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LEARNING NONPARAMETRIC ORDINARY DIFFERENTIAL
EQUATIONS: APPLICATION TO SPARSE AND NOISY DATA ∗

K. LAHOUEL, M. WELLS, D. LOVITZ, V. RIELLY, E. LEW, AND B. JEDYNAK

Abstract. Learning nonparametric systems of Ordinary Differential Equations (ODEs) ẋ =
f(t, x) from noisy and sparse data is an emerging machine learning topic. We use the well-developed
theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution
of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem
in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler
approximations to provide a numerical solution. We prove a generalization bound for the L2 distance
between x and its estimator. Experiments are provided for the FitzHugh–Nagumo oscillator and for
the prediction of the Amyloid level in the cortex of aging subjects. In both cases, we show competitive
results when compared with the state of the art.

Key words. learning ODE, RKHS, penalty method, Amyloid accumulation, FHN oscillator.

AMS subject classifications. 62G05, 65L70, 68U99

1. Introduction.

1.1. Description of the problem and related works. Fitting a system of
nonparametric ordinary differential equations (ODEs) ẋ = f(t, x) to longitudinal data
could lead to scientific breakthroughs in disciplines where ODEs or dynamical systems
have been used for a long time, including physics, chemistry, and biology, see [12].
By nonparametric, we mean that there is no need to specify the functional form of
the vector-field f using a finite dimensional parameter. Instead, this force field can
belong to a functional space. This is a great advantage in situations where the from
of the vector field is unknown but data is available for learning.

A particular difficulty arises when the data is sparse and noisy. This is often the
case for longitudinal healthcare data, obtained during hospital visits. These visits
provide measurements that are sparse in time, with a high level of individual vari-
ability. The work presented in this paper has been motivated in part by the need to
model the accumulation of the Amyloid protein in the brain of aging subjects. It is a
challenging but important task due to the significance of the Amyloid in the current
understanding of Alzheimer’s disease.

Fitting data to nonparametric ODEs is an inverse problem. It requires making
assumptions on the initial state of the solution, and on the vector field. Further-
more, one needs to make assumptions on the noise model and provide a tractable
optimization algorithm.

We provide now a short bibliographic survey. Further references are provided
in the cited papers. First, observe that if the time derivative (ẋ) was observed, then
fitting ODEs to noisy data would reduce to solving a regression problem. This remark
has led to the methods known as “gradient matching” and to the earliest success in
fitting ODEs to data, see e.g. [8, 3]. It consists in estimating the gradient from the
data, then performing nonparametric regression to fit f and eventually, iterating, see
[20]. These methods become inefficient when the data is sparse or noisy, or both.

Another approach consists in modeling f with polynomials [14] or with a Deep
Neural Network, see [22, 4]. These methods integrate the solution along the vector
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field from guessed initial conditions and compare the resulting trajectories with the
observations. Optimization is used iteratively to refine the estimation of f and the
initial conditions. Stochastic gradient descent and backpropagation is used in the lat-
ter case. Another modeling approach is to assume that f belongs to a Reproducing
Kernel Hilbert Space (RKHS). This idea could be traced back to [18]. It was suc-
cessfully applied to fluid mechanics in [24] and [3]. This is the conceptual approach
pursued here. We believe that this approach is well motivated since there is a tight
connection between the regularity (smoothness) properties of a kernel and the regu-
larity properties of f . Specifically, one can choose an RKHS of vector-valued functions
for which one is guaranteed the existence and uniqueness of the corresponding initial
value problem. This is a necessary step in proving that more data would result in
more accurate predictions. In [11], the authors use a Gaussian processes (GP) for the
vector field. This is the Bayesian counterpart of the frequentist RKHS modeling, see
[15] for a review of the similarities and differences between RKHSs and GPs. Com-
parisons between a collection of algorithms representative of the state of the art and
the proposed algorithm is provided in the experiment section.

For the purpose of providing a visual and easy to understand illustration of the
results generated by the algorithms presented in this paper, please see Figure 1. While
the details of this experiment are provided in the section 4.6, we see that the proposed
algorithm is able to recover a noisy trajectory and to extrapolate the data, contrary
to a method that would use a regression model and ignore the ODE.

1.2. Main contributions. The main contributions of this paper are as follows:
1. We present an RKHS model for fitting nonparametric ODEs to observational

data. Conditions for existence and uniqueness of the solutions of the corre-
sponding initial value problem are expressed in terms of the regularity of the
kernel;

2. We propose a novel algorithm for estimating nonparametric ODEs and the
initial condition(s) from noisy data. This algorithm solves a constrained
optimization problem using a penalty method;

3. We derive and prove a consistency result for the prediction of the state (inter-
polation) at unobserved times. This is, up to our knowledge, the first result
for the problem of fitting nonparametric ODEs to data.

4. We provide experiments with simulated data. We compare the proposed
algorithm to four existing methods representing state of the art for various
sparsity and noise levels. We show that our algorithm is competitive.

5. We provide an experiment modeling the accumulation of Amyloid in the
cortex of aging subjects. The data is sparse with, on average, three data
points per trajectory (subject) and 179 trajectories. We show competitive
performance compared to state of the art.

The rest of this paper is organized as follows: Section 2 presents the model and the
algorithms. The consistency results are presented in Section 3 and proved in Appendix
A. The experiments appear in Section 4 while Section 5 provides concluding remarks.
Appendix B provides examples of kernels.

2. Model and algorithm.

2.1. Notations. We assume that we have n observations y = (y1, . . . , yn) where
n, for example, is the number of subjects. Each observation yi consists of mi d-
dimensional data points: yi = (yi1(ti1), . . . , yimi

(timi
)) so that yij ∈ Rd is observed at

time tij ∈ [0, T ]. Our goal is to make predictions at new time-points for a subject with
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Fig. 1. The true (grey) and estimated (black) vector fields for the FitzHugh-Nagumo (FHN)
oscillator as well as noisy observations and three predicted trajectories.

one or several known observations. To this end we explore the following nonparametric
ODE model:

(2.1)

{
ẋ = f(t, x)

yij(tij) = x(tij) + εij

where i = 1, . . . , n, j = 1, . . . ,mi. The noise εij is bounded or sub-Gaussian. This
model is nonparametric because f is not specified parametrically. We assume that
f belongs to a Reproducing Kernel Hilbert Space (RKHS) of smooth functions for
which the solution x of the ODE exists and is unique, see Section 2.2. Background
material on RKHS can be found in [13] and vector valued RKHS are reviewed in [1].
The rest of the paper is written for the autonomous case, that is when f(t, x) = f(x),
to simplify the notation. However, all the statements and algorithms generalize to
the non-autonomous case.

2.2. Existence and uniqueness. The following is a classical result, see [25].

Theorem 2.1. Consider the initial value problem (IVP):

(2.2) ẋ(t) = f(x(t)) and x(0) = x0,

where f : Rd → Rd. If f is Lipschitz continuous, then the IVP has a unique solution
that is defined on the domain [0,+∞).

LetH be an RKHS of vector-valued functions Rd 7→ Rd. LetK be the reproducing
kernel of H. K is a (d, d) matrix-valued kernel. It is natural to ask: what is a sufficient
condition on K which ensures that all f ∈ H are Lipschitz continuous? The following
corollary provides an answer.

Corollary 2.2. If f : Rd → Rd belongs to an RKHS with kernel K such that:

(2.3) d2Kii
(u, v) := Kii (u, u)− 2Kii (u, v) +Kii (v, v)

≤ N2
K |u− v|2,∀u, v ∈ Rd, i = 1 . . . d,

for some constant NK , then the IVP problem (2.2) has a unique solution defined on
[0,+∞).
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Proof. Notice that for every i = 1...d:

|fi(u)− fi(v)|2 = |〈K(u, ·)ei −K(v, ·)ei, f〉H |
2(2.4)

≤ ||K(u, ·)ei −K(v, ·)ei||2H ||f ||
2
H(2.5)

= d2Kii
(u, v)||f ||2H(2.6)

where e = (e1, . . . , ed) is the natural basis of Rd. Here we have used the reproduc-
ing property of the matrix-valued kernel and the Cauchy-Schwartz inequality. We
conclude using theorem 2.1.

Thus, it is straightforward to choose a kernel which guarantees the existence and
uniqueness of the solution of the IVP, which will lead to provable asymptotic per-
formances. We believe that this simple result is a good motivator for the proposed
modeling approach.

We now provide some examples of kernels satisfying Corollary 2.2. The simplest
matrix-valued kernels are separable kernels. They are obtained by choosing a scalar
kernel K1 and a positive semi-definite matrix A. Then,

(2.7) K(x, y) = K1(x, y)A

The diagonal elements ofK are then multiples ofK1. Thus, ifK1 verifies the regularity
condition of Corollary 2.2, then so do all the separable kernels based on K1. The
scalar kernels satisfying the hypothesis of Corollary 2.2 are the linear kernel, Gaussian
Kernel, rational quadratic kernel, and the Matérn kernel with ν ≥ 3/2. Kernels for
which the functions in their corresponding RKHSs are not guaranteed to provide
unique solutions to the corresponding IVP due to lack of regularity include polynomial
kernels with order at least 2, the Laplacian kernel, and the Matérn Kernel with
ν ≤ 1/2. Details are provided in Appendix B.

2.3. From constrained to unconstrained optimization. We first construct
the optimization algorithm in the case n = 1. All the observations are from a single
trajectory with the same initial condition. Thus, we temporarily drop the double
indexing with subjects and times to simplify the notations.

Assume the observation times are t1 < . . . < tm. Consider the following con-
strained minimization problem:

(2.8) min
x,f

1

m

m∑
j=1

|yj − x(tj)|2 + λ||f − f0||2H ,

under the constraints

(2.9)

{
f ∈ H, the RKHS with matrix-valued kernel K,

x(t) = x(t1) +
∫ t
t1
f(x(s))ds, for t1 ≤ t ≤ tm.

The function f0 ∈ H is an initial guess for f . Section 2.5 describes a gradient matching
algorithm for selecting f0. K is a kernel that satisfies Corollary 2.2.

Consider a regular one-dimensional grid over the interval [t1, tm]. Specifically, we
choose

(2.10) sl = t1 + lh

with l = 0, . . . , k and we assume that h is small enough so that there are integers
k1 = 0 < k2 < . . . < km, such that the observation times are

(2.11) tj = t1 + kjh, j = 1 . . .m.
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In practice, the observation times are rounded to fit on this grid. Note that with this
notation, tj = skj . We now proceed through a series of transformations to rewrite
this constrained optimization problem into an unconstrained one.

First, we replace the constraints on x by a finite number of constraints as follows:

(2.12)


f ∈ H, the RKHS with kernel K,
x(sl+1) = x(sl) +

∫ sl+1

sl
f(x(s))ds

l = 0 . . . k − 1.

Second, we discretize the constraints using the Euler method of integration:

(2.13)

 f ∈ H, the RKHS with kernel K,
x(sl+1) = x(sl) + hf(x(sl))
for l = 0 . . . k − 1.

Third, we replace the constrained optimization problem by an unconstrained one using
a single Lagrange constant γ > 0. Notate zl = x(sl), l = 0 . . . k,

(2.14) min
z∈Rd(k+1),f∈H

J(z, f, γ),

with

(2.15) J(z, f, γ) =
1

m

m∑
j=1

|yj − zkj |2 + γ
1

k

k−1∑
l=0

|zl+1 − zl − hf(zl)|2 + λ||f − f0||2H .

2.4. Penalty method. The penalty method is an iterative method which con-
sists of enforcing the constraints by increasing a penalty parameter, in this case γ. The
schematic of the method is presented in Algorithm 2.1. At each step, the functional
J(z, f, γ) in (2.15) is minimized with respect to (z, f), for a fixed value of γ. Then, γ
is increased. The optimization for (z, f) is done asynchronously, first optimizing over
z for a fixed f , then optimizing over f for the newly updated z.

Let us now describe these optimization steps in more detail. For a fixed γ and
f , J(z, f, γ) in (2.15) is non-convex in z due to the presence of f(zl). Therefore we

replace f by its first-order Taylor expansion evaluated at the value z
(s)
l obtained in

the previous iteration s:

(2.16) f(zl) ≈ f(z
(s)
l ) + (zl − z(s)l )T∇zlf(z

(s)
l )

Note that with this approximation, J is convex, quadratic, and sparse in z. This
allows the use of a linear solver for this minimization. The number of unknowns is
d(k + 1).

For a fixed γ and z, minimizing J in f is equivalent to a ridge regression problem.
After the change of variable, g = f − f0, and setting

(2.17) ul = (zl+1 − zl)/h− f0(zl), l = 0 . . . k − 1,

we use the representer theorem to show that the minimizer in f ∈ H of J is of the
form

(2.18) f(z) = f0(z) +

k∑
l=0

K(z, zl)wl,
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Algorithm 2.1 Penalty method for ODE-RKHS

1: Init: h, ρ, λ, f (0), γ(0), s = 0
2: while termination condition is not met do
3: z(s+1) ← arg minz∈Rd(k+1) J(z, f (s), γ(s))
4: f (s+1) ← arg minf∈H J(z(s+1), f, γ(s))
5: γ(s+1) ← γ(s)(1 + ρ)
6: s = s+ 1
7: Check termination condition
8: end while

where wl ∈ Rd. Let W = (wT1 , . . . , w
T
k+1), be of dimension (d(k + 1), 1) and similarly

let U = (uT1 , . . . , u
T
k+1) andK be the matrix with (d, d) block elementKkl = K(xk, xl).

We find that W is a minimizer of the convex quadratic function

(2.19)
γh2

k
|U −KW |2 + λWTKW

and thus W is the solution to the linear system:

(2.20)

(
K +

λk

γh2
I

)
W = U

2.5. Initial condition and termination criteria. The initial condition f0 can
be chosen using the gradient matching method:

1. Approximate the time derivatives of x at the observed times ẋ(tj), denoted
ˆ̇x(tj)

2. Estimating f0 ∈ H using ridge regression, i.e. minimizing over H

(2.21) G(f0) =
1

m

m∑
j=1

|ˆ̇x(tj)− f0(yj)|2 + λ||f0||2H

There are many possibilities for the approximation in the first step depending on the
sparsity of the data and the amount of noise. In the experiments below, we use central
differences.

The termination condition of Algorithm 2.1 includes a fixed number of iterations
S and a threshold on the quantity ||f (s+1) − f (s)||/||f (s)|| which allows for early
stopping.

2.6. Multiple trajectories. We present here the extension of the method to
multiple trajectories, say n > 1 subjects. We assume the same number of observations
for each subject and regular sampling to simplify the presentation.

First, we replace (2.15) and (2.12) with

(2.22) min
x,f

1

nm

n∑
i=1

m∑
j=1

|yij − xi(tij)|2 + λ||f − f0||2H ,

under the constraints

(2.23)


f ∈ H, the RKHS with matrix-valued kernel K,

xi(t) = xi(t1) +
∫ t
t1
f(xi(s))ds,

for t1 ≤ t ≤ tm, i = 1 . . . n
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Algorithm 2.2 Multi Trajectories Penalty method for ODE-RKHS

1: Init: h, ρ, λ, f (0), γ(0), s = 0
2: while termination condition is not met do
3: for i = 1 . . . n do
4: z

(s+1)
i ← arg minzi∈Rd(k+1) Jmulti(z, f

(s), γ(s))
5: end for
6: f (s+1) ← arg minf∈H Jmulti(z

(s+1), f, γ(s))
7: γ(s+1) ← γ(s)(1 + ρ)
8: s = s+ 1
9: Check termination condition

10: end while

We then proceed along the same steps as for the single trajectory case, leading to the
unconstrained optimization problem, generalizing (2.14) and (2.15).

Notate zil = xi(sl), l = 0 . . . k, i = 1 . . . n, and z = (z1, . . . , zn)

(2.24) min
z∈Rnd(k+1),f∈H

Jmulti(z, f, γ),

with

(2.25) Jmulti(z, f, γ) =
1

nm

n∑
i=1

m∑
j=1

|yij − zikj |2

+ γ
1

nk

n∑
i=1

k−1∑
l=0

|zi,l+1 − zil − hf(zil)|2 + λ||f − f0||2H .

The key point is that Jmulti decouples the trajectories such that the optimization
over z can be carried out separately for each trajectory. However, all the observations
contribute to the estimation of f . The algorithm is presented in Alg 2.2. In Line 6: we
use the no-trick formulation using Gaussian quadrature Fourier features as described
in [5].

2.7. Computational Complexity. We analyze the complexity of the algorithm
Alg 2.2. The key parameters are:

1. d: the dimension of the observed vectors;
2. n: the number of observed trajectories;
3. k: the number of samples in the discretization of the time interval;
4. S: the number of steps in Alg 2.2;
5. nF : the number of Fourier features.

We use O(p3) for the time complexity of solving a (dense) linear system with p vari-
ables and O(w2p) in the case of a band matrix of width w, see [16]. Alg 2.2, line 4
consists in solving a linear system of size dk with a band matrix of bandwidth w = 3d,
thus O(kd3) computations. Line 6 consists in solving d full linear systems of dimen-
sion nF , thus O(dn3F ) computations. In total, we find O(Snkd3 +Sdn3F ). Note that k
is typically chosen proportional to the average number of data points per trajectory.
Thus, overall, the algorithm is linear in the number of observations but cubic in the
dimension of the observations.

2.8. Non autonomous systems, covariates, and irregular sampling. Non
autonomous systems and covariates are handled by modifying the kernel. The issue
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of irregular sampling is addressed by replacing the first term of (2.15) by

(2.26)
1

n

n∑
i=1

mi∑
j=1

(ti,j+1 − tij)|yij − zikj |2

with ti,mi+1 = T , i = 1 . . . , n

3. Consistency of the solution: A finite sample result. In this section, we
assume that our algorithm solves the following optimization problem (where tm+1 = T
by definition):

(3.1) min
Rd(k+1),f∈H

m∑
j=1

(tj+1 − tj)|yj − zkj |2,

Under the constraints:
1. ||f − f0||H ≤ R, |z0| ≤ r
2. zl+1 = zl + hf(zl), 0 ≤ l ≤ k

Notice that constraint 2 corresponds to the Euler method for the ODE: ẋ = f(x).
Therefore, by linearly interpolating between the times of subdivision sl, 0 ≤ l ≤ k, we
can generate a solution x̂(.) defined on [0, T ]. We denote by x∗(.) the true trajectory
generating the noisy observations yj at each time tj . The purpose of this section is
to present a result controlling (in probability) the L2 norm squared of x̂− x∗ :

(3.2) ||x̂− x∗||2L2 :=

∫ T

0

|(x̂(t)− x∗(t))|2dt

Let us make the following assumptions:
• A1: There exist an f∗ ∈ H, ||f∗ − f0||H ≤ R and |x∗0| ≤ r such that x∗(0) =
x∗0 and ẋ∗(t) = f∗(x∗(t)) for every 0 ≤ t ≤ T .

• A2: The noise variables εij are independent and bounded in absolute value
by a constant Mε. (We can assume that the variables are subgaussian instead
of bounded if we want to generalize this result)

• A3: The kernel K is C2(Rd) in it’s first argument (this implies that it is also
C2(Rd) in its second argument).

• A4: The kernel K satisfies (2.3).
We refer to section 2.2 for examples of kernels satisfying A3 and A4.
These assumptions are sufficient for obtaining the main theorem of this section,

controlling ||x̂− x∗||2L2 with high probability.

Theorem 3.1. Assuming A1,A2, A3 and A4, there exist positive constants
K1,K2,K3 and K4, depending only on R, r, T , Mε, NK and the kernel K such that

for every ε > 0, with probability less than exp
(

−K2ε
2

d
∑m

j=1 (tj+1−tj)2

)
:

(3.3) ||x̂− x∗||2L2
≥ K1d

√√√√ m∑
j=1

(tj+1 − tj)2 + h2K3d+K4d

m∑
j=1

(tj+1 − tj)2 + ε.

For a better understanding of Theorem 3.1, suppose a regular sampling of the
interval [0, T ] with m points, so that for every j, tj+1 − tj = 1

m . In that case, under

the same hypothesis, for any ε > 0, with probability less than exp
(
−K2mε

2

d

)
:
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(3.4) ||x̂− x∗||2L2
≥ K1d√

m
+
K4d

m
+ h2K3d+ ε.

A proof of Theorem 3.1 is provided in the appendix. We provide here a description
of the main ideas. The third term in the right hand side of inequality (3.3) corresponds
to the global truncation error between the numerical solution of the ODE and the
true solution. The second term corresponds to the error between ||x̂− x∗||2L2 and
1
m

∑m
j=1 |x∗(tj) − x̂(tj)|2. The first term is the leading term, assuming that h is

always less than 1
m . Assume that x̂ solves the continuous-constraints optimization

problem (without an Euler approximation), i.e:

(3.5) min
x,f

1

m

m∑
j=1

|yj − x(tj)|2,

Under the constraints: ||f − f0||H ≤ R, |x0| ≤ r and x(t) = x0 +
∫ t
0
f(x(u))du,

∀0 ≤ t ≤ T , we can then consider the “generalization” error:

(3.6)
1

m

m∑
j=1

|x∗(tj)− x̂(tj)|2.

An upper bound of this error is given by the first term. The main tool used to obtain
the upper bound is Dudley’s chaining inequality, see [27]. We notice that for every
i = 1, . . . , d, the set of coordinate functions xi, where x and f satisfy the constraints of
the continuous problem, is included in a set of functions that are uniformly Lipschitz
continuous and bounded (the Lipschitz constant and bound does not depend on x0
and f). Upper bounds of covering numbers of such functions are well-known, see [27],
hence the use of Dudley’s inequality.

4. Experiments. We report experiments for simulated data as well as for real
data. In each case, we compare the performances of the proposed algorithm, gener-
ically named ODE-RKHS, with four other algorithms. These algorithms constitute
the current state-of-the-art for learning nonparametric ODEs from noisy data. We
briefly review these algorithms and provide references below.

4.1. npODE:. Nonparametric Ordinary Differential Equations (npODE) is pre-
sented in [11]. The authors use a Bayesian model with Gaussian processes (GP).
Arguably, it is the Bayesian counterpart of the frequentist model presented in this
paper. Unlike GP regression where the optimization can be computed in closed form,
an approximate optimization method is required. The authors use inducing points,
see [23] and sensitivity equations, see [17]. The npODE code was downloaded from
http://www.github.com/cagatayyildiz/npode in February 2021.

4.2. SINDy:. Sparse Identification of Nonlinear Dynamical systems (SINDy)
is a popular technique for identifying nonlinear dynamics from data, see[3]. SINDy
predicts governing dynamics equations using gradient matching via sparse regres-
sion. In the experiments shown, we test SINDy with two different libraries of pos-
sible functions. We test SINDy with polynomials up to order three and a collec-
tion of Fourier features. We choose the SR3 sparsity regularization for its supe-
rior performance, detailed in [31], which has a threshold value as a hyperparame-
ter. Other hyperparameters in our tests include the polynomial library’s degree as

http://www.github.com/cagatayyildiz/npode
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well as the size and lengthscale of the Fourier features library. A grid search tuner
was employed to determine the best hyperparameter values, with the same hold-
out and evaluation sets as in the competing algorithms. pySINDy v1.6.3 was used
for the implementation [6]. The hyperparameter tuning code was downloaded from
https://github.com/EthanJamesLew/AutoKoopman in March 2022.

4.3. Koopman Operator Approximation. The Koopman operator is an infi-
nite dimensional linear operator that captures the dynamics of a non-linear dynamical
system. Dynamic Mode Decomposition (DMD), described in [24], can approximate
the Koopman operator’s eigenvalues and eigenvectors based on observations of the
system state. DMD can be generalized to extended-DMD (EDMD) by adding a dic-
tionary of observable functions that map the state space to a new space that spans a
finite subspace on which the operator can be approximated, see [28]. This dictionary
must be selected prior to using EDMD, and can be chosen ad hoc or using library
learning methods [29]. For these experiments, we use random Fourier features as the
observable functions, specified here [7]. We use grid search optimization to find the
best Gaussian kernel lengthscale and DMD rank.

4.4. Gradient descent via optimal control. We implemented a gradient de-
scent algorithm based on the co-state equations derived from optimal control theory,
see [21]. Specifically, we compute the gradient of the likelihood function under the
constraints provided by the Euler discretization of the ODE. This is an optimization
under equality constraints which is performed using a co-state as explained in [30].
The algorithm effectively implements a backpropagation algorithm in a deep neural
network with parameters shared among all layers, see also [4].

The FitzHugh-Nagumo (FHN) oscillator data is presented in section 4.6. It is a
controlled experiment with known and easy to visualize 2D trajectories. It has helped
calibrate the algorithm. It was also demonstrated in [11] for the npODE algorithm.

The Amyloid data is presented in section 4.7. This dataset has motivated the
creation of the ODE-RKHS algorithm. It is characterized by a smooth vector field, a
large number of trajectories, and few, sparse and noisy observations per trajectory.

4.5. Selection of the hyper-parameters for the ODE-RKHS algorithm.
We first select the parameter h, the time discretization. A smaller h provides better
accuracy at the cost of a linear increase in computational time. Next, we select
the parameter γ(0) small enough such that the data term in (2.25) would be the
dominant term. Finally, we performed a grid search for the parameters λ and ρ, using
a validation set consisting of 20% of the available data in each case.

4.6. Oscillator data. We ran experiments using a simulated dataset generated
by the FHN oscillator:

v̇ = v − v3/3− w + 1

ẇ = 0.08(v + 0.7− 0.8w)
(4.1)

An example of a result with the ODE-RKHS algorithm is presented in figure 1. Inter-
mediate and final results of the running of the ODE-RKHS algorithm are presented
in the Fig. 2 for the FHN data. Notice that during the first steps, shown in the top
line, the estimated trajectories, shown with solid color lines are rough but tight to the
data. During the later steps, shown on the bottom line, the trajectories are smoother,
but still fitting the data.

We generated 25 training sets, each with a different level of noise and sparsity in
the trajectories. There were 50 trajectories in each training set. We created training

https://github.com/EthanJamesLew/AutoKoopman
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Fig. 2. Illustration of the ODE-RKHS Algorithm: The observations are shown with dots. The
estimated trajectories are shown with lines and curves with corresponding colors. Steps i=1,25,50,
and 75 are shown from left to right and from top to bottom

sets for each combination of noise levels ε = 0.05, 0.1, 0.15, 0.2, 0.25 and sparsity levels
N = 100, 75, 50, 25, 12, where sparsity refers to the number of points on each trajectory
in the training set. Next, we generated a single test set consisting of 100 trajectories
without noise and 200 observations per trajectory, one for each increment of .1 in time.
Testing consisted of computing predicted trajectories starting at the initial condition
of the test trajectories and computing the following error measurement

(4.2) Err =

√√√√ n∑
i=2

(ti − ti−1)‖yi − ŷi‖2

where ti refers to the ith observation time, yi to the ith observation of the test trajec-
tory, ŷi to the ith point of the predicted trajectory and n is the number of observations
in the trajectory. We ran experiments with the same training, validation and test sets
for all the algorithms. The results are summarized in figure 3. The dots show the
mean value of Err defined in (4.2) over all 100 trajectories in the test set. The vertical
error bars show the standard error (= σ√

100
), where σ is the standard deviation of

Err. Overall the performances decrease with increased sparsity and increased level of
noise as expected. We noticed that in most cases, ODE-RKHS or npODE are the best
performing algorithms. The FHN is a polynomial system. This might explain why
SINDy polynomial (in red) performs better than SINDy Fourier (in green). Koopman
is the worst performing. This is likely due to the noise in the data, even at the lowest
level of noise considered here. The gradient descent algorithm is constantly in the
middle range of performances.
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Fig. 3. Results for the FHN experiment. The y-axis is the log of the mean error. The x-axis
is the number of points per trajectory in the training set. Purple: Koopman. Green: SINDy with
Fourier features. Red: SINDy with polynomials. Black: Gradient descent. Orange: npODE. Blue:
ODE-RKHS. (a) Noise .05 (b) Noise .1 (c) Noise .15 (d) Noise .2 (e) Noise .25.

4.7. The accumulation of Amyloid in the cortex of aging subjects. The
accumulation of Amyloid in the brain is believed to be one of the earliest pathological
mechanisms of Alzheimer’s disease, beginning more than a decade prior to the onset
of clinical symptoms, see [19].

Based on observations from several longitudinal Amyloid positron emission to-
mography (PET) studies, it is believed that the rate of Amyloid accumulation is
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closely associated with the level of Amyloid at the same age, see [26]. We develop a
principled mathematical model capturing this phenomenon and use it to predict lon-
gitudinally the accumulation of Amyloid across individuals. Note that we know that
there are potentially devastating uses of machine learning in healthcare, see [10]. This
work is done in collaboration with physicians who are in close contact with patients
and ethics committees. These physicians helped us select relevant medical questions.

We used (PiB) PET scans from the Wisconsin Registry for Alzheimer’s Prevention
(WRAP) to assess global Amyloid burden, measured by the Distribution Volume
Ratio (DVR)1. The number of subjects in this study is n = 179, with 3.06 visits
on average, over an average span of 6.84 years. We fit the model in (2.1) to the
posterior cingulum, precuneus and gyrus rectus DVRs, averaging the left and right
DVR in each case. These regions are known to show Amyloid accumulation early in
the disease process. We use the Multi Trajectories Penalty method for ODE-RKHS
described in Alg. 2.2 with d = 3, and a Gaussian kernel. For each coordinate,
we chose a bandwidth equal to 20% of the range of the data. The time step used
was h = .1 years. We set γ = 1 and fit λ, ρ using a validation set consisting of 20
percent of the training data. We set a maximum of S = 500 iterations and used the
early stopping criterion of stopping when the ratio ||f (s+1) − f (s)||/||f (s)|| was less
than ε = 10−3. Figure 4 provide a visualization of the trajectories estimated using
RKHS-ODE super-imposed (same color) with the data. This shows that the estimated
trajectories are qualitatively accurate. We set aside 25 percent (rounded) of the data
for testing. Prediction was performed using Euler integration starting at the first
observed time-point for this subject. We computed the error for every subject as in
the FHN experiment.

We compared with the predictions obtained with the other algorithms in table
1. We found that ODE-RKHS, SINDy polynomial and Fourier, and Gradient descent
performed comparably for this data, while Koopman and npODE where not as good.
npODE was performing very well for the FHN data and it is the worst performing
here. A possible explanation is the dimension of the problem, here 3 instead of 2 for
the FHN. It might be that some fine tuning of the npODE algorithm, for example
increasing the number of inducing points would increase the performances.

Overall, considering both dataset, the ODE-RKHS performs consistently among
the best algorithms.
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Fig. 4. Amyloid prediction experiment. Horizontal axis is in years. Vertical axis corresponds
to DVR. The left-most image corresponds to the gyrus rectus, the middle to the cingulum and the
right to the precuneus.

1The data used for this experiment has been obtained from the Wisconsin Registry for Alzheimer’s
Prevention. See https://wrap.wisc.edu/. A request for accessing this data can be initiated from this
website.

https://wrap.wisc.edu/
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Alg Error
ODE-RKHS 0.38∗∗

npODE 0.87
SINDy polynomial 0.34∗∗

SINDy Fourier 0.37∗∗

Gradient descent 0.39∗∗

Koopman 0.53∗

Table 1
Results for Amyloid data. Stars indicate the number of methods the result is significantly better

than as measured by the Wilcoxon signed-rank test at α = 5%.

5. Discussion. We proposed an algorithm for learning non-parametric ODEs
assuming that the function f generating the vector field in Rd belongs to a vector-
valued RKHS with a kernel satisfying certain regularity conditions. The data input of
the algorithm consists of noisy observations at different times of multiple trajectories.
The algorithm is linear in the number of observations but cubic in their dimension.
We proved the consistency of the estimated trajectory, showing that the L2 squared
distance between the estimated trajectory and the true one vanishes as more obser-
vations are collected. We assessed the algorithm with simulated and real data and
obtained results that compare consistently favorably with the state of the art on a
wide range of sparsity and noise levels. Note however that much more theoretical
work and experimental verification would be needed in order to truly understand in
which situations one algorithm would be preferable over another.

Appendix A. Consistency of the estimator of the trajectory.

A.1. Assuming we solve the problem without Euler approximation.
This section gives the proof of theorem presented in section 3 of the main text. We
present the proof for d = 1 since the generalization to multiple dimensions is straight-
forward. We also present the proof for the case of autonomous systems. Keeping the
notations of the main text, we make the following assumptions:

• A1: There exist an f∗ ∈ H, ||f∗ − f0||H ≤ R and |x∗0| ≤ r such that x∗(0) =
x∗0 and ẋ∗(t) = f∗(x∗(t)) for every 0 ≤ t ≤ T .

• A2: The noise variables εj are independent and bounded by a constant Mε,
with a variance denoted by σ2. (We can assume that the variables are sub-
gaussian instead of bounded if we want to generalize this result)

• A3: The kernel K is C2(R) in it’s first argument (this implies that it is also
C2(R) in its second argument).

• A4: The kernel K satisfies the hypothesis of Corollary 1.
Without loss of generality, we will assume that f0 = 0 in our proof.
Let H be the RKHS with reproducing kernel K. Let f ∈ H such that ||f ||H ≤ R.

We know using assumption A4 and 2.2 that f is uniformly Lipschitz, with a Lipschitz
constant that does not depend on f that we denote by L1. Specifically,

(A.1) |f(x)− f(y)| ≤ L1|x− y|

with L1 = NKR Using (A.1), we will prove the following lemma:

Lemma A.1. Assuming A4, consider the set of solutions to the problem

(A.2)
∂x

∂t
= ẋ = f(x), x(t0) = x0
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where f belongs to the RKHS with kernel K , |x0| ≤ r and t ∈ [0, T ]. Then any
solution x in this set of solutions is bounded by a uniform constant B1 that only
depends on T , R, L1 and L2

3 := sup||x||<C |K(x, x)|.
Specifically,

(A.3) |x(t)− x(t0)| ≤ B1 = TL3Re
L1T

Proof. We start by taking f in our class of functions and x0 such that |x0| ≤ r.
We therefore can write:

|x(t)− x0| = |
∫ t

0

(f(x(s))− f(x0))ds+ tf(x0)|(A.4)

≤
∫ t

0

|f(x(s))− f(x0)|ds+ t||f ||H
√
K(x0, x0)(A.5)

≤ L1

∫ t

0

|x(s)− x0|ds+ TL3R(A.6)

Now denote by G(t) := |x(t)−x0|. If we prove that G(t) is bounded by a constant
depending only on T , R, L1 and L3, we will be done. So far we have:

(A.7) G(t) ≤ L1

∫ t

0

G(s)ds+ TL3R

Denote by V (t) :=
∫ t
0
G(s)ds. We have that:

(A.8) V ′(t) ≤ L1V (t) + TL3R

which implies:

(A.9) e−L1tV ′(t)− L1e
−L1tV (t) ≤ TL3Re

−L1t

Integrating the inequality between 0 and t using the fact that V (0) = G(0) = 0, we
obtain:

(A.10) exp (−L1t)V (t) ≤ TL3R

L1
(1− e−L1t)

or, equivalently,

(A.11) V (t) ≤ TL3R

L1
(eL1t − 1)

Finally since V ′(t) = G(t) ≤ L1V (t) + TL3R, we have:

(A.12) G(t) ≤ TL3Re
L1t ≤ TL3Re

L1T

Let us now introduce the following notations:
• We denote by x(x0, f, t) the solution to the ODE with derivative f and initial

condition x0
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• yi is the observed noisy point from the trajectory at time ti.
• x∗(t) is the true trajectory evaluated at time t

We now proceed with the following reasoning. We assume that our trajectory
minimizes

(A.13) L̂(f, x0) :=

m∑
i=1

(ti+1 − ti)
(

(x(x0, f, ti)− yi)2 − σ2
)

over (f, x0) such that ||f ||H ≤ R, and |x0| ≤ r. We denote the minimizer by (f̂ , x̂0).
When x0 and f are fixed and not data dependent (deterministic), the expected

value of L̂(f, x0) is :

(A.14) L(f, x0) :=

m∑
i=1

(ti+1 − ti)(x(x0, f, ti)− x∗(ti))2

Notice that A1 implies:

(A.15) min||f ||H≤R,|x0|≤rL(f, x0) = L(f∗, x∗0) =

m∑
i=1

(ti+1 − ti)(x∗(ti)− x∗(ti))2 = 0

Our goal is to evaluate L(f̂ , x̂0) and obtain a generalization bound. We have:

(A.16) L(f̂ , x̂0) = L(f̂ , x̂0)− L̂(f̂ , x̂0) + L̂(f̂ , x̂0)− L̂(f∗, x∗0) + L̂(f∗, x∗0)−L(f∗, x∗0)

And therefore, since the middle term in (A.16): L̂(f̂ , x̂0)− L̂(f∗, x∗0) < 0,

(A.17) L(f̂ , x̂0) ≤ sup
||f ||H≤R,|x0|≤r

2|L(f, x0)− L̂(f, x0)|

We thus consider the following quantity :

(A.18) Err := sup
||f ||H≤R,|x0|≤r

|L̂(f, x0)− L(f, x0)|

Expanding this quantity we get:

(A.19) sup
||f ||H≤R,|x0|≤r

|
m∑
i=1

(ti+1 − ti)(y2i − x∗(ti)
2 − σ2 − 2x(x0, f, ti)(yi − x∗(ti))|

Notice that if we replace for a given single i, yi = x∗(ti) + εi by ỹi = x∗(ti) + ε̃i,
the quantity of equation A.19 will change by a quantity bounded by some constant
K2(ti+1 − ti), that we can bound by 4(B1 + r + Mε)Mε + 4(B1 + r)Mε. Therefore,
using McDiarmid inequality [9]:

(A.20) P (Err ≥ E(Err) + ε) ≤ exp

(
−2ε2

K2
2

∑m
i=1 (ti+1 − ti)2

)
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We therefore need to provide an upper bound of E(Err). For that, we are going
to view:

(A.21)

|L̂(f, x0)− L(f, x0)| = |
m∑
i=1

(ti+1 − ti)(y2i − x∗(ti)
2 − σ2 − 2x(x0, f, ti)(yi − x∗(ti)))|

as a stochastic process indexed by x, where x ∈ X : Set of all solutions x(f, x0, .)
for all ||f ||H ≤ R and |x0| ≤ r. In other words, we view the process |L̂(f, x0)−L(f, x0)|
indexed by f and x0 as:

(A.22) |L̂(x)− L(x)|

where x ∈ X is some x(f, x0, .). Notice that Err is also:

(A.23) sup
x∈X
|L̂(x)− L(x)|

Notice that x is a subset of continuous functions defined on [0, T ]. Therefore we
can equip X with the metric structure (X , ||.||∞). We will apply Dudley’s inequality
(see for e.g [27], theorem 8.1.3) to bound:

(A.24) E(Err) = E

(
sup

||f ||H≤R,|x0|≤r
|L̂(f, x0)− L(f, x0)|

)
To apply Dudley’s inequality, we are going to use the following lemma.

Lemma A.2. The solutions x ∈ X are Lipschitz with a Lipschitz constant that is
uniform over X , i.e, there exists a constant L6 such that for every x ∈ X , t ∈ [0, T ]
and s ∈ [0, T ]:

(A.25) |x(t)− x(s)| ≤ L6|t− s|

K6 depends on R,B1,r and the kernel K.

Proof. Let x0 such that |x0| ≤ r and f such that ||f ||H ≤ R. We have:

|ẋ(x0, f, t)| = |f(x(t))|(A.26)

≤ R
√

sup
|x|≤B1+r

K(x, x)(A.27)

As a consequence, if we denote by N (X , ε) the covering number of X with a radius
ε we have the existence of a constant L7 (L7 only depends on B1,r and L6) such that:

(A.28) N (X , ε) ≤ exp (
L7

ε
),

where we used a known upper bound that can be found for example in [27]
(exercise 8.2.7) on the covering number of uniformly bounded Lipschitz continuous
functions defined on a finite interval.

Using this result combined with Dudley’s inequality, we obtain the existence of a
constant L8 (depending only on L7) such that:
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Proposition A.3.

(A.29) E(Err) ≤ L8

√√√√ m∑
i=1

(ti+1 − ti)2

Proof. Apply Dudley’s inequality to Err using inequality (A.28) and the fact that
the diameter of X is finite bounded by 2(B1 + r) and that for every M <∞

(A.30)

∫ M

0

√
log(N (X , ε))dε ≤

∫ M

0

√
log(exp (

K7

ε
))dε <∞

As a consequence, using (A.20) and theorem (A.3), we obtain the following in-
equality:

(A.31) P

Err ≥ L8

√√√√ m∑
i=1

(ti+1 − ti)2 + ε

 ≤ exp

(
−2ε2

K2
2

∑m
i=1 (ti+1 − ti)2

)

Using inequalities (A.17) and (A.31) we finally obtain the following theorem:

Theorem A.4. With assumptions A1,A2, A3 and A4, there exist constants L9

and K2 depending only on R, r, T , Mε and the kernel K such that for every ε:

(A.32) P

L(f̂ , x̂0) ≥ L9

√√√√ m∑
i=1

(ti+1 − ti)2 + ε

 ≤ exp

(
−2ε2

K2
2

∑m
i=1 (ti+1 − ti)2

)

A.2. Including the Euler approximation. In reality, the solution (trajec-
tory) that we propose for every f and x0 is not x(x0, f, .) the solution of the ODE
but x̃(x0, f, h, .), the solution obtained with an Euler’s method of time step h. The
idea is to use the fact that under some sufficient conditions, we know how to bound
the error between Euler’s method and the true solution. For example, we know that
if f is Lipschitz with a Lipschitz constant K1 and the solution x(x0, f, .) is C2 with a
constant K11 such that:

(A.33) x′′(x0, f, t) ≤ L11,∀0 ≤ t ≤ T

then we have the following global truncation error bound [2]:

(A.34) max
1≤i≤n

|x(x0, f, ti)− x̃(x0, f, h, ti)| ≤
hL11

2L1

(
expL1T −1

)
We already showed that f is Lipschitz with some constant L1. To ensure the

condition of inequality (A.33), notice that:

(A.35) x′′(x0, f, t) = f(x(x0, f, t))f
′(x(x0, f, t))

Since we already showed that the solutions x(x0, f, .) are uniformly bounded by
B1 + r, it is sufficient to ensure that f is C1. This is true if we assume that our kernel
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K is C2 and hence (A.34) will be insured.

Taking into account the Euler approximation and the error bound, the steps of
the consistency proof are identical only with the following important difference in
equation (A.15) from the previous section

(A.36) min
||f ||H≤R,|x0|≤r

L(f, x0) ≤ L(f∗, x∗0)

with
(A.37)

L(f∗, x∗0) =

m∑
i=1

(ti+1 − ti)(x̃∗(ti, h)− x∗(ti))2 ≤
h2L11

2T

4L2
1

(
expL1T −1

)2
:= L12

With this modification, theorem A.4 becomes:

Theorem A.5. Assuming A1,A2, A3 and A4, there exist constants K2, L12

and L13 depending only on R, r, T ,Mε and the kernel K such that for every ε:
(A.38)

P

L(f̂ , x̂0) ≥ L13

√√√√ m∑
i=1

(ti+1 − ti)2 + h2L12 + ε

 ≤ exp

(
−2ε2

K2
2

∑m
i=1 (ti+1 − ti)2

)

A.3. L2 squared distance between the true solution and the estimated
trajectory. In reality L(f̂ , x̂0) is an approximation of the L2 norm squared

(A.39) ||x(f̂ , x̂0, .)− x∗(.)||
2

L2
:=

∫ T

0

(
x(f̂ , x̂0, t)− x∗(t)

)2
dt

Since we proved that the solutions are uniformly bounded by (B1 + r) and ẋ is

bounded by L6, we have t→
(
x(f̂ , x̂0, t)− x∗(t)

)2
is Lipschitz with Lipschitz constant

8(B1 + r)L6 (we just bound the norm of the derivative). Therefore:

(A.40) |||x(f̂ , x̂0, .)− x∗(.)||
2

L2
− L(f̂ , x̂0)| ≤ 8(B1 + r)L6

m∑
i=1

(ti+1 − ti)2

which proves theorem 2 of the main document.

Appendix B. Kernels.

B.1. Examples of kernels which satisfy the assumptions of Corollary 1.
1. The linear kernel

(B.1) K1(x, y) = (xT y + c0)

2. The Gaussian kernel:

(B.2) K1(x, y) = exp

(
− 1

σ2
(|x− y|2)

)
3. The rational quadratic kernel:

(B.3) K1(x, y) = 1− |x− y|2

|x− y|2 + θ
, θ ≥ 0

4. The Matérn kernel with ν ≥ 3/2
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B.2. Examples of kernels which do not satisfy the assumptions
of Corollary 1:.

1. The polynomial kernels with order larger or equal to 2
2. The Laplacian or exponential kernel

(B.4) K1(x, y) = exp

(
−|x− y|

θ

)
, θ > 0

3. The Matérn kernel with ν ≤ 1/2
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