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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the degree of Doctor of Philosophy  

DEVELOPMENT OF A MODIFIED ADAPTIVE PROTECTION SCHEME USING 
MACHINE LEARNING TECHNIQUE FOR FAULT CLASSIFICATION IN 

RENEWABLE ENERGY PENETRATED TRANSMISSION LINE 

By 

OSAJI EMMANUEL OLUFEMI 

September 2020 

Chair : Mohammad Lutfi Othman, PhD PEng 
Faculty  : Engineering  

The conventional utility grid-protection scheme is predesigned at the network's 
early planning stage with consideration to the high short circuit fault current 
magnitude contribution level from the Synchronous Generators (SG) to prevent 
the mal-operation of the relaying scheme. In the modern power system grid, 
the integration of the Renewable Energy Resources (RER) from Windfarms 
(WF) or Photovoltaic (PV) generation sources focused on addressing the 
climate change environmental issues and solving the impending future energy 
sustainability challenges. In compliance with the new grid code requirement of 
permanently integrating RER with the conventional SG sources during grid 
short circuit faults, also known as the low voltage fault ride-through (LVFRT). 
Such RERs integration phenomenon compromised the existing protection 
relaying scheme operation settings due to the power grid system topology 
changes. The added infeed current penetration from integrated RERs impacted 
adversely on the existing protective relay operation setting compromise. The 
relay operation setting compromise is due to the wrong estimated impedance 
seen by the relay leading to overreach or underreach mal-operation. The 
current Adaptive Protection Scheme (APS) motivation focused on the accurate 
relay operation setting changes based on the prevailing grid system 
configuration variations. Hence, eliminate the utility grid relay operation setting 
compromise. The lack of healthy lines detailed protection useful information 
knowledge has limited the existing APS performance, as only faulty lines' 
measured parameters (voltage, current, and phase angle) are mostly used in 
the relaying protection scheme design. The high-cost of implementations, 
cyber-attack, and latency concerns from the adopted communication channels 
for the standard APS relay characteristic setting and selection is another 
drawback identified. This study proposed a modified standalone Machine 
Learning-based Adaptive Protection Scheme (ML-APS) relay' fault classifier 

© C
OPYRIG

HT U
PM



ii 
 

model using novel useful hidden Knowledge Discovery from historical fault 
events Dataset (KDD) from healthy and faulty lines. The healthy lines extracted 
fault signals' functional signature are added to the earlier deployed faulty-line 
decomposed dataset, operation parameters, and changing network topology 
information from the SCADA logged reports without communication channel 
use. The hybrid Wavelet Multiresolution Analysis and Machine learning 
algorithm (WMRA-ML) is used to extracts the useful hidden knowledge from 
decomposed one-cycle fault transient signals (voltage & current) from four 
Matlab/Simulink CIGRE models. Consideration was given to different RER 
penetration levels based on the changing network topologies subjected to 
twelve different short circuit fault scenarios.The selected 29 unique feature 
attributes across 15,120 historical faults dataset deployed as the input-output 
training dataset for the ML-APS relay classifier model development in Waikato 
Environment of Knowledge Analysis Software (WEKA). The obtained result 
from the twelve deployed ML algorithms for the standalone intelligent ML-APS 
relay classifier modification without communication medium adoption for 
transmitting and receiving the updated relay operation settings during network 
configuration changes. The RandomTree standalone ML-AP relay model 
presented the best performing models from the ML-APS relay model with the 
best average performance for the correctly classified fault types of 97.61 % at 5 
% significance level above other ML algorithms. The recorded kappa statistic 
value of 0.9802, and the Receiver Operating Curve (ROC) area of 98.73 %. 
The RandomTree relay algorithm model presented an improved average trip 
decision time of 18 ms compared with the standard minimum value of 20 ms 
recorded for the conventional relay due to eliminated communication channels. 
The ML-AP relay model addressed the cyber-attack and latency compromises 
in the earlier APS relay for the modern power system network. The obtained 
result demonstrated useful hidden knowledge in the healthy line sections that 
have contributed valuable information for improved ML-APS relay model for the 
faults detection, discrimination, and decision trip improvement during the grid 
short circuit faults. 
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Skim perlindungan jaringan (grid) utiliti konvensional telah diprareka bentuk lebih 
awal pada peringkat perancangan awal jaringan dengan mempertimbangkan 
tahap sumbangan magnitud arus rosak litar pintas yang tinggi dari penjana 
segerak (synchronous generators, SG) untuk mengelakkan ketidak-operasian 
skim penggegantian. Dalam jaringan sistem kuasa moden, penyepaduan 
Sumber Tenaga Boleh Diperbaharui (Renewable Energy Resources, RER) dari 
sumber penjanaan Ladang Angin (Windfarms,WF) atau Photovolta (Photovoltaic, 
PV) menjurus kepada menangani isu persekitaran perubahan iklim dan 
mengatasi cabaran-cabaran kelestarian tenaga masa hadapan. Bagi mematuhi 
kehendak kod grid baru yang menyepadukan RER secara kekal dengan sumber 
SG konvensyional semasa kerosakan litar pintas grid, ianya juga dikenali 
sebagai pacu-lalu kerosakan voltan rendah (low voltage fault ride-through, 
LVFRT). Penyepaduan RER seperti ini telah mengkompromi pengesetan operasi 
skim penggegantian perlindungan sedia ada berikutan perubahan dalam topologi 
sistem jaringan kuasa. Penetrasi arus masukan tambahan dari penyepaduan 
RER telah memberi kesan buruk ke atas kompromi sedia ada pengesetan 
operasi skim geganti perlindungan. Kompromi pengesetan operasi geganti ini 
disebabkan oleh anggaran galangan yang salah yang dilihat oleh geganti yang 
membawa kepada ketidak-operasian lebih-jangkauan atau kurang-jangkauan. 
Motivasi terkini Skim Perlindungan Ubah Suai (Adaptive Protection Scheme, 
APS) memfokus kepada perubahan pengesetan operasi geganti yang tepat 
berdasarkan kepada variasi konfigurasi sistem jaringan yang lazim. Oleh itu, 
hapuskan kompromi pengesetan operasi skim geganti perlindungan utiliti 
berkenaan. Kurangnya pengetahuan informasi perlindungan berguna talian sihat 
telah menghadkan prestasi APS sedia ada, kerana hanya parameter terukur 
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talian rosak (voltan, arus dan sudut fasa) yang banyak digunakan dalam reka 
bentuk skim perlindungan penggegantian. Kos pelaksanaannya yang tinggi, 
serangan siber, dan kerisauan kependaman dari saluran komunikasi yang 
digunakan untuk pengesetan dan pemilihan ciri geganti APS piawai adalah satu 
lagi kelemahan yang dikenalpasti. Kajian ini mencadangkan satu model 
pengklasifikasian kerosakan geganti Skim Perlindungan Ubah Suai berasaskan 
Pembelajaran Mesin (Machine Learning-based Adaptive Protection Scheme, 
ML-APS) kendiri terubahsuai dengan menggunakan Penemuan Pengetahuan 
yang berguna tersembunyi dari set data sejarah peristiwa kerosakan (Knowledge 
Discovery from Database, KDD) talian yang sihat dan rosak. Tanda kenal 
fungsian isyarat kerosakan tersari talian sihat ditambah kepada set data terurai 
talian rosak yang teratur sebelumnya, parameter operasi, dan maklumat topologi 
jaringan yang berubah dari laporan log SCADA tanpa penggunaan saluran 
komunikasi. Algoritma Analisa Berbilang Leraian Gelombang Kecil dan 
Pembelajaran Mesin (Wavelet Multiresolution Analysis and Machine learning, 
WMRA-ML) hibrid digunakan untuk mengestrak pengetahuan tersembunyi 
berguna dari isyarat transien rosak satu-kitaran terurai (voltan dan arus) dari 
empat model Matlab/Simulink CIGRE. Pertimbangan diberikan kepada tahap 
penetrasi RER berbeza berdasarkan topologi jaringan yang berubah terdedah 
kepada dua belas senario kerosakan litar pintas yang berbeza. 29 atribut ciri 
unik merentasi 15,120 data set sejarah kerosakan digunakan sebagai set data 
latihan input-output untuk pembangunan model pengklasifikasi geganti ML-APS 
dalam Waikato Environment of Knowledge Analysis Software (WEKA). 
Keputusan yang diperolehi daripada dua belas algoritma ML yang digunakan 
untuk modifikasi pengklasifikasi geganti ML-APS pintar kendiri tanpa 
penggunaan media komunikasi untuk menghantar dan menerima pengesetan 
operasi geganti yang terkini ketika perubahan konfigurasi jaringan. Model 
geganti ML-AP kendiri Pohon Rawak (Random Tree) mengemukakan model 
persembahan yang terbaik dengan prestasi purata terbaik untuk jenis kerosakan  
yang betul diklasifikasi 97.61 % pada aras signifikan 5 % melebihi algoritma ML 
lain. Nilai statistik kappa yang direkodkan adalah 0.9802 dan keluasan Lengkuk 
Operasi Penerima (Receiver Operating Curve, ROC) adalah 98.73 %. Model 
algoritma geganti Pohon Rawak (Random Tree) menghasilkan masa keputusan 
pelantik purata yang lebih baik iaitu 18 ms berbanding dengan nilai minima 
piawai 20 ms yang direkodkan untuk geganti konvensiional disebabkan saluran 
komunikasi yang dihapuskan. Model geganti ML-AP ini dapat mengatasi 
kompromi kepada serangan siber dan kependaman yang didapati dalam geganti 
APS terdahulu untuk jaringan sistem kuasa yang moden. Keputusan yang 
diperolehi menunjukkan bahawa pengetahuan tersembunyi yang berguna dalam 
bahagian talian yang sihat telah menyumbang maklumat berguna untuk model 
geganti ML-APS yang lebih baik untuk pengesanan kerosakan, diskriminasi, dan 
penambahbaikan pelantik keputusan ketika  kerosakan litar pintas jaringan. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Background of Study  

The electrical power utility grid protective relaying scheme depends on some 
preset system operation parameter measurements such as the line voltage, 
current, and phase angle displacement [1]. These parameters assist in the line 
impedance estimation for effective fault detection, location, and decision trip 
initiation for any power system contingencies/disturbances [2]. The need to 
quickly isolate any system contingencies due to power system configuration 
changes is to restore power system stability [3, 4]. The energy sustainability 
challenges and the quest for alternative environmentally-friendly power 
generating sources have necessitated the current demand for the massive 
integration of renewable energy resources (RER) from Windfarm (WF) and 
Photovoltaic (PV) systems into the existing utility grid system [5, 6]. The RER's 
choices are encouraged by the reduced greenhouse gas emissions (GHG) and 
the replenishing capacity of both sources in addressing the global energy 
demand sustainability challenges [7]. The new code requirement's emergence 
enables continuous integration of the Doubly-Fed Induction Generator (DFIG) 
based WF [8, 9] and large megawatts rated PV modules system [10, 11] on the 
same utility grid network during the grid short circuit fault. The phenomenon is 
known as the low voltage fault ride-through (LVFRT) [12, 13]. 

The modern power grid system has large integrated RERs expected to provide 
full dynamic voltage stability support through reactive current injection into the 
grid [14]. This approach maintains system stability without disconnecting the 
alternative RER sources from the grid to prevent the power system from 
collapse during short circuit faults [15-17]. On the contrary, the new RER 
integration paradigm shift has introduced some power system protection-
related problem [18] and other system contingencies due to reduced system 
inertial support mostly produced from the conventional Synchronous Generator 
(SG) sources. The large RER integration on the existing utility grid is 
accompanied by several technical issues that must be addressed like: the 
power system security, system stability/frequency deviation, power quality [19-
21], and protection scheme compromise challenges [22] for the smooth 
coexistence of both conventional Synchronous Generators (SG) and RER. The 
large short circuit current infeeds from these coexisting sources on the same 
networks into the faulty section of the line has introduced some protection 
challenges due to the new grid code implementation [13, 23]. This study 
focuses on the protection relay operation setting compromise challenges based 
on the changes in the network configurations due to the short circuit fault 
current penetration impact on the protective relay operation setting during grid 
fault  
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1.2 Problem Statement 

In a quest to address the impending conventional protective relay operation 
setting compromise due to network configuration changes resulting from 
additional infeed current penetrations from RER into the faulty line section in 
the modern power grid system. Earlier relaying scheme deployed fixed system 
short circuit level mainly from only synchronous Generators (SG) for the fixed 
preset characteristic selection for enhanced system safety and protection 
reliability. The need for constant changes in the relay operation parameter 
setting has necessitated introducing the Adaptive Protection Scheme (APS) to 
improve modern power system protection [24]. The adaptive protection (AP) 
relay changes its operational parameters based on the system operating 
parameter's prevailing changes to maintain adequate safety, as seen in the 
distance relay APS [25]. The infeed penetrations impact the APS relay 
operation characteristic updates adversely at regular intervals varying from 1-
10 minutes through the advanced telecommunication channel [26]. The short 
circuit fault current infeed penetration from the RER integration on the existing 
utility grid system compromises the relay operation parameter settings updating 
due to the network topology changes. If not addressed within reasonable trip 
operation time, such safety compromise may lead to undesirable damages to 
equipment installations and personnel lives and may cause power system 
outages. The need for an improved trip decision time better than the current 
existing 20 ms of the existing numerical APS is also a motivation for this 
present study. 

The existing APS for the transmission line protection uses digital relay and 
advance communication technology to provide the dynamic protection scheme 
for a transmission line system [27]. APS operation is based on a centralized 
protection scheme that updates the relay operation parameter settings using a 
look-up characteristic table at the substation to adjust the operating parameters 
based on the network topology changes [28]. The bidirectional communication 
medium between the relay location and the substation computer database is 
costly to implement and may be subjected to cyber-attack challenges. Besides, 
current APS uses sampled information from the faulted lines' voltage, current, 
and phase angle parameters to estimate the new operation characteristic 
selection based on the prevailing network topology changes at equal time 
intervals. There is a need to modify the existing APS relay operation using 
discovered hidden knowledge from historical fault data records from both 
healthy and faulty lines for the intelligently modified APS using the Machine 
learning (ML) algorithm-based fault classier model. This study is focused on 
building a standalone ML-APS relay model that will address the preset relay 
operation compromise resulting from the network configuration changes due to 
short circuit fault current penetrations from the RERs during grid faults [29]. 
The modified standalone ML-APS will eliminate a communication channel for 
updating the operation characteristic selection and trip decision transmission. 
Hence, addressing the cyber-attack tendencies. It will also reduce decision trip 
time for the short circuit fault detection and classification without a 
communication channel. 
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1.3  Research Objectives 
 
 
The main aim is to develop a modified Machine Learning (ML) Adaptive 
Protection Scheme (ML-APS) relay model for short circuit fault classification 
during system network configuration changes due to additional infeed current 
penetrations from the integrated RERs sources during grid faults. The modified 
ML-APS relay will eliminate existing relay compromise, fast decision trip time, 
and eliminate the cyber-attack challenges under different prevailing network 
configuration changes. The proposed ML-APS model with the new grid code 
implementation will encourage RER and SG sources networks' coexistence as 
an interconnected system. The study comprised the following three-pronged 
sub-objectives.    
 

i. To discover hidden knowledge from historical fault database (KDD) 
extracted records from healthy and faulty lines using Wavelet Multi-
Resolution Analysis (WMRA) of one-cycle transient fault voltage and 
current signals.  

ii. To develop a modified APS relay model using Machine Learning (ML) 
algorithm (ML-APS) under different network configuration changes for 
faults detection, classification, and fast tripping on integrated RERs 
grid networks  

iii. To validate the modified ML-APS relay classifier model performance 
using new fault dataset for model generalization based on selectivity, 
reliability, and improve trip-decision time. 
 
 

When these objectives are achieved, the modified ML-APS relay model should 
eliminate the impending operation setting compromise with fast tripping speed. 
The study help reduce the damaging impact of the short circuit fault current 
infeed penetration on the equipment installation and personnel safety. 
Furthermore, the standalone modified APS without communication link 
eliminates the cyber-attack tendencies on the system network. 
 
 
1.4  Research Hypothesis 
 
 
A modified APS relay model based on Machine Learning (ML) algorithm will 
eliminate the relay mal-operation compromise with an improved fault trip time 
due to current infeed contribution from integrated renewable energy resources 
(RER) during grid faults. 
 
 
1.5  Research Scope and Limitation 
 
 
This study's scope is focused on testing the formulated hypothesis towards 
achieving all proposed objectives for the modified ML-APS relay classifier 
model development. The study divulged the information on short circuit 
historical fault database records from both faulty and healthy lines combined 
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with other network topology variation data and system operation parameter 
changes beginning from 15 km fault location due to Matlab/Simulink software 
limitations to conduct fault scenario at a much lower distance. The scope of the 
current study involves   
 

i. Modification of the typical Matlab/Simulink CIGRE model of 120 kV 
double-ends sources, 50 Hz utility transmission line network with two 
penetrated RER from Windfarm (WF), and Photovoltaic (PV) system.  

ii. The historical fault event recording during grid short circuit fault 
transient event simulations, and extraction of one-cycle transient 
voltage and current signals from both healthy/ faulty lines at the Point 
of Common Coupling (PCC).  

iii. The study extracted hidden knowledge discovered from the historical 
fault database (KDD) by mining unique, useful feature coefficients from 
decomposed voltage and current signals from the healthy and faulty 
line using the WMRA toolbox in Matlab.  

iv. The deployment of the extracted 29 useful feature coefficients as 
inputs for the modified ML-APS relay classifier model's training using 
supervised learning in WEKA software.  

v. Testing trained ML-APS relay models on discrimination of ten different 
fault types under various network configuration changes, due to 
different fault current penetration levels from both RERs and SG 
without compromise at rapid trip decision time. 

vi. Validation of the modified ML-APS relay model for generalizations 
performance test on new fault records from a different location and 
current penetration levels.   

vii. Modify existing APS relay with the integration of the extracted 
generated code from the ML-APS relay model. 

 
 
The current research is limited to the offline deployment of modified ML-APS 
relay fault classifier model without the real-time sensors data acquisition 
deployments from the Adaptive Weather Data Acquisition (AWDA) and 
Supervisory Control and Data Acquisition (SCADA) units [30]. 
 
 
1.6  Research Contributions  
 
 
This research study on the modified ML-APS relay fault classifier model 
eliminates impending short circuit fault current infeed penetration impact on 
protection relay operation compromise on RER integrated transmission line.  
This relay operation compromise prevented the smooth coexistence of both 
conventions SGs and RERs on the utility grid network as the future energy 
sustainable solution. The following are the contributions to the existing body of 
knowledge in this area of power system protection analysis. 
 

i. The novel adoption of discovered useful hidden knowledge from the 
healthy lines transient signals added to the usual faulty line 
parameters, network topologies variation data, and system operation 
parameters improved the intelligent modified ML-APS relay model.  
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ii. The modified ML-APS relay algorithm-code modification improved the 
relay decision trip-time with a minimum value of 0.18 ms below the 
conventional minimum recorded 20 ms.  

iii. The ML-APS relay selectivity is enhanced by isolating only the affected 
line through practical fault discrimination under different power system 
configuration changes without compromise. 

iv. The standalone ML-APS relay model has prevented cyber-attack 
tendencies by eliminating communication lines for relay operation 
parameter setting, characteristic selection, and trip decision code 
transmission. 

 
 
1.7  The layout of the Thesis     
 
 
Chapter 1 is the introduction section with insight into the background on 
adaptive protection scheme (APS), associated problem to the existing APS 
scheme on a transmission line with integrated RERs. The objectives for solving 
the discovered gap, scope, and limitations of the current study are divulged.  
 
 
Chapter 2 (Literature Review) discusses the impact of renewable energy 
choices on the existing protective relay compromise. Literature reviews on the 
existing APS relay algorithm models, the parameters used for the APS 
execution, performance challenges, and the limitations from each approach 
identified.  The discovered gap to be addressed by modifying the existing APS 
relay approach highlighted for integrated RERs during grid faults.   
 
 
Chapter 3 (Methodology and Procedures) elaborates steps in achieving the 
proposed research objectives based on the formulated hypothesis for the 
modified ML-APS relay classifier model actualization. Deep insight into the 
sequential steps adopted for hybrid WMRA and data mining algorithms 
deployment for the modified ML-APS relay model realization under changing 
network configuration based on different short circuit penetration infeeds from 
RERs from WF, PV and SG system presented.   
 
 
Chapter 4 (Results and Discussions) presented detailed discussions on 
obtained ML-APS relay model results under different network topologies 
changes based on various infeed current penetrations from both RERs and SG 
during utility grid faults. The best intelligent computational algorithm model 
selection was conducted based on the performance comparison and 
computation time constraints satisfaction. The final validation of the build ML-
APS relay fault classifier model demonstrated.  
 
 
Chapter 5 (Conclusion and Recommendations) presents the modified ML-APS 
relay models' implication in addressing the projected objectives in Chapter 1 
and future recommendations. 
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