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A weighted residual relationship for the contact problem with Coulomb friction
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1. Introduction

Problems where contact takes place between two or more
bodies are widespread and of practical significance in mechanics.
Their solution is complex because of the nonlinear and non-
smooth laws governing the interface response between the con-
tacting bodies. In the context of large deformations and large slips,
the problem becomes even more nonlinear and robust formula-
tions must be designed with a view to efficiently solve it.

Over more than three decades, a great number of formulations
and solution methods have been proposed in the literature in order
to deal with different kinds of contact problems encountered, from
frictionless contact in linear elastostatics up to frictional contact in
large deformation with complex material constitutive and interfa-
cial contact laws, either in statics or dynamics. The interested read-
er is referred to the book of Kikuchi and Oden [1] and the more
recent books of Wriggers [2] and Laursen [3] for a review of the
numerous references related to the existing methods for the treat-
ment of the contact constraints, in particular the classical Lagrange
multiplier, the penalty and the augmented Lagrangian methods. As
the formulation proposed in the present work is inspired from
methods of the augmented Lagrangian type, we shall limit our-
selves to a brief review of these methods in the literature.

The augmented Lagrangian method is often chosen to cope with
the contact inequality constraints inasmuch as it combines the reg-
ularizing effect of the penalty method and the exact satisfaction of
ultiplier method, with-
nherent to the penalty
problems in many vari-

1

ants. Kinematically linear problems with frictional contact were
solved using the augmented Lagrangian approach by Alart and Cur-
nier [4], Zavarise et al. [5]. Large deformation contact without fric-
tion was also successfully addressed by the same method in the
early work of Glowinski and Le Tallec [6] considering a plane rigid
obstacle, in Heegard and Curnier’s paper [7] considering contact
between two elastic bodies, and later in Zavarise and Wriggers
[8]. The solution of large deformation frictional contact problems
between deformable bodies was accomplished by Simo and Laur-
sen [9,10] including the algorithmic symmetrization of the contact
tangent stiffness matrix, Wriggers [11], Pietrzak and Curnier
[12,13] and more recently by Feng et al. [14] for Blatz-Ko hyper-
elastic bodies, and Mijar and Arora [15,16]. All previous works con-
sidered the Coulomb friction model or an extension of it to
incorporate micro-mechanical effects for instance.

In most of the formulations, the tangential contact stresses
were computed by locally integrating the contact laws and the
contact stiffness matrix is consistently derived from these stresses,
following the spirit of the return mapping scheme in elastoplastic-
ity as described by Giannakopoulos in [17]. In some formulations,
e.g., [5], the tangential contact law adopted was not of the rate type
and the above-mentioned local integration was not necessary. Cur-
nier and co-workers [4,7,13] chose another approach by directly
incorporating the contact laws into their augmented Lagrangians,
which enabled them to obtain the correct tangential contact stres-
ses without resorting to the local integration.

As regards the global solution of the discrete equation system,
Uzawa’s method was usually chosen because of its simplicity: the
multipliers are updated in an outer augmentation loop and the
displacements computed in a standard way inside an inner loop
while keeping the multipliers fixed. Otherwise, the discrete equa-
tion system can be solved simultaneously for the displacements

http://dx.doi.org/10.1016/j.compstruc.2009.08.013
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and the multipliers, as was done in [13,8], for instance. One can
also consult several different global algorithms for solving aug-
mented Lagrangian problems in [6, Chapters 3 and 7].

1.1. Motivation

The purpose of this paper is to propose a simple formulation for
the contact problem with Coulomb friction which combines the
benefits of the aforementioned formulations of the augmented
Lagrangian type. The sought formulation is based on a new weak
form – similar to the virtual work principle – which should fulfill
the following conditions:

(i) The weak form should incorporate the contact laws. More
precisely, although it is an equality, it must imply the
inequality constraints specific to contact laws. The conse-
quence of this is that the contact laws are automatically sat-
isfied regardless of the constitutive laws of the contacting
bodies and no local integration is needed at the contact sur-
face level.

(ii) The weak form may look like an augmented Lagrangian prin-
ciple in that it involves both the displacements and the mul-
tipliers, but, more importantly, it should be stated in the
form of a weighted residual relationship, with arbitrary (reg-
ular) virtual displacements and multipliers (an overview of
the weighted residual methods can be found in [18]). As
such, the weak form can be discretized by means of the finite
element method in a straightforward way.

1.2. Outline of the paper

The paper is organized as follows. The strong form of the initial/
boundary value contact problem is summarized in Section 2. In Sec-
tion 3, a weighted residual relationship is proposed as an extension
of the standard virtual work principle with the aim of encompassing
the large deformation contact response with Coulomb friction. This
mixed weak form which involves both the displacements and the
multipliers defined on the reference contact surface of the contactor
will be shown to be equivalent to the strong form of the contact prob-
lem. Section 4 deals with the semi-discretization in space of the
weak form by means of the finite element method, which results
in a coupled nonlinear semi-discrete equation system in two un-
knowns: the nodal displacements and the nodal multipliers. In Sec-
tion 5, the contact tangent stiffness matrix which is necessary to the
Newton–Raphson iterative solution is derived by the exact lineariza-
tion of the weak form. Different numerical examples assessing the
efficiency of the proposed formulation are presented in Section 6.

2. Strong form of the contact problem

Consider two bodies whose positions at any time are repre-
sented by some regions in a three-dimensional Euclidean affine
space. The position at any time of any particle belonging to the
bodies is represented by a point in this space. As usually done, a
fixed origin being chosen, any point as well as the associated posi-
tion vector will be identified to a three-component vector in R3.

We shall describe the mechanical problem using a Lagrangian
description. The reference configuration of the two bodies are rep-
resented by the regions Xð1Þo and Xð2Þo in R3. Let us assume that in
the time interval [O,T] of interest, the two bodies may come into
contact with each other through the motions denoted /ð1Þ and /ð2Þ:

8i 2 f1;2g; 8t 2 O; T½ �;

/ðiÞð:; tÞ : XðiÞo 3 XðiÞ#xðiÞ ¼ /ðiÞ XðiÞ; t
� �

; ð1Þ
2

where XðiÞ and xðiÞ are the reference and current positions of any
particle of body i, respectively.

The displacement field in body i is defined as UðiÞ ¼ xðiÞ � XðiÞ.
The strong form of the problem is expressed by the local equations
summarized below, which must be satisfied at any time t 2 ½O; T�
and at any point XðiÞ 2 XðiÞo ; i 2 f1;2g.

The linear momentum balance equation can be written for each
body i via:

divPðiÞ þ qðiÞo fðiÞ ¼ qðiÞo
€UðiÞ; ð2Þ

where PðiÞ is the first Piola–Kirchhoff stress tensor, qðiÞo is the refer-
ence density of body i and fðiÞ the prescribed body force per unit
mass.

The constitutive relationships relating stress to strain are left
unspecified until the numerical examples are considered. This
means that the weighted residual relationship proposed hereafter
holds for all constitutive materials, as is the case with the standard
virtual work principle.

The reference boundary SðiÞo of body i is partitioned into three
non-overlapping and pairwise disjoint parts denoted SðiÞoU ; S

ðiÞ
oT and

SðiÞoc , where SðiÞoU and SðiÞoT are the parts where the displacement and
the tractions are prescribed, respectively, and SðiÞoc is the part where
contact potentially takes place between the two bodies during
some portion of the time interval [O,T]. The boundary conditions
on SðiÞoU and SðiÞoT on each body i can be summarized as

UðiÞ ¼ UðiÞ in SðiÞoU ; PðiÞNðiÞ ¼ TðiÞ in SðiÞoT ; ð3Þ

where UðiÞ;TðiÞ are the prescribed displacement and nominal trac-
tion, respectively, NðiÞ the unit outward normal at point XðiÞ to sur-
face SðiÞo . The boundary conditions on the contact surface will be
presented in detail in Section 2.3. The initial conditions for body i
are

8XðiÞ 2 XðiÞo ; UðiÞðXðiÞ;0Þ ¼ 0; _UðiÞðXðiÞ;0Þ ¼ VðiÞ0 ðX
ðiÞÞ; ð4Þ

where VðiÞ0 is the prescribed initial velocity field for body i.

2.1. Contact kinematics

Let us now focus on the equations governing the response on
the contact interface, which are the essential ingredients in the
large deformation contact problem. Let the spatial counterparts
of XðiÞo ; S

ðiÞ
o ; S

ðiÞ
oU ; S

ðiÞ
oT and SðiÞoc be denoted by XðiÞ; SðiÞ; SðiÞU ; S

ðiÞ
T and SðiÞc ,

respectively, e.g., SðiÞc ¼ /ðiÞðSðiÞoc ; tÞ. In order to describe the rela-
tive motion of the two bodies, we arbitrarily choose one body
(the target), say body 2, as the reference and to evaluate the
proximity of the other (the contactor), thus body 1, with respect
to it.

It is assumed that the reference surface SðiÞoc ; i ¼ 1 or 2, is param-
etrized by the mapping hðiÞ and the current surface SðiÞc at time t by
the mapping wðiÞð:; tÞ ¼ /ðiÞð:; tÞ � hðiÞ:

A region of R2 ! SðiÞoc � R3 ! SðiÞc � R3;

nðiÞ ¼ ðnðiÞ1; nðiÞ2Þ # XðiÞ ¼ hðiÞ nðiÞ
� �

# xðiÞ ¼ /ðiÞ XðiÞ; t
� �

¼ wðiÞ nðiÞ; t
� �

:

ð5Þ

Consider a particular point x 2 Sð1Þc and define the opposite point
y 2 Sð2Þc as the closest point to x in the Euclidean sense (Fig. 1):

y ¼ arg min
xð2Þ2Sð2Þc

x� xð2Þ
�� ��: ð6Þ

In writing (6), we assume that point y is unique without discussing
the case of non-uniqueness, which is not of major consequence in
numerical computations. The interested readers may consult com-
prehensive comments on this issue in the literature, e.g., [7,2, p.



Fig. 1. Contact kinematics.
48], [3, p. 115], and references quoted therein. If the target surface
Sð2Þc is smooth at y, then y is the projection of x on Sð2Þc . As may be
seen, the notation xðiÞ; i 2 f1;2g, in (5) designates any point on SðiÞc ,
whereas the notation x designates a particular point of interest on
Sð1Þc and y the opposite point of x on Sð2Þc defined by (6).

The point x 2 Sð1Þc being associated to (at least) one point y 2 Sð2Þc ,
the proximity g is defined by

g ¼ �m x� yð Þ; ð7Þ

where m is the normal at point y. The sign convention chosen in (7)
implies that the proximity g is positive when there is interpenetra-
tion and negative when there is a gap between the two bodies.
Thus, symbol g is the opposite of what is referred to as the gap in
the literature. It can be checked that g is an objective quantity.

Let us now convert all the spatial quantities defined above into
material ones defined on the reference configurations, by means of
the motions /ð1Þ and /ð2Þ in (1). Considering the point X 2 Sð1Þoc re-
lated to the point x considered by x ¼ /ð1ÞðX; tÞ, then the point
Y 2 Sð2Þoc related to point y by y ¼ /ð2ÞðY; tÞ satisfies:

Y ¼ arg min
Xð2Þ2Sð2Þoc

/ð1Þ X; tð Þ � /ð2Þ Xð2Þ; t
� ���� ���: ð8Þ

A point Y thus being associated to point X, the proximity g de-
fined in (7) can be rewritten as

g ¼ �m /ð1Þ X; tð Þ � /ð2Þ Y; tð Þ
� �

: ð9Þ

Eventually, the inverse image of X (resp. Y) under the parame-
trization hð1Þ (resp. hð2Þ) will be denoted n (resp. g). By making
xð2Þ ¼ wð2Þðnð2Þ; tÞ in (6), one finds that g is characterized by

g ¼ arg min
nð2Þ

x� wð2Þ nð2Þ; t
� ��� ��: ð10Þ

For notational conveniences, the dependencies on /ð1Þ, /ð2Þ and
wð2Þ will be omitted in the material kinematics variables and only
the dependency on ðX; tÞ will be shown. Thus, for instance, one
writes g ¼ gðX; tÞ and g ¼ gðX; tÞ.

Assuming that all the mappings introduced are smooth enough,
let us define the natural basis ða1; a2Þ at point y 2 Sð2Þc as

a1 ¼
owð2Þ

onð2Þ1
gðX; tÞ; tð Þ; a2 ¼

owð2Þ

onð2Þ2
gðX; tÞ; tð Þ: ð11Þ

The surface Sð2Þc is parametrized conveniently so that the normal
n ¼ a1 � a2=ka1 � a2k at y to Sð2Þc is directed toward the contactor.
Use will also be made of the dual basis ða1; a2Þ lying in the tangent
plane of the current target surface as follows:

8a 2 1;2f g; aa ¼ aabab; ð12Þ
3

where implicit summation from 1 to 2 is assumed over repeated
Greek indices and the 2 � 2 matrix ½aab� is the inverse of matrix
½aab� ¼ ½aa � ab�.

The contact kinematics with friction is described here by using
the following objective relative velocity at point X and time t
[19,20]:

V ¼ Vð1Þ X; tð Þ � Vð2Þ YðX; tÞ; tð Þ þ g _m ¼ � _gm þ _gaaa; ð13Þ

where Vð1ÞðX; tÞ and Vð2ÞðY; tÞ are the velocities of the particles X and
YðX; tÞ, respectively. The rates _g; _ga and _m are given by [2,3]:

_g ¼ � Vð1Þ X; tð Þ � Vð2Þ YðX; tÞ; tð Þ
h i

m;

_ga ¼ �aabab Vð1Þ X; tð Þ � Vð2Þ YðX; tÞ; tð Þ
h i

� g�aabmVð2Þ;b g; tð Þ;

_m ¼ � jac�acbaa � ab

� �
Vð1Þ � Vð2Þ
� �

� �aabab � m
� �

Vð2Þ;a ;

ð14Þ

where matrix ½�aab� is the inverse of matrix ½�aab�, with
�aab ¼ aab þ gjab;jab ¼ mw

ð2Þ
;ab is the curvature of the surface wð2Þ at

g, the symbol � designates the tensor product defined as
ða� bÞ � c ¼ aðb � cÞ for all vectors a, b and c. Note that tensor
jac�acbaa � ab ¼ �aacjcbaa � ab in (14c) is symmetric.

On the basis of (13) one can define (i) the relative normal velocity
VN as the projection of V on the normal vector m, and (ii) the slip
velocity or the relative tangential velocity VT as the projection of V
into the tangent plane at y to Sð2Þoc :

VN ¼ V � m ¼ � _gm; VT ¼ I� m � mð Þ � V ¼ _gaaa: ð15Þ

It should be noted that the slip rate VT associated to the mate-
rial point X 2 Sð1Þoc is resolved in terms of the spatial basis ða1; a2Þ at
point y 2 Sð2Þc . As done with other kinematical quantities, use will
be made of the abbreviated notations V ¼ VðX; tÞ and
VT ¼ VTðX; tÞ, omitting the dependencies on motions /ð1Þ;/ð2Þ.

2.2. Contact tractions

Let the contact Cauchy traction vector tðx; tÞ at a typical point
x 2 Sð1Þc be resolved in terms of the local basis ða1; a2; mÞ at the pro-
jection point y 2 Sð2Þc as follows:

t ¼ tNm � tT ¼ tNm � tTaaa: ð16Þ

The normal component tN of traction vector t in the direction of
normal m is the contact pressure, positive in compression. The tan-
gential component tT ¼ tTaaa is the opposite of the frictional trac-
tion. It can be verified that the pressure tN and the frictional
traction tT are objective variables.

Let TðX; tÞ ¼ Pð1Þ:N be the nominal Piola–Kirchhoff traction vec-
tor at point X 2 Sð1Þoc (N the normal vector at X to Sð1Þoc ). Like the con-
tact Cauchy traction, the nominal traction T is resolved in terms of
the spatial basis at y 2 Sð2Þc as follows:

T X; tð Þ ¼ TN X; tð Þm � TT X; tð Þ ¼ TN X; tð Þm � TTaaa: ð17Þ

From relation tdSð1Þ ¼ TdSð1Þo ðdSð1Þo is a differential reference area,
dSð1Þ its spatial counterpart), one derives the following relation-
ships between the spatial and material traction components:

tNdSð1Þ ¼ TNdSð1Þo ; tT dSð1Þ ¼ TT dSð1Þo : ð18Þ
2.3. Contact laws

As a means of describing the interfacial response at current time
t, the contact laws are naturally expressed in the spatial form.
However, one may use (18) in order to recast them into the mixed
form involving the relative material velocity and the nominal
contact tractions, which are more suitable for the numerical



implementation within the Lagrangian description framework. The
normal contact law then reads:

8t 2 O; T½ �; 8X 2 Sð1Þoc ;

g X; tð Þ 6 0
� if g X; tð Þ < 0; then TN X; tð Þ ¼ 0
� if g X; tð Þ ¼ 0; then TN X; tð Þ P 0

� ð19Þ

In this work, the tangential contact response is modeled by the
Coulomb friction law:

8t 2 ½O; T�; 8X 2 Sð1Þoc ;

ðaÞ g X; tð Þ < 0) TT X; tð Þ ¼ 0 no relationship for VT X; tð Þð Þ;
ðbÞ g X; tð Þ ¼ 0) TT X; tð Þk k 6 lTN X; tð Þ

where
� if TTk k < lTN; then VT ¼ 0 stickð Þ
� if TTk k ¼ lTN; then VT � TT ¼ 0;

VT � TT P 0 slipð Þ

8><
>:

ð20Þ

where l > 0 is the coefficient of friction.
It can be verified that the contact laws (19) and (20) are

objective.

3. Weighted residual relationship for the contact problem

The strong form of the contact problem is described by Eqs. (1)
and (2), the constitutive law, the boundary conditions (3), the con-
tact laws (19) and (20) and the initial conditions (4). In this section,
we convert the strong form into an equivalent weak one which is
more convenient for the finite element implementation.

The approach chosen is inspired by the augmented Lagrangian
formulation of Pietrzak and Curnier [13] and amounts to rewrite
the augmented Lagrangian formulation of Alart and Curnier [4] in
a generic weak form. More specifically, a weighted residual rela-
tionship is proposed which involves the displacement fields
UðiÞ; i 2 f1;2g, defined in XðiÞo , and the multiplier field kNðXÞ and
kTðXÞ ¼ kTaaa defined on Sð1Þoc . Accordingly, the weighting functions
are the virtual displacements Uð1Þ	, Uð2Þ	, and the virtual multipliers
k	N; k

	
T ¼ k	Taaa. Two positive constants �N; �T being chosen, the

weighted residual relationship is stated in the following proposi-
tion [21].

Proposition 1
I The solution fields of the strong problem – namely Uð1Þ;Uð2Þ in
Xð1Þo ;Xð2Þo and TN;TT ;VT on Sð1Þoc – satisfy the following relationship,
provided one makes kN ¼ TN and kT ¼ TT :

8t 2 ½O; T�;8Uð1Þ	;8Uð2Þ	;8k	N ;8k	T1;8k	T2;

P2
i¼1
�
R

XðiÞo
PðiÞT :rXðiÞU

ðiÞ	dXoþ
R

XðiÞo
qðiÞo fðiÞUðiÞ	dXoþ

R
SðiÞ

oU
[SðiÞ

oT
TðiÞUðiÞ	dSo

n o
þ
R

Sð1Þoc
kNþ�Ngh im� 1� 1� l kNþ�N gh i

kTþ�T VTk k

D E� �
kT þ�T VTð Þ

h i
Uð1Þ	ðXÞ�Uð2Þ	 YðXÞð Þ
� �

dSo

þ
R

Sð1Þoc
kN� kNþ�Ngh ið Þ k

	
N
�N
þ kT � 1� 1� l kNþ�N gh i

kTþ�T VTk k

D E� �
ðkT þ�T VT Þ

h i
k	T
�T

n o
dSo

¼
P2
i¼1

R
XðiÞo

qðiÞo
€UðiÞUðiÞ	dXo

ð21Þ

where rXðiÞU
ðiÞ	 is the gradient tensor of UðiÞ	 with respect to vari-

ables XðiÞ; h�i is the Macauley bracket: hai ¼ a if a P 0;¼ 0 if

a < 0, and h1� lhkN þ �Ngi
kkT þ �T VTki must be replaced by 0 at any point

on Sð1Þoc where kT þ �T VT ¼ 0.

I Conversely, the contact surfaces Sð1Þc and Sð2Þc being parametrized by
n # x 2 Sð1Þc and g # y 2 Sð2Þc , it is assumed that there is a bijective
(or piecewise bijective) mapping Sð1Þc 3 x#y 2 Sð2Þc between them.
Then, relation (21) implies at any time t 2 ½O; T� the following local
equations:
4

(1) The momentum balance Eq. (2) for the two bodies 1 and 2.
(2) Relation (3b) on the boundary portion SðiÞo n SðiÞoc ¼

SðiÞoT [ SðiÞoU : PðiÞNðiÞ ¼ TðiÞ.
(3) The following equalities between the components of the

nominal traction vectors and the multipliers on the contactor
surface Sð1Þoc .
8X 2 Sð1Þoc ; Tð1Þ ¼ Pð1ÞNð1Þ ¼ kNm � kT

() TN ¼ kN and TT ¼ kT : ð22Þ
(4) The normal and tangential contact laws (19) and (20).
(5) The following relationship which expresses the equilibrium of

the traction vectors at the contact interface.
8X 2 Sð1Þoc ;

Tð2Þ Yð ÞdSð2Þoc ¼ � kNm � kTð Þ kX;n1�X
;n2 k

kY
;g1�Y

;g2 k
Dn

Dg
dSð2Þoc

¼ �Tð1ÞðXÞdSð1Þoc

; ð23Þ

where point Y ¼ YðX; tÞ 2 Sð2Þoc corresponds to point X
through the above-mentioned bijection, dSð1Þoc is a differential
reference area in Sð1Þoc and dSð2Þoc its counterpart in Sð2Þoc related
to dSð1Þoc .
Remarks

(i) In general, kT þ �T VT differs from zero since kT and VT do not
vanish simultaneously: if the slip rate vanishes, then the
tangential traction does not, and vice versa. However, in
some problems with a specific symmetry, there may be
some points where kT þ �T VT is zero. In practice, the set of
these points is either isolated points or lines on the contact
surface Sð1Þoc .

(ii) In dynamics, when shocks and impacts are expected, the
acceleration €UðiÞ should be understood as the derivative of
the velocity in the sense of the distributions [22].

Proof. The first part of the above proposition, which states that the
strong form implies the weak one, can be readily checked. Let us
prove the reciprocal statement for an arbitrary fixed time t 2 ½O; T�.


 Since (21) holds for all virtual fields Uð1Þ	;Uð2Þ	; k	N and k	T , let us
pick Uð1Þ	 ¼ Uð2Þ	 ¼ 0 and k	T ¼ 0, while keeping k	N arbitrary.
Relationship (21) then leads to

kN ¼ kN þ �Ngh i on Sð1Þoc : ð24Þ
The first consequence of (24) is kN P 0. Next, two mutually
exclusive cases arise:

– either kN þ �Ng < 0, then (24) entails:
kN ¼ 0) g < 0 since kN þ �Ng < 0ð Þ ð25Þ
– or kN þ �Ng P 0, then (24) entails:
kN ¼ kN þ �Ng () g ¼ 0; which gives kN P 0
since kN þ �Ng P 0: ð26Þ
The results for the two cases above can be gathered together as
follows:

g 6 0 where
� if g < 0; then kN ¼ 0
� if g ¼ 0; then kN P 0

�
ð27Þ

which is the normal contact law (19) provided kN ¼ TN which
will be shown later.




 Consider (21) again and choose now Uð1Þ	 ¼ Uð2Þ	 ¼ 0 and
k	N ¼ 0, whereas k	T is left arbitrary. The localization theorem
can then be applied assuming that the coefficient of k	T is a
continuous function in space. At any point on Sð1Þoc where
kT þ �T VT – 0, one has

kT ¼ 1� 1� l kN þ �Ngh i
kT þ �T VTk k

� 	
 �
kT þ �T VTð Þ: ð28Þ

The first consequence of (28) is that the slip velocity VT is paral-
lel to kT . Let us show a more precise result, specifically VT is ori-
ented in the same direction as kT . To do this, let us temporarily

denote a ¼ lhkN þ �Ngi
kkT þ �T VTkP 0 for brevity. Relation (28) then reads:

1� ah ikT ¼ 1� 1� ah ið Þ�T VT : ð29Þ

As a P 0 and 1� h1� aiP 0;8a, one has the following mutually
exclusive cases depending on a’s value:

� if a ¼ 0; then ð29Þ gives kT ¼ 0:
� if 0 < a < 1; then 1� a > 0;1� 1� ah i > 0

and ð29Þ entails 1� að ÞkT ¼ a�T VT :

� if a P 1; then ð29Þ gives VT ¼ 0:

8>>><
>>>:

ð30Þ

Thus, in any case VT is oriented in the direction of kT . Now, let us
distinguish two cases:
– If kN þ �Ng < 0, then one gets from (25) and (28) g < 0 and

kT ¼ 0.
– If kN þ �Ng P 0, then one gets from (26) g ¼ 0. Two mutually

exclusive sub-cases arise here:

– if kkT þ �T VTk < lðkN þ �NgÞ, then (28) entails VT ¼ 0. From

g ¼ 0 just proven, one finds kkTk < lkN .
– if kkT þ �T VTkP lðkN þ �NgÞ, then (28) entails kT ¼

lðkN þ �NgÞ kT þ �T VT
kkT þ �T VTk.

By taking the norm of both sides of the last equality, recalling
here kN þ �Ng P 0 and g ¼ 0, one finds kkTk ¼ lkN .The last
results can be summarized as follows:

� if g < 0; then kT ¼ 0
� if g ¼ 0; then kTk k 6 lkN;

and
� if kTk k < lkN ; then VT ¼ 0
� if kTk k ¼ lkN ; then VT

is oriented in the direction of kT

8><
>:

8>>>>>><
>>>>>>:

ð31Þ
which is merely the tangential contact law (20) provided
kN ¼ TN; kT ¼ TT , which will be shown soon.


 Eventually, let us make in (21) k	N ¼ 0; k	T ¼ 0 and keep Uð1Þ	 and
Uð2Þ	 arbitrary. According to the divergence theorem, relation-
ship (21) leads to the following equality:

X2

i¼1

Z
XðiÞo

UðiÞ	 divPðiÞ þ qðiÞo fðiÞ
� �

dXo �
Z

SðiÞoU[SðiÞoT

UðiÞ	 � PðiÞ � NðiÞ � TðiÞ
� �

dSo

( )

�
Z

Sð1Þoc

Uð1Þ	 �Pð1Þ � Nð1ÞdSo

þ
Z

Sð1Þoc

Uð1Þ	 kN þ �Ngh im � 1� 1� l kN þ �Ngh i
kT þ �T VTk k

� 	
 �
kT þ �T VTð Þ

� 

dSo

�
Z

Sð2Þoc

Uð2Þ	 �Pð2Þ � Nð2ÞdSo

�
Z

Sð1Þoc

Uð2Þ	 kN þ �Ngh im � 1� 1� l kN þ �Ngh i
kT þ �T VTk k

� 	
 �
kT þ �T VTð Þ

� 

dSo

¼
X2

i¼1

Z
XðiÞo

qðiÞo
€UðiÞUðiÞ	dXo;

ð32Þ
5

where NðiÞ is the unit outward normal at point XðiÞ 2 SðiÞo .
Note that the last integral of the left-hand side of (32) is taken
over Sð1Þoc . It can be recast into an integral over Sð2Þoc by using the
chain of bijections n#X#Y#g which allows one to change the
integration variables:

dSð1Þo ¼ X;n1 � X;n2

�� ��dn1dn2 ¼ X;n1 � X;n2

��� ���Dn

Dg
dg1dg2;

dSð2Þo ¼ Y;g1 � Y;g2

�� ��dg1dg2: ð33Þ

Hence

dSð1Þo ¼
X;n1 � X;n2

��� ���
Y;g1 � Y;g2

�� �� Dn

Dg
dSð2Þo : ð34Þ

By substituting (34) into (32), one gets relations (2), (3b), (23)
and

Tð1Þ ¼ Pð1ÞNð1Þ

¼ kN þ �Ngh im � 1� 1� l kN þ �Ngh i
kT þ �T VTk k

� 	
 �
kT þ �T VTð ÞonSð1Þoc :

ð35Þ

Comparing (35) with the definition (17), Tð1Þ ¼ TNm � TT , and
making use of (24) and (28) lead to equality (22) between the
contact tractions and the multipliers. Next, the normal and tan-
gential contact laws (19) and (20) are derived from (22), (27)
and (31).


 It remains to consider the points on Sð1Þoc where kT þ �T VT ¼ 0.
Equality (28) is then replaced by kT ¼ kT þ �T VT , which entails
kT ¼ VT ¼ 0. The subsequent reasoning is analogous yet simpler
than the case kT þ �T VT – 0. It can easily be checked that the
tangential contact law (20) as well as (Relations 22) and (23)
are satisfied at the points where kT þ �T VT ¼ 0. The whole Prop-
osition 1 has been proved. j
4. Semi-discrete equation system

In this section, the weighted residual relationship (21) will be
discretized in space by means of the finite element method. The
discretization process will be described in the 3D framework only
but the results for 2D problems can be derived in a similar manner.
The following shorthand notations will be used for brevity:

k̂N ¼ kN þ �Ng; k̂T ¼ kT þ �T VT : ð36Þ

We shall confine ourselves to the terms pertaining to contact in
equality (21), denoted W	

contact, since the other terms can be dis-
cretized in a standard way. Let the contactor surface Sð1Þoc be subdi-
vided into a number of isoparametric finite elements eð1Þ (the
superscript ‘(1)’ is used throughout to remind of the contactor sur-
face Sð1Þoc ), then expression W	

contact can be recast as the sum of the
element contact terms ðW	

contactÞ
eð1Þ related to elements eð1Þ and

evaluated using the Gauss quadrature rule:

W	
contact

� �eð1Þ � ¼
X

quadrature
points

k̂N

D E
m � 1� 1�

l k̂N

D E
k̂T

��� ���
* +0

B@
1
CAk̂T

2
64

3
75

8><
>:

� Uð1Þ	ðXÞ � Uð2Þ	 YðXÞð Þ
� �

þ kN � k̂N

D E� � k	N
�N

þ kT � 1� 1�
l k̂N

D E
k̂T

��� ���
* +0

B@
1
CAk̂T

2
64

3
75 k	T
�T

9>=
>;jðnÞ; ð37Þ

where all terms are computed at Gauss points and jðnÞ is the area
jacobian times the weight corresponding to the parent coordinates
n ¼ ðn1; n2Þ 2 R2 of quadrature point X 2 eð1Þ, see Fig. 1:



jðnÞ ¼ X;n1 ðnÞ � X;n2 ðnÞ
��� ��� � weight at location nð Þ: ð38Þ

In the sequel, the following notational convention is adopted for
the matrix representations: curly brackets {} designate a column
vector, the angle brackets < > an arrow vector, and the square
brackets [ ] a general matrix. In any element eð1Þ � Sð1Þoc , the refer-
ence coordinates X, the displacement Uð1Þ and the multipliers k

are interpolated by

Xf g ¼ Nð1ÞðnÞ
� �eð1Þ

Xf geð1Þ ;

Uð1Þ
n o

¼ Nð1ÞðnÞ
� �eð1Þ

Uð1Þ
n oeð1Þ

;

kf g ¼ Nð1ÞðnÞ
� �eð1Þ

kf geð1Þ :

ð39Þ

In (39b) for instance, fUð1Þg is the column vector with the three
components of the displacement Uð1Þ related to a fixed Cartesian
orthonormal basis ðe1; e2; e3Þ. The column vector fUð1Þgeð1Þ contains
the 3nneð1Þ nodal displacement components associated with ele-
ment eð1Þ, where nneð1Þ is the number of nodes of element eð1Þ.
The matrix ½Nð1ÞðnÞ�e

ð1Þ
contains the shape functions of element

eð1Þ and is of dimension 3� 3nneð1Þ.
The normal and tangential components of multiplier k can be

derived from (39c) via:

kN ¼< m > Nð1ÞðnÞ
� �eð1Þ

kf geð1Þ ;

kTf g ¼ � I� m � m½ � Nð1ÞðnÞ
� �eð1Þ

kf geð1Þ ;
ð40Þ

where fkTg is a 3-component column vector.
Like the contactor surface, the target surface Sð2Þoc is subdivided

into a number of isoparametric finite elements. Given a quadrature
point X in element eð1Þ, let eð2Þ the (or an) element of Sð2Þoc containing
the reference point Y corresponding to the projection
y ¼ projSð2Þc

x 2 Sð2Þc . In element eð2Þ, the reference coordinates Y
and the displacement Uð2Þ are interpolated by

Yf g ¼ Nð2ÞðgÞ
� �eð2Þ

Yf geð2Þ ;

Uð2Þ
n o

¼ Nð2ÞðgÞ
� �eð2Þ

Uð2Þ
n oeð2Þ

;
ð41Þ

where g ¼ ðg1;g2Þ 2 R2 is the parent coordinate of Y and the super-
script (2) is used to remind of element eð2Þ � Sð2Þoc . The column vector
fUð2Þgeð2Þ contains the 3nneð2Þ nodal displacement components asso-
ciated with element eð2Þ, where nneð2Þ is the number of nodes of ele-
ment eð2Þ. The 3� 3nneð2Þ matrix ½Nð2ÞðgÞ�e

ð2Þ
contains the shape

functions of element eð2Þ.
As in [3], given a quadrature point X in element eð1Þ � Sð1Þoc , there

is at least one element eð2Þ � Sð2Þoc containing the reference point Y of
y ¼ projSð2Þc

x. Both element eð2Þ and the number of nodes nneð2Þ,
which depend on the projection y, vary as a function of the quad-
rature point X. Moreover, the whole set of quadrature points of ele-
ment eð1Þ generally involves several elements eð2Þ in Sð2Þoc .

All the virtual quantities are interpolated in a similar way. Even-
tually, the element contact expression ðW	

contactÞ
eð1Þ in (37) on the

element eð1Þ level can be written in the discretized form:

W	
contact

� �eð1Þ ¼
X

quadrature
points



Uð1Þ	
D Eeð1Þ

; Uð2Þ	
D Eeð2Þ

� 	
Ucontactf ge

� K	h ie
ð1Þ

RKf ge
�

jðnÞ; ð42Þ

where fUcontactge is the element contact force vector and fRKge the
element residual vector for the multipliers, defined as
6

Ucontactf ge ¼
Nð1ÞðnÞ
� �eð1ÞT

k̂N

D E
fmg� 1� 1� l k̂Nh i

k̂Tk k

� 	
 �
k̂T

n o
 �

� Nð2ÞðgÞ
� �eð2ÞT

k̂N

D E
fmg� 1� 1� l k̂Nh i

k̂Tk k

� 	
 �
k̂T

n o
 �
8>>><
>>>:

9>>>=
>>>;
;

ð43Þ

RKf ge ¼ Nð1ÞðnÞ
� �eð1ÞT



1
�N

k̂N

D E
� kN

� �
fmg

þ 1
�T

kT � 1� 1� l k̂Nh i
k̂Tk k

� 	
 �
k̂T

� �� : ð44Þ

Vector fUcontactge in (43) has nneð1Þ þ nneð2Þ components, where
nneð2Þ varies as a function of the considered quadrature point; vector
fRKge has nneð1Þ components. Note that

1� 1�
l k̂N

D E
k̂T

��� ���
* +

¼

0 if k̂N < 0
algorithmic gapð Þ;

lk̂N

k̂Tk k if k̂N P 0 and k̂T

��� ��� P lk̂N

algorithmic contact with slipð Þ;

1 if k̂N P 0 and k̂T

��� ��� < lk̂N

algorithmic contact with stickð Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð45Þ

In (45), use has been made of the adjective ‘algorithmic’ in order
to emphasize the difference with the ‘real’ situation. For instance,
the ‘algorithmic gap’ case means k̂N ¼ kN þ �Ng < 0, in contrast
with the real ‘gap’ case which merely means g < 0; and the ‘algo-
rithmic slip’ case means kk̂TkP lk̂N , as opposed to the ‘slip’ case
which means kkTk ¼ lkN .

By adding the element contributions in (42), one obtains the fol-
lowing semi-discrete coupled equation system:

M½ � €U
n o

þ WðUÞf g ¼ UðUÞf g þ UcontactðU;KÞf g;
RKðU;KÞf g ¼ 0f g;

ð46Þ

where vectors fUcontactðU;KÞg and fRKðU;KÞg are the assembly of
the element vectors fUcontactgejðnÞ and fRKgejðnÞ given in (43) and
(44), respectively. The unknowns in (46) are the nodal displacement

vector fUg ¼ fUð1Þg
fUð2Þg

� �
in the two bodies 1 and 2, and the multi-

plier vector fKg on the reference contact surface Sð1Þoc . Except for
the above-mentioned vectors fUcontactðU;KÞg and fRKðU;KÞg which
are specific to contact, the other vectors and matrices are standard
and result from the discretization of terms other than W	

contact in
relationship (21): [M] is the mass matrix, fWðUÞg the internal force
vector resulting from the strain work in the bodies, fUðUÞg the
external force vector (excluding contact force) which may depend
on displacement {U} if follower loads (e.g., a pressure) are applied
on either body. The nonlinear semi-discrete Eq. (46) will be solved
as a whole using the standard full Newton–Raphson method to
simultaneously obtain the nodal displacements and the multipliers,
as was done in [4,7,13,8] (Curnier and co-workers even used a so-
called generalized Newton method which is more sophisticated).


 The slip velocity VT ¼ _gaaa defined in (15) and involved in (43)
and (44) has to be computed here by means of an adequate tem-
porally discrete expression. For this purpose, let us first note
that Proposition 1 remains valid if VT is replaced with VTDt,
where Dt is an arbitrary finite time interval. The quantity VTDt
having the dimension of a length will be referred to as the slip,
its use instead of the slip velocity is more consistent in the
numerical context because the penalty parameters �N and �T

involved in the weak form then have the same dimension of a



force by unit volume, i.e. the same SI units of N=m3. Let us now
look at a typical iteration of the current time step n and intro-
duce some new notations as summarized in Fig. 2. For the sake
of brevity, any quantity computed at the current step n will not
be indexed by n, whereas any quantity related to the previous
step will be distinguished by subscript n-1. Consider two times
t and tn�1, which are respectively the current time corresponding
to the current iteration of the current step n and the time corre-
sponding to the previous step (n-1). Given a particle on the cont-
actor surface Sð1Þc with reference position X, its position at time
tn�1 is xn�1 ¼ /ð1ÞðX; tn�1Þ and its current position is
x ¼ /ð1ÞðX; tÞ. We denote the following quantities related to time
tn�1:
– yn�1 the projection of xn�1 on the target surface Sð2Þc ðtn�1Þ at

time tn�1,
– Yn�1 and gn�1 the inverse images of yn�1 under the chain of

parametrizations (5).
It should be emphasized that (i) y and yn�1 are not the respec-

tive positions at times t and tn�1 of a same particle in body 2,
and (ii) the current position of the particle Yn�1 is /ð2ÞðYn�1; tÞ,
in general distinct from y ¼ /ð2ÞðY; tÞ.With these notations in
hand, using the chain of parametrizations (5), which gives
y ¼ wð2Þðg; tÞ and wð2Þðgn�1; tÞ ¼ Uð2ÞðYn�1; tÞ, and applying the
backward Euler integration scheme with time step
Dt ¼ t � tn�1 leads to the following expression for the slip:

VTDt ¼ y �Uð2Þ Yn�1; tð Þ: ð47Þ

It should be noted that other expressions such as
VTDt ¼ wð2Þðg; tÞ � wð2Þðgn�1; tÞ would not be suitable as surface
Sð2Þc is divided into finite elements and the parametrization (5)
is in fact defined piecewisely. It may happen that the projection
points yn�1 and y do not belong to the same element on Sð2Þc

although they are close to each other; in this case their local par-
ent coordinates gn�1 and g may be quite distant even though the
time step Dt tends to zero. The algebraic expression (47) does not
involve the parent coordinates and thus avoids the aforemen-
tioned discontinuity problem. It is adopted to compute the slip
in the contact force vector (43) and the residual (44), as well as
the tangent stiffness in the next section.


 The important issues of convergence and stability of a mixed
finite element formulation were investigated in the literature
for continuum problems and later for contact problems. They
are related to the inf-sup condition which is expressed in con-
tact problems as a compatibility condition between the dis-
placement and multiplier spaces on the contact surfaces.
Fig. 2. Illustration of the slip VTDt.
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Following Chapelle and Bathe’s developments [23] on incom-
pressible elasticity, El-Abbasi and Bathe [24] examined the small
deformation frictionless contact problem and proposed an inf-
sup test procedure where a series of refined meshes is used in
order to evaluate the evolution of the numerical inf-sup value.
A further mathematical study was carried out by Bathe and Bre-
zzi in [25], giving rise to precise relations between the degrees of
the polynomial interpolations for the displacements and the
multipliers. In general, the mathematical study of the inf-sup
condition is confined to the small deformations framework since
it is difficult when the structure undergoes large deformations
and the contact surface is unknown a priori. No attempt has
been made in this work in order to prove-analytically or numer-
ically-that the proposed method passes the inf-sup condition.
This issue should be investigated in the future. In the mean-
while, it can be observed through the numerical examples pre-
sented in Section 6 that the convergence is achieved when the
mesh is refined and there is neither locking nor spurious contact
pressure.

5. Contact tangent stiffness matrix

This section is devoted to the derivation of the tangent stiffness
matrix required for the Newton–Raphson solution of the coupled
equation system (46). We will confine ourselves to that part of
the tangent stiffness related to contact, since the remaining part
related to non contact terms can be linearized in a standard way.
Let dU and dk be the independent variations of the displacement
and the multiplier, respectively defined by

dU ¼ dUiei; dk ¼ dkNm � dkT ; dkT ¼ dkTaaa ? m; ð48Þ

where Latin indices take the values 1, 2, 3, Greek indices take the
values 1, 2, repeated indices imply summation and the variations
dUi; i 2 f1;2;3g; dkN ; dkT1; dkT2 are arbitrary. One has to compute
the exact linearization of W	

contact corresponding to these variations
and extract the contact stiffness ½Kcontact� from the relation:

8 dUf g; dKf g; dW	
contact ¼ �

U	f g
K	f g

� �T

Kcontact½ �
dUf g
dKf g

� �
: ð49Þ

The variation ðdW	
contactÞ

eð1Þ over any element eð1Þ � Sð1Þoc is ob-
tained by taking the directional derivatives of (37) in the directions
dUðiÞ; i 2 f1;2g; dkN and dkT . The variations of the basic kinematic
variables are expressed in terms of the displacement variations
via [2,3]:

dg¼� dUð1Þ Xð Þ�dUð2Þ Y X;tð Þð Þ
� �

�m;

dga¼ �aabab dUð1Þ Xð Þ�dUð2Þ Y X;tð Þð Þ
� �

�g�aabmdUð2Þ;b gð Þ;

dm¼� jac�acbaa�ab

� �
dUð1Þ Xð Þ�dUð2Þ Y X;tð Þð Þ
� �

� �aabab� m
� �

dUð2Þ;a gð Þ;

ð50Þ

where dUð2Þ;a ðgÞ denotes the partial derivative with respect to ga of
the composite function dUð2ÞðgÞ ¼ dUð2ÞðYðgÞÞ.

As for the variation of the slip, it is derived from (47):

d VTDtð Þ ¼ dUð2Þ Yð Þ � dUð2Þ Yn�1ð Þ
þW � dUð1ÞðXÞ � dUð2ÞðYÞ

� �
� ZadUð2Þ;a ðgÞ

; ð51Þ

where W and Za;a 2 f1;2g, are non symmetric second-order ten-
sors defined as

W ¼ �aabaa � ab; Za ¼ g�aabab � m: ð52Þ



Like the displacement, the variations of the displacement and
the multiplier are obtained by interpolating the nodal variations

dUð1Þ
n o

¼ Nð1ÞðnÞ
� �eð1Þ

dUð1Þ
n oeð1Þ

;

dUð2Þ
n o

¼ Nð2ÞðgÞ
� �eð2Þ

dUð2Þ
n oeð2Þ

;

dkf g ¼ Nð1ÞðnÞ
� �eð1Þ

dkf geð1Þ : ð53Þ

In the above relationship, fdkg for instance is the 3-component
column vector representing dk in the fixed basis ðe1; e2; e3Þ and the
column vector fdkgeð1Þ with 3nneð1Þ components contains the trip-
lets of the nodal components of dk in the same basis. One also
needs to interpolate the variation fdUð2ÞðYn�1Þg involved in (51):

dUð2Þ Yn�1ð Þ
n o

¼ Nð2Þ gn�1ð Þ
� �eð2Þ

n�1 dUð2Þ
n oeð2Þ

n�1
; ð54Þ

where eð2Þn�1 denotes the element in the reference target surface Sð2Þoc

containing point Yn�1, in general different from element eð2Þ.
Eventually, relations (50)–(54) enable one to express the ele-

ment linearization ðdW	
contactÞ

eð1Þ in the form:

dW	
contact

� �eð1Þ ¼�
X

quadrature
points

Uð1Þ	
n oeð1Þ

Uð2Þ	
n oeð2Þ

K	f geð1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

T

Kcontact½ �ejðnÞ

dUð1Þ
n oeð1Þ

dUð2Þ
n oeð2Þ

dUð2Þ
n oeð2Þ

n�1

dKf geð1Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
;

ð55Þ

where the element contact stiffness ½Kcontact�e is a rectangular matrix
of the form:

ð56Þ

The explicit expression of the above matrix is given in the
Appendix. It should be emphasized that (i) despite the superscript
e which stands for element, ½Kcontact�e is actually defined for each
quadrature point of element eð1Þ � Sð1Þoc and (ii) although the ele-
ment matrices ½Kcontact�ejðnÞ are rectangular, their assembly eventu-
ally results in the square contact stiffness ½Kcontact� of the form:

ð57Þ
p

E, ν

E, ν

y 

a 

(a) 

(b) (

Fig. 3. Contact patch test. (a) Problem definiti
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6. Numerical examples

This section presents the numerical examples which are carried
out on the basis of the previous finite element formulation in order
to assess the efficiency of the proposed formulation. Although the
semi-discrete equation system (46) holds in dynamics, from now
on we will confine ourselves to those quasistatic cases that display
enough specific features of the contact phenomenon to consider
the formulation validated. The dynamic cases present additional
physical and numerical difficulties and are deliberately disre-
garded at this stage. All numerical results presented here have
been obtained by a home made finite element code.
6.1. Contact patch test

The first example we consider is related to the contact patch
test which was originally conceived in [26,27], with the aim of
checking whether the finite element contact formulation allows
transmission of a constant pressure through an arbitrary noncon-
forming contact surface.

In this work, we used the patch test proposed in [28,24] and
shown in Fig. 3a. An elastic body is pressed against another one
by a uniform distributed load p = 1000 N/m2 applied on its top sur-
face. Assuming a frictionless interface ðl ¼ 0Þ between the two
bodies, the exact solution of the patch test entails a constant con-
tact pressure equal to p along the contact line. The patch test is
passed if the numerical results yield such a uniform stress distribu-
tion, regardless of the mesh used. In practice, one has to verify the
test using some typical meshes.

Here the problem is solved assuming that the two bodies are
made of an isotropic hyperelastic Saint–Venant Kirchhoff material
characterized by the strain energy function in terms of the Green
strain E:

w Eð Þ ¼ 1
2

k trEð Þ2 þ �ltr E2
� �

; ð58Þ

where the Lamé constants k; �l are related to Young’s modulus E and
Poisson’s ratio m by the same relations as in linear elasticity:

k ¼ Em= 1þ mð Þ= 1� 2mð Þ; �l ¼ E=2= 1þ mð Þ: ð59Þ

The problem is modeled in plane strain conditions, taking the
dimensions of the bodies a ¼ 5 m and b ¼ 1 m, and the material
b

b

c)

on. (b) Regular mesh. (c) Distorted mesh.



properties E ¼ 106 N=m2 and m ¼ 0. The structure is discretized
using two meshes – the first one is regular and the second dis-
torted – as shown in Fig. 3b–c, in both cases the mesh is non-
conforming along the contact interface. The two bodies are
discretized with 8-node quadrilaterals (Q8), so that the elements
on the contact surface are 3-node line elements. The numerical
quadrature is performed using 3 � 3 Gauss quadrature points
in the Q8 elements and 7 Gauss points in line elements belong-
ing to the contact surface. The penalty parameter is �N ¼
1012 N=m3.

Fig. 4 shows the deformed configurations and contact stress dis-
tributions along the contact line when the upper, respectively the
lower, body is selected to be the contactor. The arrows represent
the contact stresses exerted by the target body upon the contactor.
In all cases, the contact stresses are found to be constant and equal
to p up to 5 or 6 significant digits.

All the nodes on the contact interface have the same vertical
displacement Uy ¼ �0:0010015 m. The stress field inside the two
bodies is constant, with the only non-zero stress component
Ryy ¼ �1001 N=m2ðR is the second Piola–Kirchhoff stress tensor).
These values agree with the analytical solution of the nonlinear
elasticity (nonlinear elasticity must be used for the comparison
since the numerical results are obtained by a nonlinear finite ele-
ment code).
(a) (

(c) (

Fig. 4. Deformed configuration and contact stress distribution in the patch test: (a–b) wh
to be contactor (the displacement field is magnified by 100).
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6.2. Hertzian contact problem

In this example, we consider a Hertzian contact problem in or-
der to investigate the accuracy of the proposed contact formula-
tion. Referring to Fig. 5a, a 2D elastic cylinder with radius
R ¼ 10 m is pressed against a rigid foundation by a force F which
is perpendicular to the rigid plane and applied on the symmetry
axis of the cylinder. The cylinder is made of the same isotropic
hyperelastic Saint–Venant Kirchhoff material as in (58), here we
take E ¼ 100 N=m2; m ¼ 0:3. The computations are performed
assuming plane strain conditions and either a frictionless ðl ¼ 0Þ
or a frictional ðl ¼ 0:3Þ contact between the cylinder and the
foundation.

In the frictionless case, the analytical solution assuming the lin-
ear small strain theory of elasticity is well known. The pressure dis-
tribution in the contact region is given by

pðxÞ ¼ 2F

pb2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

q
; ð60Þ

where b is the half contact region width:

b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FR 1� m2ð Þ

pE

r
: ð61Þ
b)

d)

en the upper body is selected to be contactor, (c–d) when the lower body is selected

x
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a rigid foundation. (a) Problem definition. (b) Finer mesh.



The computation is carried out with two values of the total
load: F = 1N/m and F = 2 N/m. Due to symmetry, only half of the
structure is considered. Two meshes are considered: a coarse one
containing 198 elements and 455 nodes, and a finer one containing
345 elements and 773 nodes (the latter is shown in Fig. 5b). In both
cases, the rigid foundation is chosen as the target and modeled by
one single element with fixed nodes. Clearly, the meshes are
nonconforming.

The numerical quadrature employs 7 points in the triangles and
the elements belonging to the contact line. The penalty parameter
is �N ¼ 100 N=m3. The (relative) convergence tolerances are taken
to be 10�6 for the force residual fRðU;KÞg ¼ fWðUÞg�
fUðUÞg � fUcontactðU;KÞg in (46a) and the multiplier residual
fRKðU;KÞg in (46b). Fig. 6 plotting the numerically computed con-
tact pressure acting on the cylinder shows that the finite element
solution converges as the mesh is refined.

It should be noted that for a given mesh and a given load, there
is in general one element of the cylinder which overlaps the con-
tact area and the free surface, as can be seen in Fig. 6. In such an
element the contact stress vector-or the multiplier k-differs from
zero in the contact zone and vanishes outside, and the interpola-
tion of k from the nodal multipliers, see Relation (39c), is not pre-
cise. Despite this difficulty, the numerical results obtained here are
in good agreement with the theory. With the finer mesh and
F = 1 N/m, the maximal pressure at x ¼ 0 is 2% lower than the the-
oretical value. With the larger load F = 2 N/m, the numerical results
deviate more from the theory, the maximal pressure at x ¼ 0 is
2:8% lower than the theoretical value.

In actual fact, the contact stresses obtained here are the nomi-
nal Piola–Kirchhoff ones (i.e. the multipliers according to (22))
whereas the analytical pressure in (60) comes from the linear elas-
ticity theory. Although the deformation is small, there still is a
slight difference between these stresses. An elaborate calculation
shows that the Cauchy stresses corresponding to the numerical
Piola–Kirchhoff ones are twice closer to the theoretical values.
Having said this, we decide to only present the Piola–Kirchhoff
stresses throughout this work.

In the frictional case, the computations are made with the fine
mesh only. The analytical solution was obtained by Spence
[29,30], assuming that the influence of friction on the normal stress
is negligible in order to uncouple the equations governing the nor-
mal and tangential stresses. The contact region is subdivided into a
stick zone jxj 6 c and a slip zone c 6 jxj 6 b. The extent b of the
contact region is given by the same relation (61) as in the friction-
x(m)
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Fig. 6. Contact stress distribution in the frictionless Hertzian contact problem. (a) Coa
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less case, i.e. b ¼ 0:3404 m if F = 1 N/m. The extent c of the stick re-
gion is obtained by solving the following relation giving c/b as a
function of the coefficient of friction l and Poisson’s ratio m

K c=bð Þ
K 0 c=bð Þ

¼ tan�1 l
1
2

1þb
1�b

; ð62Þ

where b ¼ 1�2m
2ð1�mÞ ;KðkÞ denotes the complete elliptic integral of the

first kind, KðkÞ ¼
R p=2

0
d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�k2sin2/
p ;0 6 k 6 1, and K 0ðkÞ ¼ Kð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
Þ.

With F = 1 N/m, l = 0.3 and m ¼ 0:3, it is found that c=b ¼ 0:7006,
so c ¼ 0:2385 m.

The normal pressure is given by the same relation (60) as in the
frictionless case while the tangential contact stresses is computed
via:

qðxÞ ¼
2lFx
pb2

1
Kðc=bÞ

R c=b
x=b

Kðcb;sin�1 t
c=bÞ

t2
ffiffiffiffiffiffiffiffi
1�t2
p dt þ b

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c

b

� �2
q� 


; jxj 6 c

l � pðxÞ; c 6 jxj 6 b

8<
:

ð63Þ

where Kðk;wÞ is the incomplete elliptic integral of the first kind,
Kðk;wÞ ¼

R w
0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2sin2/
p ; 0 6 k 6 1,

The total load F = 1 N/m is applied in 50 equal increments, the
penalty parameters are �N ¼ �T ¼ 100 N=m3. In each time step,
the solution is obtained after 3 iterations in average, with a maxi-
mum of 7 iterations at the first time step. The shape of the stresses
along the contact interface is displayed in Fig. 7a, which clearly
shows the progressive transition from stick to slip over the contact
line. The normal Ty and tangential Tx contact stresses are plotted in
Fig. 7b, showing a good agreement with Spence’s theoretical solu-
tion, except in the central stick region where the friction seems to
have the effect of raising the normal contact pressure. The value at
x ¼ 0 of the normal stress exceeds the analytical one by about 4%,
showing the same trend as in [12] where a similar problem of the
contact between a rigid punch and an elastic halfspace was
investigated.

In order to check whether the finite element procedure enables
one to satisfy the local inequality constraints, the ratio Tx=lTy is
computed at every node on the contact line for F ¼ 0:5 and 1 N/
m and it is verified that the Coulomb inequality jTxj 6 lTy holds
everywhere, see Fig. 7c. At the sliding nodes, the equality
jTxj ¼ lTy is met within 0.1%.
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Eventually, two additional computations are carried out with
only one and 10 increments instead of 50. As shown in Fig. 8, the
contact width, the normal contact pressure as well as the frictional
shear in the slip region can be recovered with good precision using
one or 10 time steps, whereas the frictional shear distribution in
the stick zone is rather sensitive to the load increment and requires
up to 50 time steps to be accurate. This result is in full accord with
Pietrzak’s observation in [12].

6.3. Contact between two beams

In this example, we are concerned with the quasistatic contact
between two beams, one of which being subjected to either a dead
or a follower force, with a view to showing the ability of the pro-
posed formulation to deal with large deformation contact. The
two beams have identical reference geometries, with rectangular
cross section, a length of L ¼ 1 m along x, a height of 0.05m along
y and a thickness of 0.1m along z, see Fig. 9. They are both made
of an isotropic hyperelastic Saint–Venant Kirchhoff material with
E ¼ 2:106 N=m2 and m ¼ 0:3.

The beams are clamped at end X ¼ 0. In the reference configu-
ration, the lower face of the upper beam (contactor) coincide with
the upper face of the lower beam (target).
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Fig. 9. Reference configuration of the two beam problem: (a) 3D view of the mesh
(b) x–y in-plane view.
Each beam is modeled with 15 20-node brick (i.e. hexahedral)
elements (H20) and the contact surface with 15 8-node quadrilat-
erals (Q8). The numerical quadrature employs 3 � 3 � 3 Gauss
points in the H20’s and 6 � 6 points in the Q8 elements belonging
to the contact surface.

In the following, two types of loading, a dead and a follower
force, are applied on the contactor. For each loading, the computa-
tions are carried out assuming either frictionless or frictional con-
tact, l ¼ 0:3. In any case, the penalty parameters are
�N ¼ �T ¼ 105 N=m3.
6.3.1. Dead load
A dead surface load �Fy is uniformly distributed over the cross

section X ¼ 1 m of the upper beam. Force F is progressively in-
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Fig. 10. Contact between two beams. Dead load and frictionless case: (a) F = 1.625 N, (b)
load F is not drawn to scale.
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creased from zero using an arc length method with the arc length
regularly incremented by a factor 1.1. The (relative) convergence
tolerances are taken to be 10�6 for the force residual fRðU;KÞg in
(46), 10�6 for the arc length residual and 10�10 for the multiplier
residual fRKðU;KÞg in (46b).

In the frictionless case, the computation is carried out in 29
steps, the resultant force at the last step is F ¼ 62:62 N and the
convergence is achieved in 7-8 iterations in average. Fig. 10 shows
the deformed configurations and the contact traction vectors act-
ing on the upper beam. Only x-y in-plane views are shown since
the complete 3D views are not legible. In the frictional case, the en-
tire calculation requires 38 steps, the final resultant force is
F ¼ 61:20 N and the convergence achieved in 11–12 iterations in
average. The corresponding deformed configurations and the con-
tact tractions are shown in Fig. 11.

The contact immediately takes place after force F is applied and
persists over the entire lower surface of the upper beam until the
last step. During the first steps, the contact tractions are higher
near the end cross section where force F is applied, whereas far
from this section, the contact tractions are smaller and barely vis-
ible in Figs. 10 and 11. As the deformations grow up, the contact
tractions become significant in the neighborhood of the built-in
section. It should be mentioned that there are possible spatial
oscillations of the contact stresses due to the use of quadratic
shape functions which take negative values at certain points and
due to coarse meshes. Thus, during the bending process, there
may be some nodes on the contact surface where the contact law
is not satisfied, namely TN < 0 or kTTk > l � TN in frictional case.
Fortunately, these violations only occur at the nodes where TN

and kTTk are very small, specifically smaller than about 1% of the
maximal TN and kTTk values on the whole contact surface. More-
over, the negative contact pressures disappear if the mesh is fine
enough. In Figs. 10 and 11, the contact tractions violating the con-
tact law are hardly visible. In presence of the friction, the contact
state is rather complex. Roughly speaking, it is found that there
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F = 6.914 N, (c) F = 17.17 N, (d) F = 29.21 N, (e) F = 41.11 N, (f) F = 62.62 N. The dead
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Fig. 11. Contact between two beams. Dead load and frictional case l ¼ 0:3: (a) F = 1.769 N, (b) F = 6.914 N, (c) F = 19.78 N, (d) F = 34.36 N, (e) F = 49.28 N, and (f) F = 61.20 N.
The dead load F is not drawn to scale.
is slip at most nodes and every step, and stick at some nodes and
some steps.

Fig. 12 shows that the deflection at point A (central point of the
cross section X ¼ 1 m of the upper beam, as shown in Fig. 9) versus
force F is almost the same, with or without friction. If the friction
prevented the slip to occur at some steps, force F necessary to
reach the same deflection would be higher than in the frictionless
case and the two plots would be distinct.

6.3.2. Follower force
The dead force considered above is now replaced with a uni-

form pressure distributed over the last Q8 element of the upper
v/L
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Fig. 12. Contact between two beams. Deflection at point A versus dead load F
(I = the second moment of area of the upper beam). �: no friction, 
: with friction.
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face of the upper beam, next to the cross section X ¼ 1 m. The pres-
sure is a follower force in the sense that it remains continually per-
pendicular to the area on which it is applied, so that its direction
changes as the beam deforms, contrary to the dead force which
keeps a fixed direction. We choose the same automatic control of
the pressure and convergence tolerances as in the dead load case.

In the frictionless case, the computation is carried out in 34
steps leading to the final pressure resultant P = 73.84 N, the con-
vergence is achieved in 9–10 iterations in average and the de-
formed configurations together with the contact stresses are
shown in Fig. 13. In the frictional case ðl ¼ 0:3Þ, the computation
is carried out in 43 steps, the final pressure resultant is
P = 74.83 N, the convergence is achieved in 10-11 iterations in
average and the results are shown in Fig. 14.

As shown in Fig. 13, at the beginning the contact occurs on the
whole lower surface of the upper beam. At an advanced deformed
state, the absence of friction leads to a release over a large portion
of the former contact surface, as shown in Fig. 11e and f. On the
other hand, in the presence of sufficiently high friction, the contact
is maintained all over the lower surface of the upper beam, as
shown in Fig. 14.

As in the dead load case, the contact state in the presence of
friction is rather complex. It is found that at every step there is slip
at most nodes, except the last step where there is more stick than
slip.

Fig. 15 shows the deflection at point A of the upper beam versus
pressure resultant P. Note that under the follower loading there is a
limit point for the deflection, the maximum absolute value for the
deflection being equal to about three-quarter of the beam length.

6.4. Contact between two membranes

This example relating to the contact between two pressurized
membranes involves large displacement, large strain and large slip
as well. The problem is modeled in plane strain with respect to the
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Fig. 14. Contact between two beams. Follower load and frictional case l ¼ 0:3: (a) P = 1.757 N, (b) P = 6.743 N, (c) P = 20.38 N, (d) P = 36.97 N, (e) P = 53.79 N, and (f)
P = 74.83 N. The follower load is not drawn to scale.
x-y plane. In the reference configuration, both membranes are
1 mm thick and represented by line segments with a width of
1 m along x. The membranes are Dy ¼ 1 m apart in the direction
14
y and their centers are shifted by a distance Dx ¼ 1 m along x, as
shown in Fig. 16. The edges of the membranes parallel to z-axis
are fixed.
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Fig. 16. Reference configuration of the two membrane problem.
The membranes are made of an isotropic hyperelastic material
of the neo-Hookean type, defined by the strain energy function
in terms of the invariants I1 ¼ trC and I3 ¼ det C of the right Cau-
chy-Green tensor C [31]:
wðCÞ ¼
�l
2

I1 � 3ð Þ �
�l
2

ln I3 þ
k
8

ln I3ð Þ2: ð64Þ

We take E ¼ 2:106 N=m2; m ¼ 0:3, where Young’s modulus E and
Poisson’s ratio m are related to constants k and �l by the same rela-
tions (59). The second Piola–Kirchhoff stress tensor R is
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R ¼ 2
ow
oC
¼ l I� C�1

� �
þ k

2
ln det Cð Þ � C�1: ð65Þ

The membranes are subjected to the same pressure value p
which brings them into contact. The computations are carried
out assuming either no or with friction, l ¼ 0:5, a rather significant
coefficient of friction in order to simulate the contact between rub-
ber membranes.

Each membrane is divided into 20 3-node line elements of the
membrane type (i.e. with no bending stiffness), in plane strain with
respect to x–y plane and plane stress with respect to the mem-
brane thickness direction. Here, the mesh of the contactor (upper
membrane) is also used as the mesh of the contact surface. In order
to avoid the singularity of the stiffness matrix at the beginning of
the computation-which is a common phenomenon in membrane
problems-a small artificial prestress is applied at the first step
and removed after.

The numerical quadrature is carried using 3 Gauss points in the
line elements to compute the internal force vector, 6 Gauss points
to compute the contact force vector. The penalty parameters are
�N ¼ �T ¼ 2:104 N=m3. The pressure p is controlled by the arc
length method with the arc length regularly incremented by
1.05. The convergence tolerances are 10�6 for the force residual
fRg;10�6 for the arc length residual and 10�8 for the multiplier
residual fRKg.

Without friction, the computation is made in 43 steps, the max-
imum pressure value is p ¼ 4023 N=m2 and the convergence
achieved in 4 iterations in average. With friction, the computation
is made in 124 steps, the maximum pressure value is
p ¼ 5420 N=m2 and the convergence achieved in 4 iterations in
average.

Fig. 17 shows the deformed configurations and the contact
stresses exerted on the upper membrane in the frictionless case.
Let us mark out two particular particles belonging respectively to
the two membranes, identified by letters A and B in Fig. 17. At
the contact onset ðp ¼ 2049 N=m2Þ, their locations A1 and B1 are al-
most the same, see Fig. 17a. When the pressure is p ¼ 4023 N=m2,
their locations A2 and B2 are quite distinct as indicated in Fig. 17b.
The distance A2B2 is a (poor) approximation of the slip VTDt, com-
puted at the particle marked by A1 and between the two time in-
stants corresponding to the two quoted pressures, see (47) and
Fig. 2.

Fig. 18 shows the deformed configurations and the contact
stresses exerted on the upper membrane in the frictional case.
Note that the contact stresses in Figs. 17 and 18 are not drawn at
the same scale in order to optimize the drawings.

While the shape of final deformed configuration is similar to
that in the frictionless case, the displacements of the particles
are quite different. To see this, consider the above-mentioned pair
of particles again, with almost identical locations A1 and B1 at the
beginning of the contact (pressure p ¼ 2049 N=m2). This time,
due to significant friction, it is found that, up to pressure
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t onset, p = 2049 N/m2, (b) deformed configuration at pressure p = 4023 N/m2.
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Fig. 18. Contact between two pressurized membranes. Frictional case: (a) contact onset p = 2049 N/m2, (b) deformed configuration at pressure p = 5420 N/m2.
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p ¼ 5420 N=m2 corresponding to an advanced deformed shape,
these two particles almost stick together, as shown in Fig. 18b.
Otherwise stated, the slip velocity at the particle marked by A1 is
virtually zero.

An in-depth analysis at different steps shows that there is stick
in the neighborhood of particle A1, and there may be slip at contact
nodes outside this neighborhood.
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Fig. 19 plots the deflection of the middle point of membrane 2
(point C in Fig. 16) versus pressure p. As predicted, the deflection
is much smaller in the presence of friction. The resultant contact
forces Fx and Fy between the membranes along x- and y-direction,

respectively, together with the magnitude jFj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

x þ F2
y

q
, are

shown in Fig. 20 versus pressure p. It can be seen that for a given
pressure the magnitude jFj is a little smaller in frictional than in
frictionless case whereas the force direction, determined by Fx

and Fy, differs significantly.

6.5. Conical extrusion of a cylinder

This section deals with the quasistatic extrusion of a cylinder
into a rigid conical die, Fig. 21. The geometry data are taken from
[1,3]: the wall angle of the die is 5� and in the reference configura-
tion, the cylinder is 25.4 cm long and 5.08 cm in radius.

In this example, use should be made of a suitable constitutive
model in order to overcome computational difficulties due to ex-
tremely high compressive stresses in the bodies at some advanced
deformed stage. In the classical elastoplasticity model, the elastic
response is represented by the Saint–Venant Kirchhoff law which
has an unstable behavior under compression, so that in the present
example the cylinder is found unable to move forward when it is
compressed enough. Modification of the plastic part does not help
to improve the situation and this difficulty only disappears when
the Saint–Venant Kirchhoff law is replaced with an appropriate
one, e.g., by using the hyperelastic stored energy given in [3]
p37. Here, we choose the so-called Mooney rate-independent elas-
toplasticity model instead, which is described in [12] and proved to
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behave correctly even for huge deformations both in compression
and tension. This model is chosen merely because it is easier to be
implemented in our finite element code. The question about which
elastoplasticity model best predicts the extrusion response when
compared to experimental results is crucial but out of the scope
of this work. Here, the extrusion computations using the chosen
Prescribed
displacement

25.4 cm

5.08 cm

5°

Fig. 21. Reference configuration of the conical extrusion problem.

Fig. 22. Deformed configurations and plastic contours f

(a)

(c)

Fig. 23. Contact stresses on the extr
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elastoplasticity model only aim to show the ability of the formula-
tion to successfully deal with contact in large deformation with a
nonlinear constitutive law of the elastoplastic type.

The cylinder is made of an elastoplastic material with a linear
isotropic hardening. The elastoplastic formulation and the material
data are the same as in [12]: Young’s modulus E = 100000 MPa,
Poisson’s ratio m ¼ 0:3, yield stress r0 = 300 MPa and hardening
modulus H = 3560 MPa. Note that the geometry in [12] is not con-
sidered since it is not described with enough precision (the die is
not conical and its geometry is rather complex).

The problem is modeled in axisymmetry. The cylinder (taken as
the contactor) is discretized with 20 8-node quadrilaterals (Q8)
interconnected by 74 nodes. The 10 elements on the contact sur-
face are 3-node line elements. The rigid die (the target) is modeled
with one single Q8 element. The numerical quadrature is per-
formed using 3 � 3 Gauss quadrature points in the Q8 elements,
7 Gauss points in line elements belonging to the contact surface.
The computation are made assuming either frictionless or fric-
tional contact between the cylinder and the die wall ðl ¼ 0:1Þ.
The penalty parameters are �N ¼ 1011 N=m3; �T ¼ 5:1010 N=m3.
or the conical extrusion problem. Frictionless case.

(b)

(d)

uded cylinder. Frictionless case.



The numerical computation is carried out by regularly incre-
menting the prescribed axial displacement on the left end of the
cylinder by factor 1.1. The convergence tolerances are 10�6 for
the force residual {R} and the multiplier residual fRKg.

In the frictionless case, the computation is achieved in 31 steps,
the axial displacement of the pushed end is 18.2 cm at the last step
and the convergence requires 4-5 iterations in average. Fig. 22 dis-
plays the deformed configurations together with the contours of
the effective plastic strain while Fig. 23 shows the contact stresses
exerted on the extruded cylinder. The plastic strain is concentrated
near the cylinder head (where the contact stresses are highest, too)
and reaches about 130% at some points.

With friction, the computation is achieved in 109 steps, the
axial displacement at the last step is 20.4 cm and the conver-
gence requires 4 iterations in average. Fig. 24 displays the de-
formed configurations together with the contours of the
effective plastic strain while Fig. 25 shows the contact stresses.
Fig. 24. Deformed configurations and plastic contours for t

(a)

(c)

Fig. 25. Contact stresses on the extrude
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From the numerical results it is found that all the nodes on
the contact line are sliding at every loading step and the equality
jTT j ¼ l � TN is accurately rendered to the last displayed digit
(6th digit).

Note that at the final step the contact stresses near the cylinder
head increase more than twice as compared with the frictionless
case, as shown in Fig. 23d and Fig. 25d. The plastic strain is concen-
trated near the cylinder head where the contact stresses are stron-
gest, with a maximal value of about 150%.

Fig. 26 plots the extrusion force F versus the displacement U of
the left end of the cylinder, in frictional and frictionless cases. As
can be predicted, the extrusion force increases as the cylinder is
moving forward and the contact surface between the cylinder
and the die is larger. Also, given an amount prescribed displace-
ment U, force F is always higher in frictional than frictionless case.
When the end displacement U is about 18 cm, F is about 4 times as
big as in the frictionless case. The extrusion force F in the frictional
he conical extrusion problem. Frictional case, l ¼ 0:1.

(b)

(d)

d cylinder. Frictional case, l ¼ 0:1.
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Fig. 26. Thrust force versus the axial displacement of the cylinder.
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Fig. 27. Volume change in the extruded cylinder.
case plotted in Fig. 26 shows the same trend as that obtained in [3]
whereas the numerical values differ rather significantly since the
material model and the material data are not identical.

Fig. 27 shows that the volume of the cylinder diminishes grad-
ually during the extrusion process and the relative volume change
is maximal in absolute value at the last step, equal to �6.8% in the
frictionless case and �15.9% in the frictional case. The volume de-
crease is basically the same in both cases as long as the prescribed
displacement is less than about half the reference length of the cyl-
inder. When the prescribed displacement exceeds this value, the
volume decreases more rapidly in the presence of friction.

7. Conclusions

The main features of the present formulation can be summa-
rized as follows:


 A weighted residual relationship is proposed in (21) as an
extension of the standard virtual work principle to cope with
the large deformation contact problem with Coulomb friction.
It is inspired by the augmented Lagrangian formulation of
19
Pietrzak and Curnier [13] and amounts to rewrite the aug-
mented Lagrangian formulation of Alart and Curnier [4] in a
generic weak form. Proposition 1 shows that the proposed
weak form is equivalent to the strong form of the contact
problem. It is noteworthy that equality (21) yields the inequal-
ity constraints of contact. Another interesting fact is that Rela-
tion (23) which expresses the equilibrium of the traction
vectors at the contact interface is found to be a consequence
of the weak form (21).Apart from the analogy with an aug-
mented Lagrangian principle, the weak form (21) is stated as
a genuine weighted residual relationship in that it involves
arbitrary (regular) virtual displacements and multipliers. As a
consequence, it can be discretized by means of the finite ele-
ment method in a simple way.


 The finite element discretization process holds for any finite ele-
ment type on the contact surface. It is only required that the
finite elements are isoparametric, so that the current and refer-
ence coordinates can be interpolated in the same way.


 Any discrete contact quantity – namely, the element contact
force vector fUcontactge in (43), the element residual vector for
the multipliers fRKge in (44) or the element contact stiffness
matrice ½Kcontact�e in (56) – is defined at a quadrature point X of
an element eð1Þ belonging to the contactor surface Sð1Þoc . Its
numerical computation involves the nodal quantities associated
to two elements: element eð1Þ and the (or any) element eð2Þ in the
target surface Sð2Þoc containing the projection point Y of the quad-
rature point X in question. Element eð2Þ, which depends on Y,
varies as a function of X. This feature is common to the formula-
tion given by Laursen [3].


 The temporally discrete relation (47) proposed for the slip VTDt
does not involve the parent coordinate g of the projection point
Y and thus avoids difficulties due to the discontinuity in variable
g related to the finite discretization of Sð2Þoc . Instead, it involves
variables y and Yn�1 which have intrinsic kinematic meanings
independent of the finite discretization of Sð2Þoc , as clearly shown
in Fig. 2.


 The element contact stiffness matrices related to relative tan-
gential displacement, ½k4

contact�
e and ½k5

contact�
e in (A6) and (A7),

are rectangular since they also involve the projection point
Yn�1 determined at the previous time step. Nevertheless, their
assembly eventually yields the global contact stiffness matrix
which is square as usual.


 As regards the smoothness of the kinematic functions, it should
be noted that the present formulation involves differentiations
of order 2 at most (see, for instance, the definition of the curva-
ture jab in (14)), whereas other formulations may require higher
order differentiations.


 As the weak form proposed in the present formulation already
incorporates the contact laws, no integration of the frictional
equations are required on the local level of the numerical
solution procedure. This feature resembles, in some ways, an
implicit property in Curnier and co-workers’ formulations
[4,13] and differs from most of other developments in the
literature.


 The numerical examples presented in quasistatics shows the
ability of the proposed formulation to deal with large deforma-
tion contact. Investigations are in progress to deal with numer-
ical examples in dynamic contact.
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Appendix. The element contact stiffness matrix

This Appendix gives the explicit expressions for the four blocks
of the element contact stiffness matrix (56), namely
½KUU �e; ½KUK�e; ½KKU �e and ½KKK�e.

(1) The rectangular matrix ½KUU �e in (56) pertains to the displace-
ments fUð1Þgeð1Þ on eð1Þ; fUð2Þgeð2Þ on eð2Þ and fUð2Þgeð2Þn�1 on eð2Þn�1.
It is of dimension ð3nneð1Þ þ 3nneð2ÞÞ � ð3nneð1Þþ 3nneð2Þþ
3nneð2Þn�1Þ where nneð2Þn�1 is the number of nodes of element
eð2Þn�1, and is given by
KUU½ �e ¼ H k̂N

� �
�N k1

contact

h ie
þ k̂N

D E
k2

contact

h ie
� H 1� l k̂Nh i

k̂Tk k


 �
lH k̂N

� �
�N k3

contact

h ie

þH 1� l k̂Nh i
k̂Tk k


 �
l k̂N

D E
�T k4

contact

h ie
þ 1� 1� l k̂Nh i

k̂Tk k

� 	
 �
�T k5

contact

h ie
þ k6

contact

h ie� �
;

ðA1Þ
where symbol H stands for the Heaviside function:
H 1� lhk̂Ni
k̂T

��� ���
0
B@

1
CA ¼

1 if k̂N < 0 algorithmic gapð Þ

1 if k̂N P 0 and k̂T

��� ��� P lk̂N algorithmic contact with slipð Þ

0 if k̂N P 0 and k̂T

��� ��� < lk̂N algorithmic contact with stickð Þ

8>>><
>>>:

ðA2Þ
and the matrices ½k1
contact�

e to ½k6
contact�

e are listed in the sequel.
The matrices ½k1

contact�
e and ½k2

contact�
e are square, of dimension

3nneð1Þ þ 3nneð2Þ and symmetric:
; ðA3Þ

: ðA4Þ
In (A4), the notation [T] for any second order tensor T desig-
nates the 3 � 3 matrix representing T in the fixed basis
ðe1; e2; e3Þ. For instance, if T ¼ Tb

aaa � ab ¼ Tabaa � ab, then
the (p,q)-th element of matrix ½T� is Tpq ¼ ep � T � eq ¼
Tb

aðaaÞpðabÞq ¼ TabðaaÞpðabÞq, where ðaaÞp is the p-th compo-
nent of aa in the fixed basis. As jac�acbaa � ab ¼ �aacjcbaa�
ab is a symmetric tensor, so is matrix ½k2

contact�
e.

Matrix ½k3
contact�

e in (A1) is not symmetric and given by
: ðA5Þ
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The contribution of point gn�1 is found in the rectangular
matrices ½kcontact�e and ½k5

contact�
e of dimension

ð3nneð1Þ þ 3nneð2ÞÞ � ð3nneð1Þ þ 3nneð2Þ þ 3nneð2Þn�1Þ:
; ðA6Þ

: ðA7Þ
In (A6) and (A7), ½W�; ½Za� are 3 � 3 matrices representing the
tensors W;Za defined by (52), in the fixed basis
ðe1; e2; e3Þ : Wij ¼ ei:W:ej ¼ �aabðaaÞiðabÞj; Z

a
ij ¼ ei:Z

a � ej ¼ g�aab

ðabÞimj. The last matrix in (A1), ½k6
contact�

e, is square of the same
dimension as ½k1

contact�
e, yet not symmetric:
: ðA8Þ
(2) The matrices ½KUK�e and ½KKU �e in (56) representing the cou-
pling between the displacements and the multipliers are
rectangular, of dimension ð3nneð1Þ þ 3nneð2ÞÞ � 3nneð1Þ and
3nneð1Þ � ð3nneð1Þ þ 3nneð2ÞÞ, respectively:
KUK½ �e ¼
Nð1Þ� �eð1ÞT

� Nð2Þ� �eð2ÞT

2
64

3
75 �Hðk̂NÞ mf g mh i
h

þ H 1� l k̂Nh i
k̂Tk k


 �
lH k̂N

� �
k̂Tf g
k̂Tk k mh i

þH 1� l k̂Nh i
k̂Tk k


 �
l k̂N

D E
k̂Tf g
k̂Tk k3 mh i� 1� 1� l k̂Nh i

k̂Tk k

� 	
 �
I� m � m½ �



Nð1Þ� �eð1Þ

ðA9Þ
and
KKU½ �e ¼ Nð1Þ� �eð1ÞT �H k̂N

� �
mf g mh i Nð1Þ� �eð1Þ

;� Nð2Þ� �eð2Þ
� 	�

þ H



� Nð1Þ� �eð1Þ
;� Nð2Þ� �eð2Þ

� 	
þ H 1� lhk̂Ni

k̂Tk k


 �
lhk̂Ni

k̂Tf g k̂Th i
k̂Tk k3




� Nð2Þ gn�1ð Þ
� �eð2Þ

n�1

�
� 1� h1� lhk̂Ni

k̂Tk ki

 �

I� m � m½ � W½ � N
�


� Nð2Þ gn�1ð Þ
� �eð2Þ

n�1

�

:
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1� lhk̂N i
k̂Tk k

�
lH k̂N

� �
�N
�T

k̂Tf g
k̂Tk k mh i

W½ � Nð1Þ� �eð1Þ
; I�W½ � Nð2Þ� �eð2Þ þ Za� �

Nð2Þ
;a

h ieð2Þ

;

ð1Þ�eð1Þ
; I�W½ � Nð2Þ� �eð2Þ þ Za� �

Nð2Þ
;a

h ieð2Þ

;

ðA10Þ



(3) Lastly, the matrix ½KKK�e in (56) is square of order 3nneð1Þ:
KKK½ �e ¼ Nð1Þ� �eð1ÞT 1
�N

H k̂N

� �
� 1

� �
mf g mh i

h
� H 1� lhk̂Ni

k̂Tk k


 �
lH k̂N

� �
1
�T

lhk̂Ni
k̂Tk k mh i � lhk̂Ni

k̂Tk k
l
�T
hk̂Ni

k̂Tf g k̂Th i
k̂Tk k3

� 1� lhk̂N i
k̂Tk k

� 	
1
�T

I� m � m½ �


Nð1Þ� �eð1Þ

:

ðA11Þ
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