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SPARSE BILINEAR FORMS FOR BOCHNER RIESZ MULTIPLIERS

AND APPLICATIONS

CRISTINA BENEA, FRÉDÉRIC BERNICOT, AND TERESA LUQUE

Abstract. We use the very recent approach developed by Lacey in [23] and extended by
Bernicot-Frey-Petermichl in [3], in order to control Bochner-Riesz operators by a sparse
bilinear form. In this way, new quantitative weighted estimates, as well as vector-valued
inequalities are deduced.

1. Introduction

During the last ten years it has been of great interest to obtain optimal operator norm
estimates in Lebesgue spaces endowed with Muckenhoupt weights. More precisely, one
asks for the growth of the norm of certain operators, such as the Hilbert transform or
the Hardy-Littlewood maximal function, with respect to a characteristic assigned to the
weight. Originally, the main motivation for sharp estimates of this type came from various
important applications to partial differential equations. See for example Fefferman-Kenig-
Pipher [18], Astala-Iwaniec-Saksman [1], Petermichl-Volberg [31]. The optimal result for
Calderón-Zygmund operators (C-Z operators), which corresponds to the so-called A2 con-
jecture, was first obtained by Hytönen [21].

Following the initial proof of the A2 theorem, that involved the control of C-Z operators
by dyadic operators, several other proofs were presented, each of them simplifying the proof
and contributing to a better understanding of the field. Firstly, Lerner [24, 25] proved that
the norm of a C-Z operator in a Banach function space is dominated by sparse positive
operators. After that, Lerner-Nazarov [26] and Conde-Rey [11] simultaneously simplified
the norm control by a pointwise bound. Very recently, Lacey [23] introduced a new method
of establishing such pointwise control by bringing into play the maximal truncations of the
C-Z operator.

It turns out that among the family of dyadic intervals the operator is acting on, there
is a certain sparse (in the sense of (2)) subcollection that dictates the overall behavior. Of
course, this collection depends on the input of the operator, and it can be constructed in
several ways. In [23], the sparse family corresponds to maximal coverings of the level sets
of the maximal truncation of the C-Z operator. Then the sparsity property allows one to
insert the weights and recover the best power for the Ap constant.

The approach developed by Lacey was extended by Bernicot-Frey-Petermichl in [3] for
non-integral singular operators, such as the Riesz transform associated with the heat semi-
group. In this situation, the full range of Lebesgue exponents p for which these operators
are bounded is a sub-range (p0, q0) ⊂ (1,∞). The theory of such operators was developed
by Auscher and Martell in [2].
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Beyond C-Z theory, pointwise estimates do not always hold and only some integral
estimates are possible. To deal with these kind of operators, [3] extends the notion of sparse
operators to sparse bilinear forms, deducing from here sharp norm weighted estimates for
such operators. The goal of this paper is to combine the new techniques from [23] and
[3], in order to control Bochner-Riesz multipliers by sparse bilinear forms. Once we have
obtained such a result, we can immediately infer quantitative weighted norm estimates for
the Bochner-Riesz operator.

In the case of Bochner-Riesz multipliers, pointwise control by sparse operators is out of
question because of their range of boundedness (see (1)). Moreover, we emphasize that the
results in [3] cannot be directly adapted to the Bochner-Riesz case since the kernel of the
operators studied there have at least some decaying properties (not pointwisely but at least
in some Lp-sense) that fail in our case. Although the kernel of the Bochner-Riesz operator
is smooth, the main difficulty relies on its lack of decay at infinity. This corresponds in
frequency to the lack of smoothness of the symbol, in spite of it being compactly supported.

This article is organized as follows: in Section 2 we define the Bochner-Riesz operator
and state our main results concerning the bilinear form estimate (see Theorem 3) and
its applications (see Theorem 14 and Corollary 16). For clarity in the exposition, in this
section, we state the results in dimension two. Section 3, 4 and 5 are devoted to the proof of
Theorem 3. Section 6 details the two dimensional case where the Bochner- Riesz conjecture
is solved. Finally, Section 7 presents the quantitative weighted norm inequalities (Theorem
14) and vector-valued extensions (Corollary 16) we have obtained.

2. Definitions and Main results

In order to state our main results for the sparse bilinear form that we deal with and
the weighted norm estimates we obtain, we recall the definition and properties of the
Bochner-Riesz multipliers.

Bochner-Riesz operators. In Rn the Bochner-Riesz operator Bδ, for δ ≥ 0, is the linear
Fourier multiplier associated with the symbol (1 − |ξ|2)δ+, where t+ = max(t, 0); that is,
the Bochner-Riesz operator is defined, on the class S (Rn) of Schwartz function, by

Bδ(f)(x) :=

ˆ

Rn

e2πixξ(1− |ξ|2)δ+f̂(ξ) dξ.

Since the symbol is in L∞, Bδ is easily bounded on L2(Rn), for every δ ≥ 0. The case δ = 0
corresponds to the so-called ball multiplier, which is known to be unbounded on Lp(Rn) if
n ≥ 2 and p 6= 2. This is the celebrated result of C. Fefferman from [16].

The main feature of the symbol is the singularity which is supported on the whole unit
sphere. The Bochner-Riesz conjecture aims to describe what extra regularity (in terms
of δ > 0) is sufficient to make Bδ bounded in Lp. More precisely, the conjecture is the
following: for p ∈ (1,∞) \ {2} then Bδ is Lp-bounded if and only if

(1) δ > δ(p) := max

{
n

∣∣∣∣
1

p
−

1

2

∣∣∣∣−
1

2
, 0

}
.

Herz [20] proved that the condition (1) on δ is necessary for the Lp-boundedness. It is not
known whether this is also sufficient, except in two dimensions, where the conjecture was
completely solved by Carleson and Sjölin [7].

In dimension greater than two, the full conjecture is still open and numerous works
aim to contribute to this question. We just refer the reader to [37], [33], [13, Chapter 8,
Sections 5 and 8.3] [19, Chapter 10], [29, Chapter 2, Chapter 3] and references therein for
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more details about this conjecture and how it is related to other problems (linear - bilinear
restriction inequalities, ...). We just recall that for δ > (n− 1)/2, Bδ is bounded pointwise
by the Hardy-Littlewood maximal operator, and so the study of Bδ fits into the classical
theory. But for 0 < δ < (n − 1)/2, Bδ is relatively difficult to study because its symbol is
singular along a hypersurface (the sphere) with a non-vanishing curvature, which implies
that the kernel (in space) has no good decay at infinity.

Sparse families and bilinear form estimates. For a cube P ∈ Rn we denote by D(P )
the mesh of dyadic cubes associated to P . The dyadic children of P are produced by
dividing each side of P into two equal parts, while the dyadic parent of P is the cube
whose sidelengths are double the corresponding sidelengths of P , and which contains P .
Thus every P ∈ Rn has exactly 2n dyadic children and is contained in a unique dyadic
parent.

A collection of dyadic cubes S := (P )P∈S is said to be sparse if for each P ∈ S one has

(2)
∑

Q∈chS(P )

|Q| ≤
1

2
|P |,

where chS(P ) is the collection of S-children of P ; that is, the maximal elements of S that
are strictly contained in P .

Using the above definitions, we can now formulate our main result, which we present
first in a simpler form:

Theorem 1. In R2, consider δ > 1
6 = δ(65 ). For any compactly supported functions f ∈ L

6
5

and g ∈ L2, there exists a sparse collection S (depending on f, g) with

∣∣∣〈Bδf, g〉
∣∣∣ ≤ C

∑

Q∈S

(
−

ˆ

6Q
|f |

6
5 dx

) 5
6
(
−

ˆ

6Q
|g|2 dx

)1/2

|Q|.

In fact, we can obtain a more general result in dimension n ≥ 2, which is formulated in
Section 3 Theorem 3. We emphasize that this is the first result which describes a control
of Bochner-Riesz multipliers via sparse operators. However, it was long known that the
Bochner-Riesz multipliers can be split into “local” operators, at different scales, a feature
that we are also using implicitly.

We will now detail some applications for weighted estimates for the Bochner-Riesz op-
erator, as well as certain vector-valued extensions.

Weighted norm inequalities and vector-valued estimates. Weighted norm inequal-
ities for the Bochner-Riesz operators and their corresponding maximal versions have been
studied in several different contexts, and there are still many open questions. In the present
work we are interested in weighted estimates involving Muckenhoupt weights and a few
results are known in this sense. For other weighted estimates existing in the literature we
refer for instance to Cordoba [12], Carbery [5], Carbery-Seeger [6] where the Fefferman-
Stein type weighted estimates have been thoroughly studied, or to Ciaurri-Stempak-Varona
[10] for more general two-weights norm inequalities.

The Ap theory for the Bochner-Riesz operator matches perfectly whenever δ > (n−1)/2.
In this case, for every p ∈ (1,∞) and w ∈ Ap

‖Bδ‖Lp(w)→Lp(w) ≤ [w]
1

p−1

Ap
.

This is a consequence of Buckley’s sharp estimate for the Hardy-Littlewood maximal op-
erator (see [4]).
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For the critical index δ = (n − 1)/2, Shi and Sun [32] proved that B(n−1)/2 also
maps Lp(w) into Lp(w) for every p ∈ (1,∞) and w ∈ Ap (see the alternative proof of
Duoandikoetxea and Rubio de Francia [15]). Moreover, in this particular case, Vargas [39]
showed that Bδ is of weak type (1, 1) with respect to A1 weights. However, the optimal
quantitative estimate, i.e. the sharp dependance of the norm with respect to the charac-
teristic of the weight, remains unknown in the critical index case. See [28] and [30] for
further discussion in this sense.

Below the critical index, since Bδ is not bounded on the whole range (1,∞), we cannot
expect not even one single p0 so that Bδ : Lp0(w) → Lp0(w) for every weight w ∈ Ap0 .
As the work [2] points out, it is natural in this kind of situation to look for weights in a
subclass of Ap, obtained as an intersection between a Muckenhoupt class and a Reverse
Hölder class. In fact, as proved in [22], this subfamily of weights corresponds to fractional
powers of Ap weights. See Section 7 Proposition 13 for the precise equivalence. To our
knowledge, the results concerning Ap weights in this range of δ are the following:

Theorem A. Let n ≥ 2, then:

(i) Christ [9]: If (n − 1)/2(n + 1) < δ < (n − 1)/2, then Bδ is bounded on L2(w)

whenever wn/(1+2δ) ∈ A1.
(ii) Carro-Duoandikoetxea-Lorente [8]: If 0 < δ < (n − 1)/2, then Bδ is bounded on

L2(w) for every weight w such that w(n−1)/2δ ∈ A2.
(iii) Duoandikoetxea-Moyua-Oruetxebarria-Seijo [14]: If 0 < δ < n−1

2 , then Bδ is

bounded on L2(w) for every radial weight w such that wn/(1+2δ) ∈ A2.

We remark in here that the results in papers [9] and [8] are formulated for the maximal
Bochner Riesz operator and therefore they are not expected to be optimal. Moreover, we
note that the statement in (ii) can be obtained through complex interpolation between
the L2 weighted estimate for the critical index δ = (n − 1)/2 and the unweighted L2

boundedness of B0.
The best weighted result one can expect for Bδ, in terms of powers of Ap, is (i), with A1

replaced by A2:

(3) Bδ : L2(w) → L2(w), for all w such that wn/(1+2δ) ∈ A2.

Observe that if true, (3) would imply the full Bochner-Riesz conjecture, through extrapo-
lation.

We obtain quantitative weighted estimates for Bδ in a wide range of exponents p, that
is not necessarily optimal. These weighted estimates follow from the control of Bδ by a
sparse bilinear form, as described in Theorem 1 (dimension n = 2) and its general version
(Theorem 3, Section 3). We first indicate the simpler two-dimensional case, for p ∈ (6/5, 2).
The general result for higher dimensions can be found in Theorem 14 (cf Section 7).

Theorem 2. Let δ > 1/6 and 6/5 ≤ p < 2. Then for all weights w ∈ A 5p
6
∩ RH(

2
p

)′ we

have

(4) ‖Bδ‖Lp(w)→Lp(w) ≤

(
[w]A 5p

6

[w]RH
( 2p )′

)α

with α := max{1/(p − 6/5), 1/(2 − p)}.

We emphasize that (4) is not expected to be sharp; see Section 7, Remark 15 for further
discussions on this aspect.
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Moreover, as explained later in Section 6, there is some room to play with the exponents.
In particular, this allows us to get some new vector-valued estimates for Bochner-Riesz
operators (see Corollary 16).

3. Control of the Bochner-Riesz multipliers by a sparse bilinear form

In this section we prove the general version of Theorem 1. Aiming that, we introduce a
new critical index δ̄n.

Let p0 ∈ (1, 2). Consider p1 given by

(5) p1 := 2

(
3

2
−

1

p0

)
∈ (1, 2),

and let δ̃(p1) be the smallest positive exponent such that

Bδ̃(p1) : Lp1 → Lp1 .

We know that δ̃(p1) ≥ δ(p1), and their equality is equvalent to the Bochner-Riesz conjec-
ture.

Then δ̄n is defined as

(6) δ̄n(p0) := δ̃(p1) +
n− 1

2

(
1

p0
−

1

2

)
.

Theorem 3. For any 1 < p0 < 2, and any δ > δ̄n(p0) given by (6), and all functions f, g
compactly supported, there exists a sparse collection S (depending on f, g) with

∣∣∣〈Bδ(f), g〉
∣∣∣ ≤ C

∑

Q∈S

(
−

ˆ

6Q
|f |p0 dx

)1/p0 (
−

ˆ

6Q
|g|2 dx

)1/2

|Q|.(7)

Remark 4. Alternatively, the above theorem can be reformulated, so that, for any δ > 0,
there exists a critical exponent p0(δ) ∈ (1, 2) for which the sparse form becomes

∣∣∣∣
ˆ

Bδ(f) · g dx

∣∣∣∣ ≤ C
∑

Q∈S

(
−

ˆ

6Q
|f |p̃ dx

)1/p̃(
−

ˆ

6Q
|g|2 dx

)1/2

|Q|,

where p̃ ∈ (p0(δ), 2).

The proof for Theorem 3 follows ideas from [23] and [3]. We first sketch the steps of
the proof and then we introduce the definitions of the new maximal operators that are
necessary to complete the proof. We refer the reader to [3], where the whole strategy is
presented in details, in the case of a smooth Fourier multiplier.

Sketch of the proof for Theorem 3. Assuming f and g are supported inside 6Q0, we define
an exceptional set in the following way:

E :=

{
x ∈ Q0 : B

δ,∗(f)(x) + Bδ,∗∗(f)(x) +Mp0 [f ] (x) > C

(
−

ˆ

6Q0

|f |p0
)1/p0

}
,

for some large enough numerical constant C. The operators Bδ,∗ and Bδ,∗∗ are certain
maximal operators which will be defined later (and will be proved to be of weak type
(p0, p0)), and Mp0 is the Lp0- Hardy-Littlewood maximal function. Then E is a proper
open subset or Rn and so we may consider (Qj)j to be a covering of E by maximal
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dyadic cubes contained inside E: E =
⋃

j Qj. Using the weak-type (p0, p0) boundedness

of Bδ,∗,Bδ,∗∗ and Mp0 , we also know that

|E| =
∑

j

|Qj| . C−1|Q0|.

Maximality implies that Q̃j, the dyadic parent of Qj, is not entirely contained in E. More-

over, for C large enough, Q̃j ⊂ Q0 and we can conclude that Bδ,∗,Bδ,∗∗ and Mp0 are going

to be small at certain points of Q̃j.
The sparse family of cubes from Theorem 3 will be constructed iteratively, as in [23].

We initialize Qsparse := {Q0} and we will see that Bδ(f) ·1Q0\E is under control, and hence

we only need to deal with Bδ(f) · 1Qj for every Qj as above. We note that

(8) Bδ(f) · 1Qj = Bδ
(
f · 16Qj

)
· 1Qj︸ ︷︷ ︸

this goes in the iteration process

+Bδ
(
f · 1(6Qj)

c

)
· 1Qj .

The first term will be used in the inductive procedure, hence we update Qsparse = Qsparse∪
{Qj : Qj ⊆ E maximal dyadic interval}. The second one is the “off-diagonal term”, for
which we will prove that

(9)
∑

Qj

∣∣∣∣∣

ˆ

Qj

Bδ
(
f · 1(6Qj)

c

)
(x)ḡ(x)dx

∣∣∣∣∣ .
(
−

ˆ

6Q0

|f |p0 dx

)1/p0

·

(
−

ˆ

6Q0

|g|2 dx

)1/2

· |Q0| .

Once we have the above inequality, it remains only to check that the collection of cubes
is indeed sparse. This becomes clear once we realize that these cubes constitute in fact
maximal coverings for the level sets of the maximal operators Bδ,∗,Bδ,∗∗ and Mp0 , with a
constant C which can be chosen large enough.

The difficult task is to prove (9), since we need to define a suitable maximal operator
Bδ,∗ and prove its boundedness. �

Let us first introduce some elementary operators, which correspond to an L∞-normalized
Littlewood-Paley decomposition for the Bochner-Riesz multiplier. We start with a positive,

smooth function χ, which is constantly equal to 1 on the interval

[
1

2
+

1

100
, 1−

1

100

]
, and

is supported on

[
1

2
, 1 +

1

100

]
. Moreover, we require χ to satisfy

∑

k≤0

χ(2−kx) = 1 ∀x, |x| ≤ 1.

We then consider the L∞- normalized symbols

sk(ξ) := 2−kδ
(
1− |ξ|2

)δ
+
· χ
(
2−k

(
1− |ξ|2

))
.

We denote Sk the Fourier multiplier associated to the symbol sk. This yields the following
decomposition for the Bochner-Riesz operator:

Bδ(f)(x) =
∑

k≤0

2kδSk(f)(x).

Definition 5 (The Maximal Operators). For any ǫ > 0, we define

Bδ
ǫ (f)(x) :=

ˆ

Rn

f̂(ξ)
(
1− |ξ|2

)δ
+
χ̃
(
ǫ
(
1− |ξ|2

))
e2πix·ξ dξ,
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where χ̃ is a function supported on

[
−

1

100
, 1 +

1

100

]
, and constantly equal to 1 on [0, 1]. If

ǫ is small enough, then Bδ
ǫ coincides with Bδ. Then we define the “off-diagonal” maximal

operator

Bδ,∗(f)(x) := sup
ǫ>0

sup
|x−y|<ǫ

(
−

ˆ

B(y,ǫ)

∣∣∣Bδ
ǫ

(
f · 1B(x,3ǫ)c

)
(z)
∣∣∣
2
dz

)1/2

.

We will also need an auxiliary maximal operator Bδ,∗∗, which is defined as

Bδ,∗∗(f)(x) := sup
ǫ>0

sup
|x−y|<ǫ

(
−

ˆ

B(y,ǫ)

∣∣∣Bδ
ǫ (f) (z)

∣∣∣
2
dz

)1/2

.

We note that, once we know that Bδ,∗∗ is a bounded operator on some Lp space, then by
Lebesgue differentiation theorem, we have that

∣∣∣Bδ(f)(x)
∣∣∣ ≤ Bδ,∗∗(f)(x) for a.e. x.

Our definitions of the maximal operators could seem unusual, but in fact they reflect a
principle that was observed by Stein, presented in [17]. More exactly, using the Restriction
Theorem, it can be proved that, for p0 ≤ 2, the Bochner-Riesz operator Bδ maps Lp0 into
L2, locally. This will appear in our proof of the Lp0 7→ Lp0,∞ boundedness of Bδ,∗∗ and
Bδ,∗.

The following Propositions (the proofs of which are postponed to the next sections) will
play a crucial role for proving Theorem 3.

Proposition 6. Let p0 ∈ (1, 2) and consider

ρn(p0) :=





n−1
2

(
1
p0

− 1
2

)
, if 2n+1

n+3 ≤ p0 < 2

n
(

1
p0

− 1
2

)
− 1

2 , if 1 < p0 ≤ 2n+1
n+3 .

Then, for any ball Br of radius r and k ≤ 0 so that 2kr ≥ 1, we have for an arbitrarily
large exponent M
(10)
(
−

ˆ

Br

∣∣Sk

(
f · 1(2Br)

c

)
(x)
∣∣2 dx

)1/2

≤ Cρ,M2−kρ
∑

j≥1

2−jM

(
−

ˆ

2j+1Br\2jBr

|f(x)|p0 dx

)1/p0

,

whenever ρ > ρn (p0).

Proposition 7. Let p0 ∈ (1, 2) and ρn (p0) be as in Proposition 6. Then, for any ball of
radius ǫ ≥ 1 and k ≤ 0 so that 2kǫ ≤ 1, and any ρ > ρn (p0), we have

(
−

ˆ

B(x,2ǫ)

∣∣Sk

(
f · 1B(x,3ǫ)

)∣∣2 dz
)1/2

. 2−kρ

(
−

ˆ

B(x,3ǫ)
|f |p0 dz

)1/p0

.

Proposition 8. Then for every δ > δ̄n(p0) (given by (6)) the maximal operators Bδ,∗ and
Bδ,∗∗ are of weak-type (p0, p0).

Now we are ready to show how the above propositions imply inequality (9), which further
completes the proof of Theorem 3.
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Proof of Theorem 3. We have already given the sketch of the proof, it remains to check the
estimate for the part associated to the integral over Q0 \ E and the inequality (9), which
corresponds to the integral over each Qj.

To begin with, is not difficult to check that

(11)

∣∣∣∣∣

ˆ

Q0\E
Bδ(f)(x)ḡ(x)dx

∣∣∣∣∣ .
(
−

ˆ

6Q0

|f |p0 dx

)1/p0

·

(
−

ˆ

6Q0

|g|2 dx

)1/2

· |Q0| .

Indeed, we have already argued that
∣∣∣Bδ(f)(x)

∣∣∣ ≤ Bδ,∗∗(f)(x) for a.e. x, and hence

∣∣∣∣∣

ˆ

Q0\E
Bδ(f)(x)ḡ(x)dx

∣∣∣∣∣ .
(

sup
Q0\E

Bδ(f)

)
ˆ

Q0

|g(x)| dx(12)

.

(
−

ˆ

6Q0

|f |p0 dx

)1/p0

· −

ˆ

6Q0

|g(x)| dx · |Q0| .

Then Hölder’s inequality implies (11).
It remains to prove (9). Let Qj be a maximal dyadic cube as those appearing in (8),

and let r denote its diameter. We further split Bδ(f · 1(6Qj)
c) as

Bδ(f · 1(6Qj)
c)(x) = Bδ

2r(f · 1(6Qj)
c) +

(
Bδ(f · 1(6Qj)

c)−Bδ
2r(f · 1(6Qj)

c)
)
.

To deal with the first term, note that by definition, for every x ∈ Qj

∣∣∣Bδ
2r(f · 1(6Qj)

c)(x)
∣∣∣ ≤ inf

y∈Q̃j

Bδ,∗(f)(y) . C

(
−

ˆ

6Q0

|f |p0 dx

)1/p0

since Qj is maximal and so Q̃j (its parent) meets the complimentary set Ec. Actually, the

definition of Bδ,∗ is motivated by this inequality. Then we have an estimate similar to the
one in (12):

∣∣∣∣∣

ˆ

Qj

Bδ(f · 1(6Qj)
c)(x)ḡ(x)dx

∣∣∣∣∣ .
(
−

ˆ

6Q0

|f |p0 dx

)1/p0

·

ˆ

Qj

|g(x)| dx.

Since the cubes Qj are disjoint and they are all contained inside Q0 (because of the dyadic
structure), we obtain that

∑

j

ˆ

Qj

|g(x)| dx .

ˆ

Q0

|g(x)| dx .

(
−

ˆ

6Q0

|g(x)|2 dx

)1/2

· |Q0| ,

which yields

∑

j

∣∣∣∣∣

ˆ

Qj

Bδ(f · 1(6Qj)
c)(x)ḡ(x) dx

∣∣∣∣∣ .
(
−

ˆ

6Q0

|f |p0 dx

)1/p0 (
−

ˆ

6Q0

|g(x)|2 dx

)1/2

· |Q0| ,

as desired.
We are left with estimating Bδ(f · 1(6Qj)

c) − Bδ
2r(f · 1(6Qj)

c), and in doing this, we use
the operators Sk. More exactly, we note that

Bδ(f · 1(6Qj)
c)(x)− Bδ

2r(f · 1(6Qj)
c)(x) =

∑

2r≥2k+1r≥1

2kδSk

(
f · 1(6Qj)

c

)
(x).
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This implies that
∣∣∣∣∣

ˆ

Qj

Bδ(f · 1(6Qj)
c)(x) −Bδ

2r(f · 1(6Qj)
c)(x) · ḡ(x) dx

∣∣∣∣∣

.
∑

2r≥2k+1r≥1

2kδ

(
1

|Qj|

ˆ

Qj

∣∣∣Sk

(
f · 1(6Qj)

c

)
(x)
∣∣∣
2
dx

)1/2

·

(
1

|Qj|

ˆ

Qj

|g(x)|2 dx

)1/2

· |Qj | .

Proposition 6 implies that the above expression can be bounded by

∑

2r≥2k+1r≥1

2k(δ−ρ) inf
x∈6Qj

Mp0 [f ] (x) ·

(
1

|Qj |

ˆ

Qj

|g(x)|2 dx

)1/2

· |Qj|

.
∑

2r≥2k+1r≥1

2k(δ−ρ)

(
−

ˆ

6Q0

|f |p0 dx

)1/p0

·

(
1

|Qj |

ˆ

Qj

|g(x)|2 dx

)1/2

· |Qj| ,

because 6Qj meets the complementary Ec (so the maximal function is bounded at some
points of 6Qj). Now we only need to notice that

∑

Qj

(
1

|Qj|

ˆ

Qj

|g(x)|2 dx

)1/2

· |Qj| .

(
1

|Q0|

ˆ

Q0

|g(x)|2 dx

)1/2

· |Q0| ,

which is a consequence of the disjointness of the cubes Qj and of the Cauchy-Schwartz
inequality.

This completes the verification of (9), which allows us to prove then Theorem 3 by
iteration, as explained before in the sketch. �

Consequently, we are left we proving Propositions 6, 7 and 8, and we will do this in the
following sections.

4. Localized estimates for the elementary operators Sk (Propositions 6
and 7

The operators Sk can be studied using oscillatory integrals, maximal Kakeya operators,
or the Restriction Theorem. In our analysis of Bδ, we choose the latter strategy.

The R (p → q) Restriction Conjecture consists in obtaining the full range of exponents
(p, q) ∈ [1,∞]2 such that

Conjecture .

(R (p → q))
∥∥∥f̂ |Sn−1

∥∥∥
Lq(Sn−1)

≤ C ‖f‖Lp(Rn)

holds for every smooth function f ∈ S (Rn).

While the full conjecture is still open, the particular case q = 2 was completely solved
by Tomas and Stein [38]:

Theorem B. For any n ≥ 2, the restriction inequality R (p → 2) holds for any 1 ≤ p ≤
2n+2
n+3 . Moreover, this bound fails for any p > 2n+2

n+3 .
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That Theorem B implies, in some cases, the boundedness of the Bochner-Riesz operator
was known since [17] and [9]. A deeper connection between the two problems was revealed
in [36].

In this section, we will be using a result from [35], where weak type-estimates for the
critical δ are studied:

Theorem C (Theorem 1.1 of [35]). For any p ≤
2n+ 2

n+ 3
, the Bochner-Riesz operator Bδn(p)

satisfies the following:
ˆ

{Mpf(x)≤λ}

∣∣∣Bδn(p)f(x)
∣∣∣
2
dx ≤ Cλ2−p ‖f‖pp ,

where δn(p) is the critical index given by δn(p) := n

(
1

p
−

1

2

)
−

1

2
. Moreover, for any

k ≤ 0, we have

(13)

ˆ

{Mpf(x)≤λ}
|Skf(x)|

2 dx ≤ C2−2kδn(p)λ2−p ‖f‖pp .

This last result uses in a crucial way the Restriction inequality R (p → 2), and that is
why the range for the exponent p is the one given by Tomas-Stein Theorem B. Using the
above two results, we can now provide a proof for Propositions 6 and 7.

Proof of Proposition 6. First, we will split f · 1(2Br)
c as

f · 1(2Br)
c =

∑

j≥1

f · 1(2j+1Br\2jBr) :=
∑

j≥1

fj.

It will be enough to prove for every j ≥ 1 that

(
−

ˆ

Br

|Sk (fj) (x)|
2 dx

)2

≤ Cρ,M2−kρ2−jM

(
−

ˆ

2j+1Br\2jBr

|f(x)|p0 dx

)1/p0

,

where M can be chosen to be as large as we wish.
The above estimate will be an application of Theorem C. Let 1 ≤ p ≤ 2n+2

n+3 , and note

that, since fj is supported inside 2j+1Br \ 2
jBr, we have the inclusion

Br ⊆

{
x : Mp [fj] (x) ≤ λ :=

(
−

ˆ

2j+1Br

|fj|
p dz

)1/p
}
.

As a consequence of (13), we have that
ˆ

Br

|Sk(fj)(z)|
2 dz ≤ C2−2kδn(p)λ2−p ‖fj‖

p
p .

This further leads to the estimate

(14)

(
−

ˆ

Br

|Sk(fj)|
2 dx

)1/2

. 2−kδn(p)2
(j+1)n

2

(
−

ˆ

2j+1Br

|fj|
p dx

)1/p

.

This is still far from the desired inequality (10). However, we can use the fast decay of šk.
Indeed, by using that sk is smooth at the scale 2k and supported in an annulus of measure
≃ 2k, integration by parts yields

(15) |šk(x)| .
2k

(2k |x|)
N
,
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for all |x| sufficiently large and any integer N .
Using the fast decay of šk, we have that, for any x ∈ Br,

|Sk(fj)(x)| =

∣∣∣∣
ˆ

Rn

fj(t)šk(x− t)dt

∣∣∣∣ . 2k
(
2k2jr

)−N
ˆ

2j+1Br

|fj(t)| dt.

A straightforward computation yields that
(16)(

−

ˆ

Br

|Sk(fj)|
2 dx

)1/2

. ‖Sk(fj)‖L∞(Br) . 2k
(
2k2jr

)−N (
2jr
)n
(
−

ˆ

2j+1Br

|fj|
p dx

)1/p

,

where the implicit constants depend on N, p and the dimension n. In the above identity,

we have arbitrary decay in the form of
(
2j
)−N

, and this will compensate for the positive

power of 2j in (14). More exactly, we can interpolate inequalities (14) and (16) to obtain

(17)

(
−

ˆ

Br

|Sk(fj)|
2 dx

)1/2

. 2−k[δn(p)− 1
M ]2−jM

(
−

ˆ

2j+1Br

|fj|
p dx

)1/p

.

The equation above holds for any 1 ≤ p < 2n+2
n+3 . The last step is to interpolate between

(17) and the trivial L2 7→ L2 estimate for Sk in order to get, for any p ≤ p0 ≤ 2,

(
−

ˆ

Br

|Sk(fj)|
2 dx

)1/2

. 2−kν(δ(p)− 1
M )2−jM̃

(
−

ˆ

2j+1Br

|fj|
p0 dx

)1/p0

.

Here ν is the interpolation coefficient which gives
1

p0
=

1− ν

2
+

ν

p
. Hence we obtain

inequality (10) for any ρ > ρn (p0), where the critical ρn (p0) is given by

ρn (p0) := νδn(p) =

(
n

(
1

p
−

1

2

)
−

1

2

)
·

1
p0

− 1
2

1
p − 1

2

.

There are two possibilities:

a) if 1 ≤ p0 ≤
2n + 2

n+ 3
, then we have minimal ρn(p0) = δ(p0) = n

(
1

p0
−

1

2

)
−

1

2
by

taking p = p0;

b) if
2n+ 2

n+ 3
≤ p0 < 2, then the minimal ρn(p0) is obtained for p = 2n+2

n+3 :

ρn(p0) =
n− 1

2

(
1

p0
−

1

2

)
.

In other words,

(18) ρn(p0) = max

{
n

(
1

p0
−

1

2

)
−

1

2
,
n− 1

2

(
1

p0
−

1

2

)}
.

�

Proof of Proposition 7. We denote F := f · 1B(x,3ǫ), and use the following rough estimate:
ˆ

B(x,ǫ)
|Sk(F )(z)|2 dz . ‖Sk(F )‖22 =

∥∥∥Ŝk(F )
∥∥∥
2

2
.



12 CRISTINA BENEA, FRÉDÉRIC BERNICOT, AND TERESA LUQUE

We want to bound the L2 norm of Ŝk(F ) by the Lp norm of F , for p0 < 2. This is possible
by making use of the Restriction Theorem in the following way:

∥∥∥Ŝk(F )
∥∥∥
2

2
=

ˆ

R2

|sk(ξ)|
2
∣∣∣F̂ (ξ)

∣∣∣
2
dξ(19)

.

ˆ 1−2k−1

1−2k+1

χ2
(
2−k

(
1− r2

)) ˆ

Sn−1

∣∣∣F̂ (rθ)
∣∣∣
2
dθrdr . 2k‖F‖2p.

The inequality above is true whenever we have an R (p → 2) restriction result, that is,

whenever 1 ≤ p ≤
2 (n+ 1)

n+ 3
. Now we interpolate the inequality in (19) with the much

easier estimate ‖Sk(F )‖2 . ‖F‖2, in order to obtain, for any p ≤ p0 ≤ 2:

‖Sk(F )‖2 . 2
k
2
·θ‖F‖p0 , where θ =

1
p0

− 1
2

1
p − 1

2

.

To summarize, we have that

(
ˆ

B(x,2ǫ)

∣∣Sk(f · 1B(x,3ǫ))
∣∣2 dz

)1/2

. 2
k
2
·θ

(
ˆ

B(x,3ǫ)
|f |p0

)1/p0

.

If we want to express it using averages, the above inequality becomes

(
−

ˆ

B(x,2ǫ)

∣∣Sk

(
f1B(x,3ǫ)

)∣∣2 dz
)1/2

. 2−kρ

(
−

ˆ

B(x,3ǫ)
|f |p0 dz

)1/p0

,

where we used the fact that ǫ2k ≤ 1. Moreover, ρ is strictly greater than

(20) ρ̃ :=

1
p0

− 1
2

1
p −

1
2

·

(
n

(
1

p
−

1

2

)
−

1

2

)
=

1
p0

− 1
2

1
p −

1
2

· δ(p).

In particular, if we want ρ̃ as small as possible, we recover the critical index ρn (p0) from
(18). This ends the proof of Proposition 7. �

5. Boundedness of new maximal Bochner-Riesz operators: proof of
Proposition 8

We begin with a few remarks on the statement of Proposition 8:

Remark 9. • the Bochner-Riesz conjecture asserts exactly that δ̃(p1) defined in (22)
should be equal to δ(p1)

δ (p1) = max

(
n

∣∣∣∣
1

p1
−

1

2

∣∣∣∣−
1

2
, 0

)
.

• In particular, if p0 ≥ 2(n+1)
n+3 then p1 ≥ 2n

n+1 , and so the Bochner-Riesz conjecture

would imply that δ̃(p1) = 0. And so, δ̄n(p0) =
n− 1

2

(
1

p0
−

1

2

)
.

• Using the inequality δ̃(p1) ≥ δ(p1), which corresponds to the necessary condition in
the Bochner-Riesz conjecture, we note that δ̄n(p0) ≥ ρn(p0).
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Proof of Proposition 8. Using Proposition 7, for every x, y and every ǫ > 0 with |x−y| < ǫ,
we get

(
−

ˆ

B(y,ǫ)
|Bδ

ǫ (f1B(x,3ǫ))|
2dz

)1/2

.

(
−

ˆ

B(x,2ǫ)
|Bδ

ǫ (f1B(x,3ǫ))|
2dz

)1/2

.
∑

k
2kǫ≤1

2kδ

(
−

ˆ

B(x,ǫ)
|Sk(f1B(x,3ǫ))|

2dz

)1/2

.
∑

k
2kǫ≤1

2kδ2−kρ

(
−

ˆ

B(x,3ǫ)
|f |p0dz

)1/p0

. Mp0 [f ](x),

whenever δ > ρ > δ̄n(p0) ≥ ρn (p0). Because we can take ρ arbitrarily close to ρn (p0), for
now, the only viable constraint is that δ > ρn (p0).

Since the Lp0 Hardy-Littlewood maximal function Mp0 is of weak type (p0, p0), this
term is acceptable and we are reduced to estimating only the second maximal operator:

Bδ,∗∗(f)(x) := sup
ǫ

sup
|x−y|<ǫ

(
−

ˆ

B(y,ǫ)
|Bδ

ǫ (f)|
2dz

)1/2

.

For fixed x, y ∈ Rn and ǫ > 0 with |x− y| < ǫ, we write Bδ
ǫ as

Bδ
ǫ (f) =

∑

k≤0

2kǫ≤1

2δkSk(f).

Noting that šk (·) satisfies the decaying estimate

šk (z) .
2k

(1 + |z|)
n−1
2 (1 + 2k |z|)

N
,

we obtain that

‖Sk (f)‖L∞(B(y,ǫ)) . 2−k(n−1
2 )

+

M [f ] (x).

The idea is to interpolate the above estimate with the trivial inequality

(
−

ˆ

B(y,ǫ)
|Sk (f)|

p1 dz

)1/p1

. Mp1 [Sk(f)] (x),

for some 1 ≤ p1 ≤ 2 (precisely the one defined in (5)), in order to get Lp0-L2 estimates.
Consequently, pick 0 ≤ θ ≤ 1 so that

(21)
1

2
=

θ

∞
+

1− θ

p1
=

1− θ

p1
.

Then we obtain that
(
−

ˆ

B(y,ǫ)
|Sk (f)|

2 dz

)1/2

. 2−kθ(n−1
2 )

+

·
(
M [f ] (x)

)θ
·
(
Mp1 [Sk(f)] (x)

)1−θ
,
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which further implies the pointwise estimate

Bδ,∗∗(f)(x) . sup
ǫ

sup
|x−y|<ǫ

∑

k≤0

2kǫ≤1

2kδ

(
−

ˆ

B(y,ǫ)
|Sk (f)|

2 dz

)1/2

. sup
ǫ

∑

k≤0

2kǫ≤1

2
k
(
δ−θ(n−1

2 )
+
)(

M [f ] (x)
)θ

·
(
Mp1 [Sk (f)] (x)

)1−θ
.

We aim to estimate Bδ,∗∗ in some weak Lp0 space, where p0 is given by the formula

1

p0
= θ +

1− θ

p1
= θ +

1

2
.

Letting σ := δ − θ

(
n− 1

2

)+

, Hölder’s inequality for weak Lp spaces implies that

∥∥∥Bδ,∗∗(f)
∥∥∥
Lp0,∞

.
∑

k≤0

2kσ‖f‖θL1 · ‖Sk(f)‖
1−θ
Lp1 .

Now we need to use the Lp1 boundedness of Sk; we note that we have, uniformly in k ≤ 0,
that

(22) ‖Sk(f)‖p1 . 2−kδ̃(p1)
+

‖f‖p1 ,

where δ̃ (p1) is the smallest positive number for which (22) is true.
We get that

∥∥∥Bδ,∗∗ (f)
∥∥∥
Lp0,∞

.
∑

k≤0

2k(σ−δ̃(p1)) ‖f‖θL1 ‖f‖
1−θ
Lp1

. ‖f‖θL1 ‖f‖
1−θ
Lp1 ,

provided σ > δ̃(p1).
Now we use restricted type interpolation to deduce our result: for arbitrary functions

|f | ≤ 1E for some subset E ⊂ R2, we obtain
∥∥∥Bδ,∗∗(f)

∥∥∥
Lp0,∞

. |E|θ|E|(1−θ)/p1 = |E|1/p0 .

We conclude that Bδ,∗∗ is of restricted weak type (p0, p0) as soon as

δ > δ̄n (p0) := θ
n− 1

2
+ δ̃ (p1) .

For such fixed δ, there is enough room to modify a bit the exponent p0 ( preserving still the
above condition), so we get different restricted weak type estimates for exponents around
p0 and by interpolation we obtain a strong Lp0-boundedness.

Overall, the constraint on δ is

δ > max

{
n

(
1

p0
−

1

2

)
−

1

2
,
n− 1

2

(
1

p0
−

1

2

)
+ δ̃ (p1)

}
.

�
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6. A close examination of the two-dimensional case

In this section, we restrict our attention to the case n = 2, where the Bochner-Riesz
conjecture is fully solved. Moreover, we will focus on the range of Lebesgue exponents
(6/5, 6), which corresponds to δ > 1/6 for the Lp-boundedness of Bδ. We aim to explain
how we can play with Lebesgue exponents to obtain other estimates, more symmetrical
around the exponent 2.

We have seen that for δ > 1
6 , we have sufficiently localized information of the type

L6/5-L2, which allows us to obtain the following sparse control: for arbitrary smooth and
compactly supported functions f, g there exists a sparse collection Q such that

∣∣∣〈Bδf, g〉
∣∣∣ .

∑

Q∈Q

(
−

ˆ

6Q
|f |6/5 dx

)5/6

·

(
−

ˆ

6Q
|g|2 dx

)1/2

· |Q| .

The Bochner-Riesz operator being a Fourier multiplier is self-adjoint and so it could
seem more natural to look for a range of exponents that is symmetric around 2. Indeed,
we are going to prove the following:

Theorem 10. Let p0, q0 ∈ [6/5, 6] be any exponent such that p0 < q0 and

1

p0
−

1

q0
≤

1

3
.

Then for any δ > 1/6, and any f, g compactly supported, there exists a sparse collection S
(depending on f, g) with

∣∣∣∣
ˆ

Bδ(f) · g dx

∣∣∣∣ ≤ C
∑

P∈S

(
−

ˆ

6P
|f |p0 dx

)1/p0 (
−

ˆ

6P
|g|q

′
0 dx

)1/q′0

|P |.(23)

Proof. The idea is that the gain of integrability that we have to use (from Lp0 to Lq0) is
lower than the one we have proved since:

1

p0
−

1

q0
≤

1

3
=

1

2
−

5

6
.

We have first to check that we can prove such Lp0-Lq0 version of Propositions 6, 7 and
8. Here, we will preserve the notation appearing in these propositions.

For Proposition 6, what we have proved is that

‖1
B̃r

Sk1Br‖L6/5→L2 . r−2/32−kρ

(
1 +

d(Br, B̃r)

r

)−M

for any balls Br, B̃r of radius r with d(Br, B̃r) ≥ r. Since Sk is self-adjoint, we have also

‖1
B̃r

Sk1Br‖L2→L6 . r−2/32−kρ

(
1 +

d(Br, B̃r)

r

)−M

.

Interpolating these two estimates, we can prove

‖1
B̃r

Sk1Br‖Lp0→Lq0 . r
−2

(
1
p0

− 1
q0

)

2−kρ

(
1 +

d(Br, B̃r)

r

)−M

,

which then by summing over a covering of balls, implies a Lp0-Lq0 version of Proposition
6.



16 CRISTINA BENEA, FRÉDÉRIC BERNICOT, AND TERESA LUQUE

For Proposition 7, which corresponds to the diagonal part, we have proved that

‖1BrSk1Br‖L6/5→L2 . 2k/2

for any balls Br of radius r. By duality and then interpolation, we may also obtain that

‖1BrSk1Br‖Lp0→Lq0 . 2k/2r
−2

(
1
p0

− 1
q0

− 1
3

)

.

By covering 3Br with balls of radius r, it yields that
(
−

ˆ

Br

|Sk(f · 1B3r )|
q0 dx

)1/q0

. 2−kρ

(
−

ˆ

B3r

|f |p0 dx

)1/p0

,

which is a Lp0-Lq0 version of Proposition 7.

For Proposition 8, we now study a Lp0-Lq0 version of the maximal operators which are

Bδ,∗(f)(x) := sup
ǫ>0

sup
|x−y|<ǫ

(
−

ˆ

B(y,ǫ)

∣∣∣Bδ
ǫ

(
f · 1B(x,3ǫ)c

)
(z)
∣∣∣
q0
dz

)1/q0

and

Bδ,∗∗(f)(x) := sup
ǫ>0

sup
|x−y|<ǫ

(
−

ˆ

B(y,ǫ)

∣∣∣Bδ
ǫ (f) (z)

∣∣∣
q0
dz

)1/q0

.

Then following the exact same proof of Proposition 8, we obtain that these two maximal
operators are of weak-type (p0, p0) as soon as δ > 1/6 (because the exponent p1, used in the
proof, will belong to the range [4/3, 4] for which we know that Sk are uniformly bounded
in Lp1 by any positive power of 2−k).

So we have checked that we can easily obtain a Lp0-Lq0 version of the main technical
propositions. Then we may repeat the selection algorithm explained for Theorem 3 and
this concludes the proof. �

On the other hand, we can obtain estimates for smaller values of δ, but with other kind
of constraints:

Theorem 11 (Theorem 3 in two dimensions). Let 1 ≤ p0 < 2 and define δ̄2 as

(24) δ̄2 (p0) =

{
ν2 (p0) , if 6

5 ≤ p0 ≤ 2

ν2 (p0) +
1

1−2ν2(p0)
− 3

2 , if 1 ≤ p0 ≤
6
5 ,

where ν2 :=
1

2

(
1

p0
−

1

2

)
. Then for any δ > δ̃2(p0), and any functions f and g that are

compactly supported, there exists a sparse collection S (depending on f and g), for which

∣∣∣〈Bδ(f), g〉
∣∣∣ ≤ C

∑

Q∈S

(
−

ˆ

6Q
|f |p0 dx

)1/p0 (
−

ˆ

6Q
|g|2 dx

)1/2

|Q|.

The proof of this result relies on the fact that the Bochner-Riesz conjecture is completely
solved in two dimensions, and because of this we can write down an exact expression for
δ̃2 and δ̄2:

Proposition 12. On R2, let p0 ∈ (1, 2), and δ̄2 be defined by (24). Then for every
δ > δ̄2(p0) the maximal operators Bδ,∗ and Bδ,∗∗ are of weak-type (p0, p0).
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7. Quantitative weighted estimates and vector-valued extensions for the
Bochner-Riesz

In this section, we present the weighted estimates implied by our Theorem 3, as well as
related vector-valued extensions. To state properly the theorems and clarify their proofs,
we recall first a few facts about weights, Muckenhoupt Ap classes and the main properties
of the weights therein.

For 1 < p < ∞, a weight w (that is, a non-negative, locally integrable function) is a
Muckenhoupt Ap weight if it satisfies the condition

[w]Ap := sup
B

(
1

|B|

ˆ

B
w(y) dy

)(
1

|B|

ˆ

B
w(y)1−p′ dy

)p−1

< ∞,

where the supremum is taken over all the balls B of Rn. This constant [w]Ap is known as
the characteristic constant of the weight w. For the limiting case p = 1, the class A1 is
defined to be the set of weights w such that

[w]A1 := sup
B

(
1

|B|

ˆ

B
w(x)dx

)(
ess sup
y∈B

w(y)−1

)
< +∞.

One of the main features of Muckenhoupt weights is the reverse Hölder property. More
precisely, we say that a weight w satisfies the Reverse Hölder inequality with exponent
s > 1 if there exists a constant C such that for every ball B in Rn

(25)

(
1

|B|

ˆ

B
w(y)s dy

) 1
s

≤ C
1

|B|

ˆ

B
w(y) dy.

Since all weights in Ap satisfy (25) for a certain exponent s, it is possible to describe the
Ap weights in a different way. More precisely, we can say that w is in the reverse Hölder
class RHs if it satisfies (25) and the constant C defines the characteristic of the weight and
is denoted by [w]RHs . This definition can be also extended to s = ∞ and the constant C
will be exactly

[w]RH∞ := sup
B

(
ess sup
y∈B

w(y)

)(
1

|B|

ˆ

B
w(y)dy

)
< +∞.

Reverse Hölder and Ap classes are related as follows:

Proposition 13. Let q ∈ [1,∞] and s > 1. Then w ∈ Aq ∩ RHs if and only if ws ∈
A1+s(q−1). Moreover,

[ws]A1+s(q−1)
≤ [w]sAq

[w]sRHs
.

We obtain the following weighted norm estimates for the Bochner-Riesz operator:

Theorem 14. Let 1 < p0 < 2, and δ̄n(p0) as in (6) . For every p0 < p < 2, with δ > δ̄n(p0)
and for all weights w ∈ A p

p0
∩RH(

2
p

)′

(26) ‖Bδ‖Lp(w)→Lp(w) ≤ C

(
[w]A p

p0

[w]RH
( 2p )′

)α

,
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with α := max{1/(p − p0), 1/(2 − p)} and C := C(δ, p, p0, n) a constant. Similarly, if
2 < p < p′0 then for all weights w ∈ A p

2
∩RH(

p′
0
p

)′

(27) ‖Bδ‖Lp(w)→Lp(w) ≤ C

(
[w]A p

2
[w]RH

(
p′
0
2 )′

)α

,

with α := max{1/(p − 2), (p′0 − 2)/(p′0 − p)}. Moreover, we obtain that

(28) Bδ : L2(w) → L2(w), for all w such that w
2p0
2−p0 ∈ A2.

Proof. To prove (26) and (27) we apply [3, Proposition 6.4] to the bilinear estimate (7) for
the respective range of p. By interpolation we obtain (28).

�

Remark 15. A few comments regarding Theorem 14 need to be made:

• We note that in [27] some extension in terms of mixed Ap − A∞ characteristic of
the weight (as well as two weights inequalities) have been obtained for the weighted
estimates of sparse bilinear form, initially obained in [3, Proposition 6.4]. Therefore,
this could be applied in our current situation. For example, by combining with
Theorem 10, [27] yields the following: in dimension 2, as soon as δ > 1/6 then we
have

‖Bδ‖L2(w)→L2(w) . [w3]
1/6
A2

[w3 + w−3]
1/2
A∞

.

• We believe that the quantitative estimates (26) and (27) are the best as far as we
know because if we track the constants in Theorem A (i) and we apply extrapolation
we do not recover such result for the indicated range of p.

• Following Remark 4, we can rephrase the statement in Theorem 14, so that the
range of exponents p, and all the other parameters depend on δ. The details are
left to the reader.

Finally, the vector-valued estimate for Bδ results from Theorem 10. Accurately, if we
apply [2, Theorem 4.9] to bilinear form estimate (23) we obtain the following:

Corollary 16. Let n = 2 and p, q ∈ [6/5, 6] be any exponent such that

(29)

∣∣∣∣
1

p
−

1

q

∣∣∣∣ <
1

3
.

Then for any δ > 1/6, Bδ admits Lp(ℓq) estimates.

We point out that on the range p, q ∈ [6/5, 6], if p, q ≥ 2 (and so satisfies (29)) then
vector-valued estimates could be obtained from Theorem A (as well as if p, q ≤ 2 by
duality). The novelty here is to allow the situations p < 2 < q or q < 2 < p with (29),
which does not seem to be a direct application of previously known results.
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Cristina Benea, CNRS - Université de Nantes, Laboratoire Jean Leray, Nantes 44322,
France

E-mail address: cristina.benea@univ-nantes.fr
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