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To cite this version:

Louis Fippo Fitime, Olivier Roux, Carito Guziolowski, Löıc Paulevé. Identification of Bifur-
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Abstract Aiming at assessing differentiation processes in complex dy-
namical systems, this paper focuses on the identification of states and
transitions that are crucial for preserving or pre-empting the reachabil-
ity of a given behaviour. In the context of non-deterministic automata
networks, we propose a static identification of so-called bifurcations, i.e.,
transitions after which a given goal is no longer reachable. Such trans-
itions are naturally good candidates for controlling the occurrence of
the goal, notably by modulating their propensity. Our method combines
Answer-Set Programming with static analysis of reachability properties
to provide an under-approximation of all the existing bifurcations. We
illustrate our discrete bifurcation analysis on several models of biological
systems, for which we identify transitions which impact the reachability
of given long-term behaviour. In particular, we apply our implementation
on a regulatory network among hundreds of biological species, supporting
the scalability of our approach.

1 Introduction

The emerging complexity of dynamics of biological networks, and in particu-
lar of signalling and gene regulatory networks, is mainly driven by the inter-
actions between the species, and the numerous feedback circuits it generates
[43,31,35,30]. One of the prominent and fascinating features of cells is their
capability to differentiate: starting from a multi-potent state (for instance, a
stem cell), cellular processes progressively confine the cell dynamics in a narrow
state space, an attractor. Deciphering those decisional processes is a tremendous
challenge, with important applications in cell reprogramming and regenerative
medicine.

Discrete models of network dynamics, such as Boolean and multi-valued
networks [42,4], have been designed with such an ambition. These frameworks
model nodes of the network by variables with small discrete domains, typically
§ Corresponding authors: carito.guziolowski@irccyn.ec-nantes.fr, loic.pauleve@lri.fr



Boolean. Their value changes over time according to the state of their parent
nodes. Exploring the dynamical properties of those computational models, such
as reachability (the ability to evolve to a particular state) or attractors (long-run
behaviors), allows to understand part of important cellular processes [36,1,5].

In classical control theory the reachability and safety control of discrete sys-
tems is an important topic which is both critical and challenging. Safety veri-
fication or reachability analysis aims at showing that starting from some initial
conditions a system cannot evolve towards to some unsafe region in the state
space. In a stochastic setting the different trajectories originating from one initial
state have a different likelihood and one can then evaluate what is the probabil-
ity that the system reaches the assigned set of states starting from a given initial
distribution of the set of initial states. In safety problems, where the evolution
of the system can be influenced by some control input, one should select it ap-
propriately so as to minimize the probability that the state of the system will
move to an unsafe set of states. In this work we address the computation of sets
of states from which the system can evolve into an undesired set of states given
a model represented as a discrete finite-state of interacting components, such as
an Automata Network. This topic is in particular highly relevant for systems
biology and systems medicine, since it can suggest intervention sites or thera-
peutic targets in Biological Regulatory Networks (BRNs) that may counteract
pathological behavior.

Contributions. In this work we introduce the notion of bifurcation in Auto-
mata Networks (ANs) and provide a scalable method for their identification
relying on declarative programming with Answer-Set Programming (ASP) [3].
A bifurcation corresponds to a transition after which the system looses the cap-
ability to reach a given goal state. Identifying bifurcations extensively relies on
the reachability problem, which is PSPACE-complete in ANs and related frame-
works [8]. In order to obtain an approach tractable on large biological networks,
we show how to combine techniques from static analysis of ANs dynamics, from
concurrency, and from constraint programming in order to relax efficiently the
bifurcation problem. Our method identifies correct bifurcations only (no false
positives), but, due to the embedded approximations, is incomplete (false negat-
ives may exist). To our knowledge, this is the first integrated method to extract
such decisive transitions from models of interaction networks.

Related work. Many works have been devoted to the control theory and sys-
tem verification; in particular in reachability analysis and safety control for sys-
tem verification. We limit here to those developed for discrete systems.

In the case of deterministic systems, a large number of methods have been
proposed to aid in the verification of safety-critical computer software and hard-
ware. Due to the inherently discrete nature of these systems, early attempts in
this area have concentrated on purely discrete systems [6]. A verification pro-
cedure has been proposed for discrete event dynamic systems in [25]. They use
a finite state machine representation to model discrete event dynamic systems,
temporal logic statements (to represent specifications imposed on their opera-
tions) and a model-checking verification method introduced by Clarke et al. [10]



to test if the given relationship between the model and the specifications holds.
The same method has been applied to the verification of programmable logic
controllers [27] and control procedures for batch plants [26].

For systems with complex behavior, the development of modeling frameworks
and verification methods has been done among others by [20]. Because of the sig-
nificant increase of the state space, many approximation methods were proposed
for reachability computation and can be grouped in two main approaches. The
first one is based on an approximate simulation relation to obtain an abstrac-
tion of the original system [19]. In the second approach, static analysis methods
inspired from Cousot et al. [11] analyze the system dynamic and cope with the
state-space explosion. In this group we can cite the development of static analysis
of reachability properties based on an over- and under-approximation using the
Process Hitting [30] and extended for the ANs. Besides methods that approx-
imated the computation of reachability, authors in [33,34] proposed methods for
safety verification that do not require the computation of reachable sets, but
instead relied on the notion of barrier certificates [32].

A key notion underlying network behavior is that state-space is organized
into a number of basins of attraction, connecting states according to their trans-
itions, and summing up the network’s global dynamics. For systems having many
attractors, some of them may correspond to desired behaviors, while others, to
unsafe regions. In the global network dynamic a system can move towards an
unsafe region. Therefore, beyond ensuring the properties reachability and safety
verification, proposing strategies to interfere on a system and force a desired
behavior is important. Previous works introduced the concept of Minimal Inter-
vention Sets (MISs) [23] for biological networks and later generalized in [37] for
addressing Boolean models of signaling networks. This concept allowed one to
choose an intervention strategy to provoke a desired/observed response in cer-
tain target nodes. Compared to the approach present of this paper, they do not
take into account the transient dynamics of the system, which limits consider-
ably the domain of predictions. [28,2] proposed approaches based on cut sets to
identify nodes/reactions whose perturbation would prevent the occurrence of a
given state/reaction. Whereas those prediction can help to control the reachab-
ility of an attractor, they do not allow to capture the differentiations processes,
as do bifurcations.

Outline Section 2 introduces the Automata Network formalisms on which our
method relies. The notion of bifurcation in ANs is introduced in section 3. In
section 4, we give a brief overview of methods for checking reachability properties
which is a core task for the characterization of bifurcations. In section 5, we
combine static analysis, dynamics unfolding, and ASP, aiming at providing a
scalable identification of the bifurcation transitions for a given goal. In section 6,
we evaluate a prototype implementation on several large biological models in
order to support the scalability of our approach. Section 7 concludes the paper.



2 Automata Networks

We consider an Automata Network (AN) as a finite set of finite-state machines
having transitions between their local states conditioned by the state of other
automata in the network. An AN is defined by a triple (Σ,S, T ) (definition 1)
where Σ is the set of automata identifiers; S associates to each automaton a
finite set of local states: if a ∈ Σ, S(a) refers to the set of local states of a;
and T associates to each automaton the list of its local transitions. Each local
state is written of the form ai, where a ∈ Σ is the automaton in which the state
belongs to, and i is a unique identifier; therefore given ai, aj ∈ S(a), ai = aj if
and only if ai and aj refer to the same local state of the automaton a. For each
automaton a ∈ Σ, T (a) refers to the set of transitions of the form t = ai

`−→ aj
with ai, aj ∈ S(a), ai 6= aj , and ` the enabling condition of t, formed by a
(possibly empty) set of local states of automata different than a and containing
at most one local state of each automaton.

Definition 1 (Automata Network (Σ,S, T )). An Automata Network (AN)
is defined by a tuple (Σ,S, T ) where

– Σ is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj} is the finite set of local states of auto-

maton a; S ∆
=

∏
a∈Σ S(a) is the finite set of global states;

LS
∆
=

⋃
a∈Σ S(a) denotes the set of all the local states.

– T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ,Ta ⊆ S(a) × 2LS\S(a) × S(a) with
(ai, `, aj) ∈ Ta ⇒ ai 6= aj and ∀b ∈ Σ, |` ∩ S(b)| ≤ 1, is the mapping from
automata to their finite set of local transitions.

We write ai
`−→ aj ∈ T

∆⇔ (ai, `, aj) ∈ T (a).

At any time, each automaton is in one and only one local state, forming the
global state of the network. Assuming an arbitrary ordering between automata
identifiers, the set of global states of the network is referred to as S as a shortcut
for

∏
a∈Σ S(a). Given a global state s ∈ S, s(a) is the local state of automaton

a in s, i.e., the a-th coordinate of s.
A local transition t = ai

`−→ aj ∈ T is applicable in a global state s ∈ S when
ai and all the local states in ` are in s. The application of the local transition,
noted s · t, replaces the local state of a with aj (definition 2). It results in
a (global) transition s

t−→ s′ where s′ = s · t. In this paper, we consider the
asynchronous semantics of ANs: only one local transition can be applied at a
time, meaning only one automaton changes its local state by the transitions
between two global states. In this semantics, different local transitions may be
applicable to a same state, which may potentially lead to very different dynamics.
The choice of the transition is non-deterministic. A global state s′ is reachable
from s, noted s→∗ s′, if and only if there exists a (possibly empty) sequence of
transitions leading from s to s′.



Definition 2 (Transition, reachabilility). Given a state s ∈ S and a local
transition t = ai

`−→ aj ∈ T such that s(a) = ai and ∀bk ∈ `, s(b) = bj, s · t is the
state s where ai has been replaced by aj:

∀b ∈ Σ, (s · t)(b) =

{
aj if b = a

s(b) otherwise

We then write s t−→ s′ where s′ = s·t. The reachability binary relation→∗ ⊆ S×S
satisfies

s→∗ s′ ∆⇔ s = s′ ∨ ∃t ∈ T : s
t−→ s′′ ∧ s′′ →∗ s′

Figure 1 represents an AN (Σ,S, T ) of 3 automata (Σ = {a, b, c}), with
S(a) = {a0, a1, a2}, S(b) = {b0, b1}, S(c) = {c0, c1, c2}, and 8 local transitions
defined as follows:

T (a) = {t1 = a1
∅−→ a0, t2 = a0

b0−→ a1, t3 = a0
b0,c0−−−→ a2}

T (b) = {t4 = b0
∅−→ b1, t5 = b1

a0−→ b0}

T (c) = {t6 = c0
a1−→ c1, t7 = c1

b1−→ c0, t8 = c1
b0−→ c2}

From the given initial state s0 = 〈a0, b0, c0〉, 3 transitions can be applied: t2, t3,
and t4; the application of the latter results in s0 · t4 = 〈a0, b1, c0〉 (automaton b
is now in state b1).

3 Bifurcations

From an initial state s0 and a goal local state, we call a bifurcation a transition
from a state where the goal is reachable to a state where the goal is not reachable,
i.e., there exists no sequence of transition that lead to a state containing the goal
local state.

Let us consider the AN of figure 1, with s0 = 〈a0, b0, c0〉 and the goal a2.
Figure 2 shows all the possible transitions from s0. The states with a gray back-
ground are connected to a state containing a2 (in thick/blue). The transitions
in thick/red are bifurcations: once in a white state, there exist no sequence of
transitions leading to a2. In other words, bifurcations are the transitions from a
gray state to a white state. In this example, t8 is the (unique) local transitions
responsible for bifurcations from s0 to a2.

In this paper, given an AN (Σ,S, T ), we are interested in identifying the local
transitions tb ∈ T that trigger a bifurcation from a state reached from s0 ∈ S for
a given goal, describing a set of states Sg ⊆ S. We call sb a global state where
a bifurcation occurs, and su the global state after the bifurcation: su = sb · tb.
The goal is reachable from sb but not from su. This is illustrated by figure 3.
Note that, as illustrated, sb is not inevitably reached: we allow the existence of
alternative paths of transitions to the goal.
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Figure 1. An example of Automata Network (AN).‘ Automata are represented by
labelled boxes, and local states by circles where ticks are their identifier within the
automaton – for instance, the local state a0 is the circle ticked 0 in the box a. A
transition is a directed edge between two local states within the same automaton. It
can be labelled with a set of local states of other automata. Grayed local states stand
for the global state 〈a0, b0, c0〉.

〈a2, b1, c0〉

〈a2, b0, c0〉 〈a1, b0, c0〉

〈a0, b0, c1〉

s0 = 〈a0, b0, c0〉

〈a1, b1, c0〉

〈a0, b1, c0〉

〈a1, b1, c1〉

〈a0, b1, c1〉

〈a1, b0, c1〉

〈a1, b0, c2〉

〈a0, b0, c2〉

〈a1, b1, c2〉

〈a0, b1, c2〉

t8

t8

Figure 2. Transition graph of the AN in figure 1 from the initial state s0 = 〈a0, b0, c0〉.
The goal a2 is in thick/blue; the states connected to the goal are in gray; the bifurcations
to the goal in thick/red, labelled with the local transitions in the AN definition.



s0

sb

Sg

su
tb

Figure 3. General illustration of a bifurcation. s0 is the initial state, Sg is a set of
states in which the goal local state is present. The dashed arrows represent a sequence
(possibly empty) of transitions. The plain red arrow is a bifurcation from a global state
sb to su, and tb is the associated local transition.

Definition 3 formalizes the notion of bifurcation, where the goal is specified by
a local state g1 (hence Sg = {s ∈ S | s(g) = 1}). Note that this goal specification
does not loose generality, as one can build an automaton g with local states g0
and g1, and with a local transitions from g0 to g1 conditioned by each desired
goal state.

Definition 3 (Bifurcation). Given an AN (Σ,S, T ), a global state s0 ∈ S and
a goal local state g1 with g ∈ Σ and g1 ∈ S(g), a bifurcation is a transition
sb

tb−→ su of the AN with sb, su ∈ S and tb ∈ T , such that s0 →∗ sb and ∀s′ ∈ S
where su →∗ s′, s′(g) 6= g1.

4 Reachability and formal approximations

The identification of a bifurcation as presented in the previous section can be
decomposed in three steps: we want to find sb ∈ S and tb ∈ T such that (1) sb is
reachable from s0 (s0 →∗ sb); (2) g1 is reachable from sb (∃sg ∈ S : sg(g) = g1 ∧
sb →∗ sg); (2) g1 is not reachable from su = sb ·tb (∀s ∈ S, su →∗ s⇒ s(g) 6= g1).
Therefore, alongside the enumeration of candidate sb and tb, reachability is at
the core of our bifurcation identification.

In this section, we give a brief overview of the basics of reachability checking,
stressing the methods we use in this paper.

4.1 State graph and partial order reductions

Given two states s, s′ of an AN (or an equivalent Petri net), verifying s→∗ s′ is
a PSPACE-complete problem [8].

The common approach for reachability checking is to build the (finite) set
of all the states reachable from s until finding s′, by exploring all the possible
transitions. However, such a set can be rapidly intractable with large models.
Techniques relying on symbolic representations, notably using Binary Decision
Diagrams (BDDs) and variants [21] can improve the scalability of this approach
by several orders of magnitude [9].



In many cases, numerous transitions modelled by ANs are concurrent : their
application is independent from each other. For instance, if t1 and t2 are concur-
rent in a state s, one can apply indifferently s · t1 · t2 and s · t2 · t1. Such features
can be exploited to provide very compact representations of the reachable states
in a concurrent system, taking into account the partial order of transition applic-
ations. Unfoldings, and more precisely their complete finite prefixes [13], allow
to compute efficiently such compact representations.

In this paper, part of our method uses complete finite prefixes of unfoldings
to compute the states that are reachable from the fixed initial state s0. Indeed,
because biological networks are typically very large, but also very sparse (each
node/automaton interacts with a few others, compared to the size of the net-
work), they exhibit a high degree of concurrency for their transitions, making
unfolding approaches very effective.

4.2 Formal approximations

When facing a large AN, it may turn out that the reachable state space is
too large for the aforementioned exact verification of reachability. Moreover,
the complexity of the reachability problem can be prohibitive when numerous
verifications have to be done, for instance when enumerating candidate initial
states (such as sb in our case for checking goal reachability from it).

In this paper, we rely on the reachability approximations for ANs introduced
in [29,15]. We will use both over-approximations (OA) and under-approximations
(UA) of the reachability problem: s→∗ s′ is true only if OA(s→∗ s′) is true and
s→∗ s′ is true if UA(s→∗ s′) is true; but the converses do not hold in general:

UA(s→∗ s′)⇒ s→∗ s′ ⇒ OA(s→∗ s′)

The approximations rely on static analysis by abstract interpretation of
AN dynamics. We give here the basic explanations for the over- and under-
approximation. The analysis rely on the decomposition of the systems dynamics
in automata, in order to derive necessary or sufficient conditions for a reachab-
ility property of the form s→∗ s′.

The core objects are the local paths within two local states ai, aj of a same
automaton a. We call ai aj an objective and define local-paths(ai aj) the
set of the acyclic paths of local transitions between ai and aj . Definition 4 gives
the formalization of local-paths where we use the following notations: for a local
transition t = ai

`−→ aj ∈ T , orig(t)
∆
= ai, dest(t)

∆
= aj , enab(t)

∆
= `; ε denotes the

empty sequence, and |η| is the length of sequence η.

Definition 4 (local-paths). Given an objective ai aj,

– if i = j, local-paths(ai ai)
∆
= {ε};

– if i 6= j, a sequence η of transitions in T (a) is in local-paths(ai aj) if and
only if orig(η1) = ai, dest(η|η|) = aj, ∀n, 1 ≤ n < |η|, dest(ηn) = orig(ηn+1),
and ∀n,m, |η| ≥ n > m ≥ 1, dest(ηn) 6= orig(ηm).



We write t ∈ η ∆⇔ ∃n, 1 ≤ n ≤ |η| : ηn = t. Given a local path η, η̃ denotes
the union of the conditions of all the local transitions composing it:

η̃
∆
=

⋃|η|
n=1 enab(ηn)

In the AN of figure 1, local-paths(a0  a2) = {a0
b0,c0−−−→ a2}; local-paths(c2  

c1) = ∅.
Focusing on the reachability of a single local state g1 from a state s where

s(g) = 0, the analyzes essentially start with the local paths in local-paths(g0 
g1): if g1 is reachable, then at least of the local path η has to be realizable,
meaning that all the local states of its conditions (η̃) should be reachable. This
lead to a recursive reasoning by repeating the procedure with the objectives from
s to the local states in η̃.

The dependence relationships between the local paths of the different auto-
mata can be represented as a graph, where the nodes are all the local states, all
the possible objectives, and all their local paths. Such a graph is called a Local
Causality Graph (LCG), and abstracts all the executions of the AN.

From a complexity point of view, local paths are computed for each pair of
local states within every automata; the length of a local path being at most the
number of local states within the automaton, the number of local paths is at
most polynomial in the number of local transitions and exponential in the size
of the single automaton. In practice, the automata are small, typically between
2 and 4 states for biological models. Therefore, LCGs turn out to be very small
compared to the reachable state space of biological networks. They have been
successfully applied for analyzing dynamics of ANs with hundreds or thousands
of automata, which were intractable with standard model-checking approaches
[29,28].

The over-approximation and under-approximation reduce to finding sub-
graphs of LCGs that satisfy some particular structural properties, which have
been proven to be necessary or sufficient for the reachability property, respect-
ively. Whereas the over-approximation can be verified in a time linear with the
LCG [29], the under-approximation we consider in this paper requires to enu-
merate over many possible sub-LCGs, but checking if a sub-LCG satisfies the
sufficient condition is linear in its size.

Note that further refinements of local-paths have been considered for the
mentioned approximations, but for the sake of simplicity, we stick to this coarse-
grained presentation in the scope of this paper.

Appendix A gives examples of LCGs satisfying necessary or sufficient condi-
tions for reachability properties in the AN of figure 1.

5 Identification of bifurcations using ASP

Among the states reachable from s0, we want to find a state sb from which (1)
the goal is reachable and (2) there exists a transition to a state from which the
goal is not reachable. Putting aside the complexity of reachabilities checking, the



enumeration of candidate states sb is a clear bottleneck for the identification of
bifurcations in an AN.

Our approach combines the formal approximations and (optionally) unfold-
ings introduced in the previous section with a constraint programming approach
to efficiently identify bifurcations. As discussed in the previous section, checking
the over-/under-approximations from candidate states and sub-LCGs is easy.
For the case of unfolding, checking if a state s belongs to the state space repres-
ented by a complete finite prefix is NP-complete [14]. Therefore, a declarative
approach such as Answer-Set Programming (ASP) [3] is very well suited for spe-
cifying admissible sb and tb, and obtaining efficient enumerations of solutions by
a solver.

We first present the general scheme of our method, and then given details on
its implementation with ASP.

5.1 General scheme

A sound and complete characterization of the local transitions tb ∈ T triggering a
bifurcation from state s0 to the goal g1 would be the following: tb is a bifurcation
transition if and only if there exists a state sb ∈ S such that

(C1) su 6→∗ g1 (C2) sb →∗ g1 (C3) s0 →∗ sb

where su = sb · tb, s 6→∗ g1
∆⇔ ∀s′ ∈ S, s →∗ s′ ⇒ s′(g) 6= g1 and s →∗ g1

∆⇔
∃sg ∈ S : sg(g) = g1 ∧ s→∗ sg.

However, in an enumeration scheme for sb candidates, checking reachability
and non-reachability of the goal from each sb candidate ((C1) and (C2)) is
prohibitive. Instead, we relax the above constraints as follows:

(I1#) ¬OA(su →∗ g1) (I2#) UA(sb →∗ g1)
(I3) sb ∈ unf-prefix(s0)

(I3#) UA(s0 →∗ sb)

where unf-prefix(s0) is the set of all reachable states from s0 represented as the
prefix of the unfolding of the AN which has to be pre-computed (section 4.1).
Either (I3) or (I3#) can be used, at discretion. From OA and UA properties
(section 4.2), we directly obtain:

(I1#)⇒ (C1) (I2#)⇒ (C2)
(I3)⇔ (C3)

(I3#)⇒ (C3)

Therefore, our characterization is sound (no false positive) but incomplete: some
tb might be missed (false negatives). Using (I3) instead of (I3#) potentially
reduces the false negatives, at the condition that the prefix of the unfolding is
tractable. When facing a model too large for the unfolding approach, we should
rely on (I3#) which is much more scalable but may lead to more false negatives.

Relying on the unfolding from sb (unf-prefix(sb)) is not considered here, as it
would require to compute a prefix from each sb candidate, whereas unf-prefix(s0)
is computed only once before the bifurcation identification.



5.2 ASP syntax and semantics

We give a very brief overview of ASP syntax and semantics that we use in the
next section. Please refer to [18,3,16] for an in-depth introduction to ASP.

An ASP program consists in a set of predicates, and logic rules of the form:
1 a0 ← a1, . . ., an, not an+1, . . ., not an+k.

where ai are atoms, terms or predicates in first order logic.
Essentially, such a logical rules states that when all a1, . . . , an are true and all

an+1, . . . , an+k are false, then a0 has to be true as well. a0 can be ⊥ (or simply
omitted): in such a case, the rule is satisfied only if the right hand side of the
rule is false (at least one of a1, . . . , an is false or at least one of an+1, . . . , an+k
is true). A solution consists in a set of true atoms/terms/predicates with which
all the logical rules are satisfied.

ASP allows to use variables (starting with an uppercase) instead of term-
s/predicates: these pattern declarations will be expanded to the corresponding
propositional logic rules prior to the solving. For instance, the following ASP
program has as unique (minimal) solution b(1) b(2) c(1) c(2).

2 c(X) ← b(X).
3 b(1).
4 b(2).

In the following, we also use the notation n { a(X) : b(X) } m which is true
when at least n and at most m a(X) are true where X ranges over the true b(X).

5.3 ASP implementation

We present here the main rules for implementing the identification of bifurcation
transitions with ASP. A significant part of ASP declarations used by (I1#),
(I2#), (I3), and (I3#) are generated from the prior computation of local-paths
and, in the case of (I3), of the prefix of the unfolding. Applied on figure 1, our
implementation correctly uncovers t8 as a bifurcation for a2.

Declaration of local states, transitions, and states Every local state
ai ∈ S(a) of each automaton a ∈ Σ are declared with the predicate ls(a,i).
We declare the local transitions of the AN and their associated conditions by
the predicates tr(id,a,i,j) and trcond(id,b,k), which correspond to the local
transition ai

{bk}∪`−−−−→ aj ∈ T . States are declared with the predicate s(ID,A,I)
where ID is the state identifier, and A, I, the automaton and local state present
in that state. Finally, the goal g1 is declared with goal(g,1).

For instance, the following instructions declare the automaton a of figure 1
with its local transitions, the state s0 = 〈a0, b0, c0〉, and the goal being a2:

1 ls(a,0). ls(a,1). ls(a,2).
2 tr(1,a,1,0).
3 tr(2,a,0,1). trcond(2,b,0).
4 tr(3,a,0,2). trcond(3,b,0). trcond(3,c,0).
5 s(0,a,0). s(0,b,0). s(0,c,0). goal(a,2).



Declaration of sb, tb, and su The bifurcation transition tb, declared as btr(b),
is selected among the declared transitions identifiers (line 6). If ai

`−→ aj is the
selected transition, the global state su (recall that su = sb · tb) should satisfy
su(a) = aj (line 7) and, ∀bk ∈ `, su(b) = bk (line 8). The state sb should then
match su, except for the automaton a, as sb(a) = ai (lines 9 and 10).

6 1 { btr(ID) : tr(ID,_,_,_) } 1.
7 s(u,A,J) ← btr(ID),tr(ID,A,_,J).
8 s(u,B,K) ← btr(ID),trcond(ID,B,K).
9 s(b,A,I) ← btr(ID),tr(ID,A,I,_).

10 s(b,B,K) ← s(u,B,K),btr(ID),tr(ID,A,_,_),B!=A.

(I1#) declaration of ¬OA(su →∗ g1) This part aims at finding the state
su from which g1 is not reachable. For that, we designed an ASP implementa-
tion of the reachability over-approximation presented in section 4.2. It consists
in building a Local Causality Graph (LCG) from pre-computed local-paths. A
predicate oa_valid(G,ls(A,I)) is then defined upon G to be true when the local
state ai is reachable from the initial state sG. The full implementation is given
in appendix B.1.

We instantiate a LCG u with the initial state su by declaring that the goal
is not reachable (oa_valid) (line 11).

11← oa_valid(u,ls(G,I)),goal(G,I).

(I2#) declaration of UA(sb →∗ g1) This part aims at finding the state sb
from which g1 is reachable. Our designed ASP implementation of the reachab-
ility under-approximation (section 4.2) consists in finding a sub-LCG G with
the satisfying properties for proving the sufficient condition. The edges of this
sub-LCG are declared with the predicate ua_lcg(G,Parent,Child). The graph is
parameterized by (1) a context which specifies a set of possible initial states and
(2) an edge from the node root to the local state(s) for which the simultaneous
reachability has to be decided from the supplied context. The full implementa-
tion is given in appendix B.2.

We instantiate the under-approximation for building a state sb from which
the goal g1 is reachable: g1 is a child of the root node of graph b (line 12).
The context is subject to the same constraints as sb from su (lines 13 and 14
reflect lines 9 and 10). Then, sb defines one local state per automaton among
the context from which the reachability of g1 is ensured (line 15), and according
to lines 9 and 10.

12 ua_lcg(b,root,ls(G,I)) ← goal(G,I).
13 ctx(b,A,I) ← btr(ID),tr(ID,A,I,_).
14 ctx(b,B,K) ← s(u,B,K),btr(ID),tr(ID,A,_,_),B!=A.
15 1 { s(b,A,I) : ctx(b,A,I) } 1 ← ctx(b,A,_).



(I3) declaration of sb ∈ unf-prefix(s0) Given a prefix of an unfolding from s0
(section 4.1), checking if sb is reachable from s0 is an NP-complete problem [14]
which can be efficiently encoded in SAT [22] (and hence in ASP). A synthetic
description of the ASP implementation of reachability in unfoldings is given in
appendix C. The interested reader should refer to [13]. Our encoding provides a
predicate reach(a,i) which is true if a reachable state contains ai. Declaring sb
reachable from s0 is done simply as follows:

16 reach(A,I) ← s(b,A,I).

(I3#) declaration of UA(s0 →∗ sb) An alternative to (I3) which does not
require to compute a complete prefix of the unfolding is to rely on the under-
approximation of reachability similarly to (I2#). The under-approximation is
instantiated for the reachability of sb from s0 with the following statements:

17 ua_lcg(0,root,ls(A,I)) ← s(b,A,I).
18 ctx(0,A,I) ← s(0,A,I).

6 Experiments

We evaluate our method for the computation of bifurcation transitions in models
of actual biological networks showing differentiation capabilities. We have selec-
ted three networks showing at least two attractors reachable from a same initial
state. In these cases, by supplying an adequate goal state representing one of
the attractor, we expect to identify transitions causing a bifurcation from this
attractor. We start by introducing our three case studies.

Immunity control in bacteriophage lambda (Lambda phage) . A number of
bacterial and viral genes take part in the decision between lysis and lysogeniz-
ation in temperate bacteriophages. In the lambda case, at least five viral genes
(refered to as cI, cro, cII, N and cIII) and several bacterial genes are involved. We
apply our method on an automata network equivalent to the model introduced
in [41] and with two different goals, corresponding to lysis or lysogenization.

Epidermal Growth Factor & Tumor Necrosis Factorα (EGF/TNF) is a model
that combines two important mammalian signaling pathways induced by the
Epidermal Growth Factor (EGF) and Tumor Necrosis Factor alpha (TNFα)
[24,7]. EGF and TNFα ligands stimulate ERK, JNK and p38 MAPK cascades,
the PI3K/AKT pathways, and the NFkB cascade. This network encompasses
cross-talks between these pathways, as well as two negative feedback loops.

T-helper cell plasticity (Th) has been studied in [1] in order to investigate
switches between attractors subsequent to changes of input conditions. It is a cel-
lular network regulating the differentiation of T-helper (Th) cells, which orches-
trate many physiological and pathological immune responses. T-helper (CD4+)
lymphocytes play a key role in the regulation of the immune response. By APC
activation, native CD4 T cells (Th0) differentiate into specific Th subtypes pro-
ducing different cytokines which influence the activity of immune effector cell



Automata Network Goal
(I3) (I3#) M-C

|pfx| |tb| Time |tb| Time |tb| Time

Lambda phage CI2 45
6 0.1s 0 0.2s 10 0.1s

|Σ| = 4 |T | = 11 Cro2 3 0.1s 2 0.3s 3 0.1s

EGF/TNF NFkB0 52
4 0.1s 2 0.1s 5 0.2s

|Σ| = 28 |T | = 55 IKB1 3 0.1s 2 0.1s 5 0.2s

Th_th1 BCL61 444
6 16s 5 23s 8 13s

|Σ| = 101 |T | = 381 TBET1 5 10s 4 24s 11 14s

Th_th2 GATA30 3264
7 24s 4 24s 8 60s

|Σ| = 101 |T | = 381 BCL61 5 25s 4 25s 7 600s

Th_th17 RORGT1 2860
9 23s 8 26s 18 48s

|Σ| = 101 |T | = 381 BCL61 5 23s 4 24s 7 26s

Th_HTG BCL61 OT
6 61s

OT
|Σ| = 101 |T | = 381 GATA31 7 34s

Table 1. Experimental results for the identification of bifurcations depending if (I3)
or (I3#) is used, compared to a exact model-checking (M-C) using NuSMV[9]. Mod-
els Th_th1, Th_th2, Th_th17, Th_HTG are the same automata network but have
different initial state. For each model, two different goals have been tested. |Σ| is the
number of automata, and |T | the number of transitions; |pfx| is the size (number of
events in the partial order structure) of the prefix of the unfolding from the initial
state of the model; |tb| is the number of identified bifurcation transitions. Computation
times have been obtained on an Intel R© CoreTM i7-4770 3.40GHz CPU with 16GiB of
RAM. OT indicates an out-of-time execution (more than one hour).

types. Several subtypes (Th1, Th2, Th17, Treg, Tfh, Th9, and Th22) have been
well established. We report in this paper four (Pro Th1, Pro Th2, Pro Th17,
Pro HTG(Th1 + Th17)) different initial state from which different attractors
are reachable. The network is composed of 101 nodes and 221 interactions.

Method. For each selected model with initial state and goal, we performed the
bifurcation identification following either (I1#), (I2#), (I3) (unfolding from s0);
or (I1#), (I2#), (I3#) (reachability under-approximation). We use clingo 4.5.3
[17] as ASP solver, and Mole [38] for the computation of the unfolding ((I3)).
The computation times correspond to the total toolchain duration, and includes
the local-paths computation, unfolding, ASP program generation, ASP program
loading and grounding, and solving. Note that the local-paths computation (and
ASP program generation) is almost instantaneous for each case. Source code and
models are provided in the supplementary material file.

Results. Table 1 summarizes the results of the experiments. The last exper-
iment shows the limit of the exact analysis of the reachable state space: the



computation of the prefix is not tractable on this model. However, the alternat-
ive approach (I3#) allows to identify bifurcation transitions in this large model.
Following section 5.1, (I3#) always results in less bifurcations transitions than
(I3) with our models. It can be explained with the additional approximation for
the reachability of sb from s0, using the notations of section 3. One can finally
remark that when (I3) is tractable, (I3#) shows a slightly slower solving time, al-
beit of the same order of magnitude. This suggest that checking if a state belongs
to an unfolding is more efficient than checking its under-approximation. Finally,
because there exists to our knowledge no other method for identifying bifurca-
tions, we cannot compare our results with different methods, and in particular
with an exact method in order to appreciate the false negative rate obtained by
the (I1#)-(I2#)-(I3) scheme.

7 Conclusion

This paper presents an original combination of computational techniques to
identify transitions of a dynamical system that can remove its capability to
reach a (set of) states of interest. Our methodology combines static analysis of
Automata Networks (ANs) dynamics, partial order representations of the state
space, and constraint programming to efficiently enumerate those bifurcations.
To our knowledge, this is the first intregated approach for deriving bifurcation
transitions from concurrent models, and ANs in particular.

Bifurcations are key features of biological networks, as they model decisive
transitions which control the differentiation of the cell: the bifurcations decide
the portions of the state space (no longer) reachable in the long-run dynam-
ics. Providing automatic methods for capturing those differentiations steps is of
great interest for biological challenges such as cell reprogramming [12,1], as they
suggest targets for modulating undergoing cellular processes.

Given an initial state of the AN and a goal state, our method first computes
static abstractions of the AN dynamics and (optionnaly) a symbolic represent-
ation of the reachable state space with so-called unfoldings. From those prior
computations, a set of constraints are issued to identify bifurcation transitions.
We used Answer-Set Programming to declare the admissible solutions and the
solver clingo to obtain their efficient enumerations. For large models, the unfold-
ing may be intractable: in such a case, the methods relies only on reachability
over- and under-approximations. By relying on those relaxations which can be
efficiently encoded in ASP, our approach avoids costly exact checking, and is
tractable on large models, as supported by the experiments.

Further work will consider the complete identification of bifurcation trans-
itions, by allowing false positives (but no false negatives). In combination with
the under-approximation of the bifurcations presented in this paper, it will
provide an efficient way to delineate all the transitions that control the reachabil-
ity of the goal attractor. Future work will also focus on exploiting the identified
bifurcations for driving estimations of the probability of reaching the goal at
steady state, in the scope of hybrid models of biological networks [39,40].
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A Examples of Local Causality Graphs

Figure 4 gives examples of Local Causality Graphs (section 4.2) for approxim-
ation reachability of a2 in the AN of figure 1. The left LCG does not satisfy
the necessary condition (no local paths from c2 to c0), hence a2 is not reachable
from the given initial state〈a1, b0, c2〉. The middle LCG does satisfy the necessary
condition. And the right LCG is a valid sub-LCG for the sufficient condition for
a2 reachability.

a2

b0 b0 c2 c0

c0

a1 a2

b0

c1 c0

a2

b0 b1

b0 b0

c0

a1 a2

b0
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b1 b0 c1 c0
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b0 b0
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c0 c0

a0 a2

root

Figure 4. Exemples of Local Causality Graphs for (left) over-approximation of a2
reachability from 〈a1, b0, c2〉 (middle) over-approximation of a2 reachability from
〈a1, b0, c1〉 (right) under-approximation of a2 reachability from 〈a0, b1, c1〉. The small
circles represent the local paths.



B ASP implementation of Over- and Under-
approximation of Reachability

B.1 OA(s →∗ s′): necessary condition for reachability

We propose here a possible encoding of the necessary condition for reachability in
ANs outlined in section 4.2 and introduced in [29]. Starting from su(g) = g0, the
analysis starts with the local paths of the objective g0 g1: g1 is reachable only if
all the conditions of the transitions of at least one local path η ∈ local-paths(g0 
g1) are reachable. This recursive reasoning can be modelled with a graph relating
dependencies between objectives, local paths, and local states.

The local paths computed a priori are used to generate the template de-
claration of the directed edges of the LCG oa_lcg(G,Parent,Child) from each
possible objective ai aj . If local-paths(ai aj) = ∅, the objective ai aj is
linked to a node bottom:

1 oa_lcg(G,obj(a,i,j),bottom) ← oa_lcg(G,_,obj(a,i,j)).

otherwise, for local-paths(ai aj) = {η1, . . . , ηn}, we declare a node lpath for
each different local path m ∈ {1, . . . , n} as a child of ai aj :

2 oa_lcg(G,obj(a,i,j),lpath(obj(a,i,j),m)) ← oa_lcg(G,_,obj(a,i,j)).

then, for each different local state bk ∈ η̃m in the conditions of the local trans-
itions of ηm, we add an edge from the lpath node to ls(b,k):

3 oa_lcg(G,lpath(obj(a,i,j),m),ls(b,k)) ← oa_lcg(G,_,obj(a,i,j)).

In the case when the local path requires no condition (η̃m = ∅, this can happen
when the objective is trivial, i.e., ai ai, or when the local transitions do not
dependent on the other automata), we link the lpath to a node top:

4 oa_lcg(G,lpath(obj(a,i,j),m),top) ← oa_lcg(G,_,obj(a,i,j)).

A LCG G for over-approximation is parameterized with a state sG: if a local
path has a local state aj in its transition conditions, the node ls(a,j) is linked,
in G, to the node for the objective ai  aj (line 5), with ai = sG(a). It is
therefore required that state sG defines a (single) local state for each automaton
referenced in G (line 6).

5 oa_lcg(G,ls(A,I),obj(A,J,I)) ← oa_lcg(G,_,ls(A,I)), s(G,A,J).
6 1 { s(G,A,J) : ls(A,J) } 1 ← oa_lcg(G, _, ls(A, _)).

The necessary condition for reachability is then declared using the predicate
oa_valid(G,N) which is true if the node N satisfies the following condition: it is
not bottom (line 7); and, in the case of a local state or objective node, one of its
children is oa_valid (lines 8 and 9; or in the case of a local path, either top is
its child, or all its children (local states) are oa_valid (lines 10 and 11).

7← oa_valid(G,bottom).
8 oa_valid(G,ls(A,I)) ← oa_lcg(G,ls(A,I),X),oa_valid(G,X).
9 oa_valid(G,obj(A,I,J)) ← oa_lcg(G,obj(A,I,J),X),oa_valid(G,X).

10 oa_valid(G,N) ← oa_lcg(G,N,top).
11 oa_valid(G,lpath(obj(a,i,j),m)) ←

∧
bk∈η̃m

oa_valid(G,ls(b,k)).



B.2 UA(s →∗ s′): sufficient condition for reachability

We give here a declarative implementation of the sufficient condition for reachab-
ility in ANs outlined in section 4.2 and introduced in [15]. The under-approximation
consists in building a graph relating objectives, local paths, and local states which
satisfies several constraints. If such a graph exists, then the related reachabil-
ity property is true. Similarly to (I1#), we give template declarations for the
edges with the predicate ua_lcg(G,Parent,Child). We assume that the reachab-
ility property is specified by adding an edge from root to ls(a,i) for each local
state to reach.

The graph ua_lcg is parameterized with a context which is a set of local
states, declared with the predicate ctx(G,A,J). Every local states ai of the graph
that are not part of the reachability specification belong to that context (line 12);
and are linked to the objective aj ai for each aj in the context (line 13).

12 ctx(G,A,I) ← ua_lcg(G,N,ls(A,I)), N != root.
13 ua_lcg(G,ls(A,I),obj(A,J,I)) ← ua_lcg(G,_,ls(A,I)), ctx(G,A,J).

A first constraint is that each objective in the graph is linked to one and only
one of its local path. Therefore, objectives without local paths (local-paths(ai 
aj) = ∅) cannot be included (line 14), for the others, a choice has to be made
among local-paths(ai aj) = {η1, . . . , ηn} (line 15).

14← ua_lcg(G,_,obj(a,i,j)).
15 1 { ua_lcg(G,obj(a,i,j),lpath(obj(a,i,j),1..n)) } 1 ← ua_lcg(G,_,obj(a,i,j)).

As for oa_lcg, each local path is linked to all the local states composing its
transition conditions: for each m ∈ {1, . . . , n}, for each bk ∈ η̃m,

16 ua_lcg(G,lpath(obj(a,i,j),m),ls(b,k)) ← ua_lcg(G,_,obj(a,i,j)).

The graph has to be acyclic. This is declared using a predicate conn(G,X,Y) which
is true if the node X is connected (there is a directed path) to Y (line 17). A graph
is cyclic when conn(G,X,X) (line 18).

17 conn(G,X,Y) ← ua_lcg(G,X,Y). conn(G,X,Y) ← ua_lcg(G,X,Z), conn(G,Z,Y).
18← conn(G,X,X).

Then, if the node for an objective ai aj is connected to a local state ak, the
under-approximation requires ai aj to be connected with ak aj (assuming
that a has at least 3 local states, definition not shown):

19 ua_lcg(G,obj(A,I,J),obj(A,K,J)) ← not boolean(A), conn(G,obj(A,I,J),ls(A,K)).

When a local transition is conditioned by at least two other automata (for in-

stance c◦
ai,bj−−−→ c•), the under-approximation requests that reaching bj does

not involve other local states from a others that ai. This is stated by the
indep(G,Y,a,i,ls(b,j)) which cannot be true if bj is connected to a local state
ak with k 6= i line 20. Then, the under-approximation requires that at most one
indep predicate is false, for a given LCG G and a given local path Y (line 21).
Such an independence should also hold between the local states of the reachab-
ility specification (line 22).



20 indepfailure(Y,ls(A,I)) ← indep(G,Y,A,I,N), conn(G,N,ls(A,K)), K!=I.
21← indepfailure(Y,N),indepfailure(Y,M),M!=N.
22 indep(G,root,A,I,ls(B,J)) ← ua_lcg(G,root,ls(A,I)),ua_lcg(G,root,ls(B,J)),B != A.

For ηm ∈ local-paths(ai aj), for each local transition a◦
`−→ a• ∈ ηm, for each

couple of different local states in its condition bk, cl ∈ `, bk 6= cl:

23 indep(G,lpath(obj(a,i,j),m),b,k,ls(c,l)) ← ua_lcg(G,_,lpath(obj(a,i,j),m)).

C ASP implementation of reachability in unfoldings

A (prefix of an) unfolding is an acyclic bipartite digraph where nodes are either
events (application of a transition) or conditions (change of local state) [13]. We
use the predicate post(X,Y) to denote an edge from X to Y ; and h(C,ls(A,I))
to denote that the condition C corresponds to the local state ai. Figure 5 shows
an example of unfolding.

A state s belongs to the prefix if it is possible to build a configuration such
that all the local states in s have a unique corresponding condition on the cut
of the configuration (line 1).

A configuration is a set of events, and we use e(E) to denote that the event
E belongs to the configuration. By definition, if E is in a configuration, all its
parent events are in the configuration (line 2). There should be no conflicts
between two events of a configuration: two events are in conflict if they share a
common parent condition (line 3).

A condition is on the cut if its parent event is in the configuration (line 4),
and none of its children event is in the configuration (line 5).

1 1 { cut(C) : h(C,ls(A,I)) } 1 ← reach(A,I).
2 e(F) ← post(F,C),post(C,E),e(E).
3← post(C,E),post(C,F),e(E),e(F),E != F.
4 e(E) ← cut(C),post(E,C).
5← cut(C),post(C,E),e(E).
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Figure 5. Unfolding of the AN of figure 1. Events are boxed nodes, conditions have no
borders and indicate both the automata local state and the condition identifier.
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