
THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

Hasan HEYDARI GHAREHBOLAGH

Le 21 mars 2022

Revisiter les quorums pondérés et les reconfigurations
asynchrones pour les systèmes de stockage atomique

Ecole doctorale : SYSTEMES

Spécialité : Informatique et Systèmes Embarqués

Unité de recherche :
ENAC-LAB - Laboratoire de Recherche ENAC

Thèse dirigée par
Alain PIROVANO et Guthemberg DA SILVA SILVESTRE

Jury
M. Arnaud CASTEIGTS, Rapporteur

M. Achour MOSTEFAOUI, Rapporteur
Mme Colette JOHNEN, Examinatrice

M. Franck MORVAN, Examinateur
M. Alain PIROVANO, Directeur de thèse

M. Guthemberg SILVESTRE, Co-directeur de thèse

2

Acknowledgements

I have received a great deal of support and assistance during my Ph.D.
First and foremost, I have to thank my supervisor, Professor Guthemberg

Silvestre, whose expertise was invaluable in formulating the research questions
and methodology. His insightful feedback pushed me to sharpen my thinking
and brought my work to a higher level. Besides, his support for accomplishing
internships and participating in scientific events aided me considerably.

My sincere thanks go to Professors Luciana Arantes and Pierre Sens at
Sorbonne University and Alysson Bessani at Universidade de Lisboa, who allowed
me to join their teams as an intern and gave me access to the laboratories and
research facilities. Without their precious support, it would not be possible to
conduct this research.

Besides, I thank the members of the Resco team at ENAC, especially Pro-
fessor Alain Pirovano, for the stimulating discussions. They all have played a
significant role in improving my thesis.

Last but not least, I would like to thank my family– my parents and wife– for
their invaluable support. They gave me enough moral support, encouragement,
and motivation to accomplish my personal goals. I consider myself nothing
without them.

3

4

Contents

1 Introduction 13
1.1 Motivation . 15
1.2 Research Problems . 17
1.3 Roadmap . 19

2 Preliminaries and Background 21
2.1 System Model . 21
2.2 Definitions Related to Quorum Systems 21
2.3 Weight Assignment . 22
2.4 Weight Reassignment . 24
2.5 Atomic Storage . 25
2.6 Nomenclature . 26

3 Weight Reassignment Approaches 29
3.1 Warmup . 29
3.2 IncreaseDecrease Approach . 30
3.3 PerfectPairwise Approach . 33
3.4 WeakPairwise Approach . 36
3.5 Discussion . 38

3.5.1 Weight Reassignment vs. Reconfiguration 38
3.5.2 Weight Reassignment vs. Asset Transfer 40

4 Epoch-Based Weight Reassignment 43
4.1 Warmup . 43
4.2 Preliminaries . 44
4.3 PairwiseWR Algorithm . 46
4.4 EpochChanger Algorithm . 47
4.5 Read-Write Protocols . 52
4.6 Monitoring System . 57
4.7 Performance Evaluation . 59

5 Epoch-Less Weight Reassignment 63
5.1 Warmup . 63
5.2 Donate Operation . 64

5

6 CONTENTS

5.3 Retake Operation . 67
5.4 Optimization . 69
5.5 Read-Write Protocols . 70

6 Conclusion 75

List of Figures

1.1 The quorum latency of MQS vs. WMQS 15

2.1 The way of illustrating servers’ latency scores 23

3.1 An example of the IncreaseDecrease weight reassignment abstraction 31
3.2 The illustration of the PerfectPairwise approach. Operation donate(sn, w, sj)

is called by server si, and two changes are returned to servers si

and sj . Consequently, the weight of server si (resp. sj) decreases
by w′, where w′ = 0 or w (resp. increases by w′′, where w′′ = 0
or w). 34

3.3 An example of losing weight in the WeakPairwise approach 38

4.1 Executions of the donate and retake operations 44
4.2 An example of executing executing the PairwiseWR and the EpochChanger

algorithms. The weight of each server in epoch e1 (resp. epoch
e2) is shown at the top of epoch e1 (resp. epoch e2). 50

4.3 The relationship between the clients and the monitoring system . 58
4.4 ClientServerMS module of the monitoring system 59
4.5 Quorum latency evaluation for our protocol, MW-ABD, and RAMBO. 61

5.1 Ilustration of donate and retake operations in the epoch-less weight
reassignment protocol . 64

5.2 An example of violating the safety property 67
5.3 An example of calling donate, retake, and clients’ read-write op-

erations . 74

7

8 LIST OF FIGURES

List of Tables

2.1 The symbols and their meanings used throughout the manuscript 26

9

10 LIST OF TABLES

Abstract

In the era of big data, cryptocurrencies, and the internet of everything, dis-
tributed storage systems are demanding more than ever. These systems use
replication, which stores copies of data on multiple storage units called servers,
to provide fault tolerance and high availability. Since each server might store a
different version of data, ensuring consistency is an essential issue in distributed
storage systems. A conventional technique to ensure consistency is using quo-
rum systems. Among different types of quorum systems, the majority quorum
is the most used one due to its simplicity and optimal fault tolerance.

A traditional approach to enhance the performance of distributed storage
systems based on the majority quorum is to use the weighted quorum (a.k.a,
weighted voting). In the weighted quorum, a static weight is assigned to each
server based on its performance, and the quorums are constituted by consid-
ering the assigned weights. A significant limitation of the weighted quorum is
its reliance on static weight assignments, which are inappropriate for dynamic
environments and long-lived systems. To overcome such a limitation, the dy-
namic weighted quorum (a.k.a, dynamic weighted voting) is used. The dynamic
weighted quorum utilizes weight reassignment protocols to reassign weights over
time according to the performance variations detected by monitoring systems.

Many weight reassignment protocols have been proposed based on consensus
or similar primitives. However, it is well-known that consensus cannot be imple-
mented in asynchronous, failure-prone distributed systems. Hence, a distributed
storage system based on the dynamic weighted quorum that uses a consensus-
based weight reassignment protocol cannot be implemented in asynchronous
and failure-prone distributed systems. On the other hand, some distributed
storage systems, such as atomic storage, can be implemented in asynchronous
and failure-prone distributed systems, for which an interesting problem is the
following one: “is there any consensus-free weight reassignment protocol?”

No study has been dedicated to investigating the consensus-free weight re-
assignment protocols to the best of our knowledge. As one of the contributions
of this thesis, we investigate three weight reassignment approaches determining
whether they can be implemented without consensus in asynchronous, failure-
prone distributed systems.

We first investigate the most intuitive approach for reassigning weights in
which only the weight of one server can be decreased or increased while the
weights of other servers remain unchanged in each call of the provided oper-

11

12 LIST OF TABLES

ations. In this approach, reassigning even one weight affects the total weight
of servers. Accordingly, the total weight of servers should be recomputed by
performing each weight reassignment. We treat such an approach as a concur-
rent object; then, we prove that its consensus number is greater than one to
show that it cannot be implemented in asynchronous, failure-prone distributed
systems, regardless of how it is implemented.

In the second approach, the weights are reassigned in a pairwise manner
where each server can donate some part of its weight to another server. Besides,
each server can retake its donated weights. The advantage of this approach
against the first approach is that the total weight of servers does not change over
time, so it is not required to recompute the total weight of servers by performing
each weight reassignment. Similarly, we show that the second approach cannot
be implemented in asynchronous, failure-prone distributed systems. Finally, we
investigate another approach that is a weaker version of the second approach
and has an asynchronous implementation.

Another contribution of this thesis is to construct atomic storage based on
the dynamic weighted quorum in which weights can be reassigned without con-
sensus over time using the implementation of the third weight reassignment
approach. To this end, we first consider the crash failure model and present
an epoch-based protocol. Then, to improve the efficiency of the epoch-based
protocol, we present an epoch-less protocol.

A few problems related to the dynamic weighted quorum, weight reassign-
ment approaches, and weight reassignment protocols are considered in this thesis
as well. One of the related problems is determining essential criteria for weight
assignments to avoid liveness and safety issues. Designing an efficient monitor-
ing system to determine the performance variations is another problem. The
reconfiguration problem in which the set of servers changes over time is inves-
tigated due to its similarity to the weight reassignment problem, and a new
impossibility result is presented.

Chapter 1

Introduction

In the era of big data, cloud computing, cryptocurrencies, and the internet of
everything, storage systems are demanding more than ever. Since such systems
are prone to various types of failures, like disk failures and failures created by
malicious attacks, they should be fault-tolerant. Replication is the most well-
known technique to construct fault-tolerant storage systems [23, 41, 57, 65]. In
a replicated storage system, copies of data are stored in multiple storage units,
so the system remains available, i.e., respond to clients in a timely manner [50],
by occurring failures for a proper subset of its storage units.

A replicated storage system can be located in a single physical site and
connected to the clients via a single network interface, like RAID systems [53].
Such a storage system constitutes a single point of failure so that data cannot
survive after complete site disasters. In contrast, storage units can be placed
in several sites constructing a distributed storage system. Each storage unit
in a distributed storage system is a cheap commodity disk or low-end PC [14].
These distinguishing features and many others cause distributed storage systems
to become increasingly popular.

In a distributed storage system, storage units are called servers. Each copy
of data stored by a server might have a different version than other copies, so
ensuring consistency is a significant problem. Intuitively, consistency means
that every client should be able to execute the provided operations, like read
and write, on the most up-to-date version of data stored by the storage system
[12, 41]. However, providing both consistency and availability in distributed
storage systems is impossible in the presence of network partitions due to the
CAP theorem [24].

There are two main approaches to designing a distributed storage system
based on that impossibility result. The first approach considers network parti-
tions and presents a trade-off between consistency and availability, like NoSQL
distributed databases [12]. The other approach excludes network partitions and
provides both consistency and availability by assuming that at least one avail-
able quorum exists to execute each operation [41]. In further detail, servers are
organized as a quorum system [66], and each operation should be executed by a

13

14 CHAPTER 1. INTRODUCTION

quorum. A quorum system is a collection of sets called quorums such that each
quorum is a subset of servers, and the intersection property that states every
two quorums intersect should be satisfied. The intersection property guarantees
that no operation can miss the most up-to-date version of data.

There exist many types of quorum systems such as grids [13, 49], trees [3],
hierarchical [40], and the majority quorum system (MQS) [67]. In the MQS,
also known as majority voting [62, 64], every quorum consists of a strict ma-
jority of servers. Most replicated storage systems based on quorum systems,
such as ZooKeeper [35] and Etcd [2], utilize the MQS due to its simplicity and
optimal fault tolerance; however, the MQS can impact both quorum latency1

and throughput [67]. The reason for this performance impact is that an MQS
does not consider the heterogeneity of servers or network connections. If it takes
such heterogeneity into account, its quorum latency and throughput are likely
to be improved.

Contrarily to MQS, the weighted majority quorum system (WMQS), also
known as weighted voting [7, 39, 52] or weighted replication [11], was proposed
to cope with heterogeneity. In the WMQS, each server is assigned a weight
or voting power that is in accordance with the server’s latency or throughput
determined by a monitoring system [10, 11]; every quorum consists of a set
of servers such that the sum of their weights is greater than half of the total
weight of servers in the system. This way, proportionally smaller quorums can
be constituted so the performance of the system can be improved. The following
example helps to grasp the difference between MQS and WMQS in distributed
storage systems with heterogeneous latencies and throughput.

Example 1. Let s1, s2, s3, and s4 be the servers comprising the distributed
storage system and c be a client. Consider the two following scenarios. For the
first scenario, assume that the average round-trip latencies between the client
and servers s1, s2, s3, and s4 are 20ms, 45ms, 100ms, and 140ms, respectively.
In another scenario, assume that the throughput of servers s1, s2, s3, and s4 are
1000, 800, 400, and 200 operation/sec, respectively. Such latencies and through-
put are determined using a monitoring system. Let 1.4, 1.1, 0.9, 0.6 be the
assigned weights to servers s1, s2, s3, and s4, respectively. The quorum latency
using MQS is 100ms while using WMQS is 45ms (Figure 1.1). The throughput of
the system based MQS and WMQS is 600 and 800 operation/sec, respectively2.
Both scenarios show the advantage of using the WMQS over MQS due to con-
stituting proportionally smaller quorums.

The WMQS relies on static weight assignments, so it has a significant limita-
tion for dynamic environments and long-lived distributed storage systems, where
the latencies and throughput of servers might change over time. To overcome
such a limitation, the dynamic weighted majority quorum system (DWMQS),
also known as dynamic voting [15, 36, 68], can be used. The DWMQS utilizes

1Quorum latency for a request in a quorum system is the time interval between sending
the request (to a quorum, some quorums, or a subset of servers) until receiving the responses
from a quorum of servers [51, 67].

2Throughput is computed using quoracle library [67].

1.1. MOTIVATION 15

(a) MQS (b) WMQS

Figure 1.1: The quorum latency of MQS vs. WMQS

weight reassignment protocols to reassign weights over time according to the
performance variations detected by monitoring systems.

Many weight reassignment protocols have been proposed based on consen-
sus3 or similar primitives (for example, the protocols presented in [11, 15, 36]).
The general scheme of these protocols is as follows: new weights are proposed;
then, servers execute a consensus protocol (for example, Paxos [43]) or similar
primitives to reach an agreement on the proposed weights; finally, the decided
weights are used. The objective of using consensus or similar primitives is to
ensure that all processes use the same set of weights to decide whether a sub-
set of servers constitutes a quorum. An important feature of these protocols is
that they cannot be implemented in asynchronous and failure-prone distributed
systems due to the FLP theorem [19].

Using the weight reassignment protocols based on consensus or similar prim-
itives for consensus-based distributed storage systems, like state machine repli-
cation [56], is not problematic. However, some distributed storage systems can
be implemented in asynchronous, failure-prone distributed systems for which
consensus-free weight reassignment protocols should be used to avoid changing
the timing model. Regarding consensus-free weight reassignment protocols, no
study has been done to the best of our knowledge, and studying such protocols
is the primary objective of this thesis.

1.1 Motivation
One of the fundamental distributed storage systems is the atomic storage system
(simply atomic storage, also known as atomic register [42]). Although such a
storage system has only two operations– read and write– it provides the building
blocks for both complex practical storage systems (for example, FAB [54] and
GPFS [55]) and theoretical storage systems (like, lattice agreement [9]). Atomic
storage ensures consistency as follows: each read returns the last value written.

3Consensus is one the most fundamental problems of distributed systems [16, 29, 63].
In case a set of servers requires to agree on a value, consensus is used. Any solution for
consensus must satisfy three properties: agreement: no two servers decide on different values;
validity: the decided value was proposed by some server; termination: all correct servers
reach a decision. Although consensus is a powerful primitive in designing distributed services,
it cannot be implemented in asynchronous, failure-prone distributed systems, even in the
presence of a single crash failure [19].

16 CHAPTER 1. INTRODUCTION

An important feature of atomic storage is that it can be implemented in failure-
prone asynchronous distributed systems [33, 66].

Regarding the number of readers and writers, there are two types of atomic
storage [33]. The first type is the single-writer multi-reader (SWMR), in which
there is only one process that is allowed to execute write operations while there
are multiple processes that can execute read operations. The ABD protocol [8]
is the first protocol presented to implement the SWMR atomic storage in crash-
prone asynchronous distributed systems. Each read operation takes two com-
munication rounds4, where each communication round contains two phases5.
On the other hand, each write operation takes one communication round that
contains two phases. Several protocols have been presented to improve the effi-
ciency of the ABD protocol by reducing the number of communication rounds or
phases of the read operations (for example, the protocols presented in [17, 30, 47]
and references therein).

Contrarily to the SWMR atomic storage, there is another type called multi-
writer multi-reader (MWMR) atomic storage, in which there are multiple pro-
cesses that can execute write operations. Lynch and Schwarzmann presented the
first MWMR extension of the ABD protocol in [45]. Each read or write operation
takes two communication rounds, where each communication round contains
two phases. We name that protocol the MW-ABD. Several protocols have been
presented to improve the efficiency of the MW-ABD protocol by decreasing the
number of its communication rounds and phases (for example, [18, 22]).

The ABD, MW-ABD, and similar protocols are based on static configurations,
where the set of servers does not change over time. Although atomic storage is
able to tolerate failures of some servers, servers might require to be replaced in
long-lived systems. Moreover, some new servers might be added to the system
to enhance the performance. Therefore, the protocols of atomic storage must be
able to provide reconfiguration operations by which new servers can be added,
and old servers can be removed [4, 60].

Multiple consensus-based protocols for reconfigurable atomic storage have
been proposed (like, [21, 25, 27]). However, researchers have tried to propose
consensus-free protocols for reconfigurable atomic storage due to the possibil-
ity of implementing atomic storage in asynchronous, failure-prone distributed
systems. Aguilera et al. proposed the first consensus-free protocol for recon-
figurable atomic storage called DynaStore [5]. In this protocol, atomic storage
uses a default configuration that is known by all servers initially. The protocol
provides three kinds of operations: read, write, and reconfig. The read and write
operations are executed similar to the MW-ABD protocol. Servers can change
their current configurations using reconfig operation. The drawback of Dyna-
Store is its performance. Several protocols (for example, [6, 37, 38, 61]) have

4A process p performs a communication round during an operation if (1) process p sends
a message for the operation to a subset of servers, (2) upon delivery of the message, each
server sends its response to process p, and (3) when process p receives a sufficient number of
responses from servers, it terminates the communication round [31].

5Within an execution of a communication round, a phase is the set of sends and corre-
sponding matching received responses [31].

1.2. RESEARCH PROBLEMS 17

been proposed to improve the performance of DynaStore.
To enhance the performance of atomic storage based on the MQS, instead

of decreasing the number of communication rounds or phases, one can replace
the MQS with WMQS. Since the servers’ performance might change over time in
long-lived systems, the weights should be reassigned over time; therefore, using
the DWMQS instead of the WMQS is a better choice. At this point, we can ask
a similar question to the reconfigurable atomic storage: “can we construct a
consensus-free atomic storage based on DWMQS?”

1.2 Research Problems

The research done in this thesis can be summarized as addressing three main
problems. First, we investigate the weight reassignment problem by considering
three weight reassignment approaches to determine whether they can be imple-
mented without consensus (Problem 1). Second, we design two consensus-free
protocols for the weight reassignment problem. Then, we construct consensus-
free atomic storage based on DWMQS such that the servers’ weights are reas-
signed using the proposed consensus-free weight reassignment protocols (Prob-
lem 2). Third, we investigate the relationship between two problems– the weight
reassignment and reconfiguration problems– and present a new variation for the
reconfiguration problem (Problem 3). Each problem is described in further de-
tail below.

Problem 1: investigating the consensus-free weight reassignment
problem

To investigate the consensus-free weight reassignment problem, we take two
steps. We first define the problem of weight reassignment for the DWMQS.
For a system based on the MQS, every quorum consists of a strict majority
of servers; therefore, a majority of servers should be correct to guarantee the
system’s availability. In other words, the maximum number of failed servers,
f , should be less than equal to ⌊(n − 1)/2⌋, where n denotes the number of
servers. In case the MQS is replaced with the WMQS, to guarantee the system’s
availability, the weights should be assigned so that the total of the f greatest
weights is less than tw/2, where tw denotes the total weight of servers. Similarly,
if the WMQS is replaced with the DWMQS, the total of the f greatest weights
should remain less than tw/2 over time.

Based on the relationship between the f greatest weights and tw, we formu-
late the fundamental problem of the DWMQS and weight reassignment protocols
as follows:

“Assume that a system based on DWMQS is available initially, i.e., the total
of the f greatest weights is less than tw/2. Multiple concurrent requests
are issued to reassign weights. Consequently, the total weight of servers
might change after applying a subset of such requests. Is there any weight

18 CHAPTER 1. INTRODUCTION

reassignment protocol that satisfies the following properties: (1) it can be
implemented in asynchronous distributed systems and (2) it guarantees that
the total of the f greatest weights remains less than half of the total weight
of servers?”

Presenting a protocol that only satisfies property (2) is straightforward us-
ing consensus or similar primitives. However, satisfying both properties is a
challenging problem.

For the second step, we consider three weight reassignment approaches. A
weight reassignment approach indicates how weight reassignment requests can
be issued and processed. We investigate whether these approaches can be used
in designing protocols for the fundamental problem of the DWMQS and weight
reassignment protocols. To this end, we use a notion called consensus number
introduced by Herlihy in [32]. Each type T has an associated consensus number,
which is the maximal number of servers that can solve consensus using objects
of type T and atomic registers [28, 32]. For instance, the consensus number of
queue is two [32], which means that two servers can solve consensus using objects
of queue and atomic registers while three servers cannot. Recently, Guerraoui et
al. used this notion to show that cryptocurrencies can be implemented without
consensus [28].

We employ consensus numbers according to the following reasoning through-
out this thesis: (a) we know that consensus cannot be implemented in asyn-
chronous, failure-prone distributed systems [19]; (b) we show that consensus can
be solved among n servers using an object of type T and some message-passing
primitives that can be implemented in asynchronous, failure-prone distributed
systems (i.e., accordingly, the consensus number of type T is greater than equal
to n); from (a) and (b), we conclude that an object of type T cannot be imple-
mented in asynchronous, failure-prone distributed systems.

We first consider the most intuitive approach for reassigning weights in which
only the weight of one server can be decreased or increased while the weights
of other servers remain unchanged in each call of the provided operations. We
call such an approach the IncreaseDecrease approach and treat it as a concurrent
object; then, we prove that its consensus number is greater than one to show
that it cannot be implemented in asynchronous distributed systems.

In the second approach called the PerfectPairwise, the weights are reassigned
in a pairwise manner where each server can donate some part of its weight
to another server. The PerfectPairwise approach is closely similar to the asset
transfer problem [48]. In the asset transfer problem, each server has an account
and can transfer some part of its balance to another server if the transferred
balance does not turn its balance negative. Although it has been proved that the
asset transfer problem has an asynchronous implementation [28], we show that
the PerfectPairwise approach does not have an asynchronous implementation,
similar to the IncreaseDecrease approach. Finally, we investigate a weaker version
of the second approach called the WeakPairwise; and we show that it can be
implemented in asynchronous failure-prone distributed systems.

1.3. ROADMAP 19

Problem 2: designing protocols for the weight reassignment prob-
lem

We present two implementations for the WeakPairwise approach. We first pro-
pose an epoch-based implementation of the WeakPairwise approach. This im-
plementation is similar to the view-based reconfiguration protocols, like Free-
Store [6]. Besides, we design an efficient monitoring system for atomic storage.
We present the read-write protocols of atomic storage that are based on the
DWMQS, and the weights are reassigned using the proposed epoch-based imple-
mentation of the WeakPairwise approach. Next, to improve the performance of
the epoch-based protocol, we propose another protocol to implement the Weak-
Pairwise approach. This protocol does not rely on epochs in contrast to the
epoch-based protocol.

Problem 3: investigating the relationship between the weight
reassignment and reconfiguration problems

The reconfiguration problem is the problem of changing the set of servers over
time, i.e., some servers can be removed from a system, or some new servers can
be joined to the system. Multiple consensus-free protocols for implementing the
reconfigurable atomic storage have been proposed [5, 6, 37, 38, 61]. On the other
hand, it has been proved that it is impossible to reconfigure a storage system
infinitely many times while guaranteeing the liveness of the storage system [59].

In both reconfiguration and weight reassignment problems, quorum systems
change over time. Based on this relationship, we introduce a variant of the asyn-
chronous reconfiguration problem called the conditional reconfiguration prob-
lem. The conditional reconfiguration problem is similar to the standard asyn-
chronous reconfiguration problem with only one difference: a condition related
to the size of configurations should be satisfied. Similar to the impossibility
result presented for the IncreaseDecrease approach, we show that the conditional
reconfiguration problem has no asynchronous algorithm.

1.3 Roadmap

The remainder of this thesis is organized into six chapters.

– In Chapter 2, we provide preliminaries and background for our contributions.
We present a detailed system model. Then, we provide some fundamental
assumptions and properties for weight assignment and weight reassignment
problems. Then, we define the problem of atomic storage.

– In Chapter 3, we investigate the problem of weight reassignment by consider-
ing three weight reassignment approaches– IncreaseDecrease, PerfectPairwise,
and WeakPairwise. We use several examples to highlight the properties of
approaches. Then, the impossibility results of the IncreaseDecrease and Per-
fectPairwise approaches are presented. Furthermore, the reconfiguration and

20 CHAPTER 1. INTRODUCTION

asset transfer problems and their relationships with the weight reassignment
problem are discussed.

– In Chapter 4, we propose an epoch-based implementation of the WeakPairwise
approach. Then, we design an efficient monitoring system for atomic storage.
We present the read-write protocols of atomic storage that are based on the
DWMQS, and the weights are reassigned using the proposed epoch-based
implementation of the WeakPairwise approach.

– In Chapter 5, we propose another protocol to implement the WeakPairwise
approach. This protocol does not rely on epochs in contrast to the protocol
presented in Chapter 4. We discuss why an epoch-less protocol is more
efficient than its epoch-based counterpart.

– Finally, we present the conclusion and provide possible future directions for
this work in Chapter 6.

Chapter 2

Preliminaries and Background

Abstract. In this chapter, we provide preliminaries and background
for our contributions. We present a detailed system model. We
also present a few definitions related to quorum systems. Then, we
provide some fundamental assumptions, properties, and definitions
for weight assignment and weight reassignment problems. Finally,
we present the problem of atomic storage.

2.1 System Model

We consider a distributed system composed of two non-overlapping sets of
processes– a finite set of n servers S = {s1, s2, . . . , sn} and an infinite set of
clients C = {c1, c2, . . . }. Each process has a unique identifier. Every client or
server knows the set of servers. The processes communicate by message passing,
and the links reliably connect all pairs of processes. The system is asynchronous,
i.e., we make no assumptions about processing times or message transmission
delays. However, each process has access to a local clock; processes’ local clocks
are not synchronized and do not have any bounds on their drifts, being nothing
more than counters that keep increasing. The interactions between processes are
assumed to take place over a timespan T ⊂ R+ called the system’s lifetime. We
consider the crash fault-tolerant (CFT) model throughout this manuscript. In
this model, processes are prone to crash failures, and a process is called correct
if it is not crashed. We assume that at most f servers might crash.

2.2 Definitions Related to Quorum Systems

Our work is based on quorum systems, so we present a few definitions related
to quorum systems in this section. We begin by presenting the definition of
quorum systems.

Definition 1 (quorum system [66]). A quorum system is a collection of sets
called quorums such that each quorum is a subset of servers, and the intersection

21

22 CHAPTER 2. PRELIMINARIES AND BACKGROUND

property that states every two quorums intersect should be satisfied.

There exist many types of quorum systems; among them, the majority quo-
rum system (MQS) has significant importance due to its simplicity and optimal
fault tolerance [67]. The definition of the MQS is as follows.

Definition 2 (majority quorum system (MQS) [67]). The MQS is the one that
every quorum consists of a strict majority of servers.

The weighed majority quorum system (WMQS) can be used to enhance the
performance of the systems based on the MQS. In the WMQS, each server is
assigned a weight or voting power that is in accordance with the server’s latency
or throughput determined by a monitoring system [10, 11]. Then, the weights
are used to determine whether a subset of servers constitutes a quorum. The
following definition is the definition of the WMQS.

Definition 3 (weighted majority quorum system (WMQS)). The WMQS is the
one that every quorum consists of a set of servers whose total weight is greater
than half of the total weight of all servers.

2.3 Weight Assignment
In the WMQS, a weight should be assigned to each server. One can assign a
weight to each server based on different criteria, such as throughput or latency
of the server. Note that throughput can be effectively improved by adding more
resources (CPU, memory, faster disks) to servers or using better links. However,
latency in geo-distributed storage systems will be affected by the speed of light
limit and perturbations caused by bandwidth sharing [58]. Therefore, we focus
on considering latency instead of throughput.

We assume that there is a monitoring system that assigns a score, called
latency score, to each server based on the server’s latency. The monitoring
system provides a function called lscore that takes a server as input and returns
the server’s latency score. Based on the latency scores, the weigh reassignment
protocols can assign weights to servers such that if the latency score of server si

is greater than sj , then wi < wj . For example, assume that the latency scores
of servers s1, s2, s3, and s4 are 20, 45, 100, and 140, respectively. By assigning
1.4, 1.1, 0.9, 0.6 as the weights of servers s1, s2, s3, and s4, respectively, the
relationship between the servers’ weights and latency scores is satisfied.

If the servers’ weights are assigned based on the servers’ latency scores,
as explained above, the quorum latency (see definition below) of the storage
system will be enhanced on average. Chapter 4 presents further details about
the monitoring system and the mentioned claim about enhancing the quorum
latency.

Definition 4. Quorum latency for a request in a quorum system is the time
interval between sending the request (to a quorum, some quorums, or a subset
of servers) until receiving the responses from a quorum of servers [51, 67].

2.3. WEIGHT ASSIGNMENT 23

Some figures presented throughout this manuscript use gray areas to show
the servers’ latency scores. The higher the height of a gray area associated with
a server, the lower the server’s latency score. For instance, the latency score of
server s1 is lower than server s2 in Figure 2.1.

Figure 2.1: The way of illustrating servers’ latency scores

Throughout this manuscript, the initial weight of servers, the weight of each
server si, and the total weight of servers are denoted by iw, wi, and tw, respec-
tively. According to Definition 3, the total weight of any constituted quorum
should be greater than tw/2 to satisfy the intersection property of the WMQS.

To guarantee the availability of a storage system based on the WMQS, a re-
lationship between the servers’ weights and f should be satisfied. The following
property determines such a relationship.

Property 1 The summation of f greatest weights should be less than tw/2.

Let f = ⌊(n − 1)/2⌋, like the MQS. Accordingly, the size of any quorum
is ⌈(n + 1)/2⌉ in the WMQS, regardless of the way of assigning weights to the
servers, so there is no difference between the sizes of quorums in the MQS and
WMQS. Recall from Example 1 presented in Chapter 1 that if proportionally
smaller quorums are constituted the performance of the system can be enhanced.
Therefore, it is required to assume that f ≤ ⌊(n − 1)/2⌋ to have proportion-
ally smaller quorums in the WMQS. The following assumption states such an
assumption by introducing a new parameter denoted by ∆.

Assumption 1 The relationship between n and f is as follows: n = 2f + 1 + ∆,
where ∆ is a natural number.

By using Assumption 1 when ∆ ≥ 1, the fault-tolerance of the system might
be decreased while its performance can be improved due to having proportionally
smaller quorums. A similar assumption is used by other weight assignment
protocols (e.g., [58]). Weights can be determined in different ways. In the
following, we present a weight reassignment scheme by which the weights can
be determined.

WHEAT scheme

WHEAT (WeigHt-Enabled Active replicaTion) [58] is a scheme to assign weights
to the servers such that the weight of each server is either minw or maxw. The
following assumption determines the values of minw and maxw.

Assumption 2 The values of minw and maxw are 1 and 1 + ∆/f , respectively.

24 CHAPTER 2. PRELIMINARIES AND BACKGROUND

Servers constitute two types of quorums using WHEAT. The first type is the
quorums with size f + 1 that has the least quorum size. The second type is the
quorums with size n− f . The following assumption determines the total weight
of servers, that can be computed based on the values of maxw and f . Note that
knowing the total weight of servers is necessary to determine whether a subset
of servers constitutes a quorum based on Definition 2.

Assumption 3 The total weight of servers, tw, is equal to 2×maxw × f + 1.

2.4 Weight Reassignment

In the DWMQS, the weight of each server might be reassigned over time. We use
a data structure called change to store each weight reassignment of any server. A
change is a triple ⟨w, si, info⟩, where w ∈ R is the amount of change made on the
weight of server si ∈ S, and ‘info’ indicates the additional information about the
change. Each server si has a local set denoted by changes to store every change
⟨∗, si, ∗⟩. By using set changes, server si’s weight can be computed as follows:
wi = sum

(
{w | ∀ ⟨w, si, ∗⟩ ∈ si.changes}

)
. For example, let si.changes ={

⟨1, si, init⟩, ⟨0.3, si, increment⟩, ⟨−0.1, si, decrement⟩
}

. Then, server si’s weight
is equal to 1.2.

Based on changing or not changing the total weight of servers over time,
there are two ways to reassign servers’ weights:

– Time-varying total weight (TVTW), in which the total weight of servers can
change over time, and

– Time-invariant total weight (TITW) in which the total weight of servers is
time-invariant and known by every process in advance.

Note that to indicate that a subset of servers constitutes a quorum in the
DWMQS, the total weight of servers should be known. Accordingly, using the
TITW is simpler than the TVTW because it is not required to execute additional
queries to determine the total weight of servers.

A fundamental problem related to the DWMQS and weight reassignment
protocols that is considered in the following chapters is the following:

“Assume that a system based on DWMQS is available initially, i.e., the
total of the f greatest weights is less than tw/2. Multiple concurrent requests
are issued to reassign weights. Consequently, the total weight of servers
might change after applying a subset of such requests. Is there any weight
reassignment protocol that satisfies the following properties: (1) it can be
implemented in asynchronous distributed systems and (2) it guarantees that
the total of the f greatest weights remains less than half of the total weight
of servers?”

2.5. ATOMIC STORAGE 25

2.5 Atomic Storage

This section presents the basics of emulating a (static) distributed multi-writer
multi-reader (MWMR) atomic storage based on quorum systems. Such a storage
system allows processes to read, write, and overwrite a single value using the
following operations:

– read() that returns the last written value or ⊥ if no value was previously
written, and

– write(val) that writes val.

The formal definition of atomic storage is as follows.

Definition 5 (Atomic storage [44]). An implementation of an object is atomic,
if for any execution all the read and write operations that are invoked on an ob-
ject complete, then the read and write operations for the object can be partially
ordered by an ordering ≺, so that the following conditions are satisfied:

A1. There do not exist read or write operations π1 and π2 such that π1 com-
pletes before π2 starts, yet π2 ≺ π1.

A2. All write operations are totally ordered and every read operation is ordered
with respect to all the writes.

A3. Every read operation ordered after any write returns the value of the last
write preceding it in the partial order; any read operation ordered before
all writes return the initial value, ⊥.

In the following, we present a summary of a protocol, the MW-ABD [45],
that implements the MWMR atomic storage.

The MW-ABD protocol
The MW-ABD protocol [45] emulates a static distributed multi-writer multi-
reader (MWMR) atomic storage based on quorum systems. The protocol consists
of two different algorithms– reader-writer side1 and server-side. The reader-
writer side can be executed by a process (either a client or server) while the
server-side is executed by servers.
Reader-writer side. Algorithm 1 is the pseudo-code of the MW-ABD’s reader-
writer side. Both read and write operations proceed in two phases, each ending
with a confirmation that at least one quorum was accessed. In the first phase
of a write operation (phase1), a writer contacts a quorum in order to determine
the highest tag2 maxtag used prior to write the last written value (Lines 2-9 of

1In this manuscript, both clients and servers can execute read operations, so we use ‘reader-
writer side’ instead of ‘client-side.’

2A tag is a tuple ⟨ts, pid⟩, where ts and pid are a timestamp and the identifier of a process,
respectively. Tag tag1 is less than equal to tag tag2 iff: (tag1.ts ≤ tag2.ts) or (tag1.ts =
tag2.ts and tag1.pid ≤ tag2.pid).

26 CHAPTER 2. PRELIMINARIES AND BACKGROUND

Algorithm 1). Then, in the second phase (phase2), the writer takes the following
steps: (a) increments the timestamp of maxtag, (b) overwrites its identifier
on the identifier of maxtag, (b) propagates its value, along with the changed
maxtag within a WRITE message to a quorum (Lines 10-15 of Algorithm 1).

Similarly, in phase1 of a read operation, a reader contacts a quorum to re-
trieve the value associated with the highest tag maxtag reported by the quorum
(Lines 16-24 of Algorithm 1). Then, in phase2, the reader propagates the read
value along with maxtag within a WRITE message to a quorum (Lines 25-31 of
Algorithm 1).
Server-side. Algorithm 2 is the pseudo-code of the MW-ABD’s server-side.
Each server si maintains a local variable called register used to store the tag
and value of its local register. To access the tag (resp. value) of the local
register, register.tag (resp. register.val) can be used. Each server updates its
register locally when it receives a WRITE message with a higher tag than its
own tag. Note that the WRITE message might be received from a writer or a
reader executing its second phase.

2.6 Nomenclature
Table 2.1 indicates the nomenclature used throughout this manuscript.

Symbol Meaning
T the lifetime of the system
Π the set of all processes, either clients or servers
C the set of clients
S the set of servers
n the total number of servers
m the total number of clients
f the maximum number of servers that can fail
tw the total weight of servers
iw the initial weight of each server
minw the lower bound defined for servers’ weights
maxw the upper bound defined for servers’ weights
mrtl the maximum value for the round-trip latency of client-server communications

Table 2.1: The symbols and their meanings used throughout the manuscript

2.6. NOMENCLATURE 27

Algorithm 1 The reader-writer side of the MW-ABD - process pi

variables
1) opCnt← 0

function write(value)
phase1
2) opCnt← opCnt + 1
3) send ⟨READ, opCnt⟩ to all servers
4) msgs← ∅
5) repeat
6) upon receipt of ⟨READACK, ⟨tag, value⟩, opCnt⟩ from si

7) msgs← msgs ∪ ⟨si, tag, value⟩
8) until servers in set msgs constitutes a quorum
9) maxtag ← max

(
{tag | ⟨si, tag, value⟩ ∈ msgs}

)
phase2

10) send ⟨WRITE, ⟨⟨maxtag.ts + 1, pi⟩, value⟩, opCnt⟩ to all servers
11) msgs← ∅
12) repeat
13) upon receipt of ⟨WRITEACK, reg, opCnt⟩ from si

14) msgs← msgs⟨si, tag, value⟩
15) until servers in set msgs constitutes a quorum
function read()
phase1

16) opCnt← opCnt + 1
17) send ⟨READ, opCnt⟩ to all servers
18) msgs← ∅
19) repeat
20) upon receipt of ⟨READACK, ⟨tag, value⟩, opCnt⟩ from si

21) msgs← msgs ∪ ⟨si, tag, value⟩
22) until servers in set msgs constitutes a quorum
23) maxtag ← max

(
{tag | ⟨si, tag, value⟩ ∈ msgs}

)
24) maxreg ← find(⟨si, tag, value⟩ ∈ msgs such that tag = maxtag)
phase2

25) send ⟨WRITE, ⟨maxtag, maxreg.value⟩, opCnt⟩ to all servers
26) msgs← ∅
27) repeat
28) upon receipt of ⟨WRITEACK, reg, opCnt⟩ from si

29) msgs← msgs⟨si, tag, value⟩
30) until servers in set msgs constitutes a quorum
31) return value

28 CHAPTER 2. PRELIMINARIES AND BACKGROUND

Algorithm 2 The server-side of the MW-ABD - server si

variables
1) register[tag, val]← ⟨∅,⊥⟩

upon receipt of ⟨READ, cnt⟩ from p
2) send ⟨READACK, register, cnt⟩ to p

upon receipt of ⟨WRITE, ⟨tag, val⟩, cnt⟩ from p
3) if register.tag < tag
4) register ← ⟨tag, val⟩
5) send ⟨WRITEACK, cnt⟩ to p

Chapter 3

Weight Reassignment Approaches

Abstract. Using the weighted majority quorum system enhances
the performance of distributed storage systems by allowing smaller
quorums to constitute in contrast to using the majority quorum
system. A significant limitation of the weighted majority quorum
system is its reliance on static weights, which are inappropriate for
dynamic environments and long-lived systems. To overcome such
a limitation, the dynamic weighted majority quorum system, that
utilizes weight reassignment protocols to reassign weights over time
according to the performance variations detected by monitoring sys-
tems, can be used. Weight reassignment protocols can be based
on different approaches. This chapter presents the abstract forms
of three approaches to reassign servers’ weights and investigates
whether they can be implemented in asynchronous, failure-prone
distributed systems. The weight reassignment, reconfiguration, and
asset transfer problems are closely related; this chapter discusses
their relationship as well.

3.1 Warmup

A conventual approach to enhance the performance of systems based on the
majority quorum system (MQS) is to replace the MQS with the weighted ma-
jority quorum system (WMQS) [11, 34, 39, 58]. In the WMQS, a static weight
is assigned to each server based on the server’s performance detected by a mon-
itoring system, and every subset of servers whose total weight is greater than
tw/2 is a quorum, where tw is the total weight of all servers. Accordingly, to
guarantee the availability of the system that is based on the WMQS, the weights
should be assigned in such a way that the total of the f greatest weights is less
than tw/2.

A significant limitation of the WMQS is its reliance on static weights, which
are inappropriate for dynamic environments and long-lived systems [11]. To
overcome such a limitation, the dynamic weighted majority quorum system

29

30 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES

(DWMQS) can be used. The DWMQS utilizes weight reassignment protocols to
reassign weights over time according to the performance variations detected by
monitoring systems. In this chapter, we investigate the fundamental problem
related to the DWMQS and weight reassignment protocols that states:

“Assume that a system based on DWMQS is available initially, i.e., the total
of the f greatest weights is less than tw/2. Multiple concurrent requests
are issued to reassign weights. Consequently, the total weight of servers
might change after applying a subset of such requests. Is there any weight
reassignment protocol that satisfies following properties: (1) it can be im-
plemented in asynchronous distributed systems, and (2) the total of the f
greatest weights remains less than tw/2?”

To this end, we investigate three weight reassignment approaches– IncreaseDe-
crease, PerfectPairwise, and WeakPairwise. We treat the first two approaches as
concurrent objects; then, we prove that their consensus numbers are greater
than one, i.e., such approaches cannot be implemented in asynchronous, failure-
prone distributed systems. However, the last approach, a weaker version of
the second approach, can be implemented in asynchronous, failure-prone dis-
tributed systems. Such an investigation is essential because it indicates that if a
weight reassignment protocol wants to be implemented in asynchronous failure-
prone distributed systems, it does not have the freedom to choose any weight
reassignment approach.

The IncreaseDecrease approach is closely related to the reconfiguration prob-
lem so that its impossibility result can be presented for the reconfiguration prob-
lem as well. Notably, we prove that it is impossible to present a reconfiguration
protocol in asynchronous, failure-prone distributed systems if a condition related
to the number of servers should be satisfied at any time. On the other hand, the
PerfectPairwise approach is similar to the asset transfer problem. Since the asset
transfer problem can be implemented in asynchronous, failure-prone distributed
systems, such a discussion highlights why the PerfectPairwise approach cannot
be implemented in asynchronous, failure-prone distributed systems.

3.2 IncreaseDecrease Approach

IncreaseDecrease is a TVTW-based weight reassignment approach in which only
the weight of one server can be increased or decreased while the weights of other
servers remain unchanged in each call of the operations provided for weight
increment or decrement. Each server has a local and monotonically increasing
sequence number sn. This approach provides the three following operations:

– increase(sn, w) that can be called by servers. Each server calls this operation
to increase its weight by w.

– decrease(sn, w) that can be called by servers. Each server calls this operation
to decrease its weight by w.

3.2. INCREASEDECREASE APPROACH 31

– collect() that can be called by processes and returns the weights of servers.

Such a sequence number is increased before calling both increase and decrease
operations. Operation increase(sn, w) called by server si returns a change
⟨w′, si, ⟨INC, si, sn, w⟩⟩ to si, where w′ can be either equal to 0 or w. Besides, op-
eration decrease(sn, w) called by server si returns a change ⟨w′, si, ⟨DEC, si, sn, w⟩⟩
to si, where w′ can be either equal to 0 or −w. Each returned change is added
to set changes. This approach has the following properties:

– (IncreaseDecrease Validity) Before receiving a change ⟨∗, si, ⟨∗, si, sn, w⟩⟩, server
si had called an operation op(sn, w), where op ∈ {increase, decrease}.

– (IncreaseDecrease Termination) Given operation op(sn, w) called by server si

such that op ∈ {increase, decrease}, server si eventually receives a change
⟨∗, si, ⟨∗, si, sn, w⟩⟩ if si is a correct server.

– (IncreaseDecrease Accuracy) Given operation op(sn, w) called by server si such
that op ∈ {increase, decrease}, one of the following cases can happen:

– A change ⟨w′ = 0, si, ⟨∗, si, sn, w⟩⟩ is returned to server si. In this case,
both server si’s weight and the total weight of servers are not changed
because the servers’ weights are in a situation that Property 1 will be
violated by returning w′ ̸= 0.

– A change ⟨w′ ̸= 0, si, ⟨∗, si, sn, w⟩⟩ is returned to server si. In this case,
both server si’s weight and the total weight of servers are increased by
w′ = +w (resp. w′ = −w) if op = increase (resp. op = decrease).

One of the ways to implement this abstraction is to modify reconfiguration
protocols (e.g., [6, 37, 38, 61]) in such a way that join and leave operations
of reconfiguration protocols are modified to increase and decrease operations,
respectively. An example of using this abstraction to reassign servers’ weights
is depicted in Figure 3.1. The decrease operation started by server s2 is not
finished because Property 1 will not be satisfied by executing this operation.

(

(

(

(

Figure 3.1: An example of the IncreaseDecrease weight reassignment abstraction

At first glance, it seems that this approach can be implemented using stan-
dard message-passing primitives [32]. However, the following theorem states

32 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES

that this approach cannot be implemented in asynchronous, failure-prone dis-
tributed systems.

Theorem 1. The consensus number of IncreaseDecrease weight reassignment
approach is at least two.

Proof. We prove the theorem by contradiction. For the sake of contradiction,
we assume that the consensus number of the IncreaseDecrease approach is one
(implicitly, we assume that the IncreaseDecrease approach can be implemented
in failure-prone asynchronous distributed systems). Let S = {s1, s2, s3}. We
assume that every server executes Algorithm 3. Each server si, such that i ∈
{1, 2}, has access to a shared array of SWMR registers and writes its proposal
in the ith register of the array. Each server si, such that i ∈ {1, 2}, calls an
operation op ∈ {increase, decrease} according to its identifier. Then, each server
waits until the collect operation returns a value that is not equal to ⟨1, 1, 1⟩.
Finally, each server si, such that i ∈ {1, 2}, determines its decision based on the
value returned by the called collect operation.

Algorithm 3 Solving consensus among two servers using the IncreaseDecrease
approach
▷ s1 and s2 reach an agreement while s3 is used as an auxiliary server
▷ the algorithm executed by each server si, where i ∈ {1, 2, 3}
▷ proposals is an array of SWMR registers to store s1’s and s2’s proposals such

that proposals[i] stores si’s proposal

function decide()
1) iw ← 1
2) if i = 1
3) increase(s1, 1, 0.9)
4) else if i = 2
5) decrease(s2, 1, 0.6)
6) wait until ⟨1, 1, 1⟩ ≠ collect() = ⟨w1, w2, w3⟩
7) if w1 = 1.9
8) return proposals[1]
9) else if w2 = 0.4

10) return proposals[2]

Note that line 6 will eventually be executed because we assume the IncreaseDecrease
approach can be implemented in failure-prone asynchronous distributed sys-
tems. In total, there are four cases that only two of them can happen:

1) No operation is executed. This case cannot happen because we assumed
that there is an asynchronous algorithm.

2) All operations are executed concurrently. Accordingly, the servers’ weights
become ⟨1.9, 0.4, 1⟩. This case cannot happen since Property 1 is not satis-
fied.

3.3. PERFECTPAIRWISE APPROACH 33

3) Operation increase(s1, 1, 0.9) is executed. Accordingly, the value returned by
function collect is ⟨1.9, 1, 1⟩. This case can happen; as a result, the decided
value by all servers is proposals[1] (Line 8).

4) Operation decrease(s2, 1, 0.6) is executed. Accordingly, the value returned by
function collect is ⟨1, 0.4, 1⟩. This case can happen; as a result, the decided
value by all servers is proposals[2] (Line 10).

By using the aforementioned algorithm, the servers can solve consensus. Hence,
there is a contradiction because three servers can solve consensus using the
above algorithm, and the theorem holds.

According to Theorem 1, two servers can solve consensus using the proto-
col of the IncreaseDecrease approach. Since consensus cannot be implemented in
asynchronous, failure-prone distributed systems, the protocol of the IncreaseDecrease
approach cannot be implemented in the asynchronous, failure-prone distributed
systems. Note that if IncreaseDecrease weight reassignment approach, instead
of presenting three operations, presents two operations– (a) either increase or
decrease and (b) collect– the impossibility result still holds using the same proof
as the proof of Theorem 1.

3.3 PerfectPairwise Approach
PerfectPairwise is a weight reassignment approach in which weights are reassigned
in a pairwise manner where a server called donor donates some part of its weight
to another server called donee that has better performance. In order to name
this approach, the term ‘perfect’ is used to emphasize that if the donor’s weight
decreases by weight w in a donation, the donee’s weight increases by the same
amount of weight w. In this approach, the total weight of servers remains time-
invariant in contrast to the IncreaseDecrease approach.

This approach provides the following operation:

– donate(sn, w, sj) that can be called by each server that wants to be a donor
and donates some part of its weight to another server sj ,

where sn is a local and monotonically increasing sequence number of the donor,
and w is the value of donated weight. Such a sequence number is increased
before calling the donate operation. Operation donate(sn, w, sj) called by server
si returns two changes– a change ⟨−w′, si, ⟨DNT, si, sn, w, sj⟩⟩ to si and another
change ⟨w′′, sj , ⟨DNT, si, sn, w, sj⟩⟩ to sj , where w′ and w′′ might be either equal
to 0 or w (Figure 3.2). The approach has the following properties:

– (PerfectPairwise Validity) Server si has called operation donate(sn, w, sj) be-
fore it (resp. server sj) receives change ⟨∗, si, ⟨DNT, si, sn, w, sj⟩⟩ (resp.
change ⟨∗, sj , ⟨DNT, si, sn, w, sj⟩⟩).

– (PerfectPairwise Termination) If server si calls operation donate(sn, w, sj), it
(resp. server sj) receives a change ⟨∗, si, ⟨DNT, si, sn, w, sj⟩⟩ (resp. a change
⟨∗, sj , ⟨DNT, si, sn, w, sj⟩⟩) eventually if it (resp. sj) is a correct server.

34 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES

– (PerfectPairwise Donate-Accuracy) If server si calls operation donate(sn, w, sj),
one of the following cases can happen:

– If a change ⟨w′ = 0, si, ⟨DNT, si, sn, w, sj⟩⟩ is returned to server si, then
a change ⟨w′′ = 0, sj , ⟨DNT, si, sn, w, sj⟩⟩ is returned to sj as well. In
this case, the weights of servers si and sj do not change because the sj ’s
weight is in a situation that Property 1 will be violated by returning
w′ ̸= 0 and w′′ ̸= 0.

– If a change ⟨w′ = −w, si, ⟨DNT, si, sn, w, sj⟩⟩ is returned to server si,
then a change ⟨w′′ = w, sj , ⟨DNT, si, sn, w, sj⟩⟩ is eventually returned
to sj . In this case, the weight of server si (resp. sj) decreases (resp.
increases) by w after receiving the change.

PerfectPairwise

Figure 3.2: The illustration of the PerfectPairwise approach. Operation
donate(sn, w, sj) is called by server si, and two changes are returned to servers
si and sj . Consequently, the weight of server si (resp. sj) decreases by w′,
where w′ = 0 or w (resp. increases by w′′, where w′′ = 0 or w).

The following theorem shows that the PerfectPairwise approach cannot be im-
plemented in a wait-free, failure-prone distributed systems, like IncreaseDecrease
approach.

Theorem 2. The consensus number of PerfectPairwise approach is at least two.

Proof. We prove the theorem by contradiction. For the sake of contradiction,
we assume that the consensus number of the PerfectPairwise approach is one
(implicitly, we assume that an asynchronous algorithm can be presented for the
PerfectPairwise approach). Let S = {s1, s2, s3}. Using Algorithm 4, servers s1
and s2 reach an agreement, and server s3 is used as an auxiliary server.

Each server si, such that i ∈ {1, 2}, has access to a shared array of SWMR
registers and writes its proposal in the ith register of the array. Then, each
server calls function decide. The initial weight of each server is equal to one.
Each server si, such that i ∈ {2, 3}, calls the donate operation to donate 0.25 of
its weight to s1 (Lines 2-5). Then, all servers wait until receiving a change from
the algorithm (Line 6). Finally, each server si, such that i ∈ {1, 2}, determines
its decision based on the received change (Lines 7-16).

Since the donee is server s1 in both donations, server s1 receives two changes
from the algorithm of PerfectPairwise approach that can be one of the following
disjoint cases: (a) ⟨0, s1, ⟨DNT, s2, 1, 0.25, s1⟩⟩ and ⟨0.25, s1, ⟨DNT, s3, 1, 0.25, s1⟩,

3.3. PERFECTPAIRWISE APPROACH 35

Algorithm 4 Solving consensus among two servers using the PerfectPairwise
approach
▷ s1 and s2 reach an agreement while s3 is used as an auxiliary server
▷ the algorithm executed by each server si, where i ∈ {1, 2, 3}
▷ proposals is an array of SWMR registers to store s1’s and s2’s proposals such

that proposals[i] stores si’s proposal

function decide()
1) iw ← 1
2) if i = 2
3) donate(s2, 1, 0.25, s1)
4) else if i = 3
5) donate(s3, 1, 0.25, s1)
6) wait until receiving ⟨w, si, ⟨DNT, sk, 1, 0.25, s1⟩⟩
7) if i = 1
8) if (k = 2 and w = 0) or (k = 3 and w ̸= 0)
9) return proposals[1]

10) else
11) return proposals[2]
12) else if i = 2
13) if w = 0
14) return proposals[1]
15) else
16) return proposals[2]

or (b) ⟨0.25, s1, ⟨DNT, s2, 1, 0.25, s1⟩⟩ and ⟨⟨0, s1, DNT, s3, 1, 0.25, s1⟩. The order
of the received changes is not important.

On the other hand, server s2 receives only one change that is either
⟨0, s2, ⟨DNT, s2, 1, 0.25, s1⟩ or ⟨−0.25, s2, ⟨DNT, s2, 1, 0.25, s1⟩. If server s1 re-
ceives one of the changes of case (a), then, it returns proposals[1] (Line 9); server
s2 receives change ⟨0, s2, ⟨DNT, s2, 1, 0.25, s1⟩, then, it returns proposals[1] as
well (Line 14). Besides, if server s1 receives one of the changes of case (b), then, it
returns proposals[2] (Line 11); server s2 receives ⟨−0.25, s2, ⟨DNT, s2, 1, 0.25, s1⟩,
then, it returns proposals[2] as well (Line 16). Accordingly, servers s1 and s2
can decide the same proposal, i.e., they can solve consensus. Hence, we found
a contradiction, and the theorem holds.

According to Theorem 2, two servers can solve consensus using the imple-
mentation of the PerfectPairwise approach. Since consensus cannot be imple-
mented in asynchronous, failure-prone distributed systems, the presented im-
plementation is not asynchronous.

As we have proved above, implementing IncreaseDecrease and PerfectPairwise
approaches is impossible in a asynchronous, failure-prone distributed systems.
Remember that the PerfectPairwise and IncreaseDecrease approaches are based on

36 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES

TITW and TVTW, respectively. Since implementing TITW-based approaches
is simpler than TVTW-based approaches, we present a weaker version of the
PerfectPairwise approach, that can be implemented in asynchronous, failure-
prone distributed systems. The weaker version is called the WeakPairwise ap-
proach.

3.4 WeakPairwise Approach
In the PerfectPairwise approach, a global computation should be performed for
each donation (i.e., the total of the f greatest weights should be computed)
to determine the changes returned to the donee and donor of the donation.
To present a weaker version of the the PerfectPairwise approach that can be
implemented in asynchronous, failure-prone distributed systems, we take the
following steps:
– We modify the donate operation so that such a global computation is not

required anymore. We define an upper bound for servers’ weights denoted
by maxw such that f ×maxw < tw/2. ‌By doing so, each server si returns
min(maxw, wi) as its weight. Hence, Property 1 is always satisfied.
To indicate the value of maxw, we use the WHEAT scheme, i.e., we set
maxw = 1 + ∆/f and tw = 2×maxw × f + 1.
In addition to defining an upper bound, it is required to define a lower bound
for servers’ weights denoted by minw. To see why minw is required, consider
the following example. Assume that S = {s1, s2, s3, s4}, ∆ = 1, and f = 1.
Accordingly, maxw = 2, tw = 5, and iw = 1.25. Every server s ∈ {s1, s2, s3}
donates weight 1 to server s4. Consequently, the weights of servers s1, s2, s3,
and s4 become 0.25, 0.25, 0.25, and 2, respectively. Then, server s4 crashes.
At this time, the system becomes unavailable. To avoid such a situation, the
system should remain available until there exist n − f servers, i.e., tw/2 <
(n − f) × minw. We can use the WHEAT scheme to define minw as well,
i.e., we set minw = 1.

– We assume that the initial weight, iw, of each server is equal to tw/n. Be-
sides, we assume that the weight of each server can be any value in range
[minw, maxw].

– Each server is allowed to donate iw −minw to other servers in total.

– We present another operation called retake by which a donee can retake its
donated weight. To see why this operation is required, consider the follow-
ing example. Assume that S = {s1, s2, s3, s4}, ∆ = 1, and f = 1. Ac-
cordingly, maxw = 2, tw = 5, iw = 1.25, and minw = 1. Every server
s ∈ {s1, s2, s3} donates weight 0.25 to server s4. Consequently, the weights
of servers s1, s2, s3, and s4 become 1, 1, 1, and 2, respectively. Then, server
s4 crashes. At this time, servers cannot reassign theirs weights anymore.
Theretofore, they need a mechanism to retake their donated weights. To do
so, operation retake that is defined as follows is required.

3.4. WEAKPAIRWISE APPROACH 37

– retake(sn, w, sj) that can be called by each server that has donated some
part of its weight to another server sj and wants to retake its donated
weight.

Operation retake(sn, w, sj) called by server si returns two changes– a change
⟨w′, si, ⟨RTK, si, sn, w, sj⟩⟩ to si and another change ⟨−w′′, sj , ⟨RTK, si, sn, w, sj⟩⟩
to sj .

The weaker version of the PerfectPairwise approach is called the WeakPairwise
approach and has the following properties:

– (PerfectPairwise Validity) The validity property has three parts:

– Server si has called operation donate(sn, w, sj) before si and sj re-
ceive changes ⟨∗, si, ⟨DNT, si, sn, w, sj⟩⟩ and ⟨∗, sj , ⟨DNT, si, sn, w, sj⟩⟩,
respectively.

– Server si has called operation retake(sn, w, sj) before si and sj re-
ceive changes ⟨∗, si, ⟨RTK, si, sn, w, sj⟩⟩ and ⟨∗, sj , ⟨RTK, si, sn, w, sj⟩⟩,
respectively.

– Before calling operation retake(sn, w, sj) by server si, server si has called
operation donate(sn, w, sj).

– (PerfectPairwise Termination) If server si calls operation op(sn, w, sj) such
that op ∈ {donate, retake}, it (resp. server sj) receives a change ⟨∗, si, ⟨∗, si, sn, w, sj⟩⟩
(resp. a change ⟨∗, sj , ⟨∗, si, sn, w, sj⟩⟩) eventually if it (resp. sj) is a correct
server.

– (WeakPairwise Donate-Accuracy) If server si calls operation donate(sn, w, sj),
one of the following cases can happen:

– If a change ⟨w′ = 0, si, ⟨DNT, si, sn, w, sj⟩⟩ is returned to server si, then
a change ⟨w′′ = 0, sj , ⟨DNT, si, sn, w, sj⟩⟩ is returned to sj as well. In
this case, the weights of servers si and sj do not change because the sj ’s
weight is in a situation that Property 1 will be violated by returning
w′ ̸= 0 and w′′ ̸= 0.

– If a change ⟨w′ = −w, si, ⟨DNT, si, sn, w, sj⟩⟩ is returned to server si,
then a change ⟨w′′, sj , ⟨DNT, si, sn, w, sj⟩⟩ is eventually returned to sj ,
where w′′ is equal to min(maxw − wj , w). In this case, the weight
of server si decreases by w, and the weight of server sj increases by
min(maxw − wj , w), after receiving the changes. In other words, oper-
ation donate(sn, w, sj) called by server si works as follows:

1) if minw ≤ wi − w
2) wi ← wi − w
3) wj ← min(maxw, wj + w)
4) other servers’ weights are not changed

38 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES

– (PerfectPairwise Retake-Accuracy) Given operation retake(sn, w, sj) called by
server si, a change ⟨w′, si, ⟨RTK, si, sn, w, sj⟩⟩ is returned to server si, and
another change ⟨w′′ = −w, sj , ⟨RTK, si, sn, w, sj⟩⟩ is eventually returned to
sj , where w′ = min(maxw−wj , w) In this case, the weight of server si (resp.
sj) increases (resp. decreases) by min(maxw−wj , w) (resp. w) after receiving
the change.

In a donation made from server si to server sj , some part of the donated
weight might be lost. To grasp the idea of losing weight, consider the following
example. Let S = {s1, . . . , s6} and f = 2. Consequently, tw = 7, iw =
7/6, and maxw = 1.5. Assume that each server si ∈ {s2, . . . , s6} donates
a weight equal to 1/6 to server s1. Besides, assume that such donations are
concurrent. After applying the donations, the weights of servers are reassigned
to the values determined in Figure 3.3, and the summation of weights is equal
to 6.5, which means that 0.5 part of tw is lost. Note that losing weights enables
the WeakPairwise approach to be implemented in asynchronous, failure-prone
distributed systems.

(

(

(

(

(

Figure 3.3: An example of losing weight in the WeakPairwise approach

3.5 Discussion
This section consists of two distinct parts. Due to the similarity of the weight
reassignment and reconfiguration problems, the first part is dedicated to present-
ing the impossibility result of the IncreaseDecrease and PerfectPairwise approaches
for the reconfiguration problem. The second part discusses the relationship be-
tween the weight reassignment and asset transfer problems.

3.5.1 Weight Reassignment vs. Reconfiguration
The reconfiguration problem is the problem of changing the set of servers over
time. Reconfiguration protocols (e.g., [5, 6, 38]) provides two operations– join

3.5. DISCUSSION 39

and leave. Let U be the universe of servers such that S ⊆ U . Each server s ∈ U
can join to the system, i.e., can be added to set S, by calling join(s). Besides,
each server s ∈ U can leave the system, i.e., can be removed from set S, by call-
ing leave(s). In the following, we present the relationship between the weight
reassignment and reconfiguration problems. To do so, we show that the recon-
figuration problem is a special case of the IncreaseDecrease weight reassignment
approach.

Remember that the IncreaseDecrease approach provides two operations– increase
and decrease– to reassign the weights of servers. We present the following
method to simulate operation join (resp. leave) with operation increase (resp.
decrease):

– If a server s ∈ U is a member of the initial configuration, its weight is equal
to one; otherwise, its weight is equal to zero.

– Simulating operation join with operation increase: when a server s ∈ U wants
to join the system, it calls operation increase(1, 1).

– Simulating operation leave with operation decrease: when a server s ∈ U
that is a member of the system wants to leave the system, it calls operation
decrease(1, 1).

The reason why the IncreaseDecrease approach has no asynchronous imple-
mentation is that servers might concurrently execute increase and decrease op-
erations such that Property 1 is not satisfied. Based on this reason and the rela-
tionship between the IncreaseDecrease approach and reconfiguration problem, we
define a variant of reconfiguration problem called conditional asynchronous re-
configuration. The conditional asynchronous reconfiguration problem is similar
to the standard asynchronous reconfiguration problem with only one difference:
a condition related to the size of configurations should be satisfied. For exam-
ple, the size of each configuration should be greater than k, where 2 ≤ k ≤ n.
We prove that solving such a problem is impossible in asynchronous, failure-
prone distributed systems. To do so, we show that the consensus number of the
conditional asynchronous reconfiguration problem is at least three.

Theorem 3. The consensus number of the conditional asynchronous reconfig-
uration problem is at least three.

Proof. We prove the theorem by contradiction. For the sake of contradiction,
we assume that the consensus number of the conditional asynchronous recon-
figuration problem is one (implicitly, we assume that there is an algorithm that
solves the conditional asynchronous reconfiguration problem in asynchronous,
failure-prone distributed systems).

Let S = {s1, s2, s3} be the current configuration. Also, let |C| ≥ 2 be the
condition that should be satisfied in every configuration C. Such a condition
states that the number of servers in each configuration C should be greater than
equal to two. Assume that three concurrent leave requests– leave(s1), leave(s2),

40 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES

Algorithm 5 Solving consensus among two servers using the implementation
of the conditional asynchronous reconfiguration problem
▷ the algorithm executed by each server si, where i ∈ {1, 2, 3}
▷ proposals is an array of SWMR registers to store servers’ proposals such that

proposals[i] stores si’s proposal

function decide()
1) cur_conf ← {⟨+s1⟩, ⟨+s2⟩, ⟨+s3⟩}
2) proposal_conf ← cur_conf ∪ {⟨−si⟩}
3) execute the algorithm of the conditional asynchronous reconfiguration prob-

lem with input proposal_conf
4) wait until a new configuration is returned
▷ assume that the new configuration is new_conf
5) find k such that sk /∈ new_conf
6) return proposals[k]

and leave(s3)– are issued by different clients. By using Algorithm 5, servers can
solve consensus.

Note that lines 5-6 will eventually be executed because we assumed that there
is an algorithm for solving the conditional asynchronous reconfiguration problem
in asynchronous, failure-prone distributed systems. Besides, note that the size
of new_conf is two due to the following reasons: (a) the size of new_conf
cannot be less than two because the defined condition will not be satisfied, and
(b) the size of new_conf cannot be three because each server waits until having
a new configuration (line 4). There is a contradiction because three servers can
solve consensus using the above algorithm, and the theorem holds.

Corollary 1. Solving the conditional asynchronous reconfiguration problem in
asynchronous, failure-prone distributed systems is impossible.

Proof. This corollary holds according to Theorem 3.

3.5.2 Weight Reassignment vs. Asset Transfer

Each server si has an account in the asset transfer problem and can transfer
some part of its balance to another server sj if the transferred balance does not
turn its balance negative, formally:

1) if 0 ≤ wi − w
2) wi ← wi − w
3) wj ← wj + w
4) other servers’ weights are not changed

where wk and w denote the balance of server sk and the transferred balance,
respectively. The following two facts and a conclusion that comes later make it

3.5. DISCUSSION 41

more clear what makes implementing the PerfectPairwise approach to be impos-
sible in asynchronous, failure-prone distributed systems. (a) the asset transfer
problem is similar to the weight reassignment problem with only one difference:
there is no upper bound for the balance (weight) of each server, and (b) it is
proved that the asset transfer problem can be implemented in asynchronous,
failure-prone distributed systems [28]. The conclusion that can be made based
on the presented facts: satisfying the upper bounds of servers’ weights makes it
impossible to implement the PerfectPairwise approach in asynchronous, failure-
prone distributed systems.

42 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES

Chapter 4

Epoch-Based Weight Reassignment

Abstract. This chapter presents a crash fault-tolerant (CFT) epoch-
based weight reassignment protocol for implementing the WeakPair-
wise weight reassignment approach in asynchronous distributed sys-
tems. In such a protocol, the chief duty of epochs is to determine
the lifetimes of changes returned by donate and retake operations.
Then, an atomic storage based on DWMQS is designed such that
each server has a weight, the quorums are constituted using servers’
weights, and servers’ weights can be reassigned using the proposed
weight reassignment protocol over time.

4.1 Warmup

Remember that WeakPairwise is a weight reassignment approach, that provides
two operations– donate and retake. Each server can donate some part of its
weight to another server and retake the donated weight by calling donate and
retake operations, respectively. Operations donate and retake create changes,
and every created change is added to set changes. The weight of each server can
be computed using set changes. This chapter proposes a protocol to implement
donate and retake operations.

The proposed protocol is epoch-based. The system’s lifetime is divided into
a sequence of epochs ⟨e0, e1, . . . ⟩. At the beginning, epoch e0 is installed in the
system. After finishing each epoch ek (0 ≤ k), epoch ek+1 is installed. The chief
duty of epochs is to determine the lifetimes of changes created by donate and
retake operations as follows.

The default weight of each server during each epoch is equal to iw. Before
installing epoch ek, each server si can donate some part of its default weight
associated with epoch ek to another server sj . To do so, server si sends the
amount of weight that wants to donate for epoch ek within a DNT message to
server sj . Server sj receives the DNT message if it is a correct server. The
donate operation completes when epoch ek−1 is changed to epoch ek such that
server si (resp. server sj) creates a change ⟨−w, si, ∗⟩ (resp. a change ⟨w, sj , ∗⟩)

43

44 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

and adds the created change to set changes. The lifetimes of both changes is
epoch ek. Indeed, the retake operation is executed at the time of changing epoch
ek to epoch ek+1, and si (resp. sj) creates a change ⟨w, si, ∗⟩ (resp. a change
⟨−w, sj , ∗⟩), and adds the created change to set changes. The whole process is
illustrated in Figure 4.1.

There are two algorithms by which the donate and retake operations are im-
plemented. The first algorithm called PairwiseWR is executed by each server and
is responsible for finding servers as donees, sending DNT messages to donees, and
processing the received DNT messages. The other algorithm called EpochChanger
is executed by servers as well and is responsible for changing the epochs, com-
pleting the executions of donate operations, and executing the retake operations.

In the following, we explain the epoch-based protocol in further details.
First, we present a few preliminary definitions and concepts in Section 4.2.
Then, we explain the PairwiseWR algorithm. Then, we present the EpochChanger
algorithm. We present the read-write protocols and an example containing a
few donations, retakes, and clients’ read-write requests.

Figure 4.1: Executions of the donate and retake operations

4.2 Preliminaries
In this section, we present the preliminary definitions and concepts related to
the epoch-based weight reassignment protocol.
Epochs. In the epoch-based weight reassignment protocol, the object of epochs
is to determine the following items:

– the lifetimes of changes returned by donate and retake operations, i.e., when
the changes returned by such operations should be applied to the weights of
donors and donees, and

– the execution time of the retake operations.

During the system’s lifetime, a sequence of epochs σ = ⟨e0, e1, . . . ⟩ is installed
in the system. The following assumption determines the number of epochs

4.2. PRELIMINARIES 45

installed in the system. A similar assumption is used by all protocols that
implement the reconfigurable atomic storage such as RAMBO [25], DynaStore [5],
SpSn [20], FreeStore [6], and SmartMerge [38]. Its reason is that it is impossible
to reconfigure a storage system infinitely many times while guaranteeing the
liveness of the storage system [59].
Assumption 4 The number of epochs that are requested to be installed in the
system is finite. Formally, |σ| = m, where m ∈ N and σ is the sequence of
installed epochs.

The system starts in epoch e0 called the initial epoch. The successor (resp.
predecessor) of any epoch ek for 0 ≤ k (resp. 1 ≤ k) is ek+1 = ek.succ (resp.
ek−1 = ek.pred). When a non-initial epoch ek+1 (0 ≤ k) is installed, we say
that ek+1.pred was uninstalled from the system. At any time t ∈ T , we define
lepoch to be the last epoch installed in the system. Since lepoch is the last
epoch installed in the system, it does not have any successor, that is shown by
lepoch.succ =⊥. The weights of servers are not reassigned during any epoch
and might be reassigned at the time of installing epochs.

Each process p ∈ {C ∪ S} has a local variable called cepoch to store its
current epoch. The current epoch of each process p, p.cepoch, is a member of
set {e0, e1, . . . , lepoch}. Note that the current epochs of any two processes might
be different, and also, they might be different from the last installed epoch in
the system.
Installing an epoch. To install an epoch in the system, at least one server
should request it. Each server si can only request to install epoch si.cepoch.succ
in the system by executing the EpochChanger algorithm. If lepoch = si.cepoch,
the EpochChanger algorithm installs epoch si.cepoch.succ in the system such
that the current epochs of a weighted majority of servers are changed to epoch
si.cepoch.succ.
Comparing two epochs. We say that epoch e′ is more up-to-date than epoch
e if the following recursive function returns yes by passing (e, e′) as input. We
use the notation e < e′ to state that epoch e′ is more up-to-date than epoch e.

function more_up_to_date(e, e′)
e← e.succ
if e = e′ then return yes
else if e =⊥ then return no
else return more_up_to_date(e, e′)

Epochs vs. read-write operations. At any time t ∈ T , read-write opera-
tions can only be executed in epoch lepoch. At the time of uninstalling any epoch
e, read-write operations are disabled on every server s such that s.cepoch = e.
The operations are enabled after installing epoch e.succ.
Change. Each change made on a server si’s weight is associated with an epoch
e and has the following structure: ⟨±w, si, ⟨type, e, info⟩⟩, where w is the value
of the change, type ∈ {INIT, DNT, RTK}, and info might contain additional

46 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

information about the change. Types INIT, DNT, and RTK are used when
a change is added as the initial weight of a server, returned from the donate
operation, and returned from the retake operation, respectively. Each returned
change is added to set changes.

Calculating weights. The weight of each server si for each epoch ek can be
calculated by calling function weight(si, ek) as follows: the total weight of all
changes created for epoch ek is computed; if the computed weight is less than
equal to maxw, then it is returned; otherwise, maxw is returned.

function weight(si, ek)
w ← sum

(
{w | ⟨w, si, ⟨∗, ek, ∗⟩⟩ ∈ si.changes}

)
return min(w, maxw)

Quorum. Processes can use function is_quorum to determine whether a subset
of servers S′ constitutes a quorum in epoch ek. This function computes the total
weight of all servers S′ using function weight. If the computed total weight is
greater than tw/2, subset S′ constitutes a quorum. This function works as
follows in further details.

function is_quorum(S′, ek)
1) if tw/2 < sum

(
{weight(si, ek) |si ∈ S′}

)
2) return yes
3) else
4) return no

4.3 PairwiseWR Algorithm

This section describes the PairwiseWR algorithm of the epoch-based weight re-
assignment protocol. The PairwiseWR algorithm is executed by each server and
is responsible for finding servers as donees, sending DNT messages to donees,
and processing the received DNT messages. The default weight of servers in
each epoch is equal to iw, that can be calculated using the Extended WHEAT
scheme.

Algorithm 6 is the pseudocode of the PairwiseWR algorithm. Each server has
a set denoted by changes to store every received change initialized with a change
⟨iw, si, ⟨INIT, e0⟩⟩ (Line 1 of Algorithm 6). Also, each server has a variable called
sn initialized with 0 and used as a sequence number to distinguish its donations
(Line 2 of Algorithm 6). Each server has access to three functions: • weight
that returns the weight of a server for a specific epoch, • cepoch that returns
the current epoch of a server, and • dirty_epochs that returns a set of epochs
that a server has participated in.

For each epoch, any server might reassign its default weight. As a result,
each server might have different weights in distinct epochs. Each server si to
reassign its default weight associated with an epoch e, such that si.cepoch < e,

4.4. EPOCHCHANGER ALGORITHM 47

should donate some part of its weight or receive at least one donation. In this
way, the servers that have lower latency scores might become high-weighted
servers leading to improving the performance.

Each server should satisfy the lower bound defined for weights in Assumption
2 to be allowed to donate some weight. For simplicity, each server si can only
donate some weight for its succeeding epoch (epoch si.cepoch.succ). Server si

can donate weight w associated with epoch e to another server sj if the following
conditions are satisfied:

C1) Epoch e should be equal to the succeeding epoch of server si.

C2) Server si has not participated in any operation related to epoch e, i.e.,
e /∈ dirty_epochs.

C3) Server si’s latency score should be significantly greater than sj ’s latency
score, i.e., lscore(sj) ≪ lscore(si). Note that the reason for not using
‘greater than’ and using ‘significantly greater than’ is to avoid unneces-
sary weight reassignments.

C4) Server si should have some weight to donate to server sj . Each server si is
allowed to donate at most iw −minw part of its weight. Indeed, server si

is allowed to donate weight w to another server sj if the following relation
holds: iw −minw ≤ weight(si, e)− w.

If the above conditions are met, server si is allowed to donate weight w
to server sj . To do so, server si takes the following steps: (a) increments its
sequence number, (b) creates a change for the donation, (c) adds the created
change to set chagnes, and (d) sends a message ⟨DNT, cepoch.succ, si, sn, w, sj⟩
to sever sj (Lines 6-8 of Algorithm 6). After receiving a donation, each server
si creates a change for the donation if the following condition is met:

C5) Server si has not participated in any operation related to epoch e.

If the above conditions are met, server si creates a change for the received
donation and adds the created change to set changes (Line 12 of Algorithm 6).
Otherwise, it does not create a change for the received donation.

4.4 EpochChanger Algorithm
Each server can request to change the installed epoch in the system and change
its current epoch by using an algorithm called the EpochChanger algorithm.
Algorithm 7 is the pseudo-code of the EpochChanger algorithm. In the following,
we describe how this algorithm works.
How servers can request to change an epoch. Each server has a variable
called cepoch to store its current epoch (Line 1 of Algorithm 7). Function
cepoch returns the value of this variable. Each server si for each epoch e has a
timeout. Note that in practice, such a timeout should be big enough so that the

48 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

Algorithm 6 The PairwiseWR algorithm - server si

variables
1) changes← {⟨iw, si, ⟨INIT, e0⟩⟩}
2) sn← 0

while forever
3) cepoch← cepoch() of Algorithm 7
4) dirty_epochs← dirty_epochs() of Algorithm 7
5) if cepoch.succ /∈ dirty_epochs and ∃ sj ̸= si : lscore(sj)≪ lscore(si)

and minw ≤ weight(si, cepoch.succ)− w
6) sn← sn + 1
7) changes← changes ∪ {⟨−w, si, ⟨DNT, cepoch.succ, si, sn, w, sj⟩⟩}
8) send ⟨DNT, cepoch.succ, si, sn, w, sj⟩ to sj

upon receipt of ⟨DNT, epoch, sj , s, w, si⟩ from sj

9) cepoch← cepoch() of Algorithm 7
10) dirty_epochs← dirty_epochs() of Algorithm 7
11) if epoch /∈ dirty_epochs
12) changes← changes ∪ {⟨w, si, ⟨DNT, epoch, sj , s, w, si⟩⟩}

epochs are changed rarely to satisfy Assumption 4. When the timeout of epoch
si.cepoch finishes, server si broadcasts a message ⟨CHANGE, si.cepoch.succ⟩ to
all servers to change epoch si.cepoch to epoch si.cepoch.succ. Then, it stores
si.cepoch.succ in a set denoted by si.change_requests (Lines 9-10 of Algorithm
7). Set change_requests is used to change epochs.
How a server can change its current epoch. Each server si, by receiving
any message ⟨CHANGE, epoch⟩, stores epoch in a set denoted by si.change_requests
(line 25 of Algorithm 7). As soon as si.cepoch.succ ∈ si.change_requests,
server si starts to change its epoch (line 13). To do so, server si must take
the following steps: (a) Removing the timeout dedicated to epoch epoch if it
has not been removed or finished yet (Lines 12-13 of Algorithm 7). (b) Dis-
abling read-write operations (Line 14 of Algorithm 7). (c) Informing Algorithm
6 that some operations related to epoch si.cepoch.succ are processing to safety
Conditions C2 (Line 15 of Algorithm 7). (d) Updating the states (registers)
of servers (Lines 16-21 of Algorithm 7). Each server has a register; in this
step, the registers of servers with epoch epoch are synchronized. To do so,
server si reads its register, ⟨tag, val⟩ (Line 16). Then, server si broadcasts mes-
sage ⟨UPDATE, si, ⟨tag, val⟩, si.cepoch, si.cepoch.weight⟩ to other servers (Line
17). Server si waits until receiving messages ⟨UPDATE, ∗, ∗, si.cepoch, ∗⟩ from
a weighted majority of servers (Line 19). Server si computes and stores the
new state of its register (Lines 20-22). (e) Changing the epoch (Line 23). (f)
Enabling read-write operations (Line 24).

Example 2. Figure 4.2 illustrates an example of executing the PairwiseWR and
the EpochChanger algorithms. In this example, S = {s1, s2, s3, s4}, f = 1, and
∆ = 1. Using WHEAT scheme, iw = 1.25, wmax = 2, and wmin = 1. Server s3
wants to donate weight 0.25 associated with epoch e1 to server s1. Hence, server

4.4. EPOCHCHANGER ALGORITHM 49

Algorithm 7 The EpochChanger algorithm - server si

variables
1) cepoch← e0
2) change_requests← ∅
3) updates← ∅
4) dirty_epochs← {e0}

functions
5) maxtag(e) ≡ max

(
{tag | (∗, ⟨tag, ∗⟩, epoch, ∗) ∈ updates and e = epoch}

)
6) maxval(e, t) ≡ first

(
{val | (∗, ⟨tag, val⟩, epoch, ∗) ∈ updates and e = epoch and t =

tag}
)

7) cepoch() ≡ cepoch
8) dirty_epochs() ≡ dirty_epochs

upon timeout for epoch cepoch
9) RB_broadcast ⟨CHANGE, cepoch.succ⟩

10) change_requests← change_requests ∪ {epoch}

while forever
11) if cepoch.succ ∈ change_requests
12) if ∃ timeout for epoch cepoch
13) remove the timeout
14) disable the execution of read-write operations of Algorithm 9
15) dirty_epochs← dirty_epochs ∪ {cepoch.succ}
16) ⟨tag, val⟩ ← register() of Algorithm 9
17) RB_broadcast ⟨UPDATE, si, ⟨tag, val⟩, cepoch, cepoch.weight⟩
18) updates← updates ∪ {(si, ⟨tag, val⟩, cepoch, cepoch.weight)}
19) wait until is_quorum(updates)
20) maxtag ← maxtag(cepoch)
21) val← maxval(cepoch, maxtag)
22) set_tagval(maxtag, val) of Algorithm 9
23) cepoch← cepoch.succ, set a timeout for cepoch
24) enable the execution of read-write operations

upon RB_deliver ⟨CHANGE, e⟩
25) change_requests← change_requests ∪ {e}

upon RB_deliver ⟨UPDATE, s, ⟨tag, val⟩, epoch, weight⟩
26) updates← updates ∪ {(s, ⟨tag, val⟩, epoch, weight)}

s3 sends a DNT message to server s1 during epoch e0. Furthermore, server s4
wants to donate weight 0.25 associated with epoch e1 to server s1. Server s4
sends a DNT message to server s1 during epoch e0 as well. Then, server s1
receives the DNT messages sent by servers s3 and s4 before installing epoch
e1. Therefore, server s1 creates two changes for the received donations. The
new weights of servers s1, s2, s3, and s4 in epoch e1 are 1.75, 1.25, 1, and 1,
respectively.

Server s4 wants to donate weight 0.25 associated with epoch e2 to server s2.
Consequently, server s4 sends a message DNT to server s2. Server s2 receives

50 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

Figure 4.2: An example of executing executing the PairwiseWR and the
EpochChanger algorithms. The weight of each server in epoch e1 (resp. epoch
e2) is shown at the top of epoch e1 (resp. epoch e2).

this message during epoch e3. Due to Condition C5, server s2 has participated
in epoch e2, so server s2 does not create a change for the donation while server
s4 creates a change. As a result, the weights of servers s2 and s4 in epoch e2
are equal to 1.25 and 1, respectively.

Properties of Epoch Changer

We present properties of Algorithm 7 in this subsection. These properties are
used to prove that: (1) for each non-initial epoch e installed in the system,
there exists at least one server that requests to install epoch e, and (2) the
weight reassignment algorithm satisfies the liveness property. Moreover, these
properties are used in Section 4.5 to prove the correctness of the atomic storage.
Note that all the specified lines in this subsection are related to Algorithm 7.

Lemma 1. Let epoch e be the current epoch of a server s, i.e., s.cepoch = e.
Server s installs epoch e.succ if at least a weighted majority of servers including
s had uninstalled epoch e.

Proof. To install epoch e.succ, server s requires executing Line 23. To do so,
first, it should receive message ⟨CHANGE, e.succ⟩. Then, it can execute Lines
13-17. If server s passes Line 19, it means that s received messages tagged
with UPDATE from a weighted majority of servers ρ. Each server s′ ∈ ρ has
uninstalled epoch e before sending a message tagged with UPDATE. Therefore,
server s can be sure that at least a weighted majority of servers has uninstalled
epoch e by passing Line 19. Then, server s can continue executing the remaining
lines to change its epoch to e.succ.

Lemma 2. There is only one installed epoch in the system. In other words, if
an epoch e′ is installed in the system, any previously installed epoch e < e′ was
uninstalled and will not be installed anymore.

Proof. We will argue by contradiction. Assume that there are at least two
installed epochs e and e′ in the system, where e ̸= e′. Without loss of generality

4.4. EPOCHCHANGER ALGORITHM 51

we can assume e < e′. To install e′ in the system, according to the definition
of installing a epoch, at least one server s should install epoch e′. Due to
Lemma 1, at least a weighted majority of servers with epoch e′.pred including
s had uninstalled epoch e′.pred to allow s for installing epoch e′. Similarly, we
can show that at least a weighted majority of servers with epoch e′.pred.pred
including s had uninstalled epoch e′.pred.pred. With the same argument, we
can show that any epoch x less than e′ had uninstalled by at least a weighted
majority of servers with epoch x including s. Therefore, e was uninstalled by
at least a weighted majority of servers with epoch e.

Assume that e was the ith installed epoch in the system and e′ is the jth

installed epoch in the system, where i < j. To install a new epoch after epoch
e′, the index of the new epoch should be greater than j. Therefore, epoch e will
not be installed anymore.

Lemma 3. Let s and s′ be two correct servers such that: (1) s.cepoch = ej,
(2) s′.cepoch = ei, (3) ei < ej, (4) after uninstalling epoch ei, the sequence of
epochs installed by server s is ⟨ei+1, . . . , ej−1, ej⟩, and (5) the current epoch of
server s′ is less than equal to the current epochs of all correct servers. Server
s′ installs the same sequence of epochs ⟨ei+1, . . . , ej−1, ej⟩ eventually.

Proof. When s.cepoch = ei, server s requires executing Line 13-23 to install
epoch ei+1. By executing those lines, it is guaranteed that two messages are
sent by server s: message ⟨CHANGE, ei+1⟩ and message ⟨UPDATE, ∗, ∗, ∗, ei, ∗⟩.
In addition to server s′, there might be some other servers with epoch ei. Since
server s is correct, all correct servers including server s′ with epoch ei receive
message ⟨CHANGE, ei+1⟩ eventually. To finish the proof, we need to show the
following cases.

1) All correct servers including server s′ with current epoch ei uninstall epoch
ei and send message ⟨UPDATE, ∗, ∗, ∗, ei, ∗⟩.

2) All correct servers including server s′ with current epoch ei can only change
their epochs to ei+1.

3) Server s′ can pass Line 19, i.e., server s′ receives messages ⟨UPDATE, ∗, ∗, ∗, ei, ∗⟩
from a weighted majority of servers (then server s′ can continue executing
Lines 20-23 to change its epoch to ei+1.)

The first two cases are straightforward. Regarding the third case, according to
Property 1, even if f servers fail (each of them with weight maxw), there might
be a weighted majority of correct servers that sent message ⟨UPDATE, ∗, ∗, ∗, ei, ∗⟩.
Therefore, the last case eventually occurs.

Lemma 4. Let lepoch = ek at time t such that ek is the k + 1th epoch in-
stalled in the system, where 0 ≤ k. There is only one sequence of epochs σ =
⟨e0, e1, . . . , ek−1, ek⟩ from e0 to ek such that ei = ei−1.succ for any 1 ≤ i ≤ k.

Proof. Using Lemmas 2 and 3, the proof of this lemma is straightforward.

52 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

Lemma 5. Let epoch e be the last installed epoch in the system, i.e., lepoch = e.
Assuming a correct server s requests to change epoch e to epoch e.succ, then at
least a weighted majority of correct servers including s install e.succ eventually.

Proof. Using Lemma 3, all correct servers will eventually reach to epoch e.
Then, according to Property 1, the total weight of correct servers with epoch e
is a weighted majority. If a correct server (say, s) with epoch e sends a request
to change its epoch to epoch e.succ, it will change its epoch due to the existence
of a weighted majority of correct servers with epoch e. After that, all correct
servers will eventually reach to epoch e.succ by Lemma 3, and the total weight
of correct servers with epoch e is a weighted majority according to Property
1.

Lemma 6. Let e be the last installed epoch in the system. Epoch e will even-
tually be changed.

Proof. Due to Lemma 5, there exists (or will eventually exist) at least a weighted
majority of correct servers with epoch e. The timeout of at least one of those
servers (say, s) for epoch e will eventually finish; then s will send message
⟨CHANGE, e.succ⟩ to other servers. Since server s is correct, the epoch will
eventually be changed due to Lemma 5.

Theorem 4. The algorithm is live, i.e., servers can change their weights over
time.

Proof. Using Lemmas 5 and 6, the proof of this theorem is straightforward.

4.5 Read-Write Protocols

We extend the (static) MW-ABD protocol [45] in such a way that each server
has a weight, the quorums are constituted using servers’ weights, and servers’
weights can be reassigned using the proposed epoch-based weight reassignment
protocol over time. In the following, we present the reader-writer and server
sides of read-write protocols.
Reader-writer side. Algorithm 8 describes the reader-writer side of the read-
write protocols. Each process has a variable cepoch to store its current epoch
initialized with epoch e0 and has a variable cnt used as a sequence number
to distinguish the issued requests initialized with zero (Line 1 of Algorithm
8). Both read and write operations proceed in two phases, each ending with a
confirmation that at least one quorum was accessed (like the original MW-ABD
protocol).

In the first phase of a read or write operation (phase1), a process contacts a
quorum in order to determine the last epoch installed in the system and highest
tag maxtag used prior to write the last written value. To do so, the process
sends a message ⟨READ, cnt⟩ to all servers. Servers include their current epochs
in their responses. The process stores all received responses that their epochs
are equal to its current epoch and can determine whether a subset of servers

4.5. READ-WRITE PROTOCOLS 53

constitutes a quorum using function is_quorum. If the current epoch of the
process is less up-to-date than the epoch of a response, the process updates
its current epoch with that epoch and restarts the operation (Lines 12-14 of
Algorithm 8).

Then, in the second phase (phase2), after incrementing the timestamp of
maxtag, if the process is a writer, it overwrites its own identifier on the identifier
of maxtag and propagates its current epoch, value, and the changed maxtag
within a WRITE message to a quorum.
Server side. Algorithm 9 is the pseudo-code of the server side of read-write
protocols. After receiving each read-write request r, each server s determines
its current epoch (s.cepoch) by calling function cepoch() from Algorithm 7 and
computes its weight using function weight (Lines 5-6 of Algorithm 9). For write
requests, if the current epoch of each request is the same as s.cepoch, server s
executes the request (Lines 11-12 of Algorithm 9). Similarly, for read requests,
server s adds s.cepoch and weight to its response that should be sent to the
client that issued the request.

Correctness
In the following, we prove that the read-write protocols (Algorithm 8 and Al-
gorithm 9) implements atomic storage.
Storage liveness. We have to prove that every read-write operation executed
by a correct client eventually terminates. To do so, we prove the following
theorem.

Theorem 5. Every read-write operation executed by a correct client eventually
terminates.

Proof. Consider a read-write operation o executed by a correct client c. For the
first phase phase1 from o, client c sends a message to all servers and waits for
servers’ responses. There are three cases as follows:

1) A weighted majority of servers that their epochs are equal to c.cepoch re-
sponds to client c. Consequently, client c ends phase1 and starts the execution
of the second phase phase2 from o by sending a message to all servers and
waits for servers’ responses. There are three following sub-cases:

1.1) A weighted majority of servers that their epochs are equal to c.cepoch
responds to client c. Consequently, client c ends phase2, and the operation
terminates.

1.2) Client c receives a response from a server with epoch e such that c.cepoch ̸=
e. If c.cepoch < e, client c updates its current epoch. Then, the client
restarts the operation. We just need to show that this sub-case occurs a
finite number of times, i.e., the operation o is not restarted infinitely many
times. We can conclude from Lemma 6 that the process of uninstalling
epoch lepoch eventually terminates. Besides, according to Assumption 4,

54 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

Algorithm 8 The reader-writer side of the read-write protocols - process pi

variables
1) cnt← 0, cepoch← e0

functions to read-write the atomic storage
2) read() ≡ read_write(⊥)
3) write(value) ≡ read_write(value)

function read_write(value)
phase1
4) cnt← cnt + 1
5) send ⟨READ, cnt⟩ to all servers
6) M ← ∅
7) repeat
8) upon receipt of message ⟨READACK, reg, cnt, e, w⟩
9) if cepoch = e

10) M ←M ∪
{
⟨reg, cnt, e, w⟩

}
11) else
12) if cepoch < e
13) cepoch← e

14) read_write(value) ▷ restart the operation
15) until is_quorum(M)
16) maxtag ← max

(
{m.reg.tag | m ∈M}

)
17) maxreg ← find

(
{m.reg | m ∈M and m.reg.tag = maxtag}

)
18) if value =⊥
19) value← maxreg.value
20) else
21) ts← maxtag.ts + 1
22) pid← pi

phase2
23) send ⟨WRITE, ⟨⟨ts, pid⟩, value⟩, cnt, e⟩ to all servers
24) M ← ∅
25) repeat
26) upon receipt of message ⟨WRITEACK, reg, cnt, e, w⟩
27) if cepoch = e
28) M ←M ∪ {⟨reg, cnt, e, w⟩}
29) else
30) if cepoch < e
31) cepoch← e

32) read_write(value) ▷ restart the operation
33) until is_quorum(M)
34) return value

the number of epochs are finite. Hence, the operation o will eventually be
executed.

1.3) Operation o is concurrent with uninstalling epoch lepoch so that read-
write operations are disabled. We can conclude from Lemma 6 that the
process of uninstalling epoch lepoch eventually terminates. After that,

4.5. READ-WRITE PROTOCOLS 55

Algorithm 9 The server side of the read-write protocols - server si

variables
1) register[tag[ts, pid], val]← ⟨⟨0,⊥⟩,⊥⟩

function tag()
2) return register.tag

function register()
3) return register

function set_register(ts, pid, val)
4) return register ← ⟨⟨ts, pid⟩, val⟩

upon receipt of message ⟨READ, cnt⟩ from process p
5) cepoch← cepoch() from Algorithm 7
6) weight← weight(cepoch)
7) send ⟨READACK, ⟨tag, val⟩, cnt, cepoch, weight⟩ to process p

upon receipt of message ⟨WRITE, ⟨tag, val⟩, cnt, e⟩ from process p
8) cepoch← cepoch() from Algorithm 7
9) weight← weight(cepoch)

10) if cepoch = e
11) if register.tag < tag
12) register ← ⟨tag, val⟩
13) send ⟨WRITEACK, cnt, cepoch, weight⟩ to process p

read-write operations are enabled again. Then, we reach to other cases or
sub-cases.

2) Client c receives a response from a server with epoch e such that c.cepoch ̸=
e. If c.cepoch < e, client c updates its current. Then, the client restarts the
operation (cannot start phase phase2). This case is similar to sub-case 1.2.

3) Operation o is concurrent with uninstalling epoch lepoch so that read-write
operations are disabled. This case is similar to sub-case 1.3.

Storage atomicity. We have to prove that the read-write protocols of our
weighted storage implement an atomic read-write register (Definition 5). The
sketch of the proof is as follows.

Lemma 7. Each phase of a read-write operation always finishes in the last
installed epoch in the system (lepoch).

Proof. We prove the lemma by contradiction. For the sake of contradiction,
consider a client c that finishes a phase ph by receiving a quorum of replies
from servers (say, ρ) in epoch v < lepoch. Without loss of generality, assume
that e.succ = lepoch. According to Lemma 2, by installing epoch lepoch in
the system, at least a weighted majority of servers (say, ρ′) in epoch e had
uninstalled epoch e; therefore, a weighted majority of servers in epoch e cannot

56 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

participate in phase ph. Since ρ ∩ ρ′ = ∅ (quorum intersection property is not
satisfied), we have a contradiction.

Lemma 8. Each read-write operation always finishes in the last installed epoch
in the system (lepoch).

Proof. Both read and write phases of each read-write operation of Algorithm 8,
are executed in the same epoch. Each phase of a read-write operation always
finishes in the last installed epoch in the system according to Lemma 7 that
completes the proof.

Let R be the register and write(β) be the operation to write the value β in
R with an associated tag tag(β).

Lemma 9. Let α be the value of last write operation completed in epoch e =
lepoch. Then, in the next epoch e.succ, one of the following cases may happen.
(1) If there is no concurrent write operation with changing epoch from e to
e.succ, then α is propagated to epoch e.succ. (2) If changing epoch from e to
e.succ is concurrent with a write operation write(β) such that tag(α) < tag(β),
then either α or β is propagated to e.succ.

Proof. Case 1. Since there is no concurrent write operation with changing epoch
from e to e.succ, servers by executing Lines 17-22 of Algorithm 7, propagate α
to epoch e.succ. Case 2. Three following sub-cases should be considered. (a) No
server in e updated its local state with β, tag(β) before installing e.succ. We can
reduce this case to the Case 1. (b) Some servers in e store β, tag(β) and some
servers store α, tag(α). Due to Lemma 7 and Lemma 8, client restarts write(β)
and tries it later. (c) A weighted majority of servers in e stores β, tag(β), so
this value should be written to epoch e.succ.

Lemma 10. Assume that a read operation read1 returns a value α1 at time te
1,

which has an associated tag tag1. A read operation read2 started at time ts
2 > te

1
returns a value α2 associated with a tag tag2 such that either: (1) tag1 = tag2
and α1 = α2, or (2) tag1 ≤ tag2 and α2 was written after α1.

Proof. Assume that read1 starts at time ts
1 and read2 ends at time te

2, then
ts
1 < te

1 < ts
2 < te

2. There are four possible, mutually exclusive, following cases.
Case 1. There is no concurrent changing epoch. For this case, the behavior

of the algorithm is the same of the basic protocol. Case 2. There is a concurrent
changing epoch with read1 (ts

1 < t′ < te
1). Since t′ < te

1 < ts
2, the epoch changer

algorithm installs e.succ before both s2 starts and s1 ends. Consequently, from
Lemma 7 and Lemma 8 both read1 and read2 finish in epoch e.succ. Now, there
is no difference between this case and Case 1. Case 3. There is a concurrent
changing epoch between read1 and read2 (te

1 < t′ < ts
2). By using Lemma 9,

we can ensure the correctness of this lemma. Case 4. There is a concurrent
changing epoch with read2 (ts

2 < t′ < te
2). This case is similar to Case 2.

Theorem 6. The read-write protocols implement an atomic read-write register.

Proof. This proof follows directly from Lemma 10.

4.6. MONITORING SYSTEM 57

4.6 Monitoring System

We focus on considering latency instead of throughput because throughput can
be effectively improved by adding more resources (CPU, memory, faster disks)
to servers or using better links. However, latency in geo-distributed storage
systems will be affected by the speed of light limit and perturbations caused by
bandwidth sharing [58].

In the WMQS, a weight is assigned to each server based on the server’s
latency or throughput.

In the process of assigning weights to the servers, the weights of servers
should be in accordance with the latency scores of servers to improve the quorum
latency of the storage system. In further detail, if the latency score of server si

is greater than sj , then wj < wi. The first step for assigning such weights to
servers is to present a monitoring system by which the latency scores of servers
can be computed. The monitoring system is executed by servers and presents
the following operations:

– latency(s, rtl) that can be called by a client c ∈ C and states that the round-
trip latency of a communication between client c and server s ∈ S is equal
to rtl,

– lscore(s) that can be called by each server and returns the latency score of
server s ∈ S.

Each client calls operation latency to provide input to the monitoring sys-
tem (Figure 4.3a). Then, the monitoring system computes the latency scores of
servers based on such inputs. The monitoring system can be implemented in dif-
ferent ways; however, to implement it efficiently, clients utilize only the messages
used to execute read-write operations1 in such a way that (a) the round-trip la-
tencies of client-server communications are measured using the first phases of
read-write operations, (b) such measured latencies are sent to the monitoring
system using the messages of the second phases of the operations (Figure 4.3b).

The implementation consists of two modules– ClientServerMS and ServerServerMS.
Each server si ∈ S has an ordered set to store the latency scores of servers, de-
noted by lscoresi = ⟨ls1, . . . , lsj , . . . , lsn⟩, where lsj is a variable to store the
latency score of server sj .

ClientServerMS module. Each client c, for the first phase (ph1) of each read-
write operation, creates an ordered set denoted by rtls = ⟨rtl1, . . . , rtlj , . . . , rtln⟩
to store the round-trip latencies of servers for executing ph1 (Figure 4.4). In fur-
ther detail, the value of variable rtlj is computed as follows: rtlj = min(mrtl, t2

j−
t1
j), where mrtl is a pre-defined constant for the maximum round-trip latency,

t1
j is the time that client c sends the READ message to server sj , and t2

j is

1As a reminder, each read-write operation executed by client c ∈ C consists of two consec-
utive phases– ph1 and ph2. In phase ph1, client c sends a READ message to (a quorum of)
servers. Then, client c waits until receiving READACK messages from a quorum of servers.
After finishing ph1, client c starts ph2 by sending a WRITE message to (a quorum of) servers.

58 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

(a) The inputs of the monitoring system
are the round-trip latencies of client-server
communications. Each client calls operation
latency to send the round-trip latency of its
communication with a server to the moni-
toring system.

(b) Clients utilize the messages used
to execute the phases– ph1 and ph2–
of read-write operations for measur-
ing the round-trip latencies of client-
server communications and sending
such latencies to the monitoring sys-
tem.

Figure 4.3: The relationship between the clients and the monitoring system

the time that client c receives the READACK message sent by sj . Note that a
client might finish the first phase of a read-write operation and start the sec-
ond phase of the operation while it has not received the READACK messages
of some servers. In such situations, it is required to use mrtl as the round-trip
latency of the communications with the servers that their messages have not
been received.

Client c, after finishing the first phase and by starting the second phase
of the operation, attaches the ordered set rtls to its WRITE messages (Figure
4.4). Each server si has a set called history_rtls to store every rtls that is
attached to a received WRITE message. Servers can compute the latency scores
of servers based on set history_rtls in different ways. However, we use the
following function named history_rtls2lscores to compute the latency scores of
servers:

▷ the algorithm executed by server si

▷ lscoresi = ⟨ls1, . . . , lsj , . . . , lsn⟩

function history_rtls2lscores(history_rtls)
1) ⟨tls1, . . . , tlsj , . . . , tlsn⟩ ← ⟨0, . . . , 0, . . . , 0⟩
2) for j = 1 : n
3) r1 ← sort({rtls[j] | ∀ rtls ∈ history_rtls})
4) r2 ← remove the first 1/3 and the last 1/3 values of r1
5) tlsj ← average(r2)
6) lscoresi ← (lscoresi + ⟨tls1, . . . , tlsj , . . . , tlsn⟩)/2

Function history_rtls2lscores takes as an input set history_rtls. To compute
the latency score of server sj : (a) the round-trip latencies of server sj stored

4.7. PERFORMANCE EVALUATION 59

in every set rtls ∈ history_rtls are extracted, then the extracted values are
sorted (Line 3), (b) the outlier values are removed from the sorted set (Line
4), (c) the average of the remaining set is computed as the temporary latency
score of server sj (Line 5), and (d) the average of the temporary latency score
of server sj and the stored one in set lscoresi are computed as the latency score
of server sj (Line 6). To remove the outlier values, we simply remove the first
1/3 and the last 1/3 values of the sorted set.

Figure 4.4: ClientServerMS module of the monitoring system

ServerServerMS module. Each server si broadcasts set lscoresi frequently.
On the other hand, each server si, by receiving set lscoresj from server sj ,
substitues the average of lscoresi and lscoresj with its set. Having the Ser-
verServerMS module in the implementation of the monitoring system is neces-
sary because a server si might not receive a WRITE message from a client while
another server sj can receive; servers si can retrieve the unreceived information
using the ServerServerMS module.

4.7 Performance Evaluation

In this section, we present a performance evaluation of the atomic storage based
on our weight reassignment protocol to quantify its quorum latency when com-
pared with atomic storage systems based on the following cases: (1) the (static)
MW-ABD [8] that uses an MQS, and (2) RAMBO [25] (a consensus-based re-
configuration protocol). We implemented prototypes of the MW-ABD, RAMBO,
and our protocols in the python programming language. Besides, we used KOL-
LAPS [26], a fully distributed network emulator, to create the network and links’
latencies.

Reconfiguration protocols present two special functions: join and leave.
Servers can join/leave the system by calling these functions. Reconfiguration

60 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

protocols require to be adapted to be used as weight requirement protocols. To
do so, we change join and leave functions of RAMBO to increase and decrease
functions, respectively. Each server can request to increase/decrease its weight
using increase/decrease functions. Particularly, each server can call increase
and decrease functions every δ unit of time (0 < δ is a constant) as follows to
increase/decrease its weight. Assume that the latency score of server s are lst

and lst′ respectively at time t and t′ = t+δ. Also, assume that the total latency
scores of servers computed by s are LSt and LSt′ respectively at time t and t′.
Server s calls function increase (resp. decrease) to increase (resp. decrease) its
weight at time t′ if lst/LSt + τ < lst′/LSt′ (resp. lst′/LSt′ + τ < lst/LSt),
where τ is a threshold for changing weights.

We used one 1.8 GHz 64-bit Intel Core i7-8550U, 32GB of RAM machine.
KOLLAPS executes each server and client in a separate Docker container [46],
and the containers communicate through the Docker Swarm [1]. We set the
numbers of servers and clients to five and ten, respectively. Moreover, at most,
one server can fail (f = 1). Each client sends a new read-write request as soon as
receiving the response of the previously sent read-write request. Since there is no
difference between read-write protocols regarding the number of communication
rounds in our read-write protocols, we set the read-write ratio to 0.5.

The duration of each run is 200 seconds. In each run, latencies of links are
changed every ∆ = 10 seconds while the processes are unaware of the value
of ∆. We executed 100 runs and computed the average of the results that is
depicted in Figure 4.5. The average quorum latencies of the MW-ABD, RAMBO,
and our protocol are 139, 118, and 101 milliseconds, respectively. The MW-
ABD protocol requires the responses of three processes to decide whether a
quorum is constituted while other protocols might constitute their quorums by
two processes. Therefore, the quorum latencies of other protocols are less than
the MW-ABD on average. In the RAMBO protocol, some views might be active
at a time, while in our protocol, there is only one installed view at any time;
hence, our protocol outperforms the RAMBO protocol on average.

4.7. PERFORMANCE EVALUATION 61

0 10 20 30 40 50 60 70 80 90 100
Time (second)

50

100

150

200

250

300

Qu
or

um
 L

at
en

cy
 (m

illi
se

co
nd

) RAMBO
MW-ABD

Our protocol

110 120 130 140 150 160 170 180 190 200
Time (second)

50

100

150

200

250

300

Qu
or

um
 L

at
en

cy
 (m

illi
se

co
nd

)

101

Figure 4.5: Quorum latency evaluation for our protocol, MW-ABD, and RAMBO.

62 CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT

Chapter 5

Epoch-Less Weight Reassignment

Abstract. In the epoch-based weight reassignment protocol pre-
sented in Chapter 4, donations and retakes performed during an
epoch e cannot be applied unless e is changed to e + 1, and all
correct servers should participate in the process of synchronizing
states. Besides, read-write operations might be restarted when the
epochs are changed to guarantee the liveness property of the atomic
storage. This chapter presents an epoch-less weight reassignment
protocol for implementing the WeakPairwise approach, in which each
donation and retake can be applied without requiring epochs. Con-
sequently, donations and retakes can be applied faster, and it is not
required to restart read-write operations. A few optimization tech-
niques are presented to improve the performance of the epoch-less
protocol further. One of the optimization techniques is to reduce
the number of participants in the process of synchronizing states to
only two servers.

5.1 Warmup

In this section, we present the overall idea of the epoch-less implementation
of the WeakPairwise abstraction. Assume that server si donates some part of
its weight, that is equal to a constant w, to another server sj . In the epoch-
based protocol, the donation process is started by sending a DNT message from
si to sj , that contains w and a sequence number dedicated to the donation.
Server si (resp. sj) should wait until changing the current epoch ek to the next
epoch ek+1 for decreasing (resp. increasing) its weight by w, and a quorum
of correct servers should participate in the process of synchronizing the states.
Then, server si can retake its donated weight at the time changing epoch ek+1
to ek+2.

However, in the epoch-less protocol, server si (resp. sj) creates a change to
decrease (resp. increase) its weight by w (resp. w′ ≤ w) as soon as sending (resp.
receiving) such a message. Then, server si starts a timeout called τretake for the

63

64 CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT

donation. After finishing such a timeout, server si asks a quorum of servers Q
to assist it to retake its donated weight by broadcasting a RTK message. Each
server s ∈ Q creates an auxiliary change (achange) and adds the created achange
to another set called achanges. An achange is a similar data structure to change
that is created by a server to assist a donor that wants to retake its donated
weight. In case every server s ∈ Q creates an achange and the donee is correct,
the donee cannot use the donated weight anymore. Each server s ∈ Q sends
a confirmation to the donor within a RTN message after creating an achange.
If the donor receives confirmations from all servers Q, it creates a change to
increase its weight. Every change is added to set chagnes. The whole process
is depicted in Figure 5.1.

Figure 5.1: Ilustration of donate and retake operations in the epoch-less weight
reassignment protocol

In this chapter, we explain the epoch-less protocol in further details. First,
we explain the donate operation in Section 5.2. Particularly, we determine (a)
the conditions that each donor should satisfy to be allowed to start a donation,
(b) what a donee must do when it receives the donated weight. Then, we present
the retake process in Section 5.3. A few optimization techniques are presented
in Section 5.4 to improve the performance of the epoch-less weight reassignment
protocol. We present the read-write protocols and an example that contains a
few donations, retakes, and clients’ read-write requests in Section 5.5.

5.2 Donate Operation
Algorithm 10 is the pseudocode of the donate operation. Each server has a
variable called sn initialized with 0 and used as a sequence number to distinguish
its donations. Also, each server has a set denoted by changes to store every
received change initialized with a change ⟨iw, si,−⟩ and a variable denoted by
register to store the tag and value of its local register. Each server has access
to two functions: • donated_but_not_retaken that determines the amount of

5.2. DONATE OPERATION 65

weight that is donated by a server but not retaken, and • read that returns the
tag and value of the atomic storage. The implementations of these functions
are presented later in this section.

Each server si can donate some part of its weight equal to w to another
server sj if the following conditions are satisfied:

C1) Each server si has a timeout called τdonation; if the timeout finishes, server
si can start a donation. Such a timeout is required to control the number
of donations made by each server.

C2) Server si should have some weight to donate to sj . Each server si is
allowed to donate at most iw−minw part of its weight. Indeed, server si

is allowed to donate weight w to another server sj if the following relation
holds: iw −minw ≤ donated_but_not_retaken(si)− w.

C3) Server si’s latency score should be significantly greater than sj ’s latency
score, i.e., lscore(sj) ≪ lscore(si). Note that the reason for not using
‘greater than’ and using ‘significantly greater than’ is to avoid unnecessary
weight reassignments.

If the conditions mentioned above are met, server si takes the following
steps: (a) creates a change for the donation and adds it to set changes, (b)
restarts timeout τdonation, (c) starts a timeout called τretake for the donation,
and (d) donates w to sj by sending a DNT message (Lines 4-10 of Algorithm
10). According to the following theorem and its corollary, decreasing the weight
of a server does not create a safety issue for atomic storage.
Theorem 7. Assume that the following relation holds for server si: iw−minw+
w ≤ donated_but_not_retaken(si). If si’s weight is decreased by w while tw is
not changed, the safety property of atomic storage is not violated, even without
updating the servers’ local registers.
Proof of Theorem 7. To prove this theorem, we present all possible cases. Then,
we show that no case violates the safety property. To do so, assume that the
last completed write operation was ⟨tagβ , β⟩. One of the following disjoint cases
can happen:
1) The state of si is ⟨tagβ , β⟩, and there is no concurrent write at the time of

changing si’s weight. Assume that servers are grouped based on their tags
in such a way that group Gt contains all servers with tag t. Accordingly,
si ∈ Gtagβ

. By decreasing si’s weight, just the total weight of group Gtagβ

will be decreased. Note that the total weight of each group Gt ̸= Gtagβ
is

less than tw/2 because the last write was done by servers of group Gtagβ
,

and tw is not changed. On the other hand, other groups’ total weights will
not change by decreasing si’s weight. Since there is no group Gt ̸= Gtagβ

with a total weight greater than tw/2, it is not possible to read a stale value.

2) The state of si is ⟨tagβ , β⟩, and there is at least one concurrent write at the
time of changing si’s weight. Similar to Case 1, it is not possible to read a
stale value.

66 CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT

3) The state of si is ⟨tagα, α⟩, where tagα < tagβ , and there is no concurrent
write at the time of changing si’s weight. It is clear that there is no need
to synchronize the states because the states of at least a weighted majority
of servers are equal to ⟨tagβ , β⟩, and by decreasing si’s weight, nothing can
happen for that weighted majority.

4) The state of si is ⟨tagα, α⟩, where tagα < tagβ , and there is at least one
concurrent write at the time of changing si’s weight. Similar to Cases 2 and
3, it is not possible to read a stale value.

5) The state of si is ⟨tagγ , γ⟩, where tag(β) < tag(γ), and there is no concurrent
write at the time of changing si’s weight. This case can happen if the write
⟨tagγ , γ⟩ has not completed at the time of decreasing si’s weight. Similar to
Case 1, it is not possible to read a stale value.

6) The state of si is ⟨tagγ , γ⟩, where tag(β) < tag(γ), and there is at least one
concurrent write at the time of changing si’s weight. This case can happen
if the write ⟨tagγ , γ⟩ has not completed at the time of decreasing si’s weight.
Similar to Case 1, it is not possible to read a stale value.

None of cases mentioned above violet the safety property. Moreover, since there
is no other case, the theorem holds.

Corollary 2. According to Theorem 7, during a donation made from a server
si to another server sj , the safety property of atomic storage is not violated if
the weight of server si decreases by w and the servers’ local registers are not
updated.

After receiving a DNT message from sj , server si accepts the donated weight
w if the following condition is satisfied:

C4) Server si’s latency score should be significantly less than sj ’s latency score,
i.e., lscore(si)≪ lscore(sj).

If the condition mentioned above is met, server si creates a change for the
received donation and adds the change to set changes so that its weight increases
by min(maxw−wi, w). Theorem 8 states that it is required to update the state
of server si before doing such a weight increment (Lines 11-13 of Algorithm 10).

Theorem 8. Assume that a server si with tag tagi receives either a DNT
message from another server sj or RTN messages from a quorum of servers.
Consequently, its weight might be increased. The safety property of atomic
storage might be violated if the local register of server si is not updated before
increasing its weight.

Proof of Theorem 8. This theorem is proved by contradiction. For the sake
of contradiction, assume that the safety property is not violated if the state of
server si is not synchronized before increasing its weight. Consider the following
example that is depicted in Figure 5.2. Let S = {s1, s2, s3, s4}, f = 1, and

5.3. RETAKE OPERATION 67

∆ = 1. Accordingly, tw = 5 and iw = 1.25. Assume that, at time t1, the
weights of servers s1, s2, s3, and s4 are 2, 1, 1, and 1, respectively. Also, assume
that the last written value is α with tag tagα and is stored by servers s1 and s2.

Server s1 returns the donated weights to other servers at time t2. Decreasing
s1’s weight does not create a safety issue according to Theorem 7. When servers
s2, s3, and s4 receive the returned weights, their weights are increased but there
is no safety violation if the states are not synchronized due to the assumption
made in the beginning of the proof. Then, each server s ∈ {s1, s2, s3} donates
weight w = 0.25 to server s4. Decreasing the weight of server s ∈ {s1, s2, s3}
weight does not create a safety issue according to Theorem 7. Consequently,
the new weights of servers s1, s2, s3, and s4 are 1, 1, 1, and 2, respectively. Note
that the weight of server s4 can be increased without requiring to synchronize
the states.

At time t3, client c sends a read request to servers s3 and s4. A quorum is
constituted by servers s3 and s4 because their total weight is greater than tw/2,
and result of the read request is ⊥ while it is not the last written value. We
find a safety violation, that is a contradiction as well so the theorem holds.

Figure 5.2: An example of violating the safety property

5.3 Retake Operation

Algorithm 11 is the pseudocode of the retake operation. Each server has a
set denoted by achanges to store auxiliary changes and has access to function
is_quorum. Function is_quorum determines whether a subset of servers is a
quorum. This operation begins if a server si has donated some part of its
weight to another server sj , and after a while, si wants to retake the donated
weight. In further detail, after sending the DNT message, server si starts a
timeout τretake for the donation. As soon as finishing such a timeout, server si

68 CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT

Algorithm 10 The donate operation - server si

variables
1) sn← 0
2) changes← {⟨iw, si,−⟩}
3) register[tag[ts, pid], val]← ⟨⟨0,⊥⟩,⊥⟩

upon timeout for τdonation

4) if iw −minw ≤ donated_but_not_retaken(si)− w
and ∃ sj ̸= si : lscore(sj)≪ lscore(si)

5) sn← sn + 1
6) d← ⟨DNT, si, sn, w, sj⟩
7) changes← changes ∪ {⟨−w, si, d⟩}
8) restart timeout τdonation

9) start timeout τretake for d
10) send d to sj

upon receipt of d = ⟨DNT, sj , s, w, si⟩ from sj

11) if lscore(si)≪ lscore(sj)
12) register ← read()
13) changes← changes ∪ {⟨w, si, d⟩}

broadcasts a RTK message to all servers using a RB_broadcast module (Line
2 of Algorithm 11).

Upon delivering a RTK message from RB_deliver, each server sk creates
an auxiliary change ⟨−w, sj , ⟨RTK, si, sn, w, sj⟩⟩ for the donation. Then, the
created achange is added to set achanges, and a RTN message is sent to si

(Lines 3-4 of Algorithm 11). Each server includes its changes and achanges to
the sending RTN message to si. Upon receiving a RTN message from a quorum
of servers, server si executes a read operation to avoid creating a safety issue
due to Theorem 8. Then, it creates a change and adds the created change to
its changes. (Lines 5-6 of Algorithm 11). Server si utilizes the information
included in the RTN messages to decide whether a quorum is constituted using
function is_quorum.

Consider a process p that receives messages from a subset of servers S ⊆ S
such that each server s ∈ S includes its changes and achanges in its message.
By using function is_quorum, that takes as input set S, process p can determine
whether a quorum is constituted. Function is_quorum is based on function
weight. Function weight takes as its input a server si and set S. Then, such
a function calculates and returns the weight of server si as follows: if si /∈ S,
zero is returned as the weight of si; otherwise, the summation of three following
values are returned: • iw, • the summation of all weights donated, received, and
retaken by si, and • the summation of all weights that are donated to si such
that their donors sent RTK messages using the RB_broadcast module (Line 2
of Algorithm 11) but si have not received such messages yet, i.e., the summation
of all achanges that are stored by servers of S about si but it is not stored by

5.4. OPTIMIZATION 69

Algorithm 11 The retake operation - server si

variables
1) achanges← ∅

upon timeout τreturn for ⟨DNT, si, s, w, sj⟩
2) RB_broadcast ⟨RTK, si, s, w, sj⟩

upon RB_deliver ⟨RTK, sj , s, w, sk⟩
3) achanges← achanges ∪ {⟨−w, sk, ⟨RTK, sj , s, w, sk⟩⟩}
4) send ⟨RTN, s, changes, achanges⟩ to sj

upon receipt of ⟨RTN, s, ∗, ∗⟩ from a quorum
5) register ← read()
6) changes← changes ∪ {⟨w, si, ⟨RTK, sj , s, w, si⟩⟩}

function donated_but_not_retaken(si)
7) return sum

(
{w | ⟨w, si, ⟨DNT, ∗, s, ∗, ∗⟩⟩ ∈ changes

⟨w, si, ⟨RTK, ∗, s, ∗, ∗⟩⟩ /∈ changes}
)

si.

function weight(si, S)
1) if si /∈ S
2) return 0
3) else
4) w ← sum

(
{w | ⟨w, si, ∗⟩ ∈ si.changes}

)
+

sum
(
{w | ⟨w, si, ⟨RTK, ∗, sn, ∗, ∗⟩⟩ ∈ s∗.achanges

and ⟨w, si, ⟨RTK, ∗, sn, ∗, ∗⟩⟩ /∈ si.changes}
)

5) return min(w, maxw)

In function is_quorum, in case the total weight of servers S is greater than
tw/2, S is a quorum.

function is_quorum(S)
1) if tw/2 < sum

(
{weight(si, S) |si ∈ S}

)
2) return yes
3) else
4) return no

5.4 Optimization

This section presents a few optimization techniques that can be used to improve
the performance of the epoch-less weight reassignment protocol.

70 CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT

Technique 1

Given a donation made from server si to server sj , if server sj ’s weight becomes
greater than maxw by adding the donated weight, server sj cannot use the
donated weight. Besides, server si cannot use the donated weight until finishing
the timeout dedicated to the donation. To improve the efficiency of this process,
server sj sends a message to server si by which the donated weight is returned
to server si. Server si uses the donated weight as soon as receiving the returned
message.

Technique 2

Each server asks all servers for retaking its donated weights To improve the
efficiency of the retake process, each server can batch its retake requests if it
has multiple retake requests that should be broadcasted to all servers. Then,
all the bached requests can be sent in a single request.

Technique 3

For each donation, the donor of the donation broadcasts a RTK message after
finishing the timeout τretake devoted to the donation. If the latency scores of the
donor and donee have not changed from the time of sending the DNT message
to finishing the timeout τretake devoted to the donation, it is not required to
retake the donated weight. Indeed, the donor can extend the lifetime of the
donation. Accordingly, the donor can only reset its timeout τretake devoted to
the donation without sending a RTK message.

5.5 Read-Write Protocols

Here, we present the read-write protocols of the epoch-less weight reassignment
protocol.

Reader-writer side. Algorithm 12 is the pseudocode of the reader-writers’
algorithm. The reader-writers’ algorithm is similar to the reader-writer’s algo-
rithm of the MW-ABD protocol [45] with only one difference: each reader or
writer, after receiving messages from a set S′ ⊆ S to decide whether a quorum
is constituted, calls function is_quorum (Lines 10 and 23 of Algorithm 12).

Server side. Algorithm 13 is the pseudocode of the servers’ algorithm. The
servers’ algorithm is similar to the servers’ algorithm of the MW-ABD protocol
with only one difference: each server includes its changes and achanges to its
responses.

Correctness. The following theorems states an atomic storage can be imple-
mented using the read-write protocols (Algorithm 12 and Algorithm 13) if the
weights of servers are reassigned by calling donate (Algorithm 10) and retake
(Algorithm 11) operations.

5.5. READ-WRITE PROTOCOLS 71

Algorithm 12 The reader-writer side of the read-write protocols - process pi

variables
1) opCnt← 0

functions for read-write atomic storage
2) read() ≡ read_write(⊥)
3) write(value) ≡ read_write(value)

function read_write(value)
ph1
4) opCnt← opCnt + 1
5) send ⟨READ, opCnt⟩ to all servers
6) S ← ∅
7) repeat
8) upon receipt of ⟨READACK, reg, opCnt,

changes, achanges⟩ from si

9) S ← S ∪ si.⟨reg, changes, achanges⟩
10) until is_quorum(S)
11) maxtag ← max

(
{si.reg.tag | si ∈ S}

)
12) maxreg ← find

(
{si.reg | si ∈ S and

si.reg.tag = maxtag}
)

13) if value =⊥
14) value← maxreg.value
15) else
16) ts← maxtag.ts + 1
17) pid← pi

ph2
18) send ⟨WRITE, ⟨⟨ts, pid⟩, value⟩, opCnt⟩ to all servers
19) S ← ∅
20) repeat
21) upon receipt of ⟨WRITEACK, reg, opCnt,

changes, achanges⟩ from si

22) S ← S ∪ si.⟨reg, changes, achanges⟩
23) until is_quorum(S)
24) return value

Safety of the atomic storage

Lemma 11. Assume that there is no change from time t1 to time t2. Also,
assume that set S1 ⊆ S (resp. S2 ⊆ S) is determined as a quorum by func-
tion is_quorum such that every server s1 ∈ S1 (resp. every server s2 ∈ S2)
is contacted from t1 to t2. Then, two quorums S1 and S2 have a non-empty
intersection, i.e, S1 ∩ S2 ̸= ∅.

Proof. A set S′ ⊆ S is determined as a quorum by function is_quorum if the

72 CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT

Algorithm 13 The server side of the read-write protocols - server si

upon receipt of ⟨READ, cnt⟩ from p
1) send ⟨READACK, register, cnt, changes,

achanges⟩ to p

upon receipt of ⟨WRITE, ⟨tag, val⟩, cnt⟩ from p
2) if register.tag < tag
3) register ← ⟨tag, val⟩
4) send ⟨WRITEACK, cnt, changes, achanges⟩ to p

following condition is satisfied: the total weight of servers S′ is greater than
tw/2. We use proof by contradiction to prove S1 ∩ S2 ̸= ∅, and for the sake of
contradiction, we assume that S1 ∩ S2 = ∅.

Let tw1 and tw2 be equal to the total weight of servers S1 and S2, respec-
tively. We have: {

tw/2 < tw1

tw/2 < tw2
⇒ tw < tw1 + tw2

Since S1∩S2 = ∅, the total weight of servers {S1∪S2} is equal to tw1+tw2 > tw;
on the other hand, we know that {S1 ∪ S2} ⊆ S and the total weight of servers
S is equal to tw; hence, we find a contradiction.

Lemma 12. Assume that a read operation r1 returns ⟨tagα, α⟩ at time te
α. Also,

assume that another read operation r2 started at time ts
β > te

α returns ⟨tagβ , β⟩.
If there is only one change at time t such that te

α < t < ts
β, one of the following

cases happen: (1) tagα = tagβ and α = β, or (2) tagα ≤ tagβ and β was written
after α.

Proof. Without loss of generality, assume that the change increases the weight
of a server si. Since there is only one change, the weights of other servers are
not reassigned. Reassigning server si’s weight is the only factor that causes the
constitution of new quorums; since before accomplishing such a weight reassign-
ment, server si executes a read operation to update its register, this lemma is
similar to Lemma 11.

Lemma 13. Assume that a read operation r1 returns ⟨tagα, α⟩ at time te
α. Also,

assume that another read operation r2 started at time ts
β > te

α returns ⟨tagβ , β⟩.
If there is at least one change at time t such that te

α < t < ts
β, one of the

following cases happen: (1) tagα = tagβ and α = β, or (2) tagα ≤ tagβ and β
was written after α.

Proof. Without loss of generality, assume that there are two changes c1 and c2
from time te

α to time ts
β . If one of these changes starts after finishing the other

one, the lemma holds because the second change executes a read operation.

5.5. READ-WRITE PROTOCOLS 73

In case these changes are concurrent, (without loss of generality, assume that
changes c1 and c2 are made on servers s1 and s2, respectively) we have to show
that the following quorums have an intersection: (a) a quorum constituted by
s1 (b) a quorum constituted by s2 (c) a quorum constituted by both s1 and s2
(d) a quorum constituted by none of s1 and s2. It is straightforward to show
that these quorums have an intersection. Consequently, operation r2 returns
the most up-to-date value.

Lemma 14. Assume that a read operation read1 returns a value α1 at time
te
1 with an associated tag tag1. Also, assume that another read operation read2

started at time ts
2 > te

1 returns a value α2 associated with tag tag2. Then, one
of the following cases happen: (1) tag1 = tag2 and α1 = α2, or (2) tag1 ≤ tag2
and α2 was written after α1.

Proof. Assume that read1 starts at time ts
1 and read2 ends at time te

2, then
ts
1 < te

1 < ts
2 < te

2. There are four mutually exclusive cases:

a) There is no concurrent change. For this case, the lemma holds according to
Lemma 11.

b) There is a concurrent change with read1 at time t′ such that ts
1 < t′ < te

1.
For this case, the lemma holds according to Lemma 12.

c) There is at least one change between read1 and read2. For this case, the
lemma holds according to Lemma 13.

d) There is a concurrent change with read2 at time t′ such that ts
2 < t′ < te

2.
This case is similar to Case 2.

Theorem 9. The storage system implemented using the read-write protocols
(Algorithm 12 and Algorithm 13) is an atomic storage.

Proof. According to Lemma 14, the theorem holds.

Theorem 10. Atomic storage implemented using the read-write protocols (Al-
gorithm 12 and Algorithm 13) is live.

Proof. Since at most f servers might fail, there are n − f servers in the worst
case. The minimum value for the total weight of n− f servers is equal to n− f .
Since tw/2 < n− f , a quorum can be constituted, i.e., the system remains live
even in the worst case scenario.

An example
The following example contains a few calls of donate, retake, and clients’ read-
write operations (Figure 5.3). Let S = {s1, s2, s3, s4}, C = {c1, c2}, n =
4, f = 1. Accordingly, iw = 1.25, tw = 5, and maxw = 2. The local
register of each server is initialized with ⟨⊥,⊥⟩. Also, for each server, sets

74 CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT

changes and achanges are initialized with {⟨iw, si,−⟩} and ∅, respectively.
Client c1 executes write(α), and registers of servers s2, s3, and s4 are up-
dated. Note that at least three severs are required to constitute a quorum
at this time. Server s1 donates weight 0.25 to s2. Consequently, s1.changes =
{⟨iw, s1,−⟩, ⟨−0.25, s1, ⟨DNT, s1, 1, 0.25, s2⟩⟩}, and w1 = 1. On the other hand,
server s2 executes a read operation after receiving the donation. The read op-
eration is executed by quorum {s1, s2, s3}. Then,
s2.changes = {⟨iw, s1,−⟩, ⟨+0.25, s2, ⟨DNT, s1, 1, 0.25, s2⟩⟩}, and w2 = 1.5.

Client c1 executes write(β). Note that either {s2, s3} or {s2, s4} is a quorum
at this time. Assume that the constituted quorum is {s2, s3}, and registers of
servers s2 and s3 are updated. Then, server s1 sends a RTK message to s2 for re-
taking its donated weight. Server s2 creates a change ⟨−0.25, s2, ⟨RTK, s1, 1, 0.25, s2⟩⟩
and adds the created change to set s2.chagnes so w2 = 1.25; then, it sends a
RTN message to s1. After receiving the RTN message, server s1 executes a read
operation. The read operation is executed by quorum {s1, s2, s3}. Then, server
s1 creates a change ⟨0.25, s1, ⟨RTK, s1, 1, 0.25, s2⟩⟩ and adds the created change
to set s1.chagnes so w1 = 1.25.

Server s1 donates weight 0.25 to s3 after a while. Client c1 executes write(γ),
and a quorum by server s1, s2, and s4 is constituted. After that, server s1
sends a RTK message to s3 for retaking its donated weight, but server s3 does
not respond the retake request on time so that server s1 broadcasts a RTK
message to all servers. Servers s2 and s4 send their responses to s1; accordingly,
server s1’s weight becomes 1.25 again. Also, for each server si ∈ {s1, s2, s4},
si.achangess = {⟨−0.25, s3, ⟨RTK, s1, 2, 0.25, s3⟩⟩}

Client c1 executes operation read() and a quorum by servers {s2, s3, s4} is
constituted. Since servers s2 and s4 have auxiliary changes to show that the do-
nated weight by server s1 to s3 was retaken, change ⟨0.25, s3, ⟨DNT, s1, 2, 0.25, s3⟩⟩ ∈
s3.changes is not considered in computing s3’s weight.

Figure 5.3: An example of calling donate, retake, and clients’ read-write opera-
tions

Chapter 6

Conclusion

This thesis investigates the problem of enhancing the performance of distributed
storage systems based on the majority quorum system and can be implemented
in asynchronous, failure-prone distributed systems. We consider a conventional
technique to enhance the performance of such systems that is to replace the
majority quorum system with the dynamic weighted majority quorum system.
Since the dynamic weighted majority quorum system is based on weight reas-
signment protocols, we formulate the problem of reassigning weights in asyn-
chronous, failure-prone distributed systems.

We investigate three approaches by which weight reassignment protocols can
be constructed. We show that two of the approaches cannot be implemented
in asynchronous, failure-prone distributed systems regardless of how they are
implemented. Then, we conclude that a weight reassignment protocol cannot
rely on any weight reassignment approach.

To show the impossibility of implementing a weight reassignment approach
in asynchronous, failure-prone distributed systems, we use the notion of con-
sensus number. In further detail, we treat a weight reassignment approach as
a concurrent object; then, we show how the consensus can be solved using the
object; since consensus cannot be implemented in asynchronous, failure-prone
distributed systems, we conclude that the weight reassignment approach cannot
be implemented in asynchronous, failure-prone distributed systems as well.

We show that one of the investigated approaches can be employed to con-
struct a weight reassignment protocol that can be implemented in asynchronous,
failure-prone distributed systems. We propose two weight reassignment proto-
cols based on that approach. Then, we construct atomic storage based on the
dynamic weighted majority quorum system such that the servers’ weights can
be reassigned over time using the proposed weight reassignment protocols.

Due to the similarity of the weight reassignment and reconfiguration prob-
lems, we also investigate the reconfiguration problems. We present a new variant
of reconfiguration problems called the conditional reconfiguration problem. The
conditional reconfiguration problem is similar to the standard asynchronous re-
configuration problem with only one difference: a condition related to the size of

75

76 CHAPTER 6. CONCLUSION

configurations should be satisfied. We show that the conditional reconfiguration
problem has no asynchronous implementation.

During the course of this research, we have found several ideas, how the
insights and techniques from this thesis could be applied and extended. In this
manuscript, we present a novel consensus-free and crash fault-tolerant weight
reassignment protocol that can be used to improve the performance of atomic
read/write storage systems. We assume that the set of servers does not change
over time; however, our work can be extended to consider that servers can leave
and new servers can join the system. Besides, every client sends each of its
requests to all servers. Working on using strategies for selecting a subset of
servers to send requests for improving the network congestion can be another
direction for future improvement. Extending the failure model to Byzantine
failures could also be another direction for future work.

Bibliography

[1] Docker swarm. Accessed: 19-10-2021.

[2] Etcd. https://github.com/etcd-io/etcd. Accessed: 2022-01-05.

[3] Divyakant Agrawal and Amr El Abbadi. The tree quorum protocol: An
efficient approach for managing replicated data. In VLDB, volume 90,
pages 243–254, 1990.

[4] Marcos K Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin,
Alexander Shraer, et al. Reconfiguring replicated atomic storage: A tu-
torial. Bulletin of the EATCS, pages 84–108, 2010.

[5] Marcos K Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer.
Dynamic atomic storage without consensus. Journal of the ACM, 58:1–32,
2011.

[6] Eduardo Alchieri, Alysson Bessani, Fabíola Greve, and Joni Fraga. Efficient
and modular consensus-free reconfiguration for fault-tolerant storage. In
OPODIS, pages 1–26, 2017.

[7] Yair Amir and Avishai Wool. Optimal availability quorum systems: Theory
and practice. Inf. Process. Lett., 65:223–228, 1998.

[8] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly
in message-passing systems. Journal of the ACM, 42:124–142, 1995.

[9] Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots
using lattice agreement. Distributed Computing, 8(3):121–132, 1995.

[10] D. Barbara and H. Garcia-Molina. The Reliability of Voting Mechanisms.
IEEE Trans. Comput., 36:1197–1208, 1987.

[11] Christian Berger, Hans P. Reiser, Joao Sousa, and Alysson Neves Bessani.
Aware: Adaptive wide-area replication for fast and resilient byzantine con-
sensus. IEEE Transactions on Dependable and Secure Computing, 2020.

[12] Eric Brewer. Cap twelve years later: How the" rules" have changed. Com-
puter, 45:23–29, 2012.

77

78 BIBLIOGRAPHY

[13] Shun Yan Cheung, Mostafa H Ammar, and Mustaque Ahamad. The grid
protocol: A high performance scheme for maintaining replicated data.
IEEE Transactions on Knowledge and Data Engineering, 4:582–592, 1992.

[14] Gregory Chockler, Rachid Guerraoui, Idit Keidar, and Marko Vukolic. Re-
liable distributed storage. Computer, 42(4):60–67, 2009.

[15] Danco Davcev. A dynamic voting scheme in distributed systems. IEEE
transactions on Software Engineering, 15:93–97, 1989.

[16] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of the ACM, 34:77–
97, 1987.

[17] Partha Dutta, Rachid Guerraoui, Ron R Levy, and Arindam Chakraborty.
How fast can a distributed atomic read be? In Proceedings of the twenty-
third annual ACM symposium on Principles of distributed computing, pages
236–245, 2004.

[18] Burkhard Englert, Chryssis Georgiou, Peter M Musial, Nicolas Nicolaou,
and Alexander A Shvartsman. On the efficiency of atomic multi-reader,
multi-writer distributed memory. In International Conference On Princi-
ples Of Distributed Systems, pages 240–254. Springer, 2009.

[19] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM,
32:374–382, 1985.

[20] Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a par-
simonious speculating snapshot. In DISC, pages 140–153, 2015.

[21] C. Georgiou, P. M. Musia, and A. A. Shvartsman. Developing a Consistent
Domain-Oriented Distributed Object Service. In Fourth IEEE Interna-
tional Symposium on Network Computing and Applications, pages 149–158.
2005.

[22] Chryssis Georgiou, Nicolas Nicolaou, Alexander C Russell, and Alexan-
der A Shvartsman. Towards feasible implementations of low-latency multi-
writer atomic registers. In 2011 IEEE 10th International Symposium on
Network Computing and Applications, pages 75–82. IEEE, 2011.

[23] David K. Gifford. Weighted voting for replicated data. SOSP ’79, pages
150–162, 1979.

[24] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. Acm Sigact News,
33:51–59, 2002.

[25] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. Rambo: a
robust, reconfigurable atomic memory service for dynamic networks. Dis-
trib. Comput., 23:225–272, 2010.

BIBLIOGRAPHY 79

[26] Paulo Gouveia, João Neves, Carlos Segarra, Luca Liechti, Shady Issa, Va-
lerio Schiavoni, and Miguel Matos. Kollaps: decentralized and dynamic
topology emulation. In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–16, 2020.

[27] Vincent Gramoli, Peter M. Musial, and Alexander A. Shvartsman. Oper-
ation Liveness and Gossip Management in a Dynamic Distributed Atomic
Data Service. In PDCS, pages 206–211, 2005.

[28] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and
Dragos-Adrian Seredinschi. The consensus number of a cryptocurrency.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 307–316, 2019.

[29] Rachid Guerraoui and Luís Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag, 2006.

[30] Theophanis Hadjistasi, Nicolas Nicolaou, and Alexander A Schwarzmann.
Oh-ram! one and a half round atomic memory. In International Conference
on Networked Systems, pages 117–132. Springer, 2017.

[31] Theophanis Hadjistasi and Alexander A Schwarzmann. Consistent dis-
tributed memory services: Resilience and efficiency. In 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[32] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13:124–149, 1991.

[33] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The
art of multiprocessor programming. Newnes, 2020.

[34] Hasan Heydari, Guthemberg Silvestre, and Luciana Arantes. Ef-
ficient consensus-free weight reassignment for atomic storage.
https://arXiv.org/abs/2110.10666.

[35] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. Zookeeper: Wait-free coordination for internet-scale systems. In
USENIX annual technical conference, volume 8, 2010.

[36] Sushil Jajodia and David Mutchler. Dynamic voting algorithms for main-
taining the consistency of a replicated database. ACM Transactions on
Database Systems, 15:230–280, 1990.

[37] Leander Jehl and Hein Meling. The case for reconfiguration without con-
sensus: Comparing algorithms for atomic storage. In OPODIS, 2017.

[38] Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new
approach to reconfiguration for atomic storage. In DISC, pages 154–169,
2015.

80 BIBLIOGRAPHY

[39] Ricardo Jiménez-Peris, Marta Patiño-Martínez, Gustavo Alonso, and Bet-
tina Kemme. Are quorums an alternative for data replication? ACM
Transactions on Database Systems (TODS), 28:257–294, 2003.

[40] Akhil Kumar. Hierarchical quorum consensus: a new algorithm for man-
aging replicated data. IEEE transactions on Computers, 40, 1991.

[41] Petr Kuznetsov and Andrei Tonkikh. Asynchronous reconfiguration with
byzantine failures. arXiv preprint arXiv:2005.13499, 2020.

[42] Leslie Lamport. On interprocess communication (part i). Distributed Com-
puting, 1:77–85, 1986.

[43] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32:18–25,
2001.

[44] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, Apr 1996.

[45] Nancy A Lynch and Alexander A Shvartsman. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts. In Proceedings
of IEEE 27th International Symposium on Fault Tolerant Computing, pages
272–281. IEEE, 1997.

[46] Dirk Merkel et al. Docker: lightweight linux containers for consistent de-
velopment and deployment. Linux journal, 2014:2, 2014.

[47] Achour Mostéfaoui, Michel Raynal, and Matthieu Roy. Time-efficient
read/write register in crash-prone asynchronous message-passing systems.
Computing, 101(1):3–17, 2019.

[48] Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system.
Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf, 4, 2008.

[49] Moni Naor and Avishai Wool. The Load, Capacity, and Availability of
Quorum Systems. SIAM J. Comput., 27:423–447, 1998.

[50] Diego Ongaro and John Ousterhout. In search of an understandable consen-
sus algorithm. In USENIX Annual Technical Conference, pages 305–319,
2014.

[51] Florian Oprea and Michael K Reiter. Minimizing response time for quorum-
system protocols over wide-area networks. In DSN, pages 409–418, 2007.

[52] Behrooz Parhami. Voting algorithms: Ieee transactions on reliability.
43:617–629, 1994.

[53] David A Patterson, Garth Gibson, and Randy H Katz. A case for redun-
dant arrays of inexpensive disks (raid). In Proceedings of the 1988 ACM
SIGMOD international conference on Management of data, pages 109–116,
1988.

BIBLIOGRAPHY 81

[54] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif Merchant, and Susan
Spence. Fab: building distributed enterprise disk arrays from commodity
components. ACM SIGPLAN Notices, 39:48–58, 2004.

[55] Frank B Schmuck and Roger L Haskin. Gpfs: A shared-disk file system for
large computing clusters. In FAST, volume 2, 2002.

[56] Fred B Schneider. Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–
319, 1990.

[57] Stavros Souravlas and Angelo Sifaleras. Trends in data replication strate-
gies: a survey. International Journal of Parallel, Emergent and Distributed
Systems, 34(2):222–239, 2019.

[58] João Sousa and Alysson Bessani. Separating the WHEAT from the Chaff:
An Empirical Design for Geo-Replicated State Machines. 2015.

[59] Alexander Spiegelman and Idit Keidar. On liveness of dynamic storage. In
International Colloquium on Structural Information and Communication
Complexity, pages 356–376, 2017.

[60] Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfigu-
ration: A tutorial (tutorial). In 19th International Conference on Principles
of Distributed Systems (OPODIS 2015), pages 1–14, 2016.

[61] Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfig-
uration: Abstraction and optimal asynchronous solution. In DISC, 2017.

[62] Robert H Thomas. A majority consensus approach to concurrency con-
trol for multiple copy databases. ACM Transactions on Database Systems
(TODS), 4:180–209, 1979.

[63] John Turek and Dennis Shasha. The many faces of consensus in distributed
systems. Computer, 25(6):8–17, 1992.

[64] Yuuki Ueda, Hideharu Kojima, and Tatsuhiro Tsuchiya. On the availabil-
ity of replicated data managed by hierarchical voting. In 2013 Interna-
tional Conference on Information Science and Cloud Computing Compan-
ion, pages 313–316. IEEE, 2013.

[65] Robbert Van Renesse and Fred B Schneider. Chain replication for support-
ing high throughput and availability. In OSDI, volume 4, 2004.

[66] Marko Vukolić. Quorum Systems: With Applications to Storage and Con-
sensus. 2012.

[67] Michael Whittaker, Aleksey Charapko, Joseph M Hellerstein, Heidi
Howard, and Ion Stoica. Read-write quorum systems made practical. In
PaPoC, pages 1–8, 2021.

82 BIBLIOGRAPHY

[68] Faraneh Zarafshan, Abbas Karimi, Syed Abdul Rahman Al-Haddad,
M Iqbal Saripan, and Shamala Subramaniam. Ancestral dynamic voting
algorithm for mutual exclusion in partitioned distributed systems. Inter-
national Journal of Distributed Sensor Networks, 9:120308, 2013.

	Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Research Problems
	1.3 Roadmap

	Chapter 2 Preliminaries and Background
	2.1 System Model
	2.2 Definitions Related to Quorum Systems
	2.3 Weight Assignment
	2.4 Weight Reassignment
	2.5 Atomic Storage
	2.6 Nomenclature

	Chapter 3 Weight Reassignment Approaches
	3.1 Warmup
	3.2 IncreaseDecrease Approach
	3.3 PerfectPairwise Approach
	3.4 WeakPairwise Approach
	3.5 Discussion
	3.5.1 Weight Reassignment vs. Reconfiguration
	3.5.2 Weight Reassignment vs. Asset Transfer

	Chapter 4 Epoch-Based Weight Reassignment
	4.1 Warmup
	4.2 Preliminaries
	4.3 PairwiseWR Algorithm
	4.4 EpochChanger Algorithm
	4.5 Read-Write Protocols
	4.6 Monitoring System
	4.7 Performance Evaluation

	Chapter 5 Epoch-Less Weight Reassignment
	5.1 Warmup
	5.2 Donate Operation
	5.3 Retake Operation
	5.4 Optimization
	5.5 Read-Write Protocols

	Chapter 6 Conclusion
	Bibliography

