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A B S T R A C T   

The computerized detection of Parkinson’s disease (PD) will facilitate population screening and frequent 
monitoring and provide a more objective measure of symptoms, benefiting both patients and healthcare pro-
viders. Dysarthria is an early symptom of the disease and examining it for computerized diagnosis and moni-
toring has been proposed. Deep learning-based approaches have advantages for such applications because they 
do not require manual feature extraction, and while this approach has achieved excellent results in speech 
recognition, its utilization in the detection of pathological voices is limited. In this work, we present an ensemble 
of convolutional neural networks (CNNs) for the detection of PD from the voice recordings of 50 healthy people 
and 50 people with PD obtained from PC-GITA, a publicly available database. We propose a multiple-fine-tuning 
method to train the base CNN. This approach reduces the semantical gap between the source task that has been 
used for network pretraining and the target task by expanding the training process by including training on 
another dataset. Training and testing were performed for each vowel separately, and a 10-fold validation was 
performed to test the models. The performance was measured by using accuracy, sensitivity, specificity and area 
under the ROC curve (AUC). The results show that this approach was able to distinguish between the voices of 
people with PD and those of healthy people for all vowels. While there were small differences between the 
different vowels, the best performance was when/a/was considered; we achieved 99% accuracy, 86.2% sensi-
tivity, 93.3% specificity and 89.6% AUC. This shows that the method has potential for use in clinical practice for 
the screening, diagnosis and monitoring of PD, with the advantage that vowel-based voice recordings can be 
performed online without requiring additional hardware.   

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder in which 
the substantia nigra region of the brain is affected, resulting in reduced 
dopamine in the basal ganglia. There is no laboratory test for the disease, 
and diagnoses of PD are based on the following clinical observation of 
motor symptoms: the presence of two or more tremors, bradykinesia, 
rigidity, or postural impairment [1]. Dopamine transporter scanning 
using positron emission tomography (PET) is a tool available to confirm 
the diagnosis. PD is diagnosed based on clinical observation of the 
symptoms and self-reported functional impairments. People with PD 

have affected movement, often with the presence of tremor. There are 
also nonmotor impairments in PD patients [2], such as cognitive 
impairment. The diagnosis and monitoring of PD uses the Movement 
Disorder Society Unified Parkinson’s Disease Rating Scale Part III 
(MDS-UPDRS-III) [3]. However, this can involve clinician bias and loss 
of sensitivity because the disease can be missed, and it is also difficult to 
monitor both effectiveness of treatment and disease progression [4]. A 
need exists for objective measurement of symptoms [5]. The loss of 
ability to perform habitual actions is associated with PD [3,6]. These 
include activities such as writing [7], walking [8] and vocalization [5], 
all of which are habitual human responses. Changes to these responses 
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are commonly the earliest symptom of the disease. While the assessment 
of writing and walking requires specialized devices, voice assessment 
has the advantage that it can be captured and processed without 
requiring special equipment or requiring a patient to visit a clinic. 

People with PD often have dysarthria or slurring of the voice. This 
can occur up to 5 years before motor symptoms such as tremor [6]. 
Parkinsonian dysarthria can be characterized by reduced vocal tract 
loudness, reduced speech prosody, imprecise articulation, significantly 
narrower pitch range, longer pauses, vocal tremor, breathy vocal qual-
ity, harsh voice quality, and dysfluency [1,9]. Analysis of voice includes 
four aspects: phonatory, articulatory, prosodic, and linguistic [9]. There 
are several confounding factors related to articulatory, prosodic, and 
linguistic parameters. These include the linguistic and cognitive condi-
tions of the patients, which present difficulty for diagnosis. The pho-
natory aspects of voice are less obscured by these conditions and are 
related to the glottal source and resonant structures of the vocal tract, 
enabling greater potential for the diagnosis or monitoring of PD. There 
are differences between the voice parameters of the sustained phonemes 
of people with PD and healthy participants [10]. Vaiciukynas et al. [11] 
studied strategies for PD screening based on sustained phonemes. Pah 
et al. [12] studied the effect of medication on the sustained phoneme of 
PD patients. Behroozi et al. [13] proposed a classifier framework to 
distinguish people with PD from healthy people. Voice analyses of 
people with PD have shown that there are differences in their pitch 
frequency, jitter, shimmer, and a reduction in the harmonic-to-noise 
ratio [10]. However, factors such as age, gender, and ethnicity are 
confounding factors. There is a need for a method to detect the differ-
ences between voices of people with and without PD that is not 
dependent on the features affected by these factors. 

Computational approaches to support PD diagnosis and rehabilita-
tion are being actively investigated and reflect the trends of machine 
learning applications in other biomedical domains. While previous ap-
proaches mainly relied on the extraction of handcrafted features and 
shallow classifiers, current trends in computer vision initiated intensive 
use of deep convolutional neural networks (CNNs). Even though the 
training of CNN is frequently computationally expensive, there are 
several applications where the ensemble of CNN can be used with an 
advantage. These are designed so that the complete training of base 
learners in the ensemble is not needed, and can be achieved by using 
either checkpoint ensembles [14,15] or snapshot ensembles [16]. In this 
paper, we propose multiple fine-tuning for training the CNN, enabling 
the building of the CNN ensemble without the need for complete 
network training. We have already assessed a similar approach on 
handwriting data for PD diagnosis [17] with positive results. 

2. Acoustic voice analysis in Parkinson’s disease detection 

The review by Gómez-García et al. have investigated the relationship 
of perception on pathological voice and some of its features [18,19]. In 
the phonation analysis of voice, the acoustic features are primarily 
manually extracted from the recordings of sustained vowels, syllable 
repetitions, and the reading of words, sentences, or free monologues. 
The choice of the most appropriate features is very important to obtain 
precise results. Orozco-Arroyave et al. analyzed a set of 10 nonlinear 
dynamics features extracted from five sustained vowels [20]. The best 
results were achieved by analyzing only the/i/vowel subset, which 
represents 77% of the accuracy achieved using the support vector ma-
chine classifier (SVM). Mekyska et al. introduced 36 new speech features 
in their work [21]. They achieved 67.9% accuracy on Parkinsonian data 
using SVM and random forest classifiers while analyzing only the/-
a/vowel subset. Shahbakhi et al. extracted 22 linear and nonlinear 
features that were analyzed in the/a/vowel subset of the Parkinsonian 
data [22]. They achieved, at most, 94.5% accuracy using the SVM 
classifier. Almeida et al. evaluated 18 feature extraction methods and 
four machine learning classifiers to detect and classify PD by analyzing 
the sustained phonation of vowels and other speech tasks [23]. They 

were able to achieve the best result of 94.55% accuracy by analyzing the 
phonation of sustained vowels. Cai et al. also analyzed the phonatory 
features of the sustained vowel/a/. They implemented a chaotic bacte-
rial foraging optimization method to diagnose PD in early phases [24]. 
The accuracy achieved by this method was 97.42%. By using an 
SVM-based bacterial foraging optimization method with an enhanced 
fuzzy k-nearest neighbor classifier, they were able to achieve 97.89% 
accuracy [25]. 

All the above mentioned works use traditional machine learning 
techniques where the feature set is selected, and thus the results are 
dependent on the choice of the features. To overcome this shortcoming, 
Vásquez-Correa et al. provided a deep learning approach for PD detec-
tion while analyzing multimodal data pertaining to handwriting and 
speech tasks [26]. Using this approach, the authors were able to achieve 
92.3% accuracy based on speech data and 97.6% accuracy with respect 
to the multimodal data. Berus et al. utilized multiple neural networks to 
identify the voice of people with PD [27]. They achieved 86.47% ac-
curacy by analyzing various speech tasks limited to the language skills 
and experimental setup. Tripathi et al. utilized a CNN network for PD 
detection from sustained phonations of the five vowels [28]. They 
achieved 73.76% average accuracy using empirical mode decomposi-
tion for signal processing. The best accuracy of 76.4% was achieved on 
the/e/vowel subset. Zhang et al. also proposed a CNN-based PD detec-
tion method for analyzing the frequency features of speech data in 
spectrograms [29]. Rios-Urrego et al. used a CNN-based transfer 
learning method for the detection of PD by analyzing the speech data 
presented as mel-scaled spectrograms [30]. Their proposed method was 
able to classify PD with 82% accuracy. The work by Khojasteh et al. [31] 
performed deep-learning-based multivariate analysis, and the authors 
reported 75.7% accuracy. While these methods have shown the poten-
tial of computerized analysis of voice to differentiate between the voices 
of people with PD and those of healthy participants, the low accuracy 
that is typical with sustained phonations makes them unsuitable for 
assisting clinicians. A broad review of different aspects of PD diagnosis 
from voice and speech can be found in review papers [32,33]. 

The objective of this study was to overcome the above limitations in 
differentiating between the voices of people with PD and healthy people. 
We propose a method that utilizes a pretrained network enhanced with a 
multiple fine-tuned (MFT) deep CNN-based approach. The aim was to 
improve the overall precision of the classification of voice recordings to 
detect people with PD. The purpose of MFT is to make better use of the 
effectiveness of transfer learning by expanding the knowledge transfer 
process. We trained the CNN using the spectrogram of the vowels from 
two datasets and tested it on PC-GITA, a publicly available dataset, so 
that the results are comparable with those of other studies. The 10-fold 
cross-validation approach was performed to reduce the potential of bias 
in the results. 

3. Data 

This study investigates short-duration recordings of vowels that are 
not confounded by factors such as language and education level. Three 
datasets, the PC-GITA, the Saarbruecken Voice Database (SVD) and the 
Vowels dataset, are used. After training the model using SVD, Vowels 
and a subsection of PC-GITA, the model is validated using the balance of 
the PC-GITA dataset [34]. 

The PC-GITA dataset contains speech recordings from 100 native 
Spanish-speaking subjects: half of the participants were previously 
diagnosed with PD, and the other half were recruited to serve as con-
trols. We use a subset of this dataset that contains voice recordings of 
sustained vowels [a, e, i, o, u] recorded at normal intonation. A detailed 
description of the dataset is provided in the work of [34], which first 
introduced this dataset. 

SVD [35] and the Vowels dataset [36] are used for network 
fine-tuning in the proposed multiple-fine-tuning approach. SVD contains 
speech recordings from 687 healthy participants and 1355 people with 
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71 diseases [35]. This dataset consists of recordings of sustained vowels 
[a, i, u] produced with normal, low, high and rising-falling intonation. 
All the samples were recorded at a 50-kHz frequency and with 16-bit 
resolution. In this study, all disease conditions were labeled together 
for the purpose of training the network. 

The Vowels dataset is provided by Open Data Commons and contains 
voice recordings of sustained vowels [a, e, i, o, u] [36]. It is intended 
only for the classification of vowels and does not contain any informa-
tion about pathological diseases. 

The datasets used in this study are summarized in Table 1. 

4. Proposed approach 

In this section, we describe the proposed approach, where an 
ensemble of end-to-end deep CNNs was used to identify voices affected 
by PD. 

4.1. Data preprocessing 

Since CNNs are most suitable for images, the voice recordings were 
transformed to image data format. 

The recordings were transformed to the time-frequency domain to 
preserve both the time and frequency information of the data. For this 
purpose, the short-time Fourier transform (STFT) of the signal was 
computed with a window size of 40 ms, which has been frequently used 
in literature [37–39]. We also performed preliminary experiments with 
other window sizes but discovered this to be the most suitable. The 
STFTs were converted to images using their log-spectra as 20 log10(X(h, 
k)). Other transformation techniques, such as wavelet transform, are 
also possible and were tried in preliminary experiments; however, STFT 
showed the most promising results. Nevertheless, the aim of the work 
was to demonstrate the use of MFT, but the authors do not discount that 
other transformation methods may also be suitable for such an 
application. 

4.1.1. Gaussian blurring 
To enhance the spectrogram image of the voice before processing by 

CNN, we applied Gaussian blurring to the spectrogram. Gaussian blur-
ring smooths uneven pixels by removing the extreme outliers. For this 
morphological image transformation, the 3 × 3 kernel was convolved 
with the original image spectrogram. The original and blurred spectro-
grams are shown in Fig. 1. 

4.2. Convolutional Neural Networks (CNN) 

CNNs contain many hidden blocks of alternating convolutional and 
pooling layers between the input and output layers. Convolutional 
layers use convolution operations rather than matrix multiplication in 
their calculations. The purpose of these layers is to learn certain prop-
erties of the data, which is often referred to as feature extraction [40, 
41]. Convolutional layers return a so-called feature map. The pooling 
layers reduce the number of connections between the convolutional 
layers, thereby reducing the size of the feature map [42]. The feature 
value at position (i, j) of the k-th feature map of the l-th layer can be 
computed as 

zl
i,j,k = wl

k
T xl

i,j + bl
k. (1)  

Here, wl
k is the weight vector, and bl

k is the bias term of the k-th filter of 
the l-th layer. xl

i,j is the input at position (i, j) of the l-th layer [43]. CNNs 
automatically extract the most appropriate features from image data for 
the given task. 

4.2.1. CNN optimization and learning process 
The optimization of a neural network is performed by minimizing the 

objective loss function. Since we solve a binary classification problem, 
we choose the binary cross-entropy loss function defined as 

ℒ = −
1
N

∑N

i=1
yilog(pi) + (1 − yi)log(1 − pi), (2)  

where yi is the i-th target label and pi is the estimated probability. 
To optimize the objective function, gradient descent methods are 

frequently used. These methods update the weights in the back- 
propagation process used in the network’s learning procedure. We 
used the stochastic gradient descent (SGD) algorithm with minibatches 
to minimize the objective function. We also considered other optimizer 
algorithms, but there was no improvement in accuracy. 

SGD updates every minibatch of n training examples, reducing the 
variance of the updates. We used momentum to further improve the 
optimization process. This accelerates the gradient to achieve faster 
convergence while reducing oscillation around the local minimum [44]. 
The update process is defined as: 

vt = γvt− 1 + η∇θℒ(θ; x(i:i+n); y(i:i+n)), (3)  

θ = θ − vt, (4)  

where θ defines the set of parameters, ℒ(θ) is the objective loss function, 
and n is the batch size. η is the learning rate, which regulates the rate of 
convergence, and γ is a fraction of the previous step’s update vector with 
respect to the current update vector [43]. Since the learning rate in the 
SGDs is not adaptive, the appropriate values obtained by hyper-
parameter training need to be manually selected. 

Table 1 
Datasets used in this study.  

Dataset Samples Classes Tasks in dataset Source 

PC-GITA 1500 2 /a/,/e/,/i/,/o/,/u/ [34] 
SVD 24504 2 /a/,/i/,/u/ [35] 

Vowels 1676 5 /a/,/e/,/i/,/o/,/u/ [36]  

Fig. 1. Spectrograms of a healthy control (HC) and person with PD: a) no 
additional preprocessing, b) Gaussian blurring [PC-GITA dataset,/a/vowel]. 

M. Hirěs et al.                                                                                                                                                                                                                                   



Computers in Biology and Medicine xxx (xxxx) xxx

4

4.3. Multiple fine-tuned convolutional neural networks 

One strong disadvantage of CNNs is their need for a very large 
amount of training data to develop the model for the set of images. With 
a lack of large and balanced training data to represent the problem, the 
model cannot be generalized. However, obtaining enough new training 
data can be a challenging, expensive and time-consuming process and 
may not always be possible. In these cases, transfer learning (TL) is an 
approach that can be used for the network to learn patterns for a 
particular task. 

The main goal of TL is to ease the requirement that the training and 
testing data be independent and identically distributed. It also helps 
overcome the need for the model to be trained from scratch in the target 
domain. Because of this property of TL, the need for a large amount of 
training data in the target domain is notably relaxed [45]. 

Let us first consider a domain 𝒟 and a task 𝒯 , where 𝒟 = {χ,P(X)}. 
Here, χ is a feature space, P(X) is the marginal probability distribution, 
and X = {x1, x2, …, xn} ∈ χ. Given a domain 𝒟 = {χ,P(X)}, assume a task 
𝒯 = {𝒴, f(⋅)}, where 𝒴 = {y1, y2,…, yn} is a label space and f(⋅) is an 
objective predicting function to be learned by pairs {xi, yi}. In the case of 
a binary classification problem, yi ∈ {0, 1}. TL is then defined as follows. 
Given a source domain 𝒟s and a learning task 𝒯 s, a target domain 𝒟t and 
a target task 𝒯 t , transfer learning aims to help improve the learning of 
the target predictive function ft(⋅) in 𝒟t using the knowledge in 𝒟s and 
𝒯 s, where 𝒟S ∕= 𝒟t or 𝒯 S ∕= 𝒯 t [46]. 

In the context of deep learning, the definition has a slightly different 
form. Given a TL task defined by (𝒟s, 𝒯 s, 𝒟t , 𝒯 t , ft(⋅)), this is a deep 
transfer learning task wherein ft(⋅) is a nonlinear function that reflects a 
deep neural network [45]. 

In this paper, we propose a new approach, multiple fine-tuning 
(MFT), which has been used for TL to classify the vowel utterance 
spectrogram to distinguish between healthy voices and the voices of 
people with PD. This approach reduces the semantic gap between the 
source task and target task by expanding the training process with 
training on a mediator dataset. 

Let us consider an MFT task 𝒯 MFT = (𝒟s, 𝒯 s,𝒟m, 𝒯 m,𝒟t , 𝒯 t , ft(⋅)), 
where 𝒟m is a mediator domain and 𝒯 m is the corresponding learning 
task. MFT aims to improve the learning of the target predictive function 
ft(⋅) in 𝒟t by the knowledge in 𝒟m and 𝒯 m by first aiming to improve it in 
𝒟m by the knowledge in 𝒟S and 𝒯 S. Here, 𝒟S ∕= 𝒟m or 𝒯 S ∕= 𝒯 m, 𝒟S ∕= 𝒟t 
or 𝒯 S ∕= 𝒯 t, and 𝒟m ∕= 𝒟t or 𝒯 m ∕= 𝒯 t respectively. 

In cases in which 𝒟m and 𝒯 m do not exist, the MFT transfer learning 
task is equivalent to conventional transfer learning. 

For the task of PD classification from voice analysis, the whole pro-
cess of MFT consists of three steps. First, the neural network model is 
trained on a large dataset of natural images in the source domain. This is 
the conventional CNN pretraining procedure. Its purpose is to provide 
enough training data to achieve better convergence. The model also 
learns to generate the lower-level image features. To update the weights 
of the network to the more specific target task, all layers of the neural 
network model are fine-tuned on a mediator dataset. This dataset should 
include enough data, and the mediator domain should be semantically 
closer to the target domain. Network training should converge on the 
mediator task; if it fails, a more appropriate dataset is required. In this 
work, two mediator datasets are used. One network is fine-tuned on the 
Vowels dataset, where the learning task is the classification of the 
different vowels. The second employed mediator dataset is SVD, where 
healthy and pathological voices need to be distinguished, and thus the 
classification is binary. In the last stage of multiple fine-tuning, several 
network layers are further fine-tuned based on the target dataset. This 
can be either for the top classification layer or the lower CNN layers, 
depending on the available amount of training data and the convergence 
of the training. In our case, all layers of the network are fine-tuned on the 
target dataset. The principle of MFT is depicted in Fig. 2. 

To illustrate the effect of the proposed MFT approach, we used t-SNE 
to visualize both the features extracted by the network that underwent 
MFT training and the network without MFT. t-SNE is a dimensionality 
reduction technique that preserves local structures in data [47]. Fig. 3 
shows the t-SNE visualizations of the extracted features for the vow-
el/o/from the PC-GITA dataset extracted by the CNN architecture-based 
model. The other vowels show very similar behaviour, so for the sake of 
conciseness, only/o/is illustrated. Fig. 3a shows a visualization of fea-
tures extracted by the model pretrained on the ImageNet dataset. The 
t-SNE visualization in Fig. 3b represents features extracted by the model 
that was pretrained on the ImageNet dataset and multiple fine-tuned on 
the SVD dataset. An improvement can be visually observed with respect 
to the separability of the healthy and PD classes in the case of features 
extracted by the MFT model; there are more obvious clusters of the 
yellow dots (PD) and the blue dots (healthy) in Fig. 3a compared with 
Fig. 3b. 

Fig. 2. Multiple fine-tuning process.  
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4.4. Ensemble of multiple-fine-tuned CNNs 

One effect of the MFT on CNN training is that the network layers are 
fine-tuned by datasets that are semantically closer to the target dataset, 
which allows for better prediction performance. Another advantage of 
the MFT approach is that utilization of different mediator datasets cre-
ates diversity at the classifier level. We take advantage of this diversity 
to build an ensemble of MFT-trained CNNs. 

Let us consider n MFT tasks, where 𝒯 i
MFT = (𝒟s, 𝒯 s,𝒟

i
m, 𝒯

i
m,𝒟t , 𝒯 t ,

f i
t(⋅)) is the i-th MFT task for i ∈ {0, 1, …, n}. Let ŷ = (ŷ1, ŷ2,…, ŷn) be 

the vector of predictions made by the n multiple-fine-tuned base models, 
while ŷi is the label predicted by the i-th classifier. The final classifica-
tion is obtained by majority voting, where the overall predicted label of 
the model ensemble can be calculated as ŷe = mode (ŷ). 

By combining the decisions of multiple classifiers and amalgamating 
the various outputs into a single output, the model ensemble exploits the 
diversity of the outcomes from the base models. This reduces the vari-
ance, and the error is expected to decrease [48]. Since this is a classifi-
cation task, it can be easily achieved by the voting principle. The 

different base voters receive equal weights, and the final decision is 
determined by majority voting. 

The proposed model ensemble approach consists of three base CNN 
models. To obtain diversity, the first CNN model was pretrained on the 
ImageNet dataset and then fine-tuned on the target PC-GITA dataset. 
ImageNet is a large visual database [49]. The second neural network was 
pretrained on the ImageNet dataset, fine-tuned on the Vowels dataset 
and then fine-tuned on the PC-GITA dataset. The third neural network 
was pretrained on the ImageNet dataset, fine-tuned on the SVD dataset 
and then fine-tuned on the PC-GITA dataset. 

The concept of the proposed decision support system based on an 
ensemble of MFT CNNs is presented in Fig. 4. 

5. Experiments and results 

Two state-of-the-art CNN architectures were used to evaluate the 
performance of the proposed approaches on the PC-GITA dataset. We 
utilized ResNet50 [50] and Xception [51] networks pretrained on the 
ImageNet [49] dataset for our experiments. 

In general, it is expected that deeper networks generate more 
appropriate feature representations [43]. ResNet50 is a 50-layer deep 
neural network that provides a residual learning framework. It works by 
adding a shortcut connection between the input and the output of the 
block of layers. All the blocks start and end with 1 × 1 convolutions, 
which first reduce and subsequently increase the dimensionality of 
feature maps, therefore reducing the computational time of the middle 
3 × 3 convolution. This eases the optimization process, while its training 
efficiency grows [50,52]. 

The idea of the Xception model is to develop a multilevel feature 
extractor using depthwise separable convolutions followed by pointwise 
convolution connected with residual connections. By using depthwise 
separable convolutions, the computation time is reduced in comparison 
with traditional convolutions [51]. The Xception model uses shortcut 
connections between the convolutional blocks, like ResNet50. This ar-
chitecture has the smallest weight serialization among the available 
pretrained CNN models. 

The top classification layers were replaced with a custom block. The 
new block contains three fully connected dense layers with 128 neurons 
and a dropout rate of 0.5 after the second dense layer. Since PD detection 
is a binary classification task, another dense layer with one neuron was 
added to detect the pathological voice. We used the SGD optimizer with 
momentum of 0.95 in all experiments. The learning rate was set to 
0.0005 for the mediator dataset and 0.005 for the target PC-GITA 
dataset. The batch size was 16. These hyperparameters were set 
anecdotally. 

As a preprocessing step, the log-frequency spectrograms were resized 
to 224 × 224 pixels since this is the default input size of the ResNet50 
model. Moreover, the relatively low number of training samples can 
cause model overfitting. To extend the training dataset, the original 
spectrograms were augmented by two techniques. First, the order of the 
signals was modified to prevent the models from fitting to the time 
localization of the given samples. In the second, a high-pass filter was 
applied to filter out the lower frequencies, which are irrelevant for the 
speech data. By using this filter, we also ensure that the network does 
not adapt only to low-frequency features such as hoarseness. 

To overcome the presence of any bias due to random selection of test 
data, 10-fold cross-validation was used for the model validation. The 
dataset for every PC-GITA vowel was divided into ten nonoverlapping 
subsets while ensuring that samples from a particular patient were 
present either in the training or the testing set but not in both. For each 
folder, 90% of the data were used for training, and 10% were used for 
testing. The whole training/validation process was repeated ten times, 
and the average was reported. 

Fig. 3. t-SNE visualization features extracted by ResNet50 architecture with 
and without MFT. The vowel/o/from the PC-GITA dataset. 
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5.1. Numerical results 

We executed a set of experiments to test our proposed use of 
Gaussian blurring to enhance spectrograms and improve the classifica-
tion performance. The results obtained without blurring are shown in 
the first column of Table 2 and Table 3. The results indicate that there 
was a small but consistent improvement with our proposed use of 
Gaussian blurring to enhance spectrograms. The results after applying 
blurring are shown in the second column. Although small, since a 
consistent improvement was observed, blurring was applied for all of the 
experiments. 

The results of our investigation of the use of multiple fine-tuned 
CNNs in the classification of speech spectrograms are presented in 
Table 2 for the Xception architecture and Table 3 for the ResNet50-based 
model. The results are reported in terms of accuracy (ACC), sensitivity 
(SE), specificity (SP), and area under the ROC curve (AUC). Both net-
works that were fine-tuned by the SVD and Vowels dataset exhibited 
similar trends. For the Xception architecture, the MFT approach helped 
to improve the accuracy in three out of the five vowel utterance tasks. 
For the ResNet50 architecture, the improvements were even better. 
MFT-tuned CNNs outperformed the pretrained CNN in four out of five 
tasks. 

Since the application of Gaussian blurring showed consistent im-
provements in most MFT cases, in Tables 2 and 3, we only present the 
results obtained using Gaussian blurred samples. 

The MFT-tuned CNN showed some improvement in terms of accu-
racy. However, the ultimate task of MFT is to create the form of diversity 
in classifiers. As such, we combine two MFT-tuned networks with the 
Imagenet pretrained CNN to create an ensemble classifier. The predic-
tion accuracies on all evaluated tasks are depicted in the last column in 

Table II for Xception and in Table III for ResNet50. The results clearly 
show that the ensemble of multiple-fine-tuned CNNs can significantly 
boost prediction accuracy for the detection of voices affected by PD. 

6. Discussion 

In this paper, we have proposed and validated an end-to-end trained 
ensemble of CNNs for the identification of short segments of vowel voice 
recordings of people with PD and healthy people based on the spectro-
gram. The spectrogram image was enhanced using Gaussian blurring 
and was later used to train the CNN. The results show that this approach 
offers the potential for identifying the voices of people with PD. The 
advantage of using short segments of vowel recordings is that this is 
more universal and not confounded by factors such as language skills 
and education. 

From the literature [10,21], it is evident that the differences between 
healthy and pathologically affected voices during the utterance of the 
vowels are based on the jitter, shimmer, pitch and harmonic-to-noise 
ratio. The shape of the spectrogram is based on the pitch, change in 
spectrum with time, strength of the individual harmonics and overall 
voice intensity. While some of these may be gender-dependent, the re-
sults indicate that there are sufficient differences between the healthy 
and PD voices that can be detected by the classifier. 

Even though there are apparent limitations, one of the advantages of 
the proposed solution is that it does not require any feature engineering. 
The voice signal is transformed to a spectrogram and blurred prior to 
processing by CNN. However, these operations do not require any 
domain knowledge and are available in many software libraries and 
packages. 

In this study, STFT was used to obtain the spectrogram, but there are 

Fig. 4. Concept of the proposed decision support system incorporating MFT CNNs and ensemble voting.  

Table 2 
Prediction results of different CNNs considered in this study. Xception architecture.  

Task No MFT (no prep.) No MFT (G. blurring) MFT - Vowels (G. blurring) MFT - SVD (G. blurring) Ensemble (G. blurring) 

ACC ACC ACC ACC ACC 

SE SP AUC SE SP AUC SE SP AUC SE SP AUC SE SP AUC 

PC-GITA/a/ 88 ± 4 89.33 ± 4.16 90.67 ± 6.29 89.33 ± 7.42 99 ± 2.13 
85.3 90.7 88 84 94.7 89.3 86 95.3 90.7 88.7 90 89.3 86.2 93.3 89.8 

PC-GITA/e/ 93.99 ± 2.91 93.67 ± 3.48 89.33 ± 5.12 86.67 ± 6.49 96.67 ± 3.33 
91.3 96.7 94 91.3 96 93.7 90 88.7 89.3 85.3 88 86.7 88.9 90.9 89.9 

PC-GITA/i/ 76.66 ± 2.98 78.33 ± 2.24 85.33 ± 7.77 85.67 ± 6.51 92 ± 7.78 
66.7 86.7 76.7 68.7 88 78.3 87.3 83.3 85.3 89.3 82 85.7 81.8 84.4 83.1 

PC-GITA/o/ 76 ± 0.12 73.33 ± 5.58 86 ± 8.14 88.67 ± 9.79 92 ± 6.18 
88 64 76 87.3 59.3 73.3 82.7 89.3 86 92.7 84.7 88.7 87.6 77.8 83.8 

PC-GITA/u/ 92.99 ± 3.48 92 ± 3.06 88.33 ± 6.54 86.33 ± 7.37 91.33 ± 7.02 
97.3 88.7 93 96 88 92 89.3 87.3 88.3 86 86.7 86.3 88.2 87.3 88.6  
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other options that can be considered to transform the voice data to 
represent the time-frequency properties, such as gammatone spectro-
grams and continuous wavelet transform. Other approaches have been 
reported in the literature, for example, in Ref. [53], and may also lead to 
similar results. However, they are outside the scope of this work. 

Another preprocessing technique that showed some potential and 
improved prediction performance in some scenarios is the extraction of 
onset and offset transitions from speech recordings [26,53]. Our pilot 
investigation showed that the results were similar to the MFT CNN 
approach, and thus, an extra step was not warranted. To keep the pro-
cessing pipeline simple, the detection of onset/offset transitions that 
require some additional processing was not considered suitable. 

There have already been a few attempts to utilize deep learning for 
PD detection from speech/voice. However, most of these approaches 
focus mainly on specific preprocessing of voice data before neural 
network application. Tripathi et al. [28] relied on empirical mode 
decomposition of speech, and Vasquez-Correa et al. [26] selected only 
transitions in speech for further processing. We focus on enhancing the 
training process of the CNN. This approach does not require any specific 
preprocessing and only includes conversion of voice data to spectro-
grams. A different approach was reported by Khojasteh et al., who 
classified raw signals using CNN; however, their accuracy was only 75% 
[31]. 

In Table 4, we present a comparison of state-of-the-art (SOTA) results 
from the literature achieved on the PC-GITA dataset, considering the 
vowel subset. We also provide the results of our experiments obtained by 
utilizing SOTA handcrafted features such as jitter abs, jitter relatives, 
shimmer abs, shimmer relatives, std (pitch), HNR, and HHR. These 
features were used in many works, such as that of [10] or [34], and 
showed promising results. For the prediction, we employed an SVM 
classifier. Most of the papers listed in Table 4 use traditional machine 
learning methods such as SVM or GMM, and only [54] provides a deep 
learning approach for PD classification. 

This study has shown that the deep-learning-based classification of 
the spectrogram of the voice when uttering vowels is suitable for 
differentiating between people with PD and healthy people. The results 
show that this is not gender dependent. While it is difficult to identify 

the set of specific features that may be responsible for differentiating 
between the voices of people with PD and healthy people, this study has 
shown that the shape of the spectrogram differs between the two groups. 

Here, we focused only on the classification of speech samples from 
PD patients and healthy controls, and we believe that the proposed 
approach can also be extended to determine the stage of the disease. 
However, this will require much more data for subdivision into stages of 
the disease and is a task for the future. 

Even though CNNs are considered hardware-hungry classifiers, 
recent advances allow employing even those on mobile or embedded 
devices. Architectures such as SqueezeNet [58] and MobileNet [59] can 
be compressed to less than 0.5 MB and can be implemented on FPGA, so 
the implementation of the proposed approach to some medical devices is 
feasible. Clearly, there is a strong need for further validation and 
detailed assessment led by transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRIPOD) [60] 
before the proposed approach can be used in a medical device. This 
would require additional validation datasets, considering all limitations 
and accounting for noisy real-world conditions. 

We utilized the PC-GITA dataset to validate the proposed approach. 
Even though this dataset contains balanced numbers of PD subjects and 
age- and sex-matched controls, information about the medications of PD 
patients is not available. As such, we cannot consider the effects of 
medication on our analysis and results. 

7. Conclusions 

In this paper, a CNN-based approach for Parkinson’s disease diag-
nosis from a spectrogram of voice recordings while uttering vowels is 
proposed. This method does not require supervised feature extraction 
and is based on an ensemble of multiple-fine-tuned CNNs that is suitable 
even for small datasets. The multiple-fine-tuning approach bridges the 
gap between the source and target tasks in transfer learning and creates 
diversity at the classifier level, which in turn enables the creation of the 
ensemble classifier. We evaluated the performance of the proposed 
model on the PC-GITA dataset with the following two backbone archi-
tectures: ResNet50 and Xception. The achieved results indicate that the 
CNN-based ensemble can differentiate between voices of PD subjects 
and voices of healthy controls with prediction accuracy values in excess 
of 90%. One benefit of this approach is also that the short recording of 
vowels makes it suitable for being largely language independent. 

Future work will consider how deep learning approaches can be 
combined with traditional machine learning approaches that rely on 
handcrafted features to provide accurate and explainable diagnoses. 
One limitation of this work is that it has focused purely on the diagnosis 
of Parkinson’s disease. There is the need to consider other diseases that 
would expand its clinical impact. 

Table 3 
Prediction results of different CNNs considered in this study. ResNet50 architecture.  

Task No MFT (no prep.) No MFT (G. blurring) MFT - Vowels (G. blurring) MFT - SVD (G. blurring) Ensemble (G. blurring) 

ACC ACC ACC ACC ACC 

SE SP AUC SE SP AUC SE SP AUC SE SP AUC SE SP AUC 

PC-GITA/a/ 86 ± 3.27 87 ± 5.04 89 ± 5.17 87 ± 7.67 91.67 ± 7.92 
81.3 90.7 86 84 90 87 92.7 85.3 89 90 84 87 87.8 86.4 86.4 

PC-GITA/e/ 87.67 ± 3.67 91.33 ± 4.76 89.33 ± 5.12 89.67 ± 7.22 87 ± 7.67 
86 89.3 87.7 90 92.7 91.3 91.3 88 89.7 90 84 87 90 89.1 88.8 

PC-GITA/i/ 80 ± 4.94 81 ± 7.46 87.67 ± 8.69 88.67 ± 4.76 89 ± 5.78 
73.3 86.7 80 74.7 87.3 81 87.3 88 87.7 90 87.3 88.7 85.3 87.5 85.9 

PC-GITA/o/ 80.67 ± 4.42 90.99 ± 2.13 85 ± 9.22 87 ± 6.57 90.67 ± 5.93 
88 73.3 80.7 93.3 88.7 91 89.3 83.3 86.3 86 88 87 88.9 87.3 87.1 

PC-GITA/u/ 94.33 ± 4.73 93.67 ± 2.33 85.67 ± 8.31 84.67 ± 7.48 91 ± 5.78 
96.7 92 94.3 96 91.3 93.7 86 90 88 88.7 83.3 86 91.3 89.1 89.9  

Table 4 
Comparison of accuracy results obtained on the PC-GITA dataset - considering 
only the vowels subset of the dataset.  

Author Accuracy [%] 

/a/ /e/ /i/ /o/ /u/ 

Orozco-Arroyave, J. R. et al. [34] 91.3 81.3 84 86.3 86 
Karan, B. et al. [55] 78 80 50 75 58 
Karan, B. et al. [56] 70 72 74 68 78 
López-Pabón, F., O. et al. [57] 68 – 69 – 53 
Moro-Velazquez, L. et al. [37] 75 – – – – 
Wodzinski, M. et al. [54] 91.7 – – – – 
SOTA handcrafted features 59.9 61.5 65.2 61.2 62.5  
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speech from people with Parkinson’s disease through nonlinear dynamics, in: 
International Conference on Nonlinear Speech Processing. plus 0.5em minus 
0.4em, Springer, 2013, pp. 112–119. 

[21] J. Mekyska, E. Janousova, P. Gomez-Vilda, Z. Smekal, I. Rektorova, I. Eliasova, 
M. Kostalova, M. Mrackova, J.B. Alonso-Hernandez, M. Faundez-Zanuy, et al., 
Robust and complex approach of pathological speech signal analysis, 
Neurocomputing 167 (2015) 94–111. 

[22] M. Shahbakhi, D. T. Far, and E. Tahami, “Speech analysis for diagnosis of 
Parkinson’s disease using genetic algorithm and support vector machine,” J. 
Biomed. Sci. Eng., vol. 2014, 2014. 

[23] J.S. Almeida, P.P. Rebouças Filho, T. Carneiro, W. Wei, R. Damaševičius, 
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