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Abstract 

Allogeneic stem cell transplantation (allo-SCT) is a curative therapy for different 

life-threatening malignant and non-malignant hematologic disorders. Acute 

graft-versus-host disease (aGVHD) and particularly gastro-intestinal aGVHD 

remains a major source of morbidity and mortality following allo-SCT, which 

limits the use of this treatment in a broader spectrum of patients. Better 

understanding of aGVHD pathophysiology is indispensable to identify new 

therapeutic targets for aGVHD prevention and therapy. Growing amount of data 

suggest a role for Th17 cells in aGVHD pathophysiology. In this review, we will 

discuss the current knowledge in this area in animal models and in humans. 

Based on it, we will then describe new potential treatments for aGVHD along the 

Th17 axis.  
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Introduction 

Allogeneic stem cell transplantation (allo-SCT) is a curative therapy for different 

life-threatening hematologic malignancies. The therapeutic efficacy of allo-SCT 

relies on the combination of the cytoreductive effect of the conditioning 

chemotherapy and/or radiotherapy and of the graft-versus-tumor (GVT) effect 

mediated by the donor’s immunocompetent cells (CD8+ and CD4+ T cells, 

natural killer cells and dendritic cells). However, the beneficial effect of graft-

versus-tumor effect is counterbalance by the immunological recognition and 

destruction of host tissues by the donor’s immune effectors, termed graft-versus-

host disease (GVHD). GVHD remains a major source of morbidity and mortality 

following allo-SCT. Gooley et al.1 recently reported a substantial reduction in 

death related to allo-SCT and an increased long-term survival. Similarly, we 

reported2 a significant reduction of non-relapse mortality significantly and 

improvement of overall survival in the 2001-2010 period, compared to 1983-

2000 period, while the incidence of acute GVHD (aGVHD) remained stable, and 

the incidence of extensive chronic GVHD increased, during the same period2. 

Therefore, it is essential to improve GVHD management.  

Consequently, there have been several attempts to develop biological 

biomarkers to predict GVHD onset or responsiveness to treatment3, 4. This would 

allow a more stringent monitoring and intensified prophylaxis or curative 

treatment of GVHD in those patients. Furthermore, recent progress in medical 

imaging test and endoscopic techniques, such as contrast-enhanced ultrasound 

(CEUS) or probe-based confocal endomicroscopy (pCLE), may allow an earlier 

and more specific diagnosis of GVHD, particularly for gastrointestinal aGVHD 

(reviewed in 5). Finally, identification of new therapeutic targets and 

development of new immunosuppressive therapy are indispensables to further 

improve GVHD management. 

The pathophysiology of aGVHD is a multistep process8, 9. In the first step, the 

conditioning regimen (chemotherapy and/or total body irradiation) leads to 

host tissue damage, release of proinflammatory cytokines, and increased 

expression of major (MHC) and minor histocompatibility antigens and co-

stimulatory molecules on host antigen presenting cells (APC). In the second step, 

donor-derived CD4+ and CD8+ T cells are activated by host APC and migrate into 
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GVHD target tissues (gastrointestinal tract, skin and liver). In the third step, 

cellular mediators (such as cytotoxic T lymphocytes, activated macrophages and 

natural killer cells) and inflammatory cytokines act synergistically to enhance 

target tissue destruction8, 9. For a long time, we considered that a particular 

subset of CD4+ T helper (Th) cells, Th1 cells, was at play during the effector 

phase of aGVHD10, 11. However, the identification of a new Th subset, Th17 cells, 

raised the question of their role in aGVHD. Therefore, in this review we will 

discuss the most recent data on the contribution of these Th17 cells and Th17-

related cytokines in aGVHD pathophysiology. 

 

Th17 CELLS 

Th17 cells differentiation 

In 2005, two seminal studies12, 13 showed in a mouse model that the 

development of Th17 cells from naïve precursors was independent of Th1 and 

Th2 specific transcription factors (T-bet and Gata-3), leading to the 

establishment of the Th17 lineage as independent and distinct from the Th1 and 

Th2 lineages12, 13. Another group reported that mouse Th17 cells uniquely 

expressed a transcription factor termed retinoid acid-related orphan receptor 

(ROR)γt (encoded by the gene Rorc)14. 

Besides RORγt, STAT3 is the second transcription factor required for Th17 cells 

differentiation. STAT3 has pleiotropic functions as a transcriptional activator for 

Rorc, Il17, Il17F, IL23R and others genes implied in Th17 cell differentiation or 

survival in murine models15. Several cytokines play a role in Th17 cell 

differentiation, upon the control of the RORγt and STAT3 transcription factors.  

In murine models, IL-6 has an essential role in this process by activating 

STAT316, which directly drives the transcription of Th17 lineage specific genes15 

and suppresses TGFβ-induced forkhead box P3 (FOXP3) expression, thereby 

inhibiting regulatory T cell (Treg) development17. IL-6 also induces the 

expression of IL-1R1 by mouse Th17 cells18. Il-1β, through its receptor IL-1R1, 

promotes the transcription factor interferon-regulatory factor 4 (IRF4), which 

reinforces the expression of RORγt, and enhances Th17 proliferation in 

experimental models18. Therefore, these data suggest that if IL-6 directly drives 

the differentiation of Th17 cells, IL-1β enhances the expansion of these cells. 
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Alternatively, IL-21 selectively induces the phosphorylation of STAT3 and 

replacement of IL-6 with IL-21 in combination with TGFβ, IFNγ and Il-4, was 

very effective to induce high level of IL-17 producing cells in a mouse model19. 

Furthermore, IL-21 is also produced by Th17 cells, promoting self-maintenance 

of Th17 cells20. Regarding TGFβ, although the data suggest that TGFβ is required 

for Th17 cells differentiation in mouse models21, 22, it probably does not act as a 

direct Th17 cell-inducing factor, but rather allows Th17 cells differentiation 

indirectly by suppressing alternative cell fates23, 24.  

In humans, while the role of IL-6 and IL-1β is well established on in vitro cultures 

of human T cells25-27, the contribution of TGFβ to Th17 cells differentiation 

remains a matter of debate. While some groups have shown that TGFβ is 

necessary for in vitro Th17 cell differentiation28, 29, others found that Th17 cells 

could differentiate without TGFβ, upon stimulation with a cocktail of IL-6, IL-1β 

and IL-2325-27. However, these are in vitro data, and it is difficult to draw 

definitive conclusion regarding the role of TGFβ for Th17 cells differentiation 

under in vivo inflammatory conditions in human. Besides, IL-21, produced by a 

number of T cells and the NK cell subset, is also involved in human Th17 cells 

differentiation via STAT3 signaling 29.  

IL-23 is another key cytokine for Th17 cells commitment. Therefore, despite the 

combination of IL-6 and TGFβ being sufficient to drive Th17 cells differentiation, 

the cells generate by this combination fail to induce pathogenicity in mouse 

models30. However, IL-6 and TGFβ, induce IL-23R expression16, and subsequent 

exposure to IL-23 stabilizes the phenotype31 and expands the pathogenicity of 

Th17 cells27, 30, 32.  

Th17 cell plasticity 

Despite initial thoughts that CD4+ naïve T cells differentiate into terminal 

phenotypes in a rigid process, it is now quite well accepted that, depending on 

the cytokine milieu, certain Th subset can adopt a mixed phenotype or switch 

entirely to the transcription and cytokine profile of another lineage. Given that 

TGFβ suppresses Th1 and Th2 differentiation in mouse23, 24, both Th17 and 

induced Treg (iTreg) development is favoured in its presence. Therefore, after 

TCR engagement, CD4+ T cell differentiation into Th17 or iTreg in the presence 

of TGFβ will depend on the cytokine environment: in the absence of pro-
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inflammatory signals, naïve T cells will differentiate into iTregs, whereas IL-6 

will promote Th17 cell development both in mouse models and in vivo in 

human23, 24, 33. The presence of all-trans retinoid acid in the microenvironment 

seems to inhibit Th17 and promote iTreg development in mouse, in part, at least, 

by antagonizing the effect of IL-634-37. Therefore, Yang et al. demonstrated in a 

mouse model that upon IL-6 stimulation, both natural Treg and iTreg repress 

Foxp3 and produce IL-1738, suggesting that fully differentiated Treg could be 

converted into Th17-like cells. In human, Koenen et al. have shown in vivo that  

circulating Foxp3+ Treg can differentiate into IL-17-producing cells RORγt+, 

given that APC, in particular monocyte, and the cytokine IL-2 or Il-15 are 

present39. Of note, this differentiation process was enhanced by exogenous IL-1β, 

Il-23 and IL-21, whereas IL-6 or TGFβ did not affect the emergence of Il-17 

producing cells39. The in vivo existence of hybrid Treg/Th17 cells in human has 

been established in inflamed intestinal mucosa of patients with Crohn disease40. 

These cells express Foxp3 and RORγt and produce IL-17, however unlike 

conventional Th17 cells, they functionally retain their suppressive activity in 

vitro40. A similar TCR β chain variable region between Treg/Th17 and Treg cells 

suggest that those Treg/Th17 cells arise form Treg cell when exposed to the 

inflammatory signals present in inflamed Crohn disease tissue40. Similarly, Voo 

et al. reported that human peripheral blood and lymphoid tissue contain a 

subpopulation of Foxp3+ Treg cells that coexpress RORγt and have the capacity 

to produce Il-17 upon activation41. In contrast, the conversion of Th17 cells into 

Treg has not been reported so far. 

Similarly, the Th1 and the Th17 pathways share a common point: a critical event 

in the late development of both pathways is the induction of a receptor for an IL-

12 cytokine family member: IL-12 for Th1 and IL-23 for Th17. These receptors 

share a common subunit, the IL-12Rβ1, associated with the IL-12Rβ2 to form the 

IL-12 receptor42, and with the IL-23R to form the IL-23 receptor. Similarly to the 

IL-23R up regulation during Th17 cell differentiation16, IL-12Rβ2 is up regulated 

during Th1 cell differentiation43. However, during their differentiation, Th17 

cells also weakly express the IL-12Rβ1. Therefore, both in vivo mouse data and in 

vitro human studies have shown that depending on the balance between the 

cytokines present in the milieu, IL-12 can induce the conversion of Th17 cells 
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into interferon γ (IFNγ)-producing Th1 like cells44, 45. These cells maintain their 

IL-17 memory upon subsequent culture44, 45. Finally, in vivo existence in Crohn 

disease patients of a Th1/Th17 hybrid subset that arises from the modulation of 

Th17 cells by Il-12 has been established45. 

Regarding Th2 subset, in vitro culture of mouse T cells under mixed Th1 and Th2 

conditions resulted in a continuum of mixed phenotypes with subpopulations of 

cells expressing only IFNγ, only Il-4 or both cytokines, correlating with 

expression level of Tbet and Gata-346. The in vivo existence of Th1/Th2 hybrid 

subset has been confirmed in a mouse model; during infection with 

Heligmosomoides polygyrus, a parasite that triggers a strong Th2 response, 

Th1/Th2 hybrid cells, that express simultaneously Tbet and Gata-3, have been 

observed47. Hegazy et al. demonstrated  in a murine model that injection of Th1 

cell-promoting lymphocytic choriomeningitis virus reprogrammed otherwise 

stably committed Gata-3+ Th2 cells to adopt a Gata-3+ Tbet+ and IL-4+ IFNγ+ 

“Th1/Th2” phenotype that was maintained in vivo for months, 48. Moreover, Th2 

cell reprogramming into hybrid Th1/Th2 subset required TCR stimulation and 

concerted type I and II IFN and Il-12 signals48. Finally, since the presence of IL-4, 

during in vitro naive T cell activation, inhibits RORγt expression and Il-17 

production, hybrid Th2/Th17 were thought not to exist. However, Califano et al. 

have recently shown in a mouse model of autoimmune encephalomyelitis that 

Th17 deficient in the transcription factor BCL11B upregulate the Th2 associated 

proteins Gata-3 and IL-4 without decreasing RORγt and IL-17 level49. So far no 

data has been reported on the existence of Th1/Th2 or Th2/Th17 hybrid subset 

in human. 

 

Th17 role 

Th17 cells produce several cytokines, which are not typically produced by Th1 

and Th2 cells. These cytokines include IL-17A, IL-17F, IL-17A/F, IL-21, IL-22, 

GM-CSF or human IL-26, and many other factors50. Th17 are usually present in 

the lamina propria of the small intestine14 and can be rapidly induced in other 

mucosal sites during infection51-53. Therefore, Th17 cells and Th17 related 

cytokine contribute to the host defence against a wide variety of pathogens, 

predominantly extracellular bacteria and fungal pathogens, in the epithelial 
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barrier of gut, skin and lung50, 54. Thus, once released, Il-17 and IL-22 act 

synergistically to enhance mucosal site defences by the production of 

antimicrobial peptide such as βdefensine-2 or S100 proteins55.  

Finally, Th17 responses also contribute to the pathogenesis of some diseases50. 

Therefore, their contribution to the pathophysiology of several autoimmune and 

autoinflammatory diseases affecting epithelial barrier, such as psoriasis or 

inflammatory bowel disease, is well established50. Given that aGVHD involves 

mostly the gastrointestinal tract, the skin and the liver, which contain epithelial 

barrier, Th17 contribution has been explored in aGVHD pathophysiology. 

 

Th17 CELLS IN aGVHD 

Studies in mouse models of aGVHD 

The contribution of Th17 cells in aGVHD pathophysiology has been 

demonstrated in several mouse models. Lu et al. found that phosphorylation of 

STAT3, a transcriptional factor involved in Th17 cell differentiation15, was 

important during T cells alloactivation during aGVHD and that interference with 

STAT-3 phosphorylation can inhibit T cell activation and proliferation in vitro 

and aGVHD in vivo, suggesting a role for Th17 cells in aGVHD56. Thereafter, 

Carlson et al. and Iclozan et al. have shown that adoptive transfer of in vitro 

differentiated Th17 cells mediate IL17-dependent lethal aGVHD with severe 

tissue lesions 57, 58. In a mouse model of aGVHD using IL-17-/- donor CD4+T cells, 

Kappel et al.59 found that aGVHD development was significantly delayed 

compared to recipients of WT CD4+ T cells, although the overall GVHD mortality 

remained unaffected. They concluded that despite Il-17 being dispensable for 

aGVHD, it contributes to its early development59. In contrast, Yi et al.60 reported 

on a similar model that transplantation of IL-17 -/- donor CD4+ T cells induced 

exacerbated aGVHD compared to WT CD4+ T cells, while administration of 

recombinant IL-17 and neutralizing IFNγ to the recipients given IL-17 -/- donor 

cells ameliorated aGVHD. Their conclusion was that donor Th17 cells ameliorate 

aGVHD through down-regulation of Th1 cell differentiation60. Nevertheless, 

given the plasticity between Th17 and Th1 cells44, 45, this result could be 

explained by an enhanced differentiation of Th1 cells in recipients given IL-17 -/- 

donor cells, and does not contradict a pathological role for Th17 cells in aGVHD. 
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Therefore, Gartlan et al. recently identified a population of inflammatory CD8+ 

cytotoxic T (Tc) 17 cells (iTc17) that develops rapidly after allo-SCT and 

contribute to GVHD but failed to maintain lineage fidelity61.  

Yi et al.62 also showed that administration of donor CD4+ T cells depleted for 

both IFNγ and IL-4 (a Th2 related cytokine) resulted in augmented Th17 

differentiation, and preferential, though not exclusive, aGVHD damage to the 

skin. Fulton et al.63 have shown, in a major mismatch murine model, that deletion 

of Rorc in both CD4+ and CD8+ donor T cells attenuated aGVHD and decreased 

tissue pathology in the colon, liver and lung. Hill et al. have shown that use of 

granulocyte colony-stimulating factor (G-CSF) for stem cell mobilization invoke 

Th17 responses rather than Th1/Th2 differentiation64. Therefore, while 

transplantation of G-CSF-mobilized graft from WT or IL-17A-/- B6 donors 

resulted in identical GVHD outcome in models of aGVHD, transplantation of graft 

from IL-17A-/- BALB/c donors resulted in attenuated GVHD, suggesting a role 

for IL-17A in GVHD. However in both recipients of B6 and BALB/c donor grafts, 

IL-17A promoted cutaneous GVHD with increased levels of both inflammation 

and fibrosis in the skin of WT grafts, suggesting that use of G-CSF mobilized 

grafts promoted sclerodermatous chronic GVHD. In a more relevant 

haploidentical murine transplantation model, Rorc-/- CD4+ T cells alone 

diminished the severity and the lethality of aGVHD63. Finally, Uryu et al.65 

recently reported that α-Mannan, a major component of fungal cell wall, induced 

donor T cell polarization toward Th17, leading to exacerbated Th17pulmonary 

aGVHD in mice. 

Some studies have also explored the role of cytokines implicated in Th17 cell 

differentiation. Therefore, inhibition of the Il-6 signaling pathway that drives 

Th17 cell differentiation by way of antibody-mediated blockade of the IL-6 

receptor (IL-6R) markedly reduces pathologic damage attributable to GVHD66. 

This effect is accompanied by a significant reduction of Th1 and Th17 cells 

infiltrating aGVHD target tissues and a significant increase of Treg66. Similarly, 

Tawara et al.67 reported that transplantation of IL-6-/- donor T cells or total 

inhibition of Il-6 with anti-Il-6R monoclonal antibody lead to a marked decrease 

in aGVHD severity and prolonged survival. However, they failed to demonstrate a 

role of donor T cells in this effect67. Other authors focused on IL-23, a cytokine 
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that stabilizes Th17 cell phenotype31 and expands their pathogenicity27, 30, 32. Das 

et al.68 have shown that donor antigen-presenting cells derived IL-23 drive 

gastro-intestinal aGVHD. The proinflammatory effect of Il-23 was reported to be 

dependent upon donor-derived secretion of interferon-γ and not IL-17, despite 

IL-17 being significantly decreased in IL-23-/- compared to wild-type donors68. 

Furthermore, they have shown that under IL-23 blockade, the graft-versus-

leukemia (GVL) effect was preserved69. Thompson et al.70 have confirmed that 

absence of IL-23 in donor grafts reduced the severity of aGVHD and was 

associated with a decrease of IL-17. Th17 cells produce IL-21, involved in their 

differentiation20, 29, promoting therefore their self-maintenance20. 

Transplantation with IL-21R-/- donor T cells resulted in less severe aGVHD, 

while sparing the GVL effect71-74. Furthermore, IL-21 blockade using a 

monoclonal antibody also decreased aGVHD75. In these studies, the protective 

effect of IL-21 signaling pathway blockade on aGVHD was associated with an 

expansion of Tregs, and no effect was observed on the IL-17 axis74, 75. In a 

xenogeneic GVHD model, IL-21 blockade also significantly reduced aGVHD76; 

nevertheless, this reduction was associated with an increase in Tregs and a 

decrease of IL-17 producing cells76.  

Several studies have explored the contribution of another Th17-related cytokine, 

IL-22, in aGVHD pathophysiology. IL-22 is structurally related to the IL-10 

family, secreted by Th17 cells, but also by others αβT cells (Th1, Th22 and CD8+ 

αβT cells), γδT cells, natural killer T cells, and innate lymphoid cells (ILC)77. IL-22 

has been reported to exert both protective and inflammatory functions, most 

likely depending on the cytokine microenvironment and the tissue and/or the 

cell type involved78. Thus, while IL-22 has been shown to be protective in 

inflammatory bowel disease79, it is pathogenic in psoriasis80 and rheumatoid 

arthritis81. In aGVHD, we have recently reported that IL-22 deficiency in donor T 

cells can decrease the severity of aGVHD while sparing the GVL effect82. 

Furthermore, once weekly administration of IL-22, starting on day 0, aggravates 

aGVHD in animal models83. In contrast, Hanash et al.84 showed that IL-22 

produced by recipient ILC decreased aGVHD tissue damage by protecting 

intestinal stem cells. Therefore, according to the cell source (donor or patient), 
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IL-22 may have an either protective or inflammatory effect in aGVHD. The IL-22 

axis remains to be further explored to decipher its exact role in aGVHD. 

Overall, results from aGVHD mouse models, suggest that Th17 cells may play a 

role in aGVHD pathophysiology.  

 

Studies in allo-SCT patients 

The role of Th17 cells has also been investigated in human aGVHD 

pathophysiology. Three studies evaluated the relation between the presence of 

the single-nucleotide polymorphism (SNP) rs11209026 (1142G>A) in IL-23R and 

aGVHD85-87. In two studies,85, 86 there was a significant reduction of aGVHD 

incidence in patients who where transplanted from a donor with the IL-23R SNP, 

while there was no effect when it was in the recipient, and the third study fail to 

identify any effect of the polymorphism87. In healthy donors, the presence of the 

IL-23r SNP promotes the expression of soluble IL-23R88 and, consequently, 

diminished IL-23 signaling, leading to a decreased IL-23-dependent IL-17 and IL-

22 production and STAT3 phosphorylation89, 90. These data suggest that 

protective effects of the IL-23R polymorphism on aGVHD are mediated through 

selective attenuation of IL-23 induced-Th17 effector function.  

Dander et al.91 and Liu et al.92 have reported that Th17 cells and IL-17 serum 

level were significantly increased in the blood of patients at aGVHD onset, 

compared to allo-SCT patients without aGVHD. Furthermore, in both studies, the 

increased number of circulating Th17 cells was accompanied by a decrease in 

circulating Tregs91, 92.  

Early studies failed to identify Th17 cells infiltrating aGVHD target tissues. Thus, 

Broady et al.93 reported that only Th1 and not Th17 cells infiltrate the skin of 

patients with cutaneous aGVHD. Similarly, Ratajczak at al.94 did not find Th17 

cells in skin and gut biopsies of patients with cutaneous or gastrointestinal 

aGVHD. Identification was based on detection of IL-17+ cells directly by 

immunohistochemistry in patients’ biopsies in both studies93, 94, or by flow 

cytometry after in vitro culture of dermal cells in the study by Broady et al.93 

However, Th17 cells could convert into interferon γ producing Th1 like cells44, 45. 

Given Th17 cells plasticity, IL-17 is probably not the most reliable marker. 

Therefore, using CD161 and CCR6, two surface marker, of Th17 cells45, 95, 96 and 
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RORγt, the key transcription factor that orchestrate Th17 cell differentiation14, 

we have shown that the number of Th17 was significantly increased in the 

intestinal mucosa and the skin of patients with gastro-intestinal or cutaneous 

aGVHD, compared with allo-SCT patients who did not developed aGVHD97, 98. 

Similarly, using the same two markers, van der Waart et al.99 reported that Th17 

cells infiltrate aGVHD-affected tissues (intestinal mucosae and skin) whilst being 

decreased in the peripheral blood during aGVHD. Recent data have shown that 

circulating Th17 cells may be increased early after allo-SCT in patients who will 

develop aGVHD. Thus, Lee et al.100 showed that a high ratio of CD4+ CD161+ to 

CD8+ CD161+, and an increased level of serum Il-17 at engraftment were 

associated with subsequent development of aGVHD, and that those CD4+ 

CD161+ cells expressed high levels of RORγt. Similarly, Betts et al.101 reported 

that at day 21 after allo-SCT, pSTAT3, a transcription factor that directly drives 

the transcription of Th17 lineage specific genes15, was significantly increased in 

CD4+ T cells among patients who will subsequently develop aGVHD. 

Furthermore they confirmed that the number of CD3+ RORγt+ Th17 cells was 

significantly increased in aGVHD target tissues101. Recently, a novel 

CD146+CCR5+ T cell population was identified, this population was significantly 

increased at gastro-intestinal aGVHD onset, and proven to be Th17-related (Li W, 

Liu L, Gomez A, Zhang Q, Zhang J, Ramadan A et al. unpublished data,). Moreover, 

at day 19 post allo-SCT, those cells were significantly increased before aGVHD 

onset in patients who subsequently developed gastro-intestinal aGVHD, 

suggesting that this CD146+CCR5+ T cells population could be used as an early 

biomarker of intestinal aGVHD. Finally, Reinhardt et al.102 demonstrated that 

peripheral monocytes isolated from patients with skin and/or gastro-intestinal 

induce significantly increased level of Th17 cell compared with patients without 

aGVHD, highlighting that activated monocytes could drive peripheral Th17 cells 

in aGVHD. 

The role of the Th17-related cytokine, IL-22, as in murine models, seems to be 

dependent upon the cell source. Recently, Munneke et al. have shown that 

appearance of donor origin natural cytotoxicity receptor (NCR)-positive ILC, an 

important innate source of IL-22, correlated with a decreased incidence of 

aGVHD103.  
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Overall, these results suggest that circulating Th17 cells are increased early after 

allo-SCT in patients who develop aGVHD, and that, at its onset, circulating Th17 

decrease in the peripheral because they migrate into the aGVHD target tissue, 

where they trigger its damage (Figure 1). 

 

Th17 CELLS: A NEW TARGET FOR aGVHD PREVENTION AND TREATMENT 

So far, the most widely used immunosuppressive drugs for aGVHD prevention 

and therapy increase the infection risk, and present side effects other than those 

related to their immunosuppressive properties. Thus there is a need for more 

specific and less toxic approaches. Given growing evidence suggesting that Th17 

cells play a role in aGVHD, they represent a promising therapeutic target 

towards which to design new approaches for aGVHD treatment, but also for 

prevention or pre-emptive therapy, since circulating Th17 are increased before 

aGVHD onset (Table 1, Figure 2). 

Several monoclonal antibodies anti-IL-17A (ixekizumab, secukinumab) or anti-Il-

17R (brodalumab) have proven to be effective in psoriasis, an IL-17 related auto-

inflammatory skin diseases104-106. However, these results do not guarantee the 

effectiveness of these monoclonal antibodies in aGVHD. In fact, brodalumab and 

secukinumab were ineffective for Crohn's disease treatment107, 108, while Il-17 

was reported to drive Crohn's disease108. For the IL-22/IL-22R axis, further 

exploration to delineate its inflammatory versus protective effects in aGVHD is 

indispensable, before considering targeting it.  

Given IL-1β and IL-6 drive Th17 cell differentiation, therapy targeting Il-1β and 

IL-6 has been evaluated in clinical trials. Blocking IL-1β using recombinant 

human IL-1R antagonist was proven to be ineffective for aGVHD prevention109, 

while tocilizumab, an anti-IL-6R monoclonal antibody, has shown promising 

results for aGVHD prophylaxis in a phase 1/2 trial110, and several phase 2 trial 

are ongoing. Since IL-23 expands the pathogenicity of Th17 cells27, 30, 32, it 

appears to be also a promising therapeutic target. Therefore, ustekinumab, a 

monoclonal antibody that binds the p40 subunit shared by IL-12 and IL-23, 

approved for psoriasis and effective in Crohn's disease111, has demonstrated 

efficacy in one case report of glucocorticoid-refractory aGVHD112. Ustekinumab is 

currently evaluated for aGVHD prevention in combination with tacrolimus and 
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sirolimus (NCT01713400). Several monoclonal antibodies targeting the IL-

23p19 are also being evaluated in phase I, II or III trials for psoriasis and 

rheumatoid arthritis; raising the possibility to evaluate them for aGVHD 

treatment. Finally, several monoclonal antibodies targeting Il-21, a cytokine that 

promotes Th17 cell self-maintenance20, are under development for rheumatoid 

arthritis, Crohn’s disease and systemic lupus erythematosus113, and represent a 

potential therapeutic strategy for aGVHD. 

Some inhibitory molecules directly target Th17 cells. Thus, pharmacological 

inhibition with KD025 of Rho-associated kinase 2 significantly diminished 

STAT3 phosphorylation and binding to IL-17 and IL-21 promoters in mouse 

models114. Also, the Janus family kinase (JAK) inhibitors, Tofacitinib, a JAK1/3 

inhibitor and Ruxolitinib, a JAK1/2 inhibitor, block STAT3 phosphorylation, 

resulting in the suppression of Th17 cell differentiation115. Tofacitinib and 

Ruxolitinib have proven to be effective for psoriasis treatment in human in phase 

III and II trials respectively. Zeiser et al. recently reported a retrospective study 

evaluating Ruxolitinib for corticosteroid refractory aGVHD in 54 patients116. The 

overall response rate was 81.5%, including 25 complete responses (46.3%), 

highlighting the therapeutic potential of JAK-inhibitors for the treatment of 

aGVHD116. Prospective studies evaluating Ruxolitinib and Tofacitinib for aGVHD 

prevention or treatment are expected. Finally, several additional molecules that 

could block the Th17 pathway are at a preclinical development stage, such as 

inhibitors of RORγt117 or retinoid acid receptor α agonist118. 

Evaluation of Tofacitinib and 

CONCLUSION AND PERSPECTIVE 

Significant achievements have been made in the understanding of Th17 cells 

pathophysiology. Recent data showing an increased Th17 cell population during 

or preceding aGVHD are of particular interest, highlighting that these cells could 

be targeted not only for aGVHD treatment, but also earlier for its prevention. The 

increased number of monoclonal antibodies and inhibitory molecules targeting 

the Th17 pathway hold promise for identification of more effective treatment for 

aGVHD prevention and treatment. Efforts must be pursued to evaluate those 

forms of treatment in aGVHD. 
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Figures legends 
 
Figure 1. Kinetic of Th17 cells after allogeneic stem cell transplantation in 

patients who develop acute graft-versus-host disease. aGVHD indicates acute 

graft-versus-host disease; allo-SCT, allogeneic stem cell transplantation. 

 

Figure 2. Potential therapeutic targets of the Th17 pathway implicated in 
acute graft-versus-host disease, example of the intestinal acute graft-
versus-host disease. The conditioning regimen leads to host intestinal tissue 
damage and activation of host antigen presenting cells (APC), that will drive 
Th17 differentiation through IL-6, IL-1β, TGFβ and IL-23. Various therapeutic 
tools are available to target Th17 pathway. Cytokines driving Th17 cells 
differentiation could be target by monoclonal antibodies: tocilizumab target IL-
6R ustekinumab target the p40 subunit share by IL-12 and IL-23 and the p19 
subunit of IL-23 is targeted by Tildrakizumab, Guselkumab, AMG 139, BI 655066 
and LY3074828. Th17 differentiation could also be target by inhibitors of Th17 
generation, such as the JAK inhibitors Tofacitinib and Ruxolitinib that block 
STAT3 phosphorylation. Several monoclonal antibodies could target Th17 
related cytokines: IL-17A (Ixekizumab, Secukinumab, CNTO 6785, SCH 900117 
and CJM112), IL-17A and IL-17F (Bimekizumab and ALX-0761) and IL-21 
(NNC0114-0005, NNC0114-0006 and ATR-107). Alternatively, IL-17R could be 
targeted by the monoclonal antibody Brodalumab. Finally given the 
contradictory data regarding the inflammatory versus protective effect of IL-22 
in aGVHD, no therapeutic strategy related to IL-22 could be proposed at moment. 
Ab indicates monoclonal antibody; APC, antigen presenting cell. 
 



Table 1. Potential therapeutic agents targeting the TH17 axis for acute 

GVHD treatment. 

Target Drug Companies Clinical stage in 

aGVHD 

Clinical trial identifier 

and publication 

Th17 differentiation 

IL-6R Tocilizumab Roche Phase I/II completed110 

Phase I/II ongoing 

Phase II ongoing 

Phase II ongoing 

ACTRN12612000726853 

NCT01475162 

NCT01757197 

NCT02206035 

IL-23-p40 Ustekinumab Janssen Phase II ongoing NCT01713400 

IL-23-p19 Tildrakizumab 

 

Guselkumab 

AMG 139 

BI 655066 

 

LY3074828 

Merk/ Sun 

Pharma 

Janssen 

Amgen 

Boehringer 

Ingelheim 

Eli Lilly 

Not evaluated in GVHD NA 

STAT3 Ruxolitinib 

Tofacitinib 

Novartis  

Pfizer 

Retrospective study116 

Not evaluated in GVHD 

NA 

Th17 related cytokine 

IL-17A Ixekizumab 

Secukinumab 

CNTO 6785 

SCH 900117 

CJM112 

Eli Lilly 

Novartis 

Janssen 

Merk 

Novartis 

Not evaluated in GVHD NA 

IL-17A and 

IL-17F 

Bimekizumab 

ALX-0761 

UCB 

Merk 

Serono/Ablynx 

 

NA 

IL-17R Brodalumab Amgen Not evaluated in GVHD NA 

IL-21 NNC0114-0005 

NNC0114-0006 

ATR-107 

Novo Nordisk 

Novo Nordisk 

Pfizer 

Not evaluated in GVHD NA 

Abbreviation: NA, not available;  
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