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1 EXECUTIVE SUMMARY 

Planners and decision makers have increasingly voiced a need for network-wide 
estimates of bicycling activity. Such volume estimates have for decades informed motor 
vehicle planning and analysis, but have only recently become feasible for non-motorized 
travel modes. To date, the bulk of our information on bicycling activity has come from 
national and regional household travel surveys or observed counts of cyclists – either 
short-duration manual or longer-term automated counts – in a limited set of locations. 
Based on these datasets, models must be developed to assess network-wide 
conditions. Direct demand models and regional travel demand models have been 
developed, but in practice such models that include bicycling at a useful level of detail 
remain extremely rare. Recently, new sources of bicycling activity data have emerged. 
These derive primarily from GPS-based smartphone apps (e.g., Strava Metro Data), 
GPS-enabled devices which provide location (e.g., StreetLight) and GPS-enabled public 
bicycle sharing systems. Strava Metro Data (hereafter referred to as just Strava) is a 
mode-specified dataset, in which the user identifies a specific trip and mode of travel, 
while StreetLight is a mode-unspecified dataset, in which a user has not specified a 
mode and may not be aware trips are being tracked. These emerging data sources 
have potential advantages as a complement to traditional count data, and have even 
been proposed as replacements for such data since they are collected continuously and 
for larger portions of local bicycle networks. However, the representativeness of these 
new data sources has been questioned, and their suitability for producing bicycle 
volume estimates has yet to be rigorously explored. Evidence has been mixed on their 
ability to represent the full spectrum of cycling activity, and about their accuracy and 
reliability. To date, studies have been confined almost entirely to single areas and data 
sources, often with limited comparison data from reliable counts. Most have used only 
relatively weak assessments of validity and accuracy, such as linear correlation 
coefficients. Data fusion and other advanced modeling techniques have shown promise 
in other areas of transportation to get more value out of disparate data sources. There 
appears to be similar potential with bicycle activity, given the increasing range of data 
available. 
 
This research developed a method for evaluating and integrating emerging sources 
(Strava, StreetLight, and bikeshare) of bicycle activity data with conventional demand 
data (permanent counts, short-duration counts) and methods using traditional (Poisson) 
and advanced machine learning techniques. First, a literature review was conducted, 
along with cataloging and evaluating available third-party data sources and existing 
applications. Next, six cities (Boulder, Charlotte, Dallas, Portland, Bend, and Eugene) 
that represented a variety of contexts (urban, suburban) and geographical diversity 
were selected. Of these, Boulder, Charlotte and Dallas constituted the basic sites, 
where one year of data (2019) was used for modeling. Portland, Bend, and Eugene in 
Oregon were considered enhanced sites, where three years of data (2017-2019) were 
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used for model estimation. At each of these locations, counts (minimum 24 hours 
duration), Strava, StreetLight, and bikeshare data were obtained, extracted and 
processed. In addition to these count and volume data, other data sources utilized in the 
modeling efforts include transportation network and other built environment data and 
sociodemographic variables (termed “static” variables in this report), and weather-
related data. Using these data, Poisson and Random Forest models were estimated. 
The model estimation process was designed to allow for comparison of the relative 
accuracy and value added by different data sources and modeling techniques. The 
scripts developed for the data processing and model estimation will be openly available 
in GitHub (https://gitlab.com/joebroach/bike-data-fusion) to help others evaluate, 
process, and apply emerging data sources for network-wide bicycle volume estimation. 
 
We developed a range of models to better understand the likely feasibility and accuracy 
of predicting bicycle counts on a network. Three sets of models were specified – All City 
Pooled, Oregon Pooled and city-specific models. This allowed us to benefit from a 
larger sample size and range of contexts while also considering the benefit of region- or 
city-specific models. We also considered the transferability of models across time and 
location, as well as the potential for more flexible machine learning modeling 
techniques. Across all the modeling streams, the crowdsourced data (Strava, 
StreetLight), bikeshare, and static location variables were added systematically to test 
their impacts on predicting annual average daily bicycle traffic (AADBT) . Two sets of 
models – count models and advanced models using machine learning were developed. 
All models (count and machine learning) were developed using 10-fold cross-validation 
with five repeats. Count model specifications were developed by drawing theoretically 
likely explanatory variables from the dataset, and examining estimated coefficients for 
expected sign and statistical significance. Three different machine learning algorithms– 
Classification and Regression Tree, Random Forest, and XGboost –were tested to 
compare their capacity of AADBT estimations. Additionally, the models’ 
hyperparameters were tuned using Hyper-opt TPE (Tree-structured Parzen Estimator 
Approach) algorithms. 
 
We separately modeled sites meeting a standard definition of continuous, permanent 
counts (at least 10 months and every day of the week captured for every month). The 
primary motivation for separately modeling sites with 10-plus months of valid count data 
was to rigorously assess the contribution of each of our data sources. These sites did 
not require factor group matching and expansion, and served as our closest measure to 
ground truth cycling activity. Static variables representing the count location context 
were estimated as a baseline reflecting typical direct demand modeling practice. In 
general, the three available data sources (static, Strava, and StreetLight; bikeshare data 
were not available outside of the Oregon cities) appeared to be complementary to one 
another; that is, adding any two data sources together tended to outperform each data 
source on its own. In the All City Pooled model, the combination of all three variable 
types was clearly the best-performing model by most measures. While the All City 
Pooled model fits the data relatively well, as shown by the high pseudo-R^2 value 
(>0.8), prediction success varied considerably by volume. Low-volume sites proved 
challenging, with the best-performing model still demonstrating considerable prediction 
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error (>100% MAPE, mean absolute percent error), while higher-volume sites (150 
AADBT or more) had much lower error rates of around 30% MAPE. Prediction at low-
volume sites is also made more challenging by the lack of variety in count locations. 
Where cycling volumes are low, permanent counts tend to be conducted only at off-
street locations. The Dallas-only model, unsurprisingly, displayed generally better model 
fit and prediction performance than the All City Pooled model using all cities’ data. In 
Dallas, Strava and StreetLight were particularly complementary since most sites were 
primarily used for recreational cycling, with Strava performing better at mid- to high-
volume spots, while StreetLight was a better option at low-volume locations. Keeping in 
mind the limited samples, these results are interesting and mostly in keeping with 
expectations that each source is providing unique and valuable information about 
bicycling activity. While the best-fitting model still included all three sets of variables 
(static, Strava, and StreetLight), a model combining just Strava and StreetLight data 
performed about as well in terms of predictive performance. In terms of MAPE, 
expected performance was better than in the All City Pooled model, with best MAPE 
less than 20% at mid- and high-volume sites, and low-volume MAPE as low as 55%.  
 
For 2019, All City Pooled and Oregon Pooled models with the full count dataset are, for 
the most part, consistent with the full-year PC pooled model results: combinations of 
data sources outperform single sources, and the best-fitting models combine all three. 
An exception is the Oregon Pooled model, where adding StreetLight to Strava data 
does not improve the model performance. In fact, StreetLight appears to provide the 
least information of the three, significantly underperforming Strava data whether 
individually or in combination with static variables. One possibility is that additional static 
variables are needed to adjust StreetLight, which is unique due to its need to impute 
travel mode. Variables capturing different aspects of the count location context might be 
needed to complement StreetLight. The general patterns also hold, for the most part, in 
city-specific models, with a couple of specific results worth noting. In Dallas, no 
combination of static variables was found that improved on the combination of Strava 
and StreetLight data. It was interesting to note that while StreetLight on its own 
performed poorly at Dallas locations, it significantly improved the Strava estimates 
there. In Bend, the smallest community in our study (2020 city population just under 
100,000) with a maximum site AADBT of 344 and mean AADBT of 78, performance 
was the worst among study sites by most measures, and different variable combinations 
had little impact on a model’s predictive ability. Bikeshare data showed potential on their 
own, but their modeling impact faded to insignificance with the inclusion of static, 
Strava, StreetLight variables. With systems expanding and more detailed data 
increasingly available, bikeshare should continue to be considered as a predictor. 
 
We also estimated the increase in error observed over all the 2019 pooled and city-
specific models when using Strava or StreetLight data without adjustment factors (either 
static variables, or the other third-party user data). For example, using Strava or 
StreetLight counts to predict AADBT without static adjustment variables increased 
expected prediction error by a factor of about 1.4 (i.e., a 40% increase in %RMSE). That 
rule of thumb figure of 1.4 times was only slightly lower for Strava plus StreetLight 
without static variables (1.3x). The case of Strava alone versus Strava plus StreetLight 
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was the only mixed result. In some cases, combining the two third-party user data 
sources greatly improved results versus using Strava only (Dallas, Boulder), while for 
the rest the addition of StreetLight only modestly improved or even reduced 
performance. 
  
Additional data from 2018 (all Oregon locations, Strava, and StreetLight) and 2017 
(Portland, no StreetLight) provided additional tests of the model and data’s stability and 
transferability over time and space. First, 2019 model specifications for Oregon Pooled 
and city-specific models were transferred to 2018 data, and parameters were 
reestimated. Second, 2019 models were used to predict 2018 data without reestimating 
parameters. With reestimation, the familiar pattern held, and the best-fitting models 
included all sets of variables, followed by models including both static contextual 
variables and Strava counts, and then the rest. Comparing error rates with the 
corresponding 2019 models resulted in performance within expectations (+/- <10 
%RMSE) despite the time shift and sample change. Without reestimation, however, 
results changed significantly. Error rates in general were higher, and the Strava plus 
static models were clearly preferred in most cases over the fully specified models. On 
average, reusing model estimates resulted in a 10-50% increase in the error rate across 
models.  
 
Machine learning algorithms have been used to understand how complex and flexible 
modeling forms could handle data variability and bias to provide a better prediction. This 
study used Random Forest regression to predict AADBT for All City Pooled, Oregon 
Pooled, and city-specific models (Portland and Eugene only) using various data and 
buffer fusion methods to evaluate the value of third-party user data for modeling bicycle 
activity. The results indicated that Strava and StreetLight played a supplementary role. 
When each model’s performance was broken down by volume bin, the best RMSE was 
14% and 8% for high- and medium-volume bins, respectively. The All City Pooled and 
Oregon Pooled models show similar medium-volume bin RMSEs, at 8-9%, while 
individual city-specific models show varying levels of error; for instance, Eugene and 
Portland show 11% and 19% of RMSE, respectively. For low volume, StreetLight alone 
overestimates AADBT; however, the full data fusion with static, Strava and StreetLight 
significantly improved the model performance. Even though the machine learning model 
is more computationally complex with respect to model development, the performance 
of the machine learning algorithm was comparable with the count models, perhaps due 
to limited data samples and variations within data. With more data collection capturing 
additional local contexts, machine learning is expected to improve model performance 
for a network-wide prediction. It is very difficult to identify the optimal number of sites or 
data collection duration that makes the machine learning model reliable and accurate 
since performance levels depend on the algorithm used and the complexity of data. One 
previous study (El Esawey, 2015) found that at least 1,950 data points are required to 
obtain 10%-15% MAPE  from neural network-based bicycle volume estimation models.  
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2 INTRODUCTION 

Planners and decision makers have increasingly voiced a need for network-wide 
estimates of bicycling activity. Such volume estimates have for decades informed 
planning and analysis for motorized travel modes, but have only recently become 
feasible for non-motorized travel modes. To date, the bulk of our information on 
bicycling activity has come from national and regional household travel surveys or 
observed counts of cyclists – either short-duration manual or longer-term automated 
counts – in a limited set of locations. Based on these datasets, models must be 
developed to assess network-wide conditions. Direct demand models and regional 
travel demand models have been developed, but in practice such models that include 
bicycling at a useful level of detail remain extremely rare. Recently, new sources of 
bicycling activity data have emerged. These derive primarily from GPS-based 
smartphone apps (e.g., Strava), GPS-enabled devices which provide location (e.g., 
StreetLight) and GPS-enabled public bicycle-sharing systems. These emerging data 
sources have potential advantages as a complement to traditional count data and have 
even been proposed as replacements for such data, since they are collected 
continuously and for larger portions of local bicycle networks. However, the 
representativeness of these new data sources has been questioned, and their suitability 
for producing bicycle volume estimates has yet to be rigorously explored. 
 
This research developed a method for evaluating and integrating emerging sources 
(Strava, StreetLight, and Bikeshare) of bicycle activity data with conventional demand 
data (permanent counts, short-duration counts) and methods using traditional (Poisson) 
and advanced machine learning techniques. First, a literature review was conducted, 
along with cataloging and evaluating available third-party data sources and existing 
applications. Next, six sites (Boulder, Charlotte, Dallas, Portland, Bend, and Eugene) 
that represented a variety of contexts (urban, suburban) and geographical diversity 
were selected. Of these, Boulder, Charlotte and Dallas constituted the basic sites, 
where one year of data (2019) was used for modeling. Portland, Bend, and Eugene in 
Oregon were considered enhanced sites, where three years of data (2017-2019) were 
used for model estimation. Demographic, network, count and emerging data were 
gathered for these sites. Using these data, Poisson and Random Forest models were 
estimated. The model estimation process was designed to allow for comparison of the 
relative accuracy and value added by different data sources and modeling techniques. 
The scripts developed for the data processing and model estimation will be openly 
available in GitHub (https://gitlab.com/joebroach/bike-data-fusion) to help others 
evaluate, process, and apply emerging data sources for network-wide bicycle volume 
estimation. A description of the scripts developed as well as the knowledge and 
technical skills recommended to apply the models is provided in Appendix 8.3. 
 
The remainder of the report is organized as follows. Chapter 3 contains a review of the 
relevant literature. A description of the data is presented in Chapter 4. Model 
formulation and results are described in Chapter 5, while a discussion and 
recommendations are presented in Chapter 6.  

https://gitlab.com/joebroach/bike-data-fusion
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3 LITERATURE REVIEW 

This chapter includes a detailed review of published literature to summarize the state of 
bicycle volume estimation using counters, emerging third-party applications, and 
methods that merge or fuse these approaches.  

3.1 BICYCLE COUNT HISTORY, STATUS, AND MOTIVATION 

As bicycling has increased in popularity nationwide in recent years, efforts to better 
measure riding activity, along with how to interpret available data and to assess the 
impacts of cycling, are developing along several tracks. Bicycle volumes (usually in the 
form of annual average  daily bicycle traffic, AADBT) are useful for measuring trends, 
prioritizing infrastructure investments, and as exposure/activity measures in safety, 
public health and other studies (Roll, 2018; Ryus et al., 2014). To date, observed counts 
of cyclists at limited sets of locations have continued to provide most of our information 
on bicycling activity at the facility level (Romanillos et al., 2016; Ryus et al., 2014). In 
addition to fixed-location counts, emerging sources – such as public bikeshare systems, 
smartphone apps like Strava and other sources –provide potentially useful data for 
estimating activity on each link of a network (Romanillos et al., 2016). This project 
proposes to demonstrate and rigorously evaluate their value for that purpose. As a first 
step, this document reviews the history and current state of the practice regarding 
bicycle counting and volume estimation, and also provides a scan of evaluations and 
applications of emerging data sources.  
 
FHWA’s Traffic Monitoring Guide (TMG) was first published in 1985; however, that 
edition did not cover non-motorized count data. The 2013 update to the TMG was the 
first edition to provide guidance on collecting non-motorized count data, including 
bicycle data (FHWA, 2013), while the 2016 TMG provided updates to the format 
(FHWA, 2016). In the period in between the publication of the 2001 TMG and 
subsequent updates, participation and interest in bicycling increased substantially. The 
percentage of commuters who bike nationwide increased from 0.4% in 2007 to 0.6% in 
2018, while those numbers in the 50 largest cities increased from 0.7% to 1.2% – an 
increase of around 70% (League of American Bicyclists, 2018). During this period, the 
facilities available increased as well. For example, between 2007 and 2010, the average 
reported miles of bicycle facilities per square mile increased from 1.2 to 1.6 (a 33% 
increase) across the largest 50 U.S. cities plus New Orleans (Steele and Altmaier, 
2010).  
 
The growing interest in bicycling and bicycle facilities prompted the need to better 
document and understand how people were using these facilities, whether to 
understand the impact of building bicycle facilities, trying to gauge potential demand for 
new facilities, or for other purposes. The National Bicycle & Pedestrian Documentation 
Project (NBPD) was launched in 2004 by Alta Planning + Design and the Institute of 
Transportation Engineers (ITE) Pedestrian and Bicycle Council, with the goal of creating 
a consistent count data collection model (O’Toole and Piper, 2016). The NBPD 
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encouraged agencies to collect manual short-duration bicycle and pedestrian count data 
following a consistent methodology and to submit it to a central repository. 
 
Following the inclusion of non-motorized count data in the TMG, FHWA produced 
several resources designed to provide guidance to state and local agencies on 
collecting bicycle and pedestrian count data. These include the Guidebook for 
Developing Pedestrian and Bicycle Performance Measures (Semler et al., 2016); 
Coding Nonmotorized Station Location Information in the 2016 Traffic Monitoring Guide 
Format (Laustsen et al., 2016); Exploring Pedestrian Counting Procedures (Nordback et 
al., 2016); and the Bicycle-Pedestrian Count Technology Pilot Project (Baas et al., 
2016). NCHRP Report 797: Guidebook on Pedestrian and Bicycle Volume Data 
Collection and its two associated web-only documents grew out of NCHRP Project 07-
19 (Ryus et al., 2016, 2014).  
 
Bicycle count data can be important for a number of planning purposes. A Pedestrian 
and Bicycle Information Center (PBIC) brief lists a number of such purposes, including 
measuring change over time, prioritizing projects, planning and designing future 
facilities, calibrating regional models, assessing and marketing commercial real estate, 
identifying and assessing the value of locations for advertising, safety performance 
studies, adjusting signal timing, conducting before-and-after studies, and more 
(Nordback et al., 2018). 

3.2 DATA QUALITY  

Data quality is critical to providing useful information to end users (Turner et al., 2019b). 
Poor data quality can limit the uses of the data. Nordback et al. (2016) suggest that 
different levels of data quality may be acceptable depending on the purpose for which 
the data are intended to be used. They suggest that for safety analysis the required 
data quality is high, while for sketch planning and project planning, low data quality may 
be acceptable (Nordback et al., 2016). To ensure good data quality, it is important to 
establish quality control checks for both equipment and data. 

3.3 EQUIPMENT 

FHWA’s Traffic Monitoring Guide outlines eight aspects of data quality – accuracy, 
completeness, validity, timeliness, coverage, accessibility, data usage and formats 
(FHWA, 2016). Prior to the data being collected, it is necessary to ensure that the 
counters are properly installed, and a regular and frequent maintenance program is 
established (Turner et al., 2019b). It is also imperative to recognize the sources of error 
and minimize their impacts if they do occur. The Traffic Monitoring Guide provides the 
following guidance for data quality (FHWA, 2016): 

● Ensure that the equipment is tested to meet required level of accuracy prior to 
installation; 

● Calibrate equipment periodically to ensure that it is functioning properly; 
● Validate data collected; 
● Conduct routine quality assurance tests; 
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● Analyze data collected quickly and provide data to end users, so that any errors 
that may have been missed previously can be identified in a timely manner; and 

● Install a feedback process to respond quickly to user feedback. 
 
For automated counters, equipment calibration and validation are critical to ensuring 
good data quality. The objective of the calibration process is to ensure that the 
equipment is functioning correctly, and a good process can identify both major and 
minor errors. Validation includes testing the counter both on the installation day and 
several days after installation (Ryus et al., 2014). TMG provides the following guidance 
with respect to calibration (FHWA, 2016): 

● Implement software tools that can help with automating the process; 
● Perform daily checks to ensure that the data are properly collected, processed 

and stored; 
● Determine validity of the data using monthly and yearly trends; 
● Conduct field calibration; 
● Validate the data from the automated counters using manual counts; and 
● Perform manual and electronic calibration of data and hardware annually. 

 
NCHRP 797 lists occlusion, environmental conditions, counter bypassing, and mixed-
traffic effects as potential sources of counter inaccuracy (Ryus et al., 2014). Occlusion 
occurs when multiple people pass a counter and one person can obscure others from 
the counter’s field of detection, leading to an erroneous count. Environmental conditions 
such as extreme hot or cold temperatures, precipitation for thermal sensors, and 
precipitation and lighting for optical sensors may affect accuracy; however, the report 
did not observe significant errors associated with these conditions with the technologies 
that were studied. Counter bypassing causes errors when users move outside of the 
detection zone. Mixed-traffic errors can occur when pedestrians and bicyclists use the 
same path, and one mode is mistaken for another. In addition to calibration and 
validation of the equipment, NCHRP 797 also suggests using bias compensation factors 
computed based on manual validation counts to correct any systematic under- or 
overcounting (Ryus et al., 2014). 
 

 Data 

Several methods have been proposed and recommended to detect suspect count data 
or to flag suspicious data for further scrutiny. Table 3-1, adapted from Nordback et al. 
(2016) and updated to reflect latest practices, summarizes common count error-
checking techniques.  
 
Turner and Lasley (2013) used the first and third quartiles of hourly counts per direction 
for weekdays and weekends to identify outliers in the data outside the interquartile 
range (IQR). 
 

IQR = 2.5 (Q3-Q1) + Q3 
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Where Q1 and Q3 are the first and third quartiles, respectively. They also recommend 
checking the data manually through visual inspection to identify any errors. Turner and 
Lasley (2013) also recommend technology-specific detailed diagnostics. 
 
As part of the Travel Monitoring Analysis System (TMAS) version 2.8, FHWA lists four 
types of flags that are used to check the data (FHWA, 2016) 

● Fatal – This is the most severe flag and indicates issues that prevent TMAS from 
reading the data. 

● Critical – This flag indicates that TMAS database can read the data but there are 
potential conflicts or data quality issues with the data. 

● Caution – This flag indicates that there are concerns with the data and although 
the data is allowed into the database, the data is flagged. 

● Warning – This is the least severe flag and indicates that the database could not 
perform a quality control check or that there was insufficient data.  

 
Turner et al. (2019b) recommend the following flags for non-motorized data: 

● Valid/Invalid – Count appears realistic and normal for the location. If the count 
appears invalid, flag it. 

● Inverted AM/PM – Flag if the ratio of 3:00 a.m. to 3:00 p.m. counts in a day is not 
less than 1. This rule could be violated at locations near entertainment districts. 

● Abnormal but Valid – This flag is used for counts that appear outside the normal 
range of values. These unusual counts may occur due to events, weather or 
disasters. 

 
Turner et al. (2019b) also list the common metadata errors which include data 
mislabeling, latitude/longitude errors, and erroneous entries. They also recommend 
visually inspecting the data. 
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Table 3-1 Common Non-motorized Count Data Validity Checks 

Source Upper Bound/Lower Bound Data Gaps Identical non-zeroes Consecutive zeros Directional 
split 

FHWA 
TMAS 

Flag if: 

- Total hourly count exceeds 4,000 

- Total daily count exceeds 50,000 or if total 
minimum count is less than 100 

- Difference between any zero interval and an 
adjacent interval is greater than 50 

- 3AM count is greater than 3 PM count 

- Variation in the monthly average daily traffic 
(MADT) estimated for the same month in the 
previous year is greater than 20%. 

Historical data: Average the daily totals for the 
previous six weeks (min. 2 weeks) for a given 
day of the week at a given location. Flag if 
variance is ±20%.  

Not addressed - Flag intervals when 
there are more than three 
identical adjacent non-
zero values 

-For any count interval, flag if 
there are more than 7 
consecutive zeros 

Not 
addressed 

CDOT Weekly check: Flag counts with any daily total 
higher than three times the previous year’s 
average daily traffic (ADT) 

Annual Check: Suspicious daily totals for each 
continuous count site are identified using the 
interquartile range formula: 

IQR= 2.5 (Q3-Q1) + Q3    (Q3 = Third quartile of 
quarterly data; Q1 = First quartile of quarterly 
data) 

Weekly Check: Count 
sites with missing data 
days and flag sites with 
> 5 days of missing 
data 

 Annual Check: A count 
is valid only if it has a 
full 24 hours of count 
data for each 24-hour 
period 

Not addressed Weekly check: During warm 
weather months, sites with 
more than two continuous 
days of hourly zero values 
flagged; this check is not 
applicable for cold-weather 
locations 

Annual check: Same as 
weekly check 

Weekly 
Check: Flag 
any count site 
exhibiting a 
direction split 
greater than 
70/30 

Annual 
Check: Same 
as weekly 
check 

MnDOT Data greater than two standard deviations above 
the mean flagged 

Web search to identify special events related to 
unexpected high counts 

Not addressed Not addressed Visual inspection after 
installation 

Check daily zero values in 
summer months 

 

NCDOT Data flagged if the upper bound exceeds 

IQR = Q3 + 3 (Q3 – Q1) 

Not addressed Not addressed Over three days of zero 
counts 

Splits 3 std. 
dev. > avg. 

BikePed 
Portal, PSU 

Flagged when hourly counts exceed 1000 (low-
volume sites), 2000 (medium-volume sites), 
4000 (high-volume sites) 

Not addressed Suspicious if: 

• 7+ consecutive non-zero 
values; 

Possibly suspicious at 12.5 
hours; suspicious at 25 

Not 
addressed 
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Source Upper Bound/Lower Bound Data Gaps Identical non-zeroes Consecutive zeros Directional 
split 

• 6+ consecutive non-zero 
values, volume >2; 

• 5+ consecutive non-zero 
values, volume >5; 

• 4+ consecutive non-zero 
values, volume >16; 

• 3+ consecutive non-zero 
values, volume >100 

hours 

Turner and 
Lasley 

Upper and lower bounds for expected counts in 
a given time period 

Interquartile range (IQR) = 2.5 (Q3-Q1) + Q3 

Comparisons with previous counts at a given 
location and other stations in the vicinity and 
comparison of directional counts at the same 
facility (less than 80% deviation between 
directions is recommended); 

Expected ratios of peak hour to daily volumes 

    

Turner et al 
2019b 

Flag the counts if the sum exceeds 5,000 of one 
day or 1,500 per hour. 

Flag the count if it lies outside the interquartile 
range. 

Adjacent Interval – If count is less than 100, flag 
if adjacent count is > 100 percent different; if 
count is > 100, flag if adjacent count is +/- 100 
percent different.  

Timestamp exists, but 
count data are missing. 

Flag the data if the same 
count value is repeated 
three or more times when 
15 or more counts are 
available at the finest 
level of detail. 

Flag the data when there are 
15 hours or sixty 15-minute 
periods of consecutive zero 
counts. If this error occurs for 
a short time period, consider 
if weather could be a factor. 
Also, this flag may not be 
applicable to low volume 
locations. 
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3.4 BICYCLE VOLUME ESTIMATION METHODS 

This section provides an overview of methods to expand short-duration counts at 
specific locations and methods used to estimate network-wide bicycle volumes. 
Typically, motorized and non-motorized counts are collected using a mixture of 
continuous and short-duration counts. While continuous counters provide temporal 
trends, they are expensive to install and maintain and, hence, are conducted in limited 
locations (Romanillos et al., 2016). Short-duration counts are less expensive than 
continuous counts and, therefore, are conducted at multiple locations on the network, 
thus providing spatial coverage. Ryus et al. (2014) estimated that 87% of bicycle count 
programs include short-duration, manual counts. Bicycle volume functions can be 
estimated from continuous counters using seasonal and other factors, which are used to 
extrapolate short-duration counts to annual average daily bicycle traffic (AADBT). This 
methodology has been adopted from motorized counting where it is commonly used for 
extrapolating short-duration motorized counts. A key difference between motorized and 
non-motorized counts is that variation is lower for motorized counts as compared to 
non-motorized counts. 
 
Despite advances in counting technology, cost and other considerations will continue to 
limit direct observation to small subsets of entire networks, as is the case for motorized 
traffic (Proulx and Pozdnukhov, 2017; Roll, 2018; Romanillos et al., 2016). Even with 
temporal expansion, stationary counters can tell us only about the bicycle traffic passing 
directly by them, and nothing about activity on the rest of the network. For these 
reasons, models developed from observed counts provide the most viable option for 
network-wide volume estimation. An extensive and well-documented range of methods 
is available for motorized volume estimation (Unnikrishnan et al., 2017). Comparable 
options for non-motorized traffic are less well-developed but have followed two primary 
approaches – bicycling submodels specified within larger travel demand models, and 
simpler, standalone direct demand models (Turner et al., 2017).  
 

 Extrapolating from short-duration counts to AADBT 

Several researchers have conducted studies and analyzed the errors resulting from the 
application of factors and grouping techniques to extrapolate short-duration counts to 
AADBT estimates. These studies have used different factors/models to extrapolate 
short-duration counts as shown below. 

● Day-of-Week, Month-of-Year Factors (19 factors): (El Esawey, 2018a, 2018b, 
2014; El Esawey et al., 2013; El Esawey and Mosa, 2015; Figliozzi et al., 2014; 
Hankey et al., 2014; Nordback et al., 2018, 2013; Nosal et al., 2014; Nordback et 
al., 2018). 

● Month-of-Year Factors (12 factors): (Nordback et al., 2019). 
● Day-of-Week-of-Month (84 factors): (Nordback et al., 2019; Nosal et al., 2014). 
● Day-of-Year (365 factors): (Beitel et al., 2017; Budowski et al., 2017; El Esawey, 

2016; Hankey et al., 2014; Nosal et al., 2014). 
● Weekend-Weekday: (El Esawey, 2018b; El Esawey et al., 2013; El Esawey and 

Mosa, 2015). 
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● Seasonal factors: (El Esawey, 2014). 
● K factors (Design factors): (Beitel et al., 2017; El Esawey and Mosa, 2015). 
● Statistical models: (Figliozzi et al., 2014; Nordback, 2012; Nosal et al., 2014).  

 
These studies have been summarized in Nordback et al. (2019). Average annual daily 
nonmotorized traffic (AADNT) estimation errors are minimized by using day-of-year 
rather than traditional factors (El Esawey, 2016; Hankey et al., 2014; Nosal et al., 2014) 
and by using monthly rather than seasonal factors (El Esawey, 2014; El Esawey and 
Mosa, 2015). Extrapolating AADNT from two-hour counts results in high error: “80% 
chance that the error will be within plus or minus 60%” (Johnstone et al., 2017). 
Collecting short-duration counts over a one-week period and during the summer as 
opposed to shorter counts or counts collected in other seasons also reduces AADBT 
estimation errors (El Esawey, 2016; Hankey et al., 2014; Nordback et al., 2013; Nosal et 
al., 2014).  
 
Other researchers have grouped sites based on similar characteristics and then created 
factors to extrapolate short-duration counts to AADBT estimates. Researchers have 
employed techniques such as visual inspection, cluster analysis, grouping by index and 
grouping by spatial variables to determine factor groups. Commonly used factor groups 
include commuter/utilitarian, recreational and a mixed group. At least 14 different factor 
groups have been identified in various studies and are listed in Nordback et al. 2019. 
Commonly used indices are the Weekend/Weekday Index (WWI) and the Average 
Morning/Midday Index (AMI), which are defined as follows (Miranda-Moreno et al., 
2013): 
 

WWI = Vwe/Vwd 
where: 

WWI = Weekend/Weekday Index 
Vwe=average weekend daily traffic 
Vwd=average weekday daily traffic 

 
and 

 
AMI = ∑ 𝑣𝑣ℎ9

7
∑ 𝑣𝑣ℎ13
11

 
where: 

AMI = Average Morning/Midday Index 
vh = Average weekday hourly count for hour (h) where hours are given as starting 

time of the hour (7:00 a.m., 8:00 a.m., 11:00 a.m. and noon). 
 
Recent research on AADNT estimation has provided further guidance on the best time 
of the day to count, for short-duration counts and the number of counters needed per 
factor group to reduce estimation errors. Nordback et al. (2018) found that error was 
lower for the commute factor group, bicycle-only counts, scenarios in which more peak 
hours are counted, and when more than one permanent counter is available to estimate 
adjustment factors. In another study, using continuous count data from six cities, 



 

21 
 

Nordback et al. (2019) found that four or more continuous counters per factor group 
reduced estimation errors for bicycle volumes. 
 
Another issue in AADNT estimation is how to assign short-duration count sites to 
groups to match up continuous counter groups with short-duration count sites for 
extrapolation purposes. The goal is to match short-duration sites with groups of 
continuous counters with the same travel pattern. Strategies for such matching include 
matching by geographic proximity (such as within the same city or neighborhood), using 
facility or land use as a proxy for travel pattern, or using the AMI and WWI indexes 
discussed above if sufficient data are available (Nordback et al., 2019). Using AMI 
requires short-duration counts in the morning and noon peak hours, and using WWI 
requires short-duration count data on at least one weekday and one weekend day. 
Johnstone et al. (2017) recommends at least eight hours of short-duration counts per 
site for such index-based grouping (Tuesday, Wednesday, or Thursday 7-9 a.m., 11 
a.m.-1 p.m., and 4-6 p.m.; Saturday 12-2 p.m.).  
 

 Travel demand models 

Travel demand models (TDMs) describe decisions to travel for activities, and typically 
model locations, modes, and routes. Models of this type have been utilized for modeling 
bicycle route choice (see, for example, Broach et al. (2012)) and mode choice (Broach 
and Dill, 2016). However, bicycle volumes along the network are determined in a 
network assignment phase, which to date has been done only experimentally at select 
agencies including Portland Metro, San Francisco County Transportation Authority, and 
the Metropolitan Transportation Commission in the San Francisco Bay Area. Proulx and 
Pozdnukhov (2017) tested both Strava and local and regional San Francisco-area TDM 
volume estimates in a model of observed count data. Beyond complexity, drawbacks of 
existing travel demand models for AADBT estimation include their typically large 
aggregation scale, exclusion of recreational trips, and lack of rigorous validation against 
observed counts.  
 
More recently, research has attempted to combine the strengths of the two techniques 
by using travel model-derived outputs as inputs to direct demand models (McDaniel et 
al., 2014; Proulx and Pozdnukhov, 2017). Each of these studies focused on prediction 
of peak bicycle travel only and did not attempt to expand to AADBT estimates. Proulx 
and Pozdnukhov (2017) reported RMSE (root mean squared error) for PM peak 
volumes (4-7 p.m. September weekdays) as low as 24 for the best predictive model, 
calculated using 10-fold cross-validation holdout samples. Strava data alone resulted in 
a best RMSE of 35. 
 

 Direct demand models 

Direct demand models typically are estimated by regressing observed counts on 
characteristics of the surrounding built environment and transportation service 
characteristics (Munira and Sener, 2017; Ortúzar and Willumsen, 2002). Relatively 
simple to estimate, direct demand models have shown potential for estimating both 
point location (Chen et al., 2017; Lindsey et al., 2018; Sanders et al., 2017) and 
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network-wide AADBT across a variety of locations (Hankey et al., 2017; Le et al., 2017; 
Lu et al., 2018). However, questions remain on which variables to include and how to 
measure them, as well as suitability for extrapolation across entire networks (Proulx and 
Pozdnukhov, 2017).  
 
Munira and Sener (2017) provide a recent review that identifies the following common 
factor groups for direct demand bicycle volume models: 
 

● Sociodemographic: income, race/ethnicity, education, percent students, age   
● Network measures: centrality, bridges, bicycle facility density (on-street, off-

street), major road density, number of lanes, curb-lane width, bike-lane width, 
intersection connectivity, parking entrances, slope 

● Land use: population density, employment density, commercial/retail density, 
industrial use, open space, low-density residential, institutional use, land use mix 

● Accessibility: jobs, bike trail entrances, transit stops, schools, distance from 
central business district  

● Temporal: weather, time of day 
 

3.5 EMERGING THIRD-PARTY BICYCLE USER DATA 

Bicycle use data from smartphone apps and other emerging sources, often referred to 
as crowdsourced data, promise potential improvements for existing models of AADBT. 
These new data sources can collect large datasets with broad coverage that potentially 
contain information missing from conventional sources such as trip types and locations 
missing from conventional sources. Mode-specified datasets such as Strava, in which 
the user identifies a specific trip and mode of travel, contrast with mode-unspecified 
datasets such as StreetLight, in which a user has not specified a mode and may not be 
aware trips are being tracked (Lee and Sener 2020; Harrison et al., 2020; Tsapakis et 
al., 2021). 
 
Several research studies have evaluated and applied bicycle user data over the past 
few years. Most peer-reviewed publications to date (Table 3-2) have reported on locales 
outside the U.S. Table 3-2 provides an overview of other studies and reports evaluating 
third-party data. Several state DOTs have recently purchased Strava data, resulting in a 
number of reports.  
 
All the studies in Table 3-2 and Table 3-3 use data derived from GPS-enabled 
smartphone apps, most notably Strava. Such data are collected by self-selected 
samples of users that likely vary systematically from the full population of cyclists. The 
resulting bias in samples also likely varies across locations and over time. Other 
potential sources of emerging user data may draw from more representative slices of 
bicycle users – for example, data drawn passively from a larger sample of smartphone 
users – but we were unable to identify any rigorous evaluation of such sources. 
 
Four major questions have emerged from research on user data to date: 
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1) To what extent do various user data sample demographics overlap with overall 
cyclist demographics?  

2) What are the sampling rates of user data relative to on-the-ground counts? And, 
how stable are these rates across location types and over time? 

3) What is the correlation between user data-derived counts and observed counts of 
cyclists, and how much of the variation from location to location can we explain? 

4) How much overlap exists between different user data sources, and how much 
between user data and other bicycle activity data (e.g., bikeshare and demand 
estimates)?
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Table 3-2 Studies Evaluating Third-party User Data: Peer-reviewed Journal Articles   

Study Location 
(Country) 

User data Demographic 
(vs. actual) 

Count correspondence1 

(count data) 
Boss et al. (2018) Ottawa (CA) Strava 78% male (68%) 

Noted age 25-44 over-
represented 

(n=11 PC, single month, two years); Strava/counts=1-30%; 
r=0.76-0.96 

Conrow et al. 
(2018) 

Sydney (AU) Strava 77% male 
23% 35-44 
39% commuting 

(n=122 1-day SC manual);  
r=0.79 overall;  
r=0.17-0.57 (low/med/high count locations); Noted less 
agreement where few bike lanes and higher socioeconomic status 

Griffin & Jiao 
(2015) 

Austin, TX Cycle Tracks (4 
mo.); Strava (1 
wk.) 

CT: 70% male 
S: >75% male 
Noted Strava skewed age 35-54 

(n=5 PC);  
Strava/counts=3-9%  
Noted site ranking order disagreements & 3 sites with r<0 

Heesch & Langdon 
(2016) 

Queensland 
(AU) 

Strava 82% male (72%) 
35% 35-44 (28%) 

(PC, n not provided);  
Strava/counts=3-7% 
Noted consistent patterns over 3-month period 

Hochmair et al. 
(2019) 

Miami, FL Strava N/A (n=32 SC 3-day video counts, 3-month period); r=0.55 weekday 
Noted Strava/counts ratio higher on streets than trails 

Jestico et al. (2016) Victoria, BC 
(CA) 

Strava 77% male (n=18 SC manual, four 1-day); 2% SR; r^2=0.58 peak; 
Noted 45% of sites had error > 30% 

Livingston et al. 
(2021) 

Glasgow 
(UK) 

Strava N/A (n=38 SC count sites) 
r=0.781 hourly;  
r=0.861 AM-peak /PM-peak /off-peak  
r=0.882 daily 
r=0.887 two-day totals 

Musakwa & Selala 
(2016) 

Johannesbur
g (ZA) 

Strava 80% recreational N/A 

Sanders et al. 
(2017) 

Seattle, WA Strava 83% male 
62% 25-44 

(n=46 PC + SC, not distinguished, 2 years); Strava/counts=~2% 

Strauss et al. 
(2015) 

Montreal 
(CA) 

Mon RésoVélo 
(phone app) 

N/A (n=600 8-hr manual counts over 2 years, n=435 additional 
manual, and n=30 PC);  
r^2=0.48-0.76 (regression adjusting for bicycle facility type and 
surrounding context) 

Sun et al. (2017a) Glasgow 
(UK) 

Strava N/A r=0.83 

Sun et al. (2017b) Glasgow 
(UK) 

Strava Noted 35-44 largest age group N/A 

Table abbreviations: 
r=simple correlation coefficient (assumed Pearson, unless noted) 
r^2=multiple correlation coefficient (assumed ordinary least squares regression, unless noted) 
PC = permanent location count 
SC = short-duration count 
Strava/count = Strava to total count sampling ratio, the ratio of crowdsourced counts to observed counts  
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Table 3-3 Studies Evaluating Third-party User Data: Reports, White Papers, and Other Documents 
Study Location User data Demographic 

(vs. actual) 
Count correspondence1 

CDM (2018) Brisbane (AU) Strava N/A (n=27 PC);  
Strava/counts=~5-20% 
Noted wide variation in r across sites 

CDOT (2018) Colorado Strava N/A (n=16 PC);  
Strava/counts=1-30% 
r^2=0.8-0.99 

Chen (2017) Portland, OR Strava N/A (1 PC, single bridge location); 
Strava/counts=1.4%; 
Noted SR stable over seasons; Strava significant In estimated 
Safety Performance Function 

PacTrans/Wang et al. 
(2016) 

Portland, OR Strava N/A Noted Strava counts significant in Safety Performance Function 

Proulx & 
Pozdnukhov (2017) 

San Francisco, CA Strava N/A (n=25 PC, n=69 SC manual counts, 4-7p Sep weekdays only) 
Noted Strava most associated w/ counts (25 perm., 69 short 
dur.) compared with other data sources 
RMSE=24, best fit, cross-validation hold out, including Strava, 
bikeshare, and regional travel demand model inputs 

ODOT/Roll (2018) Eugene, OR Strava N/A (n=52 annualized SC);  
Strava/counts=~1%; 
Noted Strava counts significantly improved volume estimates 

Strava (2014) Seattle, WA Strava N/A (n=2 PC, 11 months, two bridge locations);  
Strava/counts=3-5%;  
r^2 >0.9 

StreetLight (2018) San Francisco, CA StreetLight N/A Strava/counts=6.4% mean;  
R^2=0.69-0.78 (higher weekdays);  
Noted Streetlight data seemed to underestimate weekday AM 
peak; also compared trip stats with other travel surveys 

TTI/Dadashova et al. 
(2018) 

Texas Strava N/A (n=100 PC); 
Strava/counts=0-63% (mean 5%);  
MAPE=29% (Strava adjusted by street class and income level);  
Noted lower error where Strava/counts=5-15% 

TTI/Turner et al. 
(2019) 

Austin, TX; Houston, 
TX (Strava only) 

Strava;  
Ride Report 

S: 80-82% male 
S: 67-68% <44 
years old 

(n=12 PC);  
Strava/counts=3-19% 
Strava r=0.59-0.81; RR: 0.03-0.3%; RR: r=0.61 

Watkins et al. (2016) Atlanta, GA Strava;  
Cycle Atlanta 
(phone app) 

S: 84% male 
S: 31% age 35-44 
S: 29% commute 
CA: 76% male 
CA: 60% commute 

(78 manual, AM+PM peak, 1-day) 
CA: ~3% SR 
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Table abbreviations: 
r=simple correlation coefficient (assumed Pearson, unless noted) 
r^2=multiple correlation coefficient (assumed ordinary least squares regression, unless noted) 
PC = permanent location count 
SC = short-duration count 
Strava/counts = Strava to total count sampling ratio, the ratio of crowdsourced counts to observed counts  
N/A = Not Available or Not Provided 
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 Demographic overlap 

The issue of representation is a primary question for agencies interested in using third-
party bicycle user data. Unfortunately, user data demographics are generally limited to 
age, gender, and type of cycling activity (e.g., commuting vs. recreational riding). 
Information on key equity-related variables such as income and race/ethnicity is 
generally lacking. Further complicating attempts to measure representativeness is a 
lack of comparison data on the composition of cyclists in a city or region. Still, research 
to date suggests that Strava users, the most common source of user data, are more 
likely to be male, age 35-44, and to log a greater share of recreational trips than the 
general cyclist population. For reference, recent national estimates of adult cyclist 
gender split range from 51% to 60% male for all cyclists and 73% male for bicycle 
commuters (2017 American Community Survey; Dill, 2015; PeopleForBikes, 2015; 
Schroeder and Wilbur, 2013). Similar estimates for share in the 35-44 age group range 
from 18% to 21% (PeopleForBikes, 2015; Schroeder and Wilbur, 2013). 
 
Garber et al. (2019) compared characteristics of survey respondents who used 
smartphone apps to track bicycle rides with those who did not use such apps. They 
found that app users were more likely to ride more often, take more leisure trips, and 
self-classify as stronger riders (e.g., “strong and fearless”). 
 

 Correspondence with observed counts 

Several studies have compared Strava and other user data with observed short- and 
long-duration bicycle counts (Table 3-2). While there are similarities across comparison 
methodologies, there are also distinct differences driven by data availability, application, 
and researcher preferences. Most evaluations have been made comparing annual 
(sometimes annualized) or monthly observed versus third-party counts at the segment 
or intersection level. One study compared count sources at hourly and daily AM/PM 
peak intervals (Jestico et al., 2016).  
 
“Ground truth” count data are often limited, and many studies have relied on a mix of 
permanent and short-duration counts or even short-duration counts alone. While most 
correlation examples summarize results across all count locations, a few have 
segmented by time of day (CDM Research, 2018; Jestico et al., 2016); 
weekday/weekend (CDM Research, 2018; CDOT, 2018); or even by individual count 
location (CDOT, 2018). 
 
App users typically make up only a small fraction of cyclists at a specific location. Strava 
data, on average, has usually represented somewhere between 2% to 10% of all 
bicycle traffic at evaluated locations. Researchers have also noted that sampling ratios 
can vary significantly even within the same region (Conrow et al., 2018; Griffin and Jiao, 
2015; Heesch and Langdon, 2016; Hochmair et al., 2019; Jestico et al., 2016). 
Sampling rates appear to vary systematically by context, in terms of both bicycle facility 
types and surrounding context. For example, Hochmair et al. (2019) noted sampling 
rates more than six times higher on streets relative to trails in Miami, and Conrow et al. 
(2018) found Strava sampling rates higher in areas with few bike lanes and in areas of 
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higher socioeconomic status. Dadashova et al. (2018) also reported the need to adjust 
Strava sampling rates by road class and surrounding households with higher incomes.  
 
A majority of research to date has reported simple linear correlations (r) or coefficients 
of determination (R^2). A problem with simple correlations as an evaluation tool is their 
sensitivity to outliers. It is easy to come up with scenarios in which error rates are 
equivalent but linear correlations are wildly different.1 It is important to consider 
prediction error rates along with correlations. Measurement issues aside, most evidence 
points to strong or linear correlation between third-party data and observed counts. 
Controlling for facility and surrounding contextual factors, third-party (mainly Strava) 
data has consistently been found to significantly improve bicycle volume and safety 
performance models (Dadashova et al., 2018; Proulx and Pozdnukhov, 2017; Roll, 
2018; Sanders et al., 2017; Strauss et al., 2015; Wang et al., 2016). 
 
Despite consistent findings of association, a few details are worth noting: 

● Correlation does not necessarily track sampling ratio; for example, in Austin, 
despite much lower sampling rates (SRs), Ride Report (r=0.61) had a slightly 
stronger association with observed counts than Strava (0.59) (Turner et al., 
2019a). 

● There is evidence that Strava correlation varies by bicycling volume; for example, 
Conrow et al. (2018) reported an overall r=0.79, but when segmenting into low-
/medium-/high-count locations, correlations fell to 0.55/0.17/0.57, respectively. 

● High overall correlation may mask poor site-specific performance such as large 
site ranking errors or locations with negative correlation (Griffin and Jiao, 2015). 

● Areas of low correlation may be spatially correlated (Conrow et al., 2018).  
 
Several studies combined or “fused” data with third-party counts to model observed 
bicycle volumes. Dadashova et al. (2018) added segment functional classifications and 
adjacent numbers of upper-income households (>$200k/yr.). Jestico et al. (2016) 
included segment slope, speed limit, on-street parking presence, and a seasonal 
adjustment along with Strava counts. Proulx and Pozdnukhov (2017) used TDM bicycle 
volume estimates and bikeshare counts alongside Strava data. Roll (2018) combined 
Strava counts with segment functional class, bicycle facility types, local accessibility and 
design measures, and a measure of network centrality. Sanders et al. (2017) included 
the number of bike lanes and proximity to the university alongside Strava count data. 
Others have included third-party data directly in safety performance functions (Strauss 
et al., 2015; Wang et al., 2016).  
 

 Third-party user data applications 

A handful of studies applied third-party user data, either directly or as part of a statistical 
model, to estimate area or network volumes. Most commonly, these estimates were 

                                                 
1 As an example: consider two locations A & B each with three count sites like (observed: third-party) {A: (100: 10, 
150: 15, 1000: 50), B: (100:10, 150: 15, 200: 10)}. A & B have equivalent error rates per site and overall 
(MAPE=92%), but A has a correlation coefficient r=0.92 and B r=0.00. Site A “benefits” from the outlying high-volume 
location dominating the correlation calculation. 
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used in safety analyses to estimate injury risk and safety performance functions (Chen, 
2017; Saad et al., 2019; Sanders et al., 2017; Strauss et al., 2015; Wang et al., 2016). 
Other studies used third-party user data to better understand cyclist exposure to air 
pollution (Sun et al., 2017b); correlates of recreational cycling demand (Sun et al., 
2017a); and to assess changes in bicycle ridership patterns (Boss et al., 2018; Heesch 
and Langdon, 2016). 

3.6 RELATED DATA FUSION METHODS 

During the last decades, an unprecedented volume of data for both non-motorized and 
motorized traffic in transportation has become available through a wide range of 
advanced technology and conventional data collection methods. Passive detection 
systems such as inductive loop or vision-based detectors, which estimate traffic 
volumes, occupancy, and vehicle speed only for the limited sections where they are 
installed, represent the most commonly used data collection method for both non-
motorized and motorized traffic. The increased implementation of Intelligent 
Transportation Systems (ITS) technologies has led to the use of advanced sensors 
such as ultrasonic and LIDAR to obtain traffic counts or flows at point locations (Srour 
and Newton, 2006).  
 
For large spatial coverage for both motorized and non-motorized traffic, Bluetooth, WiFi, 
and GPS remain the most available advanced technologies. GPS provides additional 
information such as route choice, origin-destination (OD) and travel time beyond other 
passive detection systems. Even though the GPS monitors and collects vehicle (or 
biker) path flow, this information often can only be captured from a small portion of the 
population, which may result in biased estimates in flow or travel time. Bluetooth has 
similar capabilities and limitations in collecting information because the vehicles 
connected to Bluetooth devices can be treated as a sample of the overall population. 
Vehicle-identification sensors such as the Automatic Vehicle Identification system 
identify and track individual vehicle sensor locations. However, sampling bias remains 
the main shortcoming of these sources because only a small fraction of vehicles 
equipped with electronic tags supply travel information (Dion and Rakha, 2006). Studies 
often obtain detailed trip information or travel behavior using a travel survey such as 
National Household Travel Survey (NHTS). The most recent NHTS data (2017) includes 
information regarding travel behavior and socioeconomic data where individuals or 
households reported their personal, vehicle, and trip information via survey 
questionnaires. Table 3-4 summarizes the aforementioned data sources and their 
advantages and limitations. 
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Table 3-4 Traffic Data Sources 

Type Source (examples) Advantage Limitation 

Survey National Household 
Travel Survey 

National level survey 
(Vehicle inventory and 
use survey (VIUS)) 

State level intercept 
survey 

Detailed information on OD, 
vehicle category, weight, and 
Vehicle Miles Traveled 
Extensive data collection 
throughout the US or by State 

Obtain partial data from 
sampled population 

Inaccurate responses and 
potentially biased survey 
sampling 

Limited spatial and temporal 
data collection span 

Cross-sectional data 

Passive 
sensor 
technology 

Inductive Loop Detector  

Vision-based (camera) 

Obtain population data 

Time-series data 

Potential in obtaining vehicle 
flow and type data with an 
additional modeling effort 

Obtain point observation 

Measurement error from sensor 
calibration and sensitivity 
issues 

Active 
tracking 
sensor 
technology 

Automatic Vehicle 
Identification (AVI) 

Electronic tolling 

GPS and Bluetooth 

 

Time-series data 

Flow data with detailed 
vehicle class information 
without additional modeling 

Typically short duration 
observation for sampled 
population 

Costly and privacy concerns 

Active remote 
sensing 

Radar and LIDAR  Detecting presence and 
volume with higher accuracy 

Security concerns 

Obtain point observation 

 
Data fusion combines multiple data sources prior to or during model development. Data 
fusion increases the accuracy and robustness of a model because different data 
sources complement or supplement each other to minimize the level of uncertainty or 
ambiguity from the data source and to enhance spatial and temporal coverage. 
Previous transportation studies have used data fusion techniques to estimate travel time 
or speed for motorized traffic (Bachmann et al., 2013; El Faouzi et al., 2011; Han, 
2012). Inductive loops and GPS represent the most common data fusion sources for 
speed and time estimation (Qing-Jie Kong et al., 2009) since the loops have been 
heavily implemented nationwide and GPS provides accurate location-based information 
for an individual vehicle. Other studies used automatic plate number recognition (Han, 
2012); inputs from toll collection such as entry-exit times at toll gates (El Faouzi et al., 
2009); vision-based systems such as video cameras (Anand et al., 2011); and floating 
car data (Ambühl and Menendez, 2016; Cipriani et al., 2012) for traffic state estimation.  
 
Safety research is one of the emerging data fusion applications as vehicles or network 
systems are being equipped with advanced sensors. Data from conventional sources 
such as loops are fused with GPS, vision-based (camera) and wave-based sensors 
(ultrasonic, radar, and LIDAR) for applications of route guidance or driver warning 
systems (El Faouzi et al., 2011; Zhang et al., 2011).  
 
Freight research benefits significantly from data fusion techniques because of the 
proprietary nature and limited availability of freight data sources. Researchers fused 
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point sensor data such as from loops and weigh-in-motion (WIM) sensors with a mobile 
source of GPS, and survey data (FAF and VIUS) for various applications such as 
classifying truck configuration (Hernandez et al., 2016) or tracking flow movement 
(Hyun et al., 2017). These fusion techniques capture spatially and temporally varying 
freight movements and improve model transferability.  
 
For non-motorized traffic, two studies used data fusion to develop a pedestrian 
detection algorithm. Garcia et al. (2013) used data from GPS and laser detectors, while 
Premebida and Nunes (2013) used LIDAR data with a camera system. Finally, for 
public transit travel, Kusakabe and Asakura (2014) developed a fusion technique using 
travel survey and smart card data to estimate continuous long-term changes in trip 
behaviors and demonstrate accurate estimation of trip purposes using the trip records in 
the smart card. Sener et al. (2021) employed count data, static data, bikeshare, Strava 
and StreetLight to model AADBT in Austin, TX, and found that a fusion of these sources 
can be helpful to estimate volumes when adequate actual count data are available, and 
noted that “performance of fusion firmly depends on the fusion method coupled with the 
data and situation characteristics” (p. 14).   
 
Various data fusion techniques have previously been developed, such as spatial 
regression (Hernandez and Hyun, 2017); Kalman filtering (Chu et al., 2005); Bayesian 
method (El Faouzi, 2006); artificial neural network (He et al., 2016); and multiple 
classifiers using machine learning (Hernandez et al., 2016). A modeling approach with 
Kalman filtering and an artificial neural network has higher proven accuracy in model 
validation, especially when estimating short-term traffic flow because the model 
effectively captures varying traffic conditions (Anand et al., 2011; Kumar et al., 2013). 
The spatial regression method considers the spatial relationship between traffic count 
sites such that two distant count sites along the same corridor have a stronger 
relationship than closer sites located on different network corridors. Hernandez and 
Hyun (2017) developed a spatial matrix between count sites using GPS trajectories and 
estimated the truck weight distribution at the count sites where weight information was 
not available. Machine learning techniques such as neural network and support vector 
may perform data fusion for various input sources. Hernandez et al. (2016) fused loop 
and WIM to classify truck body configuration. They introduced a multiple (five) classifier 
in machine learning to improve the classification performance and transferability of the 
models. Data fusion also proves useful to fill missing data by integrating similar data 
sources with an imputation approach. Zhu et al. (2018) integrated GPS and Commercial 
Vehicle Survey using hot-deck and k-nearest neighbor imputation methods to impute 
missing survey data using GPS variables.  
 
However, some researchers have identified potential complications and limitations with 
data fusion. El Faouzi et al. (2011) showed that the accuracy or robustness of data 
fusion depends on the data sources themselves as well as the analysis techniques that 
capture the unique characteristics of data sources and applications. Nantes et al. (2016) 
compared the characteristics of different data sources including Bluetooth, GPS data, 
and Eulerian loop sensors, and highlighted that understanding the heterogeneous 
nature of a data source represents an important step prior to the data fusion. Bachmann 
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et al. (2012) noted that many of the popular techniques being used for data fusion have 
limitations. For example, Kalman filtering may only work when the information about the 
underlying process is known, while machine learning techniques may require large input 
datasets. 

3.7 LITERATURE REVIEW SUMMARY 

This review surveyed the past, present, and emerging future of bicycle counting and 
volume estimation options. There has been tremendous growth in the number of count 
programs and supporting resources, including numerous established methodologies for 
both count data collection and quality control. While automated counters have become 
more common, the vast majority of bike count programs rely on manual counts for some 
or all of their network coverage, and even an extensive program leaves most of the 
network uncounted. Direct demand models, and, in a select few locations, regional 
bicycle travel demand models, have shown some promise for network-wide volume 
estimates, but serious questions remain about the proper form and the validity of those 
estimates. 
 
Also apparent is the surge in interest from both agencies and researchers around 
emerging GPS and mobile phone data. These have the advantage of wide network 
coverage and continuous collection. Evidence has been mixed on their ability to 
represent the full spectrum of cycling activity, and about their accuracy and reliability. To 
date, studies have been confined almost entirely to single areas and data sources, often 
with limited comparison data from reliable counts. Most have used only relatively simple 
techniques to assess validity and to model volumes using these new data. 
 
Data fusion and other advanced modeling techniques have shown promise in other 
areas of transportation to get more value out of disparate data sources. There appears 
to be similar potential with bicycle activity, given the increasing range of data available. 
This study explores how the various traditional and emerging sources might 
complement one another and provide a more complete picture of bicycling activity for 
applications such as safety, demand shifts, and equity analysis. The next chapter 
describes the data used for this study.
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4 DATA 

This chapter first describes the criteria developed for selecting sites, including an 
overview of a survey that was conducted to identify sites, and explains the selection 
process. Next, it describes the process for gathering and processing count, Strava, 
StreetLight, bikeshare, and static (demographic and network) data (Figure 4-1). We 
automated and standardized data collection to make the process as general and 
portable as possible. All data elements, aside from the StreetLight and (at the time) 
Strava data, were drawn from public sources, although accessing count data in some 
cases required local agency requests or assistance. 
 

 
Figure 4-1 Data Process Overview (PC = Permanent Counts, SC = Short-duration 
Count, QA/QC = Quality Assurance/Quality Control, AADBT = Annual Average Daily 
Bicycle Traffic) 

4.1 SITE SELECTION  

The goal of the site selection process was to select sites that were geographically 
dispersed to provide national coverage and cover a range of contexts (large/small 
urban, trails/on-street). The sites also needed to have a rich array of data to fuse, 
including broad continuous counter coverage temporally and spatially, third-party user 
data (Strava, StreetLight), and bikeshare data.  
 
To identify count sites, a survey questionnaire was created and sent out to various 
email listservs (APBP, ITE). The full survey questionnaire is provided in the appendix. 
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The questionnaire sought to identify the location of bicycle count sites and the types of 
counts conducted by agencies to count bicycles. Respondents were given a choice to 
either enter the information pertaining to the count sites in the survey or upload a file 
that contained the details. In the survey questionnaire, the respondents were asked to 
select the types of counts and counters that their agency used for counting bicycles 
(permanent automated, short-duration automated, or manual counts). For the 
permanent automated sites, the information requested included the number of counters, 
and, for each counter, the location (street/path, latitude/longitude); year of installation; 
make and model; mode being counted (bicycles only or bicycles and pedestrians 
combined); and directionality, if known. Specifically, for the short-duration automated 
counters, respondents were also asked how long the counters stayed in one location 
and how the locations were identified and selected. For all counts that were conducted, 
respondents were asked if their agencies conducted any data quality checks on count 
data and were asked to further describe these checks. Lastly, respondents were asked 
about the other non-count-related data that they have access to and/or use (Strava, 
StreetLight, Ride Report2, Bikeshare, CycleTracks, Other) and to report on how they 
typically shared this count information. 
 
We received 24 unique responses, including responses from 10 cities, six MPOs, three 
counties, two state DOTs, two universities, and one non-profit/advocacy organization. 
Among the 24 respondents, 22 entered information about the type of bike count data 
their organization collects, with 13 noting that they collect data from permanent 
automated bicycle counters, 13 collecting data from short-term duration bicycle 
counters, and 13 having manual bicycle count programs (many collected more than one 
type). Three also indicated that they had access to Strava data, while four had access 
to StreetLight data (although, in one case, the StreetLight data was noted as being 
exclusively for motor vehicle traffic). 
 
Using the information obtained from the survey and known anecdotal information about 
count locations, a spreadsheet inventory was created. First, regions having 10 or more 
permanent count sites and at least two years of count data were identified. Next, for 
each of these regions, the location of all known continuous count sites was noted, 
whether they were located on a street or on a trail location, along with the extent of data 
availability (start and end dates) and known gaps. Finally, based on criteria described 
previously (range of contexts, geographical spread, availability of count and other data 
sources) six regions were chosen as shown in Figure 4-2 below. 
 

                                                 
2 At the time when this survey was conducted, the RideReport app that allowed users to 
enter their bicycle trip data was still operational; however, it has since been 
discontinued. 
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Figure 4-2 Selected Sites (Note: Each dot in a region represents one permanent 
counter) 

Of these, Boulder, Dallas, and Charlotte formed our basic sites, where one year of data 
(2019) was used for modeling. The Oregon locations, Portland, Bend and Eugene. 
constituted our enhanced locations where three years of data (2017-2019) was used for 
modeling. 

4.2 COUNT DATA 

Bicycle count data archives were accessed with the assistance of local agencies. Both 
permanent (PC) and short-duration counts (SCs) were collected. PC data was collected 
via Eco-Counter’s Eco-Visio web platform or directly via their API, and only counters 
able to distinguish bikes from pedestrians were considered. PC locations were further 
divided into “full-year” (>=10 months valid data) and “less than full-year” (<10 months 
valid data). The less than full-year PC locations were treated as short-duration sites. 
Full-year PC locations were used in an initial set of models and to create factors to 
expand l and SC counts into AADBT estimates. SC data were considered if they 
included a minimum of 24 consecutive hours counted.  Overall, 603 count locations 
(permanent and short-duration) were available across all sites and all years, with the 
most count locations available in Portland and Eugene (Table 4-1). As expected, the 
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number of available count sites was highest in 2019 (as counts for 2017-2018 were not 
included for Boulder, Charlotte and Dallas). 
 
Table 4-1 Total Usable Count Locations by Year for Six Study Regions 

Region 2017 2018 2019 Grand Total 

Bend 0 60 65 125 

Boulder n.c. n.c. 41 41 

Charlotte n.c. n.c. 16 16 

Dallas n.c. n.c. 32 32 

Eugene 0 86 78 164 

Portland 104 33 88 225 

Grand Total 104 179 320 603 

n.c. = not considered 
 

 Permanent count locations 

Hourly count data were obtained for (Eco-Counter) permanent count sites in each of the 
six locations. Boulder and Charlotte data were accessed via local Eco-Visio web portals. 
Dallas PC data were obtained via the Texas Bicycle and Pedestrian Count Exchange 
(BP|CX). Data for the Oregon regions were obtained from ODOT, which has developed 
R scripts to automate retrieval using the Eco-Counter API. For each permanent count 
site, a QA/QC process for filtering out the erroneous count data was created. The 
following are the steps undertaken in the QA/QC process: 

● Obtain hourly counts at each count site. 
● Remove consecutive zero counts longer than one week. 
● Flag and manually inspect if any of the following conditions are met. 

o Consecutive zeros lasting at least 48 hours 
o Non-zero repeated counts lasting at least six hours 
o Daily volume is greater than 15,000 
o Hourly volume is greater than 1,500 
o Site-specific relative ADB checks are met 

▪ ADB < 100, flag as possibly suspicious when count is >400 and 
suspicious when hourly count is >1,000 

▪ ADB 100 to 500, flag as possibly suspicious when count is >1,000 
and suspicious when hourly count is >2,000 

▪ ADB >500, flag as possibly suspicious when count is >4,000 and 
suspicious when hourly count is >8,000 

● Consider daily counts valid if at least 22 valid hours are available. 
● Consider months valid if at least one valid daily count for each day of the week 

(Sun-Sat). 
● Consider counters “full-year” for AADBT calculation if they include 10 or more 

valid months of data.  
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Table 4-2 reports availability by region and year (for the Oregon regions; 2017-2018 
data for the other regions were not considered due to unavailability of Strava data) after 
cleaning the raw permanent count data. Note that Dallas and Charlotte data had already 
been run through external QC processes, and we were unable to obtain raw data from 
those locations. We still ran the data through our own checks but very few additional 
data points were flagged or removed. Even at our enhanced sites, only Portland had 
permanent count data available for all three years (2017-2019), while Bend and Eugene 
did not have permanent count programs in place for 2017. Overall counter availability 
was disappointing, averaging less than 70% valid data over the period, and this 
excludes known counters that recorded no valid data over a given year. 
 
Table 4-2 Usable Permanent Count Availability After Cleaning 

 2017 2018 2019 Total – All Years 

Region Full-year 
counters 

(>=10 
mos.) 

Total 
counters 

(any data) 

Full-year 
counters 

(>=10 
mos.) 

Total 
counters 

(any data) 

Full-year 
counters 

(>=10 
mos.) 

Total 
counters 

(any data) 

Full-year 
counters 

(>=10 
mos.) 

Total 
counters 

(any data) 

Bend 0 0 3 5 3 5 6 10 

Boulder n.c. n.c. n.c. n.c. 8 11 8 11 

Charlotte n.c. n.c. n.c. n.c. 9 13 9 13 

Dallas n.c. n.c. n.c. n.c. 24 32 24 32 

Eugene 0 0 11 15 13 15 24 31 

Portland 8 13 6 10 4 14 18 37 

Total 8 13 20 30 61 89 89 134 

n.c. = not considered 
 

 Short-duration counts 

Non-permanent, SCs were included if they were collected for a period greater than 24 
hours. Except for Bend, where SCs were collected from mobile Eco-Counter devices 
along with the PC data, SC data had to be acquired individually from local jurisdictions 
in each region. The Dallas region had no SC program during 2019. SC data were not 
collected in Bend and Eugene for 2017 because there were no full-year PC sites 
available for factoring. Raw data were processed to a consistent format, but in some 
cases hourly counts were not available. In Boulder, we were only able to obtain daily 
counts, and factor groups could not be established. In Portland, we could only acquire 
hourly counts averaged over the days of collection (typically one to three days), and so 
we weighted each hour by the number of days collected. Table 4-3 shows the 
distribution of 471 short-duration count sites across regions and years. The short-
duration data for Dallas was not available, hence, it is not included in the table. Across 
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all years and locations, the duration of the majority of these counts was between one 
week and less than one month, with most of these locations in Bend and Eugene. Bend 
has a number of automated counters that are part of its mobile counts program, and are 
rotated among different locations to gather short-duration counts. Portland had a large 
number of counts whose duration was greater than 25 hours and less than one week. In 
Boulder, all counts in 2019 were 24-hour counts.   
 
Table 4-3 Short-Duration Count Locations and Availability 

Region 24hr 25hr to 
<1wk 

1wk to 
<1mo 

1mo to 
<3mo 

3mo to <1yr Grand 
Total 

2017       

Portland 6 85 0 0 0 91 

2018       

Bend 0 0 43 9 3 55 

Eugene 0 3 67 1 1 72 

Portland 3 20 0 0 0 23 

2019       

Bend 0 3 48 8 1 60 

Boulder 30 0 0 0 0 30 

Charlotte 0 0 3 0 0 3 

Eugene 0 9 53 1 0 63 

Portland 0 75 0 0 0 75 

Grand Total 39 195 214 18 5 471 

Note: Short-duration locations include both intentional short-term counts and continuous permanent count sites that 
recorded less than 10 months of complete data in a given calendar year. 
 

 Factoring approaches 

Where “full-year” PCs had missing days, we calculated AADBT using the method 
detailed in the FHWA report Assessing Roadway Traffic Count Duration and Frequency 
Impacts on Annual Average Daily Traffic (AADT) Estimation (Krile et al., 2014). First, a 
monthly average daily traffic (MADT) is computed for each day of the week for each 
month using the following formula: 
 

 
Where: 
 V = total traffic volume for ith occurrence of the jth day of the week within the 
mth month, for year y. 
 n = the count of the jth day of the week within the mth month, for which traffic 
volume is available (a number from 1 to 5) 
 
The resulting MADTs are averaged to compute AADT with this formula: 
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Where m is the month of the year, y” 
 
 
To expand the less than full-year PC and SC data to AADBT, we used a factoring 
approach based on travel pattern factor groups. Three factor groups - commute, mixed 
and non-commute - were identified based on travel patterns using the AMI index and a 
modified WWI index (Johnstone et al., 2017). WWI was modified to be based on total 
daily travel instead of a single peak hour.  
 
The travel pattern identification approach used in this research is derived from the 
WSDOT report Collecting Network-wide Bicycle and Pedestrian Data: A Guidebook for 
When and Where to Count (Johnstone et al., 2017), except weekend ratio based on 
total daily travel instead of peak single hour, at the recommendation of the authors of 
that report. For less than full-year PC and all SC sites, the observed counts were 
expanded to impute AADBT using the following methodology: 
 
First, full-year PC sites were assigned to factor groups using the approach suggested 
by Johnstone et al. (2017), as shown in Table 4-4.  
 
Table 4-4 Classification of Bicycle Travel Patterns 

Travel Pattern WWI  AMI 
Commute less than 1.0 and greater than 1.5 

Mixed or Multipurpose less than 1.0 and less than 1.5 

-or- 1.0 - 1.8 and greater than 1.5 

Non-Commute or Noon 
Activity 

1.0 - 1.8 and  less than 1.5 

-or- greater than 1.8 and any 

 
Next, generate day-of-year (DOY, n=365) factors and day-of-week-of-month (DOW, 
n=84) factors. Then, assign partial PC and SC sites to factor groups. Where SC site 
lacks weekend count data, assign based on AMI factor only. If only AMI is available, 
assign hourly groups by average AMI metric: 
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• Recreation (Hourly Noon Activity): Average AMI <=0.7 

• Mixed (Hourly Multipurpose): 0.7< (Average AMI)<=1.4 

• Commute (Hourly Commute): Average AMI>1.4 

If no full-year PC sites are available for a factor group OR data are insufficient to assign 
factor group, use average of DOY or DOW factors across all available factor groups. 
 
Table 4-5 shows the factor groups for the PC sites, where 1 is commute, 2 is mixed and 
3 is non-commute. The majority of Portland sites are commute sites, whereas Dallas 
sites are predominantly non-commute. The travel patterns at Bend, Boulder and 
Eugene sites are mostly mixed. 
 
Table 4-5 Number of Permanent Count Sites Per Factor Group 

Year 2017 2018 2019 Grand Total 

Factor Group 1 2 3 1 2 3 1 2 3  

Bend 0 0 0 0 5 0 1 3 1 10 

Boulder n.c. n.c. n.c. n.c. n.c. n.c. 1 8 2 11 

Charlotte n.c. n.c. n.c. n.c. n.c. n.c. 1 2 10 13 

Dallas n.c. n.c. n.c. n.c. n.c. n.c. 0 2 30 32 

Eugene 0 0 0 1 9 5 5 7 3 30 

Portland 6 3 4 6 3 1 6 4 3 36 

Grand Total 6 3 4 7 17 6 14 26 49 132 

n.c = not considered 
Factor Groups: 1=commute; 2=mixed; 3=non-commute 
Note: Numbers include all permanent counter installation sites, even if the counter did not provide a full year of data 
 
Table 4-6 shows the factor groups for the SC sites. Note that Dallas is not listed 
because no short-duration counts were available. The travel pattern trends seen at the 
SC sites mirrored those at PC sites, with Portland sites being mainly commute type, 
whereas Eugene and Bend were mixed sites. Boulder County could not supply any 
hourly or weekday/weekend splits, so all SC sites had to use pooled factors and, thus, 
could not be assigned to any specific factor groups. 
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Table 4-6 Factor Groups for Short-Duration Count Sites 
Year 2017 2018 2019 Total 

Factor Group 1 2 3 1 2 3 1 2 3 NA  

Bend 0 0 0 3 34 18 5 37 18 0 115 

Boulder n.c. n.c. n.c. n.c. n.c. n.c. 0 0 0 30 30 

Charlotte n.c. n.c. n.c. n.c. n.c. n.c. 2 0 1 0 3 

Eugene 0 0 0 15 42 14 17 36 10 0 134 

Portland 56 22 13 14 5 4 41 23 11 0 189 

Grand Total 56 22 13 32 81 36 65 96 40 30 471 

n.c = not considered 
Factor Groups: 1=commute; 2=mixed; 3=non-commute; NA - factor group could not be assigned. 
 
We compared the factored AADBT results from both the DOY and DOW methods and 
found no major disagreement between the two for this dataset. We therefore chose to 
use the DOW approach, since that allowed us to retain data at locations where no full-
year PC data were available on a specific day in a region. 

4.3 STRAVA  

Strava relies on self-selected users of the Strava app who record and upload their rides. 
Raw GPS data are post-processed by joining trips to an OpenStreetMap (OSM)-based 
network. Utilitarian (“commute” in Strava’s terminology) and recreational trip purposes 
are imputed based on route directness. Data are then provided as trip (“activity”) and 
user (“athlete”) counts on each matched OSM network link. We were provided data in 
hourly and monthly aggregations. The updated Strava Metro product, now freely 
available to agencies, is downloadable in hourly and daily aggregations.  
 
We noted and confirmed with Strava a few important characteristics of the data to keep 
in mind when using for analysis: 

● Counts are rounded in an unusual way (note: these apply to all time intervals—
hourly, daily, monthly) 

○ trip counts < 3 are not included (these were set to zero for each period 
missing in the raw Strava data file) 

○ trip counts >= 3 always round up to the nearest 5 (e.g., 3 rounds to 5, 6 
rounds to 10, and so on) 

■ A network-wide investigation in Portland comparing monthly totals 
to aggregated hourly counts revealed significant bias owing to the 
masking and rounding process. 

■ We avoided this issue by switching to monthly totals to calculate 
Strava average daily bicycle traffic (ADBT).  

● Map matching of GPS points to the OSM network does not enforce complete 
routes, such that shorter links are sometimes “skipped over.” We compared 
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volumes of adjacent links by length, and found 0.2km to be a safe threshold to 
avoid this issue and removed links below the threshold from our analysis. 

● Strava uses the full OSM network, including sidewalks, footways, and transit-only 
facilities. This, combined with map matching errors, creates a problem of Strava 
volumes spreading across parallel links in the network (e.g., on bridges with side 
paths and auto/transit travel lanes or where separated cycle tracks run adjacent 
to streets). Since this posed a particular problem at many permanent counter 
locations, we decided to manually merge the volumes where multiple adjacent 
links paralleled a count site. We noted the issue was much less common with 
short-duration count sites, which tended to be conducted in simpler parts of the 
network. This issue would need to be addressed in an automated way—or 
ignored—for network-wide volume estimation with Strava data. 

 
Count locations were joined to the nearest Strava/OSM network link (>0.2km in length 
only) and manually reviewed. We noted frequent inaccuracies in provided permanent 
counter spatial coordinates when compared with photos and Google Street View 
imagery. We adjusted count locations to improve accuracy, where doing so mattered for 
joining to the correct Strava/OSM data. After adjusting, there were nine SC sites and 
three PC (2% of total count sites), where Strava data were not available. 

4.4 STREETLIGHT 

StreetLight Data takes anonymized location records derived from mobile 
phones/devices (along with in-vehicle navigation systems). Through an internal process, 
StreetLight imputes travel mode for all trips. Bicycle trips can be converted into counts 
through several processes, including using user-created “gates,” which count all 
imputed bicycle trips that pass through a specific gate or contiguous set of gates. 
Counts are available as either a StreetLight Index value or as raw data; the latter data 
type was only available on request. The StreetLight Index is a normalized format 
designed to reduce variation, primarily from monthly sample size variations, and does 
not represent an actual estimated count, but rather a relative value that can be 
compared to other locations for the same time period. The raw data output is merely the 
number of trips recorded through the StreetLight data collection and imputation process 
and would represent some fraction of actual trips. After testing both the StreetLight 
Index and raw data and discussing the relative value of each format with StreetLight 
Data and the project team members, the project team opted to focus on the raw data as 
a model input. 
 
The process of downloading StreetLight data started with creating gates, through which 
bicycle trips would be counted. To create gates, the project team uploaded sets of OSM 
segments associated with count locations. The segments were identified first by 
proximity, and then visually inspected to confirm that they appropriately represented the 
expected bicycle traffic route being counted. When uploaded into the StreetLight 
system, three gates are associated with each segment, reflecting a pathway through the 
segment along which bicyclists would be counted (see Figure 4-3). In most cases, the 
matched segments and auto-created gates were appropriate for use.  
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Figure 4-3 Two Example Segments, Each with a Set of Three Gates 

In some cases, particularly for very long segments, as can exist for paths or for curved 
segments, auto-created gates were deemed to be imprecise. In those cases, gates 
could be moved or redrawn to reflect more accurately the expected paths of bicyclists 
crossing the counter locations. 
 
Once the research team was satisfied with the segment and gate placement, analyses 
were initiated in the StreetLight system to output the raw data values. Analyses could be 
run for a specific month (in 2018 or 2019), or for a selection of months (including a full 
year or more). Annual data were pulled for each location for 2018 and 2019 (2017 was 
not available). StreetLight output data included total trips (raw counts) and the average 
daily zone traffic, which is the StreetLight Index. For the count sites in the sample for 
2018-2019, StreetLight data was not available at four locations (0.8%). 

4.5 BIKESHARE 

Bikeshare data were available as either continuous GPS latitude and longitude points 
for the entire trip (Bend, Eugene), or only the latitude and longitude at the start and end 
of each individual trip (Portland). Each trip has a unique route id, start-to-end date, time, 
and duration. Of the six study sites, bikeshare data were only available for the Oregon 
locations. Programs in other cities had either ceased operations (Charlotte, Dallas), or 
were too limited in coverage to use for this work (Boulder).  
 
This study used bikeshare as an independent variable to estimate the AADBT. Four 
independent variables were generated from bikeshare data as follows: bikeshare trip 
origin count (production); bikeshare trip destination count (attraction); bikeshare 
crossings (straight line between origin and destination); and bikeshare original route 
crossing (for Eugene and Bend only). All these four variables were estimated for each 
count location separately for Euclidean or network buffers. Figure 4-4 shows the 
extraction of bikeshare origin or destination using the buffer around the count station. 



 

44 
 

Buffers around the count station were created, and the number of bikeshare origins or 
destinations within each buffer for each count location were counted. 

 

  
Figure 4-4 Counting of Origins or Destinations of Bike Trip 

Figure 4-5 shows the bikeshare crossing count where the origin and destination of each 
trip were connected by a straight line and with the original route using continuous 
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latitude and longitude, then the number of lines passing over the buffer for each count 
station were counted. Please see 4.6.1 for details on Euclidean and network buffers. 
 

 

  
Figure 4-5 Bikeshare Crossing Count using Buffers  

4.6 STATIC DATA 

For the modeling process, the first step was the extraction of the variable feature set for 
all the selected sites using two buffer systems. Variables within the various categories - 
counts, network, land use, sociodemographic, and weather/temporal - were all selected 
based on their use and significance in prior research studies. The following sections 
describe the buffer systems and variable extraction within each of the buffers. 
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 Types of buffers 

Buffers show the area that is within some distance of the input features. Buffering plays 
an important role in many geoprocessing workflows to identify the features that are 
within a certain distance of other features. Two types of buffers were used in this study - 
air and network. 
 
4.6.1.1 Air buffer 

The air buffer is also known as the Euclidean buffer. It measures distance on a two-
dimensional Cartesian plane. With Euclidean buffers, straight-line distances are 
calculated between two points on a plane. Euclidean buffers appear as perfect circles 
when drawn on a projected flat map. All the required shape files from 3D or existing 
coordinate reference systems were projected to 2D using the local coordinate reference 
system (CRS) (i.e., city of Portland local CRS: 2838, Dallas local CRS:2845). The dot 
buffer function on geodata frame was used to create a buffer around each count station. 
  
4.6.1.2 Network buffer 

Network buffers are created by solving from a given location outward along a travel 
network until some distance (or cost) threshold is reached. Typically, a second step 
applies some method to create a reachable area from all the links and/or nodes within 
the threshold. In this case, we solved from the nearest node to each count location 
along all OSM links open to bikes. The routable OSM network was acquired using the 
osmnx Python package (Boeing, 2017). We then extended buffers 60m (~200ft) 
outward from each reachable street centerline to create a network buffer area. The 60m 
buffer distance was chosen such that in a dense street grid (<100m blocks), adjacent 
buffers would cover the entire enclosed block in between. 
 
4.6.1.3 Buffer size 

Buffers around the count stations are needed to extract the independent variables for 
bicycle volume estimation. However, no consensus exists with respect to buffer size 
based on past research. Several researchers have used different buffer sizes to test the 
consistency of the results, with the buffer size ranging from 0.031 mile (50m) to 1.864 
mile (3,000m) (Hankey et al., 2017a; Hankey and Lindsey, 2016; Lu et al., 2018; 
Strauss et al., 2013; Strauss and Miranda-Moreno, 2013; Griswold et al., 2011; 
Tabeshian and Kattan, 2014; Roll, 2018; Chen et al., 2017; Dill and Voros, 2007). 
Different buffer sizes may impact the outputs from the model. As the site characteristics 
vary, different sizes of buffer should be considered to get an accurate estimation of 
AADBT. 
 
Four different sizes of buffer (0.5, 1.0, 1.5 and 2.0 miles) based on existing literature 
were considered in this study. The research team extracted all the listed variables in 
Table 4-7 through Table 4-10 for the four different buffer sizes for both Euclidean and 
network buffers. Some of the variables such as bike counts; bicycle functional class 
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(primary, secondary, residential, tertiary, path, cycleway, footway, cycleway lane, 
cycleway track); and speed limit were extracted at the link level. The research team 
developed an automatic python script to extract a wide range of variables for different 
buffer sizes. The Euclidean buffer was created using the dot buffer function on the 
geodata frame, while the network buffer was created using the GIS tool and passed 
through a python script to choose different sizes of buffers for different study areas. 
Data extraction time varied between 1.400 to 8.700 seconds depending on buffer size 
and number of count locations.  

4.7 VARIABLE DESCRIPTIONS  

This section describes the variables considered and/or used in the modeling process, 
broken down into count-related variables, network-related variables, sociodemographic 
variables, and weather-related variables. For each type of variable, a table is provided 
that includes descriptive information about the variable (including the different ways 
each variable was considered: air buffer, network buffer or link level), and information 
about what prior research has utilized similar variables for bicycle volume estimation 
purposes. 
 

 Count-related variables 

Bicycle counts at specific counter locations, including permanent counts and short-
duration counts, are key variables for estimated network volumes. Table 4-7 shows the 
count-related variables. Both the permanent and the short-term counts were run through 
the QA/QC process described previously to remove erroneous data and outliers. The 
Strava counts and the percentage of commuter Strava trips were obtained from Strava 
for each region. The percentage of commuter Strava trips for each segment is the ratio 
between the Strava commuter AADBT to the Strava AADBT. These variables were 
extracted as described previously. The StreetLight raw counts were obtained from the 
online portal. The bikeshare origins and destinations within each buffer were obtained 
by summing the number of productions and attractions. Lastly, the bikeshare crossing 
OD line was estimated as the number of straight lines between the origins and 
destinations crossing through the buffer around each count station. 
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Table 4-7 Count-Related Variables 
Air[1] Net[2] Link[3] Variables Data 

Sources 
Description Prior studies utilizing variable to estimate volumes 

(count and references) 
no no  yes Permanent 

counts 
City Permanent count station for 

continuous counting throughout the 
year 

4 (Wang et al., 2016; Lu et al., 2018; Dadashova 
et al., 2020; Nelson et al., 2021) 

no no  yes Short-duration 
count 

City Temporary count station to collect 
data for certain time period 

10 (Lindsey, 2011; Hankey and Lindsey, 2016; 
Jestico, Nelson and Winters, 2016; Wang et al., 
2016; Lu et al., 2018; Roll and Proulx, 2018; 
Kwigizile, Oh and Kwayu, 2019; Roy et al., 
2019; Lin and Fan, 2020; Nelson et al., 2021) 

no no  yes Strava count Strava 
Metro roll-

ups 

Strava AADBT or Strava commute 
or Strava non-commute count at 
street segments level 

10 (Griffin and Jiao, 2015; Jestico, Nelson and 
Winters, 2016; Roll, 2018; Hochmair, Bardin and 
Ahmouda, 2019a; Kwigizile, Oh and Kwayu, 
2019; Roy et al., 2019; Dadashova and Griffin, 
2020; Dadashova et al., 2020; Lin and Fan, 
2020; Nelson et al., 2021) 

no no  yes Commuter or 
non-commuter 
Strava trips1,2   

Strava Percentage of Strava commuters or 
non-commuter trips in segment 
level 

1 (Nelson et al., 2021) 

no no  yes StreetLight count StreetLight StreetLight AADBT count at street 
segment levels 

0 N/A  

yes yes no  Bikeshare origin City Number of origins (O) of bikeshare 
trips (productions) within the buffer 
around the count station 

0 N/A 

yes yes no Bikeshare 
destination 

City Number of destinations (D) of 
bikeshare trips (attractions) within 
the buffer around the count station 

0 N/A  

yes yes no Bikeshare 
crossing 

City Number of bikeshare trips crossing 
over the buffer as a straight line 
between origin and destination  

0 N/A 

yes yes no Bikeshare route City Number of bikeshare routes 
crossing its corresponding buffer  

0 N/A  

[1] straight-line, Euclidean buffers, varying radius 1/8 - 2 mi 
[2] area based on max shortest-path distance around count/link location, varying distance 1/8 – 2 mi 
[3] single value for specific link at location 
N/A – no existing peer-reviewed studies identified in our review 
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 Built environment-related variables 

Characteristics of the built environment, particularly related to the transportation 
network, are important considerations in how and where people will travel. Table 4-8 
shows the built environment-related variables that were extracted to be used in volume 
estimations. To keep the process standardized between the various regions, the BBBike 
network based on OpenStreetMap (OSM) was used for extracting these variables. First, 
the total length of the various facility types within the buffer were extracted. These 
included primary, secondary, tertiary, residential and path segments. Next, the cycle 
way, cycle track and footway within the buffer were extracted. Other variables extracted 
include speed limit, number of bicycle parking spots, number of bus stops, intersection 
density, bridges, roadway slope, water body area, park area, forest area, grass area, 
commercial area, industrial area, residential area, retail area, number of 
schools/colleges/universities and distance from the central business district.
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Table 4-8 Built Environment Variables 
Air[1] Net[2] Link[3] Variables Data 

Sources 
Description Prior studies utilizing variable to estimate 

volumes (count and references) 
yes yes yes Primary OSM for all 

cities 
(BBBike) 

Two types of variables are used: (i) 
Total length of primary road segments 
within the buffer around each count 
station (ii) link type (0=absence and 
1= presence).  

1 (Dadashova et al., 2020) 

yes yes yes Secondary OSM for all 
cities 

(BBBike) 

Total length of secondary road 
segments within the buffer around 
each count station or link type 
(0=absence and 1= presence). 

1 (Dadashova et al., 2020) 

yes yes yes Tertiary OSM for all 
cities 

(BBBike) 

Total length of tertiary road segments 
within the buffer around each count 
station or link type (0=absence and 
1= presence).  

1 (Dadashova et al., 2020) 

yes yes yes Residential OSM for all 
cities 

(BBBike) 

Total length of residential road 
segments within the buffer around 
each count station or link type 
(0=absence and 1= presence).  

1 (Dadashova et al., 2020) 

yes yes yes Path OSM for all 
cities 

(BBBike) 

Total length of path segments within 
the buffer around each count station 
or link type (0=absence and 1= 
presence) 

1 (Dadashova et al., 2020) 

yes yes yes Cycleway OSM for all 
cities 

(BBBike) 

Total length of cycle way segments 
within the buffer around each count 
station or link type (0=absence and 
1= presence).  

2 (Dadashova et al., 2020) (Griffin and 
Jiao, 2015) 

yes yes yes Cycleway_lane_all  OSM for all 
cities 

(osmnx) 

Total length of cycleway lane, left and 
right segments within the buffer 
around each count station or link type 
(0=absence and 1= presence) 

0 N/A 

yes yes yes Cycleway_track_all  OSM for all 
cities 

(osmnx) 

Total length of cycleway track, left 
and right segments within the buffer 
around each count station or link type 
(0=absence and 1= presence) 

0 N/A 

yes yes yes Footway OSM for all 
cities 

(BBBike) 

Total length of footway segments 
within the buffer around each count 
station or link type (0=absence and 
1= presence) 

1 (Dadashova et al., 2020) 
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Air[1] Net[2] Link[3] Variables Data 
Sources 

Description Prior studies utilizing variable to estimate 
volumes (count and references) 

yes yes yes Speed limit OSM for all 
cities 

(BBBike) 

Speed limit on the link where the 
counter is situated; if unavailable the 
speed of the nearest link with the 
same functional class is extracted. 
For average speed within the buffer, 
the mode of speed for the functional 
class was obtained. 

6 (Fagnant;, 2016; Jestico, Nelson and 
Winters, 2016; Roy et al., 2019; 
Dadashova et al., 2020; Lin and Fan, 
2020; Nelson et al., 2021) 

yes yes no  Number of Bicycle 
Parking Spaces 

OSM for all 
cities 

(BBBike) 

Count of bicycle parking spots within 
the buffer around the count station 

3 (Jestico, Nelson and Winters, 2016; 
Hochmair, Bardin and Ahmouda, 2019a; 
Nelson et al., 2021) 

yes yes no Number of Bus stops OSM for all 
cities 

(BBBike) 

Count of bus or rail stops within the 
buffer around the count station 

5 (Strauss and Miranda-Moreno, 2013; 
Strauss, Miranda-Moreno and Morency, 
2013; Tabeshian and Kattan, 2014; 
Hankey and Lindsey, 2016; Lu et al., 
2018) 

yes yes no Intersection Density OSM for all 
cities 

(osmnx) 

Number of intersections per square 
mile 

4 (Hankey and Lindsey, 2016; Wang et 
al., 2016; Lu et al., 2018; Hochmair, 
Bardin and Ahmouda, 2019a) 

yes yes yes Number of lanes  OSM for all 
cities 

(BBBike) 

Number of traffic lanes along 
corresponding count station street 
segment 

6 (Tabeshian and Kattan, 2014; Fagnant;, 
2016; Dadashova and Griffin, 2020; 
Dadashova et al., 2020; Lin and Fan, 
2020; Nelson et al., 2021) 

yes yes yes Presence of Bridges  OSM for all 
cities 

(BBBike) 

Binary variable: 1=presence and 
2=absence of bridges within the 
buffer around the count station 

2 (Fagnant, 2016; Hochmair, Bardin and 
Ahmouda, 2019a) 

yes yes yes Roadway Slope National 
Elevation 
Dataset 

average absolute % slope along link  0 N/A 

yes yes no Water Body area or 
Distance to water body 

OSM for all 
cities 

(BBBike) 

Two variables were created: (i) Water 
body area within the buffer around the 
count station (ii) nearest distance to 
water body from the count station  

5 (Hankey et al., 2012; Wang et al., 2016; 
Chen, Zhou and Sun, 2017; Ermagun, 
Lindsey and Hadden Loh, 2018; Nelson 
et al., 2021) 

yes yes no Park Area or Distance 
to park 

OSM for all 
cities 

(BBBike) 

Two variables were created: (i) Park 
or open space area within the buffer  
around the count station, (ii) nearest 
distance to park area from count 
station 

1 (Hankey and Lindsey, 2016) 

yes yes no Forest Area OSM for all 
cities 

Two variables were created: (i) Forest 
area within the buffer (ii) nearest 

0 N/A 
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Air[1] Net[2] Link[3] Variables Data 
Sources 

Description Prior studies utilizing variable to estimate 
volumes (count and references) 

(BBBike) distance to forest area from count 
station 

yes yes no Grass area or Distance 
to grass area 

OSM for all 
cities 

(BBBike) 

Grass area within the buffer around 
the count station or nearest distance 
to grass space from count station. 

6 (Terri Pikora,, Billie Giles-Cortia, Fiona 
Bulla, b, Konrad Jamrozika, c, 2003; 
Noland, Deka and Walia, 2011a; 
Hochmair, Bardin and Ahmouda, 2019a; 
Roy et al., 2019; Lin and Fan, 2020; 
Nelson et al., 2021) 

yes yes no Commercial area or 
Distance to commercial 

OSM for all 
cities 

(BBBike) 

Commercial area within the buffer 
around the count station or nearest 
distance to commercial area from 
count station. 

2 (Strauss, Miranda-Moreno and Morency, 
2013; Tabeshian and Kattan, 2014). 

yes yes no Industrial Area or 
Distance to industrial 
area 

OSM for all 
cities 

(BBBike) 

Industrial area within the buffer 
around the count station or nearest 
distance to industrial area from count 
station. 

3 (Hankey and Lindsey, 2016; Wang et 
al., 2016; Lu et al., 2018) 

yes yes no Residential Area or 
Distance to residential 
area 

OSM for all 
cities 

(BBBike) 

Residential area within the buffer 
around the count station or nearest 
distance to residential area from 
count station. 

4 (Lu et al., 2018; Kwigizile, Oh and 
Kwayu, 2019; Roy et al., 2019; Nelson 
et al., 2021) 

yes yes no Retail Area or Distance 
to Retail area 

OSM for all 
cities 

(BBBike) 

Retail area within the buffer around 
the count station or nearest distance 
to retail area from count station. 

3 (Griswold, Medury and Schneider, 2011; 
Hankey and Lindsey, 2016; Roll, 2018) 

yes yes no Number of Schools/ 
Colleges/ Universities 
or Distance to school/ 
college/ University 

OSM for all 
cities 

(osmnx) 

Number of schools (total count) or 
colleges (total count) or Universities 
(yes=1 and no=0) within the buffer  
around the count station or nearest 
distance to school/college/University 

6 (Griswold, Medury and Schneider, 2011; 
Strauss and Miranda-Moreno, 2013; 
Strauss, Miranda-Moreno and Morency, 
2013; Roll, 2018; Kwigizile, Oh and 
Kwayu, 2019; Nelson et al., 2021) 

no no no Distance from CBD OSM for all 
cities 

 (BBBike) 

Nearest distance to count station from 
City Hall (CBD) 

>=2 Hankey et al., 2012; Lindsey et al., 2012 
(possibly others) 

[1] straight-line, Euclidean buffers, varying radius 1/8 - 2 mi 
[2] area based on max shortest-path distance around count/link location, varying distance 1/8 – 2 mi 
[3] single value for specific link at location 
N/A = no peer-reviewed studies identified in our review 
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 Sociodemographic variables 

Characteristics of the population and employment for an area have been shown to help 
in estimating bicycle volumes. Table 4-9 shows the list of the sociodemographic 
variables that were extracted for the study sites. These included population density, 
employment density, number of jobs, household density, number of students, median 
age, percentage of males and females, percentage of African American and white 
population, median household income, and education. These were all extracted from 
the National Historical Geographic Information System (NHGIS). 
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Table 4-9 Sociodemographic Variables 
Air[1

] 
Net[2

] 
Link[3

] 
Variables Data 

Sources 
Description Prior studies utilizing variable to estimate volumes (count and 

references) 
yes yes no  Population 

density 
NHGIS 
for all 
cities 

Area weighted 
population per square 
mile within the block 
group (s) of the count 
station 

17 (Noland, Deka and Walia, 2011b; Griswold, Medury and 
Schneider, 2011; Hankey et al., 2012, 2017; Strauss and 
Miranda-Moreno, 2013; Wang et al., 2014, 2016; 
Fagnant;, 2016; Hankey and Lindsey, 2016; Jestico, 
Nelson and Winters, 2016; Lu et al., 2018; Roll, 2018; 
Hochmair, Bardin and Ahmouda, 2019a; Dadashova and 
Griffin, 2020; Dadashova et al., 2020; Lin and Fan, 2020; 
Nelson et al., 2021) 

yes yes no Employment 
density  

NHGIS 
for all 
cities 

Area weighted 
employment per square 
mile within the block 
group (s) of the count 
station 

8 (Jones et al., 2010; Hankey et al., 2012; Strauss and 
Miranda-Moreno, 2013; Strauss, Miranda-Moreno and 
Morency, 2013; Fagnant;, 2016; Hankey and Lindsey, 
2016; Wang et al., 2016; Chen, Zhou and Sun, 2017) 

yes yes no Number of 
Jobs 

LEHD Area weighted number 
of jobs within the block 
group (s) of the count 
station 

 0 N/A 

yes yes no Household 
Density 

NHGIS 
for all 
cities 

Area weighted 
households per square 
mile within the block 
group (s) of the count 
station 

3 (Hankey and Lindsey, 2016; Dadashova and Griffin, 2020; 
Dadashova et al., 2020) 

yes yes no Number of 
students 
(student 
access) 

NHGIS 
for all 
cities 

Area weighted number 
of students  (>12 grade) 
within the buffer within 
the block group (s) of 
the count station 

1 (Roll, 2018) 

yes yes no Median age NHGIS 
for all 
cities 

Median age of the 
population within the 
buffer within the block 
group (s) of the count 
station 

7 (Lindsey, 2011; Hankey et al., 2012; Wang et al., 2014; 
Chen, Zhou and Sun, 2017; Dadashova and Griffin, 2020; 
Lin and Fan, 2020; Nelson et al., 2021) 

yes yes no Percentage of 
female 

NHGIS 
for all 
cities 

Area weighted % of 
females within the buffer 
within the block group 
(s) of the count station 

3 (Dadashova and Griffin, 2020; Dadashova et al., 2020; 
Nelson et al., 2021) 
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Air[1
] 

Net[2
] 

Link[3
] 

Variables Data 
Sources 

Description Prior studies utilizing variable to estimate volumes (count and 
references) 

yes yes no Percentage of 
male 

NHGIS 
for all 
cities 

Area weighted % of 
males within the buffer 
within the block group 
(s) of the count station 

8 (Jestico, Nelson and Winters, 2016; Watkins et al., 2016; 
Sanders et al., 2017; Hochmair, Bardin and Ahmouda, 
2019a; Kwigizile, Oh and Kwayu, 2019; Nickkar et al., 
2019; Dadashova and Griffin, 2020; Dadashova et al., 
2020) 

yes yes no Percentage of 
African 
American 
population 

NHGIS 
for all 
cities 

Area weighted %  of 
African American 
population within the 
buffer at count station 
block group 

6 (Lindsey, 2011; Hankey et al., 2012; Lindsey et al., 2012; 
Wang et al., 2014, 2016; Hochmair, Bardin and Ahmouda, 
2019b) 

yes yes no Percentage of 
white 
population 

NHGIS 
for all 
cities 

Area weighted % of 
white population within 
the buffer within the 
block group (s) of the 
count station 

3 (Chen, Zhou and Sun, 2017; Kwigizile, Oh and Kwayu, 
2019; Roy et al., 2019) 

yes yes no Median 
Household 
Income 

NHGIS 
for all 
cities 

Area weighted median 
household income 
within the buffer within 
the block group (s) of 
the count station 

16 (Griswold, Medury and Schneider, 2011; Lindsey, 2011; 
Hankey et al., 2012, 2017; Strauss and Miranda-Moreno, 
2013; Tabeshian and Kattan, 2014; Wang et al., 2014, 
2016; Hankey and Lindsey, 2016; Lu et al., 2018; Roy et 
al., 2019; Hochmair, Bardin and Ahmouda, 2019b; 
Dadashova and Griffin, 2020; Dadashova et al., 2020; Lin 
and Fan, 2020; Nelson et al., 2021) 

yes yes no Education (% 
of population 
having at least 
college 
degree) 

NHGIS 
for all 
cities 

Area weighted % of 
population having at 
least a college degree 
within the buffer within 
the block group (s) of 
the count station 

5 (Lindsey, 2011; Hankey et al., 2012; Wang et al., 2014; 
Ermagun, Lindsey and Hadden Loh, 2018; Nelson et al., 
2021) 

yes yes no Bicycle 
commuting  

NHGIS Four variables were 
used: (i) Total 
commuter, (ii) bike 
commuter (iii) % bike 
commute (iv) bike 
commuters/sq. mi 

1 (Nelson et al., 2021) 

[1] straight-line, Euclidean buffers, varying radius 1/8 - 2 mi 
[2] area based on max shortest-path distance around count/link location, varying distance 1/8 – 2 mi 
[3] single value for specific link at location 
N/A = no peer-reviewed studies identified in our review 
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 Weather-related variables 

Table 4-10 shows the weather variables such as average humidity, precipitation, and 
average temperature, which were extracted from the Weather Underground website 
(https://www.wunderground.com/history). 
 
Table 4-10 Weather Variables 

Air[1] Net[2] Link[3] Variables Data Sources Description Prior studies utilizing 
variable to estimate volumes 
(count and references) 

no no yes Average 
Humidity 

Weather 
Underground 
for all cities 

Average 
humidity at 
count station 

2 (Strauss and Miranda-
Moreno, 2013; Kwigizile, 
Oh and Kwayu, 2019) 

no no yes Precipitation Weather 
Underground 
for all cities 

Average 
precipitation 
at count 
station 

9  (Niemeier, 1996; 
Hankey et al., 2012; 
Strauss and Miranda-
Moreno, 2013; Wang et 
al., 2014; Fagnant;, 
2016; Hankey and 
Lindsey, 2016; Ermagun, 
Lindsey and Hadden 
Loh, 2018; Esawey, 
2018; Dadashova and 
Griffin, 2020) 

no no yes Average 
Temperature 

Weather 
Underground 
for all cities 

Average 
temperature 
at count 
station 

9 (Niemeier, 1996; 
Lindsey, 2011; Hankey 
et al., 2012; Strauss and 
Miranda-Moreno, 2013; 
Wang et al., 2014; 
Fagnant;, 2016; Hankey 
and Lindsey, 2016; 
Esawey, 2018; 
Dadashova and Griffin, 
2020) 

[1] straight-line, Euclidean buffers, varying radius 1/8 - 2 mi 
[2] area based on max shortest-path distance around count/link location, varying distance 1/8 – 2 mi 
[3] single value for specific link at location 
 

4.8 DATA SUMMARY 

This chapter described the criteria developed for selecting sites, including an overview 
of a survey that was conducted to identify sites. Based on availability of count, Strava 
and StreetLight data, geographical variation in sites and contexts, six regions were 
chosen for this study. These included Bend, Boulder, Charlotte, Dallas, Eugene and 
Portland. At each of these locations, count, Strava, StreetLight, bikeshare, and static 
data were obtained, and the process for extracting and processing each of these data 
sources was described.  
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5 MODELING 

We developed a range of models to better understand the likely feasibility and accuracy 
of predicting bicycle counts on a network. The models also allowed us to explore the 
relative value of static, third-party user, and other variables for modeling bicycle activity 
across a range of contexts. We also considered the transferability of models across time 
and location, as well as the potential for more flexible machine learning modeling 
techniques. The following sections describe the development of two types of models: 
traditional count and Random Forest (machine learning) models. Results are presented 
in each section, and an overall summary is also provided. 

5.1 MODEL ROADMAP 

Table 5-1 shows the overall modeling framework that was developed for this study. 
Three sets of models were specified – All City Pooled, Oregon Pooled and city-specific 
models. This allowed us to benefit from a larger sample size and range of contexts 
while also considering the benefit of region or city-specific models. We decided to model 
full-year PC locations in a separate model. This was primarily to evaluate accuracy and 
value added by different data sources against something close to “ground truth” counts 
of actual bicycling volumes. Sample size limitations restricted estimation of city-specific 
and machine learning models to select subsets of the data. 
 
Table 5-1 Overall Modeling Framework 

 Full-year Permanent  All Permanent + Short-duration 
All City Pooled Count - 2019 

Machine Learning - N/A 
Count - 2019 

Machine Learning - 2019 
Oregon Pooled Count - N/A 

Machine Learning - N/A 
Count - 2018 -2019 

Machine Learning - 2019 
City-specific Count Model - Dallas only 

Machine Learning - N/A 
Count - All Cities 

Machine Learning - Portland-2019, Eugene-2019 
 
Across all the modeling streams, the crowdsourced data (Strava, StreetLight), and static 
location variables were added systematically to test their impacts on predicting AADBT, 
as shown in Table 5-2. Additional sources of user data including bikeshare were also 
evaluated where available. 
 
Table 5-2 Count Model Specifications 

Model Specification 
PM0: AADBT=f(Static) 
PM1:  AADBT=f(Strava) 
PM2: AADBT=f(StreetLight) 
PM3: AADBT=f(Strava + StreetLight) 
PM4: AADBT=f(Strava + Static) 
PM5: AADBT=f(StreetLight + Static) 
PM6:   AADBT=f(Strava + StreetLight+ Static) 

 
All models (count and machine learning) were developed using K-fold cross-validation 
with tenfolds and five repeats. K-fold cross-validation allows out-of-sample assessment 



 

58 
 

of model performance by holding back sets of data, and this external performance 
assessment helps avoid overfitting, providing a better sense of how the models might 
adapt to new data. In addition, we employed stratified resampling to ensure that test 
sets are reasonably balanced across AADBT ranges. All count modeling was 
implemented using the caret package in R (Kuhn, 2008).  

5.2 COUNT MODELS 

 Estimation framework 

For initial modeling, we tested two generalized linear model forms commonly used to 
model count-based data: the Poisson and negative binomial models. Both take the 
same basic form with differences related to assumptions about the error structure: 
 
AADBTi = exp (∑ 𝛽𝛽𝑛𝑛 𝑋𝑋𝑖𝑖,𝑛𝑛 + 𝜀𝜀𝑖𝑖𝑛𝑛

𝑛𝑛=1  ) 
Where, AADBTi  is the average annual daily bike traffic at counter n; 𝛽𝛽𝑛𝑛 is the co −
efficient estimate; 𝑋𝑋𝑖𝑖,𝑛𝑛 is the matrix of explanatory variables at site n and 𝜀𝜀𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡 

 
Poisson models assume a fixed variance-to-mean ratio, while the negative binomial 
model relaxes that assumption by estimating a dispersion term from the data. When the 
Poisson error variance assumption is not met, the data are said to be “overdispersed,” 
and while coefficient estimates themselves remain consistent, standard errors will be 
biased and affect parameter significance testing. One solution is to specify a negative 
binomial model; another is to estimate the Poisson but calculate standard errors that are 
robust to overdispersion. The latter avoids the need to estimate an additional model 
parameter and, in this case, appeared to perform slightly better across a range of model 
selection metrics, as well as showing greater stability in parameters. For these reasons, 
we present results here from the Poisson model with robust standard errors, but it 
should be noted that the choice of model form here did not meaningfully change any of 
the results or conclusions.  
 
This study collected a wide range of data (described in the Data Sources section), 
which was passed through automated scripts to process and generate data outputs for 
different buffer sizes and at the individual link level, as well as to standardize the 
permanent count data. After generating the estimation dataset, one additional Dallas 
counter (a loop path in a park) was removed due to having no nearby link in the OSM 
network that we could substitute. We retained another two count locations where an 
OSM link existed, but Strava reported no data, either due to privacy masking of low 
volumes or lack of user data and assumed a zero value for Strava volumes at those 
sites. StreetLight was able to provide data at all valid sites in the dataset.  
 
Count model specifications were developed by drawing theoretically likely explanatory 
variables from the dataset and examining estimated coefficients for expected sign and 
statistical significance. In addition, all models were evaluated by a mix of standard 
metrics on the model’s in-sample fit as well as out-of-sample prediction performance 
(using statistics from the cross-validation described previously): primarily the Akaike 
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Information Criterion (AIC) and Root Mean Square Error (RMSE). We also examined 
prediction performance segmented by volume bin and region (for pooled models). 
 

 Model data overview 

Most count sites were retained for modeling, with a few exceptions to ensure 
reasonable AADBT estimates and comparability across models: 

● Locations that could not be matched to the Strava/OSM network (n=9) [Note: of 
the nine, four were also unavailable from StreetLight]  

● One short-duration location (Boulder) with zero total counts, since AADBT could 
not be calculated properly (n=1)   

 
To reduce the search set of explanatory variables to something meaningful, based on 
bivariate correlations with AADBT, we retained variables measured within the buffers at 
the following distances only: half-mile air, one-mile air, half-mile network, one-mile 
network, and two-mile network.  
  

 Full-year permanent count models 

We developed models with full-year 2019 PC data only, primarily as a test of the relative 
value of the third-party user data sources. Full-year PCs served as our closest measure 
to ground truth cycling activity.  
 
5.2.3.1 Data 

Table 5-3 and Figure 5-1 summarize the valid PC data used in the models. The number 
of counters ranged from three to 23 per city. Only Dallas, with 23 PCs, had sufficient 
data to reasonably specify a city-specific model. Overall, AADBT for the PC sites 
ranged from 12 to 1,775. With the exception of Bend, it was not particularly surprising 
that sites selected for PCs tended to be in moderate- to high-volume locations.  
 
Table 5-3 Full-year 2019 PC Data Used for Modeling by Region 

 Total Number of 
Count Stations 

Mean AADBT ±SD Min AADBT Max AADBT 

Portland, OR 4 1375 ±396 842 1775 

Bend, OR 3 78 ±44 46 128 

Eugene, OR 13 308 ±197 59 683 

Charlotte, NC 9 349 ±286 33 727 

Boulder, CO 8 393 ±174 180 607 

Dallas, TX 23 312 ±320 12 1091 

All Sites 60 387 ±379 12 1775 
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Figure 5-1 Histogram of All City Pooled Model Data 

We considered a broad range of explanatory variables when specifying the full-year PC 
models (see Chapter 4). In some cases, variables were modified from their raw form. 
Table 5-4 provides a reference of variables retained in the final, best-performing All City 
Pooled and Dallas models. Bike and road facility type were measured at the count 
location itself. Other variables were measured within a half- or one-mile radius (miles of 
designated bike facilities, street intersection density, number of K-12 schools and 
colleges, and acres of park land). Proximity to a major university was measured as 
whether or not one was within two miles along the street and bike network (excluding 
facilities closed to biking). 
 
Table 5-4 Explanatory Variable Reference for Full-year PC Count Models 

Variable mean 
(All 

Cities) 

mean 
(Dallas) 

def 

log(stv_adb + 1) - 2.73 natural log of average daily total Strava counts 

log(stv_c_adb + 1) 1.69 - natural log of average daily “commute” Strava counts 

log(stv_nc_adb + 1) 2.31 - natural log of average daily “non-commute” Strava counts 

log(stl_raw + 1) 6.72 5.94 natural log of total annual StreetLight bike trips 

log_stv_stl 9.38 8.68 ln(stv_adb +1) + ln(stl_raw + 1) 

sep_bikeway_binary 0.58 *0.52 Location on path or cycleway 

cycleway_lane_binary 0.08 - Location in bike lane 
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Variable mean 
(All 

Cities) 

mean 
(Dallas) 

def 

arterial_binary 0.13 - Location on primary or secondary arterial 

BikeFac_hm 5.10 1.53 Miles of dedicated bike facility (on or off-street) in half-mile 
radius (does NOT include just signed bike routes or shared 
lanes) 

intersection_density_om 147.97 114.80 street intersections per sq. mi. w/in 1-mi radius 

University_tm_net_binary 0.50 0.22 Location w/in 2 network miles of a University 

Schools_hm + 
Colleges_hm 

1.25 0.43 Number of schools and colleges w/in 0.5-mi radius 

Park_acres_om 192.50 379.05 Acres of park w/in 1-mile radius 

Distance_to_Water_mi - 0.49 Miles to nearest water body 

* An additional 8 (35%) locations were on shared footways 
 
5.2.3.2 Results 

Table 5-5 summarizes prediction performance of the All City Pooled and Dallas count 
models at PC locations with a full year (10 or more months) of 2019 data. Test percent 
RMSE (Root Mean Square Error, presented as % of mean AADBT for comparability) 
was the primary prediction summary statistic considered. Test MAPE (Mean Absolut 
Percent Error) by volume tertile is also presented. All statistics were calculated as the 
mean value among hold-out sites (i.e., those sites not included in estimation for a given 
iteration) across the tenfolds and five repetitions. This provides a stronger test of model 
performance and one more in line with what we might expect when applying the model 
to new data. Standard errors associated with the mean values presented are omitted 
here for brevity and were generally relatively small (<15% of the mean for all volume 
bins). Full model specifications and model fit are presented in Table 5-5 and Table 5-6. 
 

Table 5-5 Full-year PC Count Models Prediction Performance Summary 
 PM0 

Static 
PM1 
STV 

PM2 
SL 

PM3 
STV+ 

SL 

PM4 
STV+ 
Static 

PM5 
SL+ 

Static 

PM6 
All 

All City Pooled (n=60) 

%RMSE 52% 52% 72% 49% 47% 51% 42% 

MAPE (low vol. <150, n=20) 345% 310% 324% 176% 264% 186% 167% 

MAPE (mid vol. <468, n=20) 39% 64% 50% 53% 34% 37% 31% 

MAPE (high vol. <=1775, n=20) 29% 27% 38% 30% 29% 31% 29% 

Dallas (n=23) 

%RMSE 102% 54% 64% 29% 39% 67% 26% 

MAPE (low vol. <64, n=8) 369% 213% 117% 55% 226% 117% 86% 

MAPE (mid vol. <376, n=8) 86% 46% 54% 31% 32% 49% 14% 

MAPE (high vol. <=1091, n=7) 28% 30% 45% 15% 13% 47% 18% 
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Notes: All statistics shown are mean of cross-validation test (out of sample) performance, best-performing model 
specification for each measure is shown in bold. n refers to number of count sites, not the number of iterations for 
statistic calculation, which is always 10 folds times 5 repeats equals 50. 
 
The primary motivation for the full-year PC models was to assess the contribution of 
each of our data sources. Static variables representing the count location context were 
estimated as a baseline reflecting typical direct demand modeling practice. In general, 
the three data sources (static, Strava, and StreetLight) appeared to be complementary 
to one another; that is, adding any two data sources together tended to outperform each 
data source on its own. In the All City Pooled model, the combination of all three 
variable types (PM6) was the best-performing model by most measures. In Dallas, 
where PCs were almost entirely at off-street locations, the combination of Strava and 
StreetLight data (PM3) performed about as well as, and by some measures slightly 
better than, the combination of those data sources and the static context variables 
(PM6). In Dallas, Strava and StreetLight were particularly complementary, with Strava 
performing better at mid- to high-volume spots, while StreetLight was a better option at 
low-volume locations. This result seems consistent with the known potential biases in 
Strava data (rounding and user base) being magnified at low-volume locations. Keeping 
in mind the limited sample size, these results are interesting and mostly in keeping with 
expectations that each source is providing unique and valuable information about 
bicycling activity.  
 
The All City Pooled baseline static model fit the data well, and all coefficients had the 
expected signs (Table 5-6). We chose to retain the full set of static variables, even in 
models where they failed to reach standard significance levels. This was partly to 
provide a consistent test of the performance of emerging variables. It was also done 
with expanding predictions to the network in mind, where the joint performance and 
effects of related variables (like facility types) are more important than any individual 
variable’s contribution to model fit. The signs and relative size of the parameters 
remained relatively constant, suggesting a stable model structure. 
 
Although the All City Pooled models fit the data relatively well, as shown by the high 
pseudo-R2 values, prediction success varied considerably by volume. Low-volume sites 
proved challenging, with the best-performing model still demonstrating considerable 
prediction error (167% MAPE). It is important to remember that even relatively small 
errors in predicting the number of cyclists can lead to large relative errors at low-volume 
sites (e.g., at the lowest-volume site included here) being off by 10 cyclists per day 
results in an 83% MAPE. Prediction at low-volume sites is also made more challenging 
by the lack of variety in count locations. Where cycling volumes are low, permanent 
counts tend to be conducted only at off-street locations, and that was true here. Among 
the lowest-volume third of full-year PC sites, 75% were off-street locations. Prediction 
success at mid- (>149) and high-volume (>467) sites was more promising at 31% and 
29% MAPE, respectively, using the best-fitting overall model.  
 
The best-performing Dallas-only model (Table 5-7, PM6), unsurprisingly, displayed 
generally better model fit and prediction performance than the respective All City Pooled 
model (and this remained true even when looking at performance of the All City Pooled 
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model specifically in Dallas). Establishing a good static baseline model was challenging 
due to a lack of variation in count site facilities. All but two of the 23 sites were on off-
street trails (and one of the remaining included a sidewalk count), 17 were in parks, and 
16 were within half a mile of a water feature. All of these suggest predominately 
recreational use patterns. The only significant variables were nearby park acres and 
presence of a designated, separate bike facility. A handful of others were retained from 
the All City Pooled model based on model fit and reasonable coefficient signs and 
magnitudes. While the best-fitting model still included all three sets of variables (static, 
Strava, and StreetLight), a model combining just Strava and StreetLight data performed 
about as well in terms of predictive performance. In terms of MAPE, expected 
performance was better than in the All City Pooled model, with best MAPE less than 
20% at mid- and high-volume sites, and low-volume MAPE as low as 55%.   
 
Figure 5-2 (All City Pooled model) and Figure 5-3 (Dallas model) show (test) prediction 
performance for the best-fitting models. Unfortunately, due to low numbers of full-year 
PC counters in other locations, comparable city-specific models could not be estimated 
reliably. Because of this, we cannot comment on whether city-specific model 
performance in other locations would show similar improvements over the All City 
Pooled model. We explore this question further with the full set of count data in the next 
section. 
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Table 5-6 AADBT Poisson All City Pooled Model Full-year PC Location Results (10-fold cross-validation with five 
repeats and robust SEs) 

 parameter estimate w/ significance level: .<=0.1, * <=0.05 , **<=0.01 , ***<=0.001 

 PM0: 
Static Model 

PM1: 
Strava Only 

PM2: 
StreetLight 

Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 3.4627*** 4.4602*** 2.0671** 2.9164*** 3.4197*** 1.7455*** 2.2601*** 
log(stv_adb +1)     0.3362***   
log(stv_c_adb +1)  0.5514***  0.3308***    
log(stv_nc_adb +1)  0.1215*  0.1715***    
log(stl_raw + 1)   0.5383*** 0.2583***  0.3890***  
log(stv_stl)a       0.2612*** 
sep_bikeway_binary 0.5047**    0.326. 0.6065*** 0.4185** 
cycleway_lane_binary 0.5826*    0.1895 0.3528 0.1014 
arterial_binary -0.852***    -0.6529*** -0.8371*** -0.6731*** 
BikeFac_hm 0.08**    0.0773** 0.0406. 0.0553** 
intersection_density_o
m 0.0061*** 

   
0.0028* 0.0018 0.0006 

School_hm + 
college_hm 0.1311* 

   
0.0949* 0.1178*** 0.0899** 

Park_acres_om 0.0023***    0.0012*** 0.0015*** 0.0009** 
Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 

N 60 60 60 60 60 60 60 
AICb 6535 7438 10443 6378 4692 4925 4033 
Pseudo-R^2c 0.692 0.646 0.494 0.670 0.786 0.774 0.819 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 192 (+/- 10) 194 (+/- 8) 275 (+/- 14) 166 (+/- 8) 165 (+/- 9) 190 (+/- 9) 153 (+/- 7) 
MAPE (+/- SE) 138% (+/- 10) 128% (+/- 8) 129% (+/- 11) 91% (+/- 6) 110% (+/-11) 87% (+/- 5) 77% (+/- 6) 
MAE (+/- SE)d 157 (+/- 9) 152 (+/- 6) 200 (+/- 11) 128 (+/- 6) 127 (+/- 7) 149 (+/- 7) 121 (+/- 5) 

a combined variable formulated as (log(stv_adb +1) + log(stl_raw + 1)) 
b Akaike Information (Loss) Criterion (lower is better) 
c McFadden’s R^2 = 1 – (Deviance in Final Model / deviance in Intercept-only Model, higher is better) 
d Mean absolute error (unit=AADBT)  
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Table 5-7 AADBT Poisson Dallas Model Full-year PC Location Results (10-fold cross-validation with five repeats 
and robust SEs) 

 parameter estimate w/ significance level . <=0.1. * <=0.05  **<=0.01  ***<=0.001 

 PM0: 
Static Model 

PM1: 
Strava Only 

PM2: 
StreetLight 

Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 2.9443*** 3.3860*** 1.1457 1.0088** 3.0208*** 2.0726*** 1.4502*** 
log(stv_adb +1)     0.4502***   
log(stv_c_adb +1)  0.6500***      
log(stv_nc_adb +1)        
log(stl_raw + 1)   0.6803***   0.3276*  
log(stv_stl)a    0.4503***   0.3613*** 
sep_bikeway_binary 0.5994*       
cycleway_lane_binary        
arterial_binary        
BikeFac_hm 0.1299    0.2061***  0.1179*** 
intersection_density_om 0.0029    0.0021. 0.0075*  
University_tm_net 0.9867    0.4345   
School_hm + college_hm 0.2011       
Park_acres_om 0.0030***    0.0012*** 0.0014** 0.0006*** 
Distance_to_Water_mi      -0.5472***  

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 23 23 23 23 23 23 23 
AICb 1430 1225 2281 579 572 1166 415 
Pseudo-R^2c 0.825 0.853 0.706 0.942 0.944 0.862 0.965 

Cross-validation test performance (mean of 10 folds x 5 repeats) 
RMSE (+/- SE) 194  (+/- 10) 115 (+/- 8) 179 (+/- 22) 73 (+/- 10) 74 (+/- 6) 173 (+/- 19) 70 (+/- 10) 
MAPE (+/- SE) 127% (+/- 10) 90% (+/- 12) 71% (+/- 5) 34% (+/- 2) 83% (+/- 17) 70% (+/- 6) 38% (+/- 5) 
MAE (+/- SE) 157 (+/- 9) 102 (+/- 8) 147 (+/- 18) 62 (+/- 8) 64 (+/- 6) 141 (+/- 15) 58 (+/- 8) 

a combined variable formulated as (log(stv_adb +1) + log(stl_raw + 1)) 
b Akaike Information (Loss) Criterion (lower is better) 
c McFadden’s R^2 = 1 – (Deviance in Final Model / deviance in Intercept-only Model, higher is better)
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Figure 5-2 All City Pooled Model PM6 Prediction Plot (Full-year PC Data) 

 

 
Figure 5-3 Dallas Model PM6 Prediction Plot (Full-year PC Data) 
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Comparison to Recent Research on Motor Vehicle AADT Estimation Using StreetLight Data  

Unfortunately, existing models of bicycle volume estimation using third-party user data had too many 
differences in design, data, and reporting to directly compare with results presented here. However, a 
comparable effort was recently completed testing StreetLight’s AADT product as a predictor of motor 
vehicle AADT under the Transportation Pooled Fund program (TPF-5(384), 
https://www.pooledfund.org/Details/Study/636).  

StreetLight motorized AADT estimates differ from the raw bicycle counts used here in that they include 
sampling and contextual adjustment factors, based on sociodemographic, weather, and extensive 
traffic monitor calibration data (StreetLight Data, 2019). The StreetLight AADT estimates most closely 
resemble our static plus Streetlight (or Strava) data. 

Comparison of overall results makes little sense, since motor vehicle counts tend to concentrate on 
facilities with much higher volumes than almost any bicycle site, and it is generally accepted that 
estimation errors are inversely related to volume. Two separate validations were performed for the 
Pooled Fund study (Fish et al. [NREL], 2021; Tsapakis et al. [TTI], 2021). The NREL study helpfully 
provided their validation data for download, and we re-binned their results to line up with our All-City 
model volume tertiles (https://github.com/NREL/fhwa-streetlight-aadt-
validation/blob/master/inpt_data/nrel_aadt_results_06022021.csv). The TTI reporting bins quite a bit 
different but are included with that caveat. The table below compares the AADT results with our models 
PM4-PM6 predicting AADBT.     

Comparing results of bicycle and motor vehicle AADT using third-party user data  

 All City Pooled AADBT NREL AADT TTI 
AADTa 

 PM4 
STV 

+Stati
c 

PM5 
SL 

+Stati
c 

PM6 
STV 
+SL 

+Stati
c 

n SL 
AADT 

n SL 
AADT 

N 

%RMSE (volume 150-
467) 

38% 42% 36% 20 39% 9 58% 5 

%RMSE (volume 468-
1775) 

30% 32% 28% 20 37% 38 63% 65 

Combined %RMSE 34% 37% 32% 40 38% 47 63% 70 
MAPE (volume 150-467) 34% 37% 31% 20 31% 9 52% 5 
MAPE (volume 468-
1775) 

29% 31% 29% 20 28% 38 23% 65 

Combined MAPE 32% 34% 30% 40 29% 47 25% 70 
 a Reporting bins for TTI/Cambridge (bidirectional) results differ from others: 237-499 & 500-4,999 

Most of the AADT locations had higher volumes than any of our bike locations, and those tended to be 
predicted with more accuracy (NREL: overall %RMSE=9%, MAPE=19%; TTI/Cambridge: overall 
bidirectional %RMSE=25%, MAPE=15%). When comparing similar volume ranges, AADBT estimation 
using static plus third-party user data appears to be on par with motorized AADT estimates. The 
authors of both AADT reports rightly note that AADT imputed from short-duration counts is itself not 
without significant error. If a goal is to use third-party data as an equivalent alternative to SC counts, 
the performance target is 0% error, but maybe something on the order of 13% RMSE and 10% MAPE 
at lower-volume (AADT) locations may be acceptable (Hallenbeck et al., 2021). 

 

  

https://www.pooledfund.org/Details/Study/636
https://github.com/NREL/fhwa-streetlight-aadt-validation/blob/master/inpt_data/nrel_aadt_results_06022021.csv
https://github.com/NREL/fhwa-streetlight-aadt-validation/blob/master/inpt_data/nrel_aadt_results_06022021.csv
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 Full-year permanent plus short-duration count models 

To expand our sample, we also developed models using all available counters across 
the six regions. The larger sample allowed us to estimate additional count model 
specifications and test more subsets of the data, including an Oregon Pooled model and 
city-specific models beyond Dallas. We also tested more flexible machine learning 
modeling techniques, which are presented in a separate section. This section presents 
count model results from the full count dataset. 
 
5.2.4.1 Data 

Table 5-8 and Figure 5-4 summarize the count data used in the models. For less than 
full-year PC and all SC locations, AADBT was calculated using a factor group approach 
(see Factoring Approaches, Section 4.2.3). The number of counters ranged from 14 to 
104 per city. Although there is some imbalance in the sample across regions, we 
decided not to weight model estimation by region. Since the goal was to maximize the 
range of contexts considered and, hopefully, improve transferability to other settings, we 
felt this was the best tradeoff. Overall, AADBT for the PC sites ranged from 1 to 2,647 
(note: counters with zero counts could not be properly expanded and were dropped; see 
Chapter 4). The inclusion of SC and less than full-year PC sites resulted in a higher 
share of low-volume sites in the sample than for the full-year PC-only models.  
 
Table 5-8 Combined Usable PC and SC Locations Used for Modeling by Region 
and Year 

 Total Count Locations Mean AADBT +-SD AADBT Range 
 2017 2018 2019 2017 2018 2019 2017 2018 2019 

Portland, 
Oregon 

104 33 88 334± 
470 

499± 
634 

427 
±496 

9- 
2647 

43- 
2594 

6 - 1951 

Bend, 
Oregon 

0 58 63 0 97 
±96 

62  
±62 

0 5- 
393 

1 -  
344 

Eugene, 
Oregon 

0 86 76 0 224 
±294 

205 
±270 

0 13- 
1930 

5 - 1590 

Charlotte, 
North 
Carolina 

n.c. n.c. 14 n.c. n.c. 271 
±264 

n.c. n.c. 22 - 727 

Boulder, 
Colorado 

n.c. n.c. 39 n.c. n.c. 162 
±230 

n.c. n.c. 1 - 1086 

Dallas, 
Texas 

n.c. n.c. 31 n.c. n.c. 320 
±336 

n.c. n.c. 12 - 
1135 

All Sites 104 197 311 334± 

470 

234 

±371 

248  
±355 

9- 

2647 

5- 

2594 

1 - 1951 

n.c. = not considered 
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Figure 5-4 Histograms of Full Count Dataset by Year 

We considered a broad range of explanatory variables when specifying models (see 
Chapter 4). In some cases, variables were modified from their raw form. Table 5-9 
provides a reference of variables retained in the final, best-performing models. Bike and 
road facility type were measured at the count location itself. Other variables were 
measured within a half- or one-mile radius (miles of designated bike facilities, street 
intersection density, number of K-12 schools and colleges, and acres of park land), as 
noted in Table 5-9. We tested variables measured within shortest-path network buffers, 
but those specifications did not perform noticeably better than the straight-line buffers in 
terms of predictive performance and model fit. We retained the straight-line distance-
based variables for their simplicity and ease of expansion to network-wide application, 
where the computational burden of solving paths would be much greater. 
 
Several variations of bikeshare activity variables were tested as part of model 
development for the Oregon locations. While none were retained in the final models, 
bikeshare variables on their own had considerable explanatory power. It appears that 
bikeshare (or, perhaps, where bikeshare operates) might be a proxy for a range of 
contextual variables and might serve as a potential simple adjustment factor for count 
modeling where it exists. The significance of bikeshare faded away after specifying the 
full range of static variables. 
 
Finally, we should note that the 2018 and (Portland-only) 2017 models were minimally 
re-specified from their corresponding 2019 versions. We felt this would result in a more 
revealing test of transferability than attempting to optimize the models to each year.  We 
only summarize the modeling for the earlier years in the main text, but the Appendix 
provides full details.
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Table 5-9 Explanatory Variable Reference for Combined PC and SC Data Count Models (2019 Only) 
 mean 

Variable def All Oregon Bend Boulder Charlotte Dallas Eugene Portland 

log(stv_adb + 1) natural log of average daily 
total Strava counts 2.17 2.02 1.26 2.64 2.09 2.78 1.48 3.02 

log(stv_c_adb + 1) natural log of average daily 
“commute” Strava counts 1.47 1.49 0.68 1.44 1.20 1.50 0.92 2.56 

log(stv_nc_adb + 1) natural log of average daily 
“non-commute” Strava counts 1.75 1.51 0.98 2.41 1.77 2.64 1.11 2.24 

log(stl_raw + 1) natural log of total annual 
StreetLight bike trips 6.47 6.77 6.34 5.16 6.53 5.89 6.37 7.43 

log_stv_stl Combined Strava & 
Streetlight: ln(stv_adb +1) + 
ln(stl_raw + 1)a 8.64 8.79 7.60 7.80 8.62 8.67 7.85 10.45 

arterial_binary Location on primary or 
secondary arterial 0.22 0.24 0.44 0.23 0.29 0.03 0.16 0.18 

Bike.Commuter_hm Number of bike commuters 
(ACS) within ½-mi radius 187.12 234.37 46.24 116.48 13.63 8.33 175.77 418.18 

Bike.Commuter_om see above, w/in 1-mi radius 668.48 843.70 171.25 373.53 62.75 30.05 623.90 1509.79 

BikeFac_hm Miles of dedicated bike facility 
(on or off-street) in half-mile 
radius (does NOT include just 
signed bike routes or shared 
lanes) 5.03 5.16 5.04 6.00 7.22 1.85 6.81 3.80 

BikeFac_om see above, w/in 1-mile radius 18.63 19.37 19.54 20.30 31.19 5.46 24.04 15.16 

cycleway_binary location on dedicated OSM 
cycleway 0.19 0.18 0.11 0.03 0.36 0.42 0.39 0.05 

cycleway_lane_binary Location in bike lane 0.13 0.13 0.13 0.26 0.00 0.00 0.16 0.11 

Distance_to_CBD_mi straight-line distance to City 
Hall 3.74 2.69 2.50 8.63 3.28 5.51 2.41 3.07 

Log( Distance_to_CBD_mi+1) natural log of above 9.40 9.18 8.77 10.23 8.97 10.13 9.17 9.49 

Distance_to_Water_mi Straight-line distance to 
nearest water body 0.55 0.58 0.46 0.53 0.29 0.52 0.62 0.63 
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 mean 

Variable def All Oregon Bend Boulder Charlotte Dallas Eugene Portland 

footway_binary Location on footway (primarily 
pedestrian) 0.04 0.01 0.00 0.00 0.00 0.35 0.00 0.02 

intersection_density_hm street intersections per sq. mi. 
w/in 1/2-mi radius 

175.57 205.71 177.32 56.19 136.96 122.52 153.17 271.40 

intersection_density_hm^2 square of above 39698 48798 35394 10106 20490 18966 26719 77463 

intersection_density_om street intersections per sq. mi. 
w/in 1-mi radius 

165.77 193.10 163.81 51.97 140.67 120.15 144.19 256.31 

intersection_density_om^2 square of above 34658 42426 29290 8231 20924 17229 22510 69030 

Median_HH_income_om Area weighted block group 
median household income 
w/in 1-mi radius 

53731 54068 54531 86736 24155 23097 38787 66935 

log(min_dist_to_university) natural log of the straight-line 
distance to nearest major 
university 9.00 8.80 8.95 9.99 8.44 9.47 8.82 8.67 

Park_acres_hm Acres of park w/in 1/2-mile 
radius 26.95 14.66 13.06 4.64 40.74 138.77 19.91 11.19 

path_binary Location on off-street bike 
path 0.04 0.03 0.00 0.03 0.00 0.13 0.00 0.07 

pct_at_least_college_education_hm Area weighted block group % 
of population having at least a 
college degree w/in 1-mi 
radius 78.35 78.30 76.91 84.84 84.68 67.65 72.33 84.45 

primary_binary Location on primary arterial 0.03 0.03 0.10 0.03 0.00 0.03 0.01 0.00 

secondary_binary Location on secondary arterial 0.19 0.21 0.34 0.21 0.29 0.00 0.14 0.18 

(secondary_binary + 
tertiary_binary) 

Location on secondary or 
tertiary road 0.39 0.39 0.52 0.69 0.36 0.03 0.39 0.31 

sep_bikeway_binary Location on path or cycleway 0.24 0.21 0.11 0.08 0.50 0.55 0.39 0.11 

slope_hm Avg. absolute roadway grade 
(%) w/in ½-mi radius 

2.02 1.67 2.09 2.49 1.80 4.08 1.47 1.54 

slope_hm^2 Square of above 6.34 3.75 5.57 9.96 5.19 21.53 3.03 3.07 
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 mean 

Variable def All Oregon Bend Boulder Charlotte Dallas Eugene Portland 

slope_om Avg. absolute roadway grade 
(%) w/in 1-mi radius 

1.90 1.76 2.13 2.74 1.76 1.90 1.56 1.67 

tertiary_binary Location on tertiary road 0.20 0.18 0.18 0.49 0.07 0.03 0.25 0.13 
a    The standard count model form used here causes individual terms to be essentially multiplicative, but multiplying two count variables doesn’t make a lot of 
sense, logically (i.e., Strava times Streetlight). This formulation pre-combines the variables to get around the issue and allow them to behave in something like an 
additive fashion.   
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5.2.4.2 Results 

Table 5-10 summarizes prediction performance of 2019 pooled and city models using 
all available count locations. Test RMSE (presented as % of mean AADBT for 
comparability) was the primary prediction summary statistic considered. Test MAPE by 
volume tertile is also presented. Table 5-11 and Table 5-12, respectively, examine the 
benefit of city-specific models and of adjusting third-party Strava and Streetlight counts 
using static context variables. Full model specifications and model fit for 2019 data are 
presented in Table 5-13 through Table 5-20. Full results for 2017 (Portland only) and 
2018 (Oregon locations only) are provided in the Appendix. 
 
Table 5-10 2019 Combined PC and SC Data Count Models Prediction Performance 
Summary 

 PM0 PM1 PM2 PM3 PM4 PM5 PM6 

All City Pooled (n=311) 

%RMSE 105% 93% 115% 87% 72% 91% 71% 

MAPE (low vol. <49, n=104) 537% 669% 667% 415% 288% 383% 271% 

MAPE (mid vol. <193, n=104) 123% 89% 147% 82% 60% 105% 61% 

MAPE (high vol. <=1951, 
n=103) 

50% 54% 53% 45% 41% 49% 42% 

Oregon Pooled (n=227) 

%RMSE 103% 91% 118% 92% 72% 94% 69% 

MAPE (low vol. <52, n=76) 385% 510% 591% 367% 204% 236% 218% 

MAPE (mid vol. <178, n=76) 117% 85% 136% 86% 65% 101% 65% 

MAPE (high vol. <=1951, 
n=75) 

57% 53% 57% 52% 42% 56% 40% 

Portland (n=88) 

%RMSE 79% 66% 91% 65% 51% 66% 48% 

MAPE (low vol. <102, n=30) 345% 200% 528% 190% 121% 295% 146% 

MAPE (mid vol. <392, n=29) 105% 90% 122% 84% 69% 95% 66% 

MAPE (high vol. <=1951, 
n=29) 

38% 30% 40% 32% 26% 30% 23% 

Eugene (n=76) 

%RMSE 98% 93% 103% 93% 64% 84% 64% 

MAPE (low vol. <64, n=26) 217% 269% 357% 189% 162% 222% 138% 

MAPE (mid vol. <188, n=25) 64% 62% 76% 110% 45% 65% 40% 

MAPE (high vol. <=1590, 
n=25) 

58% 42% 49% 45% 37% 53% 38% 

Bend (n=63) 

%RMSE 85% 80% 89% 84% 79% 74% 74% 

MAPE (low vol. <33, n=21) 285% 418% 594% 568% 306% 281% 238% 
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 PM0 PM1 PM2 PM3 PM4 PM5 PM6 

MAPE (mid vol. <57, n=21) 57% 47% 60% 60% 56% 63% 52% 

MAPE (high vol. <=344, 
n=21) 

51% 38% 43% 40% 41% 47% 43% 

Boulder (n=39) 

%RMSE 60% 109% 89% 81% 46% 67% 49% 

MAPE (low vol. <10, n=13) 835% 1035% 1456% 501% 321% 747% 298% 

MAPE (mid vol. <108, n=13) 53% 112% 99% 114% 76% 52% 73% 

MAPE (high vol. <=1086, 
n=13) 

36% 60% 63% 48% 31% 43% 30% 

Charlotte (n=14) 

%RMSE 139% 77% 95% 92% 51% 56% 51% 

MAPE (low vol. <46, n=5) 362% 722% 838% 798% 307% 378% 408% 

MAPE (mid vol. <396, n=5) 77% 76% 258% 85% 53% 39% 44% 

MAPE (high vol. <=728, n=4) 46% 44% 56% 54% 46% 50% 56% 

Dallas (n=31) 

%RMSE 60% 39% 81% 24% 36% 52% 30% 

MAPE (low vol. <65, n=11) 494% 199% 149% 60% 203% 106% 74% 

MAPE (mid vol. <517, n=11) 71% 47% 57% 31% 43% 45% 27% 

MAPE (high vol. <=1135, 
n=10) 

31% 28% 47% 15% 24% 43% 19% 

Note: All statistics shown are mean of cross-validation test (out-of-sample) performance, best-performing model 
specification for each measure is shown in bold. n refers to number of count sites, not the number of iterations for 
statistic calculation, which is always tenfolds times five repeats equals 50. 
 
2019 All City Pooled and Oregon Pooled models with the full count dataset are for the 
most part consistent with the full-year PC pooled model results: combinations of data 
sources outperform single sources, and the best-fitting models combine all three. An 
exception is the Oregon Pooled model, where adding StreetLight to Strava data did not 
improve the model performance. In fact, StreetLight appeared to provide the least 
information of the three data sources, significantly underperforming Strava data whether 
individually or in combination with static variables. One possibility is that additional static 
variables are needed to adjust StreetLight, which is unique due to its need to impute 
travel mode. Variables capturing different aspects of the count location context might be 
needed to complement StreetLight. 
 
The general patterns also held, for the most part, in city-specific models, with a couple 
of specific results worth noting. In Dallas, no combination of static variables was found 
that improved on the combination of Strava and StreetLight data. It was interesting to 
note that while StreetLight performed poorly at Dallas locations on its own, it 
significantly improved the Strava estimates there. In Bend, the smallest community in 
our study with a maximum AADBT of 344, performance was the worst among study 
sites by most measures, and different variable combinations had little impact on a 
model’s predictive ability.   
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As was the case with the full-year PC All City Pooled model, prediction at low-volume 
(<49) sites proved challenging, with the best-performing model still demonstrating 
considerable prediction error (271% MAPE). Prediction success at mid- (>48) and high-
volume (>192) sites was again more promising at 61% and 42%, respectively, using the 
best-fitting overall model (PM6). Note that the volume bins are based on the count data, 
so all bins are lower volume compared with the full-year PC sample.  
 
City-specific MAPE varied considerably from place to place, but the same general 
trends held: highest-volume predictions were fairly good for best-performing city models 
(worst: 44% MAPE, best: 15%); mid-volume locations were more variable but generally 
fairly good (worst: 66% MAPE, best: 27%); and low-volume sites typically had MAPE 
well over 100%, with the exception of Dallas (60%).    
 
For the best overall model in each case, Table 5-11 provides results for the locations in 
each city by model type. As expected, city-specific models, with static variables and 
parameters tuned to local contexts, performed best in all cases. Results from pooling 
across multiple cities were mixed, with performance in Eugene nearly as good as a city-
specific model but equal to or marginally worse than the All City model in the other two 
cities.  
 
Table 5-11 City-specific Versus Pooled Model Performance by City (%RMSE, Best-
fit 2019 Models) 

 City-Specific Oregon Pooled All City Pooled 
Portland 48% 54% 54% 
Eugene 64% 67% 80% 
Bend 74% 91% 86% 
Boulder 46% N/A 95% 
Charlotte 51% N/A 139% 
Dallas 24% N/A 43% 

  N/A = Not Applicable; no regional pooled model available 
 
With the expanded list of locations, we found it no longer worked well to hold the base 
static model relatively fixed when combining with the Strava and StreetLight data. We 
instead worked to find the set of static variables that best “adjusted” the inherent biases 
or limitations in the third-party user data. As described in the literature review (see 
3.5.1), Strava users are known to differ from the general cycling population, and the 
static variables are consistent with that finding. The significance and sign of the static 
variables in model PM4 suggest Strava users might be overrepresented in higher-
income areas, on arterial routes, farther out of town, and where roads are steeper. 
Conversely, model results suggest Strava counts might need an upward adjustment 
where bike commuting activity and intersection densities are higher, and on separated 
bikeways and near parks. While the latter two variables might initially seem 
counterintuitive, they might be proxies for the types of low-stress locations that appeal 
to more casual bicycle users than the typical Strava app user. 
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StreetLight data, derived from a broad sample of smartphone users, should be more 
representative of the population at large, but interestingly the best-fitting adjustment 
factors were fairly similar to Strava, with a couple of notable differences. Income and 
terrain were not significant factors in the StreetLight model, and the distance from 
downtown adjustment factor was greatly reduced, consistent with the idea of a more 
typical set of cycling trips. However, the StreetLight model also included several 
significant positive factors (area bike commuting, intersection density, park acres, and 
separated bikeways) similar in magnitude to those same factors in the Strava model. 
Another interpretation is that the static variables here are just adjusting for imprecision 
inherent in StreetLight’s bicycling mode imputation. The significant, negative coefficients 
on higher-order streets (where transit or even driving trips might be more likely mistaken 
for cycling) would support that possibility. 
 
Table 5-12 summarizes the increase in error observed over all the 2019 pooled and 
city-specific models when using Strava or StreetLight data without adjustment factors 
(either static variables, or the other third-party user data). For example, using Strava 
counts to predict AADBT without static adjustment variables increased expected 
prediction error by a factor of about 1.4 (i.e., a 40% increase in %RMSE). That rule of 
thumb figure of 1.4 times the error held for StreetLight alone (vs. with static variables), 
and was only slightly lower for Strava plus StreetLight without static variables (1.3x). 
The case of Strava alone versus Strava plus StreetLight was the only mixed result. In 
some cases, combining the two third-party user data sources greatly improved results 
versus using Strava only (Dallas, Boulder), while in other cases, the addition of 
StreetLight only modestly improved or even reduced performance. 
 
Table 5-12 Increase in Error When Using Strava or StreetLight Data Alone 

 

Strava 
Only  
vs. 

Strava + 
StreetLight 

Strava 
Only  
vs. 

Strava + 
Static 

Strava 
Only  
vs. 
All 

StreetLight
Only  
vs. 

Strava + 
StreetLight 

StreetLight
Only  
vs. 

StreetLight 
+ Static 

StreetLight
Only  
vs. 
All 

Strava + 
StreetLight  

vs. 
All 

Meana 1.1x 1.4x 1.4x 1.5x 1.4x 1.8x 1.3x 

Min 0.8x 1.0x 1.1x 1.0x 1.2x 1.2x 0.8x 

Max 1.6x 2.4x 2.2x 3.4x 1.7x 2.7x 1.8x 

a Calculated as ratio of %RMSE       
 
We found that the static explanatory variables had to be modified considerably from the 
full-year PC pooled model, and from place to place. Variation across the cities 
themselves as well as the types of locations counted likely both contributed to the lack 
of a universal model form. In addition, while OSM-derived variables should have 
consistent definitions, they are likely interpreted and prioritized differently from city to 
city.  
 
The All City Pooled baseline static model fit the data moderately well and all coefficients 
had the expected signs. Model fit was not as good as observed for the full-year PC 
locations, but this is not so surprising given the more complex range of contexts 
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represented especially by the SC sites. Cycleways (designated bicycle facilities that can 
be either separated on-street or off-street) and off-street bike paths both increased the 
expected number of cyclists. Striped on-street bike lanes were found only on higher-
order roads, and in the model they fully offset the negative effect of tertiary roads, and 
partially offset the impact of primary and secondary streets on cycling activity, 
consistent with other findings (Broach et al., 2012). The number of regular bike 
commuters (measured via ACS data) in the vicinity increased expected counts, as did 
proximity to downtown, and acres of nearby parks, while distance to the nearest water 
body—which seemed to be a strong attractor in at least some study regions—
decreased expected cycling rates. Intersection density had a more complex connection 
to bike counts, initially increasing expected counts of cyclists, but at a declining rate as 
densities increased. This is consistent with the idea that beyond some density 
threshold, bicycling might actually become slower or less comfortable and. Therefore, 
less competitive with walking or other modes. 
 
The best-fitting Oregon Pooled model specification was similar to the All City Model 
(Oregon count locations made up about 73% of the 2019 data), but city-specific models 
were much more varied in terms of best-fit variable sets. This was likely partly due to 
low sample sizes in some regions, but some locally specific factors are worth 
highlighting. In Eugene, distance to the University of Oregon was an important variable 
in all model combinations. In Boulder, only distance from downtown was found to be a 
significant static explanatory variable. While that obviously would not serve as a useful 
model for most applications on its own, the combination of proximity to downtown and 
Strava counts actually resulted in good model fit and performance. There might be other 
cases where even a relatively simple combination of third-party user data and 
contextual adjustment can meet basic planning needs. Already mentioned was the 
Dallas example, perhaps the lone example we found where third-party user data (when 
combined) did not benefit much, if at all, from static variable adjustment and performed 
well on their own. 
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Table 5-13 AADBT Poisson All City Pooled Model All Count Locations 2019 Results (10-fold cross-validation with 
five repeats and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 4.8064*** 3.9872*** 1.0019** 1.7130*** 4.6863*** 2.5369*** 3.5488*** 
log(stv_adb +1)    0.4787*** 0.6098***  0.5407*** 
log(stv_c_adb +1)  0.5729***      
log(stv_nc_adb +1)  0.1492*      
log(stl_raw + 1)   0.6366*** 0.3464***   0.1835*** 
cycleway_binary 0.4739**       
path_binary 1.0604***       
cycleway_lane_binary 0.7425***     0.5495**  
Median_HH_income_om     -0.00001***  -0.00002*** 
arterial_binary     -0.3781**  -0.481*** 
primary_binary -0.9821.     -1.4389**  
secondary_binary -0.8825***     -1.0525***  
tertiary_binary -0.7080**     -0.7058**  
Bike.Commuter_om 0.0007***    0.0004**** 0.0004*** 0.0004*** 
Distance_to_CBD_mi -0.1058***       
Log( Distance_to_CBD_mi+1)     -0.4974***  -0.2627* 
Intersection_Density_om 0.0021***       
Intersection_Density_om^2 -0.0000009*       
Intersection_Density_hm      -0.0073**  
`I(Intersection_Density_hm^2)`      0.00002***  
Park_acres_hm 0.0063***    0.0018. 0.0038***  
sep_bikeway_binary     0.2515. 0.5157** 0.1827. 
Distance_to_Water_Body_mi -0.5364**       

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 311 311 311 311 311 311 311 
AICa 53,289 47,961 68,099 42,332 27,858 39,885 26,622 
Pseudo-R^2b 0.548 0.595 0.417 0.645 0.772 0.666 0.783 

Cross-validation test performance (mean of 10 folds x 5 repeats) 
RMSE (+/- SE) 260(+/- 9) 230 (+/- 8) 284 (+/- 9) 216 (+/- 9) 179 (+/-8) 226 (+/-7) 175 (+/-8) 
MAPE (+/- SE) 236% (+/- 8) 270% (+/-16) 287% (+/- 12) 181% (+/- 7) 129% (+/-5) 178% (+/-8) 124% (+/-5) 
MAE (+/- SE) 168 (+/- 4) 148 (+/- 4) 185 (+/- 5) 131 (+/- 4) 107 (+/-4) 141 (+/-4) 105 (+/-4) 

a Akaike Information (Loss) Criterion (lower is better); b McFadden’s R^2 = 1 – (Deviance in Final Model / deviance in Intercept-only Model, higher is better) 
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Table 5-14 AADBT Poisson Oregon Pooled Model All Counters 2019 Results (10-fold cross-validation with five repeats and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + 
Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) -0.0879 4.1467*** 0.1967 2.0364*** 5.0274*** 1.4320** 4.2627*** 
log(stv_adb +1)    0.5265*** 0.7202***   
log(stv_c_adb +1)  0.7887***     0.6247*** 
log(stv_nc_adb +1)  -0.1664.      
log(stl_raw + 1)   0.7729*** 0.2842***  0.5325*** 0.1408 
footway_binary -1.8576*       
sep_bikeway_binary 0.6089**     0.3625. 0.1095 
cycleway_lane_binary 0.5435*     0.5720**  
Median_HH_income_om     -0.00003***  -0.00002*** 
arterial_binary -0.5182*    -0.407***   
primary_binary      -2.0331*** -1.0393* 
secondary_binary      -1.1927***  
tertiary_binary      -0.9548***  
I(secondary_binary + 
tertiary_binary)  

   
 

 
-0.4560** 

Bike.Commuter_om 0.0005***    0.0003*** 0.0006*** 0.0002* 
Distance_to_CBD_mi     -0.1473*** -0.1792** -0.0959* 
BikeFac_om 0.0450***       
Intersection_Density_om 0.0070***       
pct_at_least_college_education_hm 0.0285*       
Park_acres_hm 0.0072.     0.0047.  
slope_hm       0.2609* 
Slope_hm^2       -0.0464 

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 227 227 227 227 227 227 227 
AICb 35,561 33,022 52,317 32,982 18,600 19,357 17,183 
Pseudo-R^2c 0.612 0.640 0.420 0.641 0.805 0.796 0.821 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 254 (+/- 11) 230 (+/- 10) 296 (+/- 11) 232 (+/- 10) 178 (+/- 7) 229 (+/- 10) 170 (+/- 7) 
MAPE (+/- SE) 190% (+/-

11) 
214% (+/- 

18) 
261% (+/- 11) 168% (+/- 7) 103% (+/- 4) 132% (+/- 6) 107% (+/- 5) 

MAE (+/- SE) 159 (+/- 6) 143 (+/- 5) 190 (+/- 6) 142 (+/- 4) 106 (+/- 3) 137 (+/- 5) 101 (+/- 3) 
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Table 5-15 AADBT Poisson Portland Model All Counters 2019 Results (10-fold cross-validation with five repeats and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 

 PM0: 
Static Model 

PM1: 
Strava Only 

PM2: 
StreetLight 

Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) -2.8207 3.2076*** 0.2326 2.0455** -1.7390*** -7.0047** -4.25*** 
log(stv_adb +1)     0.8055***  0.6332*** 
log(stv_c_adb +1)  0.8756***  0.7498***    
log(stl_raw + 1)   0.7448*** 0.2010*  0.6542*** 0.2128*** 
footway_binary      1.2148**  
sep_bikeway_binary 1.8412***    0.7312***  0.6723*** 
cycleway_lane_binary 1.5489**    -1.277*** 1.3716* -0.2674*** 
arterial_binary -0.9606*    1.159*** -1.4174**  
Median_HH_income_om     -0.00001***  -0.00001*** 
Bike.Commuter_om 0.0005*    0.0002*** 0.0004* 0.0002*** 
Distance_to_CBD_mi -0.1525.       
BikeFac_om        
intersection_density_hm 0.0078**    0.0046***  0.0046*** 
intersection_density_om      0.0075***  
        
pct_at_least_college_education_
hm 0.0677* 

   
0.0438*** 

0.0534* 
0.0537*** 

Park_acres_hm 0.025*    0.0172*** 0.0268** 0.0227*** 
Slope_hm -0.1893       

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 88 88 88 88 88 88 88 
AICb 15,811 12,718 25,695 12,177 7,044 12,349 7,347 
Pseudo-R^2c 0.657 0.727 0.434 0.7390 0.855 0.721 0.849 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 332 (+/- 13) 280 (+/- 12) 387 (+/- 17) 277 (+/- 12) 214 (+/- 8) 273 (+/-11) 202 (+/- 8) 
MAPE (+/- SE) 163% (+/- 13) 105% (+/- 8) 225% (+/- 12) 100% (+/- 7) 71% (+/-5) 139% (+/-12) 77% (+/-5) 
MAE (+/- SE) 245 (+/- 10) 191 (+/- 8) 276 (+/- 12) 192 (+/- 8) 151  (+/- 6) 202 (+/-10) 143 (+/-6) 
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Table 5-16 AADBT Poisson Eugene Model All Counters 2019 Results (10-fold cross-validation with five repeats 
and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 7.7066** 4.0453*** 1.1567 2.4735*** 6.8221*** 4.6527*** 5.4580*** 
log(stv_adb +1)     0.7485***  0.6509*** 
log(stv_c_adb +1)  2.0452***  0.8949***    
log(stv_nc_adb +1)  -0.8583*      
log(stl_raw + 1)   0.6187*** 0.2684*  0.4876*** 0.1832* 
sep_bikeway_binary 0.3440       
Median_HH_income_om        
arterial_binary -0.1544    -0.6493** -0.8021** -0.7241*** 
Bike_Commuter_om 0.0318    0.0005* 0.0003 0.0005** 
Distance_to_CBD_mi     -0.0520   
log(min_dist_to_university) -0.4261.    -0.3577*** -0.3317*** -0.3352*** 
Park_acres_hm 0.0085       
slope_om -0.0253       

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 76 76 76 76 76 76 76 
AICb 7,604 8,196 12,543 9,023 4,274 6,731 4,020 
Pseudo-R^2c 0.606 0.575 0.334 0.529 0.791 0.655 0.805 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 203 (+/- 17) 189 (+/- 17) 210 (+/- 18) 189 (+/- 18) 134 (+/- 14) 162 (+/- 12) 134 (+/- 13) 
MAPE (+/- SE) 113% (+/- 6) 123% (+/- 10) 158% (+/- 7) 110% (+/- 6) 78% (+/- 5) 107% (+/- 5) 72% (+/- 4) 
MAE (+/- SE) 129 (+/- 8) 118 (+/- 8) 145 (+/- 9) 118 (+/- 8) 86 (+/- 6) 115 (+/- 6) 83 (+/- 6) 
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Table 5-17 AADBT Poisson Bend Model All Counters 2019 Results (10-fold cross-validation with five repeats and 
robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static 
Model 

PM1: 
Strava Only 

PM2: 
StreetLight 

Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + 
Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava + 

StreetLight 
(Intercept) 0.8151 3.6002*** 3.1285*** 2.9138*** 4.1543*** -1.3451 3.0681*** 
log(stv_adb +1)     0.3235*  0.3103. 
log(stv_c_adb +1)  0.6993***  0.6363***    
log(stl_raw + 1)   0.71525* 0.1126.  0.2711** 0.1399 
Log(Bikeshare Crossing_hm+1)        
sep_bikeway_binary 0.3165    0.7611** 0.6864*** 0.9630** 
Bike.Commuter_om 0.0020     0.0028.  
Distance_to_CBD_mi -0.0445       
Log(Distance_to_CBD_mi)     -0.7771**   
cycleway_lane_binary       -0.6028. 
intersection_density_om 0.0032       
pct_at_least_college_education_hm 0.0344     0.0423***  
Park_acres_hm 0.0049       
slope_om -0.1705     -0.1180  

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 63 63 63 63 63 63 63 
AICb 2,179 2,930 3,143 2,839 2,162 1,989 1,947 
Pseudo-R^2c 0.391 0.132 0.060 0.163 0.394 0.454 0.468 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 53 (+/- 2) 52 (+/- 4) 55 (+/- 4) 52 (+/- 4) 50 (+/- 3) 47 (+/- 3) 47 (+/- 3) 
MAPE (+/- SE) 144% (+/- 

12) 
243% (+/- 

41) 
216% (+/- 25) 207% (+/- 28) 135% (+/- 

11) 
124% (+/- 10) 131% (+/- 13) 

MAE (+/- SE) 39 (+/- 1) 38 (+/- 2) 42% (+/- 2) 39 (+/- 2) 36 (+/- 2) 35 (+/- 2) 35 (+/- 2) 
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Table 5-18 AADBT Poisson Boulder Model All Counters 2019 Results (10-fold cross-validation with five repeats 
and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: StreetLight 

Only 
PM3: 

Strava + 
StreetLight 

PM4: 
Static + 
Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 6.8581*** 3.8999*** 2.2417 *** 1.7176*** 5.2415*** 6.0857*** 4.7252*** 
log(stv_adb +1)     0.4817***  0.4625*** 
log(stv_c_adb +1)  1.5774***  0.7457***    
log(stv_nc_adb +1)  -0.6511**      
log(stl_raw + 1)   0.4737*** 0.3195***  0.09934*** 0.0748 
log(Distance_to_CBD_mi + 1) -1.2115***    -1.1612*** -1.1030*** -1.0829*** 

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 39 39 39 39 39 39 39 
AICb 1,919 3,972 4,887 3,348 1220 1,799 1,162 
Pseudo-R^2c 0.826 0.614 0.520 0.679 0.898 0.838 0.904 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 98 (+/- 10) 170 (+/- 17) 149 (+/- 17) 136 (+/- 16) 74 (+/- 6) 109 (+/- 12) 79 (+/- 9) 
MAPE (+/- SE) 336% (+/- 45) 451% (+/- 74 597% (+/- 104) 245% (+/- 

34) 
152% (+/- 16) 307% (+/- 43) 144% (+/- 15) 

MAE (+/- SE) 71 (+/- 6) 116 (+/- 10) 109 (+/- 10) 94 (+/- 9) 54 (+/-4) 77 (+/-7) 56(+/-5) 
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Table 5-19 AADBT Poisson Charlotte Model All Counters 2019 Results (10-fold cross-validation with five repeats 
and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 4.9178*** 4.2415*** 4.3813 1.0849 2.9857* 0.8474 1.0323 
log(stv_adb +1)     0.8786   
log(stv_c_adb +1)  -0.9615.   -1.2431*   0.1551 
log(stv_nc_adb +1)  1.3141.  1.5142**    
log(stl_raw + 1)   0.1852 0.4704  0.6120 0.5469 
sep_bikeway_binary 0.8905    0.8507* 0.7902 0.7617 
cycleway_lane_binary     -0.00003   
arterial_binary -1.5340       
BikeFac_hm     -0.6669 -1.5688* -1.5057* 
Distance_to_CBD_mi -0.0468       
Park_acres_hm 0.0099*    0.0129* 0.0086. 0.00977* 

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
N 14 14 14 14 14 14 14 
AICb 929 2398 3,575 2,230 660 797 671 
Pseudo-R^2c 0.767 0.350 0.017 0.398 0.843 0.804 0.810 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 154 (+/- 16) 206 (+/- 28) 271 (+/- 14) 240 (+/- 33) 138 (+/- 17) 151 (+/- 22) 165(+/- 24) 
MAPE (+/- SE) 167% (+/- 33) 269% (+/- 59) 409% (+/- 55) 301% (+/- 73) 141% (+/- 31) 163% (+/- 44) 180% (+/- 50) 
MAE (+/- SE) 149 (+/- 16) 197 (+/- 27) 269 (+/- 13) 227 (+/- 31) 126(+/- 14) 139(+/- 20) 152(+/- 21) 
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Table 5-20 AADBT Poisson Dallas Model All Counters 2019 Results (10-fold cross-validation with five repeats and 
robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 3.0939*** 3.3634*** 0.8926 1.0355*** 2.3044** 1.7503* 0.7928 
Log(stv_adb + 1)        
log(stv_c_adb +1)  0.6301**      
log(stv_nc_adb +1)  0.0940      
log(stl_raw + 1)   0.7187***   0.4366**  
log(stv_stl)a    0.4487***   0.3878*** 
intersection_density_om 0.0127***    0.0060. 0.0062* 0.0035. 
Distance_to_Water_Body_mi -1.4731***    -0.2401 -0.8204* -0.1243 
Distance_to_CBD_mi -0.0684    -0.0447  -0.0163 
Park_acres_hm 0.0049***    0.0019* 0.0028 0.0012 
Slope_om 0.5769***    0.3320* 0.0053 0.1892 

Model fit statistics (presented for final, best-fitting model for each variable set, including all observations) 
AICb 2,706 1,574 2,938 744 1,170 1,699 654 
Pseudo-R^2c 0.765 0.872 0.743 0.950 0.911 0.860 0.959 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 178 (+/- 14) 124 (+/- 7) 195 (+/- 17) 76 (+/- 8) 111 (+/- 8) 167 (+/- 15) 94 (+/- 8) 
MAPE (+/- SE) 225% (+/- 53) 96% (+/- 10) 78% (+/- 11) 34% (+/- 2) 100% (+/- 18) 66% (+/- 7) 40% (+/- 4) 
MAE (+/- SE) 144 (+/- 10) 102 (+/- 6) 146 (+/- 13) 59 (+/- 6) 92 (+/- 8) 125 (+/- 11) 69 (+/-6) 
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Figure 5-5 through Figure 5-7 provide selected model prediction plots for the pooled 
models. Additional plots are provided in the Appendix. Note that predictions shown 
represent the mean of each observation for the out-of-sample test sets in the cross-
validation procedure. It was encouraging to see that even without any weighting or 
region-specific variables, pooled models fit each regional subsample reasonably well, 
without extreme bias or excessive outliers. The two most apparent outliers are two 
underpredicted high-volume locations in Eugene. Both sites are on the University of 
Oregon campus, along an internal street that lacked specific facility attributes in the 
OSM data.  
 

 
Figure 5-5 PM6 Pooled Count 2019 Model Prediction Plots by Region for All Count 
Locations 
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Figure 5-6 PM6 Pooled Count 2019 Model Prediction Plot for All Count Locations 

 
Figure 5-7 PM6 Oregon Pooled Count 2019 Model Prediction Plot for All Count 
Locations 
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Additional data from 2018 (all Oregon locations, Strava, and StreetLight) and 2017 
(Portland, no StreetLight) provided further tests of the model and data’s stability and 
transferability over time and space. Note that while there was some repetition, many 
count locations differed between years, making these tests more like a joint test of 
temporal and spatial transferability. Table 5-21 summarizes the results of two types of 
model transfer. First, 2019 model specifications for Oregon Pooled and city-specific 
models were transferred to 2018 data, and parameters were re-estimated. Second, 
2019 models were used to predict 2018 data without re-estimating parameters. With re-
estimation, the familiar pattern held (i.e., the best-fitting models included all sets of 
variables (PM6), followed by the static-adjusted Strava models (PM4), and then the rest. 
Comparing error rates with the corresponding models in Table 5-10 shows performance 
within expectations (+/- <10 %RMSE) despite the time shift and sample change. 
Without re-estimation, however, results changed significantly. Error rates, in general, 
are higher, and the Strava plus static models (PM4) were clearly preferred in all city-
specific models and tied for best fit in the pooled model. On average, reusing model 
estimates resulted in a 10-50% increase in the error rate across models.   
 
Table 5-21 Applying 2019 Models to 2018 Data with and Without Reestimation 

 %RMSE 

 PM0 PM1 PM2 PM3 PM4 PM5 PM6 

2019 Model Specifications Applied to 2018 Data WITH re-estimated coefficients  

Portland (n=33) 50% 47% 54% 46% 43% 48% 33% 

Eugene (n=86) 99% 83% 94% 92% 73% 88% 65% 

Bend (n=57) 98% 88% 90% 88% 81% 86% 75% 

Oregon Pooled (n=176) 106% 99% 113% 97% 91% 101% 71% 

2019 Model Specifications Applied to 2018 Data WITHOUT re-estimating coefficients 

Portland (n=33) 82% 76% 107% 75% 51% 79% 63% 

Eugene (n=86) 106% 107% 127% 110% 77% 102% 94% 

Bend (n=57) 96% 100% 106% 101% 89% 100% 101% 

Oregon Pooled (n=176) 113% 115% 138% 115% 95% 121% 95% 

Error multiple when NOT re-estimating 

Portland (n=33) 1.6 1.6 2.0 1.6 1.2 1.7 1.9 

Eugene (n=86) 1.1 1.3 1.3 1.2 1.1 1.2 1.4 

Bend (n=57) 1.0 1.1 1.2 1.2 1.1 1.2 1.3 

Oregon Pooled (n=176) 1.1 1.2 1.2 1.2 1.0 1.2 1.3 

 
The relatively better performance of the Strava plus static models (PM4) over the full 
model (PM6) might reflect a number of underlying reasons. Despite our efforts to avoid 
overfitting, these results are consistent with the more complex model potentially being 
less adaptable to new data. A contributing factor might also be technical change in 
StreetLight data from 2018-2019, during which time its base sample of trip data was 
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expanded. This would explain why models including StreetLight fared worse than others 
when holding parameters constant.  
 
The following section expands the modeling effort further to consider more flexible 
model forms estimated using machine learning techniques. An overall summary of the 
modeling exercises follows.  

5.3 ADVANCED MODELING USING MACHINE LEARNING 

We developed a range of models using various machine learning techniques to 
understand the feasibility of using more complex and flexible model forms in predicting 
bicycle counts on a network. The models also use different data fusion and variable 
extraction techniques to compare and evaluate the values of third-party user data for 
modeling bicycle activity with machine learning techniques.  
 
As shown in Table 5-1, this section used three sets of models specified – All City 
Pooled, Oregon Pooled, and city-specific models (Portland and Eugene only) to ensure 
a larger sample size to develop machine learning models. Like the count models, the 
modeling sequentially adds the crowdsourced data and static location variables to 
understand their roles in AADBT predictions. All models use 10-fold cross-validation 
with five repeats to avoid overfitting while maintaining sufficient data for model 
development.  
 

 Machine learning modeling description 

This study uses Random Forest (RF) models to estimate AADBT. A decision tree 
(Figure 5-9 (a)) repeatedly partitions the data into multiple subspaces (i.e., smaller 
trees) until the outcomes in each final subspace become as homogeneous as possible. 
RF (Figure 5-9 (b)) builds multiple decision trees and merges them (forest) to obtain a 
more accurate and stable prediction. Therefore, a parent node splits into exactly two 
child nodes, and a child node will act again as a parent node until the branches cannot 
be grown any further without gaining benefits of growing out the tree. RF considers 
additional randomness within the model by adding more variables in smaller trees within 
a forest, which likely produces a wide diversity that generally results in a better model. 
RF aims to estimate modeling coefficients to fit the observed AADBT based on an 
information gain theory to select the most important features for the forest. Information 
gain detects the features that provide maximum information about the regression 
outputs. Gain indicates the relative contribution of the corresponding features to the 
model and is calculated based on each feature’s contribution for each tree in the model. 
A higher value of importance compared to another feature implies that it is a better 
feature for prediction.  
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(a)  

(b)  
Figure 5-8 (a) A Decision Tree, (b) Random Forest 

 
We tuned the models’ parameters that control the model building process (referred to as 
hyperparameters) using Hyper-opt TPE (Tree-structured Parzen Estimator Approach) 
algorithms. TPE is a sequential model-based optimization (SMBO) approach to tune the 
hyperparameters. SMBO methods sequentially construct models to approximate the 
performance of hyperparameters based on historical measurements and subsequently 
choose new hyperparameters to test based on this model. The TPE approach models 
P(x|y) and P(y) where x represents hyperparameters and y indicates an associated 
quality score.  
 

 Machine learning (ML) modeling data fusion  

We used random forest algorithms with different data fusions techniques as shown 
below: 

 Model 1: AADBT=f(StreetLight) 
Model 2:  AADBT=f(Strava) 
Model 3:  AADBT=f(Strava +StreetLight) 
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Model 4: AADBT=f(Strava + StreetLight+Static) 
Model 5: AADBT=f(Strava + StreetLight+Static+Bikeshare) 

 
Using the aforementioned data fusion structures, the research team used 2019 data to 
develop four models by geographic regions: (i) all six cities (All City Pooled model, 
N=311), (ii) three cities from Oregon (Oregon Pooled model, N=227), (iii) Portland only 
(N=88), and (iv) Eugene only (N=77). The four remaining cities - Dallas, Charlotte, 
Boulder, and Bend were not considered for city-specific machine learning models due to 
limited sample sizes. 
 
Four different additional variable sets were created that were based on buffer types and 
sizes to consider for random forest models (See Table 5-22). 
 
Table 5-22 Buffer Fusion Structure for Machine Learning 

 Buffer type Size # of variables 

Full Data Air and Network 0.5, 1, and 2 miles 200 

Selected Data Air 0.5 and 1 miles 99 

Network 0.5, 1, and 2 miles 133 

Network 0.5 and 1 miles 99 

Network 1 and 2 miles 100 

 
 Random Forest modeling results  

5.3.3.1 Random Forest data fusion performance 

Table 5-23 shows the overall performance of each RF model using its percentage of 
root mean square error (RMSE) by data fusion structure, and Table 5-24 further breaks 
down the results with three different volume bins - high, mid, and low volumes. Each of 
these bins consists of one-third of the total data points for each region. The specific 
AADBT range for each bin is indicated in the Table 5-24. For the four geographical 
levels (All City Pooled, Oregon Pooled, Portland and Eugene), there are five data fusion 
models (StreetLight only, Strava only, StreetLight + Strava, static + StreetLight + Strava, 
and static + StreetLight + Strava + bikeshare). The RF model performs best with full 
data fusion (Strava and StreetLight with static variables) while bikeshare data does not 
further improve the model performance. The modeling results indicate that Strava plays 
a more important role than StreetLight. When each model’s performance is broken 
down by volume bin, the best RMSE is 14% for a high-volume bin. The All City Pooled 
and Oregon Pooled models show similar RMSEs at 9% while individual city-specific 
models show varying levels of error. For instance, Eugene and Portland show 11% and 
19% of RMSE, respectively. Finally, for the low-volume bin, StreetLight alone 
significantly overestimates AADBT (except for Eugene), likely due to its limited 
coverage for the low-volume locations. The Strava-only model performs well than the 
Streetlight-only model; however, the full data fusion with static, Strava and StreetLight 
significantly improves the model performance.  
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Table 5-23 Overall RF Fusion Model Results (%RMSE) 

Study Area SL Strava Sl+Strava Static+SL+S
trava 

Static+SL+Str
ava+BS 

ALL City Pooled (n=312) 122% 107% 94% 72% N/A 

Oregon Pooled (n=228) 125% 95% 92% 71% 74% 

Portland (n=88) 93% 71% 66% 54% 55% 

Eugene (n=77) 101% 85% 83% 67% 68% 

 
Table 5-24 RF Fusion Model Results (%RMSE) for Different Geographic Regions 
by Volume Breakdown 

Volume 
Bin 

Study Area (Volume 
Range) 

SL Strava Sl+Strava Static+SL 
+Strava 

Static+Strava 
+SL+BS 

Low 
Volume 

ALL City Pooled (0-48) 121% 85% 63% 50% N/A 
Oregon Pooled (0-51) 143% 68% 68% 48% 47% 
Portland (5-101) 152% 46% 76% 59% 60% 
Eugene (5-63) 61% 61% 49% 33% 34% 

Mid 
Volume 

ALL City Pooled (49-190) 19% 16% 14% 9% N/A 
Oregon Pooled (52-177) 18% 14% 11% 9% 9% 
Portland (102-391) 35% 27% 22% 19% 19% 
Eugene (64-187) 20% 11% 11% 11% 12% 

High 
Volume 

ALL City Pooled (191-
1951) 

29% 17% 23% 18% N/A 

Oregon Pooled (178-
1951) 

29% 24% 23% 20% 20% 

Portland (392-1951) 28% 26% 25% 20% 20% 
Eugene (188-1590) 20% 17% 17% 14% 14% 

 
Another measure of performance, MAPE (Mean Absolute Percent Error) is presented in 
Table 5-25 and Table 5-26. MAPE has reduced significantly when static, StreetLight 
and Strava fused together in the model (Table 5-25). For example, the All City Pooled 
model’s overall MAPE has reduced from 325 to 135, Oregon Pooled model’s MAPE 
from 287 to 157, and Eugene model’s MAPE from 152 to 83 when Strava and static 
variables were combined with Streetlight. Bikeshare did not improve the prediction. 
Strava-only model provides better prediction compared to StreetLight-only model as 
Strava may represent more close value of ground truth compared to StreetLight. The 
breakdown of the model performance by volume bin in Table 5-26 shows that the 
results are consistent with count modeling findings. High-volume sites show lower 
MAPE compare to mid- and low-volume sites. 
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Table 5-25 Overall MAPE Results 
Study Area SL Strava Sl+Strava Static+SL+

Strava 
Static+SL+S

trava+BS 

ALL City Pooled (n=311) 325 272 170 135 N/A 

Oregon Pooled (n = 227) 287 190 179 157 150 

Portland. (n = 88) 209 112 156 105 104 

Eugene (n = 77) 152 144 123 83 85 

 
Table 5-26 RF Fusion Model Results (MAPE) for Different Geographic Regions by 
Volume Breakdown 

Volume Bin Study Area (Volume 
Range) 

SL Strava Sl+Strava Static+SL 
+Strava 

Static+Strava 
+SL+BS 

Low 
Volume 

ALL City Pooled (0-48) 769 657 365 307 N/A 
Oregon Pooled (0-51) 677 424 409 382 357 
Portland (5-101) 464 223 363 222 219 
Eugene (5-63) 329 355 293 183 186 

Mid Volume ALL City Pooled (49-190) 133 104 95 58 N/A 
Oregon Pooled (52-177) 118 96 74 59 61 
Portland (102-391) 136 89 82 68 69 
Eugene (64-187) 87 54 50 50 53 

High 
Volume 

ALL City Pooled (191-
1951) 

60 56 49 40 N/A 

Oregon Pooled (178-
1951) 

65 54 53 43 44 

Portland (392-1951) 37 36 33 27 28 
Eugene (188-1590) 48 37 40 34 34 

 
Figure 5-9 compares the distribution of observed and estimated AADBTs from the RF 
All City Pooled model using the three data sources – static, Strava and StreetLight. The 
distribution patterns confirm that the majority of the sites had volumes below 250, 
particularly the cities of Bend, Boulder, and Charlotte. In Eugene and Boulder (Figure 
5-10), the model appears to estimate AADBT more closely than other locations, 
whereas in Portland, the model tends to overestimate volumes at low- and medium-
volume locations while underestimating at high-volume sites.     
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Figure 5-9 All City Pooled RF Model [Static+Strava+SL] Observed Vs Prediction  

Table 5-27 and Figure 5-10 compare the performances of the pooled model by region. 
Portland and Dallas show lower RMSEs (better fit) than other regions. This may be 
because Dallas mostly collects counts at locations that share similar user/geographic 
characteristics. For example, Dallas collects counts along bike paths and Portland 
captures more commuters, and this reduces variations in both Strava and StreetLight in 
capturing the bicycle volumes. Mixed recreational and utilitarian activity patterns of 
Bend and Charlotte compared to remaining cities could contribute to their higher error 
rates (% RMSE). Boulder and Eugene are also significantly underestimated by the 
model. Due to various volume ranges and AADBT variations within each region, the All 
City Pooled model with combined data from six different regions still struggles to provide 
an effective generalized model for all regions. 
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Table 5-27 Pooled RF Model [Static+Strava+SL] Performance Breakdown by 
Region 

Study Area % RMSE MAPE MAE 

Portland (n=88) 57 109 169 

Eugene (n=77) 87 70 82 

Bend (n=63) 95 163 42 

Boulder (n=39) 83 216 79 

Charlotte (n=14) 100 258 232 

Dallas (n=31) 47 155 117 

 

 
Figure 5-10 Pooled RF Model [Static+Strava+SL] Observed Vs Prediction Fit by 
Region 

 
5.3.3.2 Buffer fusion results  

Although RF models select optimal variables that ensure the best performance, a 
substantial number of features selected by RF models could hamper this variable 
selection process to achieve optimality. We found that a reduced number of variables 
that are pre-selected prior to the model development could help the model to select the 
best-performing variables. We created four subsets of data features based on different 
buffer types and sizes to test the optimal variable selection processes of the RF models. 
Table 5-28 shows the comparison of RF model performance in terms of MAPE, RMSE, 
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and MAE for different data and buffer sets. The results indicate that variables extracted 
at a half-mile and one-mile air buffer show the best performance. This could be because 
air (Euclidean) buffers create more homogenous sets of variables at static locations 
regardless of network or geographical characteristics.  
 
Table 5-28 RF Model Performance for Different Set of Variable Sets 

Datasets MAPE RMSE MAE 

Full variable set [312 data pointsx200 variables] 153 180 112 

Half mile + One-mile air buffers + point variables [312 data 
points x 99 variables] 

135 179 109 

Half mile + One mile + Two-mile  network buffers + point 
variables [312 data points x 133 variables] 

153 179 111 

Half miles + One-mile network buffers + point variables[312 
data points x 99 variables] 

146 180 110 

One mile + Two miles network buffers + point variables [312 
data points x 100 variables] 

147 175 108 

 
5.3.3.3 Variable importance 

The RF models select the optimal variables and Figure 5-11 shows the most important 
40 variables of the All City Pooled model. The results show that Strava- and StreetLight-
related variables are some of the most important factors used at the root level of the 
forest. Intersection density within the one-mile buffer; demographics (median age, 
median household income, number of jobs, employment density, percentage African 
American, and population density); distance metrics (distance to water body, industrial 
area, park, CBD, and forest); land use (park area, industrial area); and bicycle facilities 
are also selected as important predictors to estimate AADBT in the pool model. The rest 
of the variables’ importance values and variable definitions appear in the Appendix.  
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Figure 5-11 All City Pooled RF Model [Static+Strava+SL] Top 40 Variables  
*Note: om=one-mile Euclidean buffer, hm=half-mile Euclidean buffer, stv=Strava, c=commute, nc=non-commute, 
stl=StreetLight 

5.4 OVERALL MODELING RESULTS AND SUMMARY 

We developed a range of model forms over multiple subsets of permanent and short-
duration count, third-party user, and supporting contextual “static” data across six 
regions. Conventional multivariate count models as well as more flexible machine 
learning exercises were conducted. The general consistency of the models and key 
findings makes us fairly confident of some of the findings in this emerging area of 
research.  
 
Strava and StreetLight data provide valuable information on bicycling activity, but they 
reach their full potential only when combined with more traditional contextual variables 
measuring the immediate context and the general neighborhood of a given network 
location. In almost every scenario considered, the best-performing models used a 
combination of all three available data sources: Strava, StreetLight, and static variables 
that adjust or augment the third-party user data. In most cases, the combination of 
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Strava and static variables performed about as well as the best-fitting models. 
StreetLight data tended to provide only marginal improvements, but there were specific 
instances where StreetLight was a valuable complement to Strava data, such as higher 
bicycle volume sites with few transit users sharing the link.  
 
Useful static variable sets can be constructed using standardized, public data sources, 
such as OSM and Census data, without the need to gather and normalize locally 
sourced data. Further, simple specifications—at point locations and within Euclidean 
“crow fly” buffers—proved adequate, actually outperforming more involved measures 
based on network shortest-path buffers or bikeshare GPS data.  
 
Specifying conventional multivariate count models requires a fair amount of effort. If 
count location samples are adequate—perhaps 100 locations, although 200 is better—
carefully chosen machine learning techniques like the Random Forest models 
presented here can reduce the effort considerably without much, if any, performance 
penalty. The more flexible form of these models means they are likely to improve and 
surpass conventional count models as sample sizes increase further.    
 
As expected, even where local data are limited, there are gains to be had from creating 
more localized models—whether regional or, better yet, city-specific—versus pooled 
models built using data from multiple regions. At the same time, where pooling data is 
necessary, those models can work reasonably well—without extreme error or bias—
across a range of localities, although with an expected increase in error. In this case, all 
locales contributed at least some count sites to the All City Pooled model; further testing 
would be needed to better understand transferability to locations outside the pool. 
 
Below a certain volume threshold (somewhere below around 50-200 cyclists per day, 
depending on the scope of the model and number of counters), current data and 
modeling techniques can be expected to produce very noisy count estimates (MAPE > 
100%). At medium volumes (beginning somewhere between 50-200), decent if not 
exacting estimates are possible (40-60% MAPE). At higher volumes (roughly > 200 
AADBT), fairly accurate predicted volumes are feasible (15-40% MAPE), especially if 
models can be calibrated to a specific city and year. Of course, that means to 
understand likely error at locations without counts requires first approximating the 
volume level, an important need for future research and (count program) practice.  
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6 CONCLUSIONS AND RECOMMENDATIONS 

The work presented here lays a foundation for further evaluation of emerging data 
sources and bicycle count modeling methods more generally. One thing that the 
process made clear is that rather than replacing conventional bike data sources and 
count programs, big data sources like Strava and StreetLight actually make the old 
“small” data even more important. As we move away from simple correlation analysis 
using convenient permanent count sites and toward more rigorous and ambitious 
evaluation and applications, deficiencies in count and related data become clear.  
 
Despite enthusiastic support and help from multiple agencies and jurisdictions, 
accessing and standardizing bike count data was challenging. Permanent count data 
came in multiple formats, and access was often delayed more than a calendar year. 
When we were able to access the data, we found poor uptime at many sites, resulting in 
only about two out of every three permanent counters able to provide 10 months of valid 
data per year. Short-duration counts were even more challenging to access and 
process. We also noted a tendency of regions to locate permanent counters in clusters 
of similar location types, resulting in little information about bicycle activity in different 
contexts. Robust, organized, and accessible count programs will be essential to get the 
most out of emerging data. 
 
We also noted challenges with conventional modeling methods for emerging data 
sources. Direct demand and related models to date have mostly worked from “zero” in 
the sense that little direct information about bicycle use was typically available at a 
given location. That has led to model forms focused on extracting correlations of 
bicycling with adjacent land use, street networks, and other surrogate measures of use. 
These model forms and variable sets may be less suited to adjusting or extrapolating 
from data on actual use of a facility. We feel some progress was made, but this is an 
area in need of further research. 
 
Third-party user data, theoretically available anywhere at any time, also puts fresh 
demands on contextual data such as land use, sociodemographic, and network data. 
Past standard practice has been to diligently assemble a static dataset, often for just 
one locale and at a single point in time. We initially explored this path but the relatively 
high consistency and availability of data from Strava and StreetLight expose the 
weaknesses in relying on patchy local jurisdiction data to support analysis. Many of the 
problems encountered with count data are also present in supporting data: access, 
standardization, timeliness, and extent. Big data do not stop at city boundaries, for 
example. This led us to pivot toward more standard open access data from 
OpenStreetMap (OSM) and similar standard, open datasets. Gathering data in this way 
is not without its own challenges, but automated processing techniques can partly offset 
the added effort of assembling larger datasets.  
 
Although the initial modeling results suggest work remains to be done, they were also 
encouraging. We were able to assemble a standardized, reproducible dataset spanning 
six regions and to incorporate and apply two emerging data sources in a standard way. 
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The general consistency of the models adds confidence to some key findings. Strava 
and StreetLight can each provide valuable information on bicycle volumes at specific 
locations, but they still require traditional “small” data to help fill their blind spots. In 
almost every scenario considered, the best-performing models used a combination of 
three available data sources: Strava, StreetLight, and static contextual variables. 
Bikeshare, while showing potential alone, did not improve performance when added to 
the other data, at least as we specified it here. For our set of available count locations in 
six cities, Strava counts provided the most information about total bicycling activity. 
Adjusting Strava counts with contextual static variables noticeably improved model 
performance. Adding Streetlight counts to the Strava and static variables produced only 
marginal improvement, with some exceptions noted in the text.   
 
We also tested various constructions of the data over time and space and compared 
more flexible machine learning methods with conventional multivariate count models. 
With the number of counter locations falling well short of “big” data, machine learning 
models did not, by and large, make better predictions than count models. That said, the 
Random Forest method we explored did more or less match the performance of 
carefully hand-specified models using a much more automated—and potentially more 
portable—process. The more flexible models would likely surpass conventional models 
given a larger sample of counts. We also found, unsurprisingly, that city-specific models 
outperformed a broader national pooled mode in terms of local performance. A regional 
pooled model (Oregon) produced mixed results. Local models required specifically 
tailored sets of contextual static variables to maximize performance and for that reason 
would be unlikely to transfer well to another locale, although we did not test that 
specifically. Pooled models might be a safer choice, although increased error rates 
should be expected. Finally, the models we developed transferred reasonably well to a 
prior year’s data in the same regions—even where count locations changed 
considerably—but we found it was important to reestimate model parameters from year 
to year for reliable performance, likely due at least in part to changes in third-party user 
data samples and methodology.  
 
At the current time, data and methods appear capable of decent prediction performance 
at medium- to high-volume sites, at least at the sorts of locations where counts are 
available. Emerging third-party data are helpful. Future research could evaluate if these 
findings apply to pedestrian volume estimation. A key ongoing challenge is identifying 
which locations throughout a network are likely to be estimated reliably, or at least to be 
able to provide a likely error range along with each predicted count. A related challenge 
is designing programs to count cyclists where we typically have not to collect the 
information we need to expand our models and methods to cover more of complete 
networks more completely.  
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6.1 RECOMMENDATIONS 

Recommendations are grouped into three categories to aid practitioners responsible for 
establishing bicycle count programs and modelers: preparing data for modeling, using 
results from modeling, and bicycle traffic monitoring. 
 
Recommendations on preparing data for modeling: 
 

● Emerging data are useful for predicting bicycle travel on individual road 
segments across a network and can improve model fit compared to models built 
on static variables alone. 

o Strava is generally a better-performing predictor of bicycle travel than 
StreetLight, but the two data sources tend to complement each other. 

● Although it is often recommended to use more complex network buffers over 
simpler Euclidean buffers, they may not provide significantly better information to 
justify the effort required to develop them. It should be noted that we tested only 
shortest network paths here. More behaviorally realistic routing that considered 
the presence and quality of bicycle facilities might provide more useful measures 
and should continue to be explored in future work.   

● One-mile and half-mile radius buffers are more useful for developing static 
variables than two-mile buffers. A two-mile radius can take up most of the study 
area, and thus the resulting buffer will not vary significantly from road segment to 
road segment. There is value in having someone familiar with both bicycle 
modeling and OSM data to pre-screen the variable list for model development, in 
order to reduce the number of potential predictor variables prior to model 
development. Machine learning is not (yet) able to improve upon human expert 
data selection, at least at likely count data sample sizes. 

● Using consistent publicly available data sources from city to city (such as 
OpenStreetMap data) can result in easier-to-process data and substantially 
reduce data preparation time (using the scripts discussed in this report) and allow 
comparison across jurisdictions. However, these data sources may not be as 
predictive in one city as they are in another. For example, Portland, OR, has 
many “Neighborhood Greenways” (also known as bike boulevards, which 
encourage cycling on a particular local street) that are not specifically coded as 
such in the OpenStreetMaps data, but that may perform very differently than 
similarly coded bike routes in another city like Boulder. However, OSM does 
provide data across jurisdictional boundaries which might be helpful if analyzing 
travel across a metropolitan area or state. 
 

Recommendations on using results from modeling: 
 

● Don’t apply a model developed from data in one city to another. Bicyclist travel 
varies substantially from city to city, as does bicycle infrastructure, so city-specific 
models are expected to have better fit than pooled models within the city for 
which they were developed. A pooled model can provide insight into cycling in 
general, such as identifying important predictors of bicycle traffic. 
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● Don’t apply a model developed using one year’s data to another year without 
reestimating parameters. Strava data varies from year to year based on the 
number of users and the number of trips those users log. StreetLight’s raw data 
are also subject to changes. Both data sources can have data changes in 
algorithms internal to their platforms from year to year. Also, bicycle travel 
patterns, both temporally and spatially, vary from year to year. 

● Predicting bicycle travel at lower-volume locations (which is most of the network) 
is inherently difficult, and results in high and highly variable error. However, for 
some applications, the error in terms of total cyclists may not be as large or 
concerning as it looks if the goal is simply to classify locations as having high, 
medium or low bicycle volumes. 
 

Recommendations for bicycle traffic monitoring: 
 

● Permanent continuous counter site selection: 
o More permanent continuous bicycle count stations are needed, especially 

at low-volume count sites. This is especially important if agencies want to 
use emerging data sources to estimate bicycle volume at all road 
segments across a network. The vast majority of permanent continuous 
bicycle count sites are at high-volume sites, specifically selected because 
they are high-volume sites. However, the vast majority of roads in the U.S. 
have low bicycle volumes. It is natural for count programs to begin with 
high-volume sites so that there is enough data to calibrate the counters. 
However, a count program with a few counters should start establishing 
counters at low-volume sites. This leaves the prediction of bicycle volumes 
across most of the network with little or no way to be validated and 
calibrated. 

o Locating permanent continuous counters at sites with a variety of bicycle 
travel patterns across the network is similarly important. This usually 
means installing counters on different facility types (not just recreational 
trails) and in different regions of a metropolitan area, which is especially 
important when estimating counts across the entire network. For example, 
in Dallas, the count program’s focus on off-street paths prevented us from 
developing adjustment factors for different on-street bicycle facility types. 
Based on the importance of such factors in other study cities, we would 
not expect the Dallas model to predict on-street cycling with similar 
accuracy. 

● When automated counters are used, they should be validated in the field. 
o For short-duration counters, such as tube counters, this could mean a 

quick post-validation of 10 cyclists to determine if cyclists on both sides of 
the street are being counted correctly. 

o For permanent counters, this should be a more robust and ongoing 
process that is documented and shared with data users so that they can 
correctly account for site-specific under- or overcounting. These data are 
the foundation (the ground truth) for any bicycle volume estimates or 
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models and, thus, extra care is needed for their accuracy and 
maintenance. 

● Maintain permanent continuous counting equipment. Data gaps of many months 
decrease the usefulness of data provided by these counters. Make the most of 
investment in equipment by adequately funding maintenance. This includes 
identifying and fixing problems promptly.   

● Standardizing count data and aggregating datasets in a shared repository would 
greatly expedite modeling. Methods for doing this have already been proposed 
and should be implemented more widely (TMG 2016, BikePed Portal). 

● Short-duration counts of 24 hours or more can be used, but also introduce 
sources of additional error. Future research can evaluate the tradeoffs of adding 
many more short-duration sites vs. fewer, but more robust, permanent count 
sites. 
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8 APPENDIX 

8.1 STRAVA DATA NOTES 

This section documents some unexpected issues that we encountered with the Strava 
data. Where applicable, workarounds we adopted are also described. 
 

 Short link undercounts 

One issue that was noted was that counts tend to drop off (sometimes by 50% or more) 
on short links as seen in Figure 8-1 below. We confirmed w/ Strava that it’s due to map 
matching limitations. The fix adopted was to use Strava only for links at least 20 miles 
long. 
 

 
Figure 8-1 Short Link Undercounts 

 Junction paradox 

Another issue that was noted was that funnel counts did not add up to the main line 
count. In  Figure 8-2, 2018 Strava rider counts equal 515 and 465 (980 total) for the 
two-entering links, while the main line equals 780. Since the incidence of this error was 
low, and there was no way to automate the detection and fixing of this issue, the 
research team did not take further action on this issue. 
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Figure 8-2 Junction Paradox 

 Parallel links map matching problem 

Another issue that we noted was that bike counts often were wrongly assigned to the 
nearby parallel links. As seen in Figure 8-3, bike counts that were supposed to be 
largely assigned to the cycle track were also assigned to the pedestrian path and auto 
lanes. These instances were flagged and corrected.  
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Figure 8-3 Parallel Links 

 Rounding Error 

The Strava data that was made available to the research team included hourly and 
monthly rollups (but not daily). We noted that hourly counts less than 3 were masked 
(not reported) and hourly counts greater than 3 were rounded up to the next 5. When 
aggregated hourly counts were compared to the monthly rollups, undercounting was 
generally observed, with occasional large overcounts as seen in Figure 8-4. Low 
volume locations could not be rolled up from the hourly counts accurately. It is 
anticipated that future Strava data will include daily rollups, which will solve this issue. 
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Figure 8-4 Difference between Hourly Aggregation and Monthly Rollups by Month 

8.2 STREETLIGHT  

Issues that we noted with the StreetLight data were overcounts at some locations which 
were along busy transit routes (e.g., Steel Bridge in Portland), with the assumption 
being that some transit riders were being considered as bicyclists, possibly due to 
similar speeds between the modes. Additionally, undercounts were also observed along 
busy bicycle corridors such as the bike boulevards in SE Portland. See Figure 8-5. 
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Figure 8-5 StreetLight Data on Bicycle Boulevards 
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8.3 DATA PROCESSING SCRIPTS 

The research team developed automated python scripts to extract required static 
variables and uploaded them onto Gitlab (https://gitlab.com/joebroach/bike-data-fusion; 
see Figure 8-6). Gitlab is a web-based collaboration service that allows users to track, 
integrate and develop individual codes and integrate with others. GitLab enhances 
collaboration productivity because each team member who has access to the repository 
could simultaneously collaborate and share codes. The research team’s workflow and 
data processing steps in Gitlab are described below.  
 

 
Figure 8-6 A Screenshot of Sourcetree Software Interface and Python Scripts in 
GitLab 

Library: An initial step creates a separate environment in desktop python to install 
necessary libraries such as Geopanda, panda, networkx, osmnx, shapely and 
matplotlib. Geopanda library reads and processes geospatial data and can be 
downloaded from the link (https://medium.com/analytics-vidhya/fastest-way-to-install-
geopandas-in-jupyter-notebook-on-windows-8f734e11fa2b). Networkx and osmnx 
libraries extract data from OpenStreetMap such as node density, intersection density, 
number of lanes, and bicycle facilities.   
 
Data inputs: After installing Geopandas Environment in python, the developed python 
script reads necessary data inputs including counter locations, Strava network, 
Bikeshare, OSM (shape files from BBBike), LEHD job data, NED raster elevation data 
and NHGIS data.  
 
Geocode type: A user needs to enter a geocode for data aggregations. In general, any 
geofile uses its original EPSG which could be replaced with a specific local EPSG. For 
example, all land use shape files for Portland, OR, are set to EPSG 4326 (default), but 
should be changed to EPSG 2838 because this code is specifically assigned to Portland 
in the GIS environment. This local EPSG ensures to extract an accurate size of buffers 
for data aggregation. Note that the developed script already sets this EPSG information 
for six study locations.  
 

https://gitlab.com/joebroach/bike-data-fusion
https://medium.com/analytics-vidhya/fastest-way-to-install-geopandas-in-jupyter-notebook-on-windows-8f734e11fa2b
https://medium.com/analytics-vidhya/fastest-way-to-install-geopandas-in-jupyter-notebook-on-windows-8f734e11fa2b
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Buffer size: A user could use any given buffer size to generate and aggregate the data, 
as shown in Figure 8-7. This study extends one mile from the study location’s boundary 
(e.g., Portland Metro region, Figure 8-7 (a)) to create an extended boundary (Figure 
8-7(b)) to capture counters that are located close to the geographical boundary of the 
study area.   
 

  

Figure 8-7 (a) Original and (b) Extended Boundary of Study Area 

Variable generation - Density: Variables defining network/facility density such as the 
number of major generators (e.g., schools, colleges and universities) and network 
features (e.g., intersection density, number of lanes, and bicycle facilities) were 
extracted using direct overpass API through osmnx.  The research team also uses 
BBBike source to supplement land use datasets.   
 
Variable generation - Slope: Slope data was extracted using a National Elevation 
Dataset (NED) raster image (Figure 8-8). This study extracts an elevation at each node 
of the link and calculates its slope. The research team assumed that a bridge slope is 
zero.  

I  
Figure 8-8 Slope Extraction from NED Raster Image 

Variable generation - Weather: Weather data was collected from weather 
underground using direct overpass API. The collected data was automatically 
aggregated as a single data frame and exported in csv format for further analysis and 
modeling.  
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Variable visualization: The final data frames are passed to the KeplerGL program to 
create dynamic and interactive visual maps. KeplerGL is a high-performance web-
based application for large-scale geo-spatial data visual exploration. KeplerGI visualizes 
data in 2D or 3D space. A user selects variables to visualize and saves an interactive 
map as HTML format to share with others. Figure 8-9 shows the heatmap of bikeshare 
origin data for Portland, OR. 

 
Figure 8-9 KeplerGL Dynamic Heat Map of Bikeshare Origin at Portland, OR 

Knowledge or skill required: To run the primary python script requires only basic 
familiarity with the Python language. As set up, users just need to set the buffer size and 
rename the save file as desired or needed. To extend beyond the six regions included in 
this study, local boundary (GIS) files also need to be supplied.    
 
Count data cleaning and count modeling scripts: Also provided via GitLab are scripts 
used to process raw count data (from physical counters and third-party user data sources 
Strava and StreetLight). These scripts are written in the R programming language and 
are best classified as “semi-automated.” Because bike count data (especially short-
duration counts) lack a standard format, users should expect considerable tweaking of 
either the raw data themselves or of the processing scripts. Strava modified how their 
data are formatted and accessed during the course of this research, and Strava scripts 
will need to be updated to the new standard. Methods were described in the body of this 
report, such that users should be able to reproduce our methods using the software or 
programming language of their choice. 
 
Count (R) and ML (Python) modeling scripts are also included. The count models are 
described in a way that they could be estimated in a variety of statistical software 
packages, and the code provided mainly serves as a record and template for future 
applications. While the ML scripts are more easily transferred to new data, interpreting 
the output likely will require specialized knowledge or external assistance.   
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Figure 8-10 Pool RF Model [Static+Strava+SL] Observed Vs Prediction Fit 

 
Table 8-1 Variable Formulations for Pooled Random Forest Models 
[Static+Strava+StreetLight] 

Var Importance Def 
log_stv_stl 0.1022 log(Strava+1)+Log(StreetLight) 
log_stv_c_adb 0.0928 Natural log transformation Strava commute trips 
stv_c_adb 0.0805 Natural log transformation Strava AADBT 
log_stv_adb 0.0684 Strava commute AADBT 
stv_adb 0.0564 Strava AADBT 
stv_nc_adb 0.0454 Strava non-commute AADBT 
log_stv_nc_adb 0.0352 Natural log transformation of Strava non-commute 

AADBT 
Intersection_Density_om 0.0317 Number of intersections per square mile in one-mile air 

buffer 
log_stl_raw 0.0309 Natural log transformation StreetLight Raw Trips 
stl_raw 0.0243 StreetLight raw trips 
Number.of.jobs_om 0.0174 Area weighted number of jobs at count station block 

groups/group for one-mile air buffer 
Tertiary_om 0.0172 Total length of tertiary road segments within the one-mile 

air buffer around each count station 
Student.Access_om 0.0168 Area weighted number of students within the one-mile air 

buffer at count station block groups/group  
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Var Importance Def 
employment_density_om 0.0143 Area weighted employment per square mile at count 

station block groups/group for one-mile air buffer 
Number.of.jobs_hm 0.0137 Area weighted number of jobs at count station block 

groups/group for half mile air buffer 
Distance.to.Water.Body 0.0110 nearest distance to water body from the count station  

 
Footway_hm 0.0110 Total length of footway segments within the half mile air 

buffer around each count station 
Median_HH_income_om 0.0110 Area weighted Median household income within the one-

mile radius buffer at count station block group 
Bike.Commuter_om 0.0105 Number of Bike commuter within one-mile air buffer 
Distance.to.Industrial.Area 0.0095 Nearest distance to industrial area from count station. 
Distance.to.CBD 0.0093 Nearest distance to count station from City Hall (CBD) 
Median.Age_om 0.0091 Median age of the population within the one-mile air 

buffer at count station block group 
Student.Access_hm 0.0091 Area weighted number of students within the half mile air 

buffer at count station block groups/group  
pct_at_least_college_education_hm 0.0090 Area weighted % of population having at least college 

degree within the one-mile air buffer at count station 
block group  

Distance.to.Park 0.0087 nearest distance to park area from count station 
Primary_om 0.0087 Total length of primary road segments within the one-mile 

air buffer around each count stations 
 

Median.Age_hm 0.0081 Median age of the population within the half mile air 
buffer at count station block group 

employment_density_hm 0.0079 Area weighted employment per square mile at count 
station block groups/group within half mile air buffer 

Percentage.of.Bike.Commuter_om 0.0077 Percentage  bike commute or bike commuters/sq mi for 
one-mile air buffer 

population_density_om 0.0074 Area weighted population per square mile at count station 
block groups/group for one-mile air buffer 

pct_African_American_om 0.0073 Area weighted percentage of African American population 
within the one mile air buffer at count station block group 

population_density_hm 0.0072 Area weighted population per square mile at count station 
block groups/group for half mile air buffer 

Park.Area_hm 0.0072 Acres of park w/in half-mile radius 
Tertiary_hm 0.0072 Total length of tertiary road segments within the half mile 

air buffer around each count station 
Distance.to.forest 0.0066 Nearest distance to forest area from count station 
Industrial.Area_hm 0.0065 Industrial area within the half mile air buffer 
BikeFac_om 0.0065 Miles of dedicated bike facility (on or off-street) in one-

mile radius (does NOT include just signed bike routes or 
shared lanes) 

Intersection_Density_hm 0.0061 Number of intersections per square mile in half mile air 
buffer 

Primary_hm 0.0060 Total length of primary road segments within the half mile 
air buffer around each count stations 

pct_at_least_college_education_om 0.0058 Area weighted % of population having at least college 
degree within the one-mile air buffer at count station 
block group 

Footway_om 0.0058 Total length of footway segments within the one-mile air 
buffer around each count station 

Path_om 0.0057 Total length of path segments within the one-mile air 
buffer around each count station 
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Var Importance Def 
sep_bikeway_om 0.0055 length of  path or cycleway within one-mile air buffer 
Cycleway_om 0.0055 Total length of cycleway lane, left and right segments 

within the one-mile air buffer around each count station 
Cycleway_hm 0.0053 Total length of cycle way segments within the half mile air  

buffer around each count station 
Bike.Commuter_hm 0.0053 Number of Bike commuter (ACS) within ½-mi radius 
Path_hm 0.0051 Total length of path segments within the half mile air 

buffer around each count station 
cycleway_lane_all_om 0.0050 Total length of cycleway lane, left and right segments 

within the one-mile air buffer around each count station 
sep_bikeway_hm 0.0047 Length of  on path or cycleway within half mile air buffer 
Median_HH_income_hm 0.0047 Area weighted Median household income within the half 

mile radius buffer at count station block group 
Water.Area_om 0.0043 Water body area within the one-mile air  buffer 
pct_white_om 0.0042 Area weighted percentage of white population within the 

one-mile air buffer at count station block group 
Park.Area_om 0.0039 Acres of park w/in one-mile radius 
min_dist_to_university 0.0038 Straight distance between count station and University 
Residential_Road_om 0.0038 Total length of residential road segments within the one-

mile buffer around each count station 
pct_African_American_hm 0.0037 Area weighted percentage of African American population 

within the half mile air buffer at count station block group 
Grass.Area_hm 0.0036 Grass area within the half mile air buffer 
Residential_Road_hm 0.0035 Total length of residential road segments within the half 

mile buffer around each count station 
Percentage.of.Bike.Commuter_hm 0.0034 Percentage  bike commute or bike commuters/sq mi for 

half mile air buffer 
Distance.to.Grass 0.0033 nearest distance to grass space from count station. 
Commercial.Area_hm 0.0031 Commercial area within the half mile air buffer 
Grass.Area_om 0.0030 Grass area within the one-mile air buffer 
BikeFac_hm 0.0030 Miles of dedicated bike facility (on or off-street) in half-

mile radius (does NOT include just signed bike routes or 
shared lanes) 

path_binary 0.0028 Location on path 
Forest.Area_hm 0.0028 Forest area within the half mile buffer  
cycleway_binary 0.0028 Location of Cycleway 
pct_white_hm 0.0024 Area weighted percentage of white population within the 

half mile air buffer at count station block group 
Secondary_om 0.0023 Total length of secondary road segments within the one-

mile buffer around each count station  
cycleway_lane_binary 0.0023 Location on cycleway_lane 
Secondary_hm 0.0023 Total length of secondary road segments within the half 

mile buffer around each count station  
Forest.Area_om 0.0021 Forest area within the one-mile buffer  
sep_bikeway_binary 0.0020 Location on path or cycleway  
Water.Area_hm 0.0020 Water body area within the half mile air  buffer  
Industrial.Area_om 0.0020 Industrial area within the one-mile air buffer  
Distance.to.Retail.Area 0.0018 Nearest distance to retail area from count station 
slope_hm 0.0018 average absolute % slope along the link within half  mile 

air buffer 
slope_om 0.0017 average absolute % slope along the link within one-mile 

air buffer 
School_om 0.0016 Number of schools within one-mile air buffer 
Retail.Area_om 0.0015 Retail area within the one-mile air buffer  
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Var Importance Def 
cycleway_lane_all_hm 0.0015 Total length of cycleway lane, left and right segments 

within the half mile air buffer around each count station 
secondary_binary 0.0015 Location on Secondary 
arterial_binary 0.0015 Location on primary or secondary arterial 
Retail.Area_hm 0.0014 Retail area within the half mile air buffer  
Distance.to.Commercial.Area 0.0014 Nearest distance to commercial area from count station. 
Commercial.Area_om 0.0012 Commercial area within the one-mile air buffer 
Distance.to.Residential.Area 0.0012 Nearest distance to residential area from count station. 
min_dist_to_school 0.0011 Straight distance between count station and School 
residential_binary 0.0008 Location on residential 
BikeFac_binary 0.0006 Location of on or  off-street 
maxspeed_om 0.0006 The mode of speed for the functional class was obtained 

within the one-mile air buffer 
lanes_hm 0.0005 Number of traffic lanes along corresponding count station 

street segment within half mile air buffer 
School_hm 0.0005 Number of schools within half mile air buffer 
Point.Speed 0.0004 Speed limit on the link where the counter is situated; if 

unavailable the speed of the nearest link with the same 
functional class is extracted 

maxspeed_hm 0.0003 The mode of speed for the functional class was obtained 
within the  half mile air buffer 

University_om 0.0002 Number of Universities (yes=1 and no=0) within the one-
mile air buffer 

University_hm 0.0001 Number of Universities (yes=1 and no=0) within the half 
mile air buffer 

 
Table 8-2 Variables Used in RF Model 

Study Area Fusion RF Model Variables Used 

Pool-2019 Model 

SL 'log_stl_raw' 
Strava 'log_stv_adb' 

SL+Strava 'log_stv_adb','log_stl_raw' 
SL+Strava+Static (PM4) Please see Pool Model RF Variable Importance graph 
SL+Strava+Static+BS PM4+ Bikeshare Best_hm+Bikeshare Best_om 

Oregon-2019 Model 

SL 'log_stl_raw' 
Strava 'log_stv_c_adb', 'log_stv_nc_adb' 

SL+Strava 'log_stv_adb','log_stl_raw' 
SL+Strava+Static (OM4) Please see Oregon Pool Model RF Variable Importance graph 

SL+Strava+Static+BS OM4+ Bikeshare Best_hm+Bikeshare Best_om 

Portland-2019 
Model 

SL 'log_stl_raw' 
Strava 'log_stv_c_adb' 

SL+Strava 'log_stv_c_adb', 'log_stl_raw' 
SL+Strava+Static (PM4) Please see Portalnd Pool Model RF Variable Importance graph 
SL+Strava+Static+BS PM4+ Bikeshare Best_hm+Bikeshare Best_om 

Eugene-2019 Model 

SL 'log_stl_raw' 
Strava 'log_stv_c_adb','log_stv_nc_adb' 

SL+Strava 'log_stv_c_adb','log_stl_raw' 
SL+Strava+Static (EM4) Please see Eugene Pool Model RF Variable Importance graph 
SL+Strava+Static+BS M4+ Bikeshare Best_hm+Bikeshare Best_om 
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Figure 8-11 Pool -2019 [Static+Strava+SL] RF Model Top 40 Variable Importance 

Note: Additional Variables (importance <0.006): Footway_om, Path,_om, 
sep_bikeway_om, Cycleway_om, Cycleway_hm, Bike.Commuter_hm, Path_hm, 
cycleway_lane_all_om, sep_bikeway_hm, Median_HH_income_hm, Water.Area_om, 
pct_white_om, Park.Area_om, min_dist_to_university Residential,_Road_om, 
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pct_African_American_hm, Grass.Area_hm, Residential_Road_hm, 
Percentage.of.Bike.Commuter_hm, Distance.to.Grass Commercial.Area_hm, 
Grass.Area_om, BikeFac_hm, path_binary, Forest.Area_hm, cycleway_binary, 
pct_white_hm, Secondary_om ,cycleway_lane_binary, Secondary_hm, 
Forest.Area_om, sep_bikeway_binary, Water.Area_hm, Industrial.Area_om, 
Distance.to.Retail.Area, slope_hm, slope_om, School_om, Retail.Area_om, 
cycleway_lane_all_hm, secondary_binary, arterial_binary, Retail.Area_hm, 
Distance.to.Commercial.Area, Commercial.Area_om, Distance.to.Residential.Area, 
min_dist_to_school, residential_binary, BikeFac_binary, maxspeed_om, lanes_hm, 
School_hm, Point.Speed, maxspeed_hm, University_om, University_hm. 
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Figure 8-12 Oregon Pool -2019 [Static+Strava+SL] RF Model Top 40 Variable 
Importance 

Note: Additional Variables (importance <0.006): Commercial.Area_hm, path_binary, 
Grass.Area_hm, Distance.to.Grass, 
pct_African_American_om,population_density_hm,Industrial.Area_hm,Residential_Roa
d_om,Bike.Commuter_hm,Grass.Area_om,pct_at_least_college_education_hm,Cyclew
ay_hm,pct_African_American_hm,Tertiary_hm,min_dist_to_university,pct_white_om,ma
xspeed_om,Percentage.of.Bike.Commuter_hm,Park.Area_hm,Residential_Road_hm,R
etail.Area_hm,cycleway_lane_all_om,secondary_binary,arterial_binary,Distance.to.Park
,BikeFac_hm,Forest.Area_hm,pct_white_hm,Water.Area_hm,Retail.Area_om,School_o
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m,slope_om,Park.Area_om,Forest.Area_om,cycleway_lane_binary,Secondary_hm,Wat
er.Area_om,Industrial.Area_om,slope_hm,sep_bikeway_binary,Secondary_om,cyclewa
y_lane_all_hm,cycleway_binary,Distance.to.Retail.Area,Distance.to.Commercial.Area,C
ommercial.Area_om,Distance.to.Residential.Area,min_dist_to_school. 
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Figure 8-13 Portland-2019 [Static+Strava+SL] RF Model Top 40 Variable 
Importance 

Note: Additional Variables (importance <0.004): 
sep_bikeway_binary,Grass.Area_om,min_dist_to_university,Cycleway_om,pct_at_least
_college_education_hm,cycleway_lane_binary,Path_hm,Park.Area_hm,Percentage.of.
Bike.Commuter_hm,Bike.Commuter_hm,Distance.to.Park,Industrial.Area_om,slope_hm
,Park.Area_om,Median_HH_income_hm,BikeFac_om,Distance.to.Grass,Water.Area_h
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m,Secondary_om,Retail.Area_om,Secondary_hm,Student.Access_om,Cycleway_hm,p
ct_white_hm,pct_African_American_om,University_hm,School_om,arterial_binary,Medi
an.Age_om,lanes_hm,population_density_om,cycleway_lane_all_hm,Distance.to.Retail.
Area,pct_white_om,min_dist_to_school,Forest.Area_hm,Commercial.Area_om,seconda
ry_binary,Bike.Commuter_om,School_hm,Student.Access_hm,Distance.to.Residential.
Area,Median.Age_hm,Point.Speed,path_binary,Forest.Area_om,BikeFac_binary.  
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Figure 8-14 Eugene-2019 [Static+Strava+SL] RF Model Top 40 Variable 
Importance 

Note: Additional Variables (importance <=0.005): 
Distance.to.Residential.Area,BikeFac_binary,Distance.to.Water.Body,Percentage.of.Bik
e.Commuter_hm,Distance.to.Commercial.Area,pct_white_om,population_density_om,T
ertiary_om,Grass.Area_hm,Grass.Area_om,Water.Area_om,pct_at_least_college_educ
ation_om,Secondary_om,Retail.Area_hm,Park.Area_om,Distance.to.Retail.Area,Park.A

0.085
0.077

0.067
0.064

0.046
0.042

0.039
0.038

0.036
0.032

0.027
0.026
0.025

0.022
0.021
0.020
0.020

0.015
0.014
0.014
0.014
0.013

0.012
0.012

0.011
0.009
0.009
0.009

0.007
0.007
0.007
0.007
0.007
0.006
0.006
0.005
0.005
0.005
0.005
0.005

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090

pct_African_American_om
Median_HH_income_hm

log_stv_c_adb
stv_c_adb

Footway_hm
sep_bikeway_om

log_stv_stl
Footway_om

Median_HH_income_om
BikeFac_om
BikeFac_hm

Cycleway_om
Median.Age_om

log_stv_adb
Path_hm

Water.Area_hm
sep_bikeway_hm

stv_adb
Median.Age_hm

Number.of.jobs_om
Number.of.jobs_hm

Distance.to.CBD
Distance.to.Grass

Student.Access_hm
log_stv_nc_adb

stv_nc_adb
Student.Access_om

Distance.to.forest
population_density_hm

Cycleway_hm
pct_African_American_hm

Primary_hm
min_dist_to_university

Distance.to.Park
stl_raw

log_stl_raw
employment_density_hm

Tertiary_hm
employment_density_om

Distance.to.Industrial.Area

Variable Importance

Va
ria

bl
e 

N
am

e
Eugene-2019 [Static+Strava+SL] RF Model Top 40 Variable Importance



 

134 
 

rea_hm,Forest.Area_om,slope_om,Path_om,Forest.Area_hm,Primary_om,cycleway_la
ne_all_om,slope_hm,University_om,sep_bikeway_binary,pct_at_least_college_educatio
n_hm,Bike.Commuter_hm,Retail.Area_om,Bike.Commuter_om,cycleway_lane_all_hm,
min_dist_to_school,Residential_Road_om,School_hm,cycleway_binary,Residential_Ro
ad_hm,Industrial.Area_hm,Intersection_Density_om,Percentage.of.Bike.Commuter_om,
residential_binary,pct_white_hm,Secondary_hm,maxspeed_hm.
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8.4 2017 AND 2018 MODEL RESULTS 

Table 8-3 AADBT Poisson Portland Model All Counters 2018 Results (10-fold cross-validation with five repeats 
and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 7.4339 2.2518*** 1.7212. 1.6019* 2.9565 0.3974 2.1165 
log(stv_adb +1)     0.6365***  0.7756*** 
log(stv_c_adb +1)  1.2095***  0.9570***    
log(stl_raw + 1)   0.6172*** 0.2026  0.1783 0.1019 
sep_bikeway_binary 1.2015    0.8768 1.9776***  
Median_HH_income_om     -0.00001  -0.00001 
Bike.Commuter_om -0.0003    -0.0005 -0.0002 -0.0007* 
Distance_to_CBD_mi -0.3465       
BikeFac_om 0.0172       
intersection_density_om -0.0020    0.0046 0.0091 0.0020 
pct_at_least_college_education_hm -0.0094    0.0017 0.0183 0.0158 
Park_acres_hm -0.0034    -0.0047 -0.0048 -0.0017 
slope_om 0.0819       

Model fit statistics (presented for final model) 
N 33 33 33 33 33 33 33 
AICb 2490 3,034 7,955 2,689 1330 1,827 1410 
Pseudo-R^2c 0.883 0.853 0.595 0.872 0.943 0.917 0.939 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 776 (+/- 174) 211 (+/- 28) 412 (+/- 63) 263 (+/- 39) 212 (+/- 30) 266 (+/- 30) 215 (+/- 31) 
MAPE (+/- SE) 342%(+/- 

155) 
50% (+/- 3) 98% (+/- 15) 44 (+/- 3) 51% (+/- 4) 60% (+/- 6) 52% (+/- 4) 

MAE (+/- SE) 493 (+/- 97) 161%(+/- 18) 278 (+/- 38) 188 (+/- 24) 158 (+/- 18) 187 (+/- 19) 156 (+/- 19) 
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Table 8-4 AADBT Poisson Portland Model All Counters 2017 Results (10-fold cross-validation with five repeats 
and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) -1.7933 3.7222***   1.9694   
log(stv_adb +1)     0.5838***   
log(stv_c_adb +1)  0.8344***      
sep_bikeway_binary 0.7408    -0.00001   
cycleway_lane_binary     1.2778***   
arterial_binary 0.6239    0.1416   
Bike.Commuter_om -0.0003    0.5178   
Distance_to_CBD_mi -0.0866    -0.0002   
BikeFac_om 0.0014       
intersection_density_om 0.0097.    0.0087*   
pct_at_least_college_education_hm 0.0703.    -0.004   
Park_acres_hm -0.0073    -0.0167   
slope_om -0.0961       

Model fit statistics (presented for final model) 
N 104 104   104   
AICb 19,493 17,984   10,245   
Pseudo-R^2c 0.586 0.619   0.790   

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 388 (+/- 33) 296 (+/- 20)   259 (+/- 20)   
MAPE (+/- SE) 158% (+/- 

17) 
105% (+/- 6)   84% (+/- 4)   

MAE (+/- SE) 238 (+/- 15) 191 (+/- 11)   163 (+/- 10)   
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Table 8-5 AADBT Poisson Oregon Pooled Model All Counters 2018 Results (10-fold cross-validation with five 
repeats and robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 2.3443** 4.4008*** 1.5651** 2.2226*** 5.3325*** 3.0996*** 4.2346*** 
log(stv_adb +1)    0.3681*** 0.6550***  0.4572*** 
log(stv_c_adb +1)  0.8094***      
log(stv_nc_adb +1)  -0.1646      
log(stl_raw + 1)   0.6333*** 0.3949***  0.4272*** 0.2387** 
sep_bikeway_binary 0.5971*     0.5319  
cycleway_lane_binary -0.3951*     -0.0549  
Median_HH_income_om     -0.0267***  -

0.00003*** 
arterial_binary -0.0686    -0.5815***   
primary_binary      -1.5059* -1.1075* 
secondary_binary      -0.5177  
tertiary_binary      -0.1683  
I(secondary_binary + tertiary_binary)       -0.5840*** 
Bike.Commuter_om 0.00003    0.0003. 0.0002 0.0002 
Distance_to_CBD_mi -0.7155    -0.2727*** -0.2299** -0.1262* 
BikeFac_om 0.05952***       
Intersection_Density_om 0.0034       
pct_at_least_college_education_hm 0.0148       
Park_acres_hm -0.0002     -0.0031  
slope_om -0.0035       

Model fit statistics (presented for final model) 
N 176 176 176 176 176 176 176 
AICb 21,891 27,410 28,925 23,760 16,581 19,159 14468 
Pseudo-R^2c 0.647 0.553 0.527 0.615 0.737 0.693 0.772 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 250 (+/-19) 234(+/-16) 267 (+/- 24) 229 (+/- 17) 215(+/-15) 238(+/-20) 193(+/-17) 
MAPE (+/- SE) 132%(+/-7) 153%(+/-6) 162% (+/- 11) 130% (+/- 6) 100%(+/-4) 101%(+/-5) 89%(+/-4) 
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MAE (+/- SE) 142(+/-7) 147(+/-6) 148 (+/- 8) 135 (+/- 7) 116(+/-6) 129(+/-7) 111(+/-7) 
Table 8-6 AADBT Poisson Eugene Model All Counters 2018 Results (10-fold cross-validation with five repeats and 
robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 5.8157* 4.2428*** 1.4809* 2.1981** 6.7478*** 4.8578** 5.2751*** 
log(stv_adb +1)     0.7782***  0.6831*** 
log(stv_c_adb +1)  2.0108***  0.8353***    
log(stv_nc_adb +1)  -0.8320**      
log(stl_raw + 1)   0.6822*** 0.3994**  0.4362** 0.1956* 
Median_HH_income_om     0.0000005 0.000003  
sep_bikeway_binary 0.4577.       
cycleway_lane_binary        
arterial_binary -0.2611    -0.4642* -0.6388* -0.5414* 
Distance_to_CBD_mi     -0.0919 -0.0608  
BikeFac_om 0.0482       
Bike.Commuter_om     0.0004 0.0002 0.0005* 
log(min_dist_to_university) -0.2476    -0.3282*** -0.2295 -0.2882*** 
Park_acres_hm 0.0033       
slope_om 0.0105       

Model fit statistics (presented for final model) 
N 86 86 86 86 86 86 86 
AICb 10,168 9,417 13,252 9,768 5739 9170 5315 
Pseudo-R^2c 0.552 0.587 0.407 0.570 0.759 0.599 0.779 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 221 (+/- 20) 185 (+/- 14) 211 (+/- 19) 207 (+/- 17) 164 (+/- 20) 197 (+/- 17) 146 (+/- 16) 
MAPE (+/- SE) 105% (+/- 6) 119% (+/- 10) 138% (+/- 8) 104% (+/- 7) 69% (+/-4) 114% (+/-7) 64% (+/- 4) 
MAE (+/- SE) 140 (+/- 10) 123 (+/- 8) 139 (+/- 9) 130 (+/- 8) 100 (+/- 10) 132 (+/- 9) 91 (+/- 8) 
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Table 8-7 AADBT Poisson Bend Model All Counters 2018 Results (10-fold cross-validation with five repeats and 
robust SEs) 

 parameters estimate w/ significance level. <=0.1. * <=0.05 **<=0.01 ***<=0.001 
 PM0: 

Static Model 
PM1: 

Strava Only 
PM2: 

StreetLight 
Only 

PM3: 
Strava + 

StreetLight 

PM4: 
Static + Strava 

PM5: 
Static + 

StreetLight 

PM6: 
Static + Strava 
+ StreetLight 

(Intercept) 3.8683 4.0005*** 2.9805*** 2.7841*** 4.4834*** 0.8864 0.5507 
log(stv_adb +1)     0.4455**  0.3877* 
log(stv_c_adb +1)  0.7123**  0.5961*    
log(stl_raw + 1)   0.2932** 0.2401*  0.7112*** 0.5491** 
sep_bikeway_binary 0.3680    0.6061* 1.6784*** 1.4109*** 
Bike.Commuter_om -0.0004     -0.0034  
Distance_to_CBD_mi -0.2401     0.0321  
intersection_density_om 0.0036     -0.0026  
log(Distance_to_CBD_mi + 1)     -0.9221**  0.2452 
pct_at_least_college_education_hm 0.0089     0.0035  
Park_acres_hm -0.0002     0.0038  
slope_om -0.0040     0.0195  

Model fit statistics (presented for final model) 
N 58 58 58 58 58 58 58 
AICb 3,807 4156 4,182 3824 3257 3016 2800 
Pseudo-R^2c 0.210 0.128 0.122 0.204 0.334 0.392 0.440 

Cross-validation test performance (mean of 10 folds) 
RMSE (+/- SE) 95(+/- 5) 85 (+/- 5) 87 (+/- 5) 85 (+/- 5) 79 (+/- 5) 83 (+/- 4) 73 (+/- 4) 
MAPE (+/- SE) 201% (+/- 

24) 
149% (+/- 

11) 
166% (+/-15) 140% (+/- 11) 128% (+/- 13) 157% (+/- 16) 109% (+/- 9) 

MAE (+/- SE) 78 (+/- 4) 6 (+/- 3) 69 (+/- 3) 68 (+/- 3) 63 (+/- 3) 66 (+/- 3) 57 (+/- 3) 
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