
PROCEEDINGS, Fortieth Workshop on Geothermal Reservoir Engineering 

Stanford University, Stanford, California, January 26-28, 2015 

SGP-TR-204 

1 

Enhanced Geothermal Reservoirs                                                                                                               

with two Fluid Cavities and Unequal Solid and Fluid Temperatures  

Rachel M. Gelet
1
, Benjamin Loret

2
 and Nasser Khalili

3
 

1: Université de Nantes, France, 2: Université de Grenoble, France, 3: The University of New South Wales, Sydney, Australia 

1: Rachel.Gelet@univ-nantes.fr 2: Benjamin.Loret@grenoble-inp.fr 3: n.khalili@unsw.edu.au 

 

Keywords: local thermal non equilibrium, thermo-hydro-mechanical couplings; thermal stress; double porosity. 

ABSTRACT 

Thermo-hydro-mechanical (THM) constitutive equations and generalized diffusion and transfer constitutive relations are developed in a 

comprehensive, coupled and unified framework, assuming a deformable rock formation. Particular attention is laid on both mass and 

energy exchanges between the cavities which are controlled by the out-of-balances of the chemical potentials and by the out-of-balances 

of the coldnesses, respectively. 

Emphasis is laid a) on the mass exchanges between the pore system and the fracture network, which are endowed each with their own 

pressure, and mainly; b) on the energy exchanges between the rock, the pore network and the fracture network, which are endowed each 

with their own temperature. 

Thermo-hydro-mechanical (THM) constitutive equations and generalized diffusion and transfer constitutive relations are developed in a 

comprehensive, coupled and unified framework, assuming a deformable rock formation. Particular attention is laid on both mass and 

energy exchanges between the cavities which are controlled by the out-of-balances of the chemical potentials and by the out-of-balances 

of the coldnesses, respectively. 

The model is applied to simulate circulation tests using a domestic finite element code. The parameters are calibrated from the thermal 

outputs of the Fenton Hill and Rosemanowes reservoirs. At variance with a double porosity model with Local Thermal Equilibrium 

(LTE), the Local thermal Non Equilibrium model (LTNE) displays the characteristic two step time profile that is reported for these two 

reservoirs. In agreement with field data, fluid loss is observed to be high initially and decreases with time. A sensitivity analysis is 

performed to determine the influences of the internal length scales, namely fracture spacing and crack aperture, in the complete  

framework of  the dual porosity (2 pressures 2P) and local thermal non equilibrium (3 temperatures 3T) . 

The fine description of the effective stress, pore and fracture pressures, and solid, pore and fracture temperatures of the most general 

format (2P-3T) is essentially unchanged when the model is specialized to (2P-2T) with equal pore and solid temperatures. At variance, 

the quality of the description is degraded for the (1P-2T) model that omits the permeability contribution of the pores, and for the (1P-

1T) standard single porosity LTE model. The progressive transition is quantified during circulation tests at the Fenton Hill HDR. 

1 INTRODUCTION 

Geothermal energy resources initially tested at Los Alamos National Laboratory, Murphy et al. [1981], continue to attract a significant 

amount of attention in present-day commercial prototypes, Tenzer [2001]. The development of constitutive models for energy extraction 

from artificially fractured hot dry rock (HDR) reservoirs requires three main ingredients: (1) a proper thermo-hydro-mechanical coupled 

model developed from a rational thermodynamic framework; (2) a theory of mixtures for a solid skeleton and one (or several) fluid(s), 

and (3) local thermal non-equilibrium (LTNE). 

The purpose of this work is to contribute to a framework of understanding of the thermo-hydro-mechanical response of fractured media, 

where, at each geometrical point, the solid skeleton displays two fluid cavities and the temperatures of the solid and fluids are 

independent. Field observations of pressure buildup and depletion history of reservoirs have demonstrated that standard poro-elasticity 

may be too crude for a modeling purpose. A more elaborate formulation, such as the dual porosity concept, is needed to provide a 

reliable description of the effective stress and of the fluid pressures in fractured reservoirs. 

As for geothermal energy applications, focus so far has been on partially coupled systems in an effort to implement a network of 

discrete discontinuities and/or to couple free and forced convection. The closed form solutions by Ghassemi et al. [2005] of the 

thermally induced stress, in geothermal reservoirs where heat transport is dominated by convection in the fluid phase and by conduction 

in the solid phase, are worth notice. 

Still, the influence of a second porosity, which is not participating to forced convection owing to its low permeability, has been 

systematically disregarded. Indeed, in spite of their importance in the fields of petroleum engineering, reservoir engineering and 

geothermal energy extraction, thermo-hydro-mechanical coupling effects in media with double porosity have rarely been investigated. 

Crucially, the extension of the effective stress concept to media with multiple porosity, and cavities saturated either by liquids or gases, 

has been an open question for a while. Two propositions remain today: (1) the double effective stress concept, Elsworth and Bai [1992], 

and (2) the extension of Biot’s relationship to dual porosity, Khalili and Valliappan [1996]. The importance of an appropriate definition 
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of the effective stress is illustrated in the thermo-hydro-mechanical formulations developed for unsaturated porous media, Khalili and 

Loret [2001]. 

A key factor in geothermal energy recovery is the difference in the characteristic times between diffusion of heat in the porous blocks 

and forced convection in the fracture network, a feature that motivates an analysis that allows for local thermal non-equilibrium. In fact, 

Gelet et al. [2012]1 show that continuum models displaying a single porosity can adequately predict the thermal depletion of hot dry 

rock reservoirs if LTNE between the solid skeleton and the fluid is accounted for. Still, to the exception of the above work, none of the 

constitutive models accounting for LTNE in mixtures including a solid and a fluid. Quantifying the inter-phase heat transfer coefficient 

is essentially an open question in the domain of deformable saturated dual porosity media. 

Of crucial importance to the economic viability of enhanced geothermal systems is the knowledge of the induced thermal stresses and of 

the permeation losses into the porous matrix. Provided that the injection and production wells are appropriately connected, water loss is 

mainly attributed to the uncontrolled thermal contraction of the rock. Water loss may occur according to three mechanisms: steady state 

diffusive loss, transient loss into storage and loss due to reservoir growth (propagation of the fracture network). Few studies really 

address fluid losses into the matrix, permeation being usually imposed by a continuous leak-off into the formation. In contrast, the 

present approach quantifies the contributions of the two fluid pressures on the thermally induced effective stress and identifies a 

mechanism of fluid loss. 

A fully coupled finite element formulation for a thermo-elastic fractured medium in local thermal non-equilibrium is exposed here. The 

fractured medium is described as a dual porosity mixture composed of a solid phase and two fluid phases. While Gelet et al. [2012]1 

consider a single porosity model with one pore pressure and two temperatures, the dual porosity model displays two pore pressures and 

three temperatures. The solid phase has a special role as it provides the matrix skeleton and encloses the fluid phases in the porous 

blocks and the fracture network. The three phase model is embedded within a rational thermodynamic framework. In the finite element 

implementation, the primary variables are the solid displacement vector, the two pressures of the fluids and the three temperatures of the 

solid and of the two fluid phases. Comparisons between field data and the simulated response are used to calibrate three parameters of 

the model so as to match the thermal output, section 4. Particular attention is laid on the magnitude of the specific solid-to-fracture fluid 

heat transfer coefficient. Once calibrated, the model is used to simulate circulation tests, and the reservoir response is examined in terms 

of the effective stress and of the permeation of fluid through the porous blocks, section 5. A parametric analysis is performed to explore 

the response of the model, with special emphasis on the fracture spacing. 

2 BALANCE EQUATIONS FOR THE THREE PHASE MIXTURE 

Each of the three phases is endowed with its own kinematics, mass and energy content. Accordingly, the thermo-hydro-mechanical 

response of the mixture requires the partial differential equations in space and time expressing the balances of momentum, the balances 

of mass and the balances of energy to be satisfied pointwise. 

2.1 Basic Definitions 

Dual porous media are made of three phases, a solid, a fluid in the pores and a fluid in the fractures. Although the fluids are identical, 

typically water, the two fluid phases are segregated by their spatial location and are therefore viewed as separate constituents endowed 

with their own independent pressures and temperatures. In the context of the theory of mixtures, the three phases are viewed as three 

independent overlapping continua. The solid phase, also referred to as the solid skeleton, has a special role as it serves as a reference. 

Each phase contains a single constituent, or species, and therefore the two terms could be used interchangeably. 

At each point of each phase are defined intrinsic quantities, labeled by subscripts, and apparent or partial quantities, labeled by 

superscripts. At each point of the fractured porous medium of volume V, the phase k is introduced along with its intrinsic properties of 

mass Mk and volume Vk. The volumes Vk of the phases sum up to the total volume V = Vs + Vp + Vf of the mixture. The set of all 

phases is noted by K= s; p; f  while K*= p; f refers to the set of species which diffuse through the solid skeleton. Each phase k is 

endowed with a volume  fraction nk, an intrinsic density k, a partial density k, 
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and an absolute velocity vk. The volume fractions sum up to one, ns + np + nf = 1. The total mass density of the mixture ∑ ρk
k=s,p,f  is 

the sum of the apparent contributions. At the reference time t = 0, the total volume V is denoted V0. The volume content and the mass 

content of the fluid phase k per unit reference volume of porous medium are denoted by vk and mk respectively: 
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The ratio of the current and reference volumes, V and V0 respectively, is equal to the determinant of the deformation gradient F, which 

linearizes to 1 + tr  for small strains. The mass flux mk and the volume flux jk per unit current area of the mixture measure the relative 

velocity of the fluid phase k with respect to the solid: 

fp,k    ),(nρρ sk
k

kkkk  vvjm          (3) 
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The solid phase is endowed with its own (infinitesimal) strain tensor = 
1

2
(u+(u)T) , which is defined from the macroscopic 

displacement vector u and which is constitutively decomposed into an elastic contribution eland a thermal contribution  

θel εεε             (4) 

The partial stress and pressures of the three phases, s and pressures pk , which are linked to the intrinsic stress s and pressures pk of the 

associated phases through the volume fractions, namely s = nss , 
k = nkpkk=p,f, sum up to the total stress, namely . s p 

f. The total stress p I + s and the effective stress 𝛔̅ = −p ̅𝐈 + 𝐬 may be decomposed into a spherical part and a deviatoric part, 

by use of the mean stresses p =  
1

3
 tr  and p ̅=  

1

3
 tr 𝛔̅. The stress components are positive in tension so that the mean stresses p and  p̅ 

are counted positive in compression. The elastic strain 𝛆el = 𝐂∗𝛔̅  is by definition linked by a one-to-one relationship with the effective 

stress 𝝈̅ through the drained compliance tensor C∗. In an isotropic context, tr 𝛆el = −𝑐∗ p ̅, eel = s /2 μ∗, in which c* is the drained 

compressibility of the solid skeleton and * its shear modulus. eel denotes the deviatoric part of the elastic strain 𝛆el =
1

3
tr el I + eel. In 

this isotropic context, the deviatoric parts of the elastic and total strains, eel and e respectively, are equal. 

Furthermore, the thermodynamical state of each fluid constituent is measured by its pressure pk, its temperature Tk, its entropy Sk and 

thermodynamic potentials per unit current mass of the constituent such as the internal energy Uk, the free energy Ek, the enthalpy Hk, 

and the chemical potential Gk, also called free enthalpy: 

fp,k,STHG,
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Thermodynamic potentials per unit current volume are denoted by a lower letter, e.g. ek = k Ek for the free energy and sk = k Sk for the 

entropy. 

2.2 Balances of Momentum, Mass and Energy 

A single balance of momentum is required for the mixture as a whole, 

0gσ ρdiv            (6) 

the body force g due to gravity g and the total mass density  being contributed additively by all constituents of the mixture. Since the 

mass of the solid constituent is constant, a balance of mass is required for the fluid phases only, 
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Mass conservation implies the rates of mass change kρ̂  to sum up to zero: 

pfk

fp,k

ρρ0,ρ ˆˆˆ 


          (8) 

This study aims to describe the transient period, referred to as local thermal non-equilibrium (LTNE), before the system reaches local 

thermal equilibrium (LTE). Hence, a balance of energy is required for each phase. Besides terms which are standard for single phases, 

the energy equations display terms that embody the rate of energy supplied by the phase k to the rest of the mixture êk , k=s,p,f. The 

balance of energy for the solid phase accounts for the flux of thermal energy due to conduction qs, the rate of solid entropy and the rate 

of energy exchange between the solid phase and the other phases: 

s
s

sss e
dt

ds
TQ0,Qdiv ˆsq          (9) 

The balance of energy for the fluid phase k accounts for the flux of thermal energy due to conduction qk, the rate of fluid entropy, the 

rates in free energy due to mass transfer, the transfer of energy between the fluid phase k and the other phases, and for forced 

convection: 

fp,k,HHρe
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TQ0,Qdiv kkk
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k

kkkk  mq ˆˆ       (10) 

Energy conservation implies the rates of energy transfer êk  to sum up to zero: 
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2.3 The Clausius-Duhem Inequality 

A single dissipation inequality is required at the mixture level. The dissipation associated with each phase is obtained by inserting the 

balance of energy into the balance of entropy of each species. The entropy productions of the phases are next summed without 

multiplying by the phase temperatures. The resulting inequality, referred to as Clausius-Duhem inequality, proves a useful guide to 

restrict the form of the constitutive couplings. It may be advantageously rewritten in a form that highlights the thermomechanical, 

transfer and diffusion contributions, dD = dD1 + dD2 + dD3 ≥ 0, namely 
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which are required to be positive individually, Gelet [2011]. Note that the rate of entropy exchange ês
k between phase k and the other 

phases of the mixture appears to have no work conjugate variable. The mixture as a whole is assumed to be closed with respect to 

momentum, equation (6), to mass, equation (8), and to energy, equation (11). Similarly, it is assumed to be closed with respect to 

entropy, so that the sum of the rates of entropy transfer vanishes ∑ êS
k

k=s,p,f = 0. Therefore the constitutive equations of individual rates 

of entropy transfer are not needed here. On the other hand, constitutive equations need to be developed for the rates of mass transfer ρ̂k  

and the rates of energy transfer êk . 

A reference configuration is identified, in which the temperatures of the three phases are equal. Departure from this reference state is 

denoted by the symbol ( ). The Clausius-Duhem inequality is linearized by (1) neglecting the inertial terms in the transfer contributions 

dD2 and in the diffusion contributions dD3 ; (2) identifying the current and reference configurations so that det F may be set to 1. Within 

an updated Lagrangian analysis, the volume content vk
  and the volume fraction nk

  are equal at each time, but their rates differ, namely 

dvk = dnk + nk tr . The same remark applies to the mass content mk and apparent mass density k. The thermomechanical contribution 

to the Clausius-Duhem inequality dD1 is modified by multiplying by the temperature of the solid constituent Ts: 
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Thermomechanical constitutive assumptions and simplifications are motivated in the next section. 

3 CONSTITUTIVE EQUATIONS FOR MASS AND HEAT TRANSFERS 

The Clausius-Duhem inequalities (15)–(17) serve as guidelines to develop the constitutive equations, namely (1) The thermomechanical 

response is constructed in order the thermomechanical dissipation dD1 to exactly vanish. The thermomechanical response of a single 

fluid k is introduced separately from the thermomechanical elastic equations, Gelet et al. [2012]2; (2) The energy dissipation is due to 

the transfers of mass and energy between phases, to diffusion of fluids through the solid skeleton and to conduction and convection of 

heat; (3) The constitutive equations of mass and energy exchanges are expressed in a format that ensures the second dissipation dD2 to 

be positive; (4) The constitutive equations of thermal and hydraulic diffusions enforce the third dissipation dD3 to be positive as well. 

3.1 Thermomechanical Elastic Equations 

The set of independent variables used so far has tacitly included the strain, the pressures and the temperatures. Alternatively, the total 

stress might be substituted to the strain as an independent variable. The modification is realized by performing a partial Legendre 

transform of the elastic potential of the mixture (, pp, pf , Ts, Tp, Tf) that yields the complementary potential c (, pp, pf , Ts, Tp, Tf ). 

At constant total stress and fluid pressures, the sole change of solid temperature leads to a volume change of the solid skeleton, the 

strain is uniform over the phases, and the volume change of each of the three phases is proportional to its volume fraction. Hence the 

complementary energy Ψc depends on the restricted set of variables {𝝈, pp, pf, Ts}. The vanishing of dD1 implies that Ψc can be used as 

a thermo-elastic potential that delivers the work conjugate variables {𝝐, vp , vf , ss} 
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The complementary energy is assumed to be an isotropic quadratic function of the stress, and the sum of a quadratic function and of an 

affine function of the pressures and solid temperature, Gelet et al. [2012]2. Therefore the deviatoric stress and strain are proportional, e= 

s /2 μ∗,  and the scalar work conjugate variables (-p, tr 𝝐), (pp, v
p ), (pf, v

f ) and (ss, Ts) are related by a symmetric and constant matrix. 

The identification of the constitutive coefficients is best addressed via the equivalent mixed format:  
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The  thermomechanical constitutive relations extend the concept of effective stress to dual porosity:   

)ΔTc(tr
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1
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The effective stress coefficients 𝜉p = (cp-cs)/ c* and 𝜉f = 1-cp/c* and the coefficients c22, c23, etc. have been identified via a loading 

decomposition in Khalili and Valliappan [1996] in terms of the drained compressibility of the solid skeleton c* [1/Pa], the 

compressibility of the porous blocks cp, the compressibility of the solid grains cs, the volumetric thermal expansion coefficient of the 

solid phase cT [1/K], and the heat capacity of the solid Cs
(v)

 per unit mass of solid, at constant strain and fluid pressures [J/kg/K]. The 

constitutive equations for the apparent entropies of the fluids are derived separately from the above relations, Gelet et al. [2012]2. 

3.2 Constitutive equations for Mass and Heat Transfers 

The constitutive equations of mass and energy exchanges are defined by enforcing the second term of the Clausius-Duhem inequality 

dD2 to be positive, equation (16). For that purpose, the rate of mass exchange  and the rate of energy exchange are viewed as work-

conjugated respectively to the chemical potential scaled by the temperature  Gk/Tk and to the coldness (inverse temperature) 1/Tk . Due 

to a lack of in situ measurements and as a first approximation, no coupling is assumed between mass transfer and energy transfer. In 

other words, the transfer counterparts of the thermo-osmosis and of the isothermal heat transfer in the diffusion constitutive equations 

developed in section 3.3 are not introduced. The transfers satisfy the closure relations (8) and (11) so that a single mass rate, and two 

rates of energy exchange associated with the fluids are needed. The inequality (16) yields the restrictions, 
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The first inequality is satisfied by setting 
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This constitutive equation for mass transfer extends the existing isothermal formulation where the mass transfer is controlled by the 

difference of pressures between the cavities. The actual leakage parameter η ≥ 0 is defined in section 4.2 ??. The constitutive relations 

of energy transfer assume the simple linear format, 
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The coefficients κab , ab = sp, sf, pf, are volumetric or specific inter-phase heat transfer coefficients [W/m3/K]. The second inequality 

(21)2 can be written as a sum of terms κab (Ta  Tb) 
2/( Ta Tb ) over ab = sp, sf, pf, so that the inequality is satisfied if the three specific 

inter-phase heat transfer coefficients are positive, namely κsp ≥ 0, κsf ≥ 0 and κpf ≥ 0. 

3.3 Constitutive Equations for Hydraulic and Thermal Diffusions 

The diffusion constitutive equations are similarly defined by enforcing the third term of the Clausius-Duhem inequality dD3 ≥0. The 

volume flux jk, k=p,f, is seen as work-conjugated to the hydraulic gradient  – (pk  k g)/Tk and the heat flux qk, k =s,p,f, is 

conjugated to the thermal gradient  (1/Tk ). Since the fluids are segregated by their spatial location, no coupling between the pore fluid 

diffusion and the fracture fluid diffusion is physically appropriate. For each fluid k, the extended Darcy’s law equation describing 

hydraulic diffusion under combined hydraulic and thermal gradients assumes a coupled format. Similarly, the extended Fourier’s law 
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defining the heat fluxes qk , k =s,p,f , under combined hydraulic and thermal gradients displays no coupling over phases, but a priori it 

includes an internal thermo-hydraulic coupling: 
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Here kk is the intrinsic permeability [m2], k is the dynamic viscosity of the fluid [Pa×s] and k the thermo-osmosis coupling coefficient 

[m2/s/K]. The coefficients k’s are called the isothermal heat flow coefficients [m2/s/K], and the k’s are the thermal conductivities 

[W/m/K]. Thermo-osmosis and isothermal heat flow mechanisms are likely to be significant in some particular applications such as 

shale gas extraction and are provided here for completeness. Along Onsager’s reciprocity principle, the generalized diffusion matrix 

linking the vector of fluxes  jp , jf ,qs , qp , qf  to the driving gradients pp/Tp., pf/Tf.,  (1/Ts ),  (1/Tp ),  (1/Tf ) is assumed 

symmetric so that the thermo-osmosis coefficients are equal to the isothermal heat flux coefficients: k= k, k=p,f. The Clausius-

Duhem inequality (17) is satisfied if the generalized diffusion matrix is positive semi-definite, which is ensured by the inequalities, 

k ≥ 0, k = s, p, f;  kk/μk ≥ 0, k = p, f;  Λk kk/μk − nkTk Θk
2  ≥ 0, k = p, f. 

4 HDR RESERVOIR ANALYSIS 

A finite element formulation is developed for the following primary unknowns: displacement vector u, pressure of the pore fluid pp, 

pressure of the fracture fluid pf, temperature of the solid skeleton Ts, temperatures of the pore fluid Tp and of the fracture fluid Tf . 

Within a generic element e, interpolation in terms of nodal values is realized through the shape functions Nu, Np, NT, respectively, 

e
fTf

e
pTp

e
sTs

e
fpf

e
ppp

e
u T ,T ,T ,p ,pp , TNTNTNpNNuNu       (25) 

 

Figure 1: Representation of a generic HDR reservoir. The exact convective flow path is unknown and only the average fracture spacing 

L and nf
 =2w/L the porosity of the fracture network are required to obtain the average fracture aperture w. Here kp and kf denote 

the permeabilities of the porous blocks and of the fracture network, respectively. The simulations assume a plane strain analysis 

in the x-z plane. Symmetry with respect to z-axis is assumed. 

4.1 Geometry of the HDR Reservoir, Initial and Boundary Conditions 

An artificially fractured reservoir with horizontal injection and production wells is considered, figure 1. The injection and the production 

wells are located at the bottom and at the top of the reservoir, respectively, and they penetrate the entire horizontal extent of the problem 

domain xR. The problem definition requires information on the horizontal and vertical extents of the reservoir xR and zR respectively, on 

the average fracture spacing L, on the average fracture aperture w and on the average permeability of the porous blocks kp, which 

provide a second porosity.  

Prior to the circulation tests, the reservoir is assumed to be in local thermal equilibrium: the solid and the fluids have identical 

temperatures T0 = Ts0 = Tp0 = Tf0. The initial pressures of the fluids pp0 = pf0 = f g z are hydrostatic, proportional to the depth z, with 

the fluid densities p = f. The initial stress state is due to the overburden stress z0 = v and to the lateral earth stress x0 = H. Since the 

fluids are initially in local thermal and hydraulic equilibria, their reference thermodynamic potentials are equal: S0 = Sp0 = Sf0, G0 = Gp0 

= Gf0, and H0 = Hp0 = Hf0 . Thermal, hydraulic and mechanical boundary conditions (BC) are as follows: 

o Thermal BC’s: the vertical and upper boundaries are insulated while the temperature is controlled along the injection well; 

o Hydraulic BC’s: the vertical boundaries are impervious ; the pressure is prescribed along the injection and production wells; 

o Mechanical BC’s: the motion of the solid is constraint by the symmetry conditions along the axes x and z; the right vertical 

boundary and the upper horizontal boundary are subject to the geological stress.  
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The influences of the spatial heterogeneity of the flow path and of the external heat supply on the thermal depletion of the reservoir have 

been addressed in Gelet [2011]. They are disregarded herein so as to focus on mass and heat exchanges. 

4.2 Fracture Spacing Dependence of the Mass and Heat Transfer Coefficients 

The fracture spacing L influences three material parameters used in the model, namely (1) the leakage parameter  [1/Pa/s], (2) the 

specific solid-to-fracture fluid heat transfer coefficient sf [W/m3/K] and (3) the specific pore fluid-to- fracture fluid heat transfer 

coefficient pf [W/m3/K]. 

1. The leakage parameter  that controls the flow between the porous blocks and the fracture network draws from Barenblatt et al. 

[1960]. In this double porosity context, the two cavities symmetrically are not treated symmetrically, and emphasis is put on the 

permeability of the porous blocks kp which is lower than the permeability of the fracture network: 

 
L

2)(nn4
α,

μ

k
α   ηparameter  leakage

2
p

p 
        (26) 

The aperture factor α̅ [1/m2] associated with the lowest permeable phase which has been introduced by Warren and Root [1963] 

involves the space dimension n (=2 in this plane strain analysis). 

2. The specific solid-to-fracture fluid heat transfer coefficient sf is defined as the product of the solid-to-fracture fluid specific surface 

Ssf
s  [m2/m3] with the coefficient of solid-to-fracture fluid heat transfer hsf [W/m2/K]: 

s
sfsfsf Sh κ t   coefficienfer heat trans fluid fracture-to-solid specific      (27) 

The specific surface Ssf
s = 4ns/L  is obtained by considering a porous block square of size L bordered by a fracture fluid of width 

w/2≪ 𝐿. For a given volume fraction nf = 2 w/L of the fracture fluid, the average fracture aperture w increases with the fracture spacing 

L. By assuming that the effect of convection in the fracture fluid phase in the direction orthogonal to the solid-fracture fluid interface is 

negligible, the coefficient of solid-to-fracture fluid heat transfer hsf may be quantitatively characterized by the sum of the thermal 

resistances of the two phases in series: 

1

s
s

f
2

s
s
sfsfsfs

f
f
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s
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2Λ
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s

    (28) 

If ns s ≪ 2f , the above relation reduces to sf = 8(ns)2 s/L
2 where the two phases are again treated unsymmetrically, à la Warren and 

Root [1963], and emphasis is put on the most insulating phase. 

3. The specific pore fluid-to-fracture fluid heat transfer coefficient pf is defined similarly as the product of the pore fluid-to-fracture 

fluid specific surface  Spf
s  [m2/m3] with the coefficient of pore fluid-to-fracture fluid heat transfer hpf [W/m2/K], namely for p = f , 

w<<L and np <<1, 

p2

p
s
pfpfpfpp
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pf Λ

L 

(n8
Shκ,

2n

L

2n

L

Λ2n

w

h 

1
,

L

n4
S 

2)








pp

    (29) 

Consequently, the three transfer coefficients , sf and pf scale with the inverse of the square of the fracture spacing L2, as illustrated 

in Table 1 with kp =.10-20 m2, nf =0.005, np=10nf = 0.05.  

Table 1: Sensitivity of Mass and Heat Coefficients to the Fracture Spacing L. 

Coefficient Unit L=0.01 m L=1 m L=10 m  L=13 m L=20 m 

 1/Pa/s 3.210-12 3.210-16 3.210-18  1.8810-18 0.8010-18 

sf W/m3/K 6.18104 6.18 6.1810-2  3.3010-2 1.5410-2 

pf W/m3/K 1.2102 1.210-2 1.210-4  0.7110-4 0.3010-4 

4.3 Calibration with Field Data 

The thermal response obtained from the thermo-hydro-mechanical model may be compared with field data from the literature. Two hot 

dry rock reservoirs are investigated: (1) Fenton Hill, New Mexico, USA, and (2) Rosemanowes, Cornwall, UK. Initial and boundary 

conditions and material parameters are documented in Gelet et al. [2012]2. The response in terms of fluid pressures and effective stress 

for the Fenton Hill HDR reservoir is delayed to section 5. The time profiles of the fracture fluid temperature at the production well are 

scrutinized alone in figure 2. For a LTNE analysis, the time profile of the temperature depletion is characterized by three stages: 

o the first stage represents the abrupt propagation of the injection temperature dominated by convection; 

o the second stage characterizes the heat transfer between the fracture fluid phase and the porous blocks; 

o the third stage represents the final thermal depletion of the porous medium. 
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The least well-defined of the material parameters required for a thermo-hydro-mechanical simulation in LTNE are the fracture 

permeability kf, the fracture porosity nf and the solid-to-fracture fluid specific heat transfer coefficient sf These coefficients are 

calibrated so that the numerical response matches the field response based on the following procedure: 

o the fracture network permeability kf is obtained so that the end of the first stage matches the field data;  

o the fracture network porosity nf
  is adjusted so that the duration of the second stage matches the rest of the response; 

o the optimum solid-to-fracture fluid heat transfer coefficient sf is obtained so that the temperature magnitude of the second 

stage best fits the field data. 

The three stage history of the outlet temperature shown on figure 2 could not be recovered by a single temperature model (standard 

thermo-poro-elasticity) which displays a characteristic step-like response (LTE on figure 2). 

 

Figure 2. Relative temperature outlet TD = (T0  Tprod )/(T0  Tinj ) versus time in days, with Tprod = Tf (z = zR ) the temperature of the 

fracture fluid at the production well. LTE stands for local thermal equilibrium and is obtained for a large sf  The late 

overshooting oscillations for the LTE solution are due to an imperfect damping of the convective contribution, Gelet [2011].

 (left) Fenton Hill hot dry rock reservoir with kf = 8.010-15 m2 and nf = 0.005. Field data pertain to 2703 m (crosses), 2673 m 

(squares), 2670 m (diamonds) and 2626 m (circles), Zyvoloski et al. [1981]. Optimum sf = 33 mW/m3/K.  

 (right) Rosemanowes hot dry rock reservoir with kf = 3.210-14 m2, nf= 0.005. Field data pertain to circles showing the casing 

shoe of the production well at 2125 m in true vertical depth, Kolditz and Clauser [1998]. Optimum sf=60 to 120 mW/m3/K.  

The specific solid-to-fracture fluid heat transfer coefficients sf of the two hot dry rock reservoirs are quite close, which indicates that 

the order of magnitude is reliable. The comparisons between the field results and the model simulations demonstrate responses in local 

thermal non-equilibrium, characterized by three stages, which again provides confidence in the LTNE model. 

5 THERMO-HYDRO-MECHANICAL RESPONSE 

The calibration of the thermo-hydro-mechanical model is now used to perform coupled simulations on the Fenton Hill HDR reservoir. 

Emphasis is laid on delineating the differences in the response of the geothermal system in terms of temperatures, fluid pressures and 

effective stress, as inferred by the single and dual porosity models. Special attention is devoted to the fracture spacing L.  

For the material parameters associated with the Fenton Hill reservoir, we hypothesize that the dual porosity concept will provide a 

response in the range between a single porosity model and of a dual porosity model endowed with a low pore permeability. 

Furthermore, the dual porosity model is endowed with a mass transfer law which allows the permeation of fluid from the fractures 

toward the pores and conversely. It is expected that large fracture spacings reduce the thermally induced tensile stress and fluid loss: this 

phenomenon highlights a key feature of sparsely fractured reservoirs with respect to densely fractured reservoirs. 

5.1 Dual Porosity Model versus Single Porosity Model 

The thermo-hydro-mechanical response of fractured media in a LTNE analysis can be sought with two types of models: (2P-3T) models 

developed for dual porous media involving two pressures and three temperatures or (1P-2T) models developed for single porous media 

involving one pressure and two temperatures. Both types are used to predict the thermo-hydro- mechanical behavior of the Fenton Hill 

HDR reservoir in figures 3 and 4. As a simplification here, the (2P) model considers equal solid and pore fluid temperatures. Still, two 

sub-options are considered: (i) the pores are connected to each other with a large permeability kp = 10-18 m2 and (ii) the pores are 

connected to each other with a low permeability kp = 10-21 m2 so that both the diffusive flow in the pores and the mass transfer are small. 

The dual porosity response with a large pore permeability (and hence large mass transfer) is expected to range between the response of 

the single porosity model (1P), since no pore pressure counterbalance effect is accounted for in the effective stress, and the dual porosity 

response with a low pore permeability, since the induced pore pressure will dissipate slowly due to the small mass transfer. 

The coupled behavior of fractured media in thermal and hydraulic non-equilibria is governed by the difference in characteristic times 

between the thermal depletion of the fracture fluid phase and of the solid/pore fluid phases, figure 3. The significant difference in 

temperature between the fracture fluid and the porous blocks correlates with their highly distinct masses and volumes. Indeed, heat 
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diffuses by conduction in the porous blocks which are endowed with a large volume fraction ns + np = 0.995. On the other hand, the 

temperature of the fracture fluid propagates by convection and thermal depletion is much faster than in the porous blocks. 

 

Figure 3: Fenton Hill reservoir, late time (t = 1.9 years) vertical profiles of the (top-left) temperatures of solid and pore fluid, (top-right) 

temperature of fracture fluid, (bottom-left) pressure of pore fluid, and (bottom-right) pressure of fracture fluid for kf = 8.010-15 

m2, nf = 0.005, sf = 33 mW/m3/K and L = 13 m. I.W. stands for injection well and P.W. for production well. The responses of 

the various models match for the temperatures and for the fracture fluid pressure. On the other hand, the pore pressure response 

of the dual porosity model displays a pressure drop near the injection point. The magnitude of the pressure drop is controlled by 

the diffusivity ratio Rp=Hp/Tp and is larger for smaller pore permeability (kp = 10-21 m2). 

The solid temperature responses provided by the single porosity model (1P), the dual porosity model (2P) with a large pore permeability 

(kp = 10-18 m2) and with a small pore permeability (kp = 10-21 m2) almost match and are not influenced by the pressure and the strain 

fields. Hence, the calibration proposed in section 4 remains valid for all models. 

 

Figure 4: Fenton Hill reservoir, late time (t = 1.9 years) vertical profiles of the changes in (left) vertical effective stress, (middle) lateral 

effective stress, and (right) out-of-plane effective stress. Tensile stresses are counted positive. Owing to the pore pressure 

contribution, the stress responses described by the single porosity model (1P) are not equivalent to the responses described by 

the dual porosity model. The single porosity model predicts a thermally induced tensile stress in the vicinity of the injection well, 

whereas the dual porosity model predicts a smaller tensile stress (𝛔̅x and 𝛔̅y) and an increase of compressive stress (𝛔̅z.) The 

pore pressure drop counterbalances the contraction induced by the solid temperature. As expected, close to the injection well 

z/zR < 0.3, the dual porosity response with kp = 10-18 m2 is bounded by the dual porosity response with kp = 10-21 m2 and by the 

single porosity response which ignores the pore fluid. The sign convention of continuum mechanics is used, and compressive 

stresses are negative. 

As expected from the large fracture permeability kf = 8.0×10-15 m2, the response of the fracture fluid pressure varies little from one 

model to the other as opposed to that of the pore fluid pressure. The dual porosity model displays a decrease in pore pressure induced by 

the thermal contraction of the solid phase. Indeed, since (1) the pore fluid is embedded into the solid phase which controls fully the 
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magnitude of the thermal contraction and (2) the coefficient of thermal expansion of the fluid is approximatively 300 times greater than 

that of the solid phase : the pore pressure decrease is governed by the thermal depletion of the solid phase. 

On the other hand, the magnitude of the pore pressure peak is controlled by the hydraulic to thermal diffusivity ratio Rp=Hp/Tp. The 

lower Rp, the larger the pore fluid pressure response. Hence, for the dual porosity model with kp = 10-21 m2, Rp is small and the pore 

pressure drop is large compared with the dual porosity model with kp = 10-18 m2 in which the pore pressure drop dissipates through the 

connected pores and through mass transfer with the fracture network. 

While the thermal depletion of the various phases is the same for all the proposed models, the vertical effective stress is significantly 

influenced by the pore pressure contribution which tends to damp (kp = 10-18 m2) or to suppress (kp = 10-21 m2) the thermally induced 

tensile stress (1P), figure 4. The effective stress response predicted by the dual porosity model for a large pore permeability is bounded 

by the single porosity response and by the dual porosity response for a small pore permeability, close to the injection well z/zR < 0.3. 

The response of the dual porosity model is fully recovered by the single porosity model for small fracture spacings L → 0 as presented 

in the next subsection and on figure 6. Indeed, for very small fracture spacings L, fractured media lose their spatial and time scale 

separation characteristics, which are the two main hypotheses of the dual porosity concept. Once local thermal and hydraulic equilibria 

are reached, the dual porosity model is indeed expected to reduce to a single porosity model in LTE with porosity equal to the sum of 

the fracture and pore porosities and permeability equal to the sum of the fracture and pore permeabilities. 

 

Figure 5: Fenton Hill reservoir, vertical profiles of (left) fluid temperatures at early time (t = 34.72 days), (middle) of jump in scaled 

chemical potential, and (right) of fluid pressures at early time. At early time, the temperature of the fracture fluid decreases, 

whereas the temperature of the pore fluid remains high. This large difference associated with a negative difference in scaled 

chemical potentials Gp /Tp Gf /Tf < 0 induces a large transfer of mass from the fracture network toward the porous blocks, 

associated with a significant pore pressure drop, while the fracture fluid pressure remains undisturbed as in figure 3. This 

behavior matches field observations, Murphy et al. [1981]. 

Moreover, the early mechanism of fluid loss is a consequence of the law of mass transfer induced by the jump in scaled chemical 

potentials between the two fluids. During the early time t = 34.72 days, the thermal front propagates in the fracture fluid only, while the 

porous blocks are almost thermally undisturbed as shown in figure 6 for kp = 10-21 m2 . Consequently, the thermally induced contraction 

of the pore fluid is small and restricted to the vicinity of the injection well. On the other hand, the temperature difference between the 

pore fluid and the fracture fluid leads to a large mass transfer from the fractures toward the porous blocks. This large mass transfer is 

characterized by a large pore pressure drop, to which the thermal contraction contributes partly, and by an increase in compressive 

effective stress. This model response matches with typical field observations: Murphy et al. [1981] report that the permeation of fluid to 

the porous blocks is large during the early time and decreases with time. 

In summary, the dual porosity model allows a more accurate description of the coupled thermo-hydro-mechanical behavior of fractured 

reservoirs compared with a single porosity model. In particular, the distinct responses between early time and late time provide 

information on the permeation mechanism and on the stress path history, which is a key element in view of damage prediction. 

5.2 Influence of the Fracture Spacing L 

In section 4.2, the mass and heat transfer coefficients have been shown to vary like the inverse of the square of the fracture spacing L. In 

figures 6, 7 and 8, the influence of the fracture spacing L is considered in the range from 0 to 20 m, so that the lower bound recovers the 

single porosity response and the upper bound represents a realistic large value, Table 1. For small values of L, LTE between the solid 

phase and the fluid phases is recovered. Indeed, a small L represents a dense fracture network and reduces the spatial scale and the time 

scale separation between the porous blocks and the fracture network. Conversely, a large fracture spacing L = 10 m reduces the specific 

surface area between the solid phase and the fracture fluid phase so that a LTNE model is required. 

The fracture spacing L influences greatly the pore pressure response for the reasons explained earlier, whereas the fracture fluid pressure 

remains undisturbed owing to the large fracture permeability. It is worth noting that hydraulic equilibrium is not recovered unless 

thermal equilibrium is attained which only takes place for L → 0 or at large times. This situation is due to the fact that the force driving 

mass transfer between pores and fractures is non-linear in the form of a difference in scaled chemical potentials, Gp/Tp  Gf /Tf. 
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The change in effective stress results from the deformation and the solid temperature contributions. When both hydraulic and thermal 

equilibria are reached (L → 0), the effective stress components become more tensile close to the injection area z/zR < 0.3, the final state 

 

Figure 6: Fenton Hill reservoir, late time (t =1.9 years) vertical profiles of the (top-left) temperatures of solid and pore fluid, (top-right) 

temperature of fracture fluid, (bottom-left) pressure of pore fluid, and (bottom-right) pressure of fracture fluid for kf = 8.0x10-15 

m2, nf = 0.005, ksf = 33 mW/m3/K. I.W. stands for injection well and P.W. for production well. The responses of the various 

models match for the temperatures and for the fracture fluid pressure. On the other hand, the pore pressure response of the dual 

porosity model displays a pressure drop near the injection point. The magnitude of the pressure drop is controlled by the 

diffusivity ratio Rp and is larger for smaller pore permeability (kp = 10-21 m2).  

 being more tensile than the initial state. An increase of fracture spacing L induces simultaneously (1) a departure from thermal 

equilibrium and thus a slower thermal depletion of the solid phase, and (2) a departure from hydraulic equilibrium and consequently a 

larger drop in pore pressure. These two contributions entail the change in effective stress by reducing (1) the rate of thermally induced 

stress and (2) the thermally induced tensile effective stress near the injection point. 

 

Figure 7: Fenton Hill reservoir, late time (t = 1.9 years). From left to right: vertical profiles of the changes in vertical, lateral and out-of-

plane effective stresses for kf = 8.0×10-15 m2, kp = 10-20 m2 and nf = 0.005. For small fracture spacings L → 0, hydraulic and 

thermal equilibria are reached and the changes in effective stress are tensile close to the injection area z/zR < 0.3. In addition, the 

single porosity response is well recovered. The dual porosity model reveals that large fracture spacings L reduce the pore 

pressure and therefore the effective stress 𝛔̅ =  𝛔 + 𝛏𝐩 𝐩𝐩 𝐈 + 𝛏𝐟 𝐩𝐟 𝐈   is more compressive close to the injection well. 

The thermally induced contraction of the rock may have two adverse effects, a beneficial effect by increasing the aperture of fractures 

and a negative effect by increasing the aperture of the micro-fractures or pores. The first effect may favor the growth of the reservoir, 

while the second effect may favor fluid loss. The dual porosity model reveals that large fracture spacings L reduce the thermally induced 

contraction of the rock in the vicinity of the injection well and thereby the potential for aperture enlargement of the micro-fractures or 

pores, figure 8. This observation is a signal against fracture clouds composed of many fractures with small spacings and argues in favor 

of multiple fracture systems with large fracture spacings, Tenzer [2001, Figure 2]. 
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Figure 8: Fenton Hill reservoir, late time (t = 1.9 years) vertical profiles of the changes in (left) vertical strain and (right) lateral strain. 

For small fracture spacings L → 0, hydraulic and thermal equilibria are reached and negative strains close to the injection area 

z/zR < 0.3 characterize a sharp thermally induced contraction.  

6 CONCLUSIONS 

In the current analysis, no attempt has been made to include the spatial heterogeneities of the fracture spacing, fracture porosity, or their 

directional distribution. Still the issue merits consideration as statistical analyses indicate that the hydraulic permeability in geothermal 

reservoirs may be controlled by the density of small fractures rather than by large fractures. Furthermore, reservoir growth has been 

disregarded. Evolution of crack length and aperture due to thermomechanical loadings is the subject of a separate study. 

A sensitivity analysis has been carried out to study the influences of the dual porosity model and of the fracture spacing on the phase 

temperatures, the fluid pressures, and the effective stress. As expected, the dual porosity model provides, close to the injection well, a 

thermo-hydro-mechanical response which is bounded by the single porosity response and by the dual porosity response endowed with a 

low pore permeability. The drop in the thermally induced pore pressure is more pronounced when the fracture spacing is large. Hence, 

large fracture spacings tend to increase the compressive effective stress. In view of potential fluid loss due to the thermally induced rock 

contraction, this effect advices against densely fractured reservoirs in favor of multiple fracture systems with large fracture spacings. 

Accounting only for the fracture fluid and disregarding the pore pressure contribution, the single porosity approach overestimates the 

thermal contraction of fractured reservoirs. A dual porosity approach delivers information, (1) on fluid permeation in the porous matrix; 

(2) on the beneficial effect of the pore pressure contribution toward thermally induced stress; (3) on the history of the stress path and (4) 

on the optimum fracture spacing to reduce fluid loss induced by thermal contraction. Actually, the dual porosity response recovers well 

the field observations that fluid loss is high at the beginning of the circulation test and decreases with time, e.g. Murphy et al. [1981]. 
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