that the important features of the behavior 

of the full model are preserved in the reduced model. The characterization of this 

subspace is the essence of model reduction. 

We expect the reduced system to be optimal in some sense. Due to a wide 

variety in the models' behavior, and its reproduction, general descriptions of what we 

expect as a result of model reduction are not effective. The practical definitions of a 

good quality of reduced system need to be goal-oriented. The basic requirement is 

that the error e = \\u - u\\ is minimal in some norm ||..|. 

We may use a problem-specific definition of the norm, even allow the error 

(1.7) to be sub-optimal, though still reasonably small, in the cases when the reduced 

model best satisfies some problem-specific requirement on the behavior of the 

solution. Such a requirement may consist of a faithful reproduction of some output 

3 (also known as cost, merit function, or the quantity of interest): 
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3(w)« 3(w) 

A more advanced treatment of the subject would also call attention to a 

number of additional features of analytical, physical or algebraic nature, such as the 

regularity of the solution: smoothness, existence of bounds on the numerical values 

of the derivatives; boundedness and positivity of the state components, conservation 

of mass; the preservation of periodicity and other symmetries. We will be mostly 

interested in optimal reproduction of the output (1.8); other features in the reduced 

model behavior can be addressed as long as they can be quantified. 

Our practical requirements for a numerical solution of the reduced model are 

relatively high computational speed and numerical stability. The achieved numerical 

advantage over the use of the full model can be partial, leading to reduction only in 

some model components, only over some regions of space, or only over some 

intervals of time. In our test examples, we encounter a number of scenarios with 

non-ideal, but acceptable performance: 

- Model reduction decreases the dimension of the problem significantly, 

perhaps by over 90%; the error introduced by reduction is low on a certain 

time interval, then starts to deteriorate. 

Model reduction decreases the dimension of the problem by 50-90%. The 

error in almost every individual component is small, but in some 

components it accumulates rapidly: all the time, or perhaps just over some 

intervals of time. 
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- Model reduction decreases the dimension of the problem by 50-90%. The 

error is generally small, but the reduced model does not reproduce the 

behavior over some time intervals correctly, leading to instability or 

unacceptably large error in any integration that includes the problematic 

intervals. 

When deciding whether it is advantageous to use model reduction at all, we have 

to take into account the computational cost of creating the reduced model, and the 

fact that sparsity of the full model is necessarily lost in reduction. The error and 

sensitivity analysis of the reduced model also carry an additional computational 

cost. We shall allow the analytic and pre-processing tools to take a significant time, 

as long as they are to be applied only once. The main strength of our work lies in the 

problems where the constructed reduced model is then re-used multiple times for 

different sets of parameters. 

The main content of our work is an extensive examination of features of the 

existing POD-based approach to model reduction. We introduce specific 

improvements for many aspects that previously were only abstractly characterized 

as important for the process. In particular, we explain how to use the results of 

goal-oriented model factor importance analysis to select the weighting, snapshot 

placement, and metric for POD-based reduction, and develop techniques for basis 

selection that take into account the different behavior of distinct model components 

under reduction. 
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We use such tools as adjoint differentiation, analytic differentiation of linear 

algebra procedures, and high-order interpolation to collect information on the 

sensitivity of the full and the reduced models that is inaccessible by simpler 

techniques of factor importance analysis. We revise an existing approach to error 

estimation in the projected systems, and derived an additional estimate, taking into 

account both the errors introduced by perturbation of the model inputs, and the 

errors introduced by reduction. We use model reduction to improve the 

computational efficiency of the descent optimization methods applied to initial 

conditions recovery problems. We implemented reduction-based optimization for a 

number of small test examples, and for a larger atmospheric chemistry model. 

Our numerical examples show that the developed techniques may be applied to 

both test models with basic transport and interaction effects, and the atmospheric 

chemistry models of high complexity (chemical mechanism S APRC-99 is used as a 

central example). 

All theoretical results that are required for implementation of numerical 

experiments are given in sufficient detail for the readers to reproduce and modify 

the procedures according to their needs. This led to a number of technical remarks 

not directly related to the topic of model reduction: for example, the description of 

conjugate gradient methods, or the procedure for obtaining the positive definite 

matrix from unreliable data. On the other hand, if we do not improve, or study the 

properties of a particular procedure, and the reader is likely to use a standard 
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implementation, we do not present a complete description. For example, the topic of 

adjoint differentiation is given without a full reference to Hilbert space theory. 

In some calculations, the number of variables, the dimensions of the arrays, and 

the indexing of summations are not specified: usually because there is more than 

one possibility, or the expression is not meant to be evaluated completely. In such 

cases, we write that the expression is'schematic". 

Now that we have provided some comments on the nature, scale and relevance 

of our central problems, the rest of the thesis material is organized as follows: 

- In Chapter 2, SVD-based model reduction, we explain our approach to 

dimension reduction, perform sensitivity analysis of the reduction process, 

and introduce a number of goal-oriented improvements of the approach. 

In Chapter 3, A posteriori error estimation, we describe how to measure an 

error introduced by model reduction on the solution of the full model. 

- In Chapter 4, Adjoint analysis, we explain how to efficiently differentiate the 

functional aspect of the model output using the adjoint system of differential 

equations. 

In Chapter 5, Optimization, we explain the use of model reduction in solving 

optimization problems. 

In Chapter 6, Numerical tools, we overview some of the standard numerical 

tools and practices for the problems of atmospheric chemistry. 

In Chapter 7, Examples, we apply the developed tools to a number of 

numerical models. In particular: 
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- In Section 7.1, Stratospheric chemistry mechanism, we pre-process a 

small chemical model and reduce the dimension from 5 to 2 

- In Section 7.2, Test optimization problem, we solve a generic ODE-

constrained optimization problem by iterative descent methods using full 

and reduced models. 

- In Section 7.3, "Brusselator model', we reduce a reaction-diffusion 

model by over 90%. 

- In Section 7.4, Molenkamp-Crowley problem we discretize a 

transport-only problem, reduce it by over 80%, and solve an associated 

initial conditions optimization problem. 

- In Section 7.5, Lorenz model, we apply our model reduction sensitivity 

analysis tools to a test model with advection and reaction effects. 

- In Section 7.6, Charney-DeVore model, we present an example of 

dynamics that is in principle not correctly reproduced by model 

reduction. 

- In Section 7.7, SAPRC-99 model, we apply reduction to a complex 

chemical mechanism, measure and improve the performance of the 

reduced model, and provide a tabulation of properties of chemical 

species in the context of model reduction. 

In Chapter 8, Conclusions, we summarize the main outcomes and findings of 

the performed work. 
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CHAPTER 2 

SVD-BASED MODEL REDUCTION 

The procedure of model reduction consists of constructing a truncated 

projection of the model equations onto a low-dimensional subspace in the space of 

model states. Let a full model be described by equations 

F(u,t) = 0 
(2.1) 

F:Rnx[t0,T]^Rm 

with the solution u(x,t) e R". The reduction in dimensionality of the system state is 

achieved by obtaining the solution u(x,t) s R" as a linear combination of k < n 

basis vectors 

u(x, 0 = 2 ] <li (x, t)<t>i + // = % + // (2.2) 

where // is the optional shift of the coordinate reference point. The basis of the 

reduced space is defined by the matrix 

0 = [^^2 , . . . ,^]€/?"x i (2.3) 

the columns of which are the vectors fy. The corresponding projection matrix of 

rank k is defined by 

n = <D(Drei?"x" (2.4) 

The reduced solution u satisfies the projected version of (2.1) 

I I F ( M , 0 = 0 (2.5) 

Formally, the reduction is applied to the model state, and the modifications 

to the system of equations appear as a consequence. In principle, reduction of 

16 



complexity could also be performed on the algebraic structure of the right-side 

equations. We do not perform this additional reduction, since our main models were 

already pre-processed at the construction stage, with elimination of the insignificant, 

or the redundant elements that could be identified by inspection of the mathematical 

structure of equations. 

The relations (2.2), (2.4), (2.5), after some algebraic simplifications, result in 

a system of equations for the coordinates qt(x,t) of the reduced system state in the 

new basis. In particular, for a model described by a system of n ordinary 

differential equations 

du ,. . 

-J = f(U-'} (2.6) 
u(t0) = p 

the reduced solution u(f) satisfies the system of n equations 

f—' ' ( f t . ) (2.7) 

«(/0) = O(D r(/)-/i) + // 

and the coordinates qi of the expansion (2.2) are subject to the reduced system of k 

equations: 

f ^ / C ^ " ' ) (2.8) 
q(t0) = ®T(p + {i) 

An explicit expression for the Jacobian of the full system (2.6): 

J = V9) = (.ifL) (2-9) 
OUj 
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leads to an expression for the reduced Jacobian of the system (2.8): 

j-iJJ^fto + K^VJto + nW (2.10) 
dqj 

The Jacobian matrix (2.10) of the reduced model is in general dense, although the 

Jacobian of the full system (2.9) may be sparse. 

Note that the motivation to replace the full model with the reduced model for 

the tasks of simulation consists of two parts. First, equations (2.8) are of smaller 

dimension than equations (2.6), resulting in an improvement in integration time, and 

in the volume for the optimal initial conditions search. Second, equations (2.7) are 

expected to be structurally less complex than equations (2.6). 

Once the basis <D is selected, the projected equations (2.8) are sufficient for 

reduction of a space-discretized PDE with an ODE term. Most of the rest of the 

material in this section will (directly or indirectly) concern the choice of the 

subspace basis {$}. 

Given a general expectation that the reduced solution should be a high-

fidelity reproduction of the state of the full model, and of its sensitivities, over a 

range of parameter values, we shall now introduce a projection that optimally (in 

the least squares sense) reproduces the state of the full model at some given time 

instances. We will then modify and enhance it. Our main tools are based on singular 

value decomposition, and closely related to such concepts as principal component 

analysis, covariance analysis, Karhunen-Loeve expansion, Hotelling transform of 

18 



stochastic process theory; and the principle of empirical orthogonal eigenfunctions 

of the interpolation theory. 

2.1 METHOD OF SNAPSHOTS 

Principal component analysis (PCA) is formally defined as an orthogonal 

linear transformation to a new coordinate system, such that the first coordinate axis 

is the direction of the greatest variance of the data by any projection, the second 

coordinate axis is the direction of the second greatest variance, and so on [80]. In 

the terms of PCA, model reduction by projection and truncations consists of keeping 

the first few components of the system state in new coordinates, and ignoring the 

rest. It is generally expected that the first few components will contain the most 

important aspects of the data. The degree to which this expectation is true depends 

on the specific problem, and the choice of the data set. The PCA approach to model 

reduction used to our work is the discrete version of proper orthogonal 

decomposition (POD), also known as the method of snapshots. We shall now 

introduce the method in sufficient technical detail, and explain in what sense this 

approach is optimal. 

Singular value decomposition 

Given a (rectangular) matrix A e Rnxm, n < m, of full rank n, we can find 

an approximation A e R"xm of rank k < n such that the error U - A 

using the singular value decomposition 

19 
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ft 

(2.11) 
!=1 

where U GR"X",V <=Rmxm are unitary orthogonal matrices consisting of column 

vectors ui and vt (known as left and right singular vectors); GX>.G1>. ... > <rn > 0 

are the singular values of matrix A. Multiplying (2.11) by ui,vi , we obtain 

Avt = GiUi 

ATu, = crv. 
(2.12) 

i i i 

implying that ui,vi are eigenvectors of matrices AAT and A1A correspondingly, 

with eigenvalues At satisfying 

X, = (j. (2.13) 

The optimal low-rank approximation is defined by a truncated version of 

decomposition (2.10): 

A = 2_ioiuivi =U 
i=\ 0 

0 

0 0 

... o 

V1 (2.14) 

In practice, SVD is computed through a series of orthogonalization (QR) 

decompositions by the Gram-Schmidt process with reordering reduction. The error 

introduced by SVD is 
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A-A = J > ' (2.15) 
2 i=k+\ 

We refer to [42] for derivation of the properties of SVD. 

• 

Method of snapshots 

Consider a set of N snapshots, or exact observations of the model at 

arbitrary times tx,t2,...,tN (time instances do not have to be in any particular order). 

The corresponding model states are organized as column vectors in the matrix 

u0 =[u(tl)Mt2),-MtN)]zRnxN (2.16) 

The matrix 

C = {U0-MWo-M)T (2.17) 

is known as the correlation matrix of the data set (2.16) if ju = 0, and the 

covariance matrix (of variability around the mean) if the term ju is defined as the 

mean of the observed model states: 

Subtraction of the term // effectively results in a zero-mean ensemble of data. The 

covariance matrix is used in the probability theory as a discrete version of the 

covariance function for the stochastic process [75]. The term ju is occasionally 

treated as optional, and can be omitted in notation: 

C = U0U
T

0 (2.19) 
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The basis 0 = [$ 02 ... 0k] for the reduced model is then obtained as k 

dominant eigenvectors of the covariance matrix, 

Cfa = A,fi , Al>A2>...>Zk, i = 1,2,...,k (2.20) 

This choice of basis is justified in the following theorem, adapted from [117]. 

Theorem 2.1 Optimality of the POD basis 

The solution of the eigenvalue problem for the correlation matrix (2.20) is 

also a solution to the following optimization problem: minimize 

^ = E K ) - * M L (2-21) 
y'=i 

or the distance of the time-dependent data set u(tt) set from its reduced 

representation u(t,), given that u(t) is subject to (2.2) rewritten in the form 

u(tj) = fJ(u(tjU)^i (2.22) 

and that the basis vectors {$} are orthonormal: 

(*t>+j) = 69 (2-23) 

where (,) is a Euclidean inner product. 

Proof 

Substituting (2.22) into (2.21), and simplifying by orthonormality, we obtain 

an a version of (2.21) 

112 k E**=£K>-*ML=SA IK-1 -ZK»('Ad) (2-24) 
y'=i y"=i V i=\ 
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which leads to an equivalent formulation of an optimization problem: maximize the 

alignment of the data set with the new coordinate vectors 

N k E^=TtTtm'M) (2-25) 
subject to (2.23). For the case k = 1, the associated Lagrangian functional is written 

as 

£=Z|(«('Art)f+*a-W£) (2-26) 
7=1 

The necessary condition for the solution of the optimization problem is 

VL = 0 (2.27) 

Index manipulation performed on the matrix U0 in the expression 

^ = 2J^(fdU0lj.^JJ0ij-2A^i=2fjfj(U0U
T

0)il-2A^ (2.28) 

rewrites (2.27) as an eigenvalue problem 

U0U
T

0(/> = X<f) (2.29) 

Since the matrix U0U
T

0\s symmetric positive definite, the problem (2.29) 

has a set of n non-negative eigenvalues \ > A2 >...>An > 0 and an orthonormal 

set of corresponding eigenvectors {$}. 

We shall now show that the eigenvector ^ corresponding to the highest 

eigenvalue \ , maximizes (2.25). By index manipulation, we obtain an alignment 

estimate: 
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N n 

(2.30) 

. /=! y=l 

Now compare $ with an arbitrary normalized vector with a representation 

^ = ^ ( ^ J $ m • The alignment of this vector to the data set (2.16) is written as: 

2 n n 

j=\ /=1 /'=ll \y=l / 
(2.31) 

The reasoning is generalized for k = 2,3,.- by induction. The second vector 

<fi2 for the orthonormal basis maximizes (2.25) with an additional constraint 

(^,^2) = 0, and turns out to be the second eigenvector of (2.29), the step (2.31) is 

repeated for <j> _L span^), and so on. The general form of (2.31) is an error estimate 

similar to (2.15): 

(2.32) 
j=\ ;=i ;=i 

To decide on the dimension of the reduced model using (2.32), we measure 

the fraction of'eigenvalue energy'of the model captured by a basis of dimension k: 

E4=E4/Z4 (2.33) 
i=l / i=\ 

24 



and select A:so that Ek&\ (within a margin of 1%, 0.1%, etc). For the eigenvalue 

distributions following the power law, this can be achieved for very small values of 

k. 

We note that in practice the dimension of the problem often exceeds the 

number of available observations, N <n. If that is the case, using the large matrix 

in (2.29) is computationally inconvenient. We can instead solve an eigenvalue 

problem with a smaller matrix: 

UT
0U0^=Xx<j>' (2.34) 

and find the leading eigenvalues and corresponding eigenvectors of U0U
T

0 from the 

relationships 

X, = k\ 

Compare (2.34) with (2.12) to see that fi are the right singular vectors, and 

(j> are the left singular vectors of the covariance matrix. 

We refer to [117] for a more sophisticated explanation of proper orthogonal 

decomposition, in the context of Hilbert-Schmidt operator theory. 

• 

The basis provided by the method of snapshots is an attractive choice for 

model reduction. It satisfies several empirically expected characteristics at once: the 

reduced model retains the characteristics of the data set that contribute the most to 

its variance; the directions of the coordinate axis in the new subspace are optimally 
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aligned with the data; also, if (2.18) is included in the process, the data mean is best 

represented. The method uses only standard linear algebra operations, and does not 

depend on the nonlinearity or generic complexity of the underlying model equations 

(2.1). 

The numerical stability of the reduced model remains an unresolved 

implementation issue. It has been observed that the method of snapshots 

occasionally leads to unstable systems of ODEs, even when the original system is 

stable [21], [53], but an efficient method to ensure stability has not yet been 

developed. A general a priori characterization of stable reduced systems is also not 

available. 

Formally, a reduced model does not have to inherit linear stability: even with 

u « u , J(u)« J{u), the solutions of the full and projected equations can produce 

structurally different phase portraits. For example, an orthogonal projection of a 

sink may produce a saddle point: 

J = 

1 0 

0 

0 

1 

0 

a 
a a -1 

~\ 

, <t> = 

J 

r-i 
0 

vO 

°1 
1 

°, 
OV<D = 

-1 (A 

v 0 1, 
(2.36) 

In general, the eigenvalues of the full and reduced Jacobian matrices 

J,<&TJ® are not related in any obvious way, unless we enforce additional 

conditions on the Jacobian J (such as require it to be symmetric, or negative 

definite: neither is typical for chemical reaction systems). In Section 2.4.3 we 

suggest a sampling approach to address this issue. We collect snapshot information, 
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detect the snapshot content that is likely leading to instability, then reject some of 

the snapshots and build a reduced model that is relatively more likely to be stable. 

To our knowledge, the only formal approach to ensuring ODE stability under 

projection is valid locally, near a single critical point, and at a cost of optimal 

representation of the snapshots [95]; not applicable for our tasks. 

While the projected version of the first derivative information is 

inconclusive, reduced equations preserve desirable properties of the second 

derivative, important in the context of convex optimization. The n Hessian matrices 

of the full model are given by 

82f 

OUpUj 

and the corresponding reduced model Hessians by 

dqidql 

We refer to the following simple theorem, adapted from [42]. 

Theorem 2.2 

If the matrix (2.37) is positive definite for all u, so is its lower-rank 

projection (2.38). In addition, the projection has a lower condition number. 

Proof 

For a positive definite matrix (2.37), the lower-rank projection is also 

positive definite: since zTHz>0 is true for every vector, it must also be true for 

every vector z := d>z of the reduced space, and zT®TH<&z > 0. 
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The eigenvalues \ >X2 >...>ln, Xl>A2>...>Xk of the symmetric matrices 

(2.37), (2.38) are subject to interlacing inequalities 

4 > i;. > V*+i i = l,2,..-,k (2.39) 

Then the reduced Hessian H has a lower condition number K : 

K(H) = y , K(H) = V (2.40) 

For a short proof of the inequalities (2.39), we use a form of Rayleigh's 

principle. Let vl,v2,...,vn, v^v^.- .^be the corresponding eigenvectors of H,H. 

For / = 1,2,..., take any vector st in the subspace 

span(vl,v2,...,vi)n(span(®Tvl,®
Tv2,...,cl)Tvi_l)) . 

Note that Os, e {span{vl,v2,...,vn_l)f. To obtain the left side of (2.39), we 

write out the Rayleigh's quotients for the Hermitian matrices: 

(4*,)r(<I«,) sjn, 

For the right side, replace H,H with -H,-H correspondingly. 

H,= 

A similar characterization for the Hessian of the output function 

' d23 ' 

v a M , . 5 M y y 
(2.42) 

is an open question. Empirically, a such Hessian computed for the reduced model 

has a lower condition number than the Hessian computed for the full model. The 
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formal statement on the subject, unfortunately, is not available. We mention the 

topic again, in Chapter 5. 

Because of its desirable properties and easy implementation, POD remains 

the most often used tool in dimensionality reduction of systems with nonlinear 

dynamics. At the same time, there a growing body of empirical results and counter

examples that demonstrate the limitations of the method ([6], [33], [52], etc). At the 

current state of the field of study, there is a need for a better understanding of the 

process, and perhaps for a hybrid, or modified approach. 

In response to the critical materials, we point out that the method of 

snapshots is essentially a data compression tool applied to first-order correlations in 

the observations of the model. It sometimes fails to detect and reproduce such 

implicit features of the full model as stability and nonlinear sensitivities, especially 

if the features are not strongly present in the snapshots. Once the features of interest 

are identified by techniques of factor importance analysis, the method of snapshots 

may be modified to better reproduce them in the reduced model. We will introduce 

such suggestions for improvement to the extent needed by our applied problems. 

2.2 SENSTIVITY ANALYSIS 

The overall effect of the model parameters p on the reduced model solution 

u is a combination of the parametric dependence of the full model solution u, and 

the details of the reduction procedure (such as the placement and the contents of 

snapshots). The questions of the relative importance of the parameters, the 
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snapshots, or of the choices in the reduction process may be hard to answer by 

inspection. 

The dependence of the reduced model on the individual parameters, and on 

the intermediate steps of the reduction process may be formally characterized by 

derivative information, or estimated by a statistical analysis based on many runs of 

the model, perhaps many runs of the model reduction process. Both approaches 

produce simplified, local characterizations of the model sensitivities. To estimate 

the global behavior, the analysis needs to be applied to representative subsets of the 

parameter space. 

The main reason for sensitivity analysis of the model reduction process is the 

availability of techniques that allow us to amplify the quality of reproduction of the 

important model components in the reduced model solution; we need a better 

understanding of importance than is available by inspection. Establishing the 

importance of each parameter in the reproduction of the output function by the 

reduced model is also important for characterization of validity of using the same 

reduced model for different sets of parameters: the region of acceptable values is 

necessarily narrower in the important parameters. 

2.2.1 DERIVATIVE INFORMATION 

In this section, we describe how to obtain the partial derivatives of an 

arbitrary output function 3 applied to the full and the reduced models. For practical 

purposes, we are primarily interested in first-order differentiation, but higher order 
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derivatives are also possible to obtain. Much of the construction is based on the fact 

that it is possible to differentiate the singular value decomposition of a matrix 

analytically (though not explicitly). The rest of the procedure consists of 

differentiation of ODE solutions, a standard task accomplished either by direct or 

the adjoint method, the latter explained in more detail in Chapter 4. 

The procedure is computationally expensive, but useful, because it allows to 

obtain the sensitivities of the reduction method itself. To our knowledge, this 

sensitivity information that was not examined, or available previously (except 

possibly a calculation by finite differences, requiring many runs of the reduction 

process). 

For a selected output function 3 , the first-order derivative can be expressed 

by chain rule: 

d3(u) _ d3(ii) du dQ> du 

dp du dO du dp 
(1) (4) (2) ( 3 ) 

The expression (2.43) is schematic: depending on the type of partial derivative 

needed, it may not have to be evaluated completely; correct indexing and the times 

at which the components are evaluated are provided as needed by specific tasks. 

Higher-order derivative information may be expanded similarly, with a higher 

computational cost. 

We assume that an explicit, differentiable expression for the output function 

is available, providing the term (1) in (2.43). We also allow 3 to be defined in a 

form of comparison between the full and the reduced models, as in (1.6). The type 
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of an output function that depends on u and u leads to a slightly more complicated 

form of the complete derivative: 

d3(u,u) _ S3(w,w) du dO du 83(u,u) du ._ . . . 
dp du dO du dp du dp 

(4) (2) (3) (3) 

The terms (2), (3), (4) in (2.43), (2.44) are not available explicitly, and 

require additional techniques. 

Differentiation of the singular value decomposition 

The term (2) in (2.44) represents the sensitivity of the reduced space basis 

with respect to the contents of the snapshots: 

dO 

du 

dO dO dO 
V 9 (2.45) 

du(t{) du(t2) du(tN) 

We use a procedure suggested by Papadoupolo et. al. [84] that differentiates a 

converged SVD. Since the procedure is relatively new, and has not been applied to 

practical problems in our field of study, we present it in some detail. Given the 

decomposition of a full-rank matrix A : 

A = imVT (2.46) 

let atJ, Uy, Error! Objects cannot be created from editing field codes, be elements of 

Error! Objects cannot be created from editing field codes., U, V correspondingly, and 

Error! Objects cannot be created from editing field codes, the diagonal elements of S . We 

differentiate (2.47) with respect to the elements ô . of the matrix: 

5 4 . . « l s r + t , . ^ + r a « l (247) 
day day day datj 
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Also, differentiating the orthogonality conditions UU = 0,VV = 0,WQ obtain: 

Sa"T ^ (2.48) 
^ W ^ = 0 
datj datj 

We denote the terms of (2.48) by 

C19
U=U 

8U 

day 
(2.49) 

8VT 

day 

We then multiply (2.47) by UT, V on the left and on the right correspondingly: 

UT—V = Q.ll. + — + lSlVy (2.50) 
day datj 

Notice that £ is diagonal, and Q^,Q'^ are anti-symmetric by definition, with zeros 

on the diagonal: 

urdA_v=8IL ( 2 5 1 ) 

day day 

The matrix has only one non-zero component: 
day 

PL = Wjk (2-52) 
day 

Substitution into (2.49) results in systems of two linear equations for each index pair 
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°l ( Q ^ )kl + °k ( Q F )kl = UikVjl Q 5 3v 

[<7k (
Q U )*/ + °l (toy)kl = ~uilVjk 

uniquely defining the components {£)!{,)kl,(Q
,J

v)kl, assuming singular values (Jk,<rl 

do not coincide. Taking anti-symmetry into account, there are n{n -1)/2 distinct 

systems, resulting in the expressions 

dau 1 (2.54) 
dV 

—— = -VQ!J 

datj 

To apply the procedure to the specific SVD used in model reduction, set 

^ = ( (7 0 ) ( t / 0 ) r , t / = <D,then 

d(A)> - = ( ^ ) H (2-55) 
d(u(tt))j day 

To differentiate an alternative eigenvalue problem described by (2.34), (2.35), set 

A = (U0)
T(U0), V = -<J> instead. We refer to the original paper for a treatment of 

the procedure in more detail, including degenerate cases with rank deficiency, and 

repeated eigenvalues. 

• 

Differentiation of the model state 

du 
Finding the term — , (3) in (2.44), is a standard task of sensitivity analysis 

dp 

[22], [120]. Assuming smoothness of the full model solution with respect to time, 
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and to the initial conditions, the derivative information can be obtained by direct 

differentiation of the ODE (2.6), or by the adjoint method. 

du 
By the direct approach, the sensitivity term y(t) = satisfies the system 

dpj 

•£=-^-f(u,t)y(t)+^-f(u,t) 
at du dp j 
(M(t0)),=0 i*j (2.56) 

(u(t0))j=l 

solved for every parameter p.,j = l,2,...,m. The terms — f (u, t ,p) , f{u,t,p) 
du dp j 

are available explicitly. 

du i 
By the adjoint method, the sensitivity —\t=T is found component-wise for 

dp 

each ut,i = \,2,...,n: 

^ = -um±Ax,T) + « W ^ (2.57) 
dp op dp 

with the adjoint variable u* defined by the system of ODEs solved backwards in 

time: 

du _ (df\ * 
~dT~ydu) U (2.58) 
(u\T)\=Sik 

A justification and a more detailed description of the adjoint method is given in 

Chapter 4, where we also explain how to obtain the derivatives of the output 

function 3 with respect to parameters p . 
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Differentiation with respect to subspace basis 

du 
The term , (4) in (2.44) is found by differentiation of (2.2): 

J O , JO. V **' J O , * W JO , 
(2.59) 

The term Y = —— is obtained numerically, by differentiation of (2.6). The right-
JO„ 

side simplifies as follows: 

d 

JO,. 
-(<l>Tf(Oq + ft,t)= 

d^1 

JO, 
•f(®q + ju,t) + ®7 dO , . ^ da 

v J O , JO 
J9(Og + fi,t) 

v J 

(2.60) 

leading to a system of equations: 

dY dOT „_ . _ / JO 

dt dOy 

JO 7 

«o,.,. 

JO 
V v 

q(t) + ®Y Jg(®q + fi,t) 

(2.61) 

Note that the trajectory q(t) needs to be recorded, possibly interpolated at missing 

JO J O r 

time instances. The matrices , are mostly sparse, the only nonzero 
JO.. JO.. 

component being unity in position (i,j), (j,i) correspondingly. An adjoint 
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approach to differentiation is less appropriate here: we may need the sensitivity of 

u(t) at multiple time instances. 

• 

Since the derivative information will be mostly used to find model elements 

of extremely high relative importance, a moderate numerical error in the 

computation of derivative is allowed. 

Selecting which components of the arrays in the expression (2.44) to 

evaluate depends on the available computational budget and the specific practical 

task. In particular, the first-order derivatives — — , — — characterize the 
du(tt) dp j 

influence of the snapshots and the parameters on the performance of the reduced 

d<$> 
model. The first-order derivative characterizes the dependence of the subspace 

dpj 

basis on the parameters. 

We can also obtain a first-order estimate of the sensitivity of the reduced 

model with respect to a small change in the placement of a particular snapshot, in 

effect, characterizing the relative importance of a small time interval (r - s, t + s). 

Let the matrix of observations be U0 = [u(tl),u(t2),...,u(tN_l),u(T)] . Then 

d3(u) d3(u) du d<& du d3(u) du dO> 
— = — i r - = —ir~ f(u,T,p) (2.62) 

dz du dO du(j) dr du t/O du(r) 

Some sensitivity information on the model can be obtained without 

differentiation of the reduction procedure, but then even an a posteriori information 
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on how the reduced model preserves the full model sensitivities will be lost. Using 

the expression (2.62) is an improvement on characterizing the importance of the 

du 
time interval by the quantity — = f(u, r, p) alone. We also note a distinction 

dx 

between the expression —^-^, and a derivative — ^ = —^ - • f (u ,T ,p ) . 

dx du dx du 

The latter is an incomplete, computationally cheaper estimate of the importance of 

time (x-s,x + s) for the performance of the reduced model; this interpretation 
requires an assumption that the basis O is fixed, which is not a valid unless it 

d<t> 
happens that all the components of are very small. 

du(r) 

For the sensitivity of the Jacobian (2.10) of the reduced model, we have the 

chain rule expansion 

dJ _ dJ dQ> du _ 

dp d<b du dp 

(ArtJ \ dO 

dO 
• J(Oq-{i,t) + <$> H(Oq-p,t)-q-O + ® J(Oq-MJ) 

dQ> du 

du dp 

(2.63) 

Even with the explicit, sparse forms of both the Jacobian J and the Hessian 

H of the full model, the evaluation of (2.63) is computationally expensive. This 

complexity presents a practical barrier to obtaining further sensitivity information 

related to the stability of the reduced system. 

In particular, obtaining the sensitivities for the eigenvalues of the Jacobian of 

the ODE would improve our understanding of numerical stability of the reduced 

model. However, this information would require an evaluation of (2.63), and 
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possibly a differentiation of the Jordan canonical decomposition, for which an 

analytic procedure is not available (to our knowledge). 

2.2.2 SENSITIVITY BY INTERPOLATING MODELS 

We shall now describe how to characterize the influence of the parameters 

on the output of the function through statistical regression. The idea is to treat the 

complete process, from model reduction to the evaluation of the output function as 

an action of a single functional on the inputs that may include model parameter 

values, or features in the reduction setup. This functional is not available explicitly, 

and has to be interpolated based on outputs (and, possibly, derivative information) 

of a few instances of model reduction with different sets of inputs. Once the 

interpolation is constructed in an explicit form, it can be used to predict the outputs 

of the model reduction process, and the sensitivities of these outputs. 

The idea of estimating the effect of individual inputs on the output by 

constructing an interpolating model appears in statistical learning theory, and has 

been recently successfully applied in the study of the coupled multi-physics systems 

[91] (where the function on the parameters can be obtained explicitly, but is very 

complicated), and of the social networks [91] (where the function is not 

deterministically available). 

While the evaluations of the interpolating model are computationally cheap, 

its construction is computationally expensive, so it should be treated as a one-time 

analysis tool. Its construction based on typical runs of reduction is meant to improve 
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our general understanding of importance of individual model elements that is not 

captured by the first-order derivative information; moderate error in importance 

assessment is allowed. 

Time-independent interpolation 

For a fixed placement of the snapshots, and a fixed dimension of the reduced 

model, the output function is dependent on the parameters (in our case, initial 

conditions) alone. This dependence can be estimated by an interpolating model 

T(p) « 3(p), meant to represent the combined effect of the two ODE solvers, the 

singular value decomposition, and the output function on the list of parameters. 

Clearly, the replacement of 3 with T adds another tier of model reduction, with an 

expected loss of quality. 

For a basis of multivariable functions 

^ = {Vl(Pl>P2>->Pm)>V2(Pl>P2>->Pm)>-} ( 2 - 6 4 ) 

we define 

T{p) = Y,Xi¥iiP) (2-65) 
i 

We normally use a polynomial basis, with each function defined by: 

Vj(p) = Vj{pl,P2,Pi,-) = Y[p{k,\p,) (2-66> 

where p{k,) is a single-variable polynomial of order k,. The set of polynomials p is 

arbitrary; for example, we can use a trivial choice p(k)(pt) = pk, leading to the 

multivariable basis 
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Pi Pi Ps -
(2.67) 

Pi P1P1 P1P3 ••• Pi P1P3 -

P\ P\P\ P1P3 - P1P1P3 PXPIPA - P\ -

A more sophisticated case would be a well-conditioned, orthogonal set, such as a 

family of Hermite, or Chebyshev polynomials. 

Depending on the required precision of the interpolation, and the available 

computational budget, the basis *F may include just the linear polynomials, or a 

complete set of multi-variable polynomials up to a fixed maximal total degree. In 

the presence of additional information about the relative importance of the specific 

parameters, the basis may be adaptive, with higher-order polynomials only in some 

of the most important variables, and linear polynomials in all the rest; for more 

details on basis truncation, we refer to our work in [91]. 

The coefficients Xi a r e found by collocation based on a sample 

P«\p«\..r.pV=(p?,pff>,...,p<!>) (2.68) 

from the parameter space P. The system of linear collocation equations 

3(P(,)) = S^^*0'(I)) 

3(P (2)) = Z z r , ( P ( 2 ) ) (2-69) 
i 

requires at least as many rows as there are polynomials in the basis *F, and, 

correspondingly, many full runs of the model reduction process. The number of the 

required runs may be even larger if the system is intentionally over-determined for a 
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better condition number and decreased bias in the interpolation. The system is then 

solved in the least squares sense [42]. 

The task is to make the procedure computationally feasible through the use 

of additional sensitivity information. In [91], [92], we introduce two approaches: 

reduce the number of variables, and make use of the derivative information. 

To reduce the number of variables, we partition the parameter set p into 

'important'and "unimportant', and define T as a function of the important parameters 

only. The reduction in the number of variables used in (2.65) can be also achieved 

through data lumping, in which the set of parameters p = (pl,p2,...,pm) gets 

replaced with a set of a few of their linear combinations s = (sl,s2,...,sk); the 

interpolating model is then defined as T = ^ZiVi(s) • It is natural to use an already 

obtained POD-based projection, and define sT =OpT. 

Note that in this case the relative importance of the variable s. is also a 

measure of the relative importance of the eigenvector $ , and can be used to select 

the subspace basis in a way not equivalent to capturing most of the eigenvalue 

energy, (2.33). This observation may be useful for the cases where an addition of a 

few non-dominant eigenvectors to the basis improves the quality of the reduced 

model. 

Since differentiation is a linear operator, we can augment the collocation 

system (2.67) with first-order derivatives of every equation. The idea is to fit the 

interpolated output function to sample output values, and also to fit the (explicitly 
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available) derivative of the interpolated output function to the derivatives of sample 

output values. The augmented system is written as 

d ' d (2-7°) 
-3(pw) = £*,-£-ir,(/>(2)), i = U,.,n, j = l,2,...,n dp j t ' dp j 

The derivatives y/i of the polynomial basis functions are available explicitly. 
dpj 

The left-side expressions 3(p(,)) can be obtained as shown in (2.44); moderate 
dPj 

error is allowed. The block of n derivatives provides an additional n rows for each 

row of the original system (2.67), resulting in a fewer required sample points. As 

long as the derivative information can be computed at the overhead of less than 

n + \ full runs of the reduction process, using (2.70) instead of (2.69) is 

computationally justified. Empirically, the computational overhead for the 

calculation of the derivative is 100-300%; [91] suggests a theoretical bound of 

500%. 

We note that it is possible to avoid the collocation procedure through the use 

of an orthogonal basis W: the coefficients Xt maY be obtained by the Galerkin 

method. In that case, to find a specific %k, we multiply the expression (2.64) by y/k, 

and integrate by parts over the set of possible parameters (here, P must be a 

bounded region): 

\Z(p)¥k(p)dp= jvk(p)^Z;Vi(P)dp=Zk-l + ?JZrO (2-71) 
p P ' i*k 
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*(p)¥k(P)- [^-Vl^dp = Xk (2-72) 
P dp 

where y/k (p) = \y/k(p)dp is the explicitly available primitive of the polynomial 

¥k (P) • This approach requires only one run of the reduction process to compute 

3(p)ysk (p), but possibly many runs (including the derivative information) in the 

1 dp 

representative set of points is chosen for the quadrature 

calculation of [ —y/k{p)dp, making it practical only if a very sparse 
P dp 

Time-dependent interpolation 

Now suppose that the sensitivity information is needed at a large number of 

time instances. For that case, we offer a simple scheme with a separation of time 

and state, while a more general approach lies outside of scope of our work. To build 

an interpolating model T(p, t) ~ 3(/?, t), we combine an expansion in terms of the 

parameters *P = {i//l(pl,p2,...,pm),y/2(p1,p2,...,pm),...} with an expansion in terms 

of time and frequencies S = {t;x{cQx,t),E,2{co2,t),...}, and write (2.64) as 

rQM) = Z^,0>)-2>^(') (2-73) 
• j 

The collocation procedure based on a sample from Px[t0,T] will have a form 

3(P,^ ( t )) = Z ^ ^ 0 » i ) - Z f l > y ^ ( / ( * ) ) . k = l,2,.., i = l,2,.,n (2.74) 
« j 

We suggest using a Fourier expansion 
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7d 
£,(0 = sin(—), C0j=j (2.75) 

and augmenting the system (2.73) with partial derivatives with respect to parameters 

p only. 

We note that by manipulation of the polynomial basis (2.64) and the inputs 

sample (2.68), we can build the interpolating model T to have any degree of 

nonlinearity (if an increase in computational budget is acceptable). We can also 

modify the setup to achieve increased precision in representation of response of the 

model to some selected parameters by assigning them more high-order polynomials 

in the basis. We can use the interpolating model to describe the aspects of the 

parametric dependence of the reduced model that would otherwise involve 

computationally expensive sampling in a large dimensional space, such as finding 

the values of the parameters for which the reduced model solution at time T stays 

within fixed bounds. 

Another possible task is estimating the influence of a single parameter on the 

variance of the output using the ratio 

S ( P , ) = « I ! (2.76) 
var[3] 

where each quantity E[3t] is defined on a sample Q from the parameter space P: 

£[3.] = E[3t](/?,) = T-T fc{pl,p2,...,pm)dpldp2...dpi_ldpM...dpm (2.77) 
rln 
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The quadrature required in (2.75) has to be evaluated multiple times to collect a 

sufficient sample for evaluation of variance. To make the process efficient, we 

suggest evaluating (2.75) with 3 replaced with an interpolation T, see [92] for 

additional details. 

We conclude this section with a remark that the results of sensitivity analysis 

presented in this section are open to interpretation: the meaning of factor importance 

is very problem-specific, and cannot be deduced from theoretical information alone. 

Informally, we define the time-varying importance (or an "index of importance", as in 

[92] or [55]) of a particular variable as an absolute value of the corresponding first-

order derivative of the output function, taken at a representative time instance, or 

averaged over the evolution of the model. If an interpolating expansion T was used, 

the importance is defined by the magnitudes of the coefficients at the polynomials in 

which the variable is present. We expect that the variable is important for the 

dynamics of the model if the "index of importance" is high, or changes significantly 

with time, more information is provided in comments to a specific example, in 

Section 7.5. 

2.3 SELECTIVE MODEL REDUCTION 

We suggest that the POD-based model reduction may be extended to the 

cases when the elimination of complexity is applied selectively: only to some 

components of the model state, or only to some time intervals. The proposed 
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manipulation of the reduction method is intrusive: it may cause the loss of desirable 

properties, in particular, the optimality of fit to the observations. 

The motivation for the approach comes from an observation on the 

limitations of the general method: while a feature of interest may be well 

reproduced in a reduced model, we cannot expect an arbitrary list of features to be 

simultaneously preserved under a single model reduction. This would not invalidate 

the idea of model reduction if we were to use different versions of the reduced 

model in combination, switching between them as needed during the simulation 

process, applying different reductions to different groups of components, or using 

an average of several reduced models. 

The features of interest that prompt selective model reduction are identified 

by inspection, or by sensitivity analysis. We will primarily attempt to apply a 

higher-quality reduction to the factors strongly influencing the output function, and 

a lower-quality reduction to the factors that are not essential in the full model. 

We will discuss a number of options, while a complete characterization of 

the effect of combining an arbitrary number of reducing projections lies outside of 

the scope of our study. 

A first simple case is based on combining two reductions of the same 

covariance matrix. This setup is of practical use in the cases where it is unclear by 

inspection of several (short-term) solutions, which dimension of the reduced model 

is preferable. 

Combination of two truncations of the same basis set 
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Let the full list of the covariance matrix eigenvectors be {^,,^2,...,^B}. The 

subspace basis sets 

produce the corresponding reduced model solutions u(kl\u(k2). In the special case 

where full model dynamics are combined with a single reduction, we set k2=n, 

then 0 ( n ) is a coordinate change matrix of full rank, u(n) = u . 

Based on the alignment error estimate (2.32), the solution u{kl) provides a 

more precise reproduction of the snapshots. While a formal statement describing the 

advantage in quality resulting from using u{kl) rather than u{kl) is not available, we 

can provide a partial characterization. The difference e = u(n) - u(k) satisfies the 

system 

^=ZMrl/(«w)-/(fi(i,))+E^W)) 
/=! i = t + l ( 2 J 9 ) 

n 

i=k+l 

n 

so for a sufficiently small k, even with f(u(n)) « f(u(k)) the term ^ ] ^ f / ( « ( t ) ) 
i=t+l 

is not negligible. 

Suppose that a lower quality reduction C>(il) is applied to the state 

components um ={ux,u2,...,u}), and a higher-cost, higher quality reduction <D(iz) is 

applied to u{2) ={uM,ul+2,...,un); note that model state components can be 
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renumbered without the loss of generality. A combined application of 0 ( t l ),0 (*2) to 

the full model equations (2.6) produces a system 

^- = {®«W^f(u,t,p)] /</ 

du, ^L = (^0^Tf(u,t,p)] />/ 
dt 

(2.80) 

«,(/„) = (o^W^CiioQO - //) + //}. i < / 

«,(/„) = (o* W ) r (ii0(p) - //) + 4 / > / 

The combined projection basis O c can be obtained by replacing a 

/ x (k2 - A:,) submatrix of <P(t2) with zeros: 

f d>(*2) 

O = 

i,i o ( i 2 )
1 A 0 

(*2)7 

/+l,i, <D<*2) <D (*2) 
/+!,*!+! 

V 

0 

<D (*2> 

(2.81) 

«,t2y 

In this setup, only the first kx vectors of the column space of CD = (^ ,^2 ,...,<f>k ) 

are orthonormal. The matrix <&c can then be normalized to the form 

O = {</>l ,<fi2 ,...,(/>k ) using a standard Gram-Schmidt process: 

(2.82) 

The same dimension of the reduced models u and u(k,) leads to 

approximately the same computational cost. The orthogonal form ON , however, 

can be truncated to the selective basis 
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<bs =(£,£,.-.,£), k^kKk, (2.83) 

resulting in a computationally cheaper model us. The association of the 

eigenvectors {$.} to the ordered set of the covariance matrix eigenvalues is 

preserved exactly in the first kx components of (2.83), and approximately 

afterwards. Because of orthogonality, the distorted vectors $ ,$+x,...,$ will not 

align with the first dominant eigenvectors. The alignment estimate (2.32) is still 

applicable: a selective solution us reproduces the snapshots information with an 

alignment error of at worst ^ Xt. 
i=\ 

Combination of two basis sets 

We use the same steps as before to combine two unrelated reduced models. 

Given the distinct sets of snapshots 

UOI = [uI(t(),uI(t
I
2)t...,uI(tjf)] 

(2.84) 
Uou = [uIJ(t

I
i
r),uII(t

I
2
I),...,uII(t»n ) 

leading to the covariance matrices 

Ct=(UOJ-vWOI-M)T 

Cn=(UOII-ju)(UOI1-ju)T 

and the distinct eigenvalue and eigenvector sets 
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truncated to reduced space dimensions kl,kIl. 

We apply the reductions, correspondingly, to the groups of components 

u(I) ={ux,u1,...,ul}, uUI} = (uM,ul+2,...,un). The system of equations is written in the 

same way as (2.80), leading to the combined projection basis 

d)c = i W „ . . . r f iO , 

V : '• J 

(2.87) 

leading to the normalized matrix Q>N e i?"xiff and the truncated normalized matrix 

<DS e R"xk as shown in (2.82), (2.83). 

This setup is of practical use in the cases where the correlations between the 

components of the ODE solution are slightly different over the time intervals 

(t{,t'N ),{t",t" )• This may be due to an insufficiently representative set of 

snapshots, non-periodic behavior of the solution, or the changing mean model state, 

to name a few issues that arise in the problems of atmospheric chemistry. We refer 

to [80] for more details on the difficulties in the Principal Component Analysis. 

The matrices C7, Cu, AC = Cn - Cf are symmetric, so the difference between 

the two sets of eigenvalues (2.85) is bounded by a Weilandt-Hoffman inequality: 

£ (if - 4 J < \\AC\\F < VH|AC|2 (2.88) 
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and furthermore, by a'hrinimax" characterization, 

|4-2f|<||AC|2, 1 = 1,2,... (2.89) 

We measure ||AC| to decide if the two given covariance matrices with a 

corresponding distinct reduced models are nevertheless sufficiently close to each 

other to be used in selective combination. For a sufficiently small value we shall 

define 

k = , / = 1,2,... (2.90) 

as a combined estimate for the set of eigenvalues corresponding the eigenvectors 

(2.88). If required for formal characterization of the process, it is possible to 

estimate the combined covariance matrix based on the information from (2.87), 

(2.90). 

• 

Alternating reduced models in time 

In comparison with a setup that is selective by component, selection by time 

interval is straightforward, and does not involve violating the optimality conditions. 

This modification to the reduction procedure is based on an understanding that 

different reductions may best represent the behavior of the full model over different 

time intervals. Given the reductions 0 ( / ) , 0 ( / / ) , we write the combined system of 

equations as 
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f = &'W"Vf(u,t,p), t0<t<t" 
at 

^- = &"W")Tf(u,t,p) t(I)<t<t(II) (2.91) 
dt 
u(t0) = Q>(IW»T(u0(p)-iu) + M 

To avoid the loss of significant components of the model state during the 

transition from one reduced model to another, we patch with the full model 

dynamics over a short time interval: 

— = f(u,t,p), t(I)-s<t<t(I) + s (2.92) 

dt 

• 

We have now introduced three operations to manipulate the subspace basis 

sets: combination of different orders of the same basis; selective combination of 

different basis sets by the state component; and by the time interval. For the 

sufficiently close participating reductions, the end product of the selective model 

reduction can be treated as a result of the straightforward POD reduction based on 

some covariance matrix. In that sense, the proposed additional tools do not 

introduce implementation difficulties not already inherent to the method of 

snapshots. 

2.4 IMPROVEMENTS ON THE METHOD OF SNAPSHOTS 

We will now discuss the features of the method of snapshots that were 

either chosen arbitrarily, or never introduced explicitly in the previous sections: 

namely, weighting of components, weighting of snapshots, and the placement of 
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snapshots. This will complete the discussion of the aspects of POD-based model 

reduction sufficient for our work. 

While the sensitivity of the reduced model behavior to such features has 

been widely acknowledged, the corresponding goal-oriented tuning of model 

reduction is still a relatively new topic, and remains under development ([88], [9]). 

We provide our perspective on weighting and snapshot selection: consistent with the 

information obtained by sensitivity analysis, and avoiding standard choices that 

ignore the dynamics of the model (as noted in [33], [38], [52]). 

The POD-based reduction method, as described in Section 2.1, produces a 

reduced order approximation u(t) on the time interval [t0,T], for the purposes of 

fast approximate reproduction of behavior of the output function, 3(u) ~ 3(«). The 

method did not take into account the relative importance of particular time instances 

or parts of the model state for the output function; in Section 2.2 we suggested 

measurements of that importance. In Section 2.3 we introduced an example of 

intrusive modification of the method consisting of post-processing the reduced 

subspace basis for selective treatment of different model elements under reduction. 

We shall now explain some of the possible non-intrusive modifications of 

the method that take into account the sensitivity and importance information during 

the construction of the reduced model. 

While the importance of choosing the weights and the snapshots has been 

acknowledged in the field of study, and some authors have noted the advantages of 

goal-oriented model reduction (for example, [9]), the standard choices of such 
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features are usually very simple, so our systematic examination of options is an 

improvement on the existing practices. 

2.4.1 WEIGHTING AND METRIC CHANGE, EVENT TARGETING 

We shall now discuss the traditional modifications to the process of 

extracting the essential data from the set of observations, introduced to take into 

acountthat model state components, and time intervals from which they were taken 

may have different importance for the representation of the model behavior. 

Historically, the basic technique known as snapshot weighting was 

suggested as an extension of the idea that the snapshots do not have to be distinct. 

To represent a greater relative importance of the particular model state at the time 

t = t,, and improve the quality at which it is reproduced by the reduced model, the 

corresponding snapshot can be repeated several times without modifying the rest of 

the procedure: 

U0=[u(tx),u(t2),...,u(tl),...,u(tl),...,u{tN)] (2.93) 

If each snapshot u(tt) is repeated wt times, the optimality condition (2.21) may be 

rewritten as 

£*=2>iK)-*ML (2-94) 

7=1 

An immediate generalization is to allow the snapshot weights wt in (2.95) to be 

arbitrary nonnegative real numbers, resulting in a more flexible representation of 

relative importance. 
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Another generalization of the method of snapshots leads to component 

weighting . To take into account a characteristic of importane at > 0 assigned to 

each model state component ui, the condition (2.21) may be rewritten as 

^ = Z K > - " M A
 (2-95) 

where ||..J is a weighted metric with an inner product 

(v,v')A = (A^v) • (A^v') (2.96) 

induced by a diagon matrix A with entries at on the diagonal. 

Weighted proper orthogonal decomposition 

The method of snapshots can be adapted to produce a basis corresponding to 

the weighted optimality conditions (2.94), (2.95). We refer to [34] for the full 

discussion of the details of dual-weighted POD method, and provide a brief 

exposition here. Given a set of distinct snapshots U0, a metric matrix A (usually 

diagonal, but it is sufficient to make it symmetric positive definite), and a (diagonal) 

normalized weights matrix 

n 

W = diag(wl ,w2,...,wn), ]T wi = 1 (2.97) 

we formulate a weighted version of the optimality condition. We now seek a basis 

O = ($,^2,...,^.) such that 

2 k 

Edisl =2>, |K) -"ML=Z w J A IK-) | - E A | K - ) , ^ ) | (2.98) 
]=l 7=1 V »=1 
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is minmal. We obtain the optimal basis as a solution to an eigenvalue problem 

C A ^ = ^ , (2.99) 

where the weighted covariance matrix is defined as 

C = (U0-M)W(U0-Mf (2.100) 

For the cases where the number of snapshots is smaller than the state dimension, we 

solve the eigenvalue problem 

wy\u0 -M)TMU0 -MW1/2=^<P- (2.101) 

and find the eigenvalues and eigenvectors of C from the relationships 

1 r , w K * . (2-102) 

"'•ft 

k 

The equations for the reduced model solution u = ^jqi{t)(/)i are written as 
;=i 

dt (2.103) 

u(t0) = OOrA(/? - / / ) + // 

with the coordinates q(t) satisfying 

% = &Af(Oq + M,t) ( 2 1 0 4 ) 

q(t0) = OTA(p + ^) 
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Weights selection 

The weights w = (w1,...,wn) are selected based on the expected properties of 

the chemical system. The standard choice in existing literature is to obtain the 

weights from the sensitivity information of the unmodified reduced model. In our 

basic experiments, we used the weighting scheme 

w. 
d3(u) 

du(tt) 
K 

d3(u) 

du(tt) 
(2.105) 

evaluated as explained in Section 2.2, normalized by w.= wj^_iwi. Using a 
;=1 

complete form of (2.44) results in a weighting scheme 

w. = 
d3(u) 

du(t^) 
(2.106) 

When the computational budget allows it, model reduction and the subsequent 

weight estimation (2.106) may repeated multiple times, with the obtained weights 

used in the next reduction. Note that starting at the second iteration we will be 

differentiating a weighted reduction, so the technical details will change. 

Specifically, the differentiation of the singular value decomposition of the weighted 

covariance matrix (2.55) will use the values A = (U0 -ju)W(U0 -/J)TA, U = Q> . 

The calculation of sensitivity for the weighted reduced model will include the 

(schematic) term 

dO 

diW^-u-I^2) 
• = ( A x r 

Jd> 

d(Jwi -u(t,)) 
(2.107) 
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instead of the term . 
du 

The expression (2.106) estimates the combined importance of the snapshot 

u(tj) and the attached weight w.. We note that because in this estimate the effects of 

the data, and of the weight are not separated, the sensitivity analysis of the modified 

reduction procedure may in fact be comparatively less informative. In principle, in 

the existing framework for finding derivatives, it is possible to formulate and solve 

an optimization problem leading to the set of weights that best reproduce an output 

function, but only at a fixed time and for a fixed ensemble of snapshots. 

We note that unintentional weighting of snapshots may be present even in a 

direct application of the method, since a sampling of states of the complex systems, 

with interactions happening at speed of multiple scales, will occasionally produce 

very similar snapshots. In our practice, this may lead to an implementation problem, 

related to the information inflation issues (of sampling theory). Repetition of a 

particular model state provides no new information on the correlations of the system 

and unnecessarily increases the influence of some correlations on the outcome. In 

this case, a smaller set of snapshots, or a weighting scheme that amplifies the unique 

snapshots, may improve the performance of the reduced model. 

• 

Metric selection 

The sensitivity of the method of snapshots to the choice of the inner product 

is noted in [34], [53]. For the model equations, an application of the matrix A is 
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essentially a change of coordinates. However, at the stage of selecting the subspace 

basis, the metric influences the obtained eigenvalues and eigenvectors, potentially 

resulting in significant distortion (or improvement) of the reduced model behavior. 

In the existing literature, the choice of the matrix A receives relatively little 

attention: it is usually selected a priori, based on very general expectations of its 

effects on the reduced model behavior. 

According to (2.98), the metric directly determines the relative precision 

with which the reduced model will reproduce the individual components in the 

snapshots. This suggests a diagonal form of the metric, and the schemes similar to 

(2.105), (2.106): 

A = 

A 1,1 0 

A 
> A v = 

d3(u(T)) 

dui (T) 
n,n J 

A„ = 
d3(u(T)) 

dui (T) 

(2.108) 

(2.109) 

The entries of A can be also chosen by inspection of the snapshots. To 

assess how the explicit characteristics of the chemical system influence the 

performance of the reduced model, we will use the schemes based on the average 

amount of the particular component in the system, and the variance of that amount: 

7=1 

(2.110) 

A,.,=var[(£/0)J = 
N 

^ut(tj)-Mi (2.111) 
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The suggestions for the metric selection presented here are only the first 

approach, our experiments show the need for a better understanding of the role of 

the metric. In practice, large deviation of A from the identity matrix / may leads to 

numerical instability of the reduced model; this implementation concern is possible 

to detect, but it still invalidates the reduction process. In practice, the schemes 

(2.108), (2.109), (2.110), (2.111) need to be additionally tuned to the form 

A J f c M r=/ + A/i7 (2.112) 

where TJ is some large constant. Note that the distinctions in relative importance of 

model state components are preserved in (2.112). 

• 

Event targeting 

The application of snapshot weighting and metric change allows us to 

achieve customized representation in the reduced model of selected elements in the 

full model evolution. We use a somewhat limited, but still widely applicable 

definition of an event of interest as a rectangular region 

(ul,u2,..i4,)x(Tl,T2)eR"x[t0,T] (2.113) 

or a selection of model state elements on an interval in time; model state 

components renumbered without the loss of generality. 

If a chosen event of interest lies within an identified time interval, and 

includes only a few model state components, we suggest that the representation of 

such an event in the reduced model can be amplified or dampened using an event 
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targeting approach. The approach consists of 4 steps, performed for each 

rectangular region such as (2.113): 

assign greater importance to selected components by metric change, 

assign greater importance to the time instances falling into selected interval 

by snapshot weighting, 

dampen the importance of the rest of the components by metric change, 

dampen the importance of the rest of the snapshots by snapshot weighting. 

The implementation for these 4 steps may be as follows: 

A„.:=A„.-c \<i<l 

Wj^wj-c' Tx<tj<T2 

A 1 / • ; ( 2 - 1 1 4 ) 

w,:=w.- j / , tj<Tlttj>T2 

where c,c' are either the empirically chosen constants, or component-dependent, 

time-dependent estimates of importance similar to (2.105), (2.106); (2.108), (2.109), 

(2.110), (2.111). Additional steps, such as metric post-processing (2.112) are also 

possible. 

The resulting effect for one rectangular region is visualized in Figure 2.1; note 

the additional events (light-grey regions) that got amplified, although not as much as 

the targeted event (dark-grey region). As a remark on implementation, we note that 

the consequences of snapshot weighting and metric change are not completely 

predictable: for example, the relative magnitude of their effects on the reduced 

model behavior is not available a priori. It may happen that snapshot weighting 
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provides excessive amplification of the event, and the metric change that is 

sufficiently large to compensate for it leads to numerical instability. In practice, that 

means that the event targeting procedure cannot be made fully automatic: it needs to 

be additionally tuned with the awareness of the properties of the model. 

• 

2.4.2 SNAPSHOT PLACEMENT 

To apply an unmodified method of snapshots, we did not need to specify 

how the time instances tl,...,tN should be placed. Ideally, we would like to obtain an 

effective reduced model valid for a long period of time, based on a few snapshots 

taken from a relatively short time interval. In practice, the states of the full model 

are obtained by physical measurements, or by integration of the full model. The 

choice of snapshots may then be limited by the availability of physical sensors, or 

by the computational budget. Our freedom in choosing the snapshots may be limited 

to omitting some of the available observations, or adding a few additional ones (by 

integration of the full model, or by interpolation). 

The available literature ([6], [33], [52], [88], etc) lists a number of cases 

indicating that the performance of the reduced model is sensitive to the choice of 

snapshots, that a uniform placement of snapshots is not always optimal, and that the 

omission of some snapshots from a large set may in fact lead to improvement in 

performance. Constructing additional examples is straightforward: a dense 

63 



placement of snapshots in the transient state of the chemical system will very likely 

spoil the performance of the reduced model. 

While a completely automatic optimal snapshot placement technique is not 

available, the already developed material on sensitivity analysis is sufficient for 

comparison and gradual improvement of snapshot sets. We suggest to start with a 

uniformly placed set of snapshots (2.16), and compute the first-order sensitivities 

\d3(u(T))\ 
Ss = i = \,2,...,N (2.115) 

duit^) 

If at least one of the values St, Si+l is higher than an empirically established 

threshold S, the time interval (7,,f,+1) is assigned / additional snapshots: 

[ / 0 : = ( / 0 | j M ( / - l ) ^ } (2.116) 

We have mostly experimented with high threshold values for S and 

moderate values of /, resulting in a moderately increased density of snapshots over 

very few time intervals, and a sparse uniform distribution of snapshots over the rest 

of the observed time. If the computational budget allowed it, a sensitivity estimate 

\d3(u(T))\ 
S..= i = l,2,...,N (2.117) 

duiti) 

can be used instead of (2.115). 

We note that adding additional snapshots to regions of high importance 

presents a trade-off between expected quality and observed effectiveness. After a 

few augmentations like (2.116), the size of the set of snapshots U0 becomes very 
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large, capturing more of the information on the model behavior, but also increasing 

the computational cost of linear algebra operations, and the chance of numerical 

instability. 

To compensate for this latter risk, we suggest rejecting snapshots in the 

regions of potential instability. Geometrically, any projection to a subspace is a 

smooth movement of every point. We can predict the consequences of this a priori 

unknown movement on the reduced model solution by examining the consequences 

of moving the snapshots in an arbitrary direction. The maximal distance of the 

movement is Edist (2.21), bounded as shown in (2.32). Given the reduction basis <I> 

obtained from the current set of snapshots, we evaluate the (first few) eigenvalues of 

the perturbed Jacobian 

J » * J(u + sxEdist, tt + e2
1-^-) = ®TJ(u + exEdist, tt + s2 ^ A ) c D (2.118) 

for a small sample of values —\<sx < 1, -\<e2<\. The eigenvalues are then used 

to assess the linear stability of the model ODEs in the region. If for some of the 

Jacobians (2.118) obtained in the neighborhood of the snapshot, the first (dominant) 

eigenvalues have non-negligible real parts, the snapshot u(tt) should be removed 

from the set U0. 

The procedure of accumulation and rejection of snapshots may be repeated 

several times, until snapshot ensemble of moderate size and good stability properties 

is collected. The smallest effective number of snapshots is the dimension k of the 

reduced space: with fewer snapshots, the rank deficiency of the covariance matrix 
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will not allow us to achieve the alignment (2.33). We suggest that the number of 

snapshots is too large if many of them have almost identical contents, thus leading 

to unintended weighting, as discussed in Section 2.4.1. To avoid the repetition of 

snapshot contents, we suggest an additional measurement of the distance 

\HO-uiUl (2.119) 

for the neighboring snapshots. 

We have now concluded the description of the basic tools used to improve 

the model reduction process; in Chapter 7 we apply them as needed to achieve 

acceptable performance of particular reduced models. In the remainder of the 

chapter we will list additional suggestions for improvement. 

2.4.3 ADDITIONAL SUGGESTIONS 

We shall now describe a number of modifications to the reduction procedure 

that resulted in some empirical improvement of performance, but are not applicable 

widely, because they are too problem-specific, or lack mechanisms of quality 

assessment and control, or resolve performance issues already better addressed by 

other techniques. The content of this section should be viewed as a collection of 

suggestions and open questions for future research. Topics mentioned here include 

the treatment of multiple timescales of the model dynamics in the context of 

reduction; processing of data that is numerically unreliable due to imperfect 

observations, or the integration errors; and direct manipulation of eigenvalues of the 

covariance matrix using the change of metric. 
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Use of slow-fast dynamics 

Schemes for the numerical integration of models of atmospheric chemistry 

(n particularly, represented by stiff ODEs) often include separate treatment of the 

model state components depending on their rate of change in concentration. We 

need to provide a general description of the practice before we explain how to 

include it in the model reduction process. 

If by inspection it is possible to partition the individual chemical 

concentrations into groups with very different magnitudes of the rates of change, it 

is said that the model exhibits the slow-fast behavior; either on the whole simulation 

interval, or during specific periods of time. In general, the definition is subjective, 

with thresholds for the slow and fast behavior are set empirically. In our applied 

problem, though, the distinction is easy to observe, with changes in relative 

concentration for the fast interactions orders of magnitude larger than for the slow 

ones. 

As a rule, in our applied problems, extremely fast chemical interactions 

between species typically also end quickly, exhausting the reagents participating in 

the interaction. The model then tends to evolve more slowly, until the concentration 

of the reagents builds up again, or a time-dependent external effect starts the fast 

interaction again. The evolution of an individual specie in time may include short, 

semi-periodic intervals of fast change in concentration (fast transient intervals), and 

longer intervals with slow, monotonous change. The transient intervals for different 

species are not exactly concurrent in time; it is more convenient to describe the 
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regions of the fast and the slow behavior of the model as the slow and the fast 

manifolds Ms ,MF, that is, listings of the slow and the fast model state components 

us,uF on different time intervals: 

Ms={jus(t)x(Tx,T2), MF=]JuF(t)x(Tl,T2) : 

^du(t)^ 
u =(uk,uh,...,uii), u ={uh,uh,...,uLi), 

v dt j 
« 

fdu{i) 

I dt J j 
,T,<t<T2 

(2.120) 

Note that this definition assumes that the model behavior has been observed at every 

time instance. In the absence of this information, we approximate the manifolds by 

rectangular regions aligned with the model state coordinates: 

M * « ^ a n ( V . ^ ) x ( J ( r i , 7 ' 2 ) 

MF *span(eJi,...ejJx{j(Tx,T2) 
(2.121) 

where (e,,...,e„) is the Euclidean basis. In this representation, the status of a slow, or a 

fast specie is a permanent label. 

On each interval (TX,T2), the model ODEs can be broken up into / "slow'and 

n — l 'fast'equations. 

dus 

dt = f(u,t) 

du 

dt 

(2.122) 

= fF(u,t) 

where s « 0 , and the functions fs:R'x(Tl,T2)->R", f :R"-1 x(Tx,T2)-^Rn 

produce outputs of approximately the same order of magnitude in every component. 

The format (2.122) (sometimes refined to also distinguish fast, intermediate and 

slow species) allows modifications of the integration process for a more stable and 
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accurate solution: for example, different integration schemes for the slow and the 

duF 

fast species [100], [101]; steady-state assumption = 0 after the end of the 

dt 

transient period [131], or different error tolerances for the slow and the fast 

manifold. 

In the context of model reduction, at least a basic awareness of the slow-fast 

behavior should be used to guide snapshot placement, selection of weighting, and 

other modifications of the reduction process. 

For our applied problems, the slow and fast manifolds contain information of 

different complexity and different numerical reliability. 

On the fast manifold, the error in the integration of the full model is 

relatively larger. The covariance information collected primarily on the fast 

manifold is empirically less reliable (possibly because the correlations between the 

components observed on the transient interval are only valid for a short period of 

time). The existence of the fast dynamics requires correcting our schemes of 

importance assessment of snapshots and components. While high values of 

derivatives lead us to place more snapshots of greater weight on fast transient 

intervals, it is more sensible to avoid it. The search for sources of instability 

suggested in (2.118) usually rejects the snapshots on the fast transient intervals, 

confirming the suggestion made in [105] that it is better to take snapshots from the 

slow manifold. Some sources ([1], [88]) suggest an iterative procedure with 

multiple runs of the reduction process, and adjustments of the snapshot set. While 
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improvement of the snapshot set via a converged optimization process is a 

theoretically sound idea, for our purposes it is not computationally efficient. 

We experimented with modified weighing schemes that take into account the 

slow-fast behavior. The idea was to base the weight of the snapshot both on the 

sensitivity information and on the distance from the fast manifold, both in time and 

the model state. This approach is potentially attractive, because it can process 

snapshot information automatically, but not fully developed because we lack an 

effective description of the fast manifold boundaries; the estimate (2.121) captures 

too much of the slow manifold. 

The steady-state assumption for the species with almost negligible 

concentrations fits well into the model reduction procedure, as a preprocessing 

operation on the snapshots. The resulting reduced model solution does not 

reproduce the steady state behavior; but there is a small improvement in the quality 

and numerical stability. 

The scheme (2.122) can also be used as a setup for selective reduction 

described in Section 2.3. The fast species have a more complex evolution structure, 

and may require a basis of relatively greater dimension to represent them; their 

evolution is better represented if the basis is created from the snapshots taken on the 

manifold. On the other hand, the slow manifold species behavior can be well 

reproduced by using a subspace of low dimension, based on uniformly (or even 

arbitrarily) placed snapshots. 
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Correct processing of the slow-fast behavior in the full model is an 

interesting open question in the study of model reduction. It provides a basic 

example of the need to balance the representation of two types of information: 

reliable and with few degrees of freedom versus unreliable, complex and inherently 

multi-dimensional. One practical approach consists of gathering a lot of information 

on complex behavior (transient intervals'), and then filtering it by rejection or 

dampening of most of the snapshots. 

The next topic of discussion is based on an extreme case of slow-fast 

behavior, where the information obtained on the transient intervals is not reliable at 

all, needs to be completely rejected, and then replaced with some surrogate data 

obtained using assumptions on the overall structure of the model. 

• 

Data omission and recovery 

In Section 2.3, we suggested a selective application of different reductions to 

some of the model state components, or over some time intervals. Another approach 

consists of selectively omitting the some data altogether and performing a projection 

to the reduced subspace. The omitted data needed to solve the reduced order 

equations is then guessed or interpolated based on the additional assumptions. The 

expected outcome is an improvement in some of the aspects of the reduced model 

performance at the cost of theoretical optimality. The setup is practical in the cases 

where some data is either inconsequential, or cannot be reliably reproduced by the 

reduced order equations. 
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As noted above, fast manifold is a basic example of the full model element 

with unreliable data. In the simplest case, the behavior of the species identified as 

fast is unreliably reproduced during a transient period, and almost constant soon 

after. A steady-state assumption for fast species may be combined with model 

reduction. The reduced model equations are written as 

*f = ®®Tfs(u,t) us(t0) = ̂ OTpF 

at 
diiF 1 N 

^ - = 0 uF(t0) = ®®T(^uF
o(ti) + v)-M (2.123) 

dt N^ 
pF=uF(t0) 

Note that this approach to reduction is intrusive: the reduced model (2.123) 

is aligned with the information contained in the snapshots, but only in the slow 

components. The fast components are forced to be steady-state, thus their evolution 

is reproduced by a constant. 

We can now recover the lost information using either a POD-based approach 

called gappy data recovery [36], [122], or Kriging interpolation [44]. The use of 

gappy data recovery is motivated by the fact that a least-squares optimal low-

dimensional approximation of the data was already constructed during model 

reduction. Kriging interpolation is a more generic statistical learning approach, 

known to perform better than gappy data recovery if large portions of data are 

unreliable. 

To indicate the components that contain unreliable or missing data, we 

create a mask vector rjeR" of zeros and ones: rjt =1 corresponds to the reliable 
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component of data ut, 77, = 0 to an unreliable component. Using the mask vector, 

we define a gappy inner product and a gappy norm: 

(v,v') =(7-v)-(i7-v') 

<2-124> v = 77 • v • 77 • v 
11 117 ' ' 

Let g = u(T) be a model state vector with unreliable components, and 

O = ($,$,,...,$,) the POD basis, &<«. We assume that the basis O is based on 

completely reliable data. The gappy POD is a two-stage procedure. First, an 

intermediate repaired vector gr is constructed as a best fit of the reliable 

components of g to the basis <J>. Specifically, we express the repaired vector in the 

POD basis: 

g r = 2 > M (2-125) 

We define the difference between the original and the repaired vector in the gappy 

norm, so that only the reliable components are compared: 

e = \\g-g 
1 

(2.126) 

The coefficients b = (bl,b2,...bk)
T are then chosen so that (2.126) is minimal. The 

critical point 

d 
g-g 

n 
= 0 (2.127) 

db, 

is found as a solution of the system of linear equations 
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Ab = B 
(2.128) A*=M>„> B = (8>'j\ 

Now the entries of vector gr are used to replace the unreliable data in g, 

producing a repaired vector 

gR=gr 77. = 0 
&, S, A ( 2 1 2 9 ) 

Since g r = g + A~le, we will use the value 

(<DOr)i| (2.130) 

to estimate the quality of the approximation. The expression (2.130) also 

characterizes the advantages of using a larger POD basis for gappy data recovery. 

The procedure for data recovery we have just outlined may be modified to a 

more flexible fuzzy logic formulation. The mask vector rj will consist of values 

between zero and one, characterizing different degrees of data reliability. 

We set gf = g\ in the step (2.129) if the corresponding mask vector 

component rji is below some small positive threshold. This approach is equivalent 

to using a weighted POD basis for gappy data recovery. 

As well as for the POD-based gappy data recovery, Kriging interpolation 

relies on correlations between model state components, as captured by the 

covariance matrix. The approach does not use the proper orthogonal decomposition. 

Instead, the unreliable state vector is assumed to be stochastically dependent on the 
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available snapshot data, and is replaced with a best linear unbiased estimator, in the 

Gauss-Markov sense. 

Given a set of snapshots U0 = (u(tl),u(t2),...u(tN)) we replace the unknown, 

or unreliable state vector g = u(T) by a repaired version expressed as a weighted 

average of the snapshot states: 

gr =fjwiu(ti), f > , = l (2.131) 
;=i ;=i 

The covariance function c:N" —» R is represented by the covariance matrix C: 

cGi(f,),n(/,)) = Cff (2.132) 

We now define a Kriging error 

E = fjfjwiwjc(u(ti)Mtj))-2fJwic(u(ti),u(T)) (2.133) 
i=l y=l i=l 

In statistical terms, we treat both g and gr, and explain the quantity (2.133) as 

£ = va r [g r -g ] (2.134) 

The weights w = (wl,w2,...,wN) defining the repaired vector (2.131) are chosen so 

that E is minimal, leading to a simple kriging interpolation 

w = C~ (2.135) 

^c{u(tN),u{T)/ 

The main difficulty in adapting the Kriging procedure to our case is that the 

correlations of the snapshots with the unknown state vector are not available.. The 

simplest suggestion is to set all unknown correlations to be equal to each other: 
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c(«(/I.),«(r)) = -^ (2.136) 

We may also assume that the strength of correlation depends on the distance 

\T -t\ between the snapshots. Then we set 

ciuiQMT)) = exp(-|r-;,.|) (2.137) 

and then normalize the obtained weights. Alternatively, we can base the estimate of 

the correlation on similarity on the reliability of the data, as identified by the mask 

vector j]: 

c(«(//)J«(r)) = exp(-||i/(/f.)-i/(7')|);) (2.138) 

Since the reliable components of g should not be replaced with the interpolated 

values, the final version of the repaired vector gR is still obtained by (2.131). 

We refer to [44] for additional comments on the performance of POD-based 

and Kriging recovery procedures. We have now introduced the two methods of data 

recovery that can be used on the solution of the reduced model equations, to 

compensate for the unreliable data in snapshots, or to correct solver errors. 

• 

Direct eigenvalue editing 

Suppose that the (weighted) covariance matrix (U0 - /S)W(U0 - fif (2.100) 

has positive eigenvalues A, > A2 > ...> Xn with the corresponding eigenvectors 

<j)x,...,(f>n. Let the corresponding weighted observation matrix (U0 - JU)W/2 have a 
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singular value decomposition (U0 - ju)W'2 =ULVT. Then, for an arbitrary set of 

nonnegative numbers S,x > S,2 >...>£„ we set 

A = KK1 , K = V (2.139) 

Then the matrix (U0 + L)W(U0 + L)T A will have eigenvalues ^ > £2 >... > E,n and 

eigenvectors <f)x,...,<f)n. To allow k{ « 0 , we replace the corresponding term 

with 1, forcing £. = A.. 

We suggest running the model reduction procedure until the eigenvalues of 

the unmodified covariance matrix are obtained. One possible metric change is to 

increase the distances between the eigenvalues without changing their ordering. We 

suggest a scheme 

£=*"~'+14 (2.140) 

for a small constant e > 0. 

The quality estimate (2.32) is applicable, resulting in an observation that in a 

new metric, the same quality of alignment can be achieved by a reduced model of 

smaller dimension. This does not result in an improvement in quality in the 

Euclidean metric, since the constants m,M in the metric equivalence relationship 
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wj|v|| < ||v|| < M|v|| are correspondingly the lowest and the highest eigenvalue of A, 

F F 
m = ——,M = —. If we use the scheme (2.140), m = \,M = s". However, if M is not 

K A 

too large, the described metric change is justified by providing a reduced model of 

smaller dimension, with almost the same performance. We also find that such 

change results in improved stability. This observation is partially justified by the 

eigenvectors of secondary importance being well aligned with the trajectories during 

the fast transient periods. 

For very different magnitudes of the original and the edited eigenvalues, the 

numerical error in (2.133) may lead to a non-positive definite matrix, which cannot 

be used to define a metric. In that case, we recommend approximation by the nearest 

positive definite matrix, by a Chen-Mclnray procedure for finding symmetric 

positive-definite matrices from imperfect measurements [112], [28]. Omitting 

theoretical details, to solve the approximate system 

AXttB (2.141) 

for a positive definite matrix X, we introduce symmetric decompositions: 

P = ATA 
(2.142) 

Q = BTB 

and Schur decompositions: 

(2.143) 
P = UP(DpfU

T
p 

Q = UPQUP 

We then define 
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Q = DPUT
PQUPDP = US(DS)

2UT
S (2.144) 

with diagonal matrices DP,D^. The least squares optimal solution of (2.141) is 

given by 

X = UPD-p
xUQDJUlDP

xUT
p (2.145) 

To find a positive definite matrix closest to a given matrix B, we set A = I. 

As a measurement of quality, we suggest the difference 

||A-A*|2 (2.146) 

between the matrix A obtained by (2.139) and its nearest positive definite 

approximation A' obtained by (2.144) . If the value is large, the metric change is 

numerically inefficient. 
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Figure 2.1 Targeting an event with two types of weighting 
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CHAPTER 3 

A POSTERIORI ERROR ESTIMATION 

To our knowledge, there are no available a priori techniques to predict the 

magnitude of a maximal error introduced by reduction. Because of this, we view the 

error analysis as a means to characterize and validate the performance of an already 

constructed reduced model, describe its expected behavior over a range of 

parameters, or to informally describe the expected performance of a family of 

reduced models. 

An a posteriori first-order approach has been developed by Petzold et. al. in 

[54], [55], [125]. We will now review the available material, simplifying it to fit our 

basic case where dependence on parameters appears only in the initial conditions. 

We derive an additional estimate that takes into account both sources of error 

(perturbation of model inputs and projection) at the same time. 

The approach consists of three steps: 

Estimation of the error in the full model solution caused by a perturbation in 

the initial conditions. 

Search for the directions of the maximal error growth in the parameter space. 

Estimation of how well the reduced model preserves these directions. 

The results of the three steps are put together to describe of an error introduced 

by a combined effect of the approximation by a reduced-order model, and the 

perturbations in the initial conditions. 
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Some elements of the approach are computationally expensive, so the 

method is not effective for the purposes of adaptive reduced model construction and 

improvement. We note that for many existing tools of model reduction not based on 

the POD, even such a limited technique is not available. 

The estimation of perturbation-induced errors is based on the adjoint 

sensitivity analysis, and small-sample statistical condition estimation (SCE). A 

minimal amount of information required to implement adjoint differentiation of an 

ODE-based model was provided in Section 2.2; again, we refer to Chapter 4 for 

additional details. 

3.1 ERROR INDUCED BY PERTURBATION 

We introduce a perturbation dp to the parameters p of a simple initial value 

problem 

du 

T,=m (3.1) 
w(0) = p 

resulting in a perturbed system 

du 

- * ' m (3.2) 
u(0) = p + Sp 

A perturbation error 

e(t) = u(t)-u(t) (3.3) 
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can be approximated by a first-order Taylor expansion, resulting in a system of 

equations 

^ - • W ^ (3.4) 

e(0) = dp 

where J is the Jacobian of the right-side function (2.9), and the trajectory u(t) is 

obtained by integrating (3.1). 

A straightforward approach to examining the growth of perturbation error in 

various directions is to solve (3.4) multiple times; impractical for large dimensions 

of the system. There exists an alternative estimate of the error at an arbitrary fixed 

time T, based on the following standard result from statistics [60]. The derivation 

of the result lies outside of scope of our work. 

Small-sample estimate 

For any vector ysR" and a unit vector xeR" chosen randomly and 

uniformly, the expected value of \xTy\ is proportional to the norm of y with a 

coefficient depending only on the dimension n: 

E[\xTy\} = W\\y\\ (3.5) 

with the Wallisfactor Wn ~ y , _^ formally defined 

l-3-...-(/i-2) 

as 

W=\ 
;r-2-4-...-(n-l) 
2-2-4....(/i-2) 

[;r-l-3-...-(«-l) 

n odd 

n even 

(3.6) 
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Then the expected value (3.5), found as an average for a small sample of values of 

x, may be used to estimate the norm |[y| : 

M«— &\Jy\2 (3-7) 

with a relative error of size £ occurring with a probability on the order of ^ , 

making sample size 7 = 4 sufficient for practical purposes. In Chapter 7 we 

occasionally use samples of the size n for factor importance analysis; the limiting 

factor on error estimation is not the computational budget, but rather the 

development cost. 

• 

To use the estimate (3.7) we obtain the values xTe(T) by adjoint differentiation of 

(3.4). We introduce an adjoint variable e* as a solution of a homogeneous system 

de T. ,. . _» 

^ = - J ( ! , ( 0 ' ' ) e (3.8) 

e\T) = x 

And integrate it backwards in time to obtain an expression 

xTe(T) = {ey{Q)dp (3.9) 

Since the solution of the adjoint system that is independent of dp, it can be used in 

the estimate 

«(o«^Ji;((5V(o)#) (3.10) 
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dt 

e\T)-

-v, 
= xt 

,3e, 

where ei if) are solutions of the family of the adjoint equations (3.8) based on a 

random sample {xx, x2,..., xn): 

(3.11) 

Directions of highest sensitivity 

A standard tool for finding the directions of the largest error growth is the 

singular vector analysis (SV) (suggested in the studies of dynamical systems 

predictability), based on the dominant eigenspace of the observed error matrix 

E0 = (E(tl),E(t2),...,E(tN)) with columns defined by a solution of 

e{t) = E(t)Sp (3.12) 

at a selection of time instances. Note the similarity to the development of the POD-

based model reduction: the dominant directions of error growth are singular vectors 

of the error correlation matrix EET. 

Alternatively, a single leading eigenvector can be found as a solution to an 

optimization problem. We will then define the maximal error created by a unit 

perturbation in the initial conditions as 

r-^sup^COl (3.13) 

and use an SCE approach to reformulate the problem as 

W n 

e"-{T) * max | N H -£- Nj(l xfet \5p? (3.14) 
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Using a fixed sample (xl,x2,...,xt)), we treat the expression on the right side of 

(3.14) as a function of c£> 

E(fy) = J£(\xJeifr)2 (3.15) 
;=i 

requiring only rj integrations of the adjoint system (3.8) to evaluate. This function 

has an explicit derivative 

£(i*f*,i#)2 

— = r1 (3.i6) 

allowing us to find min,, =l. ̂ p E by performing a search in the parameter space P. 

A framework for solving such optimization problems is provided in Chapter 5. 

• 

3.2 ERROR INDUCED BY MODEL REDUCTION 

We shall now estimate the error introduced solely by the model reduction. 

Suppose that a reduced model is created by projecting the model ODEs with the 

matrix H = Q(bT and adjusting to zero-mean ensemble with a shift term - / / . We 

define the reduction error 

d{t) = u(t)-u(t) (3.17) 

Then#(f) satisfies the system 

— = u(t) — u(i) 
dt (3.18) 

0(O) = -(i-n)(P-ju) 
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where / is the identify matrix. We approximate the right-hand side of (3.26) by the 

a first-order Taylor expansion: 

df) 
— *J{u{t),t)d-(I-U)f(u{t),t) (3.19) 
at 

Let E e R"x" be the solution of a (fundamental) homogeneous equation 

— = J(u,t)E 
dt (3.20) 
E(0) = I 

where / is the identity matrix. Note that (3.18) can be written as 

T 

6(T) = - $E(T)El (T)(I - Ii)f{u(r), r)dr - E(T)(I - II)(p - /d)dr (3.21) 
o 

Technically, this expression is a more complicated form of (3.12). We can now 

arrive at an estimate of the value xT6(T) for a randomly chosen unit vector x: 

T 

xT6(T) = -\xTE(T)Ex(r)(/-Yl)f{u{r),z)dz-xTE(T)(I-Tl)(p-n)dx (3.22) 
o 

We can now introduce an adjoint variable e as a solution to the ODE 

e(T) = x 

A combination of (3.20), (3.22) and (3.23) results in an expression 

T 

xT8(T) = -l(ey(T)(I-n)f(u(T),T)dT-(e)T(T)(I-Tl)(p-ju)dT (3.24) 
o 

The corresponding SCE estimate is written as 
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\m\*^p!e(T)\ 

= wjt J V Y (T)(I - n ) / (« ( r ) , T)dr - (e*)T(T)(I - Tl)(p - M)dr 

(3.25) 

and requires 77 evaluations of the adjoint ODE (3.23). 

Combined error 

For a complete report on the available tools on the propagation of error 

under model reduction, we also derive an estimate for the model with combined 

effects of model reduction and perturbation in the initial conditions. We denote the 

solution of such model as u . We write the overall error &(t) as the difference 

@(t) = u-u =u-u + u -u + u -u = 0(i)+e(i)+6(t) 
(1) (2) (3) 

The terms (1), (2), (3) in (3.26) are described, correspondingly, by ODEs 

dd 

(3.26) 

dt 
= J(u(t),t)0-(I-U)f(u(t),t) 

<?(0) = - ( / -n ) (p - /0 

de(t) 

dt 
e(0) = 4? 

= J(u(t),t)e 

(3.27) 

(3.28) 

dd 

dt 
= J(u(t),t)0(t) 

(3.29) 

6>(0) = - ( / - n ) ^ 

Note that integration of the full and the reduced model equations is required to 

obtain u(t), u{t). The corresponding (fundamental) adjoint ODEs are (3.8), (3.23) 

and (3.8) again: 
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dem* 

dt 
em\T) = x 

= -(y(«(0,ore' 
T „0)* 

(3.30) 

de (2)* 

dt 
eil}\T) = x 

= -J(u(t),t)e (2)* 

(3.31) 

Je(3)* 
= -J(u(t),t)e (3)* 

ew=evr 
dt 

e(3r(T) = x 

The assembled SCE estimate is written as 

(3.32) 

z(0 +. 
(3.33) 

| ( e , ( i r ) r(r)(7 - II)/(ii(r), T) dr - (e?rf (70(7 - II)Q> - /i)</r 
o 

[^)r(0)*]+... 

0> ( 3 )Y (0)<^- j(e/
3)*)r(7)(7-U)dpdr 

The obtained expression is bulky, but more convenient than three separate SCE 

estimates. It requires 2TJ evaluations of the adjoint ODEs. 

Comparing the responses of full and reduced models 

We shall now complete the chapter with the last remark on a posteriori 

characterization of the model to which both perturbation and reduction were 

applied. To compare the perturbation responses of the full and reduced models u,u, 

we construct the error correlation matrices E0 E0 and E0 E0, where the 

perturbation-induced error is observed for both full and the reduced models: 
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E0=(e(tl),e(t2),...,e(tN) (3.34) 

E0=mi),I{f2\-MtN) (3-35) 

For the error correlation matrices, we denote the corresponding sets of eigenvectors 

as 

F = (V"V"'"V-> (3.36) 
K = (v„v2,...v„) 

According to SV (see comments before (3.12)), the dominant eigenspaces of 

the correlation matrices contain the major parts of the evolution of a perturbation-

induced error. A computationally practical similarity index S is suggested in [55] as 

a measure of the difference between the first few eigenvectors from the sets (3.21): 

A=Zi(v„vy) (3.37) 
i=l 7=1 

Another similarity index compares the errors induced in the full model, and in the 

reduced model, by a small perturbation along the dominant eigenvector of the full 

model: 

12 = min 
maxm=sMhe maxi»i=g,»iiv1

 e_ 

.m a x |*H*ih\ ^ max|*N,*iiv1 * ) 
(3.38) 

The expression (3.38) can be evaluated using the previously derived SCE estimates. 

• 

In conclusion of this chapter, we note that the presented error estimation 

techniques can be used to ensure (experimentally) that a constructed reduced model 

adequately approximates the magnitudes of the model state components and reject 
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the reduced model that may fail to do so. Some of the available sources suggest 

alternative approaches to a posteriori error estimation [82], [47]. As far as we know, 

they are approximately equivalent in performance to the material presented above. 
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CHAPTER 4 

ADJOINT ANALYSIS 

In this chapter, we present technical information on adjoint differentiation of 

the output functions of ODE-based models with respect to parameters. The task is 

well described in the available literature: see, for example, [22], [69]. The adjoint 

differentiation of ODEs was used in the material of Section 2.2, Chapter 3. We now 

provide a more complete and specific description, sufficient for our tasks of factor 

importance analysis and iterative optimization. 

Adjoint operators in Hilbert spaces 

The theoretical basis for adjoint differentiation is a part of Hilbert space 

theory. For Hilbert spaces HX,H2 with an inner product Q and a continuous linear 

operator M :Hl —»H2 there exists a unique, continuous linear operator 

M* :H2 ->H1 such that for any two vectors vleHl,v2e H2 

(Mvl,v2) = (v2,M\) (4.1) 

The operator M* is called the adjoint of M. When the operator M is represented 

by multiplication by a matrix, Mv = M-v, M* corresponds to the complex 

conjugate of that matrix, M*v = M* -v. We write the relationship between the 

model state u and the parameters p as 

u = G(p) (4.2) 

In practice, the relationship is defined implicitly, by the generic model equations 

(2.1); we have to assume it is differentiable. A perturbation du in the state, due to a 
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perturbation 8p in the parameters can be approximated by a first-order Taylor 

expansion, written as an inner product 

du = (g,dp) (4.3) 

where g = VpG, the result of differentiating the right-side of (4.2) with respect to 

parameters. The expression (4.3) is called the tangent linear equation to (4.2). The 

variation of the cost function 3 with respect to u is 

£5 = (VB3,<S/) = (V„3,g#) = (s*V„3,4>) (4.4) 

for an operator g* adjoint to g. Compare with the variation of the cost function 

with respect to p 

83 = (Vp3,%>) (4.5) 

to obtain the adjoint equality for the gradient: 

V , 3 = gV , ,3 (4.6) 

The term V t t3 is available from the definition of the cost function, but the adjoint 

operator g* is generally not explicit. In the particular case where the state u is 

subject to a system of ODEs (2.6) with parametric dependence in the initial 

conditions, the adjoint variable u =g*u is solution to the (adjoint) ODEs: 

du _ (df 
) u =-{j(u(t),tjfu (4.7) 

dt \du, 

with the initial conditions chosen to satisfy a version of (4.4). 
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The decision to use the adjoint method is based mainly on the dimensions of 

the problem inputs and outputs and the available computational budget. The 

advantage of the adjoint method is that the adjoint system only needs to be solved 

once to produce all components of the gradient. Given a scalar output function and 

multiple input parameters, adjoint differentiation is more efficient than the direct 

differentiation shown in Section 2.2, (2.56) that would require additional integration 

of the model for each parameter. 

We note that while the theoretical foundations of adjoint differentiation are 

straightforward, the development of the adjoint operator of a given problem can 

sometimes be challenging. In the following sections, we provide details on 

differentiation of our basic ODE (reaction model), and PDE (reaction-transport 

model). We refer to the existing extensive literature for additional examples: [24], 

[35], [97], [119]. 

4.1 DIFFERENTIATION OF AN ODE MODEL 

So far, we have not explained how the adjoint term g* is obtained, and did 

not justify the expression (4.7). We will now explain how to implement 

differentiation for the cost function given in the generalized form of (2.6): 

3(/0=j |K(0-iio(0|2<ft (4.8) 

Here u0{t) is the exact observations of the model, and |..| is an arbitrary norm. We 

will assume that the ODE has the form (1.2), with p = u(t0). We use the notation 
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2(p) = GN(u(T))+ tg(u(t))dt 
i (4-9) 

g(u(t)) = \\u(t)-u0(tf, t0<t<T; GN(u(T)) = \\u(T)-u0(T)f 

A separate term GN is introduced so that the presented material may be easily 

adapted for the case where the output function is defined only on a single time 

instance: 

5 = \\u(T)-u0(T)\\ (4.10) 

First-order adjoint differentiation 

We shall now repeat the steps (4.2) - (4.6). For a perturbation Sp in the 

parameters p , the corresponding perturbation in the state is 5u = u-u satisfies an 

ODE 

ddu . ._ . . , . 
= f(u,t)- f(u,t) 

dt (4.11) 
du(t0) = cp 

Expanding the expression by first-order Taylor series, we rewrite (4.11) as 

dSu _ 8f(u, t) 

~dT~ 8u (4.12) 
Su(t0) — <?p 

The expression (4.4) is written as 

£5 = (Vp3,4>) = (VumGN,Su(T))+ \(Vu(t)g(u(t)),Su(t))dt (4.13) 

To find the non-explicit terms in the expression, we multiply (4.12) by a so far 

unspecified adjoint variable u* and integrate by parts over the interval t0 <t<T': 
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We shall now define u as a solution of the adjoint problem with a terminal (instead 

of the initial) condition: 

du* (df(u,t)^ 

dt du 
« ,+vB ( 0g(t t(0) 

M*(r) = va(r)G jV(«(r)) 

We substitute w* into (4.14), written for a particular case ^ = du(0) = £p : 

T 

{fy-u\t0)) = (Su(T)-u\T))+l(Vu(t)g(u(t)),Su(t))dt (4.16) 

Then (4.13) can be simplified to an expression 

V , 3 = -«•(/„) (4.17) 

which is a particular case of (4.6). 

The complete computational procedure required to find the derivative of the 

output function with respect to the initial conditions consists of integrating the direct 

model equations (2.6) forward in time, to find the trajectory u(t), and then 

integrating the adjoint model equations (4.15) backward in time to find the adjoint 

initial state u*(t0). If the integration of (4.15) requires variable time step in the 

numerical solver, then at least for some time instances the exact model state u(tt) 

will have to be interpolated from the nearby values. 
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Second-order adjoint differentiation 

The developed procedure can be repeated again to obtain a selection of Hessian 

vector products (i.e. directional second derivatives), resulting in extension of the 

sensitivity analysis of Section 2.2 to the second order. The evaluation of every 

component is not feasible in practice due to computational expense. We refer to the 

[120] for additional information. 

We introduce another perturbation dp into the initial conditions of the direct 

model (2.6) and note the effect on the adjoint model (4.15). We redefine the terms 

5u,du as the resulting perturbations in the direct and the adjoint variables u,u 

correspondingly. 

The perturbations are described by the equations 

ddu f df^ 
dt \duj 

Su 
(4.18) 

Su(0) = p 

u + V2
ug(u(t))-du 

d5u" r*fi..*\T
 / ^ / Y . . A V 

dt 

Su\T) = Q 

df(u,t)\ujd
zf(u,t) 

du 8u2 j (4.19) 

The expression (4.19) is called the second order adjoint model to (2.6). We denote 

perturbed adjoint variable by u* =u* +du*, and the perturbed initial conditions by 

p = p + Sp. The derivative of the output function (4.8) with respect to the initial 

conditions can be approximated to the first order by an expansion 

V-3(u) = Vp3 + Vz3-op (4.20) p v ' p 
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By the first-order adjoint analysis 

Vp(u) = u*(t0) (4.21) 

Applying (4.20), (4.21) for a specific case t = tQ we conclude 

Su\t0) = V23-fy (4.22) 

The term du*(ta) is obtained by integrating (4.18) backwards in time. Setting the 

vector dp to the values of coordinate vectors e(1),e(2),...,e(n) with 

e(i)i=l; e(i)j=0: i*j (4.23) 

we obtain, from (4.21) a list of n equations each defining a column of the Hessian 

V 2 3 . 

4.2 DIFFERENTIATION OF A PDE MODEL 

While most of our analysis of the chemical transport is done for the model 

discretized to a system of ordinary differential equations, this may not be the best 

form for differentiation. We shall now develop an adjoint operator for the full 

reaction-transport PDE (1.4), with parametric dependence in the initial conditions: 

du 

— = -V-(au) + V-(KVu) + f(u,t), t0<t<T 
at (4.24) 
u(x,tQ) = u0(x) = p(x), x e Q 

For the conditions on the boundary <9Q we shall use either the prescribed value 

(Dirichlet), or the zero normal derivative (Neumann) forms: 
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u(x,t) = um(x,t), x e d Q (4.25) 

^ ^ = 0, xedCl (4.26) 

dn 

where n is the outward normal vector of the spatial domain. 

We define the output function using an un-discretized form of (4.8): 
T 

3(p)= \\\u(x,t)-u0{x,t)fdt (4.27) 
/„n 

and use the notation 

30>)=fb(«(0>* 
io (4.28) 

g(u(t)) = \\u(x,t)-u0(x,t)\\ 

For the perturbation in the state 8u(x,t), the corresponding perturbation in the 

output function can be expressed to the first order as 

83 = (Vu3,Su) = jjSu(x,t)-^-dxdt (4.29) 

(„n du 

where du is due to a perturbation in the initial conditions <5w(x,0) = <5p, and satisfies 

the tangent linear model to (4.24): 

— = -V • (w&i) + V • (KVSu) + $-)8u 
dt K } K ' ydu (4.30) 

Su(x,ta) = (%>(x) 

with boundary conditions corresponding to (4.25), (4.26): 

Su(t,x) = 0 (4.31) 

or 
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^ H = 0 (4.32) 
dn 

For convenience of notation, we record (4.30) as 

ddu T( \s. = L(u)ou 
dt (4.33) 

L(u):L2((t0,T)xQ,)^L2((t0,T)xQ) 

i.e. record the right-side of the PDE as an operator action. We multiply (4.33) by an 

adjoint variable u and integrate over (t0,T)xQ: 

rddu 
\\ u dxdt = \\L(u)Su -u*dxdt (4.34) 

By (4.1), there exists an operator L* such that 

T T 

J \L(u)5u • u*dxdt = J )8u • L* {u)u dxdt (4.35) 

To specify L*, we integrate the left-side of (4.35) by parts: 

T T T 

j j ( - V • (wdu))-u*dxdt = \\Su • (V • (wu*)pxdt + J \w&tu* • ndxdt (4.36) 
t0n t0n t0 en 

T 

^(V-(KVSu))-u*dxdt = 

T T T 

= f \du • (V • {KNu*)jdxdt + f \du • KVu* • ndxdt + J \KS/du U • ndxdt 

(4.37) 

(„ n t„ en („ en 

where n is the outward normal vector of the spatial domain. The last term of the 

expression has already been evaluated in differentiation of an ODE: 

\(($-)Su\udxdt= \\du\(^-)Tu\dxdt (4.38) 

ia\ du J ,J ^du ) 
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The expressions (4.36), (4.37), with appropriate boundary conditions for the adjoint 

variable, provide a form of the adjoint differential operator 

L\u)u =V- (WK*) + V - ( £ V I / * ) + (—)rK* (4-39) 
du 

We shall now integrate (4.34) by parts, using (4.35): 

J J] + L*(u)u* • dudxdt = \8u -udx T
h (4.40) 

tan\ "t J n 

The adjoint variable u*(x,t) is defined as the solution of the adjoint PDE 

du T*, . * dg _ ^ 
= -L(u)u ——, t0<t<T, x e Q 

dt du 
u\x,T) = 0, x e Q (4.41) 
u*(x,t) = 0, Vw*-/? = 0, x e S Q 

Then a special case of (4.27) with du(0,x) = 8p(x) simplifies to 

£s= fo(x)-u\t0)dx (4.42) 
Q 

and the derivative is expressed by 

- ^ L = «•(/„,*) (4.43) 
dp(x) 
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CHAPTER 5 

OPTIMIZATION 

As explained in the material of Chapter 2, while the process of creating the 

reduced model has essentially the same computational cost as generation of 

snapshots, the factor importance analysis and improvement of performance of the 

reduced model may require multiple integrations of the direct and the adjoint model 

equations. The computational cost may be unacceptably large, making the use of the 

full model more attractive. That is why model reduction is mainly motivated by 

applications that require multiple uses of the same model. In such applications, the 

reduced model replaces the full model multiple times. 

One such application is the study of sensitivities of the full model: it is easier 

to compute derivatives, or sample the solutions in the reduced space. In addition, the 

POD-reduced model has an advantage of already identified and separated dominant 

factors. 

Another application is the iterative solution of optimization problems, where 

a reduced model of sufficient quality is used to estimate the full model state and its 

derivatives (of first, but also, possibly, of the second order) at every iteration. This 

idea is central to our work. 

Our central subject of study is the initial conditions optimization. The task is 

usually to choose the initial conditions of the ODE system so that the best match of 

an output function to some expected values can be achieved. This class of problems 

(i.e. improvement of the model performance by making the distance of the 

102 



numerical solution from the observed data optimally small) arises in the process of 

data assimilation, as explained in Chapter 1. The material presented here may also 

be generalized to a wider class of optimization problems. 

Given a general system of algebraic-differentiation equations (2.1) with a 

particular case of an ODE 

du r, x — = f(u,t,p) 
dt j y , , F ) (5.1) 
u(t0) = u0(p) 

we introduce an output function 

3 = 3(u(t),p):R"xn -^R 

(5.2) 
= \\u(t)-u0(t)fdt 

<0 

also known as cost, or merit function in this context. Since the solution u(t) is 

determined by the choice of the parameters, we formulate the parameter 

optimization problem on the parameter set P: 

minp 3(u(t),p) 

p = (pl,p2,...)eP^R" 

subject to (5.2). 

In principle, the parameter space P may be equal to the whole state space 

R". In our practical problems we expect that each parameter component pi is 

restricted to an interval of empirically reasonable values: 

a-ff l)(/> (0)),*/> lS(l + *,)G>(0)), (5.4) 
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for a set of constants {sl,s2,..^) of moderate magnitude, resulting in representation 

of P as a rectangular region. 

To simplify the notation, we will redefine 3 , F as expressions dependent only on 

the parameters: 

F := F(p) :Rn -+R" 

We can also reformulate (5.2) so that the parameters only appear in the initial 

conditions: 

H = f M (5.6) 
u(t0) = p 

The fact that (5.2) is replaced with (5.6) causes no loss of generality, and is of little 

practical significance in our main application. 

In the scope of our study, we treat (5.4) as a generic model-constrained 

nonlinear optimization problem, that is at least locally convex and solvable by 

sequential unconstrained minimization techniques (extensively described in [37], 

[41], [46], [57], etc). While in practice our techniques also apply to the problems 

that are only approximately convex, in the scope of this study we are mainly 

interested in the problems that can be solved in reasonable time using the simplest 

iterative search based on first-order derivative information. 

We will now introduce a group of such simple descent methods for 

nonlinear, model constrained optimization. We will discuss applying the same 

method to the problems based on the full, and on the reduced versions of the model. 
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While some derivative information is available analytically, we will mostly use 

adjoint differentiation, as explained in Chapter 4. We will identify a number of 

possibilities to include model reduction into an otherwise computationally 

expensive optimization process. The practical applications of the material are 

provided in Chapter 7. 

5.1 DESCENT DIRECTION METHODS 

For an optimization problem (5.4), subject to (5.6), we would like to find a 

critical point pmin such that V p 3 = 0. Once the point is located, it will be identified 

as a minimum by convexity. 

A widely applied feasible direction method constructs a sequence p(k), 

k = 0,1,2,... of approximations to the minimizing set of values. For each of the 

points p(k) eP, starting with the initial guess p{0), we choose a direction vector 

d{k) e P that satisfies the descent condition 

Vp3(p)-d(k)<0 (5.7) 

We shall now briefly explain some of the most commonly used methods. 

Iterative descent search 

In the most basic case, the feasible direction vector d(k) is defined as the 

direction of steepest descent 

«/<*>=-V,3Q>) (5.8) 
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The next point pik+l) in the sequence is obtained from p(k) by following the 

feasible direction for a small positive distance a{k): 

p«+l)=p(k)+awdik) (5.9) 

with a necessary condition 

3(p(k)+a{k)d{k))<3(p(k)) (5.10) 

In effect, we find the minimizer as a linear combination of the feasible direction 

vectors: 

P m m = / 0 ) + l i m ^ t « w ^ (5.11) 

If at least an approximation of the cost function Hessian V23 = Vp(V^3) is 

available, we can instead define d(k) as a Newton-Rhapson direction 

V23-dw=-Vp3(p) (5.12) 

resulting in a faster convergence. For a faster version of (5.11), it may be acceptable 

to evaluate only the diagonal entries of the Hessian, and replace the rest with zeros 

[48]. 

An optimal value of the scalar a{k) is found by line search, i.e. by solving a 

one-dimensional optimization problem 

m i n ^ 3 Q / ' > + a ( t ) £ / ( 4 ) ) (5.13) 

with the corresponding condition for the critical point 

^ ( * + 1 ) > = o (514) 
daw P ; 
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Depending on the computational budget, the value aw may also be obtained using 

a second-order approximation: 

d^l))*(V^)Td(k) +a ( *V t ) ) r (Vj3) (« / ( t ) ) (5.15) 

resulting in an expression 

(rfw)r(V>3)(rfw) K ' 

In practice, however, it may be more effective to find an approximate value a(k)by 

direct search; for example, by division of the interval 0 < a(k) < 1 into subintervals, 

and evaluations of 3(/?( i) + a(k)d(k)) on their ends. In computational cost, it is 

approximately equivalent to (5.16) with derivatives evaluated by finite differences. 

• 

Conjugate gradient method 

A more sophisticated option is the conjugate gradient search. It is essentially 

an extension of the steepest descent method (5.8) based on minimization of the 

residual Rk = p(0) -^a0)V p3d(i) over the space spanned by feasible directions 
»=0 

dm ,d(2) ,...,d(k) [48]. The method requires evaluating 

pw> = pw + amdw r(*+i) = r(*) _ awVp3dw 

dw=rw+pwdmt d(o)=p(o) ^ • > 

«( i-M^rwy^M-H 
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where r (0 are the residual vectors, and J3{,) are scalars. (0 

The method can be adjusted to include the Newton search direction (5.12): 

a™ = ( - ( v 3 ) r •(^)))/((^))r -(v2*)idW)) (5-18> 
This requires a different definition of the residual p; there are several options, for 

example 

pi^ = |r(*+i) J . (r(*+D _ r(*) ))/|r(A) y . (r(t) )) (5.19) 

Derivative information and convergence 

We will now refer to a number of standard results on the expected 

performance of iterative searches for the minimizer; the reason for this material is to 

identify bounds on convergence that can later be observed for the full and the 

reduced models in comparison of their performance. Consider a generic descent 

search p(k+l) = p(k) + a{k)d(k), with a descent direction d{k) that does not deviate 

very much from direction of the steepest descent - V 3(/?(*}); specifically, we 

require bounds 

-(d(k))T-Vp3(pw)>s\\d(k)\\-lVp3(p{ 

Vp3(/k^\<\\dw\\<K2\Vp3(p^)\\ 
(5.20) 

for some constants 0<S<1, 0<Kl<K2. Note that the characterization (5.20) 

covers the methods where the feasible direction is obtained from the direction of 
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steepest descent by multiplication by a positive definite matrix. Let the scalar a(k) 

be an approximate solution of the minimization problem (5.13): 

3(p(k) +(aw + Sa)dw)<3(pw) (5.21) 

for small positive values of da. By local convexity, the Hessian V2
p3(p) is 

symmetric positive definite in a neighborhood of the minimizer. We refer to [48], 

[57], [109] for the following property. 

Theorem 5.1 Bounds on Hessian 

There exist positive constants m,M (correspondingly the minimal and the 

maximal values of the Rayleigh coefficient of the Hessian) such that 

m\df < dTV2
p3(p)d < M\df (5.22) 

for an arbitrary vector d and point p . The constants also bound the output function 

and its first derivative, by the following expressions: 

m II \\2 ^ e~, ^ t~, ^ / M 

-\\p-pmiJ <Z(p)-5(Ptma)<- -j- (5.23) 

HP ~ P^ * Vt3(/>) < Mp - Pmia (5.24) p 

Theorem 5.1 leads to the following linear convergence result. 

Theorem 5.2 Convergence of iterative search 

If a descent sequence pm,pm,pi2),... is contained in a compact subset 

B(Pmm) °f some convex set, then it converges to the minimum point pmia. In 

particular, there exist constants K>0, 0<Z,<1 such that 
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,(*+!) 3 ( p w ) - 3(/>l'+1') > A W 3 ( / ? W ) ,(*)• (5.25) 

3(p( t+1J) - 3(/>min) < £(3(p w ) - 3(Pmkl )) (*>> (5.26) 

Setting Z> = 3(/?( })-3(pmin), we also have the estimate in terms of previously 

defined m,M 

Z(p^)-3(pmJ<DLk 

P^-P^ 

|vp3(y*+i>) 

m 

2 ^ 2M2Z> , 
< If 

m 

(5.27) 

(5.28) 

(5.29) 

We refer to [109] for a similar characterization of the quadratic convergence 

of the Newton search (5.13). 

Theorem 5.3 Convergence of Newton-Rhapson search 

If the derivative of the output function satisfies the Lipschitz condition 

\vp(p)-VpZ{p%<y\p-p% r<l (5.30) 

and the Hessian satisfies 

^2
pz(P)Y\< P (5.31) 

(5.32) 

Then the Newton descent sequence defined by (5.13) converges to a critical point 

pmin, and at every step k 
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P(k)-Pmm 

h2 _1
 VBY 

< v - ^ — r , h = ^-<\ (5.33) 
\-h2 2 

It is instructive to consider a quadratic approximation of the output function 

3(/?) « A + Bp + Hp2. For this form of the output function, the quantities m, M that 

appear in the convergence estimates (5.28), (5.29) are correspondingly the lowest 

M 
and the highest eigenvalue of the constant Hessian H; the ratio — is the condition 

m 

number of the Hessian. Furthermore, the conjugate gradient search converges on the 

minimizer exactly, and in a number of steps equal to n, the dimension of the 

parameter space [48]. 

Based on the reasoning about a quadratic approximation, the convergence 

properties of an optimization problem approximately depend on the condition 

number of the Hessian, the magnitude of the Hessian; and additionally on the 

dimension of the space in which the search is performed. Thus we expect faster 

convergence for the relatively lower condition number, Hessian magnitude and 

dimension of the problem. 

While an a priori formal statement on convergence of the iterative searches 

for the minimization problems subject to reduced versions of the model is not 

available, we believe that the observed improvement in these three characteristics is 

not accidental. Additional remarks on the need for further research are provided in 

Section 5.2. 
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While the output function (1.6), (4.8), (5.3) is convex in u by triangular 

inequality for the norm ||..|, it is not necessarily convex in p . The convergence of 

the iterative search also depends on whether the first guess for the initial conditions 

pm is sufficiently good for local convexity. 

• 

5.2 REDUCED MODEL IN OPTIMIZATION 

The usual justification of using a reduced model instead of the full model is 

as follows. If the factor importance analysis has successfully identified the most 

prominent features of the model-defined output function, and an enhanced POD-

based reduction method has successfully preserved such features in the behavior of 

the reduced model, then the reduced model and the full model are effectively 

equivalent. Once the reduced model is constructed, the calculations required for 

evaluating the model, obtaining derivatives by direct or adjoint method, performing 

factor importance analysis by interpolating models, etc, are performed relatively 

faster due to smaller dimension. 

The computational savings at each step of the descent optimization method 

may add up to a significant improvement in efficiency. In addition, there is an 

empirical evidence that for a sufficient quality of the reduced model, a descent 

search converges in relatively fewer steps. More specifically, while an effective 

characterization of the relationship between the derivatives of the full and the 

projected reduced versions of the model is not available, empirically the magnitudes 
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of the derivatives, and the condition number of the Hessian decrease after reduction, 

leading to tighter inequalities in Theorems 5.2, 5.3. 

Motivated by the expectations of better performance, we arrive at the 

following practical question. Given that we have identified some of the most 

important states and state space directions in the model evolution, and constructed a 

reduced model which preserves the states and directions, can we apply this 

information to perform a significantly cheaper search for the minimizer? 

The material presented up to this point leads to suggesting that, given a 

POD-based reduced model solution u(t) approximating, with sufficient quality, the 

full model (5.6) with solution u(t) with initial conditions p, the problems of 

minimizing the cost function 3 

m i n ^ 3(«) (5.34) 

min^3(w) (5.35) 

are qualitatively equivalent; this is informally understood as'have approximately the 

same answer'. We do not require the full cost function 3 and the reduced cost 

function 3 = 3(w) to coincide for all values of p , and will tolerate a moderate error 

To make the definition efficient, we suggest making an additional 

requirement that only a short iterative search is needed to find a true minimizer pmiB 

starting from an approximate minimizer ^min as the first guess. In practice, the 
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difference this makes is trivial, but it covers the situation where the value of the 

minimizer cannot be recovered based on the reduced model alone, since pmia <£ P. 

The main implementation issue is the choice of the scheme according to 

which a reduced model (or multiple reduced models) will replace the full model in 

the iterative search (partially, or completely). In the next two sections, we introduce 

the possible schemes, varying depending on the extent to which the model reduction 

is used. The material is straightforward, and relies on the already developed 

mathematical content. 

5.2.1 SINGLE REDUCED MODEL 

Suppose we have constructed a reduced model, and verified (using material 

of Chapters 2 and 3) that it has a solution of sufficient quality, u{t)« u(i), and 

correctly reproduces the sensitivities of the output function, VpJ(u) ~ VpJ(u). 

Then, instead of the optimization problem (5.34), we can solve one of the two 

version of (5.35): either use the full model equations, but restrict the region of 

search by reduction: 

or use the reduced model equations (and the region of search will be restricted 

automatically): 

min 3 (H) ~min *3(tf) (5.37) 
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Since the result of iterative search pmin is at best very close (but still distinct) from 

the solution to (5.35), an additional search for the final answer may be performed: 

mmpeP3(u): p(0) = pmin (5.38) 

The scheme (5.36) requires a short explanation. 

Reduction of parameter space 

The minimal use of model reduction in optimization consists of accepting 

that the projection IT = OO r approximately preserves the descent directions in the 

model state space, and performing the search for the optimal initial conditions pmia 

based on the full model equations, but only in the reduced space 

p = 0><DrP (5.39) 

Note that the result of the converged search is going to be the projection of 

the true minimizer onto the reduced space. Since the approach does not formally 

require u{t) « u{t), the reduced model does not have to be constructed at all, except 

for the purposes of analysis and improvement of the basis O. 

The steepest descent and the Newton search directions (5.8), (5.12) are 

written, correspondingly, as 

dw=-Q><!)TVp3(u) (5.40) 

i/w=-OO r(v23(i/))r1V / ,3(M) (5.41) 

with the derivatives computed by adjoint differentiation of the full model. 

This approach requires the least development effort, and does not depend on 

the stability of the reduced model. On the other hand, the improvement of the 
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iterative optimization process is due only to the smaller dimension of the search 

space. We note that reducing only the parameter space is very appropriate for the 

tasks that require large-scale sampling of 3(/?), peP, for example, for the 

purposes of factor importance analysis. 

• 

If the scheme (5.37) is used, the integrations required at each step of the 

search are performed in the reduced-order subspace. In particular, the adjoint 

differentiation required to obtain Vp3(w) is performed as follows. For the reduced 

direct ODEs 

— = 0<Dr f(u t) 
dt J K , ) (5.42) 

u(t0) = ®®T(p-fi) + ft 

the adjoint variable u satisfies the ODEs 

du (df^T 

dt \du j 
Q>TQ>u 

(5.43) 

u(T) = Q>Q>1V,.(T)GN(T) 

resulting in 

Vp3(u) = u(t0) (5.44) 

We set 

«*(') = S**'('M=*D (5-45) 

and solve the projected equations: 
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dt [duj H (5.46) 
q\T) = 0TVa.(T)GN(T) 

The approach using a single reduced model has an inherent weakness of 

being valid only locally, at an unknown distance from the minimizer. At best, the 

available reduced model was validated again a small set of full model solutions 

based on a sample of values of the initial conditions. The reduced model is going to 

be used, however, on a trajectory of a descent method, the steps p(,) of which 

eventually become a dense sample in the neighborhood of the point pmin, relatively 

far from the original guess. In terms of the unknown surface learning theory, the 

efficiency of the reduced model as a data compression tool may deteriorate, due to 

exposure to new data that did not participate in compression [93]. This possibility 

calls for a characterization of the performance of the reduced model at a given step 

of the optimization process. 

We note a restriction on using sophisticated schemes of error estimation: 

calculations on the scale of SCE-based method (described in Chapter 3) will take 

away the computational advantage gained by model reduction. 

We suggest enhancing the iterative search by occasionally integrating the 

full model based on the current version of the initial conditions p{k), perhaps over 

only a part of the time interval (t0,T). Specifically, we measure the performance of 

the reduced model at step k by comparing the value 3 ( t ) defined by 
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3 ( i ) = §\u(t)-u0(t)(dt 

du 

dt 
• f{u,t) (5.47) 

u(t0) = pw 

with the similar quantity 3 W already available at this step: 

(k) = ]\\u(t)-u0(tfdt •15 

du 

dt 

u(t0) = p(k) 

= f(u,t) (5.48) 

The choice of tx depends on the available computational budget. In the case of the 

models of atmospheric chemistry exhibiting semi-periodic behavior, the interval 

{tQ,tY) should include at some fast transient behavior. 

As a measure of control, we observe the differences 

A 3 w = 3 w - 3 ( i ) 

Auw = j|w(0||^-Jl|w(0|^ 

(5.49) 

(5.50) 

and reject the reduced model if they exceed an experimentally established threshold. 

If the model was rejected, a particular time interval at which the reduced model 

encountered performance problems can be identified by examining the differences 

e(t) = u(t)-u(t) (5.51) 
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Alternatively, if the computational budget allows it, we can set tx=T, and 

measure the approximate descent direction V 3 W , assembled component-wise: 

«(*+!) r-Jk) 

( ^ " O , * ^ , ; ^ (5-52) 

and compare it with the accumulated descent 

D ( t ) =2> ( V 0 (5-53) 
;=i 

We then measure the angle 

Dm v 3<*> 
r = c o s ^ ( 1 F — . - , - £ — j ) (5.54) 

£> (t) !V,3 (*) 

and reject the model if y exceeds an experimentally established threshold, which 

we set to be approximately constant for a sufficiently large value of k (for the first 

few steps of the method we allow the descent directions to be very different). 

For a more flexible performance characterization, we can use pairs of 

thresholds on the values A 3 W , Aw(i), y: 

A 3 w < A 3 w w < A 3 w
% A 

Aww < Auw,ow < Auik\igh (5.55) 

/ — / low — / high 

The idea is to identify the step on the trajectory as problematic when a'low'threshold 

is exceeded, and to abort the iterative search when a"high"threshold is exceeded. 

In practice, it may be possible to identify by inspection when the answer 

obtained via reduction-based search (5.37) is unreasonable: either the value p^ 
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lies outside of the region (5.4), or reduced model did not reproduce the critical point 

correctly, and V p 3 p=p » 0. In that case, the measurements (5.49), (5.50), (5.54) 

may be applied retroactively, to identify a which step the reduction-based search has 

diverged from the correct trajectory. 

Depending on the dimension of the model and the computational effort of 

adjoint differentiation, it may be more efficient to reject and revise the used 

reduction during the intermediate steps rather than evaluate the quality of the final 

step and then completely restart the process. Now that we have a simple scheme of 

rejecting a reduced model based on poor performance, we have to decide what to 

replace it with. We discuss some of the options in the next section. 

5.2.2 MULTIPLE REDUCED MODELS 

Suppose that a reduction-based search (5.37) has failed the suggested 

empirical tests, and was become inefficient somewhere between the steps kx and k2 

of the search. The complete information on the search trajectory up to step k2 is 

available. We then set 

p™=p™ (5.56) 

for some kY « k <k2, and restart the iterative search, but using a different model. 

The simplest suggestion is to switch to using the full model dynamics, as in 

(5.36). On the other extreme, the most sophisticated (and computationally 

expensive) choice is to switch to a reduced model constructed specifically to 
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perform better on the parameters in the neighborhood of p(i\p(l). If due to 

availability of additional experimental data, or a sufficient computational budget, we 

have access to a set of distinct snapshots collections U0=[u(tl),u(t2),...], we 

choose the one based on the initial conditions p = u(t0) » u(t{) that are the closest to 

PW-

Ideally, we would like to construct a hierarchy of the versions of the reduced 

model: the first one assuming no a priori knowledge about the performance of a 

model under reduction, each of rest tuned using results of factor importance analysis 

on a previos version. Due to constraints on computational cost, the number of 

models in the hierarchy cannot be very large, and the factor importance analysis can 

only be very elementary. 

Based on the argument that a subspace basis of higher dimension captures 

more relevant features (accepted in [95], [117]; disputed for some case studies in 

[6], [33]), we suggest preparing a collection of reduced models of different 

dimensions based on the same set (^>l,^z,...,(/>n) of the covariance matrix 

eigenvectors. The idea is then to use a higher-dimensional model after a low-

dimensional one failed. 

A more flexible approach is to build reduced models of improved local 

validity. This requires obtaining additional observational data, or generating 

additional full model snapshots based on the point in the parameter space at which 

the search has failed. This requires integration of the full model with the initial 
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conditions u(t0) = p( '. If we accept a reasonable reduced model quality u(t) « u(t) 

valid at least until the step kx of the method, we can instead use a cheaper set of 

snapshots 

U0 =[£&),&&),...] (5-57) 

based the reduced model solution with u(t0) = p(k>). 

Finally, we can use the fact that the initial conditions, and the model states at 

any other time t * t0 are taken from the same space R", and apply the method of 

snapshots to the set 

U0=ip(k°\pik°+l\...,p{k^\p^ (5.58) 

producing a reduced model that optimally reproduces the search trajectory between 

some step k0 and the step kx. 

The idea of building an adaptive sequence of reduced models to solve large-

scale problems has received some attention in recent literature. For example, 

Ravindran [88] uses a sequence of revised versions of the reduced model to solve a 

control problem: at each step, the snapshots for the next reduction are taken from 

the observations on the model state corresponding to the current set of controls. In 

terms of our schemes, the idea is equivalent to solving the reduced optimization 

problem (5.37), generating new snapshots as in (5.57) with the initial conditions 

equal to the best available estimate for pmin, and repeating the steps until the 

procedure converges. For our applied problems, such a long search is not effective, 
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because the possible improvement in quality is not justified by the increased 

computational cost. 

In [8], [10], Bashir et. al. use considerations similar in content to our Chapter 

3; they generate new snapshots based on integrating the model with initial 

conditions equal to the dominant eigenvector of the error Hessian matrix. Again, the 

regular use of this suggestion in our work is prevented by associated cost; it is not 

effective to compute the complete error information. Overall, we prefer fast, model-

oriented schemes with moderate precision to slower, automatic schemes with high 

precision. 

As a minimal summary of this chapter, we visualize the schemes for the use 

of model reduction in the iterative search in Figure 5.1. In the upper half of the 

picture, we show how a single version of the reduced space is used to arrive at an 

approximation for the minimizer: the scheme is either (5.36) or (5.37). In the lower 

half of the picture we show how, if needed, the search can be restarted based on a 

different version of the reduced model: see remarks around (5.56). 
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parameter space <j-8 search for an optimizer over 
the full space 

level curves of the 
reduced cost 
function 

The iterative search based on a reduced 
model leads to an incorrect critical point, 
and\or departs too much from the full model 
descent direction (occasionally checked). r 

An updated version of the reduced model is 
used in the continued search: 

The iterative search is restarted from the last 
0 > known reliable point. 

Figure 5.1 Model reduction in an iterative search. 
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CHAPTER 6 

NUMERICAL TOOLS 

The models used in chemical kinetics can be very complex. The behavior of 

the numerical simulation, and its sensitivity to parameters may depend on the 

choices made in modeling the speed and time-dependence of chemical reactions, the 

spatial discretization scheme, and the solver chosen for the ODE. 

In most cases, the nature of our applied problems allows us to use standard 

numerical solutions, since moderate numerical error is allowed, and the issues with 

numerical stability cannot be resolved by the choice of the correct solver alone. A 

reader interested in the extensions of our research should be aware that the choice of 

the solver is relevant, in particular, for factor importance analysis presented in 

Chapter 2 and adjoint differentiation presented in Chapter 4. Our assumption that 

the full model trajectory u(t) is precise may have to be replaced with an 

understanding of model reduction process that takes into account the solver-induced 

error with its own sensitivities. A fundamental question of optimal choice of the 

numerical tools to integrate the reduced models is largely unanswered. In our 

practical applications, however, it is not a primary issue. 

In this chapter we provide a brief overview of the choices made in the study 

of our applied problems. In particular, we explain how a set of chemical equations 

and processes is automatically rewritten into a system of differential equations; 

explain our choice of the numerical solvers for integrating the stiff ODEs of 
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atmospheric chemistry, and of the discretization scheme for modeling the 

convection-diffusion transport. 

6.1 PREPROCESSING 

The chemical systems appearing in our applied problems have a large 

number of reactions; even with most components being neutral with respect to each 

other, the full record of such system is inconvenient for direct manipulation and 

analysis. In standard practice, a list of chemical equations is turned into a 

mathematical model by preprocessing software. Under automated processing, each 

chemical reaction contributes to the production and the loss terms of the model. For 

example, the basic reactions 

(1) A + B^C 

(2) A^B + C 
(6.1) 

(3) A + B^C + D ' 
(4) A->B 

turn, correspondingly, into components of the ODE: 

(1) d^\=_.k[A][B] & = ^k[A][B] ^ ] = ^ + k[A][B] 
at at at 

P) d4=_.-*M iS3=...+*n] 43-...+JM 
dt dt dt 

(3) ^ - = ...-k[A][B] ^ l = ...-k[A][B] (6.2) 
at at 

Hn=...+k[A]m f321_...+*M[j] 
dt dt 

(4) ^ ^ = ...-k[A] ^ l = ... + k[A] 
dt dt 
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where [A] denotes the concentration of the reaction component A, and k is the rate 

of the reaction. Removal of reagents from the system is modeled by a reaction 

A —> M, where M is an inert medium that does not participate in reactions. The 

possibility of depletion of a particular specie is usually ignored. The system may be 

enhanced with additional details, such as photon consumption and emission, heat 

emission, and change in the reaction reates. The resulting model does not have to 

conserve mass or concentrations in general, though an inspection of the list of 

equations allows to identify which species are supposed to be mass-conservative, 

and use the information to later validate the numerical solution. 

Our examples of chemical models were generated using the kinetic 

preprocessor package KPP [99], [131]. Its capabilities provide a good example of 

standard preprocessing procedures. 

KPP records the main chemical reactions in the format of mass action 

kinetics law: 

(Kit) o 
du _ 

dt 
V 

•p(u) = f(u,t) (6.3) 

0 kR(t)y 

where £ is the stoichiometric matrix, p(u) is the vector of reactant products, and 

ki (t) is a time-dependent rate of a particular reaction i = 1,2,...,R. For a different 

perspective, the equation (6.1) may be rewritten into the stoichiometric format 

^ = Z-v(n,/) (6.4) 
dt 
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where vt =(vl,v2,...,vR) is a vector of reaction velocities. The expression p(u) is 

quadratic in u , allowing simple, explicit evaluation of the right-side Jacobian: 

(Kit) o ^ 
J(u,t) = 'Z' 

\ 

~ ( « ) (6-5) 
du 0 kR(t\ 

with sparsity of approximately IRIn1. The system of ODEs adjoint to (6.3) can 

also be constructed explicitly. The Hessian of the right side is also available, and 

dependent only on time, in principle allowing second-order adjoint differentiation 

(see Section 4.2). 

Formulating the dependence of the equation rates on time requires additional 

modeling assumptions, since the speed of chemical reaction may depends on 

temperature and exposure to sunlight [80]. In general, for an adequate modeling of 

the chemical process, the system (6.1) has to be coupled with the estimates of heat 

produced by each reaction, and an Arrhenius-type relationship between temperature 

and reactivity. In the problems of atmospheric chemistry, chemical heat production 

and transport may be ignored; then the only factor influencing the rate of chemical 

reactions is the sunlight intensity. 

The package KPP is also capable of integrating the direct and the adjoint 

versions of the model. In our numerical experiments, we use preprocessing software 

only to generate the ODEs; integration of the full and the reduced models is 

performed using external solvers, as described in the following section. 

128 



6.2 MODEL INTEGRATION 

According to our observations, the main complexity of the reaction-transport 

system (1.4) lies in the chemical reaction term, and the choices made in time 

integration of the discretized model are comparatively more important for 

simulation and reduction than the choice of the spatial discretization scheme. The 

errors and artifacts in the reduced description of transport are approximately the 

same for every solver: to our knowledge, there is no particular approach that shows 

distinct advantage. We describe the available ODE solvers in some detail, and then 

briefly remark on the solution of the PDE. 

Time integration 

Empirically, the flaws introduced by an ODE solver into a representation of 

the full model become more prominent in the reduced model performance. While 

the full-model can usually be stably resolved by any generic Runge-Kutta scheme 

with an adaptive time step, the corresponding reduced problem may experience 

numerical blowup. As noted in Chapter 2, the generation of instability due to 

distortion of the phase portrait under projection may be unavoidable. 

Our task is then to select a standard, validated solver for the full problem 

that will produce the most reliable snapshots, and perform well on a generic stiff 

problem, so that other reasons for instability are minimized. In principle, multiple 

solvers can be used, including the case where the snapshots are generated by one 

scheme, and the reduced model equations are solved by another. Whether the 
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sensitivity information of the full model is then still applicable to the reduced model 

is an unanswered question. 

We refer to Sandu et. al. [100], [101], for an extensive list of the available 

solvers for stiff ODEs of atmospheric chemistry. Since a moderate error is almost 

always allowed in our applied problems, we are mainly interested in numerical 

stability and qualitative concerns such as positivity and mass conservation. 

Since the right side of the ODE (6.3) is quadratic in u, it can be rewritten 

into the production-loss form 

du 
— = f(u,t) = P(u,t)-L(u,t)u (6.6) 
dt 

with nonnegative production and loss terms P(u,t), L(u,t). It is noted in [116] that 

the only available elementary integration method without step size restriction that 

preserves both positivity and mass of the model state u{t) is the implicit Euler 

scheme 

U(M) =1|(o +Atf(uiM\tM) = (l + AtL(u{M),tM)Y -(ul +AtfV ;+V,+1))>0 (6.7) 

with the time step At, with the mass conservation being a general property of 

Runge-Kutta type solvers. 

The numerical scheme (6.7) is only the most basic option, as it experiences 

difficulties with stiff problems, is not very fast, and is sensitive to the errors in the 

derivative information when accelerated using Newton iterations. Beyond it, the 

choice is between a family of dedicated methods (two examples provided below) 

that make use of the production-loss format and the slow-fast behavior of the 
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chemical model, and the general purpose Rosenbrock methods that are widely used 

because of high computational efficiency. 

A basic QSSA (quasi-steady state approximation) scheme is based on the 

assumption that the production and loss terms P,L vary only slightly over time. It 

is based on a formula that is exact if the terms are constant: 

um = exp(-AtL(u0+\l)u
v) +(l-exp(-AtI^uii+\l))-(L(umtM)Y -P{u(M)tM) (6.8) 

with additional approximations for the slow and the fast species: 

exp(-AtL, {u(M)tM ) * 1 - AtL, {um)tM ) AtL, (u(M)tM ) « 0 

exp(-AtL, (um)tM) * 0 AtL, (ulM)tM) » 0 
(6.9) 

This scheme preserves positivity, is computationally efficient for problems with 

many fast and slow species, and has good stability properties. As formulated here, it 

does not preserve mass. 

TWOSTEP, another scheme using the production-loss form of the model is 

based on a mass-conserving two-step backward differentiation formula 

M(«) = l t t (0 _IMo--i> + *Atf(ulM\tM) = 
3 3 3 

= \I + -AtL{u(1+\tM) 
V1 (A u"-\u^+\AtP(u^\tJ 

\5 5 5 j 

(6.10) 

The approximation to the implicitly defined w0+1) is computed by applying Gauss-

Seidel technique to the function 

( 2 V1 (4 1 2 ^ 
G(u)= I + -AtL(u,t) • —u—u + —AtP(u,t) 

\ 3 J \3 3 3 
(6.11) 

resulting in a component-wise formula 
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tt, = C J ( « I ,M2 v , W / - i , « / ,«/+! , - , « „ ) ( 0 . 12 ) 

The method efficiently processes fast behavior in the model (exact implicit solution 

is achieved for the components u, for which the production and loss terms 

(P),,(L), are constant). The method does not preserve positivity. For efficiency of 

the Gauss-Seidel procedure, it may be required that the model variables are not 

strongly coupled. This requirement rules out some heterogeneous chemistry 

problems, but fits well with our understanding of a successfully reduced model, 

where some correlating components have been eliminated, or lumped together. 

The Rosenbrock methods are based on rewriting the system of ODEs (1.1) 

into an autonomous form by formally treating time in the right-hand side as a 

dependent variable: 

du 

ai (6.13) 

dt 

The idea is then to generalize on the linearly implicit approach to solving time-

independent systems, and on the Newton's methods with an s -stage integration 

formula using first-order derivative information: 

(6-14) 
k, = A</V° + 2>tf*y) + At/(«(0 + X PykJ) 

7=1 7=1 

132 



with the coefficients b,a,j3 chosen for consistency and stability of the stiff ODE 

solution. For the time-dependent system, the expression (6.14) is modified to 

*, =Atf(um +2>*V, +A*IX) + iX(A02 ^ ° f > 0 +AtJ(u«\ti)fj/lijkj (6.15) 

The scheme is one-step, partially explicit, and available in many implemented 

forms, (for example, included in the Matlab initial value problems package). The 

positivity is usually not preserved, with an exception of the variant called ROS2: 

2 ' 2 2 

kx =Atf(ua\ti) + (l + -^r)AtJ(u(i\ti)kl (6.16) 

V2 
k2=Atf(u{i) + Atkx,ti)-2(\ + ^r)AtJ{u(i\ti)kx + (l + -^=)AtJ(u{i\ti)k2 

\2 \2 

that preserves positivity when provided with a precise value of the Jacobian J(u,t). 

In our numerical experiments, we became aware of the difference between 

the performance of the solvers. However, since the understanding of the behavior of 

the reduced model is in many ways still basic, it is not clear how to tune some of the 

more complex methods to an a priori unknown behavior of the reduced model. We 

note that the possibility of a simple, un-tuned implementation for any problem is an 

important argument in favor of using the scheme. In addition, the use of any 

integration methods more complex that first-order, one-step schemes introduces a 

change in the derivative information that was not accounted for in the differentiation 

procedure used in Chapters 2, 4. For schemes like (6.8), (6.10), (6.16), the 
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du 
expression for — at t = tM should match the corresponding derivative for the 

dp 

right-side expression, which is not enforced at all in the continuous adjoint 

differentiation. The discrete adjoint formulation (see [79], [97], [120]) resolves the 

problem by differentiating, in the reverse direction, the integration steps related to 

each other by a chain rule relationship 

du{M) _ dum) du(i) du(1) dum 

dp ~ duU) ' du(i-i}''"'du(l) ' dp 

We find, however, that the discrete adjoint differentiation approach is too 

computationally expensive for our goals of fast factor importance analysis and 

iterative optimization. A temporary solution is then to use a numerical scheme that 

is as close as possible to an unmodified Euler procedure, and has been observed to 

produce acceptable derivative information (as validated by the same derivatives 

being computed by finite difference methods). Based on the empirical evidence, we 

settle on standard second-order Rosenbrock solvers. 

• 

Discretization in space and operator splitting 

In the context of model reduction, the transport effects are of relatively 

lower importance. As we have not observed changes in numerical stability of 

transport equations under reduction, we suggest that the reduced model should be 

discretized by the same scheme that was used on the full model equations. 

In most numerical experiments, we use a central difference discretization 
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8u(t) ^u{M\t)-u°-l)(t) 

d2u(t) _ um\t)-2u(i\t) + u(i~l\t) 

dx2 ~ (Ax)2 

We also suggest a popular third-order scheme with upwinding [116], known to 

better model the advection effects: 

du(t) ^ -«( '"2)(Q + 6«(<~1)(0-3i/(0(0-2i/(f+1)(0 
dx 6Ax 

For large problems, where the scheme and the step size chosen to best 

represent the advection effects may lead to incorrect representation of diffusion, we 

use the standard operator splitting of the advection-diffusion-reaction PDE (1.4) into 

three problems solved sequentially, with a smaller time step, on each time interval 

tt<t< tM, while using the results of the previous integration as the initial value for 

the next: 

du, 'A 

dt 

du 

= / > J = -V-(wWJ (6.20) 

D _ = fD(uD) = V-{K*uD) 
dt JUK u/ v "' (6.21) 

uD(ti) = uA{tM) 

- ^ = fR{uR) = f{uR,t), uR(t,) = uD(tM) 
dt (6.22) 

UA (*M) = UR 0,+i) > u(t):=uR (t) 

This scheme is appropriate for PDEs with continuous solutions (which adds some 

restrictions on the chemical reaction term). The accuracy of the scheme is improved 
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if the integration intervals are shifted so that the splitting is symmetric around the 

middle of each time interval: 

h+vi ~ 2 • 

3u 
uA(tt) = u(tt): -£ = fA h<t< tM/2; ot 

% • = //, h*t<>tMll; % - = / , tt<t<tM; (6.23) 
ot ot 

% - = / * t^l2<t<tM; ^ = fA ti+m<t<tM; 
ot ot 

"0,+i) = ^ ( ' , + i ) 

The internal time steps used in the scheme can be farily large for the advection and 

diffusion equations (6.20), (6.21), and adaptively adjusted by an ODE solver for the 

reaction term (6.22). 

In the cases where the adjoint model is built based on undiscretized PDE, we 

suggest splitting the adjoint operator (4.37) over exactly the same time intervals as 

the direct operator: 

du* 
dt 

= / > J = V- (w^) tt<t<ti+m 

(6.24) 
^ = / > ; ) = -V • (KVuD) tt<t< tMI2 

ot 

duR r*, ., ,df\T * dg ^ ^ 
-rf = AM = -(-j-) UR~ h<t<tM 

ot du du 
-£-=fD t^n^t<tM- —f = fA tM/2<t<tM 

ot ot 

Note that in (6.24) the interaction of the system with the output function has been 

arbitrarily lumped together with the chemical interaction effects. 
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CHAPTER 7 

EXAMPLES 

In this chapter, we provide applied examples of how theoretical suggestions 

introduced in the thesis may be implemented; we are particularly interested in two 

central topics of simulation and optimization, presented in Chapters 2, 5. Most of 

the problems we solve are based on standard tests of numerical methods 

performance from the corresponding fields; Charney-DeVore and Lorenz models 

described in Sections 7.5, 7.6 present some research interest; our larger example 

SAPRC-99 discussed in Section 7.7 has industrial significance. 

Due to varying features and complexity of our models of reaction and 

transport, direct comparison of the reduced model performance from problem to 

problem is not always meaningful. Comparing the reduced model with the full 

model applied to the same problem can be more instructive, but the specific 

compared characteristics depend on the context; we do not have an always relevant 

definition of the "quality of the reduced model'. 

To introduce a measure of consistency, we establish informal quality 

thresholds for a successful numerical experiment. We shall try to achieve dimension 

reduction to at most 20% of the original problem dimension. The relative error in 

reproduction of a feature of interest is expected to be 10% or lower. The 

performance measurements are not meant to be systematic. Following the style of 

most of our reference material (for example, [38], [2], [6], [33], [45], [117]), we 

state that the main measure of the reduced model performance is a qualitive 
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reproduction of the correct solution. Because of this, the presentation of our results 

is mostly graphic, with brief comments on significant performance metrics (as full 

tables of error measurement are hard to analyse due to large dimension of models). 

For the examples where we discuss factor importance analysis, the experiment is 

considered successful if we are able to obtain factor importance information that is 

not available by inspection of the full model. 

Our visualizations are usually in the form of superimposed graphs of the full 

and the reduced model solutions u, u (evolving in time, or observed at a particular 

time instance). Where appropriate we also plot the relative errors: 

*(0 = fc£fi (7..) 
IK0||2 

*,(» = ̂ f ^ (7.2) 

The computational expense of each problem is measured in seconds of 

Matlab runtime on an (average-performance) personal computer. The computational 

budget for the reduced model includes all the steps required to construct it, except 

maybe the generation of original snapshots. It also includes the computational cost 

of post-processing the answer using full model dynamics. The experiment is 

considered successful if, with the assistance of the reduced model, we manage to 

solve the problem faster (it is usually hard to predict by how much). We will 

routinely argue that the computational advantage grows with the increase in the 

dimension of the full model. 
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For larger examples, the interaction between model state components are 

fairly complex, with a tendency for the reduced ODE to become unstable over long 

integration intervals. In fact, numerical blowup due to instability is the most 

common scenario for failure of our methods. Since this type of flaw does not have a 

moderate form, we don't visualize it. 

7.1 STRATOSPHERIC CHEMISTRY MECHANISM 

In this section, we provide a very small example of a chemical kinetics 

model possessing such features of bigger models as stiffness, time-dependence of 

reaction rates, semi-periodic behavior of the solution. Due to highly correlated 

chemical processes, this model can be easily reduced. 

We consider the following simple chemistry mechanism, classified as a 

'Chapman-like model' [99] (typically used to predict the concentration of ozone in 

the stratosphere). It consists of 10 chemical reactions involving 7 species: 

(1) <92->2<9 (6) OCD) + M^O + M 

(2) 0 + 02^03 (7) 0(lD) + 03->202 

(3) 03^>0 + 02 (8) NO + 03^N02+02 (7.3) 

(4) 0 + 03->202 (9) N02+0^>NO + 02 

(5) 03^0(D) + 02 (10) N02^NO + 0 

where the symbol M stands for the dense medium ('collision chaperone") required 

for the chemical reactions. The reactions (1), (3), (5), (10) require an exposure to 

light, sometimes indicated by a symbol"+ hv'! 

The time evolution of the concentrations is described by a system of ODEs: 
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d[0{'D)]=k5[03]-k6[OCD)HM]-k7[OCD)]-[0}] 
at 

^p- = 2k1[02]-k2[0]-[02] + k3[03]-k4[0]-[03] + ... 
dt 

... + k6[O(lD)]-[M]-k9[O]-[NO2] + k10[NO2] 

d[03] = k2[0]-[02]-k3[03]-k4[0]-[03]-k5[03] + ... (7.4) 
dt 

...-k7[OCD)H03]-ks[03]-[NO] 

d[NO] -k,[O3]-[NO] + k9[O]-[NO2] + kl0[NO2] 
dt 

k8[O3UNO]-k9[O]-[NO2]-k10[NO2] 
d[N02] 

dt 

where [...] denotes the concentration of the corresponding chemical specie. 

Typically, the concentrations in such models are measured in dimensionless units, 

such as'parts per billion". In this model, the concentrations [02],[M] are kept fixed. 

The rates of chemical reactions kt are available from experimental data: 

kx = 2.6-10"10 -SUN3 k2 =8.0-10 17 k3=6A-\0-4-SUN 

&4=1.5-10~15 k5=l.0-l0-3-SUN2 k6=7.l-l0'n (7.5) 

k7 =1.2-10 10 £8=6.0-10~15 yt9=1.0-10"n kl0 =1.2-10 2-SUN 

The time-dependent coefficient SUN is the normalized sunlight intensity, estimated 

by the expression 

l + cos(^') , 1 ( t ^ 
SUN = ^-L, t'=— 2 24 

2 12^ 3600 j 
(7.6) 

corresponding to a day with 12 hours of sunlight, the units of measurement are 

seconds. 
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To extract the correlations between model state components, we used 

10-100 snapshots, distributed uniformly in time over a period of 1 day. The 

solution of the eigenvalue problem (2.20) was almost invariant to the choice of 

snapshots, resulting in the eigenvalues: 

A, «2.67-10"4,/l2 «1.03-10-10,A3 «4.09-10'13,^4,l5 « 0 . 

The standard POD-based reduction procedure was used to construct a model 

of dimension 2 by a change of coordinates and truncation of the 3 insignificant 

dimensions. In effect, the species [0(lD)],[0],[03],[NO],[N02] are represented in 

new coordinates by the variables cl,c2,ci,c4,c5 with 

cx « -0A[O(lD)] - 0.59[O] + O.O7[03] - 0.56[M?] + 0.56[M?2] 

C2*0.87[OCD)]-0.26[O] + 0.36[O3] + 0A2[NO] + 0A2[NO2] (7.7) 

In this small example, the performance of the POD-reduced model is very 

good, even over a period of time in which no snapshots were taken. We have traced 

the evolution of concentrations of atomic oxygen [O] and ozone [03 ] over a period 

of 5 days, in the full and the reduced model representations. The reduced model 

reproduces the behavior of the full model with a maximal relative error of under 

0.5% ; see Figure 7.1 for a visualization of results for a typical experiment. 

We note that for this model the computational cost of solving the reduced 

model equations is not significantly lower than the corresponding cost for the full 

model; the comparison is inconclusive due to small scale, and an 

uncharacteristically dense full model Jacobian. 

141 



1 

1 

2 

1 

3 4 5 

• 
1 

,.A 
/ \ 

2 

A 
3 4 5 

Relative error in [0] 
Relavite error in [ 0 ] 

i i i 

time, days 

Figure 7.1 Chapman-like mechanism, performance of the reduced model. 
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7.2 TEST OPTIMIZATION PROBLEM 

In this section we provide a simple example of model-constrained 

optimization that uses model reduction. The problem has only the most basic 

components, and is intended for a reader not specifically interested in the models of 

atmospheric chemistry. 

We define a multi-variable quadratic function p:R"^>R by 

p(x) = fj(xi-l)(xi-mi) (7.8) 
i=\ 

where mvm2,... are large constants. We choose a stiff low-rank matrix Ae i?™, 

and use a corresponding linear test ODE as a constraint: 

du 
— = Aw 
dt 
u(0) = p (7.9) 
x = w(l) 

The task is to solve an initial conditions optimization problem: 

m i l W c & ) (7-10) 

The global minimum of (7.8) is 

( * m i „ ) , = ^ , + l ) (7-11) 

leading to an analytic solution of (7.10): 

/7min=exp(-^)-xmin (7.12) 

where exp(-yf) denotes matrix exponentiation [42]. We set the initial guess to 

yo)=(0,0,... ,0) r (7.13) 
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This optimization problem can be solved by a gradient descent method, with 

a slightly better quality than the analytic solution (7.12), without numerical error in 

matrix exponentiation. We apply a standard steepest descent search. The gradient 

V p is found by using a system of ODEs adjoint to (7.9): 

du . T * 
= - A u 

dt (7.14) 
«'(!) = Vu(T)P 

with 

Vup = (2ul(T)-(ml +l),2u2(T)-(m2 +l),...,2u2(T)-(m2 + l ) f (7.15) 

resulting in 

Vpp = u(0) (7.16) 

The length of the descent step aik) is defined by 

dp(p-a(k)Vo) 

%»> ' -°- " = rm <"7> 
and is found by direct search, requiring a few integrations of (7.9) with initial 

conditions 

u(0) = p - a(k)Vpp; see comments after (5.16). We stop the iterative search at a 

step such that the corresponding model state u{T) is within 0.1 of the value defined 

by (7.11). 

To test the performance of reduction-based searches, we construct a reduced 

model of dimension k following the standard POD-based procedure. The state of 

the reduced model is described by the system 
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du _ _ T . „ 
— = 0 0 Aw „ . m dt (7-18) 

w(0) = (DO T (/?-//) + // 

To find the coordinates g(/) in the representation u(t) = ^<? r(0$ +," w e solve the 

reduced ODEs 

f-^W) (7.19) 
?(0) = *r(p+rt 

The reduced adjoint system is written as 

= -AyO'Ow , „ „ . 
dt (7.20) 

^(r) = oorv..(r)P 

To find the coordinates q*(t) in the representation u*(t) = ^<7**(0$ w e solve the 

system 

dq 
dt 

q\T) = 

-O rA r 

orv. 
Og* 

(7.21) 

The gradient of the output function is estimated as 

Vpp(u) = u(0) (7.22) 

The step length a, again, is found by direct search, requiring a few evaluations of 

(7.19) with the initial conditions q(0) = O r(p - aVpp(u)). 

The knowledge of the precise model state mean // is empirically not 

required for this problem, possibly due to low influence on the computation of the 
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adjoint derivative. The correct choice of Q> (or, rather, of the set of snapshots on 

which the projection is based) is important. Following suggestions of Chapter 5, we 

perform several steps of the full model search and arrive at a value p = p(kl) for 

some small kx. We then construct a set of snapshots by integrating (7.9) with initial 

conditions w(0) = p(kl). In this setup, the obtained reduced model is consistently 

effective for the purposes of iterative optimization. In contrast, using the reduced 

model based on a set of snapshots generated from an a priori guess at the correct 

initial conditions often results in a search that converges very slowly, or to the 

incorrect answer. 

In our numerical experiments, the matrix A and the constants mi were 

generated randomly. We used the values -1000 < mi < 1000; | A | < 1. The order of 

the reduced model was set at &«0.15«. During the search, we switched to the 

reduced model at kx < 10. As a metric of performance, we measured the distance of 

the current value of x = u(T) from the minimizing value defined by (7.11): 

u(T;p™)~(m + l) (7.23) 

The comparative performance of the full and the reduction-based searches is 

visualized in Figure 7.2. The three subplots show a total of 9 tests demonstrating 

the typical behavior of the search (in different randomized setups) for n = 10, 20, 

30 (from top to bottom). The number of steps required for convergence is shown on 
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one axis, the metric (7.23), in logarithmic scale, on the other. We also recorded the 

computational expense of each search. 

The reduced model search consistently requires fewer steps, and integration 

of the ODE systems at each step is faster. Even with the additional computational 

expense associated to constructing the reduced model, the relative computational 

cost of the reduction-based search consistently decreases as the dimension of the 

problem grows. In the shown set of tests, the improvement in efficiency is from 

80-100% to 30% of the full model search time. Since the considered problem is 

very basic, the obtained results should be viewed as a standard of an improvement 

in efficiency. As we will see in the following sections, comparable improvement in 

efficiency can be achieved for more sophisticated problems. 
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Figure 7.2. Convergence of the full and the reduced optimization searches, 
problems of dimension 10,20,30 with random parameters. 
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7.3 BRUSSELATOR 

In this section, we apply model reduction to a commonly used test PDE 

model with'Brusselatof dynamics [66], [134]. The goal is to observe how well the 

dynamics of the full model can be reproduced after very significant dimension 

reduction. 

The model used here is a particular case of (1.4) in one spatial dimension. It 

includes diffusion and reaction of two chemical species: 

du „<92w .. . _ . . . . 
— = K—T + f(u) />0,X6(0,1) 
at ox 

f(u) 
a + ufu2 -(b + l)ul 

i bux —ulu2 j 
(7.24) 

u(x,t) = c x = 0,l 

u(x,0) = p 

discretized to a system of ODEs using central differences: 

±L = KK,-+I ~ 2 u i + «M +a + u2 _(b + Q i < / < „ / 2 

dt (Ax)2 ' '+n/2 

~ X = * /A 2̂ +^-n/2-"L/2«,- »/2 + l < / < « (7.25) 

a? (Ax) 

^•(O^MiCO'-^Ax,?) i<=n/2 

ui (t) :=u2 ((/' -1) Ax, t) n<i<=n 

We use the reaction constants a = 1,6 = 3,c = 1, the diffusion coefficient K = 0.001, 

and set the initial conditions to 

A = l + s i n ( - ^ - ) (7.26) 
H / 2 + 1 
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Arbitrarily, we set the full model dimension to n = 500 (any sufficiently 

large value can be used in the experiment; for n < 50 the computational benefits are 

questionable, since the integration of the reduced model is not significantly faster). 

We generate a set of 25 snapshots, uniformly distributed on time interval 

0<?<10 , and apply reduction. We use the standard eigenvalue energy criteria 

(2.33) to select the dimension of the reduced model. The rapid drop in the 

eigenvalue magnitudes is shown in Figure 7.3 (model dimensions n = 100,500,1000 

were used). According to the plot, only the first 20 eigenvectors are significant. 

We set the reduced model dimension to k = 15; in practice, even lower dimension 

can be used. We show the distribution of relative error (7.1) in time for reduced 

models for different values of k in Figure 7.4. By inspection of the plot, the values 

close to A: = 10 result in very similar performance; this appears to be a good 

estimate for the true number of degrees of freedom of the model. 

We note that a measurement of the overall error is a very general 

characteristic. For an effective judgement of the reduced model performance, we 

need to look at how well it preserves the qualitive behavior of the full model, over 

the whole solution, or for particular features of interest. 

In Figure 7.4, we compare the full and the reduced representations of the 

time evolution of two species, the plots for each correspond to 5 fixed spatial 

locations u(xt,t), xi,= 0.2,0.4,...,1. We observe that the quality of the reduced 

model decreases as diffusion effects propagate in time and space. Geometrically, we 

see a situation that is very typical in model reduction: the solution shape is almost 
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correct, but the timing of intervals of increase and decrease gets progressively 

worse. The most significant loss of quality in all components occurs on the time 

interval 7.5 < t < 10; the distribution of the component-wise relative error (7.2) over 

time shows a mean of 3% with a standard deviation of 9% (the distribution is 

constructed based on maximal component-wise errors for each time instance). 

By inspection of the error magnitudes, we shall identify the behavior on the 

interval 1.5<t< 8.5 as the feature of interest. Since the feature is clearly identified 

in time, a goal-oriented snapshot placement may improve its reproduction in the 

reduced model dynamics. Arbitrarily, we redistribute 25 snapshots so that 10 of 

them fall into the identified interval, the rest are placed uniformly. The maximal 

error distribution then improves to the mean value of 2%, with a standard deviation 

of 7%. Furthermore, the acceptable quality of the reduced model (mean error less 

than 10% ) is also preserved over a longer time interval, 0 < t < 30. We show the 

improved performance of the reduced model (for the second chemical specie, at 5 

spatial locations) in Figure 7.6. 

We will now test the effectiveness of using the reduced model in iterative 

optimization. We seek to recover the correct initial conditions (7.26) based on the 

observations of the model state at time T = 10 by solving an optimization problem 

min 3 : 
(7.27) 

3(w) = |M(10,x)-Mo(10,x)|" 
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We construct an iterative solution using gradient descent method, with the gradient 

found by adjoint differentiation of the PDE, as described in Section 4.2. The PDE 

(4.41) is discretized to the form 

* * du^ = _KuM 2u +»,, _fa p + i M ^ t o y x<i<nl2 
at (Ax) 

^ = ~KU'+l '(£/"" ~^"'^ + {^-'1 nl2 + l<i<n (7-28) 
u* =0 i=l,nl2,nl2 + \,n 

u,.(10) = 2(^(10) -«o,.(10)) \<i<n 

resulting in the search step d(k) = -a(k)V p3 = -a(k)u* (0,x), with the step size a(k) 

found by direct search. We note that only very limited performance of both full and 

reduction-based searches should be expected here, since an inverse problem to 

diffusion equations is not convex, and, more generally, not well-posed. 

For this experiment, we set n = 50, started with an initial guess 

ut(0) = pt=l (7.29) 

and performed a search of 100 steps. We then used a reduced model of dimension 

A: = 15, obtained by an unmodified method of snapshots (for the purposes of 

optimization, the changes of snapshot placement, and weighting schemes did not 

result in a significant improvement of quality). As in the previous generic example 

(Section 7.2), each step of reduction-based search takes less computational time, and 

the search approaches the converged state in fewer steps. 

As we have expected, neither of the search results is very precise. In Figure 

7.7, we show the obtained spatial distributions for the first chemical specie, i.e. 
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u:(0,x) of (7.24), and the corresponding ^(O,*). We observe that the reduced 

model achieved a slightly better (though still inadequate) approximation to the 

correct initial conditions, and at approximately 50% lower computational cost. The 

numerical advantage will grow with the increase in the problem dimension n as 

both the direct and the adjoint ODEs can be integrated faster in the reduced form. 

Besides the difficulties in solving the initial conditions optimization 

problems, the reaction-diffusion systems of the type considered in this section are 

among the easier subjects for reduction; the reduced model becomes difficult to tune 

for improved performance only if the reaction term is complex. 
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Figure 7.3 First 50 eigenvalues of the "Brusselator" model covariance matrix. 
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Figure 7.4. Relative error for the reduced version of the "Brusselator" model 
for different dimensions. 
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Full model 
Reduced model 

Figure 7.5. Comparative performance of the full and reduced solutions for the 
"Brusselator" model. 
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Figure 7.6. Comparative performance of the full and reduced solutions for the 
"Brusselator" model; non-uniform placement of snapshots. 
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Figure 7.7. Comparative performance of the full and reduced solutions for the 
"Brusselator" model; iterative recovery of correct initial conditions. 
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7.4 MOLENKAMP-CROWLEY PROBLEM 

We shall now apply reduction to a Molenkamp-Crowley model [155]. The 

model is known to become computationally difficult over long periods of 

integration time, due to accumulating numerical error. We will tolerate the loss of 

quality in the discretized model, since the choice of a better integration scheme lies 

outside of the main interest of our study. 

The model is described by a version of PDE (1.4) with advection transport 

effects and no reaction or diffusion. In 2 dimensions, the PDE is written as 

du _ . . du d{wxu) d(w2u) ,mf\\ 
— + V;c(ww) = — + l ' + 2 = 0 0<xl,x2<l (7.30) 

dt dt dxx dx2 

We use the velocity field w = (wl,w2) that describes a unit speed counter-clockwise 

rotation of the initial distribution of concentrations around the point Xj = x2 = 0.5 : 

W1(X1,X2) = 2TT(X2-0.5) 

w2(Xj,x2) = -2n{xx -0.5) 

Since the only structure in the model describes transport of the initial model state 

along the wind pattern, we expect that significant reduction is possible. 

The initial conditions describe an exponential conic profile: 

u(x,, x, ,0) = M exp( -) 
V " 2 ' ' yK0.\-(xl-ml)

2-(x2-m2)
2J (7.32) 

u(xl}x2,0) « 0 (x, -0.25)2 +(x2 -0.25)2 > 0.1 

with the constants ml, m2 defining the coordinates of the center of the cone, and the 

constant M adjusting the cone height. We use M = 2000, m1=m2= 0.25. 

159 



The finite differences discretization on a square grid with 

Ax, = Ax2 = l / (« - l ) results in n2 ODEs: 

¥- = -^iJ-{n-\)ll)(uMj -ui_lj)+7r(i-(n-l)/2)(uij+l -uiJA) \<i,j<n 
dt 

du.,. 
'•J=0 i,j = \,n (7.33) 

. 2 / 7 ATC\2 

dt 

u,, (0) = Mexp| -1 / 0.1 - (— 0.25)z - (-^ 0.25)z 

We use a set of 40 uniformly distributed snapshots on time interval 0 < t < 1 

that correspondins to one full rotation of the initial profile. Since the exact solution 

of the model is periodic in time, we expect that this collection of snapshots is 

sufficient to capture the significant model dynamics over longer integration periods. 

The eigenvalues of the covariance matrix provide a tentative estimate of the degrees 

of freedom of the model. We show the distribution of eigenvalues for problems of 

dimension n2 =202,302,402,502 in Figure 7.8. We observe that only the first 18 

eigenvalues have significant magnitudes. 

For the dimension n2 =502 , we performed reduction by an unmodified 

method of snapshots, with dimension k = 20, and integrated the full and the reduced 

equations over 0 < t < 2, to simulate two full rotations of the initial profile.The final 

states u(2,x), u{2,x) are shown in Figure 7.8. 

Both the full and the reduced model solutions show significant deviation 

from the exact results of the initial profile rotation (precise position, obtained by 

geometric unit-speed rotation of the initial profile, is indicated by the grey circle). 
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The error introduced by the discretization (7.33) is evident over the whole domain (a 

ripple pattern is visible on the picture, errors of magnitude less that 1% of maximal 

cone height are not shown on the picture). If the goal of simulation is only to 

approximately locate the position of the cone, the reduced model produces a result 

of acceptable quality, and at a lower computational cost (65% improvement, taking 

into account reduced model construction time). 

A higher quality of the reduced model solution can be achieved through the 

use of the exact model data in the snapshot set. Of course, a large set of such data 

may be unavailable in practice. For a small example of a realistic setup, we 

combined 20 snapshots from the solution of (7.30), and 20 snapshots from the 

exact model rotation. For the linear algebra operations required by the method of 

snapshots, it does not matter in which order the model states are taken. The final 

state u(2,x) for the reduced model of dimension k = 20 shown in Figure 7.9. We 

still observe the deformation of the profile, but the center of the cone is now placed 

better even in comparison with the full model solution. The ripples outside of the 

conic profile are significantly smaller (maximal error magnitude reduced from 

approximately 50% to 30% of the maximal cone height). Other simple tools for 

locating and improving the reproduction of features of interest, such as weighting 

and metric change, did not result in the significant improvement of the reduced 

model performance. 

We shall now present an example of the use of the reduced model in 

optimization. For a test problem, we seek recover the correct initial conditions based 
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on a few instances of the model state u(ti,xl,x2), starting with a guess with no 

information about the correct profile shape (7.32): 

/>,=(«(<>)), =0.1 (7.34) 

We used an output function that measures the quality of the reproduction of the 

exact state of the model on the interval tt <t<ti by comparing with the exact 

model state u0: 

3 = X \\u(ti,x,y)-u0(ti,x,y)f2dxdy (7.35) 

In our experiments, tt = 1.8, ti = 2.0. 

We then performed an iterative search using the full and the reduced 

versions of (7.33). The reduced model was constructed using a set of snapshots from 

one of the steps of the full model search. The derivative information required for the 

gradient descent method was found by adjoint differentiation of the discretized 

model. The comparison of performance after 10 search steps is shown in Figure 

7.10. We observe that the reduced model locates the center with a slightly improved 

precision, at a significantly lower computational cost (75% improvement). 

The considered problem is another example of relatively easy reduction of 

transport effects. Based on our experience, most of the development effort in 

reduction is associated with correct tuning of the reduction process to correctly 

represent the reaction term. 
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Figure 7.7 First 50 eigenvalues of the Molenkamp-Crowley model covariance 
matrix. 
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Figure 7.8 Comparative performance of the full and reduced solutions for the 
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Figure 7.9 Performance of a reduced solution for the Molenkamp-Crowley 
model: snapshots taken from the exact rotation of the profile 
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n=2500 
Errors <1% removed; 
grey region indicates 
exact solution. 

Full solution: 
10 steps, 
521 sec /step 

Reduced solution: 
10 steps 
122 sec /step 

Figure 7.10 Comparative performance of the full and reduced solutions for the 
Molenkamp-Crowley model: iterative recovery of correct initial conditions, 
step 10. 
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7.5 LORENZ MODEL 

In this section we consider applying reduction to a model suggested by 

Lorenz et. al. [76]. It is based on a system of ODEs constructed in imitation of the 

more complex atmospheric behavior forecast models. We shall mainly use the 

model to illustrate our approach to sensitivity analysis of the reduction process. 

The model equations are written as 

du-
— - = {uM-ui2)uil-ui+F, \<i<n, 0<t<T (7.36) 
dt 

with an additional convention u0 =un,u_l =u„_1,un+l -ux required for interpreting 

the model state components ut as values of some atmospheric physical quantity 

extending around a latitude circle. Unlike most of the other examples, the equations 

are not constructed based on a simplified version of conservation laws. Instead, 

generic algebraic terms in the right-hand side of the system are chosen so that the 

solution exhibits such typical characteristics of atmospheric models as semi-periodic 

advection and dissipation. By design, the importance of all state components is 

approximately equal, so making distinctions between the important and the 

negligible aspects of the model behavior is more difficult than in other examples. 

We use the perturbed steady-state initial conditions 

14,(0) = F, i*n/2 
, W (7.37) 

M„/2(0) = ^ + Aw0 

with n = 40, Aw0 =F/1000. The numerical stability and the effective complexity 

of the model (specifically, the propagation of consequences of the perturbation Aw0 
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over the latitude) depend on the value of the constant forcing term F. The author 

suggests the value F * 8 / 9 as a threshold for the solution stability, and F - 4 as a 

threshold of chaotic behavior. We use an intermediate value F = 2.5. 

The simple structure of (7.36) suggests a possibility for some model 

reduction, for example, by lumping of the strongly correlated pairs w,-,w,+3 into one 

variable. Inspection of the covariance matrix (based on a uniformly distributed set 

of snapshots) also indicates the possibility of reduction; see Figure 7.11 for a 

visualization. While the magnitudes of the covariance matrix eigenvalues do not 

decrease as sharply as in some of the previous examples, the first 10-15 values 

consistently capture 99.99% of the eigenvalue energy. We set the reduced model 

dimension to k = 10 . 

The application of an unmodified reduction method with N = 20 uniformly 

placed snapshots results in an unsatisfactory performance even on a small time 

interval, 0<t<5 (see Figure 7.12 for a distribution of values w;.(f),«,(0 for 

15 < /' < 35, at time instances t = 0,1,2,4,5). Using more snapshots results in a minor 

improvement in performance, but then on a slightly longer time interval 0 < t < 10 

the reduced model deteriorates even further, to the point where even the state u(0) 

is not reproduced correctly. For such behavior, our current conclusion is that set of 

snapshots does not store the major features of the model, and, under reduction, 

amplifies negligible information. 
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The logical next step is to improve the performance of the reduced model 

using modified snapshot sets and weighting. Since the inspection of the model 

solution did not provide us with a useful guess of what is important, we shall now 

review some of the ways to obtain sensitivities and factor importance information. 

Arbitrarily, we choose the reduced model state components ui: 25 < / < 35 

on the time interval 4 < t < 5 as a feature of interest. Direct amplification of 

corresponding snapshots and components (an event targeting, as described in 

Section 2.4) may be inapplicable here. As we will soon see from the factor 

importance analysis of the model, the chosen output is significantly entangled with 

the rest of the model evolution, and the parts of the snapshot information that fall 

into the feature of interest are not necessarily the most important for its reproduction 

in the reduced model solution. 

To describe the relative importance of the model snapshots and snapshot 

components for the reduced model, we perform the calculations suggested in 

Section 2.2, systematically, with no additional assumptions (that would normally be 

made to avoid estimating importance of obviously negligible factors). We set 

5 

3 = \ut{t)dt * A* X"»('/) (7-38) 
4 4</,<5 

and compute the importance estimates 

§ d3_ ( 7 3 9 ) 

du0(tj) 

169 



For every 25 < /' < 35, tl < tj < tN, the expression (7.39) produces an output vector 

of length n = 40. 

We visualize this description of first-order importance of the model state 

components in Figure 7.13. The plot shows the mean derivative magnitude, and the 

variability in the derivative values (sampled over time for state components, and 

over state components for the snapshots). This format of information presentation 

allows us to avoid making additional assumptions that a particular time instance, or 

a group of component states are more representative of the reduced model behavior. 

Note that the numerical values obtained using (7.38) should be understood as 

sensitivities of the chosen output of interest with respect to numerical perturbations 

in the snapshot content. While this definition of importance of individual snapshots 

is not perfrect, it is sufficient for our purposes. 

Suppose that we decide to perform a computationally cheaper version of the 

same measurement, without model reduction. We can define 

5 

3 = jut (t)dt « A; £ ut (t,) (7.40) 
4<A<5 

and compute 

S ,=-?=— (7.41) 
du0{tj) 

with a restarted ODE differentiation, that is, obtaining u(t) by integration of (7.36) 

on the interval tj<t<5 with initial conditions u(tj) = u0(tj). The results are 

visualized in Figure 7.14 (mean derivative magnitudes without variance are shown 
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on the bottom). We observe that a non-uniform structure of the reduced model 

sensitivity is not present in the full model measurements. Instead, the importance of 

the snapshot contents depends smoothly on the distance from the feature of interest 

(in time, and in model state space). 

By comparing Figures 7.13 and 7.14 we also observe that the relative 

importance estimates (7.41) and (7.39) occasionally contradict each (for example, in 

components w,:25<z<40, snapshots w0(/,): />7, / . > 1.4). Our attempts at 

weighting based on the results of (7.40) have produced reduced models of very poor 

quality, even in comparison with un-weighted version. We conclude that for the 

current example the derivative information that does not take into account model 

reduction process is not efficient. 

On the other hand, a version of the weighting based on the reduced model 

sensitivity has resulted in a small improvement in the reproduction of feature of 

interest. Our best observed performance is shown in Figure 7.15. For this version of 

the reduced model, we did not change the metric. We defined snapshot weights as 

the mean values of sensitivity (7.38): 

WJ=-H 
n i 

In addition, as suggested in Chapter 2, we increased the density of snapshots 

over time intervals identified by inspection of factor importance as important. 

Specifically, the density of the snapshot set U0 was increased in the neighborhood 

of snapshots with numbers i = 1,2,3,7,8,9,14,15,16,17 that had a corresponding high 
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du0(tj) 
(7.42) 



variation in snapshot importance, as shown in Figure 7.13. The corresponding time 

intervals are 0 < t < 0.75, 1.75 < t < 2, 3.5 < t < 4.25. 

We did not obtain new weights for this new collection of 30 non-uniformly 

distributed snapshots. Instead, the values obtained by (7.41) were treated as a set of 

estimates for the importance of time intervals: if several new observed system states 

fell into the interval ?._, <t<tj, they were assigned the same importance as the 

original snapshot u0(tj). 

For a quick comparison of performance of different reduced models, we can 

evaluate the difference 3 - 3 For our best model, 3 - 3 «2.29. For a 

comparison, a reduction with weighting (7.42) and a uniform snapshot placement 

produces a value of 3.48; a reduction with non-uniform snapshot placement and no 

weighting produced a value of 2.91; unmodified reduction shown in Figure 7.12 

produced a value of 7.18. 

Besides the first-order sensitivity estimates, the dependence of an output 

function (7.37) on features in the setup of reduction can also be characterized by a 

polynomial interpolation (see Section 2.2.2 for theoretical description). The idea 

[91], [92] is based on an argument that an explicit, polynomial estimation of the 

model response to the parameters of the reduction process is a more convenient tool 

for representing dependencies that either a table of instances of 3 for different 

reductions, or an explicit linear approximation based on derivatives. We note that 

using interpolating models results in a quality trade-off issue: while such 
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approximations can perform very well locally, there is no guarantee of global 

quality. 

Since non-uniform placement of snapshots has proven relatively more 

important than other reduction modifications, we now show how to construct an 

interpolating model of the model response to snapshot placement. Suppose the 

number of the snapshots must remain fixed. We set 

3(tt)«f(A/y) = 2 ^ ( ^ ) <7-43) 

where the reduced model solution u is based on the collection of snapshots 

U0={u0(tj+Atj)}, j = \,2,...,N (7.44) 

with the deviations from the regular snapshot placement At- used as variables for 

the polynomial expansion f. This choice of parameters does not influence the 

details of interpolation construction, and makes the regression equations (2.69) more 

numerically stable, since the values of all variables lie in approximately the same 

range. Informally, measuring the model response to Af. is expected to answer the 

question about the importance of the time interval in the neighborhood of f. for the 

reproduction of feature of interest in the reduced model. 

We use a full polynomial basis *F of order 2 on 20 variables. It includes 

231 polynomials, requiring as many runs of the reduction process to find the 

expansion coefficients %. In principle, with the use of (allowably imprecise) 

derivative information as in Section 2.2, we can reduce the number of runs to 

231/21 = 11. The required expression 
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J 3 _ J 3 JO _ J 3 JO du0(t + Atj) 

dAtj JO dAtj JO du0 dAt,. 
(7.45) 

is structurally similar to (2.43), (2.44), with a new term 

du0(t + Atj) 

dAt, 
« /(i/(f + A/, ),t + At j )(t + At j ) (7.46) 

We note that complete evaluation of (7.44) is not efficient for the current example, 

and should be used only in the cases of significantly high computational cost of 

model reduction, and for the cases where evaluation is limited to only some 

components of the expression. 

The product of the interpolation procedure is a surrogate polynomial model 

(in a sense, another layer of reduction applied to model dynamics [46]). In our 

example, the polynomial expansion is 

f « 84.01 - 3 . l2Atl - 0.6A/2 -033At3 + 0.64Af4 + 0A6At5 -0.2At6 + 0.05A/7 

+ 0.24A/8 -0.36A/9 +0.42A?10 -0.21Afn -0.03A/12 +-0.03A?13 +0.46A/14 

-0.72A/15 +0.65Ar16 -1.33AfI7 +0.88A/18 +0.68Af19 -0.38A*2O +tquadratic ; 

' quadratic 

/ 98 .7 

GA^Atj 

G~ 

-28.4 10.4 

11.9 -9.0 10.1 

4.8 -9.4 

-15.7 3.3 

7.5 -5.7 

4.0 -3.8 

12.2 3.4 

•11.1 -3.6 

-3.8 

-6.4 

3.9 

2.0 

1.4 

0.2 

6.3 

1.1 

0.1 

2.3 

1.7 

-4.9 

-3.5 

0.3 

-0.1 

2.6 

1.1 

4.7 

-0.2 

-3.7 

2.3 

1.6 

0.1 

-1.1 

-5.3 

3.0 0.02 

(7.47) 
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The coefficients in the expansion are almost invariant to the choice of the 

sample values of the variables (0 < Atj < = 0.025 ) used for the regression, and 

so can be treated as empirically reliable local measurements of the importance and 

correlations of the snapshots displacements Af.. 

Once the interpolating model is constructed, it can be used to estimate the 

range and sensitivities of the output quantity 3 at the computational cost of a few 

direct evaluations of polynomials. The factor importance information represented by 

T is not limited to derivatives; it is also possible to use it in statistical 

measurements such as (2.76), (2.77), with the corresponding quadratures computed 

much faster. 

Arguably, this interpolation may be used also to optimize the output 

function, as in [88], with an important difference that polynomial interpolation is 

only locally valid, and only empirically reliable. 

By comparing the linear and non-linear coefficients in the expansion parts 

(7.46), (7.47), we conclude that the information contained in f is not limited to 

first-order linear approximations of the model response. It therefore may produce 

more efficient results than a linear importance estimate (7.41). In fact, for our 

current example, a weighting scheme 

dT 
Wj = 

dAtj 
(7.48) 
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provides an improvement in performance of the reduced model. The results 

(obtained with a uniform placement of snapshots) are shown in Figure 7.16; we 

measured 3 - 3 « 2.20. 

We conclude this section with a general remark on factor importance 

analysis in model reduction. Our use of sensitivity information is not fully 

automatic: as with this example, we often know what the important data 

components are, but deciding which modifications of the POD method to use takes 

several trials. The best combination of snapshot placement times, snapshot weights, 

and diagonal entries of the metric matrix can, in principle, be found as in [88], by 

solving an optimization problem (in this case, on 80 variables). In practice, the 

computational cost is too high to be justified by the expected improvement. 

The implementation complexity for the procedures extracting required 

sensitivity information, differs from problem to problem. Since the features of 

interest, and the model reduction procedure details are still selected by inspection 

and subjective estimations of importance, there is currently no set of principles for 

comparison of usefulness of factor importance information. 

In our research, we observed that the suggested factor importance analysis 

(such as differentiation, polynomial approximation of sensitivity with respect to the 

model components and to the choices made in the reduction procedure) reveals 

structure not available by inspection of the reduced model state alone. At the current 

stage of development, model reduction is no longer a completely uncontrolled, trial-
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and-error procedure. On the other hand, our analysis remains imprecise (due to 

subjective selection of what to observe), local, and a posteriori. 

As noted previously, methods for formal a priori analysis of model 

reduction are not available available, and may not be because of fundamental 

reasons. In that case, the next stage of research is not so much an improvement of 

reduced model performance through even more advanced measurements, but a 

development of very fast sensitivity estimation procedures, and the use of reduced 

models in combination with advanced data assimilation techniques to correct the 

solution trajectories. Such techniques will benefit from the more basic material 

developed here. 
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Figure 7.11 First 40 eigenvalues of the Lorenz model covariance matrix. 
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Figure 7.14 Full Lorenz model, first-order sensitivity information 
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Figure 7.15 Weighted reduction of the Lorenz model: performance of the 
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7.6 CHARNEY-DEVORE MODEL 

We complete our overview of simple cases of SVD-based model reduction 

with a model suggested in [33] as an example of poor performance of the methods 

based on empirical orthogonal functions. We use a slightly modified form of the 

material used in the reference to give more substance to a general remark that not 

every kind of question can be answered with the help of model reduction. 

The Charney-DeVore model used here is based on an advection-reaction 

system of ODEs, dependent on a number of parameters: 

all, * _ , . 

-+ = rlu3-c(ul-vl) 
dt 

— - = -(alul - /?, )w3 - Cu2 - d1u4u6 
dt 

3 =(alu1 - /?! )u2 - yxux - Cu3 + Slu4u5 
dt 

— ~ = Y\u3 ~ C(u4 — v4) + s(u2u6 -u3u5) 
dt 

du 
— - -{oc2ul - P2 )u6 - Cu5 - S2u4u3 

dt 

— - = (a2ux -P2)u5 -y2u4 -Cu6 + 52uAu2 
dt 

with the coefficients related to the physical quantities by: 

16>/2 8V2 i2(i2+b2-l) 
s = « ; = -5n ! n (4i2-l)(i2+b2) 

64V2 i2+b2-\ J3b2 

15TT ' i2+b2 l~ i2+b2 

yAi 42b ._ y4i3 42b 
Yi~ Ai2-\ n Yi ~4i2-l\(i2+b2) 

(7.49) 

Si=^T7±--TL
1J

L A = ^ T T » = U (7.50) 
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The behavior of the physical model is determined by zonal flow forcing 

terms v15v4, relaxation coefficient C, relative topographic height y, and beta 

parameters b,/3. The model is meant for long-term simulation of the flow, the unit 

of time is 1 day. The initial conditions are chosen arbitrarily, from the region 

-1<«,.(0)<1, i = l,2,..,6 (7.51) 

The output of interest is the evolution of the components ul,ui that have a physical 

meaning of specie concentrations. We refer to the original source for more details 

on the meaning of the model. 

An inspection of the model shows that at least for some parameter values, it 

may behave as expected of an advection-reaction model ODE with only a few 

degrees of freedom. For example, the setup 

v,=0.5, v 4 = 0 , C = 0.05, /? = 0.25, ^ = 0.1, b = 0 (7.52) 

allows construction of a reduced model with an unmodified method of snapshots. 

The first 3 eigenvalues of the covariance matrix consistently account for over 

99.8% of the eigenvalue energy (2.33), leading to the estimate k = 3 for the 

reduced model dimension. 

The comparative performance of the full model and the reduced model 

obtained by an unmodified method of snapshots is shown in Figure 7.17. We did not 

include the initial integration period 0<J<300 , where the model exhibits fast 

transient behavior. During the transient stage the full and the reduced models may 

differ significantly, but the long-term behavior is reproduced correctly. If a more 
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precise reproduction of the full model behavior is required, the unreliable data of the 

fast transient period can be rejected and then replaced with the deduced values, as 

suggested in Section 2.4.3. 

On the other hand, in the setup 

^ = 0 . 9 5 , v4 =-0.76095, C = 0.1, £ = 1.25, y = 0.2, 6 = 0.5 (7.53) 

the transient stage lasts for a long time, with the solution showing rapid transitions 

between two likely steady states (corresponding to distinct flow regimes of the 

physical model). The covariance matrix is very stiff, with the first 2 eigenvalues of 

the covariance matrix accounting for over 99.994% of the eigenvalue energy. The 

sensitivity properties of the model, however, prevent successful reduction. 

In Figure 7.18 we show an example of two very different solution 

trajectories for the specie v4, traced from the initial conditions taken within distance 

of 0.01 from each other in R6. Multiple integrations of the model with varying 

initial conditions show that the trajectories of two types can be placed very closely, 

numerically dense with respect to each other for some time (note that the periods of 

rapid oscillations do not have to end at the same time for both trajectories). 

We agree that the problem demonstrates some elementary flaws of our 

reduction methods, not related to the (largely preventable) instabilities of the 

reduced system over long integration intervals. This observation, however, points 

not so much to the poor understanding of SVD-based model reduction, as to the fact 

that it is possible to construct an example of the behavior that is inconsistent with 

the assumptions behind the method of snapshots. 
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Because of the closely placed distinct solution trajectories, such approaches 

as trial and error, or use of sensitivity information obtained from a small sample of 

trajectories, does not lead to an effective snapshot set that covers the whole 

integration period. The difficulty also applies to selecting the snapshot weights. If 

greater weights, or greater density of the snapshots is assigned to the region 

/>1000 where the solution trajectories are stable and lead to one of the two 

attractors, then only that attractor will be reproduced correctly. Experiments show 

that such reduced models do not exhibit transitions between regimes. On the other 

hand, a mixed set taken from stable trajectories leading to both attractors makes the 

reduced model conform to an average steady state that is never realized. Selective 

model reduction that, in principle, allows simultaneous use of several different sets 

of snapshots, and of several different optimal projections, does not apply here, since 

it requires associating projections with specific groups of components. 

A partially acceptable solution is to take many snapshots from the fast 

transient period (possibly > 1000 states), to increase the chances of capturing all the 

numerically reliable information. Since oscillations in the transient period are large 

in magnitude, in such collection of snapshots the points on the stable trajectory are 

mostly ignored. Our experiments show that such reduced models reproduce the full 

model behavior for some, but not for all initial conditions. 

Rejection and subsequent recovery of the unreliable data is not applicable 

here, since immediately after the fast transient stage the model enters the steady 

state, where the evaluation of the model backwards in time is an ill-posed problem. 
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An original discussion of the model [33] suggested two tasks for validation 

of the reduced model. One is essentially the reproduction of the full model behavior 

during the fast transient period; the other is the convergence of the reduced model to 

a correct steady state, or the attractor in the region of the initial conditions. Our 

conclusion is that using SVD-based reduction methods alone, the second task cannot 

be consistently accomplished for both attractors at the same time. 

A correct representation of one attractor is possible to achieve using a metric 

based on the diagonal matrix that strengthens the representation of the variables of 

interest; for example, AU ,A4 4 = 1000, unit entries on the rest of the diagonal. 

In Figure 7.19 we show a typical solution trajectory for the specie v4, and 

also 2000 endpoints (Vj(r),v4(r)) resulting from the integration of the model over 

a long time interval, T = 4000. While one steady state was located correctly, about 

50% of the integrations resulting from the uniform sampling of the initial 

conditions region (7.51) fell into a large, sharply defined attracting region, not 

obviously related to the full model dynamics. 

Given the difficulties with the construction of a reduced model that can 

effectively locate the attractor, we suggest that trying to reproduce more 

sophisticated features of the full model, such as chaotic shape of the attractor basin, 

or symmetries in the solution trajectories, is premature. In our applied work, we aim 

mainly for simulation of semi-periodic solutions, that are stable over long periods of 

time. 
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Figure 7.17 Comparative performance of the full and reduced solutions for the 
Charney-DeVore model, stable setup: fast transient period not shown. 
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Figure 7.18 An example of the Charney-DeVore model solution trajectories: 
two distinct steady states 
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Figure 7.19 Performance of the reduced solution in reproducing the chaotic 
features of the Charney-DeVore model: behavior during transient stage; 
placement of the attractors. 
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7.7 SAPRC-99 MODEL 

So far, we have shown how our suggestions on model reduction apply to 

simplified cases of large-dimensional reaction-transport models. Based on a set of 

test problems, we have explained how goal-oriented selection of weights, metric, 

and snapshot locations can be used to amplify the reproduction of features of 

interest in the reduced model performance. Our current understanding is that simple 

transport effects reduce nicely, and that once a reduced model is constructed, it is 

advantageous to use it to replace the full model in iterative searches. The main 

difficulty in implementing the proposed approaches lies in the complexity of a 

reaction term. 

We shall now show that the developed material on reduction of ODEs of 

chemical kinetics also applies to models of industrial level complexity. We have 

identified such models as CBM-IV [128], SAPRC-99 [133], and GEOS-Chem 

[129], [130] as appropriate examples that have significance both for the atmospheric 

sciences (as major tools in air pollution prediction and control) and mathematics (as 

large-dimensional stiff ODEs). We chose SAPRC-99 as the central example; we 

find that other commonly used models in the field are either very similar 

structurally, or too large and computationally expensive to be within the scope of 

our work. 

We shall now apply model reduction to this chemical mechanism. Since 

much of our work is novel (altogether, or for this class of problems), there is no 

good basis for the performance comparison. As we are interested both in the general 
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issues of implementing model reduction (such as correct use of sensitivity 

information to place snapshots), and the problem-specific properties (such as 

exploiting slow-fast behavior), we will report on both, in the same qualitive 

description style used in the text so far. 

The main tasks are to demonstrate that a reduced model can efficiently 

reproduce the solution of the full model, and to provide a characterization of the 

behavior of the individual model state components (chemical species) in the context 

of model reduction. 

7.7.1 EXAMINATION OF THE CHEMICAL MECHANISM 

At the time of our research (2006), the considered chemical model was the 

latest released update in the family of mechanisms designated SAPRC (named after 

Statewide Air Pollution Research Center, California), used to simulate the gas-phase 

atmospheric reactions of volatile organic compounds. It has been updated once, by a 

version SAPRC-07. The mechanism has been used in airshed models to determine 

absolute and relative ozone impacts of organic compounds emitted into the 

atmosphere, and for other control and research applications. 

The mechanism has a complete form with over 400 and 550 inputs and 

outputs, correspondingly. A more convenient condensed form has 74 variables 

representing chemical species or groups of species, and 210 chemical reactions. We 

provide a partial description of model state components to chemical species in Table 

8.1. For each specie or lumped variable, the table contains chemical notation 
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(grouped by classification), the corresponding variable number, an order of 

magnitude for the specie's average concentration, an order of magnitude for specie's 

average emission or deposit per second, and a proper name. We refer to the 

complete documentation [133] for more details. 

As described in Section 6.1, the list of chemical equations, reactivity rates 

and emissions was automatically processed into an ODE, with the right-side 

function f(u,t) and its Jacobian J(u,t) recorded as Fortran procedures. We then 

converted the code to Matlab for convenience of integration with standard 

Rosenbrock ODE solvers (Section 6.2). Since some of the chemical reactions are 

very fast, the solutions are resolved up to the time step of one second. 

The rates of some chemical reactions depend linearly on normalized sunlight 

intensity 0 < SUN < 1, with an effective dependence on time modeled by a periodic 

expression similar to (7.4): 

SUN{t) = -{\ +cos 
( It —t -t ^ 

local L sunrise"3 sunset J • « CA\ 
—/local sunset sunrise \ 2 

V t -t } 

^ sunset sunrise 

SUN(t) = 0 tlocal$[tsunrise,tsumet] 

with the time variable converted from seconds from the start of the model to hours 

in the current day by 

^ca/=T77T m<>d24 (7.55) 
3600 

The local sunrise and sunset hours are fixed at the values 

' — = 4 . 5 , tsume1=\9.5 (7.56) 
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placing the maximal sunlight intensity at tlocal = 12. 

Since ours is mainly a methodology study, we use the numerical code 

without modifications or correcting postprocessing, possibly resulting in some loss 

of chemical insight. We treat all the information included in the condensed model 

equations as completely reliable. In reality, there is some uncertainty associated 

with definitions of variables and the reactivity rates, and additional interpretation 

procedures are added onto the base mechanism. There is also uncertainty associated 

with initial conditions for the ODE; if they represent an unrealistic state of the 

system, the solution may exhibit atypical model behavior for a while. To resolve 

this last issue, we first integrate the model over a fixed time interval (on the order of 

one day), and use this equilibrated final state as more reliable initial conditions. We 

note that this is a standard practice for such models. 

To assist model reduction, we shall now provide a characterization of the 

properties of the model that are available by inspection. We note that even with very 

few measurements used to characterize the behavior of each individual model state 

component, the resulting amount of data for 74 variables is almost too large for a 

reader to inspect and draw conclusions efficiently. We shall provide as much 

information as sufficient to improve the performance of reduced models. Additional 

factor importance information can be obtained (as shown in Section 2.2), but only 

for a small selection of model components of interest. 

In Figure 7.20, we plot the solution of the full ODE (over an integration 

period of 72 hours, starting at tlocal=0), for a selection of variables 
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(/ = 5,13,18,25,26,42,43,57,65,69,71,73). The individual species chosen for display 

demonstrate most of typical evolution patterns. We recorded the species behavior as 

it appeared in the solution of the ODE, without additional post-processing, or use of 

observational data. We note that the long-term behavior of some species (for 

example, unbounded growth in concentration) is unrealistic; the mathematical 

implementation of SAPRC-99 is effective only over time intervals on the order of 1 

day. 

At very low resolution in time, each trajectory appears to behave 

monotonously, leading to an informal expectation that the correlations between 

components observed in snapshots stay approximately the same as the model 

evolves. The solution resolved to hours shows a complicated (though non-chaotic, 

smooth) set of trajectories, with occasional change in individual concentrations up 

to an order of magnitude. 

The periodic peaks in the evolution of concentration (present in some form 

for at least 70 components, clearly visible for variables 26,57,65,73) are due to fast 

chemical reactions initialized by introduction of sunlight. The rapid production or 

consumption of each the specie continues until the model achieves an approximate 

balance in the quantities of reagents and continues to evolve more slowly. For 68 

species, this results in a period of rapid change on the interval 4.5 < tlocal < 10, with 

a peak at approximately tlocal = 7 (exact placement depends on the specie). We 
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informally define the transient period of a specie evolution as an interval itstart,tend) 

with an unusually fast change in concentration at the start and at the end: 

kM,-0w)| 
* start = m™(t,ocal) > hnd = ^ ^ Q local) = » ^ (7.57) 

dt dt 

For practical purposes, we considered a derivative value large if it were a statistical 

outlier, i.e. placed at the distance of 3 standard deviations or more from the mean 

value. The expression (8.4) then describes multiple intervals, we took the longest. 

To assist factor importance analysis, we provide measurements of individual 

species dynamics in Table 8.2. We record the magnitude of each component: at the 

start of the integration (after equilibration), average taken over a short time interval 

(1 day), average taken over a long time interval (10 days). We also record an 

approximate placement of the transient period, and the magnitude of the peak (as 

compared to the mean concentration of the specie). 

Finally, we assign a number of informal labels describing features of specie 

evolution available by inspection. The label fast was assigned to 53 species with 

rapid concentration change during the transient period, with a peak magnitude close 

to or over 200% of the mean concentration. We denote all such species, in 

combination with corresponding transient time intervals, as the model's fast 

manifold (as defined in Chapter 2). We note that many species exhibited several 

periods of fast change, of secondary importance, due to much smaller amplitudes. 

For our purposes we attribute them, together with the rest of the model dynamics, to 

the slow manifold. 
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The label smooth was assigned to 12 species that did not exhibit a large 

amplitude during the transient period. At low resolution in time, such species appear 

to be unaffected by periodic events. The labels increasing (10 species) and 

decreasing (6 species) were assigned to the components that do not conserve the 

average concentration over time (change in magnitude is shown in columns 2-4 of 

Table 8.2). The presence of such species degrades the effectiveness of the model 

over longer integration intervals. 

For an additional characterization of the model structure, we recall that the 

right-side expression f{u,t) is quadratic in u by design: (6.1), (6.2). The 

placement of the non-zero entries in the right-side Jacobian J(u,t) can be viewed as 

a summary of the direct reactions between the species. We visualize a 74 x 74 

sparsity pattern in Figure 7.21 (the denser region in the lower right corner does not 

correspond to any obvious chemical classification, the variables were automatically 

numbered for numerical efficiency [132]). 

The sparsity of the Jacobian is approximately 15% . The rank of the matrix 

is also small (we observed 11-20 over the fast manifold, and 5-10 over the slow 

manifold). This leads to an informal conclusion that the effective number of degrees 

of freedom of the model is significantly less than the full dimension n = 74. Please 

note that such observations do not constitute a formal condition for model reduction 

(counter-examples are provided in Section 7.5 and 7.6 correspondingly). 

While examination of the model structure may assist some of the steps of 

model reduction, we will mostly treat the system of ODEs as an (abstract) 
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mathematical model. The choice of features of interest may be arbitrary. To provide 

some perspective on the applied meaning of our work, we will observe a selection 

of several ecologically significant species in the context of model reduction and 

factor importance analysis: 

{«,.: i = 62,69,70,43,56,13} (7.58) 

This selection includes 03 (ozone), NO (nitric oxide), N02 (nitrogen dioxide) , 

HN03 (nitric acid), HCHO (formaldehyde), PAN (peroxy acetyl nitrate); the list 

(7.58) was taken from the performance reviews of the updated version of SAPRC, 

available at [133]. 
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Figure 7.20 SAPRC99 solution, 72 hours 
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Table 8.1 List of model species used in SAPRC-99 mechanism 
Type, 
notation. 

Variable 
number 

Concentration/ 
emission per 
second; 
log10 order of 
magnitude 

Description 

Constant species 
02, H20, H2, 
M 

N/A Oxygen, water, hydrogen, generic medium ("air") 

Active inorganic species 
03 
NO 
N02 
N03 
N205 
HONO 
HN03 
NH04 
CO 
S02 

62 
69 
70 
71 
18 
19 
43 
25 
40 
9 

9 
9 
9 
3 
3 
7 / 2 
8 
4 
10 
9 

Ozone 
Nitric Oxide 
Nitrogen Dioxide 
Nitrate Radical 
Nitrogen Pentoxide 
Nitrous Acid 
Nitric Acid 
Peroxynitric Acid 
Carbon Monoxide 
Sulfur Dioxide 

Active radical species and operators 
HO 
H02 
C 02 
R02 R 
R202 

R02_N 

CCO 02 
RCO 02 
BZCO 02 
MA RC03 

74 
63 
66 
68 
48 

64 

72 
73 
67 
65 

7 
6 
5 
5 
5 

4 

5 
4 
3 
2 

Hydroxyl Radicals 
Hydroperoxide Radicals 
Methyl Peroxy Radicals 
(operator) NO to N02 conversion, H02 formation 
(operator) NO to N02 conversion, no H02 
formation 
(operator) NO consumption, organic nitrate 
formation 
Acetyl Peroxy Radicals 
Peroxy Propionyl and higher acyl Radicals 
Peroxyacyl Radical from Aromatic Aldehydes 
Radicals from Acroleins Peroxyacyl 

Steady state radical species 
03P 
01D 
BZ O 
BZ(N02) 0 
HOCOO 
PAN and analog 
PAN 
PAN2 
PBZN 
MA PAN 

58 
10 
46 
28 
27 

7 
-1 
4 
-11 
0 

Ground State Oxygen 
Excited State Oxygen 
Phenoxy Radicals 
Nito-substituted Phenoxy Radicals 
Radical from Formaldehyde with H02 

»ues 
13 
14 
15 
16 

7 
6 
5 
5 

Peroxy Acetyl Nitrate 
PPN and higher alkyl PAN analogues 
PAN analogues from Aromatic Aldehydes 
PAN analogues from Methacrolein 

Explicit and lumped molecule reactive organic product species 
HCHO 
CCHO 
RCHO 
ACET 
MEK 

56 
55 
59 
42 
60 

8 /3 
7 / 2 
7 / 2 
9 / 4 
7 / 3 

Formaldehyde 
Acetaldehyde 
C3+ Aldehydes 
Acetone 
Ketones and other slow-reacting products 
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Table 8.1 (continued): 
Type, 
notation. 

MEOH 
COOH 
ROOH 
GLY 
MGLY 
PHEN 
CRES 
NPHE 
BALD 
METHACRO 
MVK 
ISOPROD 

Variable 
number 

29 
26 
37 
45 
41 
39 
34 
36 
38 
50 
54 
52 

Concentration/ 
emission per 
second; 
log10 order of 
magnitude 
7 / 3 
4 
5 
6 / 1 
6 / 1 
6 / 2 
6 / 2 
8 
6 / 1 
6 / 2 
5 
5 / 1 

Description 

Methanol 
Methyl Hydroperoxide 
Higher organic hydroperoxides 
Glyoxal 
Methyl glyoxal 
Phenol 
Cresols 
Nitrophenols 
Aromatic Aldehydes 
Methacrolein 
Methyl Vinyl Ketone 
Isoprene products 

Lumped parameter products 
PROD2 

RN03 

61 

57 

7 / 2 

7 

Ketones and other fast-reacting oxygenated 
products 
Organic Nitrates 

Uncharacterized reactive aromatic ring fragmentation products, RARFP 
DCB1 
DCB2 
DCB3 

35 
32 
33 

6 
5 
5 

Reactive aromatic ring fragmentation producst, 
sorted by photolysis action 

Non-reacting species and low reactivity compounds 
SULF 
HCOOH 
CCO OH 
RCO OH 
CCO OOH 
RCO OOH 

1 
2 
3 
4 
5 
6 

8 
8 
7 
7 
7 
7 

Sulfates 
Formic Acid 
Acetic Acid 
Higher organic acids 
Peroxy Acetic Acid 
Higher organic peroxy acids 

Primary organics 
ETHENE 
ISOPRENE 

44 
47 

7 / 3 
5 / 2 

Ethene 
Isoprene 

Lumped parameter species 
ALK1 
ALK2 
ALK3 
ALK4 
ALK5 
AROl 
AR02 
OLE1 
OLE2 
OLE3 
TRP1 

11 
20 
21 
30 
23 
31 
24 
51 
52 
53 
49 

8 /3 
8 /3 
9 / 4 
8 / 4 
8 /3 
7 / 3 
7 / 3 
7 / 3 
5 / 1 
7 / 3 
6 / 2 

Alkanes and non-aromatic compounds, sorted by 
reactivity 

Aromatics, sorted by reactivity 

Alkenes, sorted by reactivity 

Terpenes 
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Table 8.2 Inspection of SAPRC-99 mod 
# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Initial 
concen
tration 

4.33-108 

2.30-108 

7.15-107 

2.38-107 

5.17-107 

1.57-107 

2.33-107 

5.23-109 

4.66-109 

0 
2.76-108 

2.09-106 

2.88-10' 
4.08-106 

1.67-105 

1.98-105 

3.38-105 

1.69-104 

2.10-107 

1.60-10s 

3.26-108 

0.061 
1.7310s 

4.36-10' 
7.47-104 

4.78-104 

0.045 
0 
5.34-107 

2.61-108 

7.03-107 

6.64-105 

4.99-105 

4.01-106 

3.51-106 

2.31-10s 

6.00-104 

1.74-10" 
3.09-106 

1.66-101" 
3.83-106 

1.12-109 

Average 
concen
tration 
(over 1 day) 

3.16-108 

2.03-108 

7.03-107 

2.34-107 

5.00-107 

1.53-107 

2.24-107 

5.22-109 

4.14-109 

0.61 
2.92-108 

2.05-106 

3.64-107 

8.98-106 

2.91105 

3.28-105 

7.43-105 

4.18-104 

1.33-107 

1.41108 

2.38-108 

8.43 
9.97-107 

2.23-107 

9.25-104 

1.74-105 

2.18 
1.88-10"11 

4.866-107 

1.69-108 

4.29-107 

5.049-105 

3.15-105 

2.48-106 

2.93-106 

2.04-108 

2.75-105 

1.38-106 

1.63106 

1.71-1010 

3.70-106 

1.27-109 

Average 
concen
tration (over 
10 days) 

2.04-109 

4.65-108 

7.51-107 

2.49-107 

5.69-107 

1.71-107 

2.70-107 

5.28-109 

8.15-109 

0.41 
2.63-108 

1.95-106 

1.61-107 

4.23-106 

1.26-105 

1.17-105 

2.17-105 

4.94-103 

2.68-107 

1.39-108 

2.42-108 

8.41 
1.04-108 

2.36-107 

2.96104 

4.99-104 

1.07 
2.13-10"11 

4.77-107 

1.74-108 

4.45-107 

4.89-105 

2.94-105 

2.59-106 

2.92-106 

5.05-108 

7.70-104 

1.37-106 

1.72-106 

1.72-1010 

3.69-106 

1.13-109 

lei dynamics 
Transient 
phase; tlocal, 
hours. 

N/A 
8.5-9.8 
6.8-8.8 
6.5 - 8.5 
6.9-8.9 
6.6-8.6 
2.2-4.6 
3.9-7.0 
N/A 
6.7-7.9 
N/A 
5.1-7.7 
6.6-8.0 
5.8-7.2 
5.0-6.9 
4.7-5.3 
6.5-7.9 
4.6-5.5 
5.0-6.1 
8.3-10.0 
6.9-8.9 
5.1-6.6 
5.6-7.2 
5.2 - 6.4 
4.7-6.5 
6.3 - 9.2 
5.6-8.6 
4.5-4.9 
8.5 -10.2 
6.1-8.0 
5.8-7.6 
4.9 - 6.7 
4.9-6.5 
5.0-6.9 
5.0-6.7 
5.6-7.5 
5.7-8.7 
5.0-7.5 
5.2-6.4 
6.7-8.5 
5.1-7.3 
6.1-7.5 

Magnitu 
de of the 
transient 
phase 
peak, % 
of 1-day 
mean 

113 
101 
101 
103 
102 
104 
100 

261 

213 
113 
218 
199 
330 
261 
587 
158 
193 
245 
400 
332 
390 
232 
307 
366 
192 
183 
286 
308 
245 
214 
288 
297 
113 
296 
198 
370 
112 
235 
125 

Labels 

Smooth, increasing 
Smooth, increasing 
Smooth, increasing 
Smooth, increasing 
Smooth, increasing 
Smooth, increasing 
Smooth, increasing 
Smooth, increasing 
Smooth, increasing 
Fast 

Fast 
Smooth, decreasing 
Fast 
Fast 
Fast 
Fast 
Fast, decreasing 
Increasing 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast, decreasing 
Fast 
Fast 
Fast 

Fast 
Fast 
Fast 
Fast 
Fast 
Fast 
Smooth, increasing 
Fast 
Fast 
Fast 

Fast 
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Table 8.2 (continued): 
# 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

Initial 
concen
tration 

2.07-108 

1.07-108 

3.77-106 

31.92 
1.72-106 

2.53-104 

3.37-106 

6.55-106 

5.00-107 

7.08-10' 
3.45-10' 
1.93-103 

7.71-10' 
2.63-10* 
2.78-10' 
0 
3.93-107 

1.23-108 

2.51-10' 
3.37-109 

1.3810s 

8.13-103 

159.01 
3.11-104 

62.88 
6.92-104 

2.32-109 

1.08-10'° 
1.56-104 

9.72-103 

2.61-103 

1.37-105 

Average 
concen
tration 
(over 1 day) 

1.75-108 

6.02-107 

4.26-106 

3.72-104 

7.60-105 

6.27-105 

1.47-106 

3.12-106 

2.40-107 

3.40-105 

1.54-107 

9.73-104 

8.72-107 

2.81-108 

3.74-107 

8.03-107 

3.98-107 

1.75-108 

2.46-107 

1.22-1010 

5.31-106 

1.10-105 

777.66 
1.27-106 

1.41-103 

1.04-106 

7.36-109 

4.15-109 

4.11-104 

3.84-105 

9.90-104 

5.91-107 

Average 
concen
tration (over 
10 days) 

2.95-108 

6.30-107 

4.17-106 

3.11-104 

8.20-105 

3.00-105 

1.60-106 

3.30-106 

2.54-107 

3.46-105 

1.65-107 

8.92-104 

8.49-107 

2.69-108 

3.61-107 

6.79-107 

3.90-107 

1.66-108 

2.47-107 

6.77-109 

2.69-106 

5.24-104 

353.78 
6.24-105 

693.10 
4.94-105 

2.27-1010 

3.61-109 

6.83-103 

1.8610s 

4.84-104 

6.10-107 

Transient 
phase; tlocal, 
hours. 

17.7-19.3 
5.5-7.1 
5.1-7.5 
5.3-6.2 
4.7-5.3 
4.6-6.2 
4.7-5.3 
4.9-6.0 
4.9 - 6.0 
5.2-6.0 
4.7-5.5 
4.8-6.3 
5.3-8.3 
5.4-8.9 
5.3-8.9 
4.8-7.2 
4.9-7.6 
6.3-7.1 
4.8-8.13 
N/A 
4.7- 6.9 
4.6-6.1 
4.5 - 6.2 
5.5-7.0 
5.19-7.5 
4.6-6.1 
4.7-5.4 
4.7 - 5.4 
4.5-4.8 
5.5-7.0 
5.3-6.5 
17.5- 18.9 

Magnitu 
de of the 
transient 
phase 
peak, % 
of 1-day 
mean 

117 
337 
250 
433 
474 
300 
464 
410 
413 
429 
453 
292 
208 
145 
200 
245 
237 
243 
158 

266 
382 
264 
332 
412 
360 
158 
262 
569 
349 
411 
250 

Labels 

Smooth, increasing 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast 
Fast 

Fast 
Fast 
Fast 
Fast 

Decreasing 
Fast 
Fast 
Fast, decreasing 
Fast 
Fast, decreasing 
Fast, decreasing 
Increasing 
Fast 
Fast, decreasing 
Fast 
Fast 
Fast 
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7.7.2 REDUCTION OF CHEMICAL MODEL 

In this section, we overview model reduction of the chemical mechanism. 

There are no particular expectations of performance beyond qualitive reproduction 

of the full model behavior in at least some components (and numerical stability of 

the solution: the reduction is not effective if integration of the reduced model 

equations fails). 

We shall first use an unmodified method of snapshots, and then, based on 

the observed performance of the reduced model, apply some of the improvements 

suggested in Chapter 2. The understanding of the reduced model effectiveness is 

very general, more specific measurements will be used in the following section. 

To decide on the time interval over which the snapshots should be taken, and 

on the dimension of the reduced model, we examine the covariance information. 

The distribution of eigenvalues is shown in- Figure 7.22, for several different 

versions of the covariance matrix. Each matrix was built using the same equilibrated 

initial conditions (recorded in Table 8.2), and a uniform distribution of 40 

snapshots over integration intervals of 6, 12, 30 hours and 5 days. We observe an 

extreme stiffness of the eigenvalue set: the ratio of the largest and the smallest 

eigenvalues is at approximately 30 orders of magnitude. Consistently, as few as 5 

first eigenvalues capture 99.99% of the eigenvalue energy (and 20-25 

eigenvalues capture 100% , up to machine precision). 
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At this point, we expect that the reduced model will be efficient on the 

integration interval of 12-24 hours. For this short integration interval, the 

dimension of the reduced model is estimated as 5 < k < 15. 

Longer integration periods produce curves that are close to power-law 

distribution (a straight line on a logarithmic scale graph), the eigenvalue distribution 

does not have a characteristic sharp decline that has indicated the empirically correct 

degree of freedom for the model in some of the previous examples. In addition, for 

long integration periods, the full model tends to become unrealistic, and the reduced 

model equations numerically unstable. 

We note that there are indications that our setup for reduction is acceptable 

only as a first guess. For instance, for such a large dimension and stiffness, the error 

estimate (2.33) is only useful in relative terms (since, according to it, an alignment 

error of magnitude 1010 may be declared acceptable). Also, a uniform placement of 

observations may be an ineffective way to extract covariance information; such a 

snapshot ensemble captures both the relevant correlations in the long-term evolution 

of the model, and the unreliable information from the transient periods. Our 

response to such remarks is that it is more efficient to adjust the reduced model 

setup after several attempts than to optimize it using almost absent a priori 

knowledge. 

In our experiments, we used the reduction based on a uniform distribution of 

15 snapshots over 20 hours, the reduced model dimension is k = 10. Average 

computational time for the reduced model was 1.77 seconds (including 1.60 
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seconds of integration time, and 0.17 seconds for linear algebra operations); 

compare with 80.25 seconds for integrating the full model. For the chosen 

integration period, the model is already sensitive to the details in reduction setup: 

for example, the use of a large collection of snapshots (so that more of them fall into 

transient periods) may result in numerical instability. We compare the full and the 

reduced model performance in Figure 7.23; the plots are for the species of interest 

defined in (7.58). 

Suppose that we are allowed to modify the number and placement of 

snapshots. It is useful to think of the performance of the reduced model as a result of 

a trade-off between numerical stability and correctness of dynamics. More 

snapshots taken over a longer integration period contain more information about the 

full model, but increase the chance of numerical instability, amplify unreliable 

information, and provide too many points for the reduced model to conform to. On 

the other hand, too few snapshots may not contain enough information. Very short 

integration intervals will require integration restarts, with associated errors. A 

tradeoff between quality and computation time also takes place, but is less 

complicated to manipulate, since our only value of influence is the reduced model 

dimension k. 

For a short integration interval, it is possible to achieve a good coincidence 

of the reduced and the full model behavior, using just the snapshot placement and 

weighting. An approximate understanding of the model dynamics and the 

importance of factors is sufficient. There are several options for setting up the 
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reduction. An improvement in the performance can be based on the understanding 

that not all the information contained in the snapshots is relevant or reliable. By 

observation of the model, we decide that this may be the case for the fast transient 

periods (a different analysis may identify another source of unreliable data, with the 

same processing steps as below). 

The measurements recorded in Table 8.2 allows us to map the 53 fast 

transient intervals, and avoid them, or dampen their influence in estimating the 

covariance information. An approximate distribution of the fast manifold over time 

and model components is shown in Figure 7.24 (resolved in time up to 20 minutes 

of tlocaI). The time intervals covered by the fast manifold are approximately 

5 < tlocal < 11, 18 < tlocal < 19. Unsystematic deletion of several snapshots from the 

indicated time intervals occasionally improves the reduced model performance. 

Removing all of them, however, results in a numerically stable reduced model that 

does not follow the correct trajectory; see Figure 7.25 for a typical performance (40 

snapshots uniformly distributed over the allowed time intervals were used). 

We explain this failure in the reduced model by ignoring too much of the 

revelant information. Without completely rejecting the idea that the data from the 

fast manifold is detrimental to the performance of the reduced model, we shall now 

apply the tools developed to suppress, rather than to completely exclude the data. 

The choice is between event targeting (Section 2.4.1) that allows amplification or 

damping of an arbitrary features of interest; and selective model reduction (Section 
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2.3) that projects a feature of interest using a different reduction from the rest of the 

model. 

Event targeting 

The approach we call event targeting consists of applying distinct treatment 

either to all state components for selected time instances, or for all time instances 

for selected components. It applies best when the feature of interest is a single 

rectangular region in the snapshot ensemble (see Figure 2.1). A more complicated 

shape can be represented by a combination of overlapping rectangles (an "etch-a-

sketch" drawing). The sequence of amplification and damping effects can be 

generated automatically if the expected benefits justify the effort (of solving, 

essentially, an optimal tiling problem). 

We use a guided, non-optimal sequence to construct a diagonal metric A 

and a sequence of weights {w}: 

w, = 1 - 4 | M F nttUoOtf^ + A^M* n{(i/0(*,.)),}|: i = l,2,...,N;j = 1,2,../! (7.59) 

A,.,. = 1 - A2\M
F n{(u0),}\ + A2\M

S n{(«0),}|: i = l,2,...,N;j = l,2,.../i (7.60) 

where MF,MS are the fast and the slow manifolds, as defined in Chapter 2. 

In the absence of information on the importance of individual components 

for the event representation, the expression |Mn...| represents some measurement 

of the intersection of the snapshot with the event. For the discussed problem, we use 

a simple count of instance to determine weights and metric components. More 

specifically, in (7.59) we count how many model components are going through the 
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transient period during current time instance; in (7.60) we count how many 

snapshots fall into the transient period for this model component. The empirical 

coefficients are set to 

^ =0.05, A2 =0.001 (7.61) 

resulting in a (normalized) distribution of 20 weights from 0.0213 to 0.0546 and 

74 diagonal metric entries from 0.9873 to 1.000. 

The modifications made to the default metric are somewhat weak; a higher 

value for A2 may be more efficient. On the other hand, due to the presence of 

important components with of very small magnitude, the model is very sensitive to 

some changes to the metric, resulting in a risk of numerical instability. 

The application of (7.59), (7.60) provides a uniform sweep of the snapshot 

set that dampens all information belonging to the fast manifold, and amplifies all 

information belonging to the slow manifold. Some elements receive contradictory 

treatment that cannot be completely compensated for (though additional sweeps 

with varying values of coefficients (7.61) provided small improvement in some 

experiments). Figure 7.26 shows an example of performance of the reduced model 

created with event targeting; note a clear improvement in comparison with results of 

an unmodified setup shown in Figure 7.23. 

Some variations are possible for the event targeting approach, assuming 

either less or more detail in the description of the event. If only a small number of 

snapshots can be collected (for example, due to limitations on computational time), 

it is possible to place no snapshots outside of the feature of interest (no snapshots on 
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the fast manifold, in this case), and still achieve performance comparable to just 

shown. Some snapshots should be located on the boundary of the feature of interest 

(defined with reasonable precision), with the information contained in them 

receiving higher weight. Alternatively, instead of limiting the description of the fast 

manifold to just the boundaries, we decompose it into several features of different 

importance (such as 'Taster transient period'," slower transient period', 'peak'), and 

dampen or amplify such features to a varying extent. 

Geometrically, the event targeting approach projects all data into a reduced 

order space with the basis obtained using a modified procedure, in which some of 

the data in the set of snapshots is amplified or dampened. The obtained basis is 

optimal for the weighted criteria (2.98). The effective result is a combination of 

expected features (though not exactly a weighted average, since the operator of 

reduction is not linear). 

The main weakness of the approach is the dependence on correct 

understanding of the feature of interest. We find that even structurally simple and 

small features of interest cannot be neatly amplified without some (trial-and-error) 

inspection of sensitivities and correlations with the rest of the model. For example, 

direct event targeting directed at the species of interest listed in (7.58) resulted in a 

generally worse performance in comparison with unmodified reduction setup. In the 

extreme case, if the applied importance analysis identifies the whole model as a 

feature of interest, the approach is not effective. 

• 
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Selective model reduction 

Selective model reduction is a novel idea based on an understanding that 

model reduction is essentially projection. If the full model has features of interest 

that are best preserved under distinct projections, then a reduced order space should 

be defined using a combination of projections. We called the approach intrusive, 

because it attempts to modify the reduced model performance by means other than 

weighting, and the resulting subspace basis is not optimal in the sense of (2.21), or 

any obvious form of (2.98). 

Since projections are defined in the model state space, without using any 

information about time, selective model reduction is a form of distinct treatment of 

the model state components. For completeness, we also suggested a form of 

selective model reduction by time interval, but it is not efficient for the current 

problem because of the computational expense associated to the required integration 

restarts (2.91) and patching by full model dynamics (2.92). 

Selective model reduction is a way to reconcile the need to represent the fast 

transient manifold with the need to exclude it from the snapshot set. The additional 

computational expense consists of solving an extra eigenvalue problem (2.20). 

We create two versions of the subspace basis. The first set of eigenvectors 

O7 corresponds to the covariance matrix (UQXUQY where U'0 consists of 

uniformly based snapshots. The second set 0 / 7 is based on the set U" of snapshots 

uniformly placed on the intervals 0 < tlocal < 5, 10 < tlocal < 18, 19 < tlocal < 24. The 
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two versions of the eigenvalues and eigenvectors are slightly different 

(approximately 10% component-wise for the first 5 eigenvectors). 

The choice of species for selective treatment is subjective; it depends on our 

correct understanding of the features of interest to be amplified. We apply the 

combined projection (2.87) as follows: a row for the matrix O c is taken from <D7 

for the 21 species without the label fast in Table 8.2; from O77 for the rest of the 

species. The resulting matrix is then normalized to <bN . 

The snapshot sets U!
0, Lf" were taken, correspondingly, from the 

unmodified setup (Figure 7.23), and the setup with omitted fast manifold (Figure 

7.25). The resulting performance is visualized in Figure 7.27. We observe an 

improvement in comparison with an unmodified setup; the performance is slightly 

worse than in the slow manifold targeting setup. An additional attractive feature is 

that the obtained reduced model is relatively more stable, and can be integrated over 

longer time intervals. This latter observation gives us an important reason to 

dampen the influence of the fast manifold). 

In our experience, selective model reduction works best when selective 

treatment is required for large parts of the model. In the scope of this section, we 

have not achieved direct amplification of arbitrary elements of the model behavior. 

The representation of features of interest such as (7.58) is easy to setup, but for the 

consistent, observed difference in performance, selective treatment should be also 

applied to the species that are strongly correlated to the ones listed in (7.58). 

• 
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Figure 7.22 First 50 eigenvalues of the SAPRC99 covariance matrix. 
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# 69 (Nitric oxide) 
-Reduced model solution 

Snapshots 

-Exact solution 
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X- I09 # 7 0 (Nitrogen dioxide) 
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10 15 20 
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X 1 0 s # 56 (Formaldehyde) 

10 15 
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25 

20 25 0 5 10 15 20 25 

x 1 o7 # 13 (PAN. peroxy acetyl nitrate) 
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Figure 7.23 Performance of the reduced model solution for SAPRC99 model: 
unmodified reduction setup. 
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0 10 20 30 40 50 60 
Model state components; i=1. . 74 

Figure 7.24 Fast manifold of the SAPRC99 model: distribution over time and 
components. 
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Reduced model solution 
+ Snapshots 

Exact solution 

5 10 15 20 

#70 (Nitrogen dioxide) 
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10 15 20 25 0 5 10 15 20 25 

# 56 (Formaldehyde) x 1 0
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10 15 
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Figure 7.25 Performance of the reduced model solution for SAPRC99 model: 
no snapshots during transient intervals 
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#69 (Nitric oxide) 
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+ Snapshots 
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Figure 7.26 Performance of the reduced model solution for SAPRC99 model: 
slow manifold targeting 
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Figure 7.27 Performance of the reduced model solution for SAPRC99 model: 
selective model reduction. 
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7.7.3 MEASUREMENT OF THE REDUCED MODEL PERFORMANCE 

In this final section, we briefly discuss the quality of the a reduced model 

and collect a number of unsophisticated measurements that characterize the 

performance of two of our versions of the reduced SAPRC-99 (unmodified setup 

and slow manifold targeting setup). Formal analysis suggested in Chapters 2 and 3 

addresses the issue, but the associated computational and code development cost can 

be very high. If the data is needed repeatedly, it should be obtained by inspection. 

The quality of the reduced model should be understood as a very general 

concept. Summarizing the remarks in the previous material, we can say that it has 

four separate aspects. As a first definition, we used an unambiguous, but limited 

'correct reproduction of a feature of interest'. For some problems, that is all that is 

required to understand whether the reduced model accomplishes its goals. However, 

for large-dimensional problems in particular, we cannot readily choose an output 

function 3 to summarize all the model data. 

Second, we compared the geometric shapes of the full and the reduced 

model solutions. This kind of description provides good understanding of how much 

the reduced model preserves the explicit full model dynamics, but is too informal to 

be used in the (eventual) automatic construction of reduced models. 

Third, we looked at the evolution of relative error over time, and distribution 

of the component-wise error. We recommend looking at the distribution of error 

(7.1) for several different values of reduced model dimension k, to verify that the 

reduction setup uses an adequate dimension, and to see how the improvements on 
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the reduction process compare against switching to a reduced model of slightly 

higher dimension. 

For the distribution of error (7.2) over components and time instances, the 

most effective metric is the variability of the error (we measure the standard 

deviation). A reduced model solution with an almost unchanging relative error 

reproduces the geometric shape of the full solution well. If that is the case, fairly 

large error magnitudes that are due either to bias, or to occasional (artifact) solution 

peaks may be acceptable. 

The forth and final characteristic of the reduced model is the numerical 

stability of integration. If the numerical solver cannot integrate the reduced model 

equations, the reduction setup needs to be changed. Increase in the number of 

snapshots, use of longer integration interval, and, paradoxically, increase in the 

dimension of the reduced space may lead to instability. The latter is due to an 

increased difficulty of error control in the solver that deals with a large-dimensional 

ODE with high sensitivity of solution to perturbations in data. Increase in dimension 

from minimal acceptable to intermediate values of k is counter-productive in any 

case: if the reduction is not significant, there is no computational advantage. 

For every constructed reduced model, we would like to know if it is 

applicable multiple times (in an iterative process, or in a single task of simulation), 

for integration starting from initial conditions that are not exactly known a priori. If 

the data is needed repeatedly, we recommend trial integrations over a sample of 

points from the parameter space P. 
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We shall now apply the measurements to the reduced SAPRC-99 models; 

the goals are to give more substance to the conclusion that a model based on the 

event targeting approach is an improvement over the unmodified setup; and to show 

which individual chemical species are well reproduced in either version. 

The measurements of a relative error (7.1) for the unmodified reduction 

setup are visualized in Figure 7.28. The quality of the reduced model grows slowly 

for increasing reduced space dimensions, starting with A: = 10. There is no 

significant difference between models in the range 12 < k < 25; the maximal error is 

approximately 2.5% . We note that for the values 25 < k < 65 the reduced 

equations are effectively unstable. For reduced models of very low dimension, the 

performance is unacceptable, with numerical instability at k < 7. 

A corresponding measurement for the event targeting setup is visualized in 

Figure 7.28. The same true number of degrees of freedom, k = 10, is observed. The 

maximal error has decreased to approximately 1%; the performance of the model 

with k = 8 has become more acceptable. Our experiments also show that the 

numerical stability properties changed: now the effective range of dimensions is 

6<k<20. 

To produce the next measurements, we simulate the possible range of initial 

conditions by introducing random perturbations to the value u(t0) (equilibrated, 

recorded in Table 8.2): 

{u(t0)).=(u(t0)),(l +fa/100%), i = l,2,-,n (7.62) 
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where dp is a vector of n random perturbation coefficients, with prescribed 

maximal length (in our experiments, \5p\ = 2,2.5,5%). We define a relative error 

for the component / at time t by 

e,(t) = 
r{u(?)),-(mV 100% (7.63) 

and observe the distributions of et over time (each recorded measument is an 

average over the distribution observed with 100 randomly chosen values for (p). 

The results of measuremens are recorded, for two reduction setups, in Tables 

8.3, 8.4; extracts of significant table data are visualized in Figures 7.30, 7.31. In 

Table 8.3, we record the distribution of the observed relative error in species of 

interest (7.58); the metrics are the minimal and maximal values, mean, and standard 

deviation. The measurements were also taken for the initial conditions randomly 

perturbed with bounds of 1%,2%,5%,10%. Judging from the error magnitudes, the 

reduced model shows adequate performance if the perturbation is bounded by 

approximately 2.5%, a larger deviation allowed in some components. The event 

targeting setup demonstrates a small advantage (becoming less significant as 

perturbation bound grows). The comparison of error standard deviation for different 

components is visualized in Figure 7.30. Observing the variation in error alone, we 

can state which species do not preserve the correct solution shape: / = 62,69,70. 

We observe that the ability of a reduced model to capture the evolution of 

individual specie appears to be an almost invariant characteristic, dependent more 
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on the specie itself than on the size of perturbation, or on the reduction setup. In 

other words, "a specie reproduced well by reduced model'can be used as a label. We 

provide more complete information in Table 8.4 and Figure 7.31. In the table, we 

record the distribution of the error for all 74 species, for a 2.5% perturbation 

bound. In the plot, we visualize the error variance for all the species, and sort the 

species by reliability of reproduction. Note that the behavior of species 

«,.: i = 18,33,37,41,45,47,49,52,53,54,60,65,67,71,73 (7.64) 

is particularly difficult to reproduce correctly. 
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Table 8.3 Effectiveness of reduced model for perturbed 
Maximal 
perturbati 
on, % 
0 

# 

62 
69 
70 
43 
56 
13 

Unmodified setup, 
relative error distribution, % 
Min 
1.50 
0.19 
2.28 
0.31 
4.72 
0.24 

Max 
6.60 
0.71 
28.52 
2.01 
36.01 
1.20 

Mean 
3.32 
0.50 
6.55 
0.95 
12.57 
0.68 

St. dev. 
1.28 
0.14 
5.62 
0.50 
7.03 
0.30 

initial condition; i 
Slow manifold targeting setup, 
relative error distribution, % 

Min 
1.20 
0.10 
1.79 
0.25 
3.59 
0.21 

Max 
4.60 
0.49 
19.76 
1.50 
24.78 
0.92 

Mean 
2.39 
0.34 
4.67 
0.73 
9.09 
0.54 

St. dev. 
0.82 
0.10 
3.80 
0.38 
4.62 
0.22 

2 62 
69 
70 
43 
56 
13 

-9.98 
-49.55 
-47.60 
-0.04 
-42.79 
-5.65 

47.81 
14.55 
11.43 
22.78 
47.52 
8.93 

0.62 
-6.41 
1.31 
9.69 
-7.26 
0.90 

9.69 
14.26 
5.79 
7.58 
23.93 
4.89 

-9.99 
-49.55 
-47.62 
-0.05 
-44.56 
-5.66 

47.45 
14.57 
11.53 
22.35 
46.88 
8.90 

0.61 
-6.39 
1.34 
9.60 
-7.78 
0.85 

9.66 
14.25 
5.82 
7.49 
24.50 
4.89 

5 62 
69 
70 
43 
56 
13 

-3.88 
-21.86 
-36.95 
-0.01 
-16.32 
-4.37 

58.62 
677.9 
4.44 
14.94 
70.36 
3.45 

29.44 
99.08 
-23.81 
5.66 
7.10 
-0.44 

23.43 
221.03 
17.24 
4.59 
22.88 
2.29 

-3.82 
-21.25 
-36.24 
0.01 
-16.89 
-4.62 

57.38 
661.48 
4.39 
14.39 
68.56 
3.40 

28.17 
99.27 
-23.54 
5.45 
5.47 
-0.45 

23.03 
217.76 
16.74 
4.37 
22.41 
2.29 

10 62 
69 
70 
43 
56 
13 

-6.01 
-35.29 
-57.06 
0.01 
-18.67 
-4.93 

94.11 
1078 
11.02 
26.43 
111.2 
5.77 

51.26 
603.22 
-32.11 
9.73 
14.76 
-0.14 

37.82 
486.44 
28.24 
8.31 
33.60 
4.36 

-5.67 
-34.24 
-55.70 
0.15 
-20.80 
-5.78 

89.02 
1026.1 
7.74 
28.83 
111.67 
5.39 

46.87 
579.45 
-31.96 
8.98 
10.85 
-0.60 

35.64 
462.10 
27.20 
7.44 
30.62 
4.45 
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Table 8.4 Effectiveness of reduced model: reproduction of individual species, 
2.5 % perturbation 

# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

Unmodified setup, 
relative error distribution, % 

Min 
-6.64 
-1.60 
-1.17 
1.34 
-1.82 
-0.23 
-2.07 
0.41 
-0.29 
-6.54 
-0.66 
-1.65 
-0.73 
-1.51 
-0.74 
-9.45 
-4.14 
-7.30 
-10.72 
-0.26 
-1.03 
0.02 
-12.01 
-30.06 
-15.83 
-18.71 
-0.01 
-12.54 
-0.27 
-6.59 
-8.65 
-42.96 
-49.25 
-49.40 
-44.32 
0.51 
-0.03 
-10.65 
-24.50 
0.01 
-17.22 
-1.30 
-0.73 
-13.13 

Max 
1.16 
-0.77 
-0.79 
2.00 
-1.29 
0.43 
5.57 
0.53 
2.73 
22.32 
13.95 
35.49 
2.33 
41.18 
29.47 
3.88 
45.39 
48.76 
-1.77 
24.45 
8.41 
49.40 
-0.50 
0.82 
2.32 
49.83 
45.57 
48.72 
25.56 
0.56 
0.44 
48.62 
49.60 
9.86 
37.93 
3.20 
49.84 
16.23 
1.89 
6.32 
48.23 
12.24 
3.02 
-0.46 

Mean 
-1.54 
-1.28 
-1.03 
1.53 
-1.58 
0.03 
0.51 
0.45 
0.43 
5.86 
3.06 
9.65 
0.43 
10.98 
8.35 
-1.45 
16.50 
14.60 
-5.54 
6.51 
3.44 
22.71 
-4.88 
-10.44 
-5.20 
17.63 
15.48 
8.51 
6.68 
-2.31 
-3.17 
-5.46 
-14.54 
-4.27 
1.63 
1.22 
13.07 
2.88 
-8.38 
1.51 
14.28 
2.24 
0.22 
-5.10 

St. dev. 
2.04 
0.19 
0.09 
0.17 
0.12 
0.15 
1.84 
0.03 
0.81 
6.85 
4.12 
8.17 
0.77 
11.50 
7.77 
3.39 
12.45 
14.86 
1.93 
7.20 
1.81 
10.90 
2.68 
6.22 
3.52 
11.78 
10.62 
7.59 
7.51 
1.35 
1.87 
12.29 
14.76 
7.70 
12.84 
0.64 
10.64 
5.02 
5.20 
1.77 
13.39 
3.78 
0.89 
2.90 

Slow manifold targeting setup, 
relative error distribution, % 

Min 
-2.17 
-1.28 
-1.28 
-0.09 
-0.23 
-1.09 

-2.82 
-0.15 
-0.58 
-16.82 
-11.17 
-24.43 
-1.58 
-34.00 
-23.87 
-5.62 
-40.21 
-49.19 
-6.46 

-21.56 
-6.50 
-46.11 
-4.32 
-13.70 
-3.18 
-48.52 
-37.33 
-21.53 
-22.37 
-3.24 
-5.45 

-45.08 
-38.63 
-38.48 
-33.60 
-0.34 
-39.49 
-9.22 
-11.75 
-4.74 

-41.06 
-9.91 
-1.33 
-4.77 

Max 
6.57 
-0.26 
-1.02 

0.39 
0.11 
-0.65 

2.91 
-0.06 
1.98 
9.46 
0.54 
16.17 

0.74 
4.90 
4.11 
13.94 
-1.21 
45.33 
10.61 
-1.84 

0.69 
-0.07 
14.20 
22.27 
13.35 
0.04 
6.24 
48.14 
-0.21 

7.50 
10.82 
48.69 
49.21 
45.22 
49.29 
2.22 
10.87 
29.63 
18.00 

0.01 
48.11 
0.69 
1.10 
14.45 

Mean 
1.50 
-0.50 
-1.13 

0.24 
-0.07 
-0.84 
1.14 
-0.09 
1.23 
-3.82 
-2.36 
-3.82 
-0.15 
-7.65 
-5.70 

4.08 
-17.18 
-9.51 
5.21 
-6.85 
-2.82 
-28.32 
6.30 
10.01 

7.09 
-22.75 
-17.79 
-6.96 
-5.91 

3.44 
4.38 
10.25 
17.86 
5.68 
3.74 
1.02 
-14.80 
3.83 
8.90 
-1.16 
-5.49 
-2.14 

0.05 
6.52 

St. dev. 
2.24 
0.20 
0.05 
0.11 
0.07 
0.09 
1.33 
0.02 
0.60 
6.00 
3.01 
9.00 
0.57 
8.65 
5.90 
3.50 
8.35 
16.75 

2.89 
4.97 
1.77 
8.51 
4.12 
6.70 
2.67 
9.88 
9.81 
8.87 
5.68 
2.42 
3.05 
9.95 
12.61 
11.46 
9.53 
0.48 
10.94 
9.44 
5.56 
1.25 
20.49 
2.63 
0.54 
4.32 
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Tab 
# 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

le 8.4 (continued): 
Unmodified setup, 
relative error distribution, % 

Min 
-0.55 
-0.21 
-9.64 
-5.73 
-13.28 
-26.22 
-28.48 
-49.53 
-29.57 
-49.56 
0.54 
-0.29 
-1.89 
-3.85 
-5.01 
-43.25 
-12.68 
-0.10 
-1.06 
-17.68 
-49.60 
1.13 
-0.31 
-15.83 
-1.23 
-0.61 
-27.85 
1.40 
-43.15 
-2.75 

Max 
48.21 
49.40 
49.86 
36.75 
49.24 
9.15 
5.91 
4.35 
49.45 
19.61 
36.19 
19.54 
30.58 
15.14 
26.91 
49.71 
29.33 
13.14 
30.60 
25.47 
7.07 
45.58 
48.59 
32.70 
1.57 
2.58 
49.14 
49.29 
49.94 
3.44 

Mean 
14.06 
16.68 
15.99 
13.03 
14.56 
-6.85 
-7.23 
-18.96 
11.61 
-20.34 
9.94 
6.15 
12.67 
4.86 
7.73 
16.66 
1.95 
3.71 
11.04 
10.84 
-8.57 
16.43 
14.15 
12.17 
-0.08 
0.54 
18.76 
17.60 
19.24 
1.03 

St. dev. 
11.20 
11.36 
15.29 
8.82 
14.68 
5.53 
5.01 
13.34 
13.27 
15.51 
8.52 
4.90 
7.30 
4.89 
6.30 
13.52 
6.69 
3.63 
7.62 
6.52 
13.31 
10.66 
11.23 
8.10 
0.70 
0.69 
20.11 
11.48 
12.19 
1.49 

Slow manifold targeting setup, 
relative error distribution, % 

Min 
-39.41 
-38.50 
-49.47 
-32.14 
-49.51 
-29.64 
-27.80 
-24.30 
-38.85 
-18.61 
-26.82 
-16.88 
-28.57 
-13.55 
-19.63 
-45.61 
-8.13 
-11.76 
-28.57 
-30.88 
-42.05 
-41.49 
-46.20 
-29.38 
-0.86 
-2.32 

-48.91 
-44.69 
-49.84 
-5.12 

Max 
19.16 
19.13 
49.71 
0.66 
0 
27.36 
24.90 
49.84 
23.57 
49.62 
6.57 
2.43 
1.12 
3.35 
15.23 

0.74 
20.47 
0.38 
-2.16 
1.24 
49.79 
-4.12 
26.91 
3.34 
1.28 
0.78 
32.10 
-4.18 
1.41 
3.83 

Mean 
-8.11 

-12.49 
-15.03 
-13.00 
-16.32 
5.72 
5.84 
19.12 

-10.88 
18.98 
-7.67 
-6.42 
-13.56 
-3.94 
-2.30 

-15.77 
3.61 
-2.99 
-11.19 
-11.80 
18.19 

-16.88 
-11.06 
-11.91 
0.41 
-0.70 
-15.83 
-17.85 
-18.66 
-2.07 

St. dev. 
12.66 
9.91 
12.15 

6.17 
11.58 
8.17 
7.86 
14.63 
11.65 
12.22 

7.06 
3.91 
6.83 
4.01 
7.80 
10.26 

5.69 
3.05 
4.99 
4.58 
20.47 
7.33 
12.61 

5.80 
0.54 
0.56 
15.10 

8.05 
10.02 
1.86 

228 



Figure 7.28. Relative error for the reduced SAPRC-99 model for different 
dimensions. 
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Figure 7.29 Relative error for the reduced (slow manifold targeting) SAPRC-99 
model for different dimensions. 
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Figure 7.30 Effectiveness of of reduced model for perturbed initial conditions: 
error variability in reproduction of species of interest. 
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I 

0 5 10 15 20 25 

Relative error st deviation, % 

Chemical species, sorted by reliability of reproduction: 

(unreliably reproduced species in the end of the list) 

Unmodified setup: 
8 3 5 6 4 2 36 70 69 13 9 43 30 74 40 21 7 31 19 1 23 44 16 25 62 
42 11 58 56 51 38 39 50 24 59 64 61 10 20 57 29 28 63 34 15 68 12 
55 48 27 37 66 22 45 67 46 72 14 26 73 32 17 35 53 65 52 41 60 49 
33 18 47 54 71 

Slow manifold 
Targeting setup: 

8 3 5 6 4 2 36 43 69 70 13 9 40 7 21 74 1 30 42 25 19 11 31 62 16 
56 58 23 44 64 20 63 39 29 61 68 15 10 48 24 57 55 66 59 51 72 50 
17 22 14 28 12 38 35 27 26 46 32 73 60 37 34 49 53 47 54 33 67 45 
52 71 18 65 41 

Figure 7.31 Effectiveness of reduced model: error variability in reproduction of 
individual species; 2.5% perturbation. 
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CHAPTER 8 

CONCLUSIONS 

In our work, we have explained how POD-based model reduction techniques 

can be enhanced for better performance of reduced models, and then used to replace 

the full models in the tasks of simulation, iterative optimization (and, by 

implication, control). The general goal was to investigate and validate POD-based 

reduction as a flexible and efficient choice, particularly appropriate for reaction-

transports models of atmospheric chemistry. The specific goal was to demonstrate 

that the use of the reduced model can improve efficiency of iterative optimization 

procedures. 

We can now identify the relationship of our work to other studies in the 

field. To modify the performance of the reduced model, we regularly used 

weighting of snapshots and the change of metric (dual weighting) [34], [35]; and 

also goal-oriented snapshot placement guided, in our case, by results of model factor 

importance analysis: [1], [68], [71], [88], [76]. We have shown how dual weighting 

can be used to target specific events in the model behavior. For the problems of 

iterative optimization, we used descent methods [10], [13], [37]; with adjoint 

differentiation of the model to obtain the gradients: [22], [24], [69]. 

We introduced new ideas of selective model reduction (taking into account 

slow-fast dynamics, or other chemical factor importance analysis considerations 

[80]); sensitivity information by interpolation [91], [92]; sensitivity information by 

differentiating the model reduction process (based on [80]); data rejection and 
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recovery in long-term integration (using POD-based reduction and Kriging): [5], 

[36], [44], [108]. We noted the availability of a posteriori error estimated for model 

reduction: [55], [58]; and also of conjugate gradient methods for iterative 

optimization [48]. 

Due to limitations on development effort, or inappropriateness for our 

specific tasks, we did not use Hessian-based model reduction: [8], [9]; formally 

optimal placement of snapshots [19]; a priori choice of metric: [33], [38]; POD-

based reduction combined with such linear model reduction methods as balanced 

truncation, or empirical Grammians: [2], [3], [14], [52], [103]; preservation of 

symmetries in the reduced model [6]; additional empirical techniques such as 

acceleration of POD reduction [4]. In principle, this additional knowledge should 

not be rejected, and can lead to further improvements in the field of study. 

We have illustrated our suggestions with models taken from multiple 

sources: [31], [66], [128], [133]; note in particular [76] and [134] for Lorenz model 

and SAPRC-99. In general, our work is applicable in many of the usual tasks 

associated with large models, including prediction of future behavior, recovery of 

true state of the system based on incomplete observations; inverse problems of 

simulation and control; data assimilation with filtering. The developed techniques 

will see further use in the area of uncertainty quantification for models dependent on 

large numbers of parameters: [91], [93]. 

In our study, the main example of the model was the advection-diffusion-

reaction system, discretized to a sparse ODE. The covariance matrix of such model 
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had a characteristic distribution with only a few large eigenvalues. We used an 

understanding that capturing most of the eigenvalue energy is sufficient to 

reproduce most of the full model behavior. That is empirically true for systems 

dominated by an elliptic operator of the reaction-only system where parabolic 

operators of diffusion and advection transport produced a less rapidly decreasing 

sequence of eigenvalues, but had higher sparsity and lower importance. For a more 

complete understanding of model reduction, the studied model should be made more 

general, ideally, with a formally described relationship between the spectrum of the 

arbitrary differential operator and the performance of the reduced model. 

We have the reviewed one basic aspect of data assimilation: search for the 

solution of the initial conditions optimization problem. It turned out that the use of 

the reduced model is computationally efficient, provided the reduced model is 

constructed using snapshots that are sufficiently close to the optimizer (then the 

optimization problem is almost convex, and the reduced model evolution is almost 

equivalent to the full model evolution). We suggested a number of a posteriori 

measurements of the reduced model performance, but, again, it would be better to 

have a formal statement characterizing the problem, and the search step at which it 

is efficient to use the reduced model. 

The question of preserving such properties of the full model as solution 

symmetries, positivity, conservation of physical quantities in the reduced model is 

largely unanswered (there are negative examples). We can define any such property 

as a feature of interest (or a combination of features of interest), and amplify its 
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presence in the reduced model. The procedure, however, is not automatic; it needs 

to be guided using results of computationally expensive factor importance analysis. 

Overall, the main weakness of model reduction by projection is the lack of a 

priori quality estimation. For the more complex examples, the reduced model needs 

to be tuned (manually or partially manually, based on the problem-specific 

knowledge) for adequate performance. We have attempted to contain this weakness 

to only the process of constructing the reduced model. The presence of such 

difficulties as discretization errors, unreliable data, high sensitivity to small changes 

leading to incorrect factor importance analysis, numerical instabilities, high 

computational cost of linear algebra operations, etc, differs from problem to 

problem. Even though the previously available and the newly developed tools can 

deal with each difficulty separately, the model reduction may still be ineffective 

due to a combination of factors. 

Once the reduced model is created, it can be used efficiently in many tasks 

that require multiple (forward and adjoint) evaluations of the full model, even for 

the full model factor importance analysis by large-scale sampling. Informally, we 

say that the creation of the reduced model is still mostly art, guided by trial-and-

error and observational intuition (see [46]). The use of the reduced model is already 

closer to science. We would like to view the current work as a modest effort to 

improve on the current practices in reduction of nonlinear models and to shift the 

balance towards scientifically justified practice. 
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