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A nonlinear multigrid solver for two-phase flow and transport in a mixed fractional-flow velocity-pressure-

saturation formulation is proposed. The solver, which is under the framework of the full approximation scheme 
(FAS), extends our previous work on nonlinear multigrid for heterogeneous diffusion problems. The coarse spaces 
in the multigrid hierarchy are constructed by first aggregating degrees of freedom, and then solving some local 
flow problems. The mixed formulation and the choice of coarse spaces allow us to assemble the coarse problems 
without visiting finer levels during the solving phase, which is crucial for the scalability of multigrid methods. 
Specifically, a natural generalization of the upwind flux can be evaluated directly on coarse levels using the 
precomputed coarse flux basis vectors. The resulting solver is applicable to problems discretized on general 
unstructured grids. The performance of the proposed nonlinear multigrid solver in comparison with the standard 
single level Newton’s method is demonstrated through challenging numerical examples. It is observed that the 
proposed solver is robust for highly nonlinear problems and clearly outperforms Newton’s method in the case of 
high Courant-Friedrichs-Lewy (CFL) numbers.

1. Introduction

Numerical simulation of subsurface flow and transport is important for applications like petroleum recovery and CO2 sequestration. The problem 
is challenging due to the high degree of nonlinearity in the governing equations, the complex geometry of geological features, and the heterogeneity 
in rock properties. This high heterogeneity yields a range of CFL numbers that can span orders of magnitude across the computational domain. 
We consider here the fully implicit method (FIM), in which all the unknowns are treated implicitly in the time-stepping scheme. In this case, a 
fully coupled system of discrete nonlinear equations needs to be solved at every time step. In realistic field-scale simulations, solving these large, 
ill-conditioned systems is challenging and computationally expensive, especially when nonlinear convergence is slow. Therefore, scalable and robust 
solvers that can be applied to a broad class of discretizations—on both structured and unstructured grids—are very desirable.

Over the past few decades, significant effort has been devoted to developing nonlinear solvers for the systems arising from FIM. A popular 
approach is to first linearize the system using Newton’s method or related variants, and then to apply a scalable linear solver to the Jacobian 
system [1]. For example, if a linear multigrid solver is used to solve the Jacobian system, the overall method is referred to as Newton-multigrid 
[2]. However, the performance of Newton-based solution algorithms can by crippled by slow nonlinear convergence. In particular, the convergence 
of Newton’s method can deteriorate significantly for poor initial guesses, which is problematic when large time step sizes are selected. As a result, 
globalization methods [3] have been developed to improve the robustness of Newton’s method and avoid convergence failures. Damping strategies 
for the Newton updates have been used extensively to enlarge the convergence radius. They include local saturation chopping strategies based on 
heuristics [4], as well as physics-based damping methods that can, in some cases, achieve unconditional convergence, see, e.g., [5–7] and [8].
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In recent years, alternative nonlinear strategies have been applied to multiphase flow problems to overcome the limitations of Newton-based 
methods. They include homotopy continuation methods [9,10], in which robustness is achieved by solving an easier problem that is gradually 
relaxed towards the original problem. These approaches can handle very large time step sizes and prevent convergence failures. In ordering-based 
methods [11–14], the degrees of freedom are reordered based on the phase potential direction to obtain a (block) triangular transport nonlinear 
system. These blocks are then solved sequentially, one at a time, which greatly accelerates nonlinear convergence and reduces computational cost. 
Nonlinear preconditioning based on additive and multiplicative Schwarz preconditioned inexact Newton (A/MSPIN) [15–17] is another relevant 
class of methods that has successfully been applied to multiphase flow and transport [18–20]. Finally, nonlinear multigrid, which directly applies the 
multigrid concept at the nonlinear level (unlike Newton-multigrid), is an attractive alternative as a scalable solver. Some nonlinear multigrid solvers 
based on full approximation scheme [21] for porous media flow were proposed in [22–25]. In particular, it was observed in [25] that nonlinear 
multigrid can outperform Newton-multigrid as the underlying problem becomes stiffer.

In this paper, our goal is to develop a nonlinear multigrid solver for two-phase flow and transport problems in the subsurface, building upon our 
previous work on nonlinear multigrid for heterogeneous diffusion problems [25]. To this end, a mixed fractional-flow velocity-pressure-saturation 
formulation of the two-phase flow and transport problem is considered, where the primary unknowns in the discrete system are the total flux, 
pressure and saturation (of the wetting phase). For the coarsening of the total flux and pressure, we adopt the lowest order version of the coarsening 
method in [25]. As for the saturation, coarse spaces are composed of piecewise-constant functions on algebraically constructed coarse grids. The 
formulation and the coarse spaces allow us to assemble the coarse problems directly on the coarse levels using precomputed quantities. Specifically, 
the formulation naturally leads to a generalization of the usual upwind direction selection operator on coarse levels. This in turn enables us to derive 
the Jacobian system in a compact form. We show, using challenging benchmark problems, that the proposed multigrid solver exhibits a more robust 
nonlinear convergence behavior than Newton’s method, especially for large time steps. The improved robustness, combined with the scalability of 
the multigrid methodology, results in significant reductions in the computational cost of the simulations.

The remainder of the paper is organized as follows. In Section 2, the system of nonlinear partial differential equations (PDEs) of interest and its 
finite volume discretization are described. Then, the components of the proposed nonlinear multigrid solver are discussed in details in Section 3. 
Numerical examples comparing the performance of the proposed nonlinear multigrid to Newton’s method are presented in Section 4. Lastly, some 
conclusions are drawn in Section 5.

2. Model problem

We consider a two-phase flow and transport problem involving two immiscible and incompressible phases—a wetting phase, 𝑤, and a non-

wetting phase, 𝑛𝑤—flowing in an incompressible porous medium. We focus on a mixed fractional-flow velocity-pressure-saturation formulation. 
We neglect gravitational and capillary forces, a frequent assumption in many practical engineering applications. Therefore, the pressure is the same 
for both phases, i.e. 𝑝𝑤 = 𝑝𝑛𝑤 = 𝑝. In this work, using the saturation constraint ∑𝛼={𝑤,𝑛𝑤} 𝑠𝛼 = 1, we use the wetting-phase saturation as primary 
unknown and denote it from now on as 𝑠 = 𝑠𝑤.

For a simply-connected polygonal domain Ω ∈ ℝ3 and time interval 𝕋 ∶= (𝑇0, 𝑇𝑓 ), with 𝑇0 and 𝑇𝑓 the initial and final time, respectively, the 
strong form of the initial/boundary value problem (IBVP) consists of finding the total Darcy velocity 𝒗 ∶ Ω × 𝕋 →ℝ3, the pressure 𝑝 ∶ Ω × 𝕋 →ℝ, and 
the wetting-phase saturation 𝑠 ∶ Ω × 𝕋 →ℝ such that [26]:

1
𝜆(𝑠)

𝕂−1 ⋅ 𝒗+∇𝑝 = 0 in Ω× 𝕋 (total Darcy velocity), (1a)

∇ ⋅ 𝒗 = 𝑞𝐼 (𝑝, 𝑠) − 𝑞𝑃 (𝑝, 𝑠) in Ω× 𝕋 (total volume conservation), (1b)

𝜙
𝜕𝑠

𝜕𝑡
+∇ ⋅ [𝑓𝑤(𝑠)𝒗] = 𝑞𝐼𝑤(𝑝, 𝑠) − 𝑞

𝑃
𝑤(𝑝, 𝑠), in Ω× 𝕋 (wetting-phase volume conservation), (1c)

where

• 𝜆(𝑠) =∑𝛼={𝑤,𝑛𝑤} 𝜆𝛼(𝑠) is the total mobility, with the corresponding phase-based quantities defined as the ratio of relative permeability, 𝑘𝑟,𝛼 , to 
viscosity, 𝜇𝛼 , i.e. 𝜆𝛼(𝑠) ∶= 𝑘𝑟,𝛼(𝑠)∕𝜇𝛼 . Various constitutive relationships for 𝑘𝑟,𝛼 will be considered in our numerical examples. Note that using 
standard assumptions on the phase mobilities, the total mobility is bounded away from zero;

• 𝕂 and 𝜙 are the medium absolute permeability tensor and porosity, respectively;

• 𝑞𝐼 (𝑝, 𝑠) =∑
𝛼={𝑤,𝑛𝑤} 𝑞

𝐼
𝛼 (𝑝, 𝑠) is the total volumetric source per unit volume, with 𝑞𝐼𝛼 (𝑝, 𝑠) the corresponding phased-based quantity. The term 

𝑞𝑃 (𝑝, 𝑠) is defined similarly and represents a total volumetric sink term. In this work, such terms are introduced to model wells based on 
inflow-performance relationships that depend on 𝑝 and 𝑠 [27];

• 𝑓𝑤(𝑠) ∶= 𝜆𝑤(𝑠)∕𝜆(𝑠) is the fractional flow function.

Without loss of generality, in our simulations the domain boundary, 𝜕Ω, is always subject to no-flow boundary conditions. This represents a natural 
assumption when simulating closed-flow systems, e.g. reservoirs containing petroleum fluids. To ensure uniqueness of the pressure solution, we 
prescribe a datum value for pressure internally in the domain through sink and/or source terms. The formulation is completed by appropriate initial 
conditions for 𝒗, 𝑝, and 𝑠.

Remark 1. In the reservoir simulation community, Eqs. (1a)-(1b) are the mixed form of what is typically referred to as the pressure equation, whereas 
Eq. (1c) is often called the saturation equation.

2.1. Finite volume discretization

The system of PDEs (1) is discretized by a cell-centered two-point flux approximation (TPFA) finite-volume (FV) method [28] on a conforming 
triangulation of the domain, combined with the backward Euler (fully implicit) time-stepping scheme. First, we introduce some notation. Let  be 
the set of cells in the computational mesh such that Ω=

∑
𝜏∈ 𝜏 . For a cell 𝜏𝐾 ∈  , with 𝐾 a global index, let |𝜏𝐾 | denote the volume, 𝜕𝜏𝐾 = 𝜏𝐾 ⧵ 𝜏𝐾

the boundary, 𝒙𝐾 the barycenter, and 𝒏𝐾 the outer unit normal vector associated with 𝜏𝐾 . Let  be the set of internal faces in the computational 
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Fig. 1. Sketch of a well-driven flow using a mesh consisting of six cells. The domain boundary is subject to no-flow conditions everywhere. The location of the rate 
controlled injection well and the BHP controlled production well is shown in (b).

mesh included in Ω. An internal face 𝜀 shared by cells 𝜏𝐾 and 𝜏𝐿 is denoted as 𝜀𝐾,𝐿 = 𝜕𝜏𝐾 ∩ 𝜕𝜏𝐿, with the indices 𝐾 and 𝐿 such that 𝐾 < 𝐿. The 
area of a face is |𝜀|. A unit vector 𝒏𝜀 is introduced to define a unique orientation for every face, and we set 𝒏𝜀 = 𝒏𝐾 . To indicate the mean value of a 
quantity (⋅) over a face 𝜀 or a cell 𝜏𝐾 , we use the notation (⋅)| 𝜀 and (⋅)|𝐾 , respectively. Let 𝑇0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑛 = 𝑇𝑓 be a partition of the time domain 
𝕋 . The discrete (finite-difference) approximation to a time-dependent quantity 𝜒(𝑡𝑚) at time 𝑡𝑚 is denoted by 𝜒𝑚. Also, we define the time step size 
Δ𝑡𝑚 ∶= 𝑡𝑚 − 𝑡𝑚−1.

We consider a piecewise-constant approximation for both pressure and saturation. For each cell 𝜏𝐾 ∈  , we introduce one pressure, 𝑝𝐾 , and one 
saturation, 𝑠𝐾 , degree of freedom, respectively. We denote by 𝜎𝜀 the numerical flux approximating the total Darcy flux through an internal face 
𝜀 = 𝜀𝐾,𝐿, i.e. 𝜎𝜀 ≈ ∫𝜀𝐾,𝐿 𝒗 ⋅ 𝒏𝜀dΓ, such that:(

1
𝜆(𝑠𝐾 )Υ𝐾,𝜀

+ 1
𝜆(𝑠𝐿)Υ𝐿,𝜀

)
𝜎𝜀 − (𝑝𝐾 − 𝑝𝐿) = 0, (2)

where Υ𝐾,𝜀(𝑠𝐾 ) and Υ𝐿,𝜀(𝑠𝐿) are the constant (geometric) one-sided transmissibility coefficients, defined as [27]

Υ𝑖,𝜀 = |𝜀𝐾,𝐿|𝒏𝑖 ⋅𝕂| 𝑖 ⋅ (𝒙𝜀 − 𝒙𝑖)||𝒙𝜀 − 𝒙𝑖||22 , 𝑖 = {𝐾,𝐿}, (3)

with 𝒙𝜀 a collocation point introduced for every 𝜀 ∈  to enforce point-wise pressure continuity across interfaces.

The approximation of the wetting-phase Darcy flux through 𝜀 = 𝜀𝐾,𝐿 ∈  in the discrete form of Eq. (1c) relies on using single-point upstream 
weighting (SPU) according to the sign of 𝜎𝜀, namely

𝑓
upw
𝑤 (𝑠𝐾 , 𝑠𝐿)𝜎𝜀 ≈ ∫

𝜀𝐾,𝐿

𝑓𝑤(𝑠)𝒗 ⋅ 𝒏𝜀dΓ, 𝑓
upw
𝑤 (𝑠𝐾 , 𝑠𝐿) =

{
𝑓𝑤(𝑠𝐾 ), if 𝜎𝜀 > 0,
𝑓𝑤(𝑠𝐿), otherwise.

(4)

Source and sink terms in Eqs. (1b)-(1c) are used to simulate the effect of injection and production wells. We employ a conventional Peaceman well 
model [29], which relates well control parameters, such as bottomhole pressure (BHP), to flow rates through the wellbore [29]. We assume each 
well segment to be vertical, with a single perforation connected to the centroid of a cell. Also, without lost of generality, we restrict ourselves to 
rate-controlled injection wells and BHP-controlled production wells. For a cell 𝜏𝐾 connected to a well, source/sink terms are expressed as

𝑞𝐼𝛼 (𝑝𝐾 , 𝑠𝐾 ) = 𝑞
𝐼
𝛼 𝛿(𝒙− 𝒙𝐾 ), (5)

𝑞𝑃𝛼 (𝑝𝐾 , 𝑠𝐾 ) = −𝜆𝛼(𝑠𝐾 )𝑊 𝐼(�̄�𝑏ℎ − 𝑝𝐾 )𝛿(𝒙− 𝒙𝐾 ), (6)

where 𝑞𝛼 is the known 𝛼-phase rate control, 𝛿(𝒙 − 𝒙𝐾 ) is the Dirac function, 𝑊 𝐼 is the well Peaceman index, and �̄�𝑏ℎ is the prescribed bottomhole 
pressure. A comprehensive presentation on well models and well index calculation can be found in [30]. For each cell 𝜏𝐾 ∈ 𝑃 , with 𝑃 the set of 
cells connected to a production well, we define the integral total volumetric production flux 𝜎𝑃

𝐾
= ∫𝜏𝐾 (𝑞𝑃𝑤 + 𝑞𝑃𝑛𝑤)dΩ such that

1
𝜆(𝑠𝐾 )𝑊 𝐼

𝜎𝑃𝐾 − (𝑝𝐾 − �̄�𝑏ℎ) = 0. (7)

Introducing coefficient vectors 𝝈𝑚 =
[
𝝈𝑚𝜀
𝝈𝑚𝜏

]
, 𝝈𝑚𝜀 = (𝜎𝑚𝜀 )𝜀∈ , 𝝈𝑚𝜏 = (𝜎𝑃 ,𝑚

𝐾
)𝜏𝐾∈𝑃 , 𝐩𝑚 = (𝑝𝑚

𝐾
)𝜏𝐾∈ and 𝐬𝑚 = (𝑠𝑚

𝐾
)𝜏𝐾∈ that contain the unknown degrees of 

freedom at time 𝑡 = 𝑡𝑚 (i.e. face fluxes, production well fluxes, cell pressures, and cell saturations) the matrix form associated with the IBVP (1) can 
be stated as follows: given the discrete solution 𝐱𝑚−1 = {𝝈𝑚−1, 𝐩𝑚−1, 𝐬𝑚−1} at time 𝑡 = 𝑡𝑚−1, find 𝐱𝑚 = {𝝈𝑚, 𝐩𝑚, 𝐬𝑚} such that

𝐫𝑚(𝐱𝑚) ∶=
⎡⎢⎢⎣
𝐫𝑚𝜎 (𝝈

𝑚,𝐩𝑚, 𝐬𝑚)
𝐫𝑚𝑝 (𝝈

𝑚)
𝐫𝑚𝑠 (𝝈

𝑚, 𝐬𝑚)

⎤⎥⎥⎦ ∶=
⎡⎢⎢⎣

𝑀(𝐬𝑚)𝝈𝑚 −𝐷𝑇 𝐩𝑚 − 𝐠𝑚
𝐷𝝈𝑚 − 𝐟𝑚

𝑇 𝑚(𝝈𝑚, 𝐬𝑚) − (Δ𝑡𝑚)−1𝑊 𝐬𝑚−1 − 𝐡𝑚

⎤⎥⎥⎦ = 𝟎. (8)

Matrices 𝑀(𝐬𝑚) and 𝑊 =𝑊 𝑚 are diagonal, while 𝐷 and −𝐷𝑇 resemble the discrete divergence and gradient operators respectively (note that 𝐷 and 
𝐷𝑇 do not contain the mesh size ℎ). The nonlinear operator 𝑇𝑚 reads:

𝑇𝑚(𝝈𝑚, 𝐬𝑚) = (Δ𝑡𝑚)−1𝑊 𝐬𝑚 +𝐷𝐝𝐢𝐚𝐠 (𝝈𝑚)𝑈 (𝝈𝑚)𝑓𝑤(𝐬𝑚), (9)
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Fig. 2. Matrices and vectors appearing in the discrete flux and total mass residual equations (8) for the simple well-driven flow problem defined in Fig. 1. Black dots 
denote a nonzero entry.

Fig. 3. Upwind direction selection operator 𝑈 used in the definition of the nonlinear operator 𝑇𝑚(𝝈𝑚, 𝐬𝑚), see Eq. (9), for the simple well-driven flow problem defined 
in Fig. 1 assuming the discrete flux field 𝝈∗ shown in (b). Note that 𝜎∗1 , 𝜎∗4 and 𝜎∗7 are negative.

where 𝐝𝐢𝐚𝐠 (𝝈𝑚) is the diagonal matrix created from the entries of the argument vector, and 𝑈 (𝝈) is the upwind operator selecting for each connection 
the appropriate upstream value from the input vector 𝑓𝑤(𝐬𝑚), which contains the fractional flow function values evaluated in each cell. For clarity, 
using a simple well-driven flow example defined in Fig. 1, we provide additional details on the matrices and vectors appearing in the discrete 
residual equations (8) in Figs. 2–3.

Remark 2. The incompressible system (8) involves a conservation equation for the total volume occupied by the two phases and a conservation 
equation for the volume of the wetting phase, solved in a fully coupled fashion. On convergence of the solver, both the total volume and the wetting-

phase volume are conserved and therefore the non-wetting phase volume is also conserved as it is obtained by subtracting the wetting-phase volume 
from the total volume.

Remark 3. Only the numerical flux 𝝈 is approximated in our numerical scheme (which is also used in determining the upwind direction). An 
approximation of the velocity 𝒗 can be obtained by interpolating the flux solution to the lowest order Raviart-Thomas finite element space if 
needed.
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Algorithm 1 Nonlinear step at level 𝓁 in the Full Approximation Scheme.

1: function NONLINEARMG(𝓁, 𝐱𝓁 , 𝐛𝓁 )

2: if 𝓁 is the coarsest level then

3: 𝐱𝓁 ← NONLINEARSMOOTHING(𝓁, 𝐱𝓁 , 𝐛𝓁 , 𝑛𝓁𝑠 )
4: else

5: 𝐱𝓁 ← NONLINEARSMOOTHING(𝓁, 𝐱𝓁 , 𝐛𝓁 , 𝑛𝓁𝑠 )
6: 𝐱𝓁+1 ←𝐐𝓁+1

𝓁 𝐱𝓁
7: 𝐛𝓁+1 ← 𝐫𝑚,𝓁+1(𝐱𝓁+1) −𝐑𝓁+1

𝓁 (𝐫𝑚,𝓁 (𝐱𝓁 ) − 𝐛𝓁 )
8: 𝐲𝓁+1 ← NONLINEARMG(𝓁 + 1, 𝐱𝓁+1 , 𝐛𝓁+1)
9: 𝐱𝓁 ← BACKTRACKING(𝐱𝓁 , 𝐏𝓁

𝓁+1(𝐲
𝓁+1 − 𝐱𝓁+1), 𝜃)

10: 𝐱𝓁 ← NONLINEARSMOOTHING(𝓁, 𝐱𝓁 , 𝐛𝓁 , 𝑛𝓁𝑠 )
11: end if

12: return 𝐱𝓁
13: end function

3. Nonlinear multigrid

In this section, we propose a nonlinear multigrid solver for the discrete nonlinear system (8) that is based on the Full Approximation Scheme 
(FAS) [2,21]. We start by giving a high-level overview of FAS and its essential components. First, we will need three intergrid transfer operators—

namely, an interpolation operator 𝐏𝓁
𝓁+1, a restriction operator 𝐑𝓁+1

𝓁 , and a projection operator 𝐐𝓁+1
𝓁 . In particular, 𝐏𝓁

𝓁+1 and 𝐐𝓁+1
𝓁 satisfy

𝐐𝓁+1
𝓁 𝐏𝓁

𝓁+1 = 𝐈𝓁+1, (10)

where 𝐈𝓁+1 is the identity operator on the level 𝓁 + 1.

Remark 4 (Abuse of terminology). 𝐐𝓁+1
𝓁 is not a projection according to the usual definition of projections. Nevertheless, following the discussion in 

[25, Remark 6], 𝐐𝓁+1
𝓁 will be referred to as a projection with an abuse of terminology.

We use the convention that level 𝓁 = 0 refers to the finest level (i.e., the original problem), and a larger value of 𝓁 means a coarser level. 
Moreover, a hierarchy of nonlinear operators 

{
𝐫𝑚,𝓁(𝐱𝓁)

}𝐿−1
𝓁=0 approximating 𝐫𝑚(𝐱) will need to be constructed. Lastly, the approximated solution 

is updated at each level based on some smoothing step, denoted “NonlinearSmoothing”. A typical step at level 𝓁 in the full approximation 
scheme multigrid is stated in Algorithm 1, where 𝑛𝓁𝑠 is the number of smoothing steps at level 𝓁. The backtracking procedure is described in [25, 
Algorithm 1].

The multigrid solver for (8) starts with a fine initial guess, 𝐱𝑚,0 ∶= 𝐱𝑚−1, chosen to be the converged state at the previous time step 𝑚 − 1. Then, 
the solver performs a sequence of nonlinear iterations denoted by the superscript 𝑘, as follows:

𝐱𝑚,𝑘 = 𝙽𝚘𝚗𝚕𝚒𝚗𝚎𝚊𝚛𝙼𝙶(0, 𝐱𝑚,𝑘−1, 𝟎), ∀𝑘 ≥ 1, (11)

until a certain stopping criterion is satisfied. In the rest of this section, the details of all multigrid cycle components will be discussed.

3.1. Intergrid transfer operators

The interpolation operator 𝐏𝓁
𝓁+1 and the projection operator 𝐐𝓁+1

𝓁 are block-diagonal, composed of the corresponding operators for the flux, the 
pressure, and the saturation unknowns:

𝐏𝓁
𝓁+1 =

⎡⎢⎢⎢⎣
(
𝑃𝜎
)𝓁
𝓁+1 (

𝑃𝑝
)𝓁
𝓁+1 (

𝑃𝑠
)𝓁
𝓁+1

⎤⎥⎥⎥⎦ and 𝐐𝓁+1
𝓁 =

⎡⎢⎢⎢⎣
(
𝑄𝜎

)𝓁+1
𝓁 (

𝑄𝑝
)𝓁+1
𝓁 (

𝑄𝑠
)𝓁+1
𝓁

⎤⎥⎥⎥⎦ . (12)

The restriction operator 𝐑𝓁+1
𝓁 is taken as the transpose of the interpolation operator 𝐏𝓁

𝓁+1, i.e.,

𝐑𝓁+1
𝓁 ∶=

⎡⎢⎢⎢⎣
(
𝑅𝜎
)𝓁+1
𝓁 (

𝑅𝑝
)𝓁+1
𝓁 (

𝑅𝑠
)𝓁+1
𝓁

⎤⎥⎥⎥⎦ ∶=
⎡⎢⎢⎢⎢⎢⎣

((
𝑃𝜎
)𝓁
𝓁+1

)𝑇 ((
𝑃𝑝
)𝓁
𝓁+1

)𝑇 ((
𝑃𝑠
)𝓁
𝓁+1

)𝑇
⎤⎥⎥⎥⎥⎥⎦
.

To define our interpolation operators, we first form a nested hierarchy of grids { 𝓁}−1𝓁=0 by aggregating fine grid cells in  0 ∶=  . Starting with 
𝓁 = 0, we consider the cell-connectivity graph of  𝓁 , where each cell (respectively face) in  𝓁 is a vertex (respectively edge) of the graph. Based 
on the cell-connectivity graph, contiguous aggregates of cells are formed by using a graph partitioner (e.g., METIS [31]). These aggregates are the 
“cells” (which have irregular shapes) in the coarser-level grid  𝓁+1. A coarser-level face is also naturally formed by collecting the fine faces sharing 
a pair of adjacent aggregates. The set of faces on level 𝓁 is denoted by 𝓁 . This process is repeated until the coarsest grid  −1 is formed.

For pressure and saturation, the coarse spaces are taken to be the space of piecewise-constant functions on the coarse grids. The corresponding 
interpolation operators are defined as[(

𝑃𝑝
)𝓁
𝓁+1

]
𝑖𝑗
=
[(
𝑃𝑠
)𝓁
𝓁+1

]
𝑖𝑗
=
{

1, if aggregate 𝑗 in  𝓁+1 contains cell 𝑖 in  𝓁 ,

0, otherwise.
(13)

The projection operators for pressure and saturation are chosen to be
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(
𝑄𝑝
)𝓁+1
𝓁 =

(
𝑄𝑠
)𝓁+1
𝓁 ∶=

((
𝑅𝑠
)𝓁+1
𝓁

(
𝑃𝑠
)𝓁
𝓁+1

)−1 (
𝑅𝑠
)𝓁+1
𝓁 . (14)

Note that, for a saturation vector 𝐬𝓁 on level 𝓁, the projection 
(
𝑄𝑠
)𝓁+1
𝓁 𝐬𝓁 on the coarse level 𝓁 + 1 corresponds to taking the arithmetic average of 

the entries of 𝐬𝓁 in each aggregate. Also, the product 
(
𝑅𝑠
)𝓁+1
𝓁

(
𝑃𝑠
)𝓁
𝓁+1 is actually a diagonal matrix, so 

(
𝑄𝑠
)𝓁+1
𝓁 is computationally cheap to obtain.

Remark 5. A more physically meaningful projection would be to take a weighted average of the saturation values in each aggregate, where the 
weights are the pore volume of cells. That is,(

𝑄𝑠,𝑊
)𝓁+1
𝓁 ∶=

(
𝑊 𝓁+1)−1 (𝑅𝑠)𝓁+1𝓁 𝑊 𝓁 , (15)

where 𝑊 0 ∶=𝑊 and 𝑊 𝓁+1 ∶=
(
𝑅𝑠
)𝓁+1
𝓁 𝑊 𝓁

(
𝑃𝑠
)𝓁
𝓁+1. In fact, we have tested both choices of the projection operators (14) and (15). However, we did 

not see clear benefit of using one over the other in our numerical experiments. For simplicity, we present results based on the arithmetic average.

For the coarse flux space, each basis function is associated with a coarse face 𝜀𝓁+1𝑖 ∈ 𝓁+1. Specifically, let 𝜏𝓁+1
𝐾

and 𝜏𝓁+1
𝐿

∈  𝓁+1 be the aggregates 
sharing the coarse face 𝜀𝓁+1𝑖 = 𝜀𝓁+1

𝐾,𝐿
∶= 𝜕𝜏𝓁+1

𝐾
∩ 𝜕𝜏𝓁+1

𝐿
. The basis function associated with 𝜀𝓁+1𝑖 is obtained by first solving a local boundary value 

problem in 𝜏𝓁+1
𝐾

∪ 𝜏𝓁+1
𝐿

discretized on level 𝓁:

𝕂−1 ⋅ �̃�
𝓁+1
𝑖 +∇𝑝 = 0

∇ ⋅ �̃�
𝓁+1
𝑖 = 𝑞𝜏𝓁+1

𝐾
∪𝜏𝓁+1
𝐿

(16)

with no-flow boundary condition �̃�𝓁+1
𝑖 ⋅ 𝒏 = 0 on 𝜕(𝜏𝓁+1

𝐾
∪ 𝜏𝓁+1
𝐿

), where

𝑞𝜏𝓁+1
𝐾

∪𝜏𝓁+1
𝐿

=
{

1∕|𝜏𝓁+1
𝐾

|, in 𝜏𝓁+1
𝐾
,

−1∕|𝜏𝓁+1
𝐿

|, in 𝜏𝓁+1
𝐿
.

(17)

Note that �̃�𝓁+1
𝑖 was introduced in mixed multiscale finite element methods; see, for example, [32,33]. The final basis 𝝓𝓁+1

𝑖 is obtained by normalizing 
�̃�
𝓁+1
𝑖 so that the total normal flux of 𝝓𝓁+1

𝑖 on 𝜀𝓁+1𝑖 is 1. More precisely,

𝝓𝓁+1
𝑖 ∶=

⎛⎜⎜⎜⎝ ∫𝜀𝓁+1𝑖
�̃�
𝓁+1
𝑖 ⋅ 𝒏

⎞⎟⎟⎟⎠
−1

�̃�
𝓁+1
𝑖 . (18)

The interpolation operator 
(
𝑃𝜎
)𝓁
𝓁+1 is formed by collecting the coefficient vectors of the local flux solutions (corresponding to 𝝓𝓁+1

𝑖 ) as its column 
vectors. The projection 

(
𝑄𝜎

)𝓁+1
𝓁 is also defined locally on each coarse face. For a given finer level flux 𝜎𝓁 , the 𝑖-th entry of 

(
𝑄𝜎

)𝓁+1
𝓁 𝜎𝓁 is the total 

normal flux of 𝜎𝓁 on the coarse face 𝜀𝓁+1𝑖 . In the next subsection, we will introduce discrete operators 𝑀𝓁(𝐬) and 𝐷𝓁 , which are the counterparts 
of 𝑀(𝐬) and 𝐷 on level 𝓁. In practice, the discrete problems of (16) and (17), as well as 

(
𝑄𝜎

)𝓁+1
𝓁 , are constructed using submatrices of 𝑀𝓁(𝟎) and 

𝐷𝓁 ; cf. Appendices A and B of [34]. We remark here that the coarsening in the current paper is the lowest order version of the spectral coarsening 
method [25,34].

Remark 6. In this work, we do not consider the impact of wells during the coarse space construction. For simplicity, cells with well perforations are 
kept as separate aggregates and carried unmodified to coarser levels. A specific treatment accounting for well interactions is the subject of ongoing 
work. Given that wells drive the flow dynamics, a more sophisticated coarse space could offer performance advantages.

3.2. The nonlinear problem on each level

On the fine level 𝓁 = 0, let 𝐫𝑚,0(𝐱0) ∶= 𝐫𝑚(𝐱0), 𝑀0(𝐬0) ∶= 𝑀(𝐬0), 𝐷0 ∶= 𝐷, 𝑇𝑚,0(𝝈0, 𝐬0) ∶= 𝑇𝑚(𝝈0, 𝐬0), 𝐠𝑚,0 ∶= 𝐠𝑚, 𝐟𝑚,0 ∶= 𝐟𝑚, and 𝐡𝑚,0 ∶=
(Δ𝑡𝑚)−1𝑊 𝐬𝑚−1 + 𝐡𝑚. With the interpolation operator 𝐏𝓁

𝓁+1 and restriction operator 𝐑𝓁+1
𝓁 , the nonlinear operators on coarse levels are defined recur-

sively as

𝐫𝑚,𝓁+1(𝐱𝓁+1) ∶=𝐑𝓁+1
𝓁 𝐫𝑚,𝓁

(
𝐏𝓁
𝓁+1𝐱

𝓁+1
)
=
⎡⎢⎢⎣
𝑀𝓁+1 (𝐬𝓁+1)𝝈𝓁+1 − (𝐷𝓁+1)𝑇 𝐩𝓁+1 − 𝐠𝑚,𝓁+1

𝐷𝓁+1𝝈𝓁+1 − 𝐟𝑚,𝓁+1
𝑇𝑚,𝓁+1(𝝈𝓁+1, 𝐬𝓁+1) − 𝐡𝑚,𝓁+1

⎤⎥⎥⎦ =∶
⎡⎢⎢⎢⎣
𝐫𝑚,𝓁+1𝜎 (𝝈𝓁+1,𝐩𝓁+1, 𝐬𝓁+1)

𝐫𝑚,𝓁+1𝑝 (𝝈𝓁+1)
𝐫𝑚,𝓁+1𝑠 (𝝈𝓁+1, 𝐬𝓁+1)

⎤⎥⎥⎥⎦ (19)

where

𝑀𝓁+1 (𝐬𝓁+1) ∶= (𝑅𝜎)𝓁+1𝓁 𝑀𝓁
((
𝑃𝑠
)𝓁
𝓁+1𝐬

𝓁+1
)(
𝑃𝜎
)𝓁
𝓁+1, 𝐠𝑚,𝓁+1 ∶=

(
𝑅𝜎
)𝓁+1
𝓁 𝐠𝑚,𝓁 ,

𝐷𝓁+1 ∶=
(
𝑅𝑝
)𝓁+1
𝓁 𝐷𝓁(𝑃𝜎)𝓁𝓁+1, 𝐟𝑚,𝓁+1 ∶=

(
𝑅𝑝
)𝓁+1
𝓁 𝐟𝑚,𝓁 ,

𝑇 𝑚,𝓁+1(𝝈𝓁+1, 𝐬𝓁+1) ∶=
(
𝑅𝑠
)𝓁+1
𝓁 𝑇𝑚,𝓁

((
𝑃𝜎
)𝓁
𝓁+1𝝈

𝓁+1,
(
𝑃𝑠
)𝓁
𝓁+1𝐬

𝓁+1
)
, 𝐡𝑚,𝓁+1 ∶=

(
𝑅𝑠
)𝓁+1
𝓁 𝐡𝑚,𝓁 .

Note that (19) is a conceptual definition of the coarse operators. In practice, due to scalability concerns, we do not want the evaluation of 𝐫𝑚,𝓁+1(𝐱𝓁+1)
during the multigrid cycle to involve computations on the finer level 𝓁. To achieve this, we have to construct and store some coarse operators during 
the setup phase of the multigrid solver. For 𝐷𝓁+1, 𝐠𝑚,𝓁+1, 𝐟𝑚,𝓁+1, and 𝐡𝑚,𝓁+1, the construction is straightforward. The main issue is in the evaluation 
of the nonlinear components 𝑀𝓁+1 (𝐬𝓁+1) and 𝑇𝑚,𝓁+1(𝝈𝓁+1, 𝐬𝓁+1). In the rest of this section, we will describe how it can be done efficiently.
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3.2.1. Evaluation of 𝑀𝓁+1 (𝐬𝓁+1)
For 𝑀𝓁+1 (𝐬𝓁+1), we follow the procedure proposed in [25, Section 3.2]. To begin with, some local matrices 𝑀𝓁

𝜏𝓁
𝐾

that are independent of 𝜆(𝐬𝓁), 

each of which is associated with a cell 𝜏𝓁
𝐾
∈  𝓁 , are precomputed in the setup phase. On the fine level, 𝑀0

𝜏0
𝐾

is a diagonal matrix whose entries are 

all the half transmissibility associated with the faces on the boundary of 𝜏0
𝐾

:

𝑀0
𝜏0
𝐾

=
⎡⎢⎢⎣
⋱

Υ𝐾,𝜀0
⋱

⎤⎥⎥⎦
𝜀0∈𝜕𝜏0

𝐾

(21)

where the half transmissibility Υ𝐾,𝜀0 is defined in (3). On coarse levels, 𝑀𝓁+1
𝜏𝓁+1
𝐾

is obtained by first assembling the finer-level local matrices 𝑀𝓁
𝜏𝓁
𝐿

associated with the fine cells 𝜏𝓁
𝐿

covering the coarse cell 𝜏𝓁+1
𝐾

, followed by a local variational coarsening using 
(
𝑃𝜎
)𝓁
𝓁+1.

Now let 𝐬𝓁+1 be a coarse saturation on level 𝓁+1. By our construction, the 𝐾-th entry of 𝐬𝓁+1, 𝑠𝓁+1
𝐾

, represents the average saturation value in the 
coarse cell 𝜏𝓁+1

𝐾
∈  𝓁+1. During the solving phase, 𝑀𝓁+1 (𝐬𝓁+1) is obtained by assembling the precomputed local matrix 𝑀𝓁+1

𝜏𝓁+1
𝐾

scaled by 𝜆(𝑠𝓁+1
𝐾

)−1

using a local-to-global map. Notice that the assembling of 𝑀𝓁+1 (𝐬𝓁+1) in this approach involves quantities on the coarse level 𝓁 + 1 only.

3.2.2. Evaluation of 𝑇𝑚,𝓁(𝝈𝓁+1, 𝐬𝓁+1)
Let 𝑊 0 ∶=𝑊 and 𝑈0(𝝈0) ∶=𝑈 (𝝈0). Note that 𝑇𝑚,0 has two parts:

𝑇𝑚,0(𝝈0, 𝐬0) ∶= 𝑇𝑚,01 (𝐬0) + 𝑇𝑚,02 (𝝈0, 𝐬0) ∶= (Δ𝑡𝑚)−1𝑊 0𝐬0 +𝐷0𝐝𝐢𝐚𝐠
(
𝝈0)𝑈0(𝝈0)𝑓𝑤(𝐬0). (22)

The coarsening of 𝑇𝑚,01 (𝐬0) is straightforward as it is a linear operator:

𝑇𝑚,𝓁+11 (𝐬𝓁+1) ∶=
(
𝑅𝑠
)𝓁+1
𝓁 𝑇𝑚,𝓁1 (

(
𝑃𝑠
)𝓁
𝓁+1𝐬

𝓁+1) ∶= (Δ𝑡𝑚)−1𝑊 𝓁+1𝐬𝓁+1

where 𝑊 𝓁+1 is the mass matrix for the saturation space on the coarse level 𝓁 + 1 defined as:

𝑊 𝓁+1 ∶=
(
𝑅𝑠
)𝓁+1
𝓁 𝑊 𝓁(𝑃𝑠)𝓁𝓁+1, ∀𝓁 ≥ 0. (23)

The coarsening of 𝑇𝑚,02 is more challenging as it involves a nonlinear function and upwind fluxes. Nevertheless, we can actually compute 
𝑇𝑚,𝓁+12 (𝝈𝓁+1, 𝐬𝓁+1) without visiting the finer levels during the multigrid solving phase. To see this, consider the two-level case. In this case, we use 
some lighter notation to simplify the presentation. Specifically, the superscript and subscript in intergrid operators are dropped. For coefficient 
vectors, operators, and geometrical entities on the fine level, we drop the superscript 0. On the other hand, for coefficient vectors, operators, and 
geometrical entities on the coarse level, the superscript 1 is replaced by 𝑐. For example, 𝑃𝜎 ∶=

(
𝑃𝜎
)0
1, 𝝈 = 𝝈0, 𝐬𝑐 ∶= 𝐬1, 𝑇𝑚2 ∶= 𝑇𝑚,02 , 𝐷𝑐 ∶= 𝐷1, and 

 𝑐 ∶=  1. The following lemma characterizes the coarse upwind fluxes when saturation is piecewise constant on the coarse level.

Lemma 1. Let 𝐬𝑐 = (𝑠𝑐
𝐾
)𝜏𝑐
𝐾
∈ 𝑐 and 𝝈 = (𝜎𝑗 )𝜀𝑗∈ be the coefficient vectors of some coarse saturation solution and fine flux solution respectively. Then, the 

𝐾-th entry of the variationally defined quantity 𝑅𝑠𝑇 𝑚2
(
𝝈, 𝑃𝑠𝐬𝑐

)
reads as

(
𝑅𝑠𝑇

𝑚
2
(
𝝈, 𝑃𝑠𝐬𝑐

))
𝐾
=

∑
𝜀𝑐𝑖 =𝜀

𝑐
𝐾,𝐿
⊆𝜕𝜏𝑐
𝐾

⎛⎜⎜⎝𝑓𝑤(𝑠𝑐𝐾 )
∑
𝜀𝑗⊆𝜀

𝑐
𝑖

max
(
𝜎𝑗 ,0

)
+ 𝑓𝑤(𝑠𝑐𝐿)

∑
𝜀𝑗⊆𝜀

𝑐
𝑖

min
(
𝜎𝑗 ,0

)⎞⎟⎟⎠ (24)

where 𝜀𝑐𝑖 = 𝜀
𝑐
𝐾,𝐿

is the coarse face shared by the coarse cells 𝜏𝑐
𝐾

and 𝜏𝑐
𝐿

.

Proof. First of all, since our coarse saturation space consists of piecewise constant functions, the order of evaluation of nonlinear function and 
interpolation can be switched:

𝑓𝑤
(
𝑃𝑠 𝐬𝑐

)
= 𝑃𝑠𝑓𝑤 (𝐬𝑐) . (25)

Let 𝝈𝑓𝑢𝑝𝑤 ∶= 𝐝𝐢𝐚𝐠 (𝝈)𝑈 (𝝈)𝑃𝑠𝑓𝑤 (𝐬𝑐 ). By the definition of 𝑇𝑚2 given in (22), and (25),

𝑅𝑠𝑇
𝑚
2
(
𝝈, 𝑃𝑠𝐬𝑐

)
=𝑅𝑠𝐷𝐝𝐢𝐚𝐠 (𝝈)𝑈 (𝝈)𝑃𝑠𝑓𝑤 (𝐬𝑐 ) =𝑅𝑠𝐷𝝈𝑓𝑢𝑝𝑤 . (26)

Note that 𝝈𝑓𝑢𝑝𝑤 is just another fine-level flux. So 𝐷𝝈𝑓𝑢𝑝𝑤 computes the sum of outward normal flux (of the flux represented by 𝝈𝑓𝑢𝑝𝑤 ) of each 
fine-level cell. By the definition of 𝑅𝑠, for each coarse cell 𝜏𝑐

𝐾
, 𝑅𝑠𝐷𝝈𝑓𝑢𝑝𝑤 sums up the outward normal fluxes of the fine-level cells 𝜏𝐿 in the coarse 

cell 𝜏𝑐
𝐾

. Since 𝝈𝑓𝑢𝑝𝑤 is conservative, for two cells sharing a common face, outward normal fluxes of the cells on the common face cancel each other. 
This means that the 𝐾-th entry of 𝑅𝑠𝐷𝝈𝑓𝑢𝑝𝑤 is the sum of outward normal flux of the coarse-level cell 𝜏𝑐

𝐾
.

Now for the fine faces 𝜀𝑗 on 𝜕𝜏𝑐
𝐾

, we can group them based on the coarse face they belong to, and look at one coarse face 𝜀𝑐𝑖 at a time. Let 
𝜀𝑐𝑖 = 𝜀

𝑐
𝐾,𝐿

be the coarse face shared by the coarse cells 𝜏𝑐
𝐾

and 𝜏𝑐
𝐿

. Notice that 𝝈𝑓𝑢𝑝𝑤 is actually some upwind flux on the fine level. Since 𝑃𝑠𝑓𝑤 (𝐬𝑐 ) is 
piecewise constant on coarse level, for the fine faces belonging to a coarse face, there are only two possible upwinded quantities: 𝑓𝑤(𝑠𝑐𝐾 ) or 𝑓𝑤(𝑠𝑐𝐿), 
depending on the direction of 𝝈 on the fine faces. Hence, the 𝐾-th entry of 𝑅𝑠𝐷𝝈𝑓𝑢𝑝𝑤 is

(
𝑅𝑠𝐷𝝈𝑓𝑢𝑝𝑤

)
𝐾
=

∑
𝜀𝑐𝑖 =𝜀

𝑐
𝐾,𝐿
⊆𝜕𝜏𝑐
𝐾

⎛⎜⎜⎝
∑
𝜀𝑗⊆𝜀

𝑐
𝑖

(
max

(
𝜎𝑗 ,0

)
𝑓𝑤(𝑠𝑐𝐾 ) + min

(
𝜎𝑗 ,0

)
𝑓𝑤(𝑠𝑐𝐿)

)⎞⎟⎟⎠
=

∑
𝜀𝑐𝑖 =𝜀

𝑐
𝐾,𝐿
⊆𝜕𝜏𝑐
𝐾

⎛⎜⎜⎝𝑓𝑤(𝑠𝑐𝐾 )
∑
𝜀𝑗⊆𝜀

𝑐
𝑖

max
(
𝜎𝑗 ,0

)
+ 𝑓𝑤(𝑠𝑐𝐿)

∑
𝜀𝑗⊆𝜀

𝑐
𝑖

min
(
𝜎𝑗 ,0

)⎞⎟⎟⎠ .
(27)
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Combining (26) and (27), we get (24). □

Note that Lemma 1 holds for any 𝝈 on the fine level. In particular, 𝝈 can be taken to be the interpolation of 𝝈𝑐 : 𝝈 = 𝑃𝜎𝝈𝑐 . Therefore, by Lemma 1, 
we know that 𝑇𝑚,𝑐2 (𝝈𝑐 , 𝐬𝑐) = 𝑅𝑠𝑇 𝑚2

(
𝑃𝜎𝝈

𝑐 , 𝑃𝑠𝐬𝑐
)

only depends on the values of 𝑃𝜎𝝈𝑐 on (the fine faces in) coarse faces. Using this observation, and a 
carefully defined coarse version of 𝑈 , we will see in the next proposition that 𝑇𝑚,𝑐2 actually has a similar structure as 𝑇𝑚2 .

Proposition 1. Let 𝐬𝑐 = (𝑠𝑐
𝐾
)𝜏𝑐
𝐾
∈ 𝑐 and 𝝈𝑐 = (𝜎𝑐𝑖 )𝜀𝑐𝑖 ∈𝑐 be the coefficient vectors of some coarse saturation and flux solution respectively. Moreover, using 𝝈𝑐 , 

define 𝑈𝑐 (𝝈𝑐) to be the matrix such that:

[𝑈𝑐 (𝝈𝑐)]𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝛿𝑗𝐾

∑
𝜀𝑘⊆𝜀

𝑐
𝑖

max
([
𝑃𝜎
]
𝑘𝑖
,0
)
+ 𝛿𝑗𝐿

∑
𝜀𝑘⊆𝜀

𝑐
𝑖

min
([
𝑃𝜎
]
𝑘𝑖
,0
)
, if 𝜎𝑐𝑖 > 0,

𝛿𝑗𝐾
∑
𝜀𝑘⊆𝜀

𝑐
𝑖

min
([
𝑃𝜎
]
𝑘𝑖
,0
)
+ 𝛿𝑗𝐿

∑
𝜀𝑘⊆𝜀

𝑐
𝑖

max
([
𝑃𝜎
]
𝑘𝑖
,0
)
, if 𝜎𝑐𝑖 ≤ 0,

(28)

where 𝜀𝑐𝑖 = 𝜀
𝑐
𝐾,𝐿

, and 𝑃𝜎 is the interpolation matrix for the flux spaces. Also, 𝛿𝑗𝐾 and 𝛿𝑗𝐿 are the standard Kronecker symbols. Then,

𝑇𝑚,𝑐2 (𝝈𝑐 , 𝐬𝑐 ) =𝐷𝑐𝐝𝐢𝐚𝐠 (𝝈𝑐)𝑈𝑐(𝝈𝑐)𝑓𝑤(𝐬𝑐 ). (29)

Proof. Consider the interpolation of 𝝈𝑐 on the fine level: 𝝈 = 𝑃𝜎𝝈𝑐 . By our construction, there is only one coarse flux basis vector per coarse face. 
Thus, the values of 𝜎𝑗 on fine faces belonging to the coarse face 𝜀𝑐𝑖 is solely depending on the value of 𝜎𝑐𝑖 . More precisely, for 𝑖 such that 𝜀𝑗 ⊆ 𝜀𝑐𝑖 , we 
have

𝜎𝑗 =
[
𝑃𝜎
]
𝑗𝑖
𝜎𝑐𝑖 . (30)

In what follows in equation (31), we use the elementary identity valid for any real numbers 𝑝, 𝑞, 𝑎, and 𝑏

𝑝max(𝑎𝑏,0) + 𝑞min(𝑎𝑏,0) = 𝑝max(𝑎,0)max(𝑏,0) + 𝑞max(𝑎,0)min(𝑏,0) + 𝑝min(𝑎,0)min(𝑏,0) + 𝑞min(𝑎,0)max(𝑏,0).

By Lemma 1, (30), and (28), we get(
𝑇𝑚,𝑐2 (𝝈𝑐 , 𝐬𝑐)

)
𝐾
=𝑅𝑠𝑇 𝑚2

(
𝝈, 𝑃𝑠𝐬𝑐

)
=

∑
𝜀𝑐𝑖 =𝜀

𝑐
𝐾,𝐿
⊆𝜕𝜏𝑐
𝐾

⎛⎜⎜⎝𝑓𝑤(𝑠𝑐𝐾 )
∑
𝜀𝑗⊆𝜀

𝑐
𝑖

max
([
𝑃𝜎
]
𝑗𝑖
𝜎𝑐𝑖 ,0

)
+ 𝑓𝑤(𝑠𝑐𝐿)

∑
𝜀𝑗⊆𝜀

𝑐
𝑖

min
([
𝑃𝜎
]
𝑗𝑖
𝜎𝑐𝑖 ,0

)⎞⎟⎟⎠
=

∑
𝜀𝑐𝑖 =𝜀

𝑐
𝐾,𝐿
⊆𝜕𝜏𝑐
𝐾

max
(
𝜎𝑐𝑖 ,0

) ⎛⎜⎜⎝𝑓𝑤(𝑠𝑐𝐾 )
∑
𝜀𝑗⊆𝜀

𝑐
𝑖

max
([
𝑃𝜎
]
𝑗𝑖
,0
)
+ 𝑓𝑤(𝑠𝑐𝐿)

∑
𝜀𝑗⊆𝜀

𝑐
𝑖

min
([
𝑃𝜎
]
𝑗𝑖
,0
)⎞⎟⎟⎠

+min
(
𝜎𝑐𝑖 ,0

) ⎛⎜⎜⎝𝑓𝑤(𝑠𝑐𝐾 )
∑
𝜀𝑗⊆𝜀

𝑐
𝑖

min
([
𝑃𝜎
]
𝑗𝑖
,0
)
+ 𝑓𝑤(𝑠𝑐𝐿)

∑
𝜀𝑗⊆𝜀

𝑐
𝑖

max
([
𝑃𝜎
]
𝑗𝑖
,0
)⎞⎟⎟⎠

=
∑

𝜀𝑐𝑖 =𝜀
𝑐
𝐾,𝐿
⊆𝜕𝜏𝑐
𝐾

𝜎𝑐𝑖
(
[𝑈𝑐 ]𝑖𝐾𝑓𝑤(𝑠𝑐𝐾 ) + [𝑈𝑐]𝑖𝐿𝑓𝑤(𝑠𝑐𝐿)

)
=
(
𝐷𝑐𝐝𝐢𝐚𝐠 (𝝈𝑐)𝑈𝑐(𝝈𝑐)𝑓𝑤(𝐬𝑐 )

)
𝐾
. □

(31)

An example 𝑈𝑐(𝝈𝑐 ) for a coarsened problem of the simple well-driven flow problem defined in Fig. 1 is illustrated in Fig. 4. In this example, we 
assume [𝑃𝜎 ]31 > 0, [𝑃𝜎 ]41 > 0, [𝑃𝜎 ]51 < 0, which can be seen by comparing the flux fields in Fig. 4b with Fig. 1a. Since the entries of 𝝈𝑐,∗ are also 
assumed to be positive, we end up with 𝑈𝑐(𝝈𝑐,∗) in Fig. 4c based on (28).

Lastly, we go back to the general case where we can have multiple coarse levels. Note that because the space of saturation in a coarser level 
𝓁 > 1 is still piecewise constant, and the coarse flux space also has only one basis per coarse face, Lemma 1 and Proposition 1 can be extended to 
any coarse level 𝓁 ≥ 1. To this end, define a special interpolation matrix that goes all the way from level 𝓁 + 1 to level 0:(

𝑃𝜎
)0
𝓁+1 ∶=

(
𝑃𝜎
)0
1
(
𝑃𝜎
)1
2⋯

(
𝑃𝜎
)𝓁
𝓁+1. (32)

Then, given a coarse flux solution 𝝈𝓁+1 = (𝜎𝓁+1𝑖 )𝜀𝓁+1𝑖 ∈𝓁+1 on level 𝓁 + 1, where 𝜀𝓁+1𝑖 = 𝜀𝓁+1
𝐾,𝐿

, define 𝑈𝓁+1(𝝈𝓁+1) to be

[𝑈𝓁+1(𝝈𝓁+1)]𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝛿𝑗𝐾

∑
𝜀𝑘⊆𝜀

𝓁+1
𝑖

max
([(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
,0
)
+ 𝛿𝑗𝐿

∑
𝜀𝑘⊆𝜀

𝓁+1
𝑖

min
([(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
,0
)
, if 𝜎𝓁+1𝑖 > 0,

𝛿𝑗𝐾
∑

𝜀𝑘⊆𝜀
𝓁+1
𝑖

min
([(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
,0
)
+ 𝛿𝑗𝐿

∑
𝜀𝑘⊆𝜀

𝓁+1
𝑖

max
([(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
,0
)
, if 𝜎𝓁+1𝑖 ≤ 0.

(33)

Using a similar derivation as in Lemma 1 and Proposition 1, we can conclude that

𝑇𝑚,𝓁+1(𝝈𝓁+1, 𝐬𝓁+1) = (Δ𝑡𝑚)−1𝑊 𝓁+1𝐬𝓁+1 +𝐷𝓁+1𝐝𝐢𝐚𝐠
(
𝝈𝓁+1)𝑈𝓁+1(𝝈𝓁+1)𝑓𝑤(𝐬𝓁+1). (34)
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Fig. 4. A example of the coarse upwind direction selection operator 𝑈𝑐 defined in (28) for a coarsened version of the simple well-driven flow problem defined in 
Fig. 1 assuming the discrete flux field of the flux basis associated with 𝜀𝑐1 shown in (b), and 𝝈𝑐,∗ = (𝜎𝑐,∗1 , 𝜎

𝑐,𝑃 ,∗
2 )𝑇 where 𝜎𝑐,∗1 > 0 and 𝜎𝑐,𝑃 ,∗2 > 0. In (c), 𝜎𝑐,𝑃2 corresponds 

to the flux from 𝜏𝑐2 to the production well.

Remark 7. Recall that by construction (17) the total normal flux of the coarse basis 𝝓𝓁+1
𝑖 on 𝜀𝓁+1𝑖 is 1. This means that∑

𝜀𝑘⊆𝜀
𝓁+1
𝑖

max
([(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
,0
)
+

∑
𝜀𝑘⊆𝜀

𝓁+1
𝑖

min
([(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
,0
)
=

∑
𝜀𝑘⊆𝜀

𝓁+1
𝑖

[(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
= 1.

Hence, by letting 𝑃−𝑣𝑒,𝓁+1
𝜎,𝑖 be the sum of negative fine fluxes on 𝜀𝓁+1𝑖 :

𝑃−𝑣𝑒,𝓁+1
𝜎,𝑖 =

∑
𝜀𝑘⊆𝜀

𝓁+1
𝑖

min
([(
𝑃𝜎
)0
𝓁+1

]
𝑘𝑖
,0
) ≤ 0,

we can rewrite the coarse operator 𝑈𝓁+1(𝝈𝓁+1) defined in (33) to be

[𝑈𝓁+1(𝝈𝓁+1)]𝑖𝑗 =
⎧⎪⎨⎪⎩
𝛿𝑗𝐾 (1 − 𝑃

−𝑣𝑒,𝓁+1
𝜎,𝑖 ) + 𝛿𝑗𝐿𝑃

−𝑣𝑒,𝓁+1
𝜎,𝑖 , if 𝜎𝓁+1𝑖 > 0,

𝛿𝑗𝐾𝑃
−𝑣𝑒,𝓁+1
𝜎,𝑖 + 𝛿𝑗𝐿(1 − 𝑃

−𝑣𝑒,𝓁+1
𝜎,𝑖 ), if 𝜎𝓁+1𝑖 ≤ 0.

(35)

It is easy to see from (35) that the definition of 𝑈𝓁+1 coincides with the usual upwind direction selection operator 𝑈 defined in Section 2.1 if 
𝑃−𝑣𝑒,𝓁+1
𝜎,𝑖 = 0. Therefore, 𝑈𝓁+1 can be seen as a generalization of the usual upwind direction selection operator. Moreover, only 𝑃−𝑣𝑒,𝓁+1

𝜎,𝑖 needs to be 
stored for each coarse face 𝜀𝓁+1𝑖 in the setup phase of the multigrid in order to assemble 𝑈𝓁+1(𝝈𝓁+1) later during the solving phase.

3.3. Nonlinear smoothing

The nonlinear smoothing at each level 𝓁 is used to approximate the solution to the discrete problem 𝐫𝑚,𝓁(𝐱𝓁) = 𝐛𝓁 . In our multigrid approach, the 
approximation is made using Newton’s method. When NonlinearSmoothing(𝓁, 𝐱𝓁 , 𝐛𝓁 , 𝑛𝓁𝑠 ) in Algorithm 1 is called, we start the Newton iterations 
with 𝐱𝓁,0 ∶= 𝐱𝓁 , and unless some stopping criteria are reached, the Newton iterations continue as

𝐱𝓁,𝑘 ∶= 𝐱𝓁,𝑘−1 −
(
𝜕𝐫𝑚,𝓁(𝐱𝓁,𝑘−1)

)−1 (𝐫𝑚,𝓁(𝐱𝓁,𝑘−1) − 𝐛𝓁
)
, for 𝑘 = 1,2,… , 𝑛𝓁𝑠 . (36)

Let

𝐫𝑚,𝓁,𝑘 =
⎡⎢⎢⎢⎣
𝐫𝑚,𝓁,𝑘𝜎

𝐫𝑚,𝓁,𝑘𝑝

𝐫𝑚,𝓁,𝑘𝑠

⎤⎥⎥⎥⎦ ∶= 𝐫𝑚,𝓁(𝐱𝓁,𝑘−1) − 𝐛𝓁 .

The Jacobian system to be solved in each Newton step has the form:

𝜕𝐫𝑚,𝓁(𝐱𝓁,𝑘−1)Δ𝐱𝓁,𝑘 =
⎡⎢⎢⎢⎣
𝜕𝐫𝑚,𝓁𝜎
𝜕𝝈

−𝐷𝑇 𝜕𝐫𝑚,𝓁𝜎
𝜕𝐬

𝐷 0 0
𝜕𝐫𝑚,𝓁𝑠
𝜕𝝈

0 𝜕𝐫𝑚,𝓁𝑠
𝜕𝐬

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
Δ𝝈𝓁,𝑘

Δ𝐩𝓁,𝑘
Δ𝐬𝓁,𝑘

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝐫𝑚,𝓁,𝑘𝜎

𝐫𝑚,𝓁,𝑘𝑝

𝐫𝑚,𝓁,𝑘𝑠

⎤⎥⎥⎥⎦ (37)

The construction of each of the components of the Jacobian system is given in Appendix A.

3.4. Iterative linear solver for the Jacobian system

Because of the difference of 𝜕𝐫
𝑚,𝓁
𝜎

𝜕𝝈
on the fine and coarse levels, we will use two different linear solvers for the Jacobian system (37), depending on 

the level 𝓁. In both cases, (37) is transformed into a system involving only pressure (or face pressure) and saturation. Then, a CPR-type preconditioner 
[1,35–38] is applied to solve the transformed system.
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3.4.1. Transformation on the fine level

When 𝓁 = 0, 𝜕𝐫
𝑚,𝓁
𝜎

𝜕𝝈
is diagonal, so it is inexpensive to first eliminate Δ𝝈𝓁,𝑘 in (37) and obtain

𝐀𝓁
[
Δ𝐩𝓁,𝑘
Δ𝐬𝓁,𝑘

]
∶=

[
𝐴𝓁11 𝐴𝓁12
𝐴𝓁21 𝐴𝓁22

][
Δ𝐩𝓁,𝑘
Δ𝐬𝓁,𝑘

]
=

[
𝝃
𝓁,𝑘
1

𝝃
𝓁,𝑘
2

]
(38)

where [
𝐴𝓁11 𝐴𝓁12
𝐴𝓁21 𝐴𝓁22

]
∶=

[
0 0

0 𝜕𝐫𝑚,𝓁𝑠
𝜕𝐬

]
−

[
𝐷
𝜕𝐫𝑚,𝓁𝑠
𝜕𝝈

](
𝜕𝐫𝑚,𝓁𝜎
𝜕𝝈

)−1 [
−𝐷𝑇 𝜕𝐫𝑚,𝓁𝜎

𝜕𝐬

]
,

and [
𝝃
𝓁,𝑘
1

𝝃
𝓁,𝑘
2

]
∶=

[
𝐫𝑚,𝓁,𝑘𝑝

𝐫𝑚,𝓁,𝑘𝑠

]
−

[
𝐷
𝜕𝐫𝑚,𝓁𝑠
𝜕𝝈

](
𝜕𝐫𝑚,𝓁𝜎
𝜕𝝈

)−1

𝐫𝑚,𝓁,𝑘𝜎

3.4.2. Transformation on the coarse level

When 𝓁 ≥ 1, 𝜕𝐫
𝑚,𝓁
𝜎

𝜕𝝈
is not a diagonal matrix. Inverting 𝜕𝐫

𝑚,𝓁
𝜎

𝜕𝝈
would be too expensive. Instead, we can consider the hybrid version of (37), where 

the flux is replaced by one-sided fluxes. Each one-sided flux is associated with one cell only, and the weak continuity of the flux is enforced through 
Lagrange multiplier (face pressure). In the hybrid formulation, the system to be solved, conceptually, is

⎡⎢⎢⎢⎢⎢⎣

�̂�𝐫𝑚𝜎
𝜕𝝈

−�̂�𝑇 𝐶𝑇
�̂�𝐫𝑚𝜎
𝜕𝐬

�̂� 0 0 0
𝐶 0 0 0
�̂�𝐫𝑚𝑠
𝜕𝝈

0 0 𝜕𝐫𝑚𝑠
𝜕𝐬

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Δ𝝈𝓁,𝑘

Δ𝐩𝓁,𝑘
Δ𝝀𝓁,𝑘

Δ𝐬𝓁,𝑘

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
̂𝐫𝑚,𝓁,𝑘𝜎

𝐫𝑚,𝓁,𝑘𝑝

𝟎
𝐫𝑚,𝓁,𝑘𝑠

⎤⎥⎥⎥⎥⎦
(39)

Since 
[
�̂�𝐫𝑚𝜎
𝜕𝝈

−�̂�𝑇

�̂� 0

]
is block-diagonal and each block is invertible, the global system to be solved in our implementation is the reduced system

𝐀𝓁
[
Δ𝝀𝑚,𝑘

Δ𝐬𝑚,𝑘
]
∶=

[
𝐴𝓁11 𝐴𝓁12
𝐴𝓁21 𝐴𝓁22

][
Δ𝝀𝓁,𝑘

Δ𝐬𝓁,𝑘
]
=

[
𝝃
𝓁,𝑘
1

𝝃
𝓁,𝑘
2

]
(40)

where [
𝐴𝓁11 𝐴𝓁12
𝐴𝓁21 𝐴𝓁22

]
∶=

[
0 0
0 𝜕𝐫𝑚𝑠

𝜕𝐬

]
−

[
𝐶 0
�̂�𝐫𝑚𝑠
𝜕𝝈

0

][
�̂�𝐫𝑚𝜎
𝜕𝝈

−�̂�𝑇

�̂� 0

]−1 [
𝐶𝑇

�̂�𝐫𝑚𝜎
𝜕𝐬

0 0

]
,

and [
𝝃
𝓁,𝑘
1

𝝃
𝓁,𝑘
2

]
∶=

[
𝐫𝑚,𝓁,𝑘𝑠

𝟎

]
−

[
𝐶 0
�̂�𝐫𝑚𝑠
𝜕𝝈

0

][
�̂�𝐫𝑚𝜎
𝜕𝝈

−�̂�𝑇

�̂� 0

]−1 [
̂𝐫𝑚,𝓁,𝑘𝜎

𝐫𝑚,𝓁,𝑘𝑝

]
.

3.4.3. Linear solver for the transformed system

Systems (38) and (40) are solved by preconditioned GMRES. Since (38) (respectively (40) is a system involving pressure (respectively face 
pressure) and saturation, a CPR-type preconditioner [1,35–38] is employed. More precisely, we consider a two-stage preconditioner

𝐁𝓁 ∶= 𝐁𝓁
1 +𝐁𝓁

2 (𝐈−𝐀𝓁𝐁𝓁
1 ) (41)

which gives rise to the product iteration matrix

(𝐈−𝐀𝓁𝐁𝓁) = (𝐈−𝐀𝓁𝐁𝓁
2 )(𝐈−𝐀𝓁𝐁𝓁

1 ).

The first stage is a block lower-triangular preconditioner

𝐁𝓁
1 ∶=

[
𝐵𝓁
11 0

𝐵𝓁
22𝐴

𝓁
12𝐵

𝓁
11 𝐵𝓁

22

]
,

where 𝐵𝓁
11 is an AMG preconditioner [39,40] for 𝐴𝓁11, and 𝐵𝓁

22 is the 𝓁1-Jacobi smoother [41] for 𝐴𝓁22. The second stage is an ILU(1) preconditioner 
for the monolithic system 𝐀𝓁 . That is, 𝐁𝓁

2 ∶= 𝐼𝐿𝑈 (1)(𝐀𝓁).

4. Numerical examples

In this section, we consider three challenging test cases to demonstrate the performance of the FAS-based nonlinear multigrid algorithm. The 
test cases are selected to illustrate the applicability of the method to realistic reservoir simulation problems, as well as its robustness with respect to 
specific numerical challenges often encountered in subsurface flow and transport applications. In Section 4.1, we use layer 85 of the SPE10 test case 
[42] to demonstrate the behavior of the scheme for a highly heterogeneous geological model. We also consider two distinct sets of fluid parameters 
to show that the nonlinear algorithm is robust in different mobility regimes and can handle the propagation of sharp saturation fronts in the domain. 
In Section 4.2, we use the Egg model [43] to illustrate that FAS achieves excellent performance for a wide range of relative permeability parameters 
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Table 1

Parameter values used for the numerical examples. For the SPE10 test, we consider a case with a favorable end-point 
mobility ratio, and a case with an unfavorable end-point mobility ratio (see the definition in Section 4.1). For the three 
test cases, the times are reported in total pore volume injected (PVI), which is the ratio of the injected wetting-phase 
volume over the total pore volume of the reservoir.

Symbol Parameter Units SPE10 layer 85

(favorable)

SPE10 layer 85

(unfavorable)

Egg SAIGUP

𝑠0 Initial wetting-phase saturation [-] 0 0 0 0

𝜇𝑤 Wetting-phase viscosity [Pa.s] 10−3 10−3 10−3 10−3

𝜇𝑛𝑤 Non-wetting phase viscosity [Pa.s] 2.0 × 10−4 5.0 × 10−3 5.0 × 10−3 5.0 × 10−3

𝛾 Relative permeability exponent [-] 2 2 2, 3, or 4 2

𝜆𝛼 Phase mobility (𝛼 ∈ {𝑤,𝑛𝑤}) [Pa−1.s−1] 𝑠𝛾𝛼∕𝜇𝛼 𝑠𝛾𝛼∕𝜇𝛼 𝑠𝛾𝛼∕𝜇𝛼 𝑠𝛾𝛼∕𝜇𝛼
𝑛𝐼 Number of injectors [-] 1 1 8 5

𝑛𝑃 Number of producers [-] 4 4 4 5

𝑞𝐼𝑤 Wetting-phase injection rate [m3.s−1] 1.8 × 10−4 6.1 × 10−5 10−3 10−1

𝑝𝑏ℎ Bottomhole pressure [Pa] 106 106 106 106

Δ𝑡0 Initial time step [PVI] 5.3 × 10−4 1.8 × 10−4 9.1 × 10−5 4.2 × 10−5

𝜈 Time step increase factor [-] 2, 4, or 8 2, 4, or 8 2 2

𝑇𝑓 Final time [PVI] 2.7 × 10−1 9.0 × 10−2 4.6 × 10−2 2.1 × 10−2

Table 2

Problem sizes in the numerical examples.

SPE10

layer 85

Egg

(refined)

SAIGUP

(refined)| | 12,321 148,424 629,760|| 25,355 431,092 1,912,471

Number of unknowns 37,676 579,516 2,542,231

controlling the nonlinearity in the problem. Section 4.3 highlights the ability of the method to handle the high geometric complexity inherent in 
corner-point grids using the SAIGUP model [44]. The parameters employed in the simulations and the problem sizes can be found in Tables 1 and 
2, respectively.

Even though the fine-scale meshes used in the three test cases are structured, coarse cell aggregates are generated using METIS [31] without 
relying on any intrinsic structure. Before calling METIS, we remove the cells that are connected to the wells from the cell-connectivity graph (see 
Remark 6). The coarsening factor 𝛽 reported is computed using the average aggregate size on each level. To make the test cases challenging, we use 
an aggressive time stepping strategy in which the time step size is multiplied by a factor 𝜈 > 1 at every step:

Δ𝑡𝑚 = 𝜈Δ𝑡𝑚−1, 𝑚 ≥ 1. (42)

The corresponding Courant-Friedrichs-Lewy (CFL) numbers are computed using the standard formula [45]. Nonlinear convergence is achieved when 
the normalized residual drops below 10−6. The maximum number of nonlinear iterations is set to 10 on the coarsest level, and to 1 on all other levels. 
We found empirically that performing at most 10 iterations on the coarsest level is typically enough to obtain a good approximation to the coarse 
solution, without negatively affecting the overall FAS convergence. To enhance nonlinear convergence, we force the saturations to remain in [0,1] 
after each fine-level FAS update (referred to as local saturation chopping, see [4]). After the coarse-level FAS updates, we do not use local saturation 
chopping and instead we extend the mobility functions with constant values outside [0,1]. The FAS results are compared to those obtained with 
single-level Newton with local saturation chopping.

The discrete problems are generated using our own implementation based on MFEM [46] of the finite-volume scheme described in Section 2.1. 
The multilevel spectral coarsening is performed with smoothG [47], and the visualization is generated with GLVis [48].

4.1. SPE10 layer 85

We first consider layer 85 of the SPE10 model [42] to assess the performance of FAS on highly heterogeneous permeability and porosity fields. 
Following standard practice, the cells with a pore volume smaller than a threshold of 0.5 m3 are treated as inactive and are removed from the mesh. 
The wells are placed according to the specifications of the original test case, with an injector at the center and a producer in each corner of the 
domain. The well Peaceman indices are computed with MRST [49]. The propagation of sharp saturation fronts is a well-documented challenge for 
multilevel solution algorithms applied to multiphase flows [50,51]. To illustrate the robustness of FAS for various flow regimes, we consider two 
sets of fluid parameters (see Table 1), named using the classical petroleum engineering terminology:

• Favorable end-point mobility ratio: the non-wetting phase viscosity is set to 𝜇𝑛𝑤 = 2 × 10−4 Pa.s. The resulting end-point mobility ratio of 
𝜆(1)∕𝜆(0) = 5 leads to a flow regime characterized by the propagation of sharp, piston-like saturation fronts.

• Unfavorable end-point mobility ratio: the non-wetting phase viscosity is set to 𝜇𝑛𝑤 = 5 ×10−3 Pa.s. This choice yields an end-point mobility ratio 
of 𝜆(1)∕𝜆(0) = 0.2, producing a flow regime characterized by the propagation of smeared fronts with small-scale saturation fingers.

To obtain similar CFL numbers with the two sets of parameters, we use two different injection rates (see Table 1). The final saturation maps for the 
two scenarios are presented in Fig. 5. To show that FAS can handle very large time step sizes, we multiply the time step size by 𝜈 ∈ {2, 4, 8} at the 
end of each step, starting with a time step corresponding to a CFL number of approximately 4 and 20 for the favorable and unfavorable end-point 
mobility ratio cases, respectively. The simulation involves nine, five, and four time steps for 𝜈 = 2, 4, and 8, respectively. These aggressive time 
stepping strategies, combined with quadratic phase mobilities, produce an increasingly difficult test case for the nonlinear solvers. Although the 
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Fig. 5. Final wetting-phase saturation maps in layer 85 of the SPE10 test case.

Fig. 6. CFL numbers [-] as a function of simulation time [PVI] for the three time stepping strategies in the SPE10 test case (layer 85). As 𝜈 increases, the time 
stepping strategy becomes more aggressive (see Eq. (42)).

Fig. 7. Number of nonlinear iterations per time step as a function of CFL number [-] for the favorable end-point mobility ratio in the SPE10 test case (layer 85).

resulting CFL numbers may seem very large toward the end of the simulation (see Fig. 6), our goal is to check that FAS converges quickly regardless 
of the time step size. With such a method, the time stepping strategy can then be decided only based on accuracy considerations–i.e. solely focused 
on limiting temporal truncation errors, rather than improving nonlinear convergence.

In Figs. 7 and 8, we compare the number of nonlinear iterations per step required by FAS and single-level Newton. FAS is configured with three 
levels and a coarsening factor 𝛽 = 16. We observe that as the time step becomes larger, with CFL numbers larger than 20, the number of nonlinear 
iterations per step required by single-level Newton increases drastically for both the favorable and unfavorable end-point mobility ratios. Using the 
most aggressive time stepping strategy (𝜈 = 8), single-level Newton needs 139 iterations and 124 iterations to reach convergence for the last time 
step in the favorable and unfavorable cases, respectively. However, with FAS, the nonlinear behavior is more stable throughout the simulation. It 
only exhibits a moderate increase in the number of nonlinear iterations for the challenging favorable end-point mobility ratio case performed with 
𝜈 = 8, reaching 13 iterations for the last time step. In the other configurations, the number of FAS iterations remains less than 8 for all time steps.
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Fig. 8. Number of nonlinear iterations per time step as a function of CFL number [-] for the unfavorable end-point mobility ratio in the SPE10 test case (layer 85).

Fig. 9. Step solution time [s] as a function of CFL number [-] for the favorable end-point mobility ratio in the SPE10 test case (layer 85).

Fig. 10. Step solution time [s] as a function of CFL number [-] for the unfavorable end-point mobility ratio in the SPE10 test case (layer 85).

In Figs. 9 and 10, we consider the solution time per step for the two solution algorithms. We note that for CFL numbers smaller than 20, the 
solution time per step of FAS and single-level Newton is similar. However, for CFL numbers larger than 20, the increase in nonlinear iterations 
observed in Figs. 7-8 for single-level Newton produces a sharp rise in solution time per step. This is not the case for FAS, whose robust nonlinear 
behavior for large CFL numbers limits the increase in solution time per step. As a result, FAS yields a significant reduction in the solution time per 
step compared to single-level Newton for these large time steps. The last time step of the simulation performed with 𝜈 = 8 provides a good illustration 
of the superior behavior of the multigrid algorithm, since FAS is 6.7 times and 12.0 times faster than single-level Newton for the favorable and 
unfavorable cases, respectively.

Fig. 11 summarizes the performance comparison between the two nonlinear solvers by showing the cumulative solution time as a function of 
simulation time. Thanks to its robustness for large time steps—corresponding to large CFL numbers—FAS yields a significant reduction in the total 
solution time compared to single-level Newton for all values of 𝜈. This conclusion holds for the two flow regimes considered in our study.
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Fig. 11. Cumulative solution time [s] as a function of simulation time [PVI] for FAS and single-level Newton in the SPE10 test case (layer 85).

Fig. 12. Final wetting-phase saturation field for the refined Egg (a) and SAIGUP (b) using quartic (𝛾 = 4) and quadratic (𝛾 = 2) relative permeabilities, respectively.

Table 3

Solution time, 𝑇sol [s], and average number of nonlinear iterations per time 
step (𝑛it) for the refined Egg model. FAS is based on a three-level hierarchy 
and a coarsening factor of 𝛽 = 32.

Solver 𝛾 = 2 𝛾 = 3 𝛾 = 4

𝑇sol 𝑛it 𝑇sol 𝑛it 𝑇sol 𝑛it

Single-level Newton 1,753 15.11 1,878 16.44 1,928 17.44

FAS 995 4.44 1,249 5.67 1,406 6.44

Remark 8. In the numerical examples, convergence results of the nonlinear solvers against very large time step sizes are included. Such large 
step sizes are not common in practice because they lead to large truncation error in the time domain and often non-convergence of the nonlinear 
solver. The demonstrated robustness of FAS against time step size suggests that the user can choose the step size mainly by the consideration of 
discretization error of the numerical approximation.

4.2. The Egg model

The topological and geological properties used in this section are derived from the Egg model [43]. The simulations are performed on a refined 
mesh consisting of 148,424 active cells generated with a 2 × 2 × 2 regular refinement of the original Egg model mesh consisting of 18,553 active 
cells (see Table 2). To increase the heterogeneity of the model, we rescale the permeability field and impose a ratio of 2 × 105 between the largest 
and smallest permeability values in each direction. The porosity field is homogeneous with 𝜙 = 0.2. To evaluate the robustness of FAS when the 
strength of the nonlinearity increases, we consider three relative permeability exponents 𝛾 ∈ {2, 3, 4} in the analytical expression defining the phase 
mobility functions (see Table 1). We select an unfavorable mobility ratio of 0.2, which produces a flow regime characterized by smeared saturation 
fronts. The wells are placed using the specifications of [43], but we only keep one perforation per well, chosen as the perforation with the largest 
Peaceman index computed by MRST for each well. We use the time stepping method of Eq. (42), with 𝜈 = 2. The final wetting-phase saturation map 
is presented in Fig. 12a.

We use a three-level FAS with a coarsening factor 𝛽 = 32 for the refined mesh. The nonlinear behavior and solve time per step for FAS and 
single-level Newton on the refined mesh are documented in Figs. 13 and 14. The results are in agreement with those of the previous section. As the 
time step size increases, FAS only exhibits a limited increase in the number of iterations, while the nonlinear behavior obtained with single-level 
Newton deteriorates quickly. For large CFL numbers, FAS achieves a large reduction in both nonlinear iteration counts and solving time for all 
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Fig. 13. Number of nonlinear iterations per time step as a function of CFL number [-] in the refined Egg test case.

Fig. 14. Step solution time [s] as a function of CFL number [-] in the refined Egg test case.

Fig. 15. Hierarchical aggregation of the SAIGUP model by METIS.

Table 4

Solution time, 𝑇sol [s], and average number of nonlinear it-
erations per time step (𝑛it) for the refined SAIGUP model. 
FAS relies on a coarsening factor 𝛽 = 32.

Newton FAS

𝑛levels = 2 𝑛levels = 3 𝑛levels = 4

𝑛it 12.89 4.00 4.22 4.22

𝑇sol 8,849 6,270 5,370 5,478

values of 𝛾 tested. Table 3 summarizes our observations. Compared with single-level Newton, FAS reduces the total solving time by respectively 
43%, 33%, and 27% for 𝛾 = 2, 3, and 4.

4.3. The SAIGUP model

This numerical example is based on the SAIGUP model [44]. It aims at demonstrating that FAS can handle the geometric complexity of realistic 
corner-point meshes widely used in industrial reservoir simulation studies. In this example, we use a regularly refined version of the original mesh 
(consisting of 78,710 cells). The refined mesh has a total of 629,760 cells. The heterogeneous permeability and porosity fields are those of the 
original model. The well placement is the same as in the original test case with only one perforation per well, computed by MRST and selected as in 
Section 4.2. We use the set of fluid properties yielding an unfavorable mobility ratio equal to 0.2. We refer the reader to Table 1 for the complete 
list of parameters used in this test case. The final wetting-phase saturation field is presented in Fig. 12b.
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Fig. 16. Number of nonlinear iterations per time step and step solution time [s] as a function of CFL number for the refined SAIGUP model. FAS relies on a coarsening 
factor 𝛽 = 32.

We use this large test case to study the impact of the number of levels on the nonlinear behavior and total solution of FAS. We consider up to 
three coarse levels, illustrated in Fig. 15, with a coarsening factor 𝛽 = 32. The results are compared with the performance of single-level Newton for 
each time step in Fig. 16 and for the full simulation in Table 4. We observe that for the three configurations considered in the table, FAS exhibits a 
smaller solution time than single-level Newton. When we increase the number of levels from two to three, we note that the FAS nonlinear behavior 
slightly deteriorates, but that the FAS solution time decreases as work is shifted to less expensive computations on coarser levels. In the most efficient 
multilevel configuration, the three-level FAS achieves a reduction in solution time by 39% compared to single-level Newton.

Remark 9. In order for FAS to have fast convergence, it is important for coarse levels to have good approximations to the fine level problem. Since 
the problems in our numerical examples (with high contrast heterogeneous coefficients) do not exhibit high regularity, excessive coarsening will 
eventually result in a poor approximation. In the refined SAIGUP example, the coarsest level of the 4-level FAS contains only 30 aggregates, which 
is a far worse resolution than the original problem (about 630,000 elements). The coarsest level in this case does not help to further improve the 
overall convergence of FAS.

5. Concluding remarks

A nonlinear multigrid solver for two-phase flow and transport problem in a mixed fractional-flow formulation is developed. In this formulation, 
the primary unknowns are the total flux, pressure, and wetting-phase saturation. The coarse space for flux is the lowest order coarse space used in 
[25], while the coarse spaces for pressure and saturation are piecewise constant functions. With this choice of coarse spaces, the coarse problems 
can be assembled with a complexity proportional to the number of cells and faces on the coarse levels, which is crucial to arithmetic scalability. 
Our numerical results show that the proposed multigrid solver exhibits a more robust nonlinear behavior than the standard single-level Newton and 
reduces the step solution time, especially for large CFL numbers. This is an encouraging step to reduce the computational cost of practical large-scale 
reservoir simulation studies, and ensure that the time step size can be chosen based on accuracy considerations only.

Although the discussion in the current paper is based on TPFA, we remark that the proposed multigrid solver is also applicable if mimetic finite 
difference or mixed finite element methods are used in the discretization of (1). The resulting discrete problems will have a similar structure except 
that 𝑀(𝐬) is no longer a diagonal matrix, cf. [27, Chapter 6]. Moreover, a natural extension of the proposed solver is to use higher-order coarse 
spaces from [25], which will be explored in future work.

Buoyancy and capillarity have been ignored in this work, but are important for field applications [52,53]. To extend our algorithm to these 
additional driving forces of the flow, the fractional flow formulation detailed in (1) will be modified with the addition of saturation-dependent 
buoyancy and capillary terms in the Darcy equation and in the flux term of the wetting-phase volume conservation equation. The corresponding 
discretized terms will be added to system (8), which will be solved in a fully implicit, fully coupled fashion as in the present article.

The addition of buoyancy and capillarity will not require changing the coarsening methodology employed in the FAS algorithm. The solution 
strategy on the coarse levels will also remain unchanged. However, the upwinding used in the coarsening of the nonlinear operator 𝑇𝑚,𝓁 appearing 
in the wetting-phase conservation equation will be modified significantly to handle counter-current flow (i.e., phases flowing in opposite directions 
at a given face) caused by buoyancy and capillary forces. Since counter-current flow is often the cause of nonlinear convergence difficulties, we 
anticipate that the design of a robust upwinding scheme across levels will be a key element to extend the excellent multigrid convergence properties 
demonstrated in the present paper to the presence of strong buoyancy and capillarity.
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Appendix A. The Jacobian matrix in Newton iterations

Here, we provide the details of the formation of the Jacobian matrix in (37). For 𝐫𝑚,𝓁𝜎 , since the nonlinear component 𝑀(𝐬) has the same 
structure as in [25], 𝜕𝐫

𝑚,𝓁
𝜎

𝜕𝝈
and 𝜕𝐫

𝑚,𝓁
𝜎

𝜕𝐬 can be formed using the approach given in Section 3.3.2 of [25]. Next, to find out the partial derivatives of 
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𝐫𝑚,𝓁𝜎 (𝝈, 𝐬) = 𝑇𝑚,𝓁(𝝈, 𝐬) − 𝐡𝑚,𝓁 , we can exploit the structure of 𝑇𝑚,𝓁(𝝈, 𝐬) given in (34). Note that 𝑇𝑚,𝓁(𝝈, 𝐬) is not differentiable due to the upwind flux. 
Therefore, we consider a slightly different operator 𝑇𝑚,𝓁,𝑘 where the upwind direction is determined by the flux solution 𝝈𝓁,𝑘−1 from the previous 
Newton iteration:

𝑇𝑚,𝓁,𝑘(𝝈, 𝐬) ∶= (Δ𝑡𝑚)−1𝑊 𝓁𝐬+𝐷𝓁𝐝𝐢𝐚𝐠 (𝝈)𝑈𝓁(𝝈𝓁,𝑘−1)𝑓𝑤(𝐬). (A.1)

It is easy to see that

𝜕𝐫𝑚,𝓁𝑠
𝜕𝐬

|||||(𝝈,𝐬)=(𝝈𝓁,𝑘−1 ,𝐬𝓁,𝑘−1) ≈ 𝜕𝑇
𝑚,𝓁,𝑘

𝜕𝐬
||||(𝝈,𝐬)=(𝝈𝓁,𝑘−1 ,𝐬𝓁,𝑘−1) = (Δ𝑡𝑚)−1𝑊 𝓁 +𝐷𝓁𝐝𝐢𝐚𝐠

(
𝝈𝓁,𝑘−1)𝑈𝓁(𝝈𝓁,𝑘−1)

𝑑
(
𝑓𝑤(𝐬)

)
𝑑𝐬

|||||𝐬=𝐬𝓁,𝑘−1 . (A.2)

To obtain 𝜕𝐫
𝑚,𝓁
𝑠

𝜕𝝈
, we first note that 𝑇𝑚,𝓁,𝑘 in (A.1) can be rearranged to be

𝑇𝑚,𝓁,𝑘(𝝈, 𝐬) = (Δ𝑡𝑚)−1𝑊 𝓁𝐬+𝐷𝓁𝐝𝐢𝐚𝐠
(
𝑈𝓁(𝝈𝓁,𝑘−1)𝑓𝑤(𝐬)

)
𝝈. (A.3)

Therefore,

𝜕𝐫𝑚,𝓁𝑠
𝜕𝝈

|||||(𝝈,𝐬)=(𝝈𝓁,𝑘−1 ,𝐬𝓁,𝑘−1) ≈ 𝜕𝑇
𝑚,𝓁,𝑘

𝜕𝝈

||||(𝝈,𝐬)=(𝝈𝓁,𝑘−1 ,𝐬𝓁,𝑘−1) =𝐷𝓁𝐝𝐢𝐚𝐠
(
𝑈𝓁(𝝈𝓁,𝑘−1)𝑓𝑤(𝐬𝓁,𝑘−1)

)
. (A.4)
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