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Abstract. This paper presents a new methodology for solving the eigenvalue problem for time 

dependent structures. The time dependent structures of interest are structures with a moving 

discontinuity such as crack or structures with moving free (external/internal) surfaces. For 

the last case, they can result from a removal of material during a machining process or from 

a deterioration of the structure’s geometry. The methodology that we developed, is based on a 

combination of the eXtended Finite Element Method (X-FEM) and the Directional Derivatives 

method. X-FEM enables to overcome the drawbacks of conformity and remeshing: indeed, 

using standard FEM, a moving discontinuity in time within a structure requires not only that 

the mesh must conform to the discontinuity geometry but also to fully remesh the structure as 

much as necessary to follow the discontinuity in time. In order to alleviate this last point, the 

directional derivatives are a powerful tool because they allow to estimate the evolution of 

quantities from on reference domain to another one. In our case, they will allow to estimate 

the solutions of the eigenvalue problem. We suggest on the first sections to remind the main 

keys of both methods and we present then the combined methods in order to solve an 

eigenvalue problem. The application will be done on a one-dimensional eigenvalue problem 

and the numerical results will be presented to demonstrate the accuracy and the advantages 

of selected approaches. We conclude on the future prospects of the current work that mainly 

consist of to develop the methodology at the second order in order to increase the accuracy 

and to find a criteria in order to automatize the combined methods.  
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1 INTRODUCTION 

The eigenvalue problems are of a great importance and play a crucial role in many 

engineering fields. In the aeronautical field for instance, the identification of natural 

frequencies and natural shapes during the design of a plane is compulsory before its 

commercialization to ensure the security of passengers. A modal analysis is usually done for 

the whole plane as well as for some structural parts such as engines or blades. In the field of 

machining, we can also cite the problem of quality insurance for the dimensions of machined 

pieces: the reliability of the processing machines must be ensured in order to avoid some 

critical interactions of their possible vibrations modes on the constraints of the dimensions of 

the piece. At last, in some other cases, the design of optimized structures to prevent failure 

due to instabilities and vibrations brings the problem of the determination of optimal physical 

parameters so that the load carrying capacity or the fundamental natural frequency is 

maximized. 

Nowadays, there is a need for solving eigenvalue problems for time dependent structures. 

Changes of a structure can occur due to the propagation of cracks. They can also appear due 

to the fact that the shapes of a structure are modified because of the removal of material 

during its machining process or because of the deterioration of its geometry. They can also 

happen during design process when the structure has to be optimized with respect to 

frequency criteria. To investigate such issues, standard ways involve remeshing the structure 

in order to follow its changes and to conform to its current geometry. They also involve 

solving the eigenvalue problem for each configuration of the structure which has been meshed. 

Besides, we can also notice a possible loss of accuracy as the data is mapped from the old 

mesh to the new one. In other words, the FEM applications can lead to lot of limitations and 

complexities for engineers and can really be time consuming. 

To offer an alternative solution to the above issues, we propose in this paper a new 

methodology combining two approaches. The first one is the Extended Finite Element 

Method (X-FEM) [1-2] which is based on the Partition of Unity [3]. The aim of this method is 

to alleviate the mesh constraints that come from discontinuities, using the level sets [4-7]. 

That is the main reason that X-FEM is effectively applied to solve many problems in material 

modeling, crack propagation problems [8] and structures with holes (or free surface) [9,10]. 

For our problem, the X-FEM method solves the mesh dependency of the structure due to the 

changing of boundaries or/and due to the discontinuities. 

Since the simulation in order to follow the discontinuity in time and its consequence on the 

natural frequencies imposes to continuously compute the eigenvalue problem, it seems that 

this method is not quite optimal in terms of CPU time cost. In order to avoid computing the 

eigenvalue problem on each configuration where information is needed, we focus on a second 

approach: the Directional Derivatives [11-13]. This mathematical tool allows us to get the 

evolution of a quantity from one domain to another one. Applied to our problem, it becomes 

possible to estimate natural frequencies and natural shapes for a given configuration without 

solving the eigenvalue problem for this configuration. 

In the next sections of this paper, we generalize joint application of the above techniques in 

one unique approach; we first introduce the state of eigenvalue problem, expose some key 

points of the X-FEM method and the basic definitions for the Directional Derivatives of first 

order in the general case. We then suggest applying the joint techniques (X-FEM and 

Directional Derivatives) for solving the eigenvalue problem in the one-dimensional case. In a 

last section, we discuss about the obtained results for the 1D case and we present the works 

and the main key-points for the application of the methodology in 2D case. 
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2 STATE OF THE PROBLEM 

 

Figure 1: The eigenvalue problem associated with free oscillations. 

The free-vibration natural frequencies and mode shapes of a linear structural system can be 

computed by solving the following eigenvalue problem. With the assumption of small 

perturbations in the framework of the linear elasticity theory, the free oscillations of a 

structure (Figure 1) are governed by the following equations system: 

 local equations 

     ̿      ̈ (1) 

 behavior law 

 ̿     ̿̿   ̿            ̿    
      

 
  (2) 

 boundary conditions 

                (3) 

 ̿    ⃗           (4) 

Where: 

        is the displacement field; 

      is the deformation field induced by        in the framework of the 

assumption of small perturbations; 

  ̿    is the stress field induced by       ; 

     is the part of boundary where the displacement field is known; on    , 

boundary conditions are essential or geometrical ones; 

     is the part of the boundary where the stress field is known; on    , boundary 

conditions are natural ones; 

  ⃗  is the external normal on the boundary    ; 

   is the density; 

  ̿̿ is elasticity tensor. 

Usually, the solution of (1) is set in a following way: 

                 

where      is a displacement field (function of the variable  ) and      is a scalar 

function of time. We obtain: 

     ̿           ̈ (5) 
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For longitudinal vibrations of an uniform bar, the equation (5) becomes           

   ̈   . Due to stability of solution in time, it is necessary that  ̈         with   constant. 

That leads for longitudinal vibrations:            . 

For the general case, we can write: 

     ̿                     (6) 

If the set of kinematically admissible displacement fields is defined by: 

       { ̂           ̂             } 

The solutions of the eigenvalues problem        satisfies the three following relationships: 

(    )                 ̿(  )          ̿        ⃗           

and therefore    ̂        , we obtain: 

∫  ̿(  ) 

 

 (̿  ̂)     ∫    

 

  ̂   (7) 

Owing to the fact that the stress tensor is symmetric, we can write the relation (7) as: 

∫  ̿(  ) 

 

   ̂     ∫    

 

  ̂   

The above relation corresponds to the standard variational formulation of the eigenvalue 

problem that occurs in Dynamics. We obtain that the solutions        satisfy: 

(    )           

∫  ̿(  )    ̂     ∫       ̂       ̂        

 

 

 

 (8) 

2.1 The X-FEM method 

To solve the eigenvalue problem for time dependent structures, we use the X-FEM method 

which introduces a local enrichment of the approximation space in order to treat any kind of 

discontinuities within a structure (material discontinuity, cracks, free surfaces). These 

enrichment functions can include an analytical solution or an a priori knowledge of the 

experimental solution of test results. They are a combination of nodal functions that are 

associated with a mesh and the product of shape functions, which describe the discontinuity. 

This approach allows to independently model a discontinuity from the mesh. In the case of 

discontinuity’s propagation, the method also avoids remeshing at each step. Besides, the 

enrichment functions are only added locally, i.e. when the domain requires to be enriched. As 

a result, the algebraic system of equations consists of two types of unknowns: standard 

degrees of freedom and enriched degrees of freedom. All the above features provide some 

important advantages to the X-FEM method compared to the standard FEM method for 

modeling arbitrary discontinuities. 

The feature of X-FEM is to add special functions to some nodes of the global mesh domain. 

The purpose of these additional functions is to enrich the approximation of the existing 

displacement fields. The description of discontinuities in the framework of the X-FEM is 
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usually realized by the level-set method: it allows to locate the cutting elements by the level 

set and to determine the nodes of interest for which the additional degrees of freedom will be 

added. According to the method of partition of unity [3], the X-FEM displacement 

approximation          is assumed to be as the following general form [6]: 

                ∑       

   ⏟      
   

 ∑           
   ⏟          

          

 
(9) 

Where: 

    are shape functions of node  ; 
    are unknown of finite element part at node  ; 
     is nodal subset of the enrichment; 

    are partition of unity functions of node  ; 

      is enrichment function; 

    are the additional degrees of freedom. 

2.2 Definition of the changing of configuration in two-dimensional case 

As it has been said, the changing of a structure can concern, for instance, the moving of its 

boundaries or the growth of a crack. So, for a given structure, each position of its boundaries, 

or each position of a crack, allows to define one configuration of this structure. For each 

configuration, we can associate one eigenvalue problem. Consequently, eigenvalues and 

eigenshapes will depend of the configuration of structure and will change as the configuration 

of the structure will evolves. The main benefit of X-FEM method lies in the fact that it 

becomes possible to follow the discontinuities within a structure without remeshing: the mesh 

dependency vanishes. But using merely X-FEM, the eigenvalue problem must still be solved 

on every configuration where an estimation of natural frequencies is needed.  

To overcome the above shortcoming that can be time consuming, we propose to use the 

directional derivatives. They are a universal tool to avoid multiple calculations. It can be used 

to estimate the evolution of a quantity with respect to the change of configuration. In our case, 

the directional derivatives will provide a way to estimate the derivative of eigensolutions with 

respect to a change of configuration of the structure. Therefore, the eigenvalue problem will 

only be solved for some configurations until the accuracy has decreased drastically. 

In order to take into account the time dependency of the structure, we introduce a function 

     which governs the changing of the shape from a reference configuration (noted   ) to a 

current one (noted     ).   is a scalar parameter which allows to follow the evolution of the 

structure and   represents the position of a point on the reference configuration. If we note    

its position on the current configuration, we have (10): 

             (10) 

Concerning the function       which governs the changing of configuration, the following 

remarks can be done: 

 Remark 1: 

The transformation between both configurations must be a bijective one. 

 Remark 2: 

The transformation doesn’t change the part of boundary where displacement conditions 

are imposed. 
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 Remark 3: 

It should also be noted that the changing of configuration characterizes a changing of 

geometry in the initial considered domain, but the material remains the same. The 

density and the elasticity tensor for both configurations are the same. 

 

Figure 2: The transformation from    to     . 

The transformation’s gradient from the reference configuration to the current one is 

defined by (11): 

 ̿       𝕝      (  ) (11) 

The determinant of the gradient transformation can be obtained in the following way: 

 𝑒  ̿  |
1            

     1       
|  1         

  

 
                    (12) 

A displacement field   on the current configuration can be regarded as a displacement field 

on the reference configuration. We have: 

                          (13) 

It follows that: 

                    ̿   (14) 

From relation (11), it can be readily deduced that for small values of parameter  , we have: 

 ̿   𝕝      (  )       (  )   (  )                   
   

 ‖    ‖     (15) 

2.3 Expressions of the directional derivatives for eigenvalues and eigenshapes 

The solution of eigenvalue problem, illustrated on Figure 2 for initial and current 

configurations, are noted (16): 

(        )             

(        
     )         (    )            

              

(16) 

Where         and    (    ) are the sets of admissible functions for both reference and 

current configurations. With these definitions, the directional derivatives of eigenvalue    [ ] 
and eigenshape    [ ] for the first order are given by: 
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   [  ]     
   

        

 
  (17) 

   [  ]     
   

             

 
  

(18) 

Starting from expressions (17) and (18), it becomes possible to obtain an estimation of 

eigenvalues and eigenshapes for the current configuration as soon as the directional 

derivatives are known. We have: 

             [  ]  (19) 

                  [  ]  (20) 

The both above expressions represent the connection between previous domain and current 

one and express the eigenvalues at the current time from the reference time as well as the 

eigenshape        , which depends on the parameter   and the space. More precisely, as it 

can be noted, the eigenvalues and the eigenshapes on the current configuration are written in 

terms of the solution of the eigenvalue problem on the reference configuration and its 

directional derivatives, both quantities being computing on the reference configuration. 

Therefore, knowing the solution of the eigenvalue problem on the reference configuration and 

its directional derivatives, the solution of the eigenvalue problem on the current configuration 

can be approximated, according to (19) and (20), by varying the value of parameter  .  

2.4 Variational formulation of eigenvalue problem in two-dimensional case 

To obtain the expression of the directional derivatives of eigenvalues and eigenshapes, one 

can start from the variational formulation of the eigenvalue problem that has to be solved in 

Dynamics. On the initial configuration, this variational formulation can be set as follows: 

∫  ̿ (     )

  

   ̂      ∫       

  

 ̂    

  ̂     
             

      { ̂         ̂   ⁄             } 

(21) 

The variational formulation of the eigenvalue problem on the current configuration takes 

the form: 

∫  ̿ (  
     )

    

   ̂        ∫    
     

    

 ̂   

  ̂     
 (    )          

       

 { ̂    (    )  ̂    ⁄              } 

(22) 

As the function doesn’t change the part of the boundary where displacements are imposed, 

we have: 

  ̂     
 (    )    ̂     
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Starting from the relation (22), using the relation (10) between    and   and taking into 

consideration the relation (14), one can note that solution (            ) of the eigenvalue 

problem on the current configuration must satisfy: 

∫  ̿ (       )

  

    ̂ ̿    𝑒  ̿         ∫          ̂ 𝑒  ̿   

  

   ̂     
      

  ̿ (       )   ̿̿ (         ̿  )
 
 

(23) 

It has to be noticed that all integrals of the relation (23) are established on the reference 

configuration. Therefore, the solution of eigenvalue problem (              ) for 

configuration      is an element of the set       
      satisfying for any element  ̂ of 

   
     : 

∫ [ ̿̿ (         ̿  )
 
 ]

  

    ̂ ̿    𝑒  ̿   

⏟                            

 

    

       ∫         

  

 ̂ 𝑒  ̿   

⏟                    
    

 
(24) 

In the neighborhood of    , we can write      and      as an expansion in series of the 

variable  . By taking into account only the zero and first orders, we obtain: 

          
  

  
|
   

         (25) 

          
  

  
|
   

         
(26) 

The identification of terms of order zero, namely          , leads to the definition of 

the eigenvalue problem on the reference configuration. The equality of terms of first order 

leads to: 

 
  

  
|
   

 
  

  
|
   

 

The derivative of     , with respect to the parameter  , is a sum of four terms, each one 

depending of  : 

     

  
 ∫ [ ̿̿ ( 

        

  
 ̿  )

 

]

  

 (  ̂ ̿  ) 𝑒  ̿   

⏟                              
     

  

 ∫ [ ̿̿ (        
  ̿  

  
)

 

]

  

    ̂ ̿    𝑒  ̿   

⏟                              
     

  

∫ [ ̿̿ (         ̿  )
 
]

  

 (  ̂
  ̿  

  
) 𝑒  ̿   

⏟                              
     

   

(27) 
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∫ [ ̿̿ (         ̿  )
 
]

  

 (  ̂ ̿  )
  𝑒  ̿

  
   

⏟                              
     

 

The derivative of     , with respect to the parameter  , is a sum of three terms, each one 

also depending of variable  : 
     

  
   

      

  
∫         
  

 ̂ 𝑒  ̿   ⏟                      

     

 

     ∫   
        

  
  

 ̂ 𝑒  ̿   

⏟                    
     

      ∫         

  

 ̂
  𝑒  ̿

  
   

⏟                    
     

 
(28) 

Starting from expression (27), using relations (11), (12), (14), (15) and (20), we finally 

obtain, by taking the limits when   vanishes:  

  

  
|
   

 ∫ [ ̿̿ (    [  ])
 
]

  

 (  ̂)     

∫ [  ̿̿ (      )
 
 

  
( ̿̿ (   )

 
)       ̿̿ (   )

 
      ]  (  ̂)     

(29) 

In a similar way, starting from expression (28), using relations (12), (19) and (20), it can 

been shown, by taking the limits when   vanishes, that: 

  

  
|
   

    [  ] ∫    

  

 ̂      ∫     [  ]

  

 ̂   

   ∫    

  

 ̂         

(30) 

Consequently, the expressions (29) and (30) of 
  

  
|
   

 and 
  

  
|
   

 lead to the following 

relation between the directional derivatives of eigenvalue and eigenshape. We have: 

∫ [ ̿̿ (    [  ])
 
]

  

 (  ̂)       [  ] ∫    

  

 ̂   

    ∫      [  ]

  

  ̂    

  ∫ [ ̿̿ (      )
 
 ( ̿̿ (   )

 
)     ]  (  ̂)    

  

 

 ∫ [ ( ̿̿ (   )
 
)  (  ̂)        ̂]          

  

 

(31) 

Clearly, the relation (8) defines an eigenvalue problem for a self-adjoint system. The self-

adjointness comes from the symmetry of integrals and the nullity of boundary conditions. It 

can be ascertained through integrations by parts. It follows from this self-adjointness that the 
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eigenfunctions       constitute a complete orthogonal set of infinite dimension [14] which 

we use as basis for        . Consequently, using the expansion theorem for self-adjoint 

systems, the directional derivative of eigenshape on the reference configuration can be set as: 

   [  ]  ∑    
     (32) 

In relation (32), it should be pointed out that the series ∑    
     converge in energy to 

   [  ]. The expressions of the directional derivatives for eigenvalues and eigenshapes can be 

deduced from relation (31) using the expansion (32) of    [  ] and the orthogonality relations 

between eigenshapes on the reference configuration. 

3 RESULTS 

This section deals with the numerical calculation of the eigenvalue problem for a clamped-

free bar which is illustrated on Figure 3. The length of the bar which contains two different 

sections is named  . It is discretized using 200 finite elements. In this one-dimensional case, 

the discontinuity corresponds to the change of the cross section of the bar: in this particular 

case, the level set is reduced to one unique point. It follows that the enrichment function has 

to be built for only one element (the one containing the cross section discontinuity). 

The used material is steel for which Young’s modulus   is equal to      1       and the 

density is defined by               . The length of the bar   is    . The initial position 

of the discontinuity (change of cross section) is noted   . The sections    and    are equal 

respectively to 1      1       and        1      . Our purpose is to obtain an estimation 

of natural frequencies and natural shapes when the position of the discontinuity moves, that is 

to say when the size of each part is varied, the whole length of the bar staying unchanged. 

 

Figure 3: Bar with a discontinuity of the cross section. 

For our problem, the bar is a free-clamped one. As the length of the whole remains 

constant, we have to consider a function      satisfying            . 

 

Figure 4: The transformation for one-dimensional case. 
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The calculation of the directional derivatives of the eigenvalues and the eigenshapes was 

carried out for one-dimensional case. Starting from the relations (19) and (22) we have: 

∫  
 

  
(   [ ])

  ̂

  
  

 

 

   ∫     [ ] ̂     

 

 

    [ ]∫        ̂      

 

 

 ∫[  
      

  

  ̂

  
           ̂   ]        

 

 

 

 

As the above expression is verified,   ̂     
     , we obtain, after discretization: 

([ ]       [ ]){   [ ]}      [ ][ ]{  }  

  ([   ]       [   ]){  }
  

 (33) 

Where: 

 [ ]   ∑ ∫   [
  

  
]
 
[
  

  
]   

            

 [ ]   ∑ ∫   [    ] [    ]  
            

 [   ]   ∑ ∫   [
  

  
]
 
[
  

  
]        

            

 [   ]   ∑ ∫   [    ] [    ]       
            

Due to the orthogonality of eigenshapes and after pre-multiplying left and right sides of 

expression (35) by {  }
  

 
, we obtain: 

   [ ]   
{  }

  

 
 ([   ]       [   ]){  }

  

{  }  
 [ ]{  }  

 (34) 

Owing to relation (32), we assume a directional derivative {   [ ]}
  

 in the form (35). 

{   [ ]}
  

  ∑  
 {     }  

   

 (35) 

Starting from the relation (33), introducing the expression (35) of the directional derivative 

{   [ ]}
  

, pre-multiplying by {  }
  

 
 with     and using the orthogonality relation 

between eigenshapes on the reference configuration leads to: 

  
  

{  }  
  ([   ]       [   ]){  }

  

{  }  
 [ ]{  }          

 (36) 

Thus, the approximate expression of {       }
  

 can be written as: 

{       }
  

  {  }
  

   ∑  
 {  }  

   

 
(37) 

For a bar of two different sections, the exact solution of the eigenvalue problem is given by: 
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where    
          and    

  
  

  
       .    satisfy: 

             
     

     
               

It leads the opportunity to compare exact solution of this problem and the solution obtained 

with the proposed method. 

For studying the dependence of the eigenvalues and eigenshapes with respect to the 

position of the discontinuity, we have to take a function      which allows to move the 

position of the discontinuity, the total length of the bar is remained to be constant. 

Consequently, the function      has to satisfy:  

        for the fixed extremity; 

        in order to impose the total length of the bar unchanged;  

       1 if we have noted    the initial position of the discontinuity. 

We here present the results that we have obtained by choosing a polynomial piecewise 

function for     . Two initial positions of the discontinuity have been studied:  

                          1 1     

For these two cases, the functions      that we have considered are presented on the Figure 5.  

 

Figure 5: Functions      for both initial position cases. 

The estimated values of natural frequencies have been obtained owing to relation (19). As 

our formulation only uses directional derivatives of first order, the approximation of the 

eigenvalue is linear. Directional derivatives have been computed according to relation (34). 

The estimated values have been compared to exact ones. To compare both solutions, the 

frequency deviation can be used. It corresponds to the relative error between both methods. 

For the i
th

 natural frequency, this frequency deviation is defined by 

|
                     

        
| 

The graphs of Figure 6, Figure 7 and Figure 8 show the evolution of the first three 

frequencies with respect to the position of the discontinuity. For each natural frequency, the 

exact values and estimated ones have been represented for two positions of the initial 

discontinuity. 

                          1 1     
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Figure 6: Dependence of the first natural frequency on position of discontinuity (directional derivatives are 

calculated for            in the first case and            in the second case). 

 

Figure 7: Dependence of the second natural frequency on position of discontinuity (directional derivatives are 

calculated for            in the first case and            in the second case). 

 

Figure 8: Dependence of the third natural frequency on position of discontinuity (directional derivatives are 

calculated for            in the first case and            in the second case). 

As seen in these graphs, the curves of exact and estimated solutions are very close. But the 

exact solution has a parabolic shape. The approximate solution, obtained with relation (19), is 

linear. On these curves, it can be observed that when directional derivatives of eigenvalue are 

close to zero (for instance when           ), the gap between exact natural frequencies 
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and estimated ones increases rapidly. It provides from the fact that according to relation (19), 

our approximation is linear. Therefore, when directional derivatives are close to zero, the 

accuracy is weak. In order to overcome this drawback, it would be useful to calculate 

directional derivatives of second order which would allow to define a parabolic 

approximation of eigenvalues and eigenshapes. In the second case, when    1 1    , 

directional derivatives of eigenvalues are not close to zero and the gap between both solutions 

decreases significantly. In this second case, the linear approximation provides more accurate 

results.  

Graphs of the Figure 9 show the frequency deviation for the three first natural frequencies 

when directional derivatives are calculated in    1 1    . The relative error is less than 

   for the three natural frequencies. 

 

 

Figure 9: Frequency deviation for the three first natural frequencies when directional derivatives are calculated 

for           . 

The evolution of the three first eigenshapes is given Figure 10 for several values of 

parameter  . Exact eigenshapes and estimated ones are represented. The estimated 

eigenshapes have been obtained according to relation (20). Just like for the eigenvalues, our 

approximation for eigenshapes is linear. The directional derivatives    [ ] are calculated 

with 20 modes. 
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Figure 10: Comparison of exact and approximate solutions. 

For the eigenshapes, to make an accurate comparison between estimated values and 

theoretical ones, we use the Modal Assistance Criterium. When we compare the estimated and 

theoretical eigenshapes of the same order, the MAC is close to one and decreases as τ grows 

up. On top of that, the MAC between estimated and theoretical eigenshapes of different order 

is nearly to zero. From these two results, we can deduce that  
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 the correlation between exact eigenshapes and estimated ones is good; 

 orthogonality properties are verified between estimated eigenshapes. 

 

Figure 11: Modal Assistance Criterium for the first natural shape (directional derivatives are calculated for 

           in the first case and            in the second case). 

 

Figure 12: Modal Assistance Criterium for the second natural shape (directional derivatives are calculated for 

           in the first case and            in the second case). 

 

Figure 13: Modal Assistance Criterium for the third natural shape (directional derivatives are calculated for 

           in the first case and            in the second case). 
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4 CONCLUSION 

A methodology for solving the eigenvalue problem for a time dependent structures has 

been proposed. This methodology combines both the directional derivatives and X-FEM 

methods. The convenience of the use of X-FEM is the possibility to avoid remeshing. A 

discontinuity can be depicted with a Level Set function. This Level Set function is used to 

define a local enrichment for taking into account this discontinuity. Consequently, due to 

enrichment, the mesh is not mandatory to be conform to the geometry. The application of 

directional derivative allows to avoid many calculations at every time step and gives an 

approximation of the solutions of the eigenvalue problem. This study focuses on the fact that 

directional derivatives is a convenient tool for following the evolution of natural frequencies 

and shapes. 

The main idea of our approach consisted in obtaining the expression of derivatives for 

eigenvalues and eigenshapes in a given direction which is described by a function     . This 

function determines the transformation from a reference configuration to a current one. 

Starting from the variational formulation of the eigenvalue problem on the current 

configuration, derivatives of eigenvalues and eigenshapes can be expressed in terms of the 

solutions of the eigenvalue problem for the reference domain by the mean of this function 

    . Once we have computed the directional derivatives of eigenvalues and eigenshapes, it 

becomes possible to evaluate the evolution of these values when the domain is modified. To 

obtain solutions at the required time step (that is to say on the current configuration), it is 

sufficient to know information from the initial one. The main advantage of this procedure lies 

in the fact that numerical calculations are done without time consuming. 

The numerical results for a one-dimensional structure varying in time and the accuracy of 

the new technique were presented. Geometric transformation of the eigenvalue problem for 

one-dimensional element with discontinuity was defined. To compute the natural shapes for a 

current configuration, the directional derivatives of natural shapes have been performed on the 

reference configuration, these directional derivatives have been set in terms of natural shapes 

of the reference configuration. 

Using the general methodology which combines of the offered methods gives possibility to 

illustrate the application of this technique on a two-dimensional eigenvalue problem for a 

plate with shapes which are moving. One of the aspects for future work is to look upon the 

expressions of directional derivatives of eigenvalue problem for second order to improve the 

existing linear approximation. Another issue which has to be solved is to find a criteria to 

determine when accuracy has decreased significantly which means that directional derivatives 

have to be computed. The numerical implementation will be tested on on real simple and 

more complex cases. 
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