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A graph-based modelling approach for wind instruments with tone holes has been recently proposed by the author.
This preliminary work remained at a rather theoretical level with high degree of generality, focussing nevertheless
on musical acoustics applications while laying foundations for concrete applications. The purpose of the present
work is to present concrete computation methods and numerical results in order to validate these theoretical results.
For this task, elementary resonators are investigated, for which great knowledge has been accumulated for a long
time through the impedance, transfer matrix and modal decomposition approaches, which can thus serve for
checking. The resonator profiles focussed on belong to a musically useful class : cylinders and stepped cones,
as studied by Dalmont and Kergomard 20 years ago. The case of a cylindrical resonator with one tonehole is
also presented. One important feature of the approach is that mode matching is automatically satisfied, natural
frequencies and eigenmodes being computed at once by the method, even for geometries with discontinuities.
Also, perspectives are opened for exhibiting a very wide class of resonators with harmonically related natural
frequencies, which is the subject of an another paper.

1 Introduction
The common ways of studying wind instruments are

through a modal approach, using the electric-acoustic
analogy with equivalent circuits and their impedances within
the transmission lines formalism, while approximating a
resonator with complex geometry as a sequence of cylinders
or cones [1, 2]. In [3], a different modelling approach was
presented, based on a 1D-PDE mathematical formalism on
networks that has proven useful to other systems [4, 5], made
of interconnected elementary components. The basic idea
is to consider the graph of this network connecting together
the elementary components and to study the eigensolutions
of this set through properties of the graph itself and of the
components. This allows to keep a one dimensional setting
even for complex geometries. A good approximation of
the natural frequencies and, at the vertices of the graph, of
eigenmodes is obtained in a direct fashion. The presentation
is organized as follows : in section 2, the resonators under
study are described within the framework of the graph
approach [3], briefly reminded in the two appendices. In
section 3 natural frequencies computation of several of these
resonator profiles is presented and discussed. Conclusions
and future research are drawn in section 4.

2 Description of resonators
The study is restricted to elementary wind instruments,

within the plane wave hypothesis, in order to validate the
approach by checking against results obtained by the usual
approaches. Two classes of instruments are investigated
here. Firstly, simple resonators with no toneholes but
piecewise constant cross-sections : in the sequel, a n-stepped
cone means such a resonator with n discontinuities in the
cross-section. The ones approximating a truncated cone [6]
will be especially investigated. Secondly, a mere one
tonehole instrument [7]. For each class, the model is given
through the matrices D,E,A,L related to the graph, as
summarized in appendix 5.

2.1 Resonators without toneholes
The graph of a piecewise cylindrical resonator without

toneholes is a mere sequence of edges with maximum vertex
degree two (see the appendix). Thus, instead of writing
down explicitely all matrices, we proceed with a notational
trick, for saving space and because matrices are tridiagonal
(one vertex obviously has only two neighbouring vertices) :
diag(v,j) stands for a matrix with jth diagonal ( j ∈ Z)

given by the vector v, and zeroes elsewhere. Such matrices
can be added provided convenient dimensions are given. Set
U (resp. a, resp. L), the n-vector with all elements equal
to one (resp. the cross-sections areas, resp. the lengths)
of the edges. Then, a resonator made of n concatenated
cylinders with lengths li, cross-sections ai is described
by the matrices : E = diag(U,-1)+diag(U,1), D =

diag(-U,0)+diag(U,-1),A = diag(a,-1)+diag(a,1),
L = diag(L,-1)+diag(L,1) Then, the characteristic
matrixM(k) (see appendix) writes :

M(k) =diag(α,0)+diag(β,-1)+diag(β,1)
with α = (αi)i, β = (βi)i and : α1 = −a1

c1
s1

, αn+1 = −an
cn
sn

,
αi = −(ai−1

ci−1
si−1

+ ai
ci
si

), i = 2, . . . , n , βi = ai
si
, i = 1, . . . , n and

ci = cos(kli), si = sin(kli). The fact thatM(k) is tridiagonal
symmetric allows for fast computations. Needless to say,
although the matrix M(k) is easily constructed, solving the
characteristic equation detM(k) = 0 explicitely by brute
force is hopeless as its complexity grows very quickly with
the number of cylinders, thus one would have to resort
to iterative numerical methods in any case. Instead, it is
much more interesting to consider an important special
case : when lengths li are all equal to the same l the search
for natural frequencies reduces to an algebraic eigenvalue
problem, for which efficient solvers exist. In that case, let
x = ci ≡ cos(kl), y = si ≡ sin(kl). ThenM(k) writes :

M(k) = 1
y (diag(α,0)+diag(β,-1)+diag(β,1))

with : α1 = −a1x, αn+1 = −anx, αi = −(ai−1 + ai)x, i =

2, . . . , n, βi = ai. One understands that, even for resonators
with complex geometries, a sufficiently fine discretization
into equal length cylinders allows the above simplification.
This is obviously at the price of increasing the dimension
of M(k). But it will be seen that the resulting numerical
problem is much more easily amenable to a solution than
the nonlinear original one. In the opposite case when not all
edge lengths are equal, solving the characteristic equation
becomes cumbersome when the number of edges increases.

2.2 Woodwind with one tonehole
In that case, the graph is star-shaped with three edges

all connected at one vertex. Choosing the orientation of
the three edges for which the origin is at the three simple
vertices, the relevant matrices are :

D =


1 0 0 0
0 1 0 0
−1 −1 −1 0
0 0 1 0

 ,E =


0 0 1 0
0 0 1 0
1 1 0 1
0 0 1 0

 (1)



withA,L having the same pattern and :

M(k) =


−

a1c1
s1

0 a1
s1

0
0 −

a2c2
s2

a2
s2

0
a1
s1

a2
s2

−
∑3

i=1
aici
si

a3
s3

0 0 a3
s3

−
a3c3

s3

 (2)

and we have corrected a mistake forM(k) made in [3].

3 Natural frequencies computation
For all numerical computations, the parameters are : t =

20◦C for which the sound velocity is c0 = 343.37m/s. The
boundary conditions are given in a simple form by fixing
either the pressure (open end) or the volume flow (closed
end) to zero. This is done by fixing corresponding values
of φi or ∂xφi to zero. The notational convention here is to
specify the boundary condition for the left end first and then
for the right end of the resonator (e.g. open-open or closed-
open). The method for computing the natural frequencies is
briefly summarized in appendix 5.

3.1 Stepped resonators : formal computations
Consider, as in [6], the case were one end, say the left,

is closed and the other end is open. This means that the
boundary conditions are fixed as follows : at the left closed
end, the potential is not fixed so it has to be computed. At
the right open end, it is fixed to vanish (the pressure must
vanish). Of course, this is an ideal case and more realistic
radiation conditions can be taken into account by fixing a
non zero value. The consequence of the vanishing of the
potential is that one just has to discard the corresponding
columns of M(k) when solving the algebraic eigenvalue
problem, because in that case all the eigenfunctions, hence
the eigenvectors ofM(k), vanish at this end. One is thus left
with the following characteristic matrix :

M(k) =
1
y



α1x β1 0 · · · 0
β1 α2x β2 · · · 0

0 β2 α3x
. . . 0

...
. . .

. . .
. . .

...
0 0 · · · · · · αnx


(3)

with this time : α1 = −a1, αi = −(ai−1 + ai), i =

2, . . . , n , βi = ai. Thanks to its tridiagonal symmetric
structure, its determinant pn(x) is efficiently computed
recursively, discarding y , 0 :

p0(x) = 1
p1(x) = α1x
pn(x) = αnxpn−1(x) − β2

n−1 pn−2(x) , n = 2, . . . ,
(4)

This three terms recursion (4) suggests an interpretation of
the family (pn(x))n in terms of orthogonal polynomials [8]
but this remains to be studied in full generality. Nevertheless,
it has the following general property : ∀k, l ∈ N, d2k is
orthogonal to d2l+1 on the range [−1,+1] with respect to the
weight function : w(x) =

√
1 − x2, baring similarity with

Jacobi polynomials [8]. Such a recursion reminds that found
in [6] for the diameters. For the time being, one restricts, as
a matter of example, to a special class.

Table 1: pn(x), an =
n(n+1)

2 a1, n = 1, . . . , 8

n pn(x)
1 −x
2 4x2 − 1
3 −x(2x2 − 1)
4 (4x2 − 2x − 1)(4x2 + 2x − 1)
5 −x(4x2 − 1)(4x2 − 3)
6 (8x3 + 4x2 − 4x − 1)(8x3 − 4x2 − 4x + 1)
7 −x(2x2 − 1)(8x4 − 8x2 + 1)
8 (4x2 − 1)(8x3 − x + 1)(8x3 − x − 1)

3.1.1 The special progression an =
n(n+1)

2 a1

A whole class of resonators with discontinuities has
been shown in [6] to have harmonically related natural
frequencies. These resonators are piecewise cylinders such
that the sequence of cross-section areas is in the progression
1, 3, 6, . . . , n(n + 1)/2. It was conjectured that they should
be the only ones with this property. But with the present
approach, a wider class is evidenced. (see [9] for some
examples). Using recursion (4), Table 1 shows in that
particular case the first eight computed pn(x)’s, up to a
constant factor that grows rapidly with the degree of pn(x).
One can show that pn(x) is a particular case of Jacobi
polynomial. More precisely, the following identity is true :
pn(x) = (−1)ng(n)Gn(x) where Gn(x) is the nth ultraspherical
(Gegenbauer) polynomial [8] G(n, a, x) with a = 1 ; g(n) is a
factor that depends only on n, the degree of the polynomial,
and modifies only the normalization of the family. Hence
the family (pn(x))n is also a polynomial family, that
is orthogonal on the interval [−1,+1] with respect to
the weight function w(x) =

√
1 − x2. In this particular

case, the zeroes, ζk,n, of each pn(x) are those of Gn(x) :
ζk,n = cos( kπ

n+1 ) , k = 1, . . . , n. One important property
evidenced in [6] is thus recovered : for n concatenated
cylinders, the partial, which is harmonic, with rank n + 1
is missing in the series (look at the zeroes of pn). Also,
for an odd number of cylinders, the natural frequencies of
the basic element are also present as one can see on the
factorization of pn in Table 1 (x divides pn). These two
properties are checked on numerical computations below.
This explicit knowledge of the solutions to det(M(k)) = 0
in the particular case of the progression n(n + 1)/2 opens
interesting perspectives to get deeper insight into both direct
and inverse problems related to the natural frequencies of
closed-open resonators, as models of reed instruments. This
is true as well for other boundary conditions corresponding
to different types of wind instruments.

3.2 Numerical results for some stepped cones
As a first example, consider such a piecewise cylindrical

resonator with one step only (1-stepped cone), where both
parts of the resonator have length 0.62m and their cross-
sections ratio is : a2

a1
= 3. The computed natural frequencies,

together with their ratio to the fundamental, appear in
Tables 2, 3, 4 respectively for open-open, closed-open,
open-closed resonators. In Table 2, one checks that there
is a complete harmonic series. In Table 3 (compare with
Table 9), notice that the series is now incomplete, all the
harmonic multiples of 3 being absent, as foreseen. When
the left end is open and the right one is closed (Table 4), the



Table 2: 1-stepped cone, a2
a1

= 3, open-open

Frequency 138.5 276.9 415.4 553.8
fn/ f1 1 2 3 4
Frequency 692.3 830.7 969.2 1108.0
fn/ f1 5 6 7 8

Table 3: 1-stepped cone, a2
a1

= 3, closed-open

Frequency 92.3 184.6 369.2 461.5
fn/ f1 1 2 4 5
Frequency 646.1 738.4 923 1015.3
fn/ f1 7 8 10 11

stepped cone is convergent. Then the only harmonics of this
resonator are the odd ones, excluding moreover those that are
multiples of 3 : this observation seems to be new. Consider
now a more complex example. Results for a 2-stepped
cone,with length 0.155m each and respective cross-sections
1, 3, 6 are given in Tables 5 and 6. The same conclusions
apply : complete series for the open-open case and all
multiples of 4 lacking in the series for the closed-open case.

Eventually, as a last example, for the sake of comparison,
we did the computations for the closed-open 3-stepped cone
example given in [6], p. 427. The computed frequencies
appear in Tables 7 to 8. Table 7 is taken from [6] and Table 8
shows the results with our graph-based approach : results
in [6] were obtained with a model taking losses into account,
which can explain the discrepancies.

3.3 General resonator with one discontinuity
This case is treated e.g. in [10, 2]. The matrix M(k)

writes :

M(k) =


−a1

c1
s1

a1
s1

0
a1
s1

−(a1
c1
s1

+ a2
c2
s2

) a2
s2

0 a2
s2

−a2
c2
s2

 (5)

Results are given for different boundary conditions. Firstly,
when both ends are open (resp. closed), we find that the
natural frequencies are the solutions of the equation :

a1
tan(kl1) + a2

tan(kl2) = 0 (resp. a1
tan(kl2) + a2

tan(kl1) = 0). When
the left end is closed and the right end open, the natural
frequencies are obtained as those values that make vanish
the first principal minor of order two, which is easily
shown to be : −a1 + a2

c1
s1

c2
s2

. And its solutions are those of
the transcendental equation : tan(kl1) tan(kl2) = a2

a1
. One

recognizes this well-known equation (eq. (7.19), p. 259
in [2] e.g.). Exchanging closed and open ends, the natural
frequencies are the solution of : tan(kl1) tan(kl2) = a1

a2
. Notice

the symmetry between both equations. Instead of solving
these nonlinear equations as usual, here one discretizes the
two cylinders in small parts of equal length, and then solves
a suitable algebraic eigenvalue problem. As an example,
consider such a resonator where both cylinders have length
0.62m and their cross-sections ratio is : a2

a1
= 2. Table 9

shows the results for the open-open (resp. closed-open) case.
No special relationship between natural frequencies appears
in this case. Notice also that when both ends are either
open or closed, one has harmonic frequencies, whatever
a1, a2, because then, the equation to be solved is reduced to :
a1+a2
tan(kl) = 0, i.e one has always kl = π

2 + lπ, l ∈ Z.

Table 4: 1-stepped cone, a2
a1

= 3, open-closed

Frequency 46.2 230.8 323.1 507.7
fn/ f1 1 5 7 11
Frequency 600 784.6 876.9 1061.5
fn/ f1 13 17 19 23

Table 5: 2-stepped cone, a2
a1

= 3, a3
a1

= 6, open-open

Frequency 92.3 184.6 276.9 369.2 461.5
fn/ f1 1 2 3 4 5
Frequency 553.8 646.1 738.4 830.7 923.0
fn/ f1 6 7 8 9 10

3.4 General resonator with two discontinuities
Computing the natural frequencies is still an easy matter.

In that case, the characteristic matrixM(k) is :
−a1

c1
s1

a1
s1

0 0
a1
s1

−(a1
c1
s1

+ a2
c2
s2

) a2
s2

0
0 a2

s2
−(a2

c2
s2

+ a3
c3
s3

) a3
s3

0 0 a3
s3

−a3
c3
s3

 (6)

from which one obtains the natural frequencies of the
closed-closed case e.g. as the solutions of :

a1
tan(kl2) tan(kl3) + a2

tan(kl3) tan(kl1) +
a3

tan(kl1) tan(kl2) =
a1a3
a2

.
We are not aware of such an equation before. Nevertheless,
solving this equation for k would be very difficult. Needless
to say, in the case of more than two discontinuities, one
can compute the determinant of M(k) thanks to a symbolic
computation system but get a complex and long expression
that even can hardly be written down. Computing its roots
becomes quickly a task out of reach, except when all lengths
li are equal to l. In that case, the natural frequencies are easily
computed through the corresponding algebraic eigenvalue
problem, as in 3.3, or through the recursion (4). For the
closed-closed case they are given as : tan2(kl) =

a2(a1+a2+a3)
a1a3

.
For the closed-open case they are are found through the
recursion (4) to satisfy : tan2(kl) =

a2a3

a1a2+a1a3+a2
2
. These simple

relations already show that several configurations with three
cylinders may lead to harmonic natural frequencies. It is
obvious that the first relation is invariant under permuting
a1 and a3, implying several different waveguides. Such
symmetry properties are currently under study.

3.5 Resonator with one tonehole
M(k) is given in (2). It is symmetric but not tridiagonal

and the natural frequencies when all external vertices are
either open or closed are again the solutions of detM(k) = 0 :

a1
tan(kl2) tan(kl3) + a2

tan(kl3) tan(kl1) +
a3

tan(kl1) tan(kl2) = 0
where one recognizes the left member of equation for the 3-
stepped cone of section 3.4. We have not investigated that
point at the moment. Similar relations can be found easily
for different configurations of the tonehole and/or the right
end, allowing to revisit this subject. As for the equation
in section 3.4, it would be very difficult, if not impossible,
to solve in full generality such an equation, except maybe
in the low frequency approximation, which we did not try
yet but will be investigated later. Instead here, one uses the
same method as above, discretizing the different parts of the
instrument in order to get equal lengths cylinders and solve



Table 6: 2-stepped cone, a2
a1

= 3, a3
a1

= 6, closed-open

Frequency 69.2 138.5 207.7 346.1 415.4
fn/ f1 1 2 3 5 6
Frequency 484.6 623.0 692.3 761.5 900.0
fn/ f1 7 9 10 11 13

Table 7: Closed-open 3-stepped cone, results from [6]

Frequency 211.7 429.8 645.8 863.3
fn/ f1 1 2.03 3.05 4.08

the associated algebraic eigenvalue problem. As a simple
illustration, one has computed natural frequencies for the
following data : the main resonator is closed-closed, made of
two cylinders, each with length l1 = 0.62m and cross-section
area a1 taken for unit. The tonehole is placed exactly at the
middle of the main resonator. It has length l2 = 0.155m and
cross-section area a2 such that the ratio a2

a1
grows from 10−4

to 1 by steps of 0.1. The evolution of natural frequencies
appear in Table 10 (resp. 11 ) when the tonehole is open
(resp. closed). The first four partials are shown in each case,
in order to see the evolution in low and somewhat higher
frequencies, as a function of the tonehole size. When the
tonehole is open, one sees a very low frequency appear, far
below the first partial f1 = 138.45Hz (see the discussion
in [2], p. 259), and increasing with increasing cross-section
of the hole, while almost not perturbing the other natural
frequencies, except when a2 comes close to a1. When the
hole is closed this very low frequency is absent and the other
natural frequencies are much less perturbed by the tonehole
volume, which is as to be foreseen. When the tonehole is
open (resp. closed) f3 (resp. f2) is recognized to be a partial
of one open-open cylinder alone, c/2L, which is justified
theoretically [5].

4 Conclusion and future research
In this work, computation of natural frequencies of

wind instruments, for several resonator geometries with
and without tonehole or with discontinuities has shown the
efficiency of the graph-based approach. The main reason
is that computations are done through the solution of an
algebraic eigenvalue problem, instead of iteratively solving
a nonlinear equation (possibly through optimization) that
becomes quickly very complex with the usual approach.
Solutions for resonators with discontinuities are computed at
no supplementary cost, either theoretical or computational,
than without them : the eigenmodes (more precisely their
value at the vertices of the graph) are computed at once
with natural frequencies, through solving the characteristic
equation. Mode matching is automatically satisfied by
construction (boundary condition in equation (7) expresses
volume flow conservation from start). This can be compared
to the approach in [7] (see also [2], chap. 7), where modal
decompositions of each branching tube has to be done
followed by mode matching. No theoretical developments
beyond those summarized in the appendix are needed. All
the computed quantities are exact, up to the numerical
precision and, of course, within the plane wave hypothesis ;
for example the familiar notion of length correction, related

Table 8: Closed-open 3-stepped cone, graph method

Frequency 221.5 443.1 664.6 886.1
fn/ f1 1 2 3 4

Table 9: 1-stepped cone, a2
a1

= 2, closed-open

Frequency 80.7 185.3 290.5 395.8
fn/ f1 1 2.29 3.60 4.90
Frequency 501.1 606.5 711.9 817.2
fn/ f1 6.21 7.51 8.82 10.12

to deviation from ideal geometries, is never used, as one
has noticed. This has to be compared with the classical
modal decomposition, that appears more involved at both
levels. The price to pay is to get familiar with the basic
mathematical language of graphs, which is likely not in
use in the acoustics community. But the procedure can be
automatized easily, the only quantities to manipulate being
the incidence and adjency matrices and matrices with the
same pattern. On another hand, the usual approaches through
impedances, transfer matrices and modal decompositions
are more appealing to intuition, in part probably because
of history, so that both approaches are surely useful for
the study of wind instruments. Several other elementary
resonators have been studied with this graph approach
such as expansion chambers or stepped cones with one
tonehole, or even general tree-like resonators, but have not
been presented because room is lacking. Nevertheless, refer
to [9] for a sample of current developments relying on the
present approach, that show that the class of resonators
with harmonically related frequencies is much wider
than conjectured in [6]. Several directions will be now
investigated : characterization of the class of resonators with
harmonically related natural frequencies ; investigation of
the orthogonal polynomial property ; extension to conical
elements, for a better approximation of flaring horns and
other variable cross-section resonators, still in the 1D
situation ; junction models more general than Kirchoff laws.
On another side 2D models, including losses, and other
applications to general acoustical problems, including planar
and 3D networks of waveguides, are also being considered
along the same line.

5 Appendix
Graph description of a wind instrument The description
of a wind instrument by its graph was given in [3],
following [5]. A quick summary is given here. Each portion
of the main resonator between two adjacent toneholes is
modelled in a schematic way by an edge with two ends
modelled by two vertices (figure 1). Each tonehole or
register hole is modelled schematically as an edge joining
two vertices. For piecewise cylindrical resonators, each
piece is modelled by an edge joining two vertices that
connect it to its two neighbouring cylinders. Then the union
of all these edges and vertices constitutes the graph of the
wind instrument, which actually is a tree, as illustrated in
figure 1 : for a wind instrument with n holes (tone and
register holes), the associated tree has N = 2n + 2 vertices
(or nodes), denoted Vi, and N − 1 = 2n + 1 edges, denoted



Table 10: Closed-closed resonator, one open tonehole

a2/a1 10−4 10−3 10−2 10−1 1
f4 415.37 415.37 415.45 416.26 423.09
f3 276.91 276.91 276.91 276.91 276.91
f2 138.46 138.51 138.99 143.84 184.61
f1 1.25 3.94 12.39 37.13 77.85

Table 11: Closed-closed resonator, one closed tonehole

a2/a1 10−4 10−3 10−2 10−1 1
f3 415.36 415.31 414.83 409.98 369.21
f2 276.91 276.91 276.91 276.91 276.91
f1 138.45 138.45 138.36 137.56 130.73

Ei. Each edge and its associated quantities are indexed
by an integer : i ∈ I = {1, . . . ,N − 1}. Therefore, one
defines for each edge, the length li, the running variable
xi ∈ [0, li], the cross-section area ai, the pressure pi, the
particle velocity vi and the velocity potential φi (vi = ∂xiφi),
i ∈ I. The sound velocity, c, is assumed to be constant
and identical for all resonators. The locations of end points
of each tube, i.e. the vertices of the tree, are labelled by
j ∈ J = {1, . . .N}. For j ∈ J , it is useful to define :
I j = {i ∈ I : the ith tube meets the jth vertex} The incidence
matrix is : D = (di j), di j = 1 (resp. di j = −1) if the end
(resp. the origin) of E j is Vi, di j = 0 else. The adjacency
matrix is E = (ei j), ei j = 1 if ViV j is an edge, ei j = 0
else. It describes how edges connect vertices. Denote by
s(i, j) the number of the edge connecting vertices Vi and
V j. Whenever ei j = 0, set s(i, j) = 1. Define then the
matrices : A = (aih) = (as(i,h)eih), L = (lih) = (ls(i,h)eih),
having the same pattern as E and holding respectively the
areas and lengths information. An element by element
matrix calculus, named after J. Hadamard, is also needed
(see [3]) : (P ? Q)i j = pi jqi j, (M(k))i j = mk

i j. A star is
used to distinguish Hadamard matrix product from the usual
one. Set e = (1, . . . , 1)T and, for any n-vector, y = (yi)
the diagonal matrix diag(y)= (δi jyi) with δ the Kronecker
delta function. The rescaling onto the unit interval [0, 1]
is done by setting x j = l jx, as follows. For the unknown
velocity potential φ : G → R (φ = (φi)i∈I) and x ∈ [0, 1],
define the matrix of rescaled unknowns Φ(x) = (φih(x))
with : φih(x) = eihφs(i,h)

[
lih

( 1+dis(i,h)

2 − xdis(i,h)

)]
such that :

Φ(0) =
(
φi(xi j, t))

)
eT ? E = ψeT ? E. ψ = (φi(xi j, t)) denotes

the vector of values of φi’s at the vertices, with xi j = 0 or li
corresponding to which end meets the other tubes at the jth
vertex. Notice the symmetry φhi(x) = φih(1 − x), x ∈ [0, 1].
As the independent variables xi have all been rescaled to
[0, 1], the spatial derivatives are denoted in the usual way :
u
′

= ∂xu.

Computing the natural frequencies through the graph
Refering to [3], the natural frequencies of a wind instrument
model are given as k = ω

c , the wave number, solution of the
following eigenvalue problem :

φih ∈ C2([0, 1]) and (eih = 0⇒ φih = 0)∀i, h ∈ I
L(−2) ? Φ

′′

(x) = −ω
2

c2 Φ(x) ,∀x ∈ [0, 1]
∃ψ ∈ RN : Φ(0) = ψeT .E[
L(−1) ?A ? Φ

′

(0)
]

e = 0
ΦT (x) = Φ(1 − x), ∀x ∈ [0, 1]

(7)
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Figure 1: Graph of a wind instrument with n toneholes

Using the Hadamard calculus above, the solution Φ of this
problem is : Φ(x) = cos(kLx)?Φ(0)+ 1

kL
−1?sin(kLx)?Φ

′

(0)
assuming ω can be computed. Define the matrix : M(k) =

A ? (sin(kL))−1 − diag
[(
A ? (sin(kL))−1 ? cos(kL)

)
e
]
.

The eigenvalues of problem (7) can be shown to be the
solutions of the transcental equation : detM(k) = 0. When
all lengths of individual edges of the graph are equal to
a given length l, the natural frequencies are merely the
solutions of the following algebraic eigenvalue problem
(see [3, 5]) : Aψ = cos(kl)diag(Ae)ψ. , i.e. defining the
matrix Z := (diag(Ae))−1A and µ = cos(kl) : those of the
problem : Zψ = µψ. and one sees that the values of the
eigenvectors at all nodes are readily computed at once.
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