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Összefoglalás

Az egysejtes anaĺızis ötlete befolyásolta a sejtmechanizmusok megértését és a gyógyszerhatások
értékelését. Ez a genomszekvenálás, a proteomika, a metabolomika és a képalkotás nagy
áteresztőképességű technológiáinak fejlődésével vált lehetővé. A képek az egysejtek állapotát
léıró adatok egyik meghatározó forrásává, és ezzel a modern mélytanulási módszerek alapjává
váltak. Ez a dolgozat az ilyen jellegű elemzések különböző lépéseire és alkalmazásaira
összpontośıt.

Az egyes sejtek képalapú elemzésének egyik első lépése a sejt- vagy sejtmag-szegmentálás.
A dolgozat tartalmazza az egyes sejtek (vagy sejtmagjaik) mélytanuláson alapuló szeg-
mentálására jelenleg használt módszerek áttekintését. A mélytanuláson alapuló szegmentáláshoz
jelentős mennyiségű annotált adatra van szükség, ez azonban költséges folyamat, mivel
a biológus szakértőktől időt és erőfesźıtést igényel. A sejtmagok mélytanulással történő
annotálására kifejlesztettünk egy szoftvert, amely seǵıt a sejtek gyorsabb és pontosabb
annotálásában. A szegmentálás utófeldolgozási módszerei hasznosak lehetnek, ezért test-
time augmentation módszert fejleszttünk sejtmagok szegmentálására majd kiértékeltük a
két legnépszerűbb képszegmentálási architektúra esetében.

A szegmentálást gyakran a biológiai fenot́ıpusok azonośıtása követi melyet a sejtmor-
fológia kvantifikálásával végzünk. Ezek változása megkülönböztethet kezelt és kezeletlen se-
jteket a gyógyszerszűrési ḱısérletek során. Elemeztük a képosztályozó mély neurális hálózatok
és a gyengén felügyelt tanulás reprezentációs képességét a sejtmorfológiára Cell Painting
adathalmazokon.

A morfológián ḱıvül a sejtek állapota léırható a génexpresszióval vagy annak a gyógyszernek
a kémiai szerkezetével, amellyel a sejtet kezelték. A dolgozat utolsó projektjében három
adatforrás: vegyületek kémiai szerkezetének reprezentációi, génexpressziós reprezentációk
és morfológiai reprezentációk (CellProfilerrel nyert) predikt́ıv erejét vizsgáltuk a vegyületek
aktivitásának előrejelzésére.
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1 Introduction

1.1 The relevance of research

The decisive element in approaching fundamental questions in biology and designing efficient
disease treatments is the understanding of cellular molecular processes [1]. The analysis of
the single cell has become one of the most important challenges in natural sciences in the
21st century. The game-changing idea [2] is to treat every single cell in tissues as a separate
building block with its state and therefore treat tissues as a diverse set of such building
blocks, rather than as a homogeneous entity. The means of an extensive investigation of
this idea were the new high-throughput technologies for genome sequencing, proteomics,
metabolomics and imaging.

Such advancements made it possible to automatically and objectively analyze even on
scales as large as millions and billions of cells, thus we have an opportunity to perform high-
throughput experiments with single cells (live-cell imaging [3] [4], gene expression profiling
[5] and proteomics [6]) and then perform analysis with computational methods, applicable
for the obtained type of data and try to make biological sense out of this data.

Different types of data (or data modalities) can allow us to inspect the state of each
particular cell from different perspectives. One of the practical tasks, where all the possible
information can be useful to make decisions, is drug discovery, especially in personalized
medicine. The biggest challenge is to accurately and cost-effectively combine and use the
existing expensive treatment modalities.

Here we focus mostly on the imaging data and one of the first steps of the image-based
analysis of single cells is cell or nucleus segmentation – classification of each pixel as a
background or foreground (semantic segmentation), or determining if the pixel belongs to a
specific object (instance segmentation), examples are in Figure 1. In recent years this field
has been emerging by adopting and creating deep learning algorithms for this task, bringing
significant improvements [7].

The segmentation might be followed by the identification of biological phenotypes through
the quantification of cell morphology, variation of which might show, for instance, differences
between treated and not treated cells in drug screening experiments [8]. The phenotypes can
be described by feature-vectors, also called profiles and the process of the extraction is called
profiling and morphological profiling is also might be referred to as image-based profiling [9]
[10].
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Figure 1: Example of segmentation left-to-right: original image, semantic segmentation,
instance segmentation. The source of the image and segmentations: Data Science Bowl 2018
dataset [11].

1.2 Specific aims of the thesis

1.2.1 Review existing methods for cell segmentation

Image pre-processing and nucleus (or cell) segmentation are usually the first steps of the
analysis of single-cell images. The accurate segmentation affects the quality of the following
downstream analysis, so this step is crucially important.

The author of the thesis contributed to the review paper [7], which puts together the
state of the field of nucleus segmentation in 2020-2021. Besides the segmentation methods
for 2D and 3D data, it also covers the pre- and post-processing methods, existing datasets
and tools for annotation of cellular images.

1.2.2 Deep-learning assisted nuclei annotation

To train a single-cell (nuclei) segmentation based on deep learning, annotated data is needed
and the bigger the dataset is, the more robust the model will be. Manual annotation is
an expensive process as it requires a significant amount of time and effort from biology
experts. To make the annotation process faster and more accurate, a plugin AnnotatorJ
[12] for ImageJ/FIJI [13] (the software for bioimage analysis) was developed which combines
single-cell identification with deep learning and manual annotation.

1.2.3 Evaluate test-time augmentation approach for nuclei segmentation

Test-time augmentation was an existing approach to improve image classification [14]. In
this thesis, test-time augmentation for nuclei segmentation is evaluated. The trained deep
learning model for segmentation processes the original input image and several transformed
variants of the same image. The obtained segmentation results are then merged. The
core idea is that the combination of segmentation results from the original image and its
transformed variants will perform better than the segmentation of just the original image or
at least will give us hints about uncertain segmentations. The final result is an experimental
evaluation of this approach for two popular segmentation deep learning networks.
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1.2.4 Image-based morphological profiling with deep learning

The use of deep learning models for image-based profiling (phenotyping of single cells) is
investigated. Those deep learning models can be either pre-trained (with ImageNet dataset
[15]) or trained (weakly supervised) for the particular single-cell dataset. Using those models,
it is possible to extract features (profiles) of the single cells. The obtained features are used
in the downstream analysis afterwards (for instance, to predict the mechanisms of action of
drugs). We investigate if the features obtained with deep learning networks provide better
results in the downstream analysis than classical morphological features [16], particularly for
the images obtained with Cell Painting [10] (also see in 2.2).

1.2.5 Assess different sources of features for drug screening

The relative predictive power is compared for three high-throughput sources of features:
representations of chemical structures [17] of compounds, gene expression phenotypic profiles
obtained with L1000 assay [18] and image-based morphological profiles obtained from Cell
Painting [10] images processed with CellProfiler [19] for the task of assay-compound activity
prediction.

1.3 Importance of the presented work

The review [7] (Aim 1.2.1) of the most recent 2D and 3D segmentation methods provides
insights for practitioners about usage and the most suitable methods for different microscopy
modalities. As the end-users of the segmentation pipelines are usually biologists, the guid-
ance for the most effective and easy-to-use framework might be helpful to the community,
as accurate segmentation is crucially important for the following downstream tasks.

The usage of deep learning-based algorithms is not possible without accurately annotated
image datasets and in the field of nuclei segmentation, such datasets are usually built by
experts. We have developed a tool [12] (Aim 1.2.2) to make the creation of annotated nuclei
datasets faster, more comfortable and, thus, cheaper.

One of the possible ways to obtain better segmentation is to apply post-processing meth-
ods. One of such potential methods is test-time augmentation, which is traditionally used
for image classification. The systematic evaluation [20] (Aim 1.2.3) of this method for the
task of segmentation of nuclei for the most popular deep learning frameworks and the most
popular nuclei dataset so far provides insights into its usefulness.

The main goal of image-based morphological profiling is to get such feature representation
that accurately captures the cell state [21]. Deep learning networks for image classification
might be able to capture such representations, especially with post-processing steps, such
as aggregation. Deep learning image-based morphological profiling combined with a cost-
efficient Cell Painting assay [10] can be used in drug discovery and other biologically relevant
questions (Aim 1.2.4).
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Besides morphology, gene expression profiles and information and representations of
chemical structures [17] are useful for extracting useful information in the drug discovery
task. The comparison (Aim 1.2.5) of their predictive power can provide insights and demon-
strate the usefulness of machine learning models for early-stage drug discovery processes.

1.4 Publications

Papers related to the research topic:

• Moshkov N., Mathe B., Kertesz-Farkas A., Hollandi R., Horvath P. Test-time aug-
mentation for deep learning-based cell segmentation on microscopy images. Scien-
tific Reports. 2020. Vol. 10, 5068. Q1 journal, IF 3.998 (2020). DOI: https:
//doi.org/10.1038/s41598-020-61808-3

• Hollandi R.*, Moshkov N.*, Paavolainen L., Tasnadi E., Piccinini F., Horvath P.
Nucleus segmentation: towards automated solutions. Trends in Cell Biology. 2022.
Q1 journal, IF 20.808 (2021). DOI: https://doi.org/10.1016/j.tcb.2021.12.004

• Hollandi R., Diosdi A., Hollandi G., Moshkov N., Horvath P. AnnotatorJ: an ImageJ
plugin to ease hand-annotation of cellular compartments. Molecular Biology of the
Cell. 2020 Vol. 31. � 20. P. 2157-2288. Q1 journal, IF 3.791 (2020). DOI: https:
//doi.org/10.1091/mbc.E20-02-0156

Preprints related to the research project:

• Nikita Moshkov, Tim Becker, Kevin Yang, Peter Horvath, Vlado Dancik, Bridget
K. Wagner, Paul A. Clemons, Shantanu Singh, Anne E. Carpenter, Juan C. Caicedo.
Predicting compound activity from phenotypic profiles and chemical structures bioRxiv
2020.12.15.422887, DOI: https://doi.org/10.1101/2020.12.15.422887

• Nikita Moshkov, Michael Bornholdt, Santiago Benoit, Matthew Smith, Claire Mc-
Quin, Allen Goodman, Rebecca Senft, Yu Han, Mehrtash Babadi, Peter Horvath, Beth
A. Cimini, Anne E. Carpenter, Shantanu Singh, Juan C. Caicedo. Learning represen-
tations for image-based profiling of perturbations. bioRxiv 2022.08.12.50378, DOI:
https://doi.org/10.1101/2022.08.12.503783

Conferences, related to the research project:

• HEPTECH AIME19 AI & ML (2019). Test-time augmentation for deep learning-based
cell segmentation on microscopy images (poster). Link: https://indico.wigner.hu/
event/1058/contributions/2542/

Papers unrelated to the research topic published in 2017-2022:

• Moshkov N.*, Smetanin A.*, Tatarinova T. Local ancestry prediction with PyLAE.
PeerJ. 2021. Article 12502. Q2 journal, IF 2.816. DOI: https://doi.org/10.7717/
peerj.12502
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• Piccini F., Balassa T., Carbonaro A., Diosdi A., Toth T., Moshkov N., Tasnadi E.
A., Horvath P. Software tools for 3D nuclei segmentation and quantitative analysis in
multicellular aggregates. Computational and Structural Biotechnology Journal. 2020.
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2 Background

2.1 Neural networks for segmentation of nuclei and single cells

The history of automated approaches to segment cells and nuclei starts around 60 years ago
and those very first approaches were solely based on intensity thresholding [22]. For a very
long time, the intensity thresholding (example in Figure 2) was a dominant approach, being
the only part of the segmentation pipelines or combined with other classical approaches.
Later on, just before the deep learning era, there were other approaches for nuclei segmen-
tation based on classical machine learning [23], active contours [24] [25] and the multilayer
gas of circles model [26]. The complexity of biological questions together with the data to
be analyzed (developmental biology [27], drug discovery [28], functional genomics [29] and
pathology [30]) have started to demand more accurate cell segmentation, and the field has
started to seek general solutions to nuclei segmentation task. The adoption of convolutional
neural networks and the availability of computational resources to train convolutional deep
learning models allowed us to leap toward such solutions.

Figure 2: Microscopy image and segmentation mask produced by Otsu thresholding [31]
from Scikit-image [32]. The source of the image: Data Science Bowl 2018 dataset [11].

One of the first steps of the image-based analysis of single cells is cell/nuclei detec-
tion/segmentation. Single-cell segmentation (and image segmentation in general) is a
vastly developing field: with increased performance of GPUs (graphical processing units) and
deep learning neural networks like U-Net [33] (see also 2.1.1), which was the breakthrough
for deep learning-based segmentation for biological images (and in the field of deep learning-
based segmentation in general). This approach still serves as a baseline for semantic segmen-
tation tasks (i.e. pixel classification) and is used as part of the recent general nucleus/cell
segmentation pipelines such as CellPose [34], and StarDist [35] and their derivatives. Besides
specialized methods for cell segmentation, methods initially developed for natural image seg-
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mentation, like Mask R-CNN [36] (see also 2.1.2) are also applied to single-cell segmentation
tasks either by simple fine-tuning or as a part of a complex segmentation pipeline [37].

In addition to deep learning networks themselves, there are common training techniques
for regularization, and therefore to train more robust models such as data augmentation for
training (modification of original training data by rotating, flipping or adding noise) [38],
dropout layers [39], L1 or L2 regularization [40]. Single-cell (nuclei) segmentation task is not
an exception to using those techniques.

2.1.1 U-Net

U-Net [33] (Figure 3) is a deep learning-based architecture, developed primarily for biological-
image semantic segmentation in 2015 (also was a winner of the ISBI cell tracking challenge).
It takes its name from the U-shape encoder-decoder architecture: the input data is firstly
compressed by convolutional layers and then expanded back to its original size. U-Net is
still widely used as a baseline in nuclei segmentation and there are numerous pipelines based
on it for different datasets [7].

Figure 3: Standard U-Net architecture.

2.1.2 Mask R-CNN

Mask R-CNN [36] (Figure 4) was developed in 2017 for instance segmentation (each pixel in
the image is assigned to a separate object) of natural images. Mask R-CNN uses a ResNet
[41] architecture as a backbone (usually ResNet50 or ResNet101), which is followed by a
region proposal network (RPN). This is stage one of Mask R-CNN, which finishes with a set
of proposed regions with objects.

RoIAling (RoI - region of interest) is one of the key enhancements of Mask R-CNN over
Faster R-CNN [42], which uses RoI pooling. Both of those operations in principle extract
RoIs from the feature maps, RoIAling is more precise. It is followed by the head layers: they
predict the class, box offset and an output binary mask for each region of interest (RoI).
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Classes are not taken into account for mask generation. RoIAling and the head layers are
stage two of Mask R-CNN.

Figure 4: Standard Mask R-CNN architecture.

2.2 Cell Painting and phenotypic profiling

The target-based approach used to be dominant in drug discovery, but currently, the pheno-
typic approach to drug discovery takes advantage [43]. Target-based drug discovery focuses
on the search for drug targets – gene products, which are the starting point for investigation,
and then researchers come up with an idea of how to affect it [44]. The phenotypic approach
to drug discovery is empirical: a large number of compounds are tested in target-agnostic
assay and the phenotypic variation is monitored [45]. Phenotypic drug discovery expanded
the search space of drugs, targets and mechanisms of action making their discovery possible
[46].

One way to identify phenotypic variation is through the quantification of cell morphol-
ogy, which might demonstrate the differences between treated and not treated cells in drug
screening experiments [8] [9]. An effective assay for phenotypic-based drug discovery is Cell
Painting. This assay was designed to capture as many biologically meaningful morphologi-
cal features as possible while maintaining the protocol compatible with existing microscopy
systems and at the same time keeping it relatively cheap [10]. The output images are five-
channel and capture eight cellular compartments (see Figure 5).

Cell morphology might be described by a vector of features - or profile (either for in-
dividual cells or aggregated for a population of cells), extracted by a multi-stage pipeline
[48]. This task can be referred to as morphological profiling [9] [48] or with broader term
phenotypic profiling [49]. The extracted profiles are processed in downstream analysis
of interest. The most popular software to create pipelines to obtain morphological profiles
of the cells is CellProfiler [19], the features are hand-crafted, though features obtained with
deep learning models are to be researched [50] [51] [52].
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Figure 5: Example of an image obtained with Cell Painting with compartments (labels on
top) and stains (labels at bottom). The image is from BBBC022 dataset [47].

CellProfiler [19] is open-source software for the quantitative analysis of cell phenotypes.
It is designed for biologist-analysts, so it does not require particular experience in the
field of computer science, the biologist-analyst develops only the pipeline with the mod-
ules and their settings and best practices pipelines are available for certain types of data
(https://cellprofiler.org/published-pipelines). The output of the CellProfiler is the
feature vector with human-readable features, which could be organized in the groups, such
as intensity, texture and shape.

2.3 Computational methods in chemical biology

The field strongly tied to drug discovery is chemical biology, which studies the interaction
of small molecules (drugs are usually small molecules) with biological systems (for instance
individual cells, tissues and organisms). Like any other field, chemical biology has its own
set of computational methods for different tasks [53] [54].

The first problem to solve is to represent chemical molecules conveniently and efficiently
way for computational methods. There are different approaches for doing this, the one of
the simplest ones is SMILES (Simplified Molecular Input Line Entry System) [55], which is
simple, yet very efficient and widely used nowadays. The example is in Figure 6.

Another class of representation of molecules are the fingerprints - binary or numerical
vectors of size between 16 to 16384. Fingerprints can be rule-based or obtained with deep
learning methods and the efficacy of those representations is not equal [56]. The most
commonly used molecular fingerprints are Morgan fingerprints [57], which are binary vectors.

Another term related to the representation of compounds is a scaffold. A scaffold is a
core structure of a compound, which consists of all ring structures and links between them
and was proposed by Bemis and Murcko [58], example is in Figure 6.

In the last few years, different deep learning-based approaches for computational chem-
istry have emerged based on convolutional or recurrent neural networks, autoencoders and
graph convolutional networks [54].

One of the notable recent methods, based on graph convolutional networks is Chemprop
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Figure 6: A. SMILES representation of Ibuprofen and its generated graphical representation.
B. Bemis-Murcko scaffold of Ibuprofen. Graphical representations and the scaffold were
generated with RDKit software (https://www.rdkit.org/).

(http://chemprop.csail.mit.edu/) [17] [59] [60]. It takes SMILES strings as an input
(other feature vectors can be used) and reconstructs molecular graphs, where atoms are
nodes and bonds are edges. Then a series of message passing steps are applied to aggregate
information from neighboring atoms and bonds, to refine the representation of the molecule.
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3 Summary of the research

This section contains a brief description of research projects and the results. Some details
are omitted, though can be found in the related publications.

3.1 Nucleus segmentation: towards automated solutions

This section briefly discusses the content of [7].

The field of nucleus segmentation was developing over the last few years with the help of
deep learning. Practitioners started to use widely deep learning-based segmentation meth-
ods, especially after the DSB 2018 challenge [11], which clearly showed the superiority of
deep learning-based methods over the classical ones. Besides, the computational resources
have become more affordable, and the methods tend to be more user-friendly by providing
guides for the tools and sometimes by providing graphical user interfaces. The review is
aimed to provide an overview of the methods and datasets related to nuclei segmentation
and guide practitioners in the field.

As deep learning methods require the data for training, we start the review, with the
description of the openly available annotated nuclei datasets, both in 2D and 3D and for dif-
ferent microscopy modalities. The annotations for those datasets are shared as background-
foreground (BG-FG) masks or as object masks (when each object is outlined separately).
The first observation is that not so many annotated datasets are shared particularly for 3D
data. The possible reason is that the laboratories started to massively switch to 3D not
long ago, besides the usage of 3D over 2D is not always a necessity. An example of the 3D
dataset, which might be used as a benchmark (and in fact is already used) is A549-Dataset
[61]. Another observation - very few imaging modalities are well represented even in the
case of 2D datasets. Most of the datasets have only fluorescent, brightfield or hematoxylin
and eosin stained (H&E) images. The notable exception is the LIVECell [62] large-scale
label-free dataset.

The review part about datasets is then followed by the part about annotation tools. Most
of those annotation tools were released recently. We observed the presence of open-source
and free tools for annotation of both 2D and 3D data.

The last part of the review is about segmentation methods and tools. The reviewed
segmentation methods were classified using meaningful criteria for practitioners. First, the
methods were classified by the dimensionality of the input image (2D, 3D or both 2D and
3D). Next, for each method, the availability of the code was checked. Another important
criterion is the availability of extended versions of tutorials, as the users of the segmentation
methods for biological tasks do not necessarily have computer science expertise and need a
clear step-by-step guide to use those methods. The last important criterion is if the tool
runs or can be run in the cloud, which has become a very common scenario for running
computationally demanding tasks.
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Another contribution of this review is the assistant tool for nuclei segmentation method
selection (called unbiased) which is available online at GitHub Pages https://biomag-lab.
github.io/microscopy-tree/. It is supposed to help in choosing potentially useful meth-
ods based on microscopy modality, the dimensionality of images and potential challenges in
the data of interest.

Figure 7: The interface of the assistant tool for the selection of segmentation methods. On
the left, there is a tree of microscopy modalities. In the top-right, there are controls for
filtering for choosing 2D/3D methods and specific methods for segmentation challenges. In
the bottom-right, there is a list of segmentation methods.

The main result of the review turned out to be the raising of concerns and questions
about the current state of the field. The first concern is related to the lack of diversity of
existing datasets in terms of microscopy modalities. Turns out most of those openly published
annotated datasets are either for H&E images or fluorescent images. Other microscopy
modalities (e.g, DIC (differential interference contrast), light-sheet or phase contrast) are
poorly represented in publicly available datasets. Besides, the size of the published datasets
also matters, most of the datasets do not contain many objects and images.

Another point is a call for a solution to the common challenges in nuclei segmentation,
such as touching, overlapping and irregularly shaped nuclei [35] [63] [64] [65]. Current deep
learning methods can partially address those challenges, but more progress is desired. Both
novel model architectures and high-scale training datasets might positively impact in this
regard.

The real problem, which is on the surface, but rarely discussed, is the lack of a unified
approach for the evaluation of nuclei segmentation methods. After inspecting all the methods
eventually presented in the review, it has become clear that the evaluation methods and the
datasets don’t overlap. Even though there are datasets that are supposed to be the standards,
different subsets of the test sets are getting used in different articles. The problem could
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be solved by discussions inside the community and enforcing the standards. Two candidate
platforms to host such standardized tests could be Kaggle and BIAFLOWS [66].

The last conclusion of the paper is that the field could try to move towards the general
models which can segment nuclei from images of diverse modalities. Some models are already
capable of doing this, though with a limited amount of modalities, for instance, the models
obtained during the DSB 2018 challenge [11] [67].

3.2 AnnotatorJ: an ImageJ plugin to ease hand annotation of cel-
lular compartments

This section briefly discusses the content of [12].

To train a single-cell (nuclei) segmentation based on deep learning, annotated data is
needed. To train more robust models, bigger datasets are desired, but manual annotation
is an expensive process as it requires a significant amount of time and effort from biology
experts. To make the annotation process faster and more accurate, a plugin AnnotatorJ
[12] for ImageJ/FIJI [13] (the software for bioimage analysis) was developed which combines
single-cell identification with deep learning and manual annotation.

The main feature of AnnotatorJ is a contour assistant. Contour assistant uses the pre-
trained U-Net model to predict the area covered by the object of interest. After that, the
user can refine the contours of the object if needed.

Figure 8: First step of annotation with contour assist: initialize contour by drawing a line
on the object. The numbers and green boxes show the steps to perform in the interface. The
source of the microscopy image: Data Science Bowl 2018 dataset [11].
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Figure 9: Initialized contour by pre-trained deep learning segmentation model (in the right).
The source of the microscopy image: Data Science Bowl 2018 dataset [11].

Figure 10: Refining the contour of the object. The source of the microscopy image: Data
Science Bowl 2018 dataset [11].
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Figure 11: Refined object is added as a region of interest after refining the borders and
pressing ‘Q‘ key. The source of the microscopy image: Data Science Bowl 2018 dataset [11].

To make trained models compatible with ImageJ/Fiji, which is developed in Java, we
used the library DL4J and ND4J (http://deeplearning4j.org/). AnnotatorJ is openly
available at https://github.com/spreka/annotatorj.

3.3 Test-time augmentation for deep learning-based cell segmen-
tation on microscopy images

This section briefly discusses the content of [20].

Deep learning-based nuclei segmentation heavily relies on manually annotated data,
which in most cases is annotated by domain experts. To increase the amount of training
data and train more robust models, data augmentation [38] (see 2.1) has become a common
technique in deep learning. Data augmentation is frequently used in the case of diverse or
limited datasets, which is often the case in the field of nuclei and cell segmentation.

While the usual data augmentation approach is performed during the training time,
the idea of another approach, test-time augmentation (TTA) (Figure 12) is to perform
predictions on the original and the augmented versions of the data samples and then merge
the predictions. This technique existed for some time and was successfully used in image-
analysis tasks [68] [69] [70]. The experiments with test-time augmentation were conducted
in the setting of the nucleus segmentation task.

3.3.1 Test-time augmentation

The pipeline of test-time augmentation includes four steps:

1. Augmentation of the original image.
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2. Inference of original and augmented versions of the image.

3. Dis-augmentation: if the original image was flipped or rotated, the transformation
should be reverted to the original orientation to allow further correct merging of the
predictions.

4. Final merging: this step is different for Mask R-CNN and U-Net and discussed further.

Figure 12: Proposed test-time augmentation techniques. Input: Run inference on several
augmented instances of the same test images with trained models. To merge predictions,
pixel-wise majority voting was used for U-Net and object matching with majority voting was
used for Mask R-CNN. The source of the figure [20].

For U-Net predictions step (4) is straightforward, just sum and average all the dis-
augmented probability maps. The resulting probability map is then converted to a binary
mask by thresholding (0.5) which is further used for evaluation of the segmentation (Figure
12, right).

Mask R-CNN, as an instance segmentation framework, requires more post-processing.
Here, each object is processed separately: for each detected object the majority voting is
done. Before majority voting the object alignment should be done: the objects from the
predictions of original and augmented versions of the input image are checked if those can
be considered the same object. In this setup, two objects (each from different versions of the
input image) are considered to be the same object if the intersection over union (IoU, also
known as Jaccard Index, (Eq. 1)) between them is at least 0.5. If the same detected object
is present in the majority of the predictions, then it will be included in the final prediction
mask. The mask of the included object is corrected by majority voting on the pixel level.

IoU(A,B) = |A ∩B|
|A ∪B|

(1)
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3.3.2 Materials and methods

For the experiments the popular neural networks for segmentation were chosen: U-Net [33]
(for semantic segmentation) and Mask R-CNN[34] (for instance segmentation) and the data
for experiments mostly comes from Data Science Bowl 2018 dataset [11] with additional
sources [71] [72] [73] [74] [75] [76] [77]. The original images were cropped to the size of
512× 512 pixels. Images with a resolution lower than 512× 512 were resized. This primary
dataset was split into two datasets: one with fluorescent images (further referred to as
Fluorescent or Fluo) and tissue images (further referred to as Tissue). For both of those
datasets the following train-test splits were done:

• 95% images in the train set and 5% in the test set (referred to as Fluo 5 or Tissue 5)

• 85% images in the train set and 15% in the test set - repeated 6 times in cross
validation setting (cross-validation split 1 is referred to as Fluo 15 or Tissue 15)

• 70% images in the train set and 30% in the test set (referred to as Fluo 30 or
Tissue 30)

Separate models were trained for each holdout set. For training, the augmentation was
used using horizontal and vertical flip, 90◦, 180◦ and 270◦ rotations. Augmentations were
done before the training (not on-the-fly), which means that the training set size was equal
for each split was 6 ∗ number of unique images in the training set.

In the experiments with the U-Net (the architecture was described in 2.2.1) the widely-
used implementation [78] based on Tensorflow [79] and Keras was used. The models were
trained for 200 epochs with a constant learning rate of 3 × 10−4. The initial parameters
were initialized randomly. A binary cross-entropy loss function with ADAM [80] optimizer
were used. Batch size was set to 1 due to GPU memory limitations. Additionally, trainings
with and without the use of augmentations in training time were run with U-Net. For
the experiments with Mask R-CNN, Matterport’s codebase was used [81], also based on
Tensorflow and Keras. Evaluation scripts were used from [37].

Mask R-CNN models were trained for 3 epochs for different layer groups in the following
order:

• Initialize with COCO weights (https://github.com/matterport/Mask_RCNN/releases/
download/v1.0/mask_rcnn_coco.h5)

• Epoch 1: all network layers were trained at a learning rate of 10−3.

• Epoch 2: training of ResNet stage 5 and head layers at a learning rate of 5× 10−4.

• Epoch 3: Train only head layers at a learning rate of 10−4.

The loss function was binary cross-entropy with ADAM [80] optimizer, batch size 1. This
training strategy replicates the one from [37]. Mask R-CNN models were trained only with
the use of augmentations in training.
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mAPDSB for an image is calculated as follows: calculate the average precision over all test
images at IoU threshold t (IoU is calculated between predicted and ground-truth objects)
and average over all IoU thresholds T (2). In this equation, TP (t), FP (t) and FN(t) stand
for a number of true positive, false positive and false negative objects, respectively:

mAPDSB = 1
|T |

∑
t∈T

TP (t)
TP (t) + FP (t) + FN(t) ,

T = {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}
(2)

U-Net predictions were evaluated using the intersection over union metric (Jaccard Index)
(Eq. 1). TTA’s performance is evaluated by calculating the difference between the prediction
scores obtained after applying TTA (merged) and after regular prediction (original). Next,
TTA’s performance was evaluated by calculating the difference:

delta = merged− original (3)

3.3.3 Results

Test-time augmentation improved the performance for all the train-test splits on average, if
used together with Mask R-CNN models. The mean gain in the mAPDSB metric is between
0.01 and 0.02. While in most of the test images mAPDSB improved, there are a few images
with degraded performance (Figure 13).

Test-time augmentation used together with U-Net models also provided improvement in
the IoU metric. We can observe that for most model checkpoints in every training scenario,
except at the beginning of the training, when the model is underfitting (Figure 14).

In some test examples, test-time augmentation could change the prediction quality by a
large margin (see examples in Figure 15).

Test-time augmentation combined with the method [37] (the best performing method for
the DSB 2018 test set according to the Kaggle scoreboard at the time of publishing of the
paper [20]) further increases the performance by 0.011 in mAPDSB.
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Figure 13: Test-time augmentation impact on segmentation performance (delta of mAP).
Each point represents an image. Bars: training epochs. A dashed line in bars: mean, a
solid line in bars: median. Sets: A. Fluorescent 5. B. Fluorescent 15 (cross-validation 1) C.
Fluorescent 30. D. Tissue 5. E. Tissue 15 (cross-validation 1) F. Tissue 30. The source of
the figure [20].
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Figure 14: Mean Jaccard index in the test sets and impact of TTA for U-Net. A. Mean
delta of Jaccard index in models trained without augmentations. B. Mean delta of Jaccard
index in models trained with augmentations. C. Mean Jaccard index in test sets in models
trained without augmentations. D. Mean Jaccard index in test sets in models trained with
augmentations. The source of the figure [20].
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Figure 15: Comparison of predictions with and without TTA on example images. A. U-Net.
First column: original image, the second: predictions without TTA, the third: predictions
with TTA. Colors: false negative predictions (red), true positive (green), and false positives
(blue). The fourth column – averaged TTA predictions before thresholding and the fifth:
zoomed insets from the previous column. Rows are example images. B. Mask R-CNN.
Columns are as first three in A, rows are example images. The source of the figure [20].

Figure 16: DSB 2018 Stage 2 test scores for different methods, compared to [37] + TTA.
The source of the figure [20].

3.4 Learning representations for image-based profiling of pertur-
bations1

This section briefly discusses the content of [82].

Phenotypic drug discovery is based on observations of drug effects on treated subjects,
in our particular case, we consider single-cells. This problem not only requires significant

1The article is online as a pre-print and is being submitted to a journal
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wet lab efforts but also computational approaches to process the output data. One of the
first attempts to measure treatment effects using features extracted from fluorescent imaging
data was [9]. Later on, CellProfiler [19], the standard approach to extract representations of
single-cells was released. It produces features which are human-readable and their usefulness
was proven in different downstream tasks [16].

Now, the question is, what if we can extract even more biologically relevant representa-
tions of cells from images using deep learning? With inspiration from representation learning
and popular deep learning architectures for image classification, researchers have started to
seek a methodology that could allow them to extract such biologically relevant representa-
tions.

One of the first attempts of using transfer learning (usage of pre-trained image classifica-
tion networks with ImageNet dataset [15]) for morphological profiling was performed in [51]
on full images, meaning that the full image was resized to the input size of the network and
was run in inference mode.

Training models directly on images of single-cells have been explored in proof-of-concept
experiments [50]. It was based on weakly-supervised learning (WSL), which does not require
manually annotated data to learn feature representations. Instead, it uses treatment labels
as a proxy for the phenotypes of interest. These treatment labels are weak because there is no
certainty that all the treatments have a phenotype sufficiently different from the untreated
cells (negative controls) or resulting phenotypes are not similar for different treatments.

Here, a systematic evaluation of three large-scale Cell Painting public datasets is con-
ducted. Those datasets contain thousands of perturbations, hundreds of plates, and millions
of single cells. The tested representations are extracted by pre-trained models and mod-
els trained in a weakly-supervised setting and compared against classical features. To run
training and feature extraction experiments, the publicly available tool DeepProfiler was
developed.

The current best practices found for making deep learning methods improve the quality
of downstream analysis, which are reported below. For interpretation of the obtained results
with trained models and reasoning about challenges, a causal modeling framework is used
[83] [84].

3.4.1 Cell Painting datasets

In this study, five datasets were used in total:

• BBBC037 (also known as TA-ORF) dataset [85], published in 2017 to test morpho-
logical profiling using overexpression in human cells as a general approach to annotate
gene and allele function.

• BBBC022 dataset [47], published in 2013, screened 1600 bio-active compounds.

• BBBC036 dataset (also known as CDRP-Bioactivies) [86], published in 2017, screened
2000 bio-active compounds.
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• BBBC043 dataset (also known as LUAD) [87], testing lung adenocarcinoma variants
(375 in total).

• LINCS dataset [88] screened 1300 compounds.

Images in all datasets above were taken with 20X magnification and five-channel (all captured
with Cell Painting assay). The first three datasets in the list above are used as benchmarks,
the latter two are only used to construct a combined Cell Painting dataset (discussed in
section 3.4.5).

Figure 17: Example of quality controls for BBBC022 dataset. On the left: PCA plot for the
first two PCs. Each point is a well, colors stand for plates. The outlier cluster is observed.
On the right: examples of images from outlier wells. We see that those images are out of
focus.

For the datasets above, the quality control was done to remove very noisy or out-of-
focus images, as those are not able to preserve reliable phenotypic information and at the
end of the day may distort the aggregated features. To do so, the features were extracted
with DeepProfiler (EfficientNet-B0 model pre-trained with ImageNet dataset, see 3.4.3),
then those features were aggregated by site, by well (as described in [48]) and sphering
transformation (see 3.4.4.2) was applied. Then PCA was used on those aggregated profiles.
The outliers observed in the PCA plots were checked manually for technical problems (Figure
17).

The datasets have class labels, such as treatments (gene perturbations in BBBC037 and
compounds with concentrations for BBBC022 and BBBC036). In the case of BBBC036 and
BBBC022 datasets, the treatments which were present more than once were filtered, leaving
only entries with maximum concentrations. In the downstream analysis, the superclass
annotations matter: gene signaling pathways (BBBC037 dataset) or mechanisms of action
(for BBBC036 and BBBC022 datasets). The superclass annotations were used from [85] and
then refined. Cell locations were obtained with CellProfiler.
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3.4.2 DeepProfiler

A pipeline called DeepProfiler was developed which helps to train weakly-supervised mod-
els and extract representations of single-cells from high-throughput imaging experiments.
DeepProfiler introduces a standardized workflow for utilizing convolutional neural networks
for extracting single-cell features from large-scale image collections.

With DeepProfiler it is possible either to train the network and then perform feature
extraction or to use a pre-trained network for feature extraction. The inputs of DeepProfiler
are the images, corresponding metadata and the experiment configuration. DeepProfiler
extracts the single-cell images (simple crops, DeepProfiler does not do segmentation on its
own, but can cut objects if the segmentation mask is provided) from the full-sized images
of the predefined size, and those are the inputs of deep learning networks. The workflow is
shown in Figure 18. The extracted features can be used in the downstream analysis which is
usually unique for a dataset and depends on the biological questions. Besides training and
feature extraction, DeepProfiler has additional features for image compression and extraction
of single-cell crops from full-sized images into separate image sets.

The framework is implemented in Tensorflow [79] (for both versions 1 and 2). The source
code, documentation and discussions are available on the GitHub page (https://github.
com/cytomining/DeepProfiler/).

Figure 18: Typical usage of DeepProfiler. 1. Perform training of image classification network
2. Use the trained model to extract the representations 3. Use the representations for
downstream analysis tasks. Steps 1 and 2 in the image are performed with DeepProfiler,
step 3 is a user preference. The microscopy images used from the BBBC021 dataset [72].
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3.4.3 Experimental setup

3.4.3.1 EfficientNet

For deep learning experiments EfficientNet [89] architecture was used, in particular the base
one EfficientNet-B0. The choice was motivated by its computational efficacy and demon-
strated accuracy on the ImageNet dataset [15] superior to ResNet50 [41]. EfficientNet was
used in several prior publications related to cell imaging, for feature extraction and image-
based profiling [87], and for training a model on a combined dataset of cellular images [90].
Some of the solutions to Recursion Pharmaceuticals cellular image classification challenge
https://www.kaggle.com/competitions/recursion-cellular-image-classification/
were based on different modifications of EfficientNet.

3.4.3.2 Experiments with pre-trained models

In this approach, pre-trained on ImageNet dataset [15]. As pre-trained networks require 3-
channel input, each of the channels is replicated three times and sent to the model separately.
As an input, single-cell crops of size 128 × 128 were used. The preprocessing for the used
model also required a resize to 224×224 and min-max normalization adjusted to have a final
input in the range [−1, 1]. The features were extracted from the block6a activation layer.
For each channel, the output dimensionality is 672 features, thus the full feature vector for
the cell is 3360 features.

3.4.3.3 Experiments with weakly supervised learning

Training and the following feature extraction were conducted with DeepProfiler. The inputs
are pre-cropped images of single-cells, saved as a stripe of five channels and reshaped during
training, so the input to the network is 128 × 128 × 5. During training the augmentations
were used:

• Random crop and resize with 50% probability, the size of the crop is not less than 80%
of the original size and then it is resized back.

• Random horizontal flip and then random rotation (90 degree-based).

• Color changes: brightness (up to 10% deviation from the original) and then contrast
(up to 20% deviation from the original). Each channel is processed separately in both
steps.

As the number of single cells varies from treatment to treatment, auto-balancing is done
in each epoch of training. For all datasets, the parameters were: categorical cross-entropy
loss, batch-size 32, a constant learning rate of 0.005 with SGD optimizer, augmentations on,
no label smoothing and 30 epochs. The models are initialized with ImageNet pre-trained
weights.

Two setups for splitting the data to training and validation were used:
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• Leave-plates-out - the single-cells from one subset of plates are used for training, and
from another for validation.

• Leave-cells-out - the single-cells from each plate and each well are used both in training
and validation, approximately 60% of cells from each well are used in training, 40% in
validation.

Using trained models, features were extracted from block6a activation layer (feature
vector size is 672).

3.4.3.4 Computational efficacy

The computational efficacy was estimated in terms of computation clock-time and storage
space needed versus classical features. The proposed approach is faster, than the classical as
it utilizes GPU parallelization. NVIDIA V100 was used for all deep learning experiments.
Training time on average across the datasets takes 3.3 hours, profiling approximately takes
0.58 hours with the pre-trained model and 0.22 hours per plate with trained models. The pre-
trained model takes more time as five inference passes are needed for an image. Comparison
is available in Figure 19. The price is not compared here, though commonly cloud GPU
computation is more expensive than on CPUs.

Figure 19: Computational cost of profiling strategies. The source of the figure [82].

3.4.4 Profiling workflow and evaluation

3.4.4.1 Feature aggregation and similarity matching

The feature aggregation is a pipeline to get treatment-level profiles from single-cell profiles
[48]. There are intermediate levels, such as field-of-view (image)-level and well-level. The
feature vectors of single-cells are aggregated using the median to image-level, and then,
image-level profiles are aggregated using mean to well-level profiles. In this work, feature
aggregation steps are the same, disregarding the source of the features either CellProfiler or
deep-learning models.

To assess the similarity between treatments different metrics can be used [48], here the
cosine similarity is used (also used in other works [91]).
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3.4.4.2 Batch correction using sphering transform

One attempt for reduction of unwanted technical variation is Typical Variation Normalization
(TVN) proposed in [92], also used in [93]. It computes axes of variation using principal
component analysis on negative control well-level profiles. The obtained axes are normalized,
which makes axes of large variation be reduced and axes of low variation to be amplified.
The normalization transformation is then applied to all well-level profiles.

Here, the ZCA-sphering transformation is used similarly as TVN. As an input, the matrix
of well-level negative control features Xn×d is used, where n is the number of control wells
and d is the feature vector dimension. The covariance matrix for X is Σ = XTX

n
, its eigende-

composition is Q = U∆UT , where ∆ are eigenvalues. To obtain a final ZCA-transformation
[94] (sphering), is the following U(∆ + λ)−1UT , where λ is a regularization parameter.

3.4.4.3 Evaluation and metrics

As described in [16], the evaluation task is to check if the most similar treatments according
to the similarity metric belong to the same gene pathway or mechanism of action (MoA).
Several metrics were used for evaluation, all of them briefly described below. In further text,
query treatments are referred to as treatments which have at least two treatments in the
same MoA or pathway and are used as queries in the ranking task.

First metric that was used is folds of enrichment. The odds ratio is calculated, similar
to [16], the main difference is that here it is done only for 1% threshold and this is done for
each query treatment separately. Then, the simple mean of obtained values is computed.

As another metric, an interpolated precision-recall curve and mean average precision for
the ranking task was used. This metric is calculated in the following way: each treatment
is a query, and the top similar treatments to the query treatment are checked. Precision@K
in this ranking task is the ratio of treatments that belong to the same MoA/pathway as
the query out of the top K most similar treatments. The same intuition is applicable for
Precision@Recall: for one treatment (query) we go through all the treatments ranked by
distance until we reach a recall of 1 (find all positive matches). As each MoA/pathway has a
different number of associated ground truth treatments, Precision@Recall is interpolated to
cover the max number of recall points, interpolated precision is defined as pinterpolated(r) =
maxr′≥rp(r′) [95]. Average precision (area under interpolated Precision-Recall curve) is a
mean of pinterpolated at all recall points. mAP here is a simple mean of average precisions for
individual queries.

Hits in the top 1% metric simulates the task of finding a ’hit’ in the most promising
candidate treatments. The metric is applicable on several levels of profiling:

• Treatment-level: measure the number of query treatments which have a treatment
(response) with the same MoA/pathway among the top 1% of most similar response
treatments.
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• Well-level: The well profile is used as a query (all treatments can be used). The number
of treatments, which have query wells with the response wells of the same treatment
among the top 1% of most similar wells is computed.

• Image-level: The image profile is used as a query (all treatments can be used). The
number of treatments, which have query images with the response images of the same
treatment among the top 1% of most similar images is computed. The images of the
same well as query image are excluded from the possible responses.

3.4.5 Strong treatment selection and combined Cell Painting dataset

To expand the potential feature-space both with biological and technical variation the treat-
ments resulting into a strong phenotypes were collected from five Cell Painting datasets.
Strong treatment here is defined as one to produce a phenotype which is different to a pheno-
type of untreated cells. To estimate the strength of the phenotype, CellProfiler feature space
is used (batch-corrected with regularization parameter 1e − 2) and measure the Euclidean
distance between the well-level profiles of treatments and negative controls (Algorithm 1).

Algorithm 1 Strong treatments selection
1: for each p in Plates do
2: Calculate median profile of negative controls in the plate - MCPp

3: Calculate Euclidean distance between the treatment well-level
features and MCPp, get the distances EDTp

4: Calculate Euclidean distance between the negative control well-level
features and MCPp, get the distances ECTp

5: Calculate µ and σ of ECTp

6: Use µ and σ to Z-score EDTp

7: end for
8: for each t in Treatments do
9: Z(t) ← ∑Plates

p EDTp(t), where Z stores the final distances for each
treatment

10: end for

Selection of the strong treatments for the combined Cell Painting dataset did include the
following steps:

• Select top 500 strongest treatments according with Algorithm 1 from BBBC022.

• Intersect those with BBBC036, include the intersection into the combined Cell Painting
dataset.

• Additionally select 50 from BBBC022 and 62 from BBBC036 strongest treatments and
add them to the dataset.

36



• Select 7 random treatments from LINCS, from the top 20 (by a number of associated
treatments) MoAs, and add them to the dataset.

• Select 28 overlapping wildtype genes between BBBC043 and BBBC037 dataset and
add to the dataset.

• Additionally select 29 strongest treatments from BBBC037 and 32 from BBBC043 and
add them to the dataset.

• Filter out classes with less than 100 cells.

• Add controls one class for compound screening datasets (BBBC022, BBBC036, LINCS)
and another for gene overexpression datasets (BBBC037, BBBC043). Control cells
from BBBC036 and LINCS are partially selected.

Resulting dataset contains 8.3 million single cells from 232 plates, 488 treatments and 2
types of negative controls. More information about the dataset is in the Figure 20.

Figure 20: Description of combined Cell Painting dataset. A. Treatment sources in the
combined dataset. B. Treated vs control cells distribution and sources of treated cells. C.
Sources of cells inside per cell line. The source of the figure [82].

3.4.6 Causal relations in screening experiments

By applying different treatments to cells, biologists are trying to perturb their state and
observe the response. The causal graph for that kind of experiment includes four variables:
treatments T , images O, phenotypes Y and batch-effects C. In causality modeling terms,
those are interventions, observations, outcomes and confounders respectively. T and O are
observed variables, while Y and C are latent variables. The goal is to learn Y , a multidi-
mensional representation of treatment, which could be used in the further downstream task.
To be useful in the downstream analysis task, Y should encode biologically relevant repre-
sentation, though the reality is that technical variation, the batch-effects C affect all other
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elements of this causal model. C affects images by technical variation in the image acquisi-
tion process, treatments by plate-layout design (the template of the positioning of treatments
in plates in the screening experiment) and phenotypes by environmental conditions. The
relations are shown in the graph (Figure 21).

Treatment is expected to be the main cause to change in the phenotype of the cell.
To extract the representation of phenotypic outcome, WSL is used with the pretext task of
treatment classification. The representations extracted from the intermediate layers of CNNs
encode all visual variation, in this case, both batch-effects and phenotypes. WSL together
with batch correction would help to disentangle phenotypic variation from technical.

Figure 21: Causal model for screening experiment. T stands for treatments (interventions),
O for images (observations), Y for phenotypes (outcomes) and C for batch-effects (con-
founders). The source of the figure [82].

3.4.7 Results and observations

The subsection discusses the results obtained with WSL on the combined Cell Painting
dataset CNN Cell Painting model and models trained on the benchmark datasets. Pre-
trained model on ImageNet (also referred to as CNN ImageNet) dataset and classical features
extracted with CellProfiler serve as baselines.

3.4.7.1 Learned representations sharpen biological features

CNN Cell Painting model performs better in quantitative evaluation than both baselines
in the evaluation task (Figure 22, cyan points). That was expected as manually engineered
features might miss some information and the ImageNet model is trained on a completely
different domain and not optimized for the images of cells. The models trained only on the
corresponding benchmark datasets did not show a consistent improvement in their perfor-
mance against the baselines (Figure 22, green points).

For qualitative assessment, UMAP projection [96] of feature space obtained with CNN
Cell Painting was used (Figure 23). In BBBC037 dataset, treatments are grouped together
according to their pathway annotations, reproducing observations from [85]. In BBBC022
and BBBC036 projections, many treatments are also grouping together according to their
MoAs.
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CNN ImageNet demonstrates similar or lower performance compared to CellProfiler fea-
tures (Figure 22, yellow and pink points).

Figure 22: Quantitative performance of feature representations for three benchmark datasets
in two metrics: mean average precision (X-axis) folds of enrichment (Y-axis). On the plot,
the baselines are CellProfiler (pink) and CNN ImageNet (yellow), trained models: CNN Cell
Painting model (cyan), trained on corresponding benchmark dataset (green). Leave-cells-
out training-validation scheme shown with circles and leave-plates-out with diamonds. The
source of the figure [82].

Figure 23: UMAP plots of well-level features extracted with Cell Painting CNN for three
benchmark datasets. Gray points: well-level profiles of treatments, red points: well-level
profiles of negative controls, blue points: treatment-level profiles. Dashed ellipses highlight
clusters of treatment-level profiles with the same biological annotation. The source of the
figure [82].

3.4.7.2 WSL learns both the phenotypes and the batch-effects

Different validation schemes leave-plates-out and leave-cells-out (see Experimental setup
3.4.3) help to understand the information contained in features learned from Cell Painting
images. In leave-cells-out validation scheme the model as access to the full distribution of
biological variation (treatments T ) and technical variation (batch-effects C), yet with leave-
plates-out scheme, the model still has access to the full distribution of biological variation,
but only to a part of technical variation.

39



Major performance difference was observed in the pretext classification task for those two
validation schemes. In leave-cells-out setup, the trained CNN can accurately classify single-
cells from both training and validation sets, while in leave-plates-out setup, the trained
model completely fails to classify single-cells in validation set (Figure 24). Nonetheless,
two models trained with different validation schemes demonstrate similar performance in
the downstream task (Figure 22). This observation leads to a conclusion that WSL models
try to take advantage of any information that can explain the link between the images
and treatments, including batch-effects. The validation performance in leave-cells-out is
too optimistic (batch-effects are heavily used to build the link between observation and
intervention), on the contrary, leave-plates-out validation performance is too pessimistic as
in this case the model is not aware of confounding variation in validation plates.

Figure 24: Classification performance in the pretext task (treatment classification) in
the benchmark datasets for leave-plates-out (orange) and leave-cells-out (blue) training-
validation schemes. A. F1-score for the training set (solid line) and validation set (dashed
line) for every fifth epoch. B. Recall (X-axis) and precision (Y-axis) for the final checkpoint.
Every point is a class (treatment, including negative control). The source of the figure [82].

3.4.7.3 Learning with strong phenotypes improves performance in the biological
task

As in the previous section it was observed that controlling the distribution of confounding
factors C does not change the downstream performance, now it is time to explore what
happens if the phenotypic distribution Y is restricted. The intuition is that WSL minimizes
an error in the pretext task by exploiting confounding factors to correctly classify treatments
with a weak phenotypic response. Such treatments might have a stronger technical signal
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rather than a biologically relevant phenotypic signal.
The strong treatments were selected by measuring Euclidean distance between negative

control and treatment profiles, obtained with CellProfiler (see section 3.4.5). That is an
approximation of average treatment effect (ATE), a causal parameter for intervention out-
comes. As we cannot observe the untreated (control) and treated conditions in the same cell,
this can be considered only as an approximation of ATE. CellProfiler features were chosen
to estimate ATE as those are non-trainable, thus can serve as independent prior.

WSL training only on strong treatments only in benchmark datasets was evaluated in
leave-plates-out training-validation scheme. The results demonstrate minor performance
improvement against training on full datasets (Figure 25, blue points).

Figure 25: Quantitative performance of feature representations for three benchmark datasets
in two metrics: mean average precision (X-axis) folds of enrichment (Y-axis). On the plot
the baselines are CellProfiler (pink) and CNN ImageNet (yellow), trained models: CNN Cell
Painting model (cyan), trained on corresponding benchmark dataset (green), trained on
strong treatments from corresponding benchmark dataset (blue). All training experiments
used leave-plates-out training-validation scheme. The source of the figure [82].

3.4.7.4 Diverse experimental conditions result in improved representations

The combined Cell Painting dataset was created to maximize both phenotypic (Y ) and
technical (C) variation by combining the treatments with the strongest resulting phenotypes
from five datasets. Training on this dataset consistently improves performance over other
approaches (Figure 22, cyan points), which means that this model can disentangle Y and C

more efficiently. The most important outcome is that this model was trained once and could
be used at all benchmarks without additional training.

3.4.7.5 Batch-correction is a crucial post-processing step

The role of batch-correction (see Batch correction using sphering transform 3.4.4.2) is to
reduce the impact of confounding technical factors C. It is crucial for all representations
tested: classical features, features extracted with pre-trained and trained CNNs. Mean
average precision improves up to 90% versus raw features (see Figure 26). Also, using the
effect of batch-correction can be observed qualitatively (Figure 27). Still, this does not
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mean that the batch-effects are eliminated and further research is needed to learn how to
disentangle technical and biological information in representations.

Figure 26: Mean average precision for sphering with different regularization parameters
(smaller regularization term, more correction applied) for three datasets. For each dataset
CellProfiler features (pink), ImageNet CNN (yellow) and Cell Painting CNN (cyan) are
evaluated. The source of the figure [82].

Figure 27: The qualitative effect of batch-correction in the UMAP plots. The left plot
shows the UMAP representation of the BBBC022 dataset without batch-correction and the
right plot after batch-correction. The points are the embeddings of well-level profiles (cyan
- negative controls, red - treatments). Density plots are on the top and the right sides of the
plots. Features were extracted with Cell Painting CNN model.
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3.5 Predicting compound activity from phenotypic profiles and
chemical structures2

This section briefly discusses the content of [97].

Drug discovery is an expensive and very slow process, there are too many theoretically
possible compounds to test in a real physical experiment. Even though pharmaceutical
companies may afford to test millions of compounds in their experiments, this only covers
a small fraction of possible compounds. Besides, to test those compounds the expensive (as
those contain valuable biological materials: primary cells, antibodies, etc.) phenotypic assay
systems are used to identify candidate compounds. Finally, this process is time-consuming
and requires the time of experts to run the assays.

To reduce the costs of screens in drug discovery, there is possible room for computational
methods, for instance, modern deep learning might allow accurate prediction of assay ac-
tivations for compounds. The previous works tried to use machine learning methods with
morphology data only [98] [99].

In this project, the aim is to evaluate the predictive power of the representations of
chemical structures, cell morphology profiles and gene expression profiles, to predict assay
outcomes computationally at a large scale. The hypothesis is that the predictive capabilities
of those data sources are complementary and those data sources could be used together to
further increase the success rate of the drug screening process. Besides, the basic data fusion
techniques are tested, although it is not the focus of the project and this question might be
investigated further.

3.5.1 Materials and methods

The dataset is composed of four parts: assay-compound interaction matrix, morphology pro-
files, gene expression profiles and representations of chemical structures. All the information
was collected from assays from the drug discovery experiments conducted at Broad Institute
[86].

Assay-compound interaction matrix is the main piece of the dataset. Rows are com-
pounds (represented as SMILES strings) and columns are assays. The cells are filled with 1
(hit) and 0 (no hit) and can be blank (this compound was not tested with the assay). “Hits”
and “no hits” combined are also referred to as readouts. Only a fraction of compounds was
tested in each particular assay, which means that the matrix is quite sparse. Initially, the
matrix contained 496 assays, but filtered using the following procedure:

• Applied all pan-assay interference (PAINS) filters [100] implemented in RDKit, which
removed 786 compounds, resulting in 16,210 compounds.

• Removed all assays without hits, thus the number of assays decreased from 496 to 437.
2The article is online as a pre-print and submitted to a journal
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• Calculate intersection-over-union (IoU) for the hits between assays to find out the as-
says which carry the redundant information. The IoU matrix (437× 437) was thresh-
olded by 0.7 and then hierarchical clustering was applied with the cosine distance
metric, which was used for filtering.

• Final removal of frequent hitters, defined as compounds that are positive hits in at
least 10% of the assays (30 assays or more) and final cleaning of assays without any
hit. In the end, the final dataset consists of 16,170 compounds and 270 assays.

Most of the assays in the final dataset are cell-based, other represented types of assays
are biochemical, bacterial and yeast assays and also there are poorly represented categories
of assays, such as fungal, homogeneous, viral and worm (Figure 28).

Figure 28: Distribution of the assay types in the final dataset. The source of the figure [97].

The Cell Painting assay [10] [47] [101] [102] experiments were run to obtain high-resolution
five-channel images. Those images were processed with CellProfiler software to segment and
obtain ∼ 1700 morphological features at the single-cell level. Those were then aggregated
to the well-level as in [48]. On the well-level profiles, sphering (see also 2.2) was applied
to correct for batch effects. To calculate the sphering transformation, DMSO wells from all
plates were used. Then the profiles were aggregated to the treatment level (referred to as MO,
except for Table 3.5.2 and Table 2). The experiments were also performed with the features
without sphering, though the additional performance boost gained for the morphological
features, in that case, may be biased by batch effects (Figure 29).
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Figure 29: Compound embeddings in three different modalities. Visualizations are built
with UMAP. A. The morphology feature space originally was grouped by technical variation
(plate maps), which was corrected using the sphering. The color palette for the 94 plate maps
is continuous and may have similar tones for consecutive plates. B. Compound embeddings
in three different modalities C. The same embeddings as in B, colored by clusters obtained
for cross-validation experiments (see “Experiments and results section”). The source of the
figure [97].

3.5.2 Experiments and results

The experiments were conducted for several train-test split approaches. All the train test
approaches share the same idea that we want to predict assays-compound interaction for
compounds that are distinct relative to training data. From the practical perspective, there
is little value in searching for similar chemical structures for the one with known activity.
The closest train-test split to such a real-world scenario is a scaffold-based split (for 5-fold
cross-validation) achieved with Bemis-Murcko clustering [58] [103].

In addition to scaffold-based train-test splits, the splits based on morphological and gene
expression features are constructed. For gene expression-based splits the gene expression
features were clustered and for morphology-based splits the batch-corrected morphology
features were clustered (for 5-fold cross-validation) using same-size K-Means clustering (im-
plementation [104]), see clustering in Figure 29.

As a primary metric, the area under receiver operating characteristic curve (AUROC)
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was used. The main results are reported for 0.9 threshold as it was used in earlier works
about assay-compound activity prediction [60] [105] [106]. As a secondary metric, an area
under the precision-recall curve (AUPRC) was used.

The models were trained with a logistic regression loss function for each assay, and
total loss is a sum of losses for each assay. The mini-batch contains information about 50
compounds. If there is no ground-truth readout for assay-compound interaction, it is ignored
for gradient update. In each training, the hyperparameter optimization was run before the
training (see 3.5.1).

Our results show that morphology could accurately predict the largest number of assays
with the median AUROC > 0.9 over cross-validation splits (28 for morphology, 19 for gene
expression and 16 for chemical structures), see Figure 31. Although, for lower AUROC
thresholds (0.7) chemical structures tie with morphology (also see Figure 33). Interestingly,
all three modalities share zero well-predicted assays (Figure 31) and each pair of modalities
share a few common well-predicted assays, which means that different data sources contain
significantly complementary information.

Figure 30: Illustration of experimental setup. The source of the figure [97].
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Figure 31: A. Performance of individual modalities measured as the number of assays (ver-
tical axis) predicted with AUROC above a certain threshold (horizontal axis). B. The Venn
diagrams show the number of accurate assays (median AUROC > 0.9 over cross-validation
splits) that are common or unique to each profiling technique. The bar plot shows the dis-
tribution of assay types correctly predicted by single profiling modalities. C. Number of well
predicted (median AUROC > 0.9 over cross-validation splits) assays by each modality. The
source of the figure [97].

Not only one modality can be used for predicting the assay-compound interaction. To
combine modalities into a single predictor, two approaches were used: a) Early fusion -
the feature vectors are concatenated into a single vector and used as an input for the neural
network. b) Late fusion - for each modality the separate model is trained and then the
prediction scores are aggregated, using the maximum probability among predictions for each
compound-assay pair.

According to our experiments (Table 2), early data fusion did not provide any additional
performance, in fact, it did hurt the performance. Our results for individual modalities did
show that they do not share many well-predicted assays in common (Figure 31), and when
the feature vectors are combined, additional noise to the assays is introduced, as assays can
be well predicted by one modality but cannot be predicted by another. Late fusion works
better in practice, though according to the results, the performance gain is minor at best (31
well-predicted assays with CS+MO combination vs 28 with MO only). The fusion approaches
in the demonstrated tests are quite simple and more investigation for more effective fusion
techniques is needed. As an additional metric, retrospective performance was measured. It
is a simulation of the best possible data fusion. In this analysis, know the predictions are
known in advance. Usage of fused with individual modalities can give 7-17% of performance
boost (Figure 32).
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Scaffold-based splits — Real world setting

Avg. assays tested: 233.2 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.261 0.252 0.234 0.231 0.232 0.223
Mean AUROC 0.657 0.637 0.592 0.587 0.630 0.610
AUC > 0.5 160.0 151.4 139.2 138.8 150.2 146.8
AUC > 0.7 91.2 83.2 57.2 59.4 88.4 81.6
AUC > 0.9 27.0 28.0 21.8 18.4 21.6 21.0

Gene expression splits (simulation)

Avg. assays tested: 232.0 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.263 0.248 0.222 0.201 0.246 0.244
Mean AUROC 0.664 0.642 0.577 0.561 0.647 0.658
AUC > 0.5 155.6 150.2 127.6 127.2 153.2 157.4
AUC > 0.7 94.4 86.2 45.4 46.6 94.2 99
AUC > 0.9 27.4 23.6 14.2 12.6 22.6 22.4

Morphology(bc)-based splits (simulation)

Avg. assays tested: 179.8 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.224 0.207 0.199 0.198 0.225 0.245
Mean AUROC 0.634 0.600 0.562 0.564 0.631 0.652
AUC > 0.5 142 128.6 125.4 126.2 140.8 143.6
AUC > 0.7 72.8 63.0 49.2 49.2 81.0 82.6
AUC > 0.9 21.6 17.0 14.4 13.6 19.4 22.6

Random splits (simulation)

Avg. assays tested: 232.4 MO MO-BC GE GE-S CS-GC CS-MF
Mean AUPRC 0.259 0.247 0.234 0.228 0.244 0.242
Mean AUROC 0.670 0.643 0.601 0.595 0.659 0.651
AUC > 0.5 163.6 154.2 145.6 144.0 157.6 157.8
AUC > 0.7 97.2 88.4 61.8 66.0 94.8 94.0
AUC > 0.9 26.2 22.0 20.4 17.4 25.8 23.4

Table 1: Results of 5-fold cross-validation experiments. The tables present the mean results
of 5-fold cross-validation experiments according to different data partition approaches. The
metrics are: Mean AUPRC for 5 splits, Mean AUROC for 5 splits, mean counts of the
predicted assays thresholded by AUROC (AUC > 0.5, AUC > 0.7, AUC > 0.9) for 5
splits. Sources of data used: MO: morphological features without batch-correction. MO-
BC: morphological features with batch-correction. GE: Gene expression features. CS-GC:
graph convolutional (GC) features. CS-MF: Morgan fingerprints. An average number of
assays in the test set differs between modalities, as it is impossible to evaluate an assay
without hits in the test set (which are different as different train-test split approaches were
used). The source of the table [97].

48



Baseline: independent modalities (scaffold-based partitions)
MO GE CS

Mean Std Mean Std Mean Std
Mean AUPRC 0.252 0.021 0.234 0.038 0.232 0.036
Mean AUROC 0.637 0.021 0.592 0.034 0.630 0.018
AUC > 0.5 151.4 13.502 139.2 13.773 150.2 13.255
AUC > 0.7 83.2 11.100 57.2 16.316 88.4 6.066
AUC > 0.9 28.0 4.848 21.8 8.198 21.6 6.229

Early fusion — concatenation (scaffold-based partitions)
GE-MO MO-CS GE-CS GE-MO-CS

Mean Std Mean Std Mean Std Mean Std
Mean AUPRC 0.214 0.045 0.251 0.021 0.219 0.028 0.221 0.021
Mean AUROC 0.586 0.038 0.632 0.031 0.577 0.061 0.582 0.038
AUC > 0.5 138.8 18.377 151.8 19.905 138.6 26.773 137.2 22.928
AUC > 0.7 59.2 12.215 87.8 15.531 63.4 21.663 59.8 14.516
AUC > 0.9 16.0 4.743 23.6 4.159 17.0 2.292 20.4 4.278

Late fusion — max pooling (scaffold-based partitions)
GE-MO MO-CS GE-CS GE-MO-CS

Mean Std Mean Std Mean Std Mean Std
Mean AUPRC 0.261 0.026 0.267 0.034 0.251 0.039 0.265 0.032
Mean AUROC 0.652 0.028 0.661 0.027 0.645 0.026 0.665 0.031
AUC > 0.5 157.4 11.845 157.8 13.773 155.6 16.637 159.0 15.017
AUC > 0.7 86.0 9.670 98.8 7.430 87.0 9.566 96.4 10.877
AUC > 0.9 29.4 6.618 29.4 5.128 23.8 8.843 28.0 5.148

Table 2: Performance of individual and combined modalities for models trained with scaffold-
based splits. The metrics are: Mean AUPRC for 5 splits, Mean AUROC for 5 splits, mean
counts of the predicted assays thresholded by AUROC (AUC > 0.5, AUC > 0.7, AUC >
0.9) for 5 splits. Standard deviations are in a separate column. The source of the table [97].
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Figure 32: Accurately predicted assays (median AUROC over splits is higher than 0.9).
A. Venn diagram of accurately predicted assays using late fusion (left), bar plots show
the distribution of accurately predicted assay types with late fusion (right). B. Number
of accurately predicted assays per individual modality. C. Number of accurately predicted
assays for combined modalities with the use of late fusion. Counts for median and mean
AUROC over splits. D. Number of accurately predicted assays for retrospective analysis.
“Single” is a simple union of the accurately predicted assays with individual modalities.
“Plus fusion” is a union of accurately predicted assays with individual modalities plus the
combined late fusion predictor. The source of the figure [97].

Figure 33: Predicted assays with moderate accuracy (median AUROC over splits is higher
than 0.7). A. Venn diagram of predicted assays with individual modalities (left), bar plot
of predicted assay types by individual modalities and late fusion (center), Venn diagram
of predicted assays with late fusion (right). B. Performance of individual modalities and
late fusion. The metrics are: Mean AUC for 5 splits, mean counts of the predicted assays
thresholded by AUROC (AUC > 0.7) for 5 splits. The source of the figure [97].

50



CS GE MO CS+GE CS+MO GE+MO CS+GE+MO Evaluated assays

Cell-based 7.05% 11.54% 13.46% 10.90% 16.03% 17.31% 16.67% 156
Biochemical 6.78% 0.00% 1.69% 1.69% 3.39% 0.00% 1.69% 59
Bacterial 0.00% 3.33% 16.67% 0.00% 6.67% 3.33% 3.33% 30
Yeast 5.56% 0.00% 5.56% 0.00% 11.11% 0.00% 0.00% 18
Fungal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3
Viral 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2
Worm 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1

Homogeneous 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1

Table 3: Predicted assays by type at the 0.9 threshold, median AUROC over scaffold-based
splits was used. The source of the table [97].

CS GE MO CS+GE CS+MO GE+MO CS+GE+MO Evaluated assays

Cell-based 36.54% 37.18% 44.23% 47.44% 46.15% 51.28% 50.00% 156
Biochemical 40.68% 8.47% 23.73% 32.20% 42.37% 18.64% 33.90% 59
Bacterial 40.00% 13.33% 46.67% 23.33% 56.67% 36.67% 43.33% 30
Yeast 33.33% 11.11% 11.11% 33.33% 33.33% 16.67% 16.67% 18
Fungal 66.67% 33.33% 33.33% 33.33% 66.67% 33.33% 33.33% 3
Viral 50.00% 0.00% 0.00% 50.00% 50.00% 0.00% 50.00% 2
Worm 0.00% 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 1

Homogeneous 0.00% 0.00% 100.00% 0.00% 100.00% 100.00% 100.00% 1

Table 4: Predicted assays by type at the 0.7 threshold, median AUROC over scaffold-based
splits was used. The source of the table [97].
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4 Conclusions

The progress in computation and high-throughput biology methods is a mutual exchange:
the rise of computational power paved the way for high-throughput methods. This, in
turn, engages the computational powers by producing new piles of data, which have to be
analyzed. As a part of those processes, new scientific sub-fields and computational analysis
methods emerged. Imaging waited its turn, strengthening its methods from the wet lab and
computational sides for a little while, even though the first image analysis attempts were
successful and founded a new field [9] [19].

Biological image analysis skyrocketed in the middle of the 2010s when the shift from clas-
sical image analysis to deep-learning-based image analysis started and GPU-computation has
become affordable. By this time, the wet-lab protocols for imaging were mostly established,
and new specific protocols [10] and techniques (i.e. super-resolution) [107] appeared. The
methods for image classification, detection and segmentation were swiftly adopted by the
community of computational biologists for the specific tasks [7][108].

The sub-field of cell (nucleus) segmentation has matured in the last few years, besides
the new methods (including attempts to build a general cell segmentation method) and
additional post-processing methods, also new large-scale datasets and annotation tools were
published [7]. Currently, new methods, usually specific for a particular domain of data are
developed, but the community strives for general segmentation models and 3D segmentation
[7].

As a part of the renaissance of phenotypic drug discovery [46], one of the biological
imaging analysis sub-fields of particular interest with wide applicability of deep-learning
methods [48] [51] is image-based profiling [10]. It is expected to advance in near future
from both biological and computational sides [52]. From the computational side, all eyes
are on unsupervised deep-learning methods. The hope is, that those will be more capable of
capturing biologically relevant features of single-cells [93], rather than their supervised and
weakly-supervised counterparts.

This thesis is focused on the usage of deep learning-based methods for single-cell segmen-
tation and phenotypic profiling. From the segmentation side, the thesis presents the review
of the nucleus segmentation sub-field, an annotation tool to create cell(nucleus) segmentation
datasets and an evaluation of a post-processing method for nucleus segmentation. From the
phenotyping side, the thesis presents weakly-supervised learning for large-scale image-based
profiling and an evaluation of the predictive power of different cellular data modalities.

1. In a review paper, descriptions of the deep learning-based segmentation methods for
2D and 3D data, descriptions of the datasets and annotation tools. Several important
points regarding the current state of the field of nuclei segmentation were expressed
with the hope that the community will take those into account. The decision support
helper tool for segmentation method selection was developed.

2. AnnotatorJ, the plugin for the popular imaging software ImageJ/Fiji, which utilizes
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pre-trained models based on U-Net to ease the annotations of nuclei images. The
experiments with expert annotators showed that AnnotatorJ reduces the time needed
for the annotation and improves the accuracy of the produced annotations.

3. The test-time augmentation approach was experimentally evaluated for two popular
deep learning frameworks: U-Net and Mask R-CNN. According to the observed results,
it is possible to obtain additional segmentation accuracy with TTA on average, though
in individual cases it is not guaranteed. Besides, in cases with underfit models, the
usage of TTA marginally hurts the average segmentation performance. Visual observa-
tion of the images also showed, that TTA mostly modifies the output segmentations in
the objects’ borders, though in rare cases, especially in the case of Mask R-CNN, as it
is instance segmentation-based the segmentations of the whole objects (improving seg-
mentation by removing false positives or adding true positives). The recommendation
would be to use TTA for the analysis of uncertain regions in segmentation. Besides,
the computational cost of predictions increases with the use of TTA, but it is a concern
only at a very large scale or if the inference is running on a CPU.

4. CNNs trained with a weakly-supervised learning approach were benchmarked in three
large-scale profiling datasets versus classical features and pre-trained CNN baselines.
The main finding is that by maximizing technical and phenotypic variation, WSL im-
proves in capturing the biologically relevant representations. Batch-correction turned
out to be a crucial element in capturing phenotypic variation. During this project, the
combined Cell Painting dataset was gathered and a software tool DeepProfiler for deep
learning-based image profiling was developed. As a result of experiments, a trained
model for feature extraction from Cell Painting data was obtained.

5. The predictive power of different data modalities was evaluated: morphology, tran-
scriptional profiles and chemical structures for the prediction of assay readouts. The
results show that those three modalities individually can predict 6-10% of assays with
high accuracy. According to experiments, those modalities turned out to be comple-
mentary combined and can provide up to 21% of assays that can be predicted with
high accuracy or up to 64% if lower accuracy is acceptable.
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Leandro A Scholz, Gino Michiels, Martin Maška, Devrim Ünay, Graeme Ball, Renaud
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Danćık, Thomas P Hasaka, Cindy S Hon, Melissa M Kemp, Kejie Li, Deepika Walpita,
Mathias J Wawer, Todd R Golub, Stuart L Schreiber, Paul A Clemons, Alykhan F
Shamji, and Anne E Carpenter. A dataset of images and morphological profiles of 30
000 small-molecule treatments using the cell painting assay. Gigascience, 6(12):1–5,
December 2017.

[87] J C Caicedo, J Arevalo, F Piccioni, and others. Cell painting predicts impact of lung
cancer variants. Mol. Biol. Cell, 2022.

[88] Gregory P Way, Ted Natoli, Adeniyi Adeboye, Lev Litichevskiy, Andrew Yang, Xi-
aodong Lu, Juan C Caicedo, Beth A Cimini, Kyle Karhohs, David J Logan, Moham-
mad Rohban, Maria Kost-Alimova, Kate Hartland, Michael Bornholdt, Niranj Chan-
drasekaran, Marzieh Haghighi, Shantanu Singh, Aravind Subramanian, and Anne E
Carpenter. Morphology and gene expression profiling provide complementary infor-
mation for mapping cell state. October 2021.

[89] Mingxing Tan and Quoc V Le. EfficientNet: Rethinking model scaling for convolutional
neural networks. May 2019.

[90] Stanley Bryan Z Hua, Alex X Lu, and Alan M Moses. CytoImageNet: A large-scale
pretraining dataset for bioimage transfer learning. November 2021.

[91] Vebjorn Ljosa, Peter D Caie, Rob Ter Horst, Katherine L Sokolnicki, Emma L Jenkins,
Sandeep Daya, Mark E Roberts, Thouis R Jones, Shantanu Singh, Auguste Genovesio,

67



Paul A Clemons, Neil O Carragher, and Anne E Carpenter. Comparison of methods for
image-based profiling of cellular morphological responses to small-molecule treatment.
J. Biomol. Screen., 18(10):1321–1329, December 2013.

[92] D Michael Ando, Cory Y McLean, and Marc Berndl. Improving phenotypic measure-
ments in High-Content imaging screens. July 2017.

[93] Alexis Perakis, Ali Gorji, Samriddhi Jain, Krishna Chaitanya, Simone Rizza, and
Ender Konukoglu. Contrastive learning of Single-Cell phenotypic representations for
treatment classification. In Machine Learning in Medical Imaging, pages 565–575.
Springer International Publishing, 2021.

[94] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorre-
lation. Am. Stat., 72(4):309–314, October 2018.

[95] Christopher D Manning. Introduction to information retrieval. Syngress Publishing„
2008.

[96] Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel W H
Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell. Dimensionality reduction
for visualizing single-cell data using UMAP. Nat. Biotechnol., December 2018.

[97] Nikita Moshkov, Tim Becker, Kevin Yang, Peter Horvath, Vlado C Dancik, Bridget K
Wagner, Paul C Clemons, Shantanu Singh, Anne E Carpenter, and Juan C Caicedo.
Predicting compound activity from phenotypic profiles and chemical structures. De-
cember 2020.

[98] M Hofmarcher, E Rumetshofer, D A Clevert, and others. Accurate prediction of
biological assays with high-throughput microscopy images and convolutional networks.
Journal of chemical, 2019.

[99] Gregory P Way, Maria Kost-Alimova, Tsukasa Shibue, William F Harrington, Stanley
Gill, Federica Piccioni, Tim Becker, William C Hahn, Anne E Carpenter, Francisca
Vazquez, and Shantanu Singh. Predicting cell health phenotypes using image-based
morphology profiling. July 2020.

[100] Jonathan B Baell and Georgina A Holloway. New substructure filters for removal
of pan assay interference compounds (PAINS) from screening libraries and for their
exclusion in bioassays. J. Med. Chem., 53(7):2719–2740, April 2010.

[101] Mathias J Wawer, David E Jaramillo, Vlado Danč́ık, Daniel M Fass, Stephen J Hag-
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GLOSSARY: 

2D: Two Dimensional: the term typically used to indicate the standard format in 

which images are acquired by a standard camera 

3D: Three Dimensional: the term typically used to indicate a z-stack of 2D images 

referring to different optical sections 

API: Application Programming Interface: a set of functions and procedures 

allowing the development of applications that access the features or data of an 

operating system, application, or other service 

BBBC: Broad Bioimage Benchmark Collection: an open microscopy image 

collection for scientific purposes 

CNN: Convolutional Neural Network: a class of deep neural networks including 

convolutional layers based on blocks responsible for appropriate image feature 

retrieval (via convolutions) and scaling (with pooling blocks) 

DAPI: a widely used fluorescent stain that binds to adenine–thymine-rich regions of 

the DNA, thus labels the nucleus 

DIC: Differential Interference Contrast: a microscopy technique that introduces 

contrast to images of specimen with little or no contrast upon brightfield microscopy 



DNN: Deep Neural Network is an artificial neural network machine learning 

architecture that includes several hidden layers, and can be trained to solve more 

complex tasks on more complex data compared to shallow neural networks 

DSB2018: Data Science Bowl 2018: the data science competition held in 2018 with 

a task to segment nuclei in microscopy images. The official, open dataset of the 

competition is also referred to as such, and is often used to benchmark nucleus 

segmentation methods 

GPL: General Public License: a series of widely used open-source licenses that 

guarantee end users the freedom to run, study, share, and modify the software 

GPU: Graphics Processing Unit: a specialized electronic circuit designed to rapidly 

manipulate memory to accelerate computations related primarily to graphics 

H&E: Hematoxylin and Eosin: a combination of two histological stains: hematoxylin 

and eosin. Hematoxylin stains cell nuclei to purplish blue, and eosin stains the 

extracellular matrix and cytoplasm to pink 

IF: Immunofluorescence: a staining which utilizes fluorescent-labelled antibodies to 

detect specific target antigens 

ISBI: International Symposium on Biomedical Imaging: a scientific conference 

series dedicated to mathematical, algorithmic, and computational aspects of 

biological and biomedical imaging 

IT: Iterative Thresholding: an algorithm used to define the background and 

foreground in an image 

LoS: line-of-sight: the straight line between the object and the target 

mAP: mean Average Precision: a popular metric related to measuring the accuracy 

of object detectors 



MITK: Medical Imaging Interaction Toolkit: a software suite designed for medical 

image analysis 

NEUBIAS: Network of European BioImage Analysts, a network of experts in life 

sciences for image data analysis. 

PC: Phase Contrast: an optical microscopy technique that converts phase shifts in 

light passing through a transparent specimen to brightness changes in the image 

RPN: Region Proposal Network: a fully convolutional network that simultaneously 

predicts object bounds and objectness scores at each position 

siRNA: short-interfering RNA: a class of double-stranded, non-coding RNA 

molecules, similar to miRNA, operating within the RNA interference (RNAi) pathway 

SNR: Signal-to-Noise Ratio: a measure used to compare the level of a desired 

signal relative to the level of background noise 

TCGA: The Cancer Genome Atlas: a huge cancer genomic program which covers 

many cancer types with a patient-based, open dataset including genomic, proteomic, 

imaging etc. data  

TIFF: Tagged Image File Format: one of the most common image file formats 

TTA: Test-time augmentation: the aggregation of predictions across transformed 

versions of a test input 

WSI: Whole Slide Image: scanned image of an entire histopathology tissue section, 

usually of gigapixel size, resulting in file size of gigabytes, which is difficult to handle 

by an image processing software 

  

ABSTRACT 

Single nucleus segmentation is a frequent challenge of microscopy image 

processing, since it is the first step of many quantitative data analysis pipelines. The 



quality of tracking single cells, extracting features or classifying cellular phenotypes 

strongly depends on segmentation accuracy. Worldwide competitions have been 

held, aiming to improve segmentation, and recent years have definitely brought 

significant improvements: large annotated datasets are now freely available, several 

2D segmentation strategies have been extended to 3D, and deep learning 

approaches have increased accuracy. However, even today, no generally accepted 

solution and benchmarking platform exist. We review the most recent single-cell 

segmentation tools, and provide an interactive method browser to select the most 

appropriate solution. 

  

  

TOWARDS ROBUST AND AUTOMATED METHODS FOR NUCLEUS 

SEGMENTATION 

  

The history [1] of detecting and segmenting single cells goes along with the first 

digitized microscopy images. Many research fields utilizing microscopy, such as 

developmental biology [2], drug discovery [3], functional genomics [4] and pathology 

[5] are dependent on accurate cell and nucleus segmentation as a vital part of image 

analysis workflows. Since image analysis has moved from a methodological 

research area towards data science as a result of the recent machine learning 

revolution, annotated datasets have become essential regarding the performance of 

nuclear segmentation methods. Especially, modality-independent, generalizable, and 

robust machine learning-based nucleus segmentation models need heterogeneous 

and large collections of expert-annotated images [6,7]. 

 



The level of difficulty of single-cell detection in an image, let alone precise outlining, 

widely varies (see Figure 1). In most simple cases nuclei have high contrast and are 

separated by proper experimental conditions (referred to as easy cases), hence their 

segmentation is not difficult (e.g. large siRNA - see Glossary) [8]. In other cases 

segmentation is highly challenging, for instance in 3D, label-free or thick tissue 

sections where cells touch, overlap or have non-conventional morphology, intensity, 

or patterns. International competitions [6][9] have promoted the potential to 

overcome these issues, yet a genuinely general solution is still awaited. However, 

due to major advancements in this field in recent years, our community has reached 

an unprecedented improvement in detecting single nuclei [10]. Easy cases of 

segmentation, especially in 2D are not problematic anymore [11,12], while accuracy 

has also improved in challenging cases [6]. In addition, 3D data analysis methods 

have progressed with extended 2D segmentation solutions [13] or with native 3D 

ones [14][15]. The community has accumulated large amounts of annotated data 

(either by experts [6] or crowdsourcing [16]) for training machine learning 

segmentation models, and to evaluate the methods in public benchmarking platforms 

[6][17]. This review describes the specific techniques biologists can exploit for single-

cell analysis. However, we emphasise that no standardized approach has been 

developed to date to properly compare different solutions before deciding which tool 

to use for a specific application.  

  

First, the variety and extent of datasets currently available to test and train methods 

are presented. Next, a selection of annotation tools available for creation of training 

datasets for machine learning methods is introduced. Then the issues related to pre- 

and post-processing of images to reduce challenges inherent to complex data are 



briefly discussed (see Suppl. Mat. 1 for details on different techniques), followed by 

insights into 2D nuclear segmentation methods. Classical approaches that provide 

task-specific and general solutions for a wide variety of acquisition techniques are 

presented. However, most recent methods usually rely on DNNs, and since the 

target objective is related to image processing, CNNs are most commonly applied to 

segment nuclei (see in Glossary). As processing 3D data is one of the major 

challenges in single nucleus segmentation, a set of promising and successful 

methods appropriate to solve specific 3D segmentation tasks is discussed. 

  

Figure 2 supports a better understanding of the definitions of detection and 

segmentation tasks. When identifying single cells (objects) in microscopy images 

automatically, i.e. using computer algorithms, the results may be either (1) detections 

corresponding to the localization of the objects or (2) segmentations which separate 

independent image regions. The former is typically represented as bounding boxes, 

whereas the latter may be realized by either assigning a binary label to each pixel 

while dividing the image into not necessarily connected regions (semantic 

segmentation) or by separating individual objects (instance segmentation). One may 

choose from a plethora of methods and software tools to perform nuclear 

segmentation (see section “Segmentation methods and toolkits”). Major challenges 

are discussed in the Outstanding Questions Box. As many of the segmentation 

methods considered in this review utilize deep learning approaches, this subset of 

machine learning is also introduced. Deep learning involves the training of DNNs for 

complex yet arbitrary tasks, such as detection, segmentation and classification (not 

strictly in our domain of cellular image analysis, but also in natural image-, video- or 

audio-processing). Deep learning based approaches are proven to perform 



excellently on the trained domain, with the potential of extension to unseen domains 

[18]. Their translation is limited by the lack of publicly available datasets related to 

less common modalities (see section “Annotated nucleus datasets”). 

  

A portalI was developed to offer a graphical aid to select the most appropriate 

method for non-image analysis experts (see Figure 2). This portal has several 

advantages: (1) the imaging community can select the methods 

applicable/appropriate for their images of interest, and (2) developers can submit the 

description and best practices for their methods. Currently, the most common optical 

microscopy categories are considered. Notably, the web portal is declared to be 

maintained by the authors, yet the community is encouraged to actively contribute 

and eventually propose extensions to it. For benchmarking the segmentation 

methods, users can exploit BIAFLOWSII [17], a freely available web-based platform 

developed by NEUBIAS. The assessment of new proposals has been commonly 

performed with limited datasets and arbitrary metrics (see Suppl. Mat. 2); in 

contrast,  NEUBIAS is a step forward to prevent such a biased evaluation. However, 

an unbiased quantitative method comparison is still impossible due to the lack of a 

comprehensive annotated dataset for training and testing the methods using a 

globally accepted benchmark platform and unified metrics (see section 

“Segmentation methods and toolkits”). 

 

 

ANNOTATED NUCLEUS DATASETS 

  



Annotated datasets are used in computer science to validate the accuracy of 

developed algorithms. In addition, nowadays annotated datasets are also used for 

training machine learning models for various tasks. One of the key factors 

influencing the performance of segmentation models is the composition of annotated 

data. Ideally, a trainable model yields optimal results on a test set sampled from the 

same domain as training data are collected from, hence domain-specific annotated 

datasets serve as a valuable asset, especially when they are expert-curated. Highly 

specific domain datasets are usually complemented with proper metadata [19][20], 

such as the experimental setup, sample preparation or microscope device, and are 

expert-curated when it comes to annotations. However, they typically cover a narrow 

diversity, and are small in size. Open datasets may contain a varying number of 

images (see Table 1). An important aspect for the user to consider when either 

training a new model or evaluating segmentation performance on publicly available 

datasets is that the corresponding annotations occasionally contain such 

segmentations yielded by automatic methods [19] that might not be refined by an 

expert, thus the results might be biased. Annotated nucleus datasets displayed in 

Table 1 show diversity in size (not only regarding the number of images, but also 

that of the objects too) and content, focusing on those widely used as benchmarks or 

training data. Annotations may be realized as objects (instance aware) or binary 

masks (semantic), are primarily 2D, and the two most common imaging modalities 

cover fluorescence stained cell cultures and H&E stained tissue sections. 

 

Table 1. Open datasets of annotated nucleus for single-cell analysis purposes 

  



Name Individual 

objects (O) 

or binary 

masks (BM) 

2D/3D Microscopy Staining Sample # 

images 

# objects Ref. 

BBBC032 O 3D confocal fluo mouse 

embryo 

blastocyst 

cells 

1 

(172*) 

1220 [21] 

BBBC033 O 3D confocal fluo mouse 

trophoblas

t stem 

cells 

1 (32*) 585 [21] 

BBBC034 O 3D brightfield/fluoresce

nt 

x/3 

fluo** 

hiPSC 3D 1 (52*) 790 [19] 

Scaffold-A549 

Dataset 

O 3D fluorescent Hoechst

+DiL 

lung 

cancer 

tissue 

21 800 

(+10000 

w/o 

labels) 

[22] 

BBBC039 O 2D fluorescent Hoechst U2OS 

cells 

200 23.615 [10] 

CoNSeP O 2D brightfield H&E colon 

tissue 

41 24.319 [23] 

CryoNuSeg 

(TCGAIV ) 

O 2D brightfield H&E various 

tissues 

30 7.596 [24] 

DSB2018 O 2D various various various 

tissues 

and cells 

841 37.530 [6] 

Janowczyk et 

al.V 

BM 2D brightfield H&E breast 

tissue 

141 ~12.000 [25] 

LIVECell O 2D phase-contrast label-

free 

cell 

cultures 

5 239 1.686.35

2 

[26] 



Lizard O 2D brightfield H&E colon 

tissue 

291 495.179 [27] 

MoNuSeg201

8 

O 2D brightfield H&E various 

tissues 

44 28.846 [28] 

NuCLS O*** 2D brightfield H&E breast 

tissue 

N/A 222.396 [16] 

NucMM O 3D electron 

microscopy/ micro-

CT 

label-

free 

brain 

tissue 

2 ~170.000 

+ ~7.000 

[29] 

PanNuke O 2D brightfield H&E various 

tissues 

481 205.343 [30] 

S-BSST265 O 2D fluorescent/ 

confocal 

IF/ 

DAPI 

various 

tissues 

and cells 

79 7.813 [20] 

TCGAIV 

images 

  processed 

by Irshad et 

at. 

N/A 2D brightfield H&E kidney 

clear cell 

renal 

carcinoma 

tissue 

63 N/A [31] 

TCGAIV 

images 

  processed 

by Kumar et 

at. 

O 2D brightfield H&E various 

tissues 

30 21.623 [28] 

TNBC O 2D brightfield H&E breast 

tissue 

50 4.022 [32] 

Wienert et al. O 2D brightfield H&E various 

tissues 

36 7.931 [33] 

TissueNet 

Version v1.0 

O 2D fluorescent various 

staining

s 

various 

tissues 

6990 ~1.200.0

00 

[7] 

  



* the number of slices is presented; 1 image is available 

** CellMask Deep Red plasma membrane, EGFP beta-actin, Hoechst DNA 

*** object contours or bounding boxes with class label 

  

International challenges, such as the annual ISBI or competitions hosted by e.g. 

Kaggle with industry partners, inspire those in the field of research and development 

to propose new technologies and methods or combine existing ones for a new 

purpose. One of the most successful and widely used segmentation methods, U-Net 

[34] (see in Supplementary Material 4) arose from the 2015 ISBI Cell Tracking 

Challenge [35], and has been the basis for several novel CNN architectures ever 

since (see section “Segmentation Methods and Toolkits”). Similar competitions 

contribute to the development of this field with invaluable collections of microscopy 

images, on which developers may benchmark their novel approaches according to 

standard evaluation metrics (typically mAP) in a fairly comparable way. In recent 

years the DSB2018 [6] dataset has been applied as such, since its image set 

comprises various types of microscopy modalities, magnifications, labels, sources 

etc. This might also provide insight into the expected model performance. Generally, 

datasets originating from challenges are carefully validated by field-expert annotators 

[6][15] (usually biologists and pathologists), promoting their further applicability to 

train new models. Notably, annotations of the training set are usually released 

instantly, while test set annotations may remain private even after the challenge is 

concluded [35]. Dataset size strongly depends on the task, e.g. a competition in 2D 

instance segmentation (like DSB2018) generally has a larger number of annotated 

images than a tracking [35] or a 3D segmentation task [19][21]. 

 



Conclusively, a key contribution of the bioimage analysis community to this field is 

the release of open datasets of annotated images, in as many varying imaging 

modalities as possible. Data sharing is highly encouraged, especially in case of 

intrinsically challenging microscopy types, such as label-free imaging (notably, 

LIVECell [26] is a promising step in this direction) or generally in 3D. Provided in an 

open way, these annotated datasets could inspire method developers to increase 

their focus on less frequent modalities, and release pre-trained models for those as 

well. Also, they enable users to benchmark (evaluate the performance of) available 

methods on this data. Additionally, experiment-specific unlabelled image sets (e.g. 

TCGAIV) may also promote progress in case an annotated subset is shared later 

independently [24,28][31]. Finally, as annotated datasets require an appropriate 

software tool that the experts (or generally, annotators) can use to create the labels, 

various annotation software solutions are collected in the following section. 

 

 

TOOLS FOR ANNOTATION 

  

Countless software tools are available to create annotations for single-cell 

segmentation training or validation, with a widely varying spectrum of functionality. 

These tools are designed either for specialists, such as biologists and pathologists, 

or for method developers. Options for annotation typically include freehand drawing, 

point, ellipse or polygon labelling, all of which may be exported to formats suitable for 

different applications. The finer the representation (annotation) of the object is, the 

more information it provides for a model when used as training data. While object 

location marked simply by a centre point or bounding box coordinates is sufficient for 



detection or even classification training, contours (boundaries) labelled either 

semantically (binary) or in an instance-aware way are usually used to train 

segmentation. Equivalently, the same types of annotated data may be utilized to 

assess the accuracy of different methods. 

 

Even though labelling several images tends to be time-consuming for a single 

expert, even students [16] can learn how to create accurate annotations when 

curated by experts, yielding large annotated datasets via joint and shared efforts. 

Semi-automatic annotation achieved by initial segmentation methods offers a 

convenient solution to speed up the annotation process for experts, and is often 

preferred by the community. Such annotation methods also help to increase [36][37] 

the agreement between experts, which is a common problem source in annotation. 

Alternatively, a consensus of multiple annotators may be used [31][6] at the object- 

or pixel level; crowdsourced annotations [16] are easier to combine this way. 

Commercial solutions and free-to-use software, including but not limited to those 

applied in cell biology, are described in detail in Suppl. Mat. 3 and Suppl. Table 2. 

  

Plugins or extensions to existing open-source software, such as ImageJ/Fiji [38,39] 

or MITK [40] are popular choices preferred by  bioimage analysts already 

experienced with the given software. The Fiji plugins Trainable Weka Segmentation 

[41] and LabKitIII use machine learning to train pixel classification similarly to ilastik 

[42] (see Suppl. Mat. 3-4), while AnnotatorJ [36] applies a U-Net to assist contour 

annotation. Assistance in the MITK plugin 3D-Cell-Annotator [43] exploits active 

surfaces with shape descriptors in 3D, while NuClick [18] uses its own CNN for 

histopathology images. 



  

Larger image analysis projects not primarily intended for annotation, but for a rather 

more comprehensive evaluation of the sample images (Cytomine [44][45], ilastik 

[42], DeepCell [46], QuPath [47]), including e.g. the segmentation or classification of 

cells, may also provide convenient solutions for annotation. Still, each has its target 

application: e.g. QuPath is a desktop tool suitable for WSI analysis, while Cytomine 

processes WSIs online in a collaborative way, and DeepCell improves its 

segmentation DNN with annotation collaboration.  

 

Standalone software packages (Diffgram, LabelImg, Segmentor [37]) offer a 

lightweight, specific solution for annotation: Segmentor [37]is intended for 3D 

annotation, Make Sense and Diffgram have additional online interfaces, and the 

latter also supports deep learning. Online tools (VGG Image Annotator, Kaibu, 

supervise.ly, Piximi annotator) require no installation and have no specific hardware 

requirements. However, it is worth noting that online service-based platforms 

(Lionbridge.AI or Hive) require that raw data are sent out of the laboratory, which 

might be undesirable in case of sensitive (e.g. patient-related) images. 

  

Nonetheless, genuinely general-purpose image editing applications, such as GIMP 

(GPL licence, free) or Photoshop (Adobe, commercial) may also be used to create 

annotations at the expense of more cumbersome export, e.g. in the case of instance 

annotation labels. 

  



Conclusively, several options are available, depending on the specific requirements 

of a project or experiment. Tools that provide multiple implementations (e.g. both 

local and online) might be ideal for more users. 

 

 

SEGMENTATION METHODS AND TOOLKITS 

 

Single nucleus segmentation methods may work with raw images, but in more 

challenging cases (e.g. Figure 1. j-v) the quality of the analysis (and specifically that 

of single nucleus segmentation) benefits from additional pre- and post-processing 

steps (e.g. illumination correction [48][49] or denoising [50] prior to the analysis, 

mask refinement or test time augmentation (TTA) [51] applied as post-processing). 

Application of these methods depends on the task and the desired quality of the 

result; some of the most commonly used processing steps are described in Suppl. 

Mat. 1. 

 

Nucleus segmentation is traditionally performed using a data-specific workflow that 

contains various filtering and thresholding methods, followed by morphological 

operations and processing steps (ImageJ/Fiji [38,39], QuPath [47], CellProfiler [52]). 

Segmentation using pixel classification, based on classical machine learning 

methods has been used for challenging data for a decade, with early versions of 

tools including e.g. DeepMIB [53] and ilastik [42]. The fundamental difference 

between classical image processing-based nucleus segmentation and that with 

classical machine learning is the input required from the user: in the former case, 

manual parameter setting and fine-tuning is expected in different processing 



modules in the pipeline, which is still capable of yielding very high accuracy at the 

expense of time-consuming re-parameterization for each new experiment. The latter 

enables users to rely on automated feature extraction and learning by still providing 

examples manually, which most likely also need to be repeated in experiments. 

Notably, appropriate pre-processing of input images (e.g. intensity scaling) can help 

to unify the range of optimal parameters in both cases. The nuclear segmentation 

task has moved towards robust and automated approaches with U-Net [34] (see in 

Suppl. Mat. 4), which was a breakthrough for deep learning-based nucleus 

segmentation (and in the field of deep learning-based segmentation in general). In 

contrast to image processing and classical machine learning, deep learning-based 

methods require fewer input parameters from the user, and are generally more 

straightforward to apply between experiments than in the case of classical 

approaches. Nonetheless, pre-processing also increases the accuracy of CNNs in 

most cases. U-Net still serves as a baseline for semantic segmentation tasks, and is 

(1) used as part of recent general nucleus/cell segmentation pipelines, such as 

Cellpose [12] and StarDist [54], and (2) utilized or further developed in nnU-Net [55] 

and UNet++ [56]. Even though U-Net is a semantic segmentation framework, it can 

be extended to instance segmentation with post-processing. One typical solution is 

to classify pixels into three classes where one class represents nuclear edges, and 

as such, it can aid instance segmentation [10]. Computationally U-Net is relatively 

simple, thus it is possible to train a basic U-Net on workstations or even laptops with 

a GPU. 

  

Another breakthrough in deep learning-based instance segmentation was Mask R-

CNN [57]. This network was designed for the segmentation of natural images, 



however, it has been adapted for nucleus segmentation in methods such as 

nucleAIzer [11]. Mask R-CNN is built over a CNN feature extraction backbone and 

RPN [58] to suggest possible object regions. These proposals are classified and 

used for binary mask prediction. Mask R-CNN outputs a list of masks allowing 

overlaps, whereas the output of U-Net is an image with no overlaps. However, two 

recent extensions to U-Net-based StarDist, MultiStar [59] and SplineDist [60], enable 

segmentation of overlapping objects. NuSeT [61] combines RPN, U-Net and 

watershed post-processing to optimize segmentation of crowded cells. Mask R-CNN 

requires more computational resources than U-Net, still it can be trained on a 

modern workstation or laptop. 

  

Even though many segmentation methods are not deep learning-based (MINS 

[62,63], XPIWIT [64] etc.), the field has recently tended to shift towards approaches 

based on deep learning (e.g. ilastik [42] now offers DNNs). This includes bundles of 

specific deep learning methods for segmentation and pre-processing which could be 

used on Google Colab (ZeroCostDL4Mic [65], Segmentation of stochastic optical 

reconstruction microscopy (STORM) images [66]), or other client-server architecture 

(ImJoy [67], DeepCell Kiosk [46][68], HistomicsML2 [69]) with provided separate pre-

trained models (CDeep3M [70], nucleAIzer [11], Cellpose [12]). ImageJ users can 

also utilize deep-learning based segmentation with plugins and pre-trained models 

(DeepImageJ [71]). The majority of the methods discussed here are deep learning-

based (see Table 2), which require hardware resources due to the parallelizable and 

heavy computational costs of DNNs, hence GPU acceleration is advised, especially 

for training. Cloud-based solutions often meet this requirement. 

  



Several methods mentioned above could be used for 3D datasets (see Table 2). 

Segmentation of 3D nuclear images with deep learning is not straightforward. The 

major limitation is that the annotated data in the field are less abundant compared to 

the planar case. There are several deep learning-based methods developed by the 

medical image analysis community facing a similar challenge. However, in the case 

of medical images, usually only one or a few objects need to be segmented. This 

task is different from and less difficult than nucleus segmentation, where hundreds of 

instances should be segmented even when they touch. For example, segmenting a 

medical image by combining the segmentations of 2D images may provide 

acceptable accuracy. In contrast, nucleus segmentation is an instance segmentation  

task where this approach alone is less likely to work in crowded parts of the image, 

but the connected components of the stacked 2D segmentations can be used as a 

seed image for the watershed transform to compute the final 3D instance 

segmentation [72]. Besides, 3D segmentation is more demanding in terms of 

computational resources (especially GPU memory and file sizes) when a dense 2D 

method is extended directly to process 3D images. Introduction of a further 

dimension may lead to substantially growing complexity (for example in case of 

differential geometry-based approaches) and more complex spatial dependencies in 

case of CNNs, however, this phenomenon termed ‘the curse of dimensionality’ is 

especially problematic, thus more training data and more computational resources 

are required. Still, several tools are specifically developed for the 3D segmentation 

task [73], and some deep learning based methods developed for 2D segmentation 

are also extended to 3D. The IT3DImageJSuite is an ImageJ (Fiji) [38,39] plugin that 

involves several algorithms (including iterative thresholding and watershed). LoS [74] 

approximates the convex decomposition of the objects with spectral clustering. 



OpenSegSPIM [75] is a MATLAB application which performs instance segmentation 

by applying a pipeline of filters in a semi-automatic manner. RACE [76] and 

Ruszczycki et al. [15] first compute the 2D segmentation on the z-slices, and then 

combine them to 3D objects. Similarly to BioImageXD [77], Fiji [38,39] and Icy [78], 

Vaa3D [79] uses a pipeline consisting of Gaussian filtering, adaptive thresholding, 

distance transformation and 3D watershed [80], while the MITK plugin 3D-Cell-

Annotator [43] uses active contours for semi-automatic 3D segmentation. In contrast, 

most recent methods apply deep learning techniques to segment nuclei. These 

include QCANet [81], developed to analyze mouse embryos in 3D, 3DeeCellTracker 

[82], intended for tracking after the segmentation of nucleus instances, and the 

algorithm proposed in Lapierre-Landry et al. [83] which performs watershed 

segmentation on the probability map, and supervoxel clustering to achieve the final 

instance segmentation.  

 

Self-supervised and unsupervised learning approaches decrease or even eliminate 

the need of annotated training data. A few of such methods for nuclear segmentation 

have appeared recently [84,85][86]. These methods show competitive results, 

though their accuracy does not exceed that of the supervised state-of-the-art 

methods. Self-supervised segmentation for histopathology images [85] uses 

ResUnet-101 and requires a minimum of annotated data for fine-tuning. Another 

approach [84] uses an attention mechanism, and does not require annotated data. 

AD-GAN [86]uses a sophisticated training approach based on GAN, does not require 

annotated data and also works for both 2D and 3D.  

 



Table 2 and Suppl. Table 3 report the list of tools mentioned above, whilst Suppl. 

Mat. 4 includes their short descriptions. 

  

Table 2. Relevant tools for nucleus segmentation 

Algorithm: A complete method to segment nuclei. An algorithm can be shared as a source code for developers in 

e.g. a GitHub repository or can be implemented as a user-accessible method in a platform. Pipeline: A workflow 

of image processing algorithms to segment nuclei, allowing the user to set parameters for each step of the 

workflow or even change the included algorithms to optimize segmentation tailored to the specific data. Platform: 

A software package that includes multiple algorithms or pipelines for nucleus segmentation, and often has a 

defined API to include additional methods as well. 

2D/3D/Bot

h 

Tool name Pipeline/algorithm/platf

orm 

Code 

availabilit

y 

Year Referenc

e 

GUI/Tutorial/Biaflows/GPU/Cl

oud 

2D U-Net Algorithm Yes 2015 

Ronneberg

er et al.[34] N/N/Y/Y/N 

2D SegNet Algorithm Yes 2015 

Badrinaray

anan et al. 

[87]  N/N/?/Y/N 

2D Mask R-CNN Algorithm Yes 2017 

He et 

al.[57] N/Y/Y/Y/N 

2D QuPath Platform Yes 2017 

Bankhead 

et al.[47] Y/Y/N/Y/N 

2D UNet++ Algorithm Yes 2018 

Zhou et 

al.[56] N/N/N/Y/N 

2D 

Segmentation 

of Nuclei in 

Histopathology 

Images by 

deep 

regression of 

the distance 

map Algorithm Yes 2018 

Naylor et 

al.[88] N/Y/N/Y/N 



2D 

Multi-scale Cell 

Instance 

Segmentation 

with Keypoint 

Graph based 

Bounding 

Boxes Algorithm Yes 2019 

Yi et al. 

[89] N/N/?/Y/N 

2D HoVer-Net Algorithm Yes 2019 

Graham et 

al.[23] N/Y/N/Y/N 

2D CIA-Net Algorithm No 2019 

Zhou et 

al.[90] N/N/N/Y/N 

2D Bend-Net Algorithm No 2020 

Wang et 

al.[91] N/N/N/Y/N 

2D nucleAIzer Algorithm, Pipeline Yes 2020 

Hollandi et 

al.[11] Y/Y/N/Y/Y 

2D MultiStar Algorithm Yes 2020 

Walter et 

al.[59] N/N/N/Y/N 

2D 

Instance-

Aware Self-

supervised 

Learning for 

Nuclei 

Segmentation Algorithm No 2020 

Xie et al. 

[85] N/N/N/Y/N 

2D 

Self-supervised 

Nuclei 

Segmentation 

in 

Histopathologic

al Images 

Using Attention Algorithm Yes 2020 

Sahasrabu

dhe et al. 

[84,85] N/N/N/Y/N 

2D Triple U-Net Algorithm Yes 2020 

Zhao et 

al.[92] N/N/N/Y/N 



2D 

“High-

resolution deep 

transferred 

ASPPU-Net for 

nuclei 

segmentation 

of 

histopathology 

images” Algorithm No 2021 

Chanchal 

et al.[93] N/N/N/Y/N 

2D NucleiSegNet Algorithm Yes 2021 

Lal et 

al.[94] N/Y/N/Y/N 

2D SplineDist Algorithm Yes 2021 

Mandal et 

al.[60] N/N/N/Y/N 

2D 

Contour 

Proposal 

Network Algorithm Yes 2021 

Upschulte 

et al.[95] N/N/N/Y/N 

2D HistomicsML2 Pipeline, Platform Yes 2021 

Lee et 

al.[69] Y/Y/N/Y/Y 

2D STORM Pipeline Yes 2021 

Mela et 

al.[66] N/N/N/Y/Y 

2D MSRF-Net Algorithm Yes 2021 

 

Srivastava 

et al. [96] N/N/N/Y/N 

3D 

“3D cell nuclei 

segmentation 

based on 

gradient flow 

tracking” Algorithm No 2007 Li et al.[97] N/N/N/N/N 

3D Vaa3D Platform Yes 2010 

Peng et 

al.[79] Y/Y/Y/Y/N 

3D 

IT3DImageJSui

te Platform Yes 2013 

Ollion et 

al.[98] Y/Y/N/N/N 

3D LoS Algorithm Yes 2013 

Asafi et 

al.[74] N/Y/N/N/N 



3D 

“Automated 

cell 

segmentation 

with 3D 

fluorescence 

microscopy 

images” Algorithm No 2015 

Kong et 

al.[99] N/N/N/N/N 

3D OpenSegSPIM Platform Yes 2016 

Gole et 

al.[75] Y/Y/N/N/N 

3D RACE Platform Yes 2016 

Stegmaier 

et al.[76] Y/Y/N/Y/N 

3D U-Net (3D) Algorithm Yes 2016 

Cicek et 

al.[100] N/N/N/Y/N 

3D 

“Segmentation 

of fluorescence 

microscopy 

images using 

three 

dimensional 

active contours 

with 

inhomogeneity 

correction” Algorithm No 2017 

Lee et 

al.[14] N/N/N/N/N 

3D DeepSynth Algorithm No 2019 

Dunn et 

al.[101] N/N/N/Y/N 

3D 

“Three-

Dimensional 

Segmentation 

and 

Reconstruction 

of Neuronal 

Nuclei in 

Confocal 

Microscopic 

Images“ Algorithm Yes 2019 

Ruszczycki 

et al.[15] N/N/N/N/N 



3D 

“Semi 

supervised 

segmentation 

and graph-

based tracking 

of 3D nuclei in 

time-lapse 

microscopy“ Algorithm Yes 2020 

Shailja et 

al.[102] N/N/N/Y/N 

3D 

“A deep 

learning 

pipeline for 

nucleus 

segmentation” Pipeline No 2020 

Zaki et 

al.[103] N/N/N/Y/N 

3D 

“Combined 

detection and 

segmentation 

of cell nuclei in 

microscopy 

images using 

deep learning” Algorithm No 2020 

Ram et 

al.[104] N/N/N/Y/N 

3D QCANet Algorithm Yes 2020 

Tokuoka et 

al.[81] N/Y/N/Y/N 

3D 

Allen Cell and 

Structure 

Segmenter Platform Yes 2020 

Chen et 

al.[105] Y/Y/N/Y/N 

3D 

3D-Cell-

Annotator Platform Yes 2020 

Tasnadi et 

al.[43] Y/Y/N/Y/N 

3D 

“Nuclei 

detection for 

3D microscopy 

with a fully 

convolutional 

regression 

network” Algorithm No 2021 

Lapierre-

Landry et 

al.[83] N/N/N/Y/N 



3D 

3DeeCellTrack

er Platform Yes 2021 

Wen et 

al.[82] N/Y/N/Y/N 

Both MINS Platform Yes 2014 

Lou et 

al.[62,63] Y/Y/N/N/N 

Both XPIWIT Algorithm Yes 2016 

Bartschat 

et al.[64] Y/Y/N/Y/N 

Both ilastik Platform Yes 2018 

Berg et 

al.[42] Y/Y/Y/Y/N 

Both DeepImageJ Platform Yes 2019 

Gómez-de-

Mariscal et 

al.[71] Y/Y/N/Y/N 

Both ImJoy Platform Yes 2019 

Ouyang et 

al.[67] Y/Y/N/Y/Y 

Both 

“A coarse-to-

fine data 

generation 

method for 2D 

and 3D cell 

nucleus 

segmentation” Algorithm No 2020 

Zhao et 

al.[106] N/N/N/Y/N 

Both Cellpose Algorithm Yes 2020 

Stringer et 

al.[12] Y/Y/Y/Y/Y 

Both CDeep3M Platform Yes 2020 

Haberl et 

al.[70] Y/Y/N/Y/Y 

Both StarDist Algorithm Yes 2020 

Shmidt et 

al.[13] ; 

Weigert et 

al.[54] N/Y/Y/Y/N 

Both NuSeT Platform Yes 2020 

Yang et 

al.[61] Y/Y/N/Y/N 

Both nnU-Net Platform Yes 2021 

Isensee et 

al.[55] N/Y/N/Y/N 

Both DeepMIB Platform Yes 2021 

Belevich et 

al.[53] Y/Y/N/Y/N 



Both InstantDL Pipeline, Platform Yes 2021 

Waibel et 

al.[107] N/Y/N/Y/N 

Both 

ZeroCostDL4M

ic Pipeline, Platform Yes 2021 

von 

Chamier et 

al.[65] Y/Y/N/Y/Y 

Both DeepCell Kiosk Pipeline, Platform Yes 

2021

; 

2016 

Bannon et 

al.  

[46,68]]; 

Van Valen 

et 

al.[46,68]  Y/Y/Y/Y/Y 

Both AD-GAN Algorithm No 2021 

Yao et al. 

[86]  N/N/N/Y/N 

Both 

Embedding-

based Instance 

Segmentation 

in Microscopy Algorithm Yes 2021 

Lalit et al. 

[108] N/Y/?/Y/N 

  

Most of the listed tools require some effort from the user to install, prepare the 

environment, do the pre-processing of the input if needed, and finally to run it. The 

amount of time and effort primarily depends on the computational background of the 

user, and on the tool itself. Cloud-based tools (usually supplied with web GUI) could 

be the primary starter choices for life scientists. However, there is a trade-off: cloud-

based versions of tools have limited customizability, while local versions are more 

flexible, and the user does not need to share the data with third-party services. In the 

latter case the quality of the documentation also matters to assure proper setup. In 

Table 2 we provide information on whether the tool is documented properly (only 

official documentation was taken into account). The algorithms quite often lack 



detailed official documentation, though provide the most flexibility (usually are parts 

of the complex pipelines), and for the most popular ones unofficial documentation or 

tutorials and third-party implementations exist too. The potential performance of a 

tool is obviously an important concern for the user, and it might be challenging to 

decide on choosing the appropriate tool. The user may decide based on the 

community’s preferences. Alternatively, a reliable comparison of the performance of 

the different tools can support decision-making. However, apart from BIAFLOWSII 

and automatic challenge submission systems (e.g. Kaggle or ISBIVI), the microscopy 

image analyst community lacks (1) an evaluation platform for the objective 

comparison of nucleus segmentation methods, using (2) a standardized evaluation 

metric in a transparent way. Thus, a consensus on utilizing a single, standardized 

platform is eagerly awaited. Since challenge portals only provide this functionality for 

the datasets of given challenges, a more inclusive platform, such as BIAFLOWS is 

suggested. Even though the relevance of newly published methods is usually 

supported by some quantitative segmentation results, it has several shortcomings 

from the user’s point of view as follows. (1) The test dataset might not suggest 

relevant performance when the dataset size is too small, or covers a single imaging 

modality only. On the other hand, approaches developed for specific microscopy 

images (such as H&E or fluorescence confocal images) or segmentation scenarios 

(e.g. crowded cell culture) are intended to work in their given domain of images, and 

should not be expected to perform just as well on more extensive or general 

datasets. (2) When comparison to prior methods is performed and reported, the 

number of tested methods is usually low, and (3) additional model- or data-specific 

modifications might have been applied to the compared methods (or the test images 



as pre-processing), thus merely literature-based comparisons of accuracy scores 

may confuse the user (see Suppl. Mat. 2). 

 

 

CONCLUDING REMARKS 

 

Recent years have brought significant improvements in nucleus segmentation, 

including large annotated datasets, new high-accuracy 2D/3D strategies, deep 

learning approaches, and segmentation benchmarking platforms, however, 

establishing a genuinely general solution for nucleus segmentation is still an unmet 

need. In this review and the accompanying web-based portalI we aimed to cover the 

missing link between recent advancements and users’ needs by providing a detailed 

overview on the available means for nucleus segmentation. The concluding remarks 

below are focused on crucial limitations and future goals. 

  

The first crucial point is to cover more modalities of microscopy data for both 2D, 

and especially 3D, with open datasets of annotated images. Current methods are 

expected to work when trained on additional microscopy data modalities [18,109]. 

Most datasets include H&E stained tissues or fluorescently labelled cell cultures (see 

Table 1) which are two of the most widely used modalities in practice. However, 

further microscopy types (e.g. DIC, light-sheet or phase contrast) lack such publicly 

available annotations, except a recently published, large, label-free dataset [26]. 

Even though researchers can train existing deep learning methods on their own 

nowadays, these models remain private (unless released on e.g. GitHub, zenodo, 

Kaggle or in a Napari [110] plugin; on the first three platforms datasets may also be 

deposited [32]) and the initial datasets are small, resulting in suboptimal model 



generalization. For a given modality of interest, generalization is also a crucial point 

for medical applications: the data should be as diverse as possible to promote robust 

models. Diversity from a computer vision point of view would include various regions 

of tissue with the distinct visual appearance of both the target objects and the 

surroundings, as well as covering several phenotypes of cells, different batches or 

slightly different experimental setups. An extensive annotated dataset including most 

(if not all) modalities occuring in single-cell analysis experiments with respect to the 

type of microscopy, sample and label could definitely improve existing trainable 

methods. Besides, it would offer the possibility of releasing genuinely general pre-

trained models, and would also serve as a standard dataset, similarly to the widely 

used COCO dataset [111] in computer vision. 

  

The second crucial point relates to solving common microscopy challenges for 

both 2D and 3D data, such as: touching, overlapping and irregularly shaped nuclei 

[54][59][60][61]. Either dataset design or model architecture can be beneficial for a 

solution. Current methods achieve various levels of success in overcoming these 

issues, thus further developments are needed. 

  

The third crucial point is the lack of (1) a globally accepted benchmark platform for 

comparison, and (2) a unified metric for tool evaluation. BIAFLOWS and Kaggle are 

available solutions to overcome these issues. However, still most publications 

presenting novel methods or tools typically provide limited comparisons (either in 

terms of the data used in evaluation or the number of methods compared) and use 

not standardized metrics. Accordingly, the results published by different authors are 

often difficult to compare. 



  

The ultimate goal is to develop an algorithm, and train it so that the resulting single 

model would be able to accurately segment nuclei in a variety of microscopy 

modalities. Some of the available algorithms and models are aimed to meet this 

requirement [11,12], and the field is moving towards a generally applicable solution. 

While a quantitative comparison of the methods available for each modality is 

beyond our intention, it is worth mentioning that deep learning tends to provide fine 

accuracy in segmenting nuclei in images obtained with different microscopy 

techniques, as shown at the DSB 2018 challenge [6][112]. 
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FIGURES 

  

Figure 1. Diversity of optical microscopy images representing nuclei. The inner circle 

shows standard examples of each type (e.g. widefield, confocal, light-sheet, DIC, PC 



images), while the outer circle presents more difficult cases. Finally, common 

challenging cases (e.g. multinucleated cells, irregular morphology, elongated shape,  

heterogeneous samples) regarding nucleus segmentation are reported in the 

corners. c,d, l, f, g, o, t are images from our laboratories/collaborators; a, s, j are 

from BBBC collection; e, n are from the TCGA collection; r is from the LIVECell 

dataset; the remaining ones are from the internet (see Supplementary Table 1 for 

the sources). 

  



Figure 2. A sample-driven guide to select an appropriate method for single nucleus 

segmentation. Firstly, based on the images of the given experiment the user can 

determine the category (e.g. widefield, confocal, light-sheet, DIC, PC images) and 

select the corresponding node in the interactive online tool unbias
I
 according to the 

sample, label and microscopy type. Then, a list of segmentation methods is shown in 

the table on the right, including the method description and implementation if 

available alongside pre-trained models. The list may be filtered with the buttons 

above the table by dimension (2D/3D) and challenging segmentation issues (e.g. 

elongated nucleus in smooth muscle tissue). Finally, the goal of the experiment (e.g. 

object-aware segmentation or additional phenotyping i.e. classification) guides the 

user to select the appropriate segmentation method. 
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Recent advancements in deep learning have revolutionized the way microscopy images of cells are 
processed. Deep learning network architectures have a large number of parameters, thus, in order to 
reach high accuracy, they require a massive amount of annotated data. A common way of improving 
accuracy builds on the artificial increase of the training set by using different augmentation techniques. 
A less common way relies on test-time augmentation (TTA) which yields transformed versions of the 
image for prediction and the results are merged. in this paper we describe how we have incorporated 
the test-time argumentation prediction method into two major segmentation approaches utilized in 
the single-cell analysis of microscopy images. these approaches are semantic segmentation based on 
the U-Net, and instance segmentation based on the Mask R-CNN models. Our findings show that even 
if only simple test-time augmentations (such as rotation or flipping and proper merging methods) are 
applied, TTA can significantly improve prediction accuracy. We have utilized images of tissue and cell 
cultures from the Data Science Bowl (DSB) 2018 nuclei segmentation competition and other sources. 
Additionally, boosting the highest-scoring method of the DSB with TTA, we could further improve 
prediction accuracy, and our method has reached an ever-best score at the DSB.

Identifying objects at the single-cell level is the starting point of most microscopy-based quantitative cellular 
image analysis tasks. Precise segmentation of the cell’s nucleus is a major challenge here. Numerous approaches 
have been developed, including methods based on mathematical morphology1 or differential geometry2,3. More 
recently, deep learning has yielded a never-seen improvement of accuracy and robustness4–6. Remarkably, Kaggle’s 
Data Science Bowl 2018 (DSB)7 was dedicated to nuclei segmentation, and gave a great momentum to this field. 
Deep learning-based approaches have proved their effectiveness: practically all the teams used some type of a 
deep architecture in the first few hundred leaderboard positions. The most popular architectures included U-Net4, 
originally designed for medical image segmentation, and Mask R-CNN8, used for instance segmentation of nat-
ural objects.

Deep learning approaches for object segmentation require a large, and often pixel-wise annotated dataset for 
training. This task relies on high-quality samples and domain experts to accurately annotate images. Besides, 
analysing biological images is challenging because of their heterogeneity and, sometimes, poorer quality com-
pared to natural images. In addition, ground truth masks might be imperfect due to the annotator-related bias, 
which introduces further uncertainty. Consequently, a plethora of annotated samples is required, making object 
segmentation a laborious process. One of the techniques utilized to improve the model is data augmentation9 of 
the training set. Conventionally, a transformation (i.e. rotation, flipping, noise addition, etc.) or a series of trans-
formations are applied on the original images. Data augmentation has become the de facto technique in deep 
learning, especially in the case of heterogeneous or small datasets, to improve the accuracy of cell-based analysis.

Another option of improving performance relies on augmenting both the training and the test datasets, then 
performing the prediction both on the original and on the augmented versions of the image, followed by merg-
ing the predictions. This approach is called test-time augmentation (Fig. 1). This technique was successfully 
used in image classification tasks10, for aleatoric uncertainty estimation11, as well as for the segmentation of MRI 
slices/MRI volumes12. A theoretical formulation12 of test-time augmentation has recently been described by Wang 
et al. Their experiments show that TTA helps to eliminate overconfident incorrect predictions. Additionally, a 

1Biological Research Centre, Szeged, Hungary. 2University of Szeged, Szeged, Hungary. 3National Research 
University, Higher School of Economics, Moscow, Russia. 4Institute for Molecular Medicine Finland, University of 
Helsinki, Helsinki, Finland. *email: horvath.peter@brc.hu
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framework13 has also been proposed for quantifying the uncertainty of the deep neural network (DNN) model for 
diagnosing diabetic retinopathy based on test-time data augmentation. Its disadvantage is increased prediction 
time, as it is run not only on the original image, but on all of its augmentations as well.

In the current paper we assess the impact and describe cases of utilizing test-time augmentation for 
deep-learning models trained on microscopy datasets. We have trained deep learning models for semantic seg-
mentation (when the network only distinguishes the foreground from the background, using the U-Net archi-
tecture) and instance segmentation (when the network assigns labels to separate objects, using the Mask R-CNN 
architecture) (Fig. 1). Test-time augmentation has outperformed single instance predictions at each test case, and 
could further improve the best result of the DSB, as demonstrated by the improvement of the score, changing 
from 0.633 to 0.644.

Methods
Dataset acquisition and description. We have used two datasets: fluorescent microscopy images (further 
referred to as ‘fluorescent’ dataset) and histopathology images (further referred to as ‘tissue’ dataset). Most of the 
images have come from the stage 1 train/test data of Data Science Bowl 2018. We also used additional sources14–20 
and other data published in the discussion thread ‘Official External Data Thread’ (https://www.kaggle.com/c/
data-science-bowl-2018/discussion/47572) related to DSB 2018. The images were labelled by experts using the 
annotation plugins of ImageJ/Fiji and Gimp. Both datasets were divided into three holdout train/test sets: approx-
imately 5%, 15% (6 splits for each, cross-validation), and 30% (further referred to as ‘5’, ‘15’ and ‘30’ in the dataset 
name, respectively) of uncropped images were held out as the test set. The test sets (‘5’, first cross-validation split 
of ‘15’ and ‘30’) did not intersect.

We used the same augmentations (horizontal and vertical flip, 90°, 180° and 270° rotations) for training both 
architectures. The images were cropped to the size of 512 × 512 pixels. Crops from the same image were used only 
in either the train or test set. Images with a resolution of less than 512 × 512 were resized to that particular size. 
Sample images are shown in Fig. 2.

Deep learning models and training. These augmented and cropped training data were used to train the 
models. For each dataset (5, 15 (6-fold cross validation) and 30 holdouts for both fluorescent and tissue images) 
separate models were trained. Additionally, we also trained U-Net without augmented data to analyse TTA per-
formance on such a network as well (just 1 holdout 15 test set in that case).

Mask R-CNN (implementation21) is an extension of Faster R-CNN, the architecture for object detection. 
Solutions based on Mask R-CNN outperform the COCO 2016 challenge winners, and finished at the third place 
in Kaggle Data Science Bowl 20187. The architecture of Mask R-CNN incorporates the following main stages: (1) 
Region proposal network (RPN) to propose candidate bounding boxes. It uses a backbone: a convolutional neu-
ral network which serves as a feature extractor. In this implementation it is possible to use resnet50 or resnet101 
as a backbone, and we used resnet101. (2) Network head layers: they predict the class, box offset and an output 
binary mask for each region of interest (RoI). Masks are generated for each class without competition between 
the classes.

Following the strategy described by Hollandi et al.5, the network was trained for 3 epochs for different layer 
groups: first, all network layers were trained at a learning rate of 10−3, then training was restricted to ResNet stage 

training

Mask R-CNN

U-Net

single cell masks Mask R-CNN

img

mask

images BG-FG masks U-Net original

test-time augmentation merging and prediction

N
Ii

Figure 1. Principle of the proposed test-time augmentation techniques. Several augmented instances of the 
same test images are predicted, and the results are transformed back and merged. In the case of U-Net, pixel-
wise majority voting was applied, while for Mask R-CNN a combination of object matching and majority voting 
was applied.
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5 (ResNet consists of 5 stages, each with convolution and identity blocks including 3 convolutional layers per 
block) and head layers at a learning rate of 5 × 10−4, and finally only the head layers were trained at a learning 
rate of 10−4. The model was initialized with pre-trained weights (https://github.com/matterport/Mask_RCNN/
releases/download/v1.0/mask_rcnn_coco.h5) on the COCO dataset. The loss function of the architecture was 
binary cross-entropy with ADAM22 (Adaptive Moment Estimation) solver, batch size 1, the number of iterations 
being equal to the train set size.

U-Net (implementation23) is an architecture originally designed to process biological images, which proved 
to be efficient, even when utilizing small training datasets. U-Net based solutions won the 2015 ISBI cell tracking 
challenge4 and Kaggle Data Science Bowl 2018. Its architecture consists of two main parts: (1) a down-sampling 
convolution network or encoder by which we obtain the feature representation of the input image, and (2) an 
up-sampling convolution network or decoder, which produces the segmentation from a feature representation 
of the input image.

We trained U-Net for 200 epochs at a constant learning rate of 3 × 10−4, and used a binary cross-entropy loss 
function with ADAM solver, batch size 1, the number of iterations being equal to the train set size.

Both U-Net and Mask R-CNN implementations are based on the deep learning framework Keras with 
Tensorflow backend. The training computations were conducted on a PC with NVIDIA Titan Xp GPU, 32 GB 
RAM and Core-i7 CPU.

test-time augmentation. Test-time augmentation includes four procedures: augmentation, prediction, 
dis-augmentation and merging. We first apply augmentations on the test image. These are the same as the aug-
mentations previously applied on the training dataset. We predict on both the original and the augmented images, 
then we revert the transformation on the obtained predictions; this process is referred to as dis-augmentation. For 
example, when the prediction was performed on a flipped or rotated image, we restore the obtained prediction to 
its original orientation. The final merging step is not straightforward in case of Mask R-CNN, as the architecture 
is instance aware, thus the merging method has to handle instances. We have developed an extended merging 
method inspired by one of the DSB 2018 solutions24 (Fig. 1, right). For each detected object from the original 
image, we find the same detected objects in the augmented images by calculating intersection over union (IoU) 
between the masks. The minimum IoU threshold used to decide whether the objects found are the same is 0.5. We 
iterate over all detected objects to find the best match. An object should be present in the majority of the images 
to be included as a final mask. Next, we check the first augmented image for any remaining unused objects (a pos-
sible scenario when an object is not detected in the original image but is detected in any of the augmented ones), 
and look for matching unassigned objects on other augmentations. Next, we check the second augmented image 
for detected objects, and perform the same operations. We repeat this process until the majority voting criterion 
can be theoretically satisfied (in half of the images at a maximum). An average binary object mask is created by 
majority pixel voting on paired objects.

For U-Net the merging process is straightforward as it is not instance aware, so we simply sum and average all 
the dis-augmented probability maps. It yields a floating point image that needs to be converted to a binary mask. 
A simple element-wise thresholding at the value of 0.5 converts the soft masks into binary masks (Fig. 1, right).

test-time augmentation evaluation. We have evaluated the test-time augmentation model on our test 
dataset predictions (see the previous section for details) compared to ground truth masks using the following 
evaluation strategies.

without TTA with TTA TTA avg zoomedoriginal

U-Net

original without TTA with TTA

Mask R-CNNA B

True positive pixels

False positive pixels

False negative pixels

Legend:

5 µm

5 µm

5 µm 5 µm

5 µm

5 µm

Figure 2. Examples of predictions. (A) U-Net predictions. First column - original image, second column - 
predictions without TTA compared to ground truth, third column - predictions with TTA compared to ground 
truth. Red indicates false negative pixels, green indicates true positive pixels and blue indicates false positive 
pixels. Dividing lines: yellow is false positive division of pixels into objects, and cyan is false negative division 
of pixels into objects. Fourth column - averaged TTA predictions before thresholding, fifth column - zoomed 
insets from the previous column. (B) Mask R-CNN predictions. Columns are the same as the first three columns 
in (A). Images in line 1 are examples of the fluorescent dataset, images in line 2 and 3 are examples of the tissue 
dataset.
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In case of Mask R-CNN we used the same metric as at the Data Science Bowl 2018. It calculates the mean 
average precision (mAP) at different intersection over union (IoU) thresholds. The thresholds (t) are in the range 
of [0.5, 0.95] with a step of 0.05. An object is considered true positive when the IoU with ground truth is greater 
than the threshold, false positive when the predicted object has no associated ground truth object or the overlap 
is smaller than the threshold, and false negative when the ground truth object has no associated predicted object.

∩
∪

=IoU A B
A B
A B

( , )

Thus, mAP for an image is calculated as follows:

∑=
+ +thresholds

TP t
TP t FP t FN t

1 ( )
( ) ( ) ( )t

Next, we calculate the average for all images in the test set. The final score is a value between 0 and 1.
U-Net predictions were evaluated using the intersection over union metric, executed at the pixel level. We 

summed up the prediction and ground truth binary masks, then we simply counted the pixels that are greater 
than one (i.e. the intersection), and divided the resulting values with the number of pixels greater than zero. The 
resulting value is a score ranging from 0 to 1.

As described above, we have evaluated the predictions with applying TTA (merged) and without applying TTA 
(original). Next, we have evaluated TTA’s performance by calculating the difference as delta = merged − original.

Results
We have evaluated the performance of TTA on two datasets, named ‘Fluorescent’ (fluorescent microscopy 
images) and ‘Tissue’ (histopathology images) datasets, described in the “Dataset acquisition and description” 
section in detail. Each of them was split in 3 different ways to have approximately 5% (one holdout set), 15% 
(cross-validation, 6 splits for each) and 30% (one holdout set) as a test set. By using such versatile data collected 
from different sources and representing a wide variety of experimental conditions, as well as by the test set splits, 
we aimed to present the truly general performance of TTA, and demonstrate how robustly it works. Regarding 
that most of these images were used in a Data Science competition, and some additional images came from other 
sources, our final datasets are similar to real-world scenarios.

Our choice of the two popular deep learning architectures, Mask R-CNN (yielding instances) and U-Net 
(semantic segmentation) also served the purpose of testing robustness, as the tasks of semantic and instance 
segmentation are different, and require different approaches to apply the same method to them. For each dataset/
split, we have trained separate U-Net and Mask R-CNN models. Then, we have evaluated the performance of 
TTA for each model’s checkpoint (checkpoints were made for each epoch of training: in case of U-Net, a total 
of ‘15’ sets, i.e. every 10th epoch was designated as a checkpoint for cross-validation splits 2–6) as described in 
the “Test-time augmentation evaluation” subsection. Next, we performed statistical tests to assess whether the 
improvement of the performance is significant.

In the case of Mask R-CNN, TTA on average has provided an improved performance for all dataset splits and 
for all model checkpoints. The average mAP score delta is about 0.01 for all “Fluorescent” and “Tissue_5” sets 
and 0.02 for the other sets. In all scenarios, TTA has improved the score for most of the images (see Fig. 3 and 
Supplementary Fig. 1 for cross-validation splits 2–6). Such a delta value usually corresponds for better segmenta-
tion borders and a reduced rate of false positive or/and false negative detections.

In the case of U-Net, we have evaluated the performance at each epoch during training. For the “Tissue” data-
set TTA has demonstrated a performance gain for all epochs. In case of the “Fluorescent” dataset, a slight decline 
in the performance of TTA was observed during early (first 30–50) epochs, which has turned positive after fur-
ther training (Fig. 4A,B). After about epoch 50, the performance without TTA was seen to fluctuate without a 
clear trend in all cases (Fig. 4C,D), while the performance with TTA tended to rise for almost all cases, except in 
the case of the “Tissue” dataset, where no augmentations were used for training (Fig. 4A). A slight decline or a 
slight improvement in the score is usually related to cell borders (as the most uncertain regions in the images). In 
some cases, TTA helps to eliminate artifacts and rarely occurring false positive/false negative objects.

For some images TTA has significantly improved the final prediction. Examples of such cases for both U-Net 
and Mask R-CNN are shown in Fig. 2.

We have performed Wilcoxon paired test for each dataset/split/checkpoint for the Mask R-CNN results. 
P-values in all cases have passed the threshold value of 0.05. For U-Net, the test was performed on the means of 
each 10th epoch (20 vs 20 data points) for each dataset/split. The P-values are shown in Supplementary Table 4.

Applying TTA on the DSB2018 (stage2) test set of images has improved performance significantly, surpassing 
the best performing method5 by 0.011 in the DSB scoring metric, which is identical to the mAP used in this paper 
and the output of which was a set of instance segmented masks (Fig. 5). In the context of data science competi-
tions, when the scores are rather dense, we consider this improvement as significant (difference between 2nd and 
1st place on DSB 2018 was only 0.017).

The results without TTA and delta values for each set are available as Supplementary Materials (Supplementary 
Table 1. U-Net when augmentations during training were used, Supplementary Table 2. U-Net when augmenta-
tions during training were not used, Supplementary Table 3. Mask R-CNN when augmentations during training 
were used).
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Figure 3. TTA performance for Mask R-CNN. TTA performance (delta = merged − original). Each point 
represents an image. Dashed line - mean, solid line - median. (A) Fluorescent set 5. (B) Fluorescent set 15 
(cross-validation split 1). (C) Fluorescent set 30. (D) Tissue set 5. (E) Tissue set 15 (cross-validation split 1). 
(F) Tissue set 30. Orange boxplot - the final model (epoch 3), green boxplot - model trained for 1 epoch, red 
boxplot - model trained for 2 epochs.
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conclusions
We have performed experiments to estimate test-time augmentation’s performance for two popular deep learning 
frameworks trained to segment nuclei in microscopy images. Our results indicate that on average TTA can pro-
vide higher segmentation accuracy compared to predicting based on the original images only, even though for 
some images the results might be marginally worse.

TTA mostly affects the objects’ borders, but in uncertain cases it can help to fit whole objects (remove false 
positives or add true positives, especially in case of Mask R-CNN). Overall, in most cases, TTA improves segmen-
tation accuracy. The main use case of TTA is the analysis of uncertain regions in segmentation. However, the high 
cost of TTA, related to the fact that multiple times more predictions are required for the same object, is also an 
issue to be considered. Therefore, TTA is mainly recommended for use when the basic cost of prediction is low.
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Figure 5. DSB Stage 2 scores for various methods (CellProfiler, Kaggle DSB 2018 2nd and 1st places, Hollandi 
et al.5 method and the same method with TTA). The red bar shows the highest score.
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Supplementary Figure 1. TTA performance for Mask R-CNN
TTA performance (delta = merged-original). Each point represents an image. Dashed line - mean, solid line - median. A | Tissue 15 set cross-validation folds 2-6 (left to right) B | Fluorescent 15 set cross-validation folds 2-6 (left to right)
Orange boxplot -  the final model (epoch 3), green boxplot - model trained for 1 epoch, red boxplot - model trained for 2 epochs.
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Test-time augmentation for deep learning-based cell segmentation on microscopy images
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AnnotatorJ: an ImageJ plugin to ease hand 
annotation of cellular compartments

ABSTRACT AnnotatorJ combines single-cell identification with deep learning (DL) and man-
ual annotation. Cellular analysis quality depends on accurate and reliable detection and seg-
mentation of cells so that the subsequent steps of analyses, for example, expression mea-
surements, may be carried out precisely and without bias. DL has recently become a popular 
way of segmenting cells, performing unimaginably better than conventional methods. How-
ever, such DL applications may be trained on a large amount of annotated data to be able to 
match the highest expectations. High-quality annotations are unfortunately expensive as 
they require field experts to create them, and often cannot be shared outside the lab due to 
medical regulations. We propose AnnotatorJ, an ImageJ plugin for the semiautomatic anno-
tation of cells (or generally, objects of interest) on (not only) microscopy images in 2D that 
helps find the true contour of individual objects by applying U-Net–based presegmentation. 
The manual labor of hand annotating cells can be significantly accelerated by using our tool. 
Thus, it enables users to create such datasets that could potentially increase the accuracy of 
state-of-the-art solutions, DL or otherwise, when used as training data.

INTRODUCTION
Single-cell analysis pipelines begin with an accurate detection of the 
cells. Even though microscopy analysis software tools aim to be-
come more and more robust to various experimental setups and 
imaging conditions, most lack efficiency in complex scenarios such 
as label-free samples or unforeseen imaging conditions (e.g., higher 
signal-to-noise ratio, novel microscopy, or staining techniques), 
which opens up a new expectation of such software tools: adapta-
tion ability (Hollandi et al., 2020). Another crucial requirement is to 
maintain ease of usage and limit the number of parameters the us-
ers need to fine-tune to match their exact data domain.

Recently, deep learning (DL) methods have proven themselves 
worthy of consideration in microscopy image analysis tools as they 
have also been successfully applied in a wider range of applications 

including but not limited to face detection (Sun et al., 2014; Taigman 
et al., 2014; Schroff et al., 2015), self-driving cars (Redmon et al., 2016; 
Badrinarayanan et al., 2017, Grigorescu et al., 2019), and speech rec-
ognition (Hinton et al., 2012). Caicedo et al. (Caicedo et al., 2019) and 
others (Hollandi et al., 2020; Moshkov et al., 2020) proved that single-
cell detection and segmentation accuracy can be significantly im-
proved utilizing DL networks. The most popular and widely used 
deep convolutional neural networks (DCNNs) include Mask R-CNN 
(He et al., 2017): an object detection and instance segmentation net-
work; YOLO (Redmon et al., 2016; Redmon and Farhadi, 2018): a fast 
object detector; and U-Net (Ronneberger et al., 2015): a fully convo-
lutional network specifically intended for bioimage analysis purposes 
and mostly used for pixel classification. StarDist (Schmidt et al., 2018) 
is an instance segmentation DCNN optimal for convex or elliptical 
shapes (such as nuclei).

As robustly and accurately as they may perform, these networks 
rely on sufficient data, both in amount and quality, which tends to be 
the bottleneck of their applicability in certain cases such as single-
cell detection. While in more industrial applications (see Grigorescu 
et al., 2019 for an overview of autonomous driving) a large amount 
of training data can be collected relatively easily (see the cityscapes 
dataset [Cordts et al., 2016; available at https://www.cityscapes 
-dataset.com/] of traffic video frames using a car and camera to 
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record and potentially nonexpert individuals to label the objects), 
clinical data is considerably more difficult, due to ethical constraints, 
and expensive to gather as expert annotation is required. Datasets 
available in the public domain such as BBBC (Ljosa et al., 2012) at 
https://data.broadinstitute.org/bbbc/, TNBC (Naylor et al., 2017, 
2019) or TCGA (Cancer Genome Atlas Research Network, 2008; 
Kumar et al., 2017), and detection challenges including ISBI (Coelho 
et al., 2009), Kaggle (https://www.kaggle.com/, e.g., Data Science 
Bowl 2018; see at https://www.kaggle.com/c/data-science-bowl 
-2018), ImageNet (Russakovsky et al., 2015), etc., contribute to the 
development of genuinely useful DL methods; however, most of 
them lack heterogeneity of the covered domains and are limited in 
data size. Even combining them one could not possibly prepare 
their network/method to generalize well (enough) on unseen do-
mains that vastly differ from the pool they covered. On the contrary, 
such an adaptation ability can be achieved if the target domain is 
represented in the training data, as proposed in Hollandi et al., 
2020, where synthetic training examples are generated automati-
cally in the target domain via image style transfer.

Eventually, similar DL approaches’ performance can only be in-
creased over a certain level if we provide more training examples. 
The proposed software tool was created for this purpose: the expert 
can more quickly and easily create a new annotated dataset in their 
desired domain and feed the examples to DL methods with ease. 
The user-friendly functions included in the plugin help organize data 
and support annotation, for example, multiple annotation types, ed-
iting, classes, etc. Additionally, a batch exporter is provided offering 
different export formats matching typical DL models’; supported an-
notation and export types are visualized in Figure 1; open-source 
code is available at https://github.com/spreka/annotatorj under 
GNU GPLv3 license.

We implemented the tool as an ImageJ (Abramoff et al., 2004, 
Schneider et al., 2012) plugin because ImageJ is frequently used by 
bioimage analysts, providing a familiar environment for users. While 
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FIGURE 1: Annotation types. The top row displays our supported types of annotation: instance, 
semantic, and bounding box (noted as “bbox” in the figure) based on the same objects of 
interest, in this case nuclei, shown in red. Instances mark the object contours, semantic overlay 
shows the regions (area) covered, while bounding boxes are the smallest enclosing rectangles 
around the object borders. Export options are shown in the bottom row: multilabel, binary, 
multilayer images, and coordinates in a text file. Lines mark the supported export options for 
each annotation type by colors: orange for instance, green for semantic, and blue for bounding 
box. Dashed lines indicate additional export options for semantics that should be used carefully.

other software also provide a means to sup-
port annotation, for example, by machine 
learning–based pixel classification (see a 
detailed comparison in Materials and 
Methods), AnnotatorJ is a lightweight, free, 
open-source, cross-platform alternative. It 
can be easily installed via its ImageJ update 
site at https://sites.imagej.net/Spreka/ or 
run as a standalone ImageJ instance con-
taining the plugin.

In AnnotatorJ we initialize annotations 
with DL presegmentation using U-Net to 
suggest contours from as little as a quickly 
drawn line over the object (see Supplemen-
tal Material and Figure 2). U-Net predicts 
pixels belonging to the target class with the 
highest probability within a small bounding 
box (a rectangle) around the initially drawn 
contour; then a fine approximation of the 
true object boundary is calculated from 
connected pixels; this is referred to as the 
suggested contour. The user then manually 
refines the contour to create a pixel-perfect 
annotation of the object.

RESULTS AND DISCUSSION
Performance evaluation
We quantitatively evaluated annotation per-

formance and speed in AnnotatorJ (see Figures 3 and 4) with the 
help of three annotators who had experience in cellular compartment 
annotation. Both annotation accuracy and time were measured on 
the same two test sets: a nucleus and a cytoplasm image set (see also 
Supplemental Figure S1 and Supplemental Material). Both test sets 
contained images of various experimental conditions, including fluo-
rescently labeled and brightfield-stained samples, tissue section, and 
cell culture images. We compared the effectiveness of our plugin 
using Contour assist mode to only allowing the use of Automatic 
adding. Even though the latter is also a functionality of AnnotatorJ, it 
ensured that the measured annotation times correspond to a single 
object each. Without this option the user must press the key “t” after 
every contour drawn to add it to the region of interest (ROI) list, which 
can be unintendedly missed, increasing its time as the same contour 
must be drawn again.

For the annotation time test presented in Figure 3 we measured 
the time passed between adding new objects to the annotated ob-
ject set in ROI Manager for each object, then averaged the times for 
each image and each annotator, respectively. Time was measured in 
the Java implementation of the plugin in milliseconds. Figures 3 and 
4 show SEM error bars for each mean measurement (see Supple-
mental Material for details).

In the case of annotating cell nuclei, results confirm that hand-
annotation tasks can be significantly accelerated using our tool. 
Each of the three annotators were faster by using Contour assist; 
two of them nearly double their speed.

To ensure efficient usage of our plugin in annotation assistance, 
we also evaluated the accuracies achieved in each test case by cal-
culating mean intersection over union (IoU) scores of the annota-
tions as segmentations compared with ground truth masks previ-
ously created by different expert annotators. We used the mean IoU 
score defined in the Data Science Bowl 2018 competition (https://
www.kaggle.com/c/data-science-bowl-2018/overview/evaluation) 
and in Hollandi et al., 2020:
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FIGURE 2: Contour assist mode of AnnotatorJ. The blocks show the order of steps; the given tool needed is 
automatically selected. User interactions are marked with orange arrows, and automatic steps with blue. 1) Initialize the 
contour with a lazily drawn line; 2) the suggested contour appears (a window is shown until processing completes), 
brush selection tool is selected automatically; 3) refine the contour as needed; 4) accept it by pressing the key “q” or 
reject with “Ctrl” + “delete.” Accepting adds the ROI to ROI Manager with a numbered label. See also Supplemental 
Material for a demo video (figure2.mov).
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IoU determines the overlapping pixels of 
the segmented mask with the ground truth 
mask (intersection) compared with their 
union. The IoU score is calculated at 10 dif-
ferent thresholds from 0.5 to 0.95 with 0.05 
steps; at each threshold true positive (TP), 
false positive (FP), and false negative (FN) 
objects are counted. An object is consid-
ered TP if its IoU is greater than the given 
threshold t. IoU scores calculated at all 10 
thresholds were finally averaged to yield a 
single IoU score for a given image in the test 
set.

An arbitrarily small ε = 10–40 value was 
added to the denominators for numerical 
stability. Equation 1 is a modified version of 
mean average precision (mAP) typically 
used to describe the accuracy of instance 
segmentation approaches. Precision is for-
mulated as

t
t

t t
precision

TP FP
( ) ( )

( ) ( )=
+ + ε
TP

 (2)

Nucleus and cytoplasm image segmen-
tation accuracies were averaged over the 
test sets, respectively. We compared our 
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annotators using and not using Contour assist mode (Figure 4). The 
results show greater interexpert than intraexpert differences, allow-
ing us to conclude that the annotations created in AnnototarJ are 
nearly as accurate as freehand annotations.

Export evaluation
As the training data annotation process for deep learning applica-
tions requires the annotated objects to be exported in a manner that 
DL models can load them, which typically covers the four types of 
export options offered in AnnotatorJExporter, it is also important to 
investigate the efficiency of export. We measured export times simi-
larly to annotation times. For the baseline results, each object defined 
by their ROI was copied to a new empty image, then filled and saved 
to create a segmentation mask image file. Exportation from Annota-
torJExporter was significantly faster and only required a few clicks: it 
took four orders of magnitude less time to export the annotations 
(∼60 ms). Export times reported correspond to a randomly selected 
expert so that computer hardware specifications remain the same.

Comparison to other tools and software packages
The desire to collect annotated datasets has arisen with the growing 
popularity and availability of application-specific DL methods. Ob-
ject classification on natural images (photos) and face recognition 
are frequently used examples of such applications in computer vi-
sion. We discuss some of the available software tools created for 
image annotation tasks and compare their feature scope in the fol-
lowing table (Table 1; see also Supplemental Table S1) and in the 
Supplemental Material.

We collected our list of methods to compare following Mori-
kawa, 2019 and “The best image annotation platforms”, 2018. 
While there certainly is a considerable amount of annotation tools 
for object detection purposes, most of them are not open source. 
We included Lionbridge.AI (https://lionbridge.ai/services/image 
-annotation/) and Hive (https://thehive.ai/), two service-based solu-
tions, because of their wide functionality and artificial intelligence 
support. Both of them work in a project-management way and out-
source the annotation task to enable fast and accurate results. Their 

main application spectra cover more general object detection tasks 
like classification of traffic video frames. LabelImg (https://github 
.com/tzutalin/labelImg), on the other hand, as well as the following 
tools, is open source but offers a narrower range of annotation op-
tions and lacks machine learning support making it a lightweight but 
free alternative. VGG Image Annotator (Dutta and Zisserman, 2019) 
comes on a web-based platform, therefore making it very easy for 
the user to become familiarized with the software. It enables multi-
ple types of annotation with class definition. Diffgram (https://
diffgram.com/) is available both online and as a locally installable 
version (Python) and adds DL support which speeds up the annota-
tion process significantly; that is, provided the intended object 
classes are already trained and the DL predictions only need minor 
edit. A similar, also web-based approach is provided by supervise.ly 
(https://supervise.ly/; see the Supplemental Material), which is free 
for research purposes. Even though web-hosted services offer a con-
venient solution for training new models (if supported), handling sen-
sitive clinical data may be problematic. Hence, locally installable 
software is more desirable in biological and medical applications. A 
software closer to the bioimage analyst community is CytoMine 
(Marée et al., 2016; Rubens et al., 2019), a more general image pro-
cessing tool with a lot of annotation options that also provides DL 
support and has a web interface. SlideRunner (Aubreville et al., 2018) 
was created for large tissue section (slide) annotation specifically, but 
similar to others it does not integrate machine learning methods to 
help annotation and rather focuses on the classification task.

AnnotatorJ, on the other hand, as an ImageJ (Fiji) plugin should 
provide a familiar environment for bioimage annotators to work in. 
It offers all the functionality available in similar tools (such as differ-
ent annotation options: bounding box, polygon, freehand drawing, 
semantic segmentation, and editing them) while it also incorporates 
support for a popular DL model, U-Net. Furthermore, any user-
trained Keras model can be loaded into the plugin with ease 
because of the DL4J framework, extending its use cases to general 
object annotation tasks (see Supplemental Figure S2 and Supple-
mental Material). Due to its open-source implementation, the users 
can modify or extend the plugin to even better fit their needs. 
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Additionally, as an ImageJ plugin it requires no software installation, 
can be downloaded inside ImageJ/Fiji (via its update site, https://
sites.imagej.net/Spreka/), or run as a standalone ImageJ instance 
with this plugin.

We also briefly discuss ilastik (Sommer et al., 2011; Berg et al., 
2019) and Suite2p (Pachitariu et al., 2017) in the Supplemental Ma-
terial because they are not primarily intended for annotation pur-
poses. Two ImageJ plugins that offer manual annotation and ma-
chine learning–generated outputs, Trainable Weka Segmentation 
(Arganda-Carreras et al., 2017) and LabKit (Arzt, 2017), are also de-
tailed in the Supplemental Material.

We presented an ImageJ plugin, AnnotatorJ, for convenient and 
fast annotation and labeling of objects on digital images. Multiple 
export options are also offered in the plugin.

We tested the efficiency of our plugin with three experts on two 
test sets comprising nucleus and cytoplasm images. We found that 
our plugin accelerates the hand-annotation process on average and 
offers up to four orders of magnitude faster export. By integrating 
the DL4J Java framework for U-Net contour suggestion in Contour 
assist mode any class of object can be annotated easily: the users 
can load their own custom models for the target class.

MATERIALS AND METHODS
Motivation
We propose AnnotatorJ, an ImageJ (Abramoff et al., 2004, Schnei-
der et al., 2012) plugin for the annotation and export of cellular 
compartments that can be used to boost DL models’ performance. 
The plugin is mainly intended for bioimage annotation but could 
possibly be used to annotate any type of object on images (see 
Supplemental Figure S2 for a general example). During develop-
ment we kept in mind that the intended user should be able to get 
comfortable with the software very quickly and quicken the other-
wise truly time-consuming and exhausting process of manually an-
notating single cells or their compartments (such as individual nucle-
oli, lipid droplets, nucleus, or cytoplasm).

The performance of DL segmentation methods is significantly 
influenced by both the training data size and its quality. Should we 
feed automatically segmented objects to the network, errors pres-
ent in the original data will be propagated through the network dur-
ing training and bias the performance, hence such training data 
should always be avoided. Hand-annotated and curated data, how-
ever, will minimize the initial error boosting the expected perfor-
mance increase on the target domain to which the annotated data 
belongs. NucleAIzer (Hollandi et al., 2020) showed an increase in 
nucleus segmentation accuracy when a DL model was trained on 
synthetic images generated from ground truth annotations instead 
of presegmented masks.

Features
AnnotatorJ helps organize the input and output files by automati-
cally creating folders and matching file names to the selected type 
and class of annotation. Currently, the supported annotation types 
are 1) instance, 2) semantic, and 3) bounding box (see Figure 1). Each 
of these are typical inputs of DL networks; instance annotation pro-
vides individual objects separated by their boundaries (useful in the 
case of, e.g., clumped cells of cancerous regions) and can be used to 
provide training data for instance segmentation networks such as 
Mask R-CNN (He et al., 2017). Semantic annotation means fore-
ground–background separation of the image without distinguishing 
individual objects (foreground); a typical architecture using such seg-
mentations is U-Net (Ronneberger et al., 2015). And finally, bound-
ing box annotation is done by identifying the object’s bounding Fe
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rectangle, and is generally used in object detection networks (like 
YOLO [Redmon et al., 2016] or R-CNN [Girshick et al., 2014]).

Semantic annotation is done by painting areas on the image 
overlay. All necessary tools to operate a given function of the plugin 
are selected automatically. Contour or overlay colors can be se-
lected from the plugin window. For a detailed description and user 
guide please see the documentation of the tool (available at https://
github.com/spreka/annotatorj repository).

Annotations can be saved to default or user-defined “classes” 
corresponding to biological phenotypes (e.g., normal or cancerous) 
or object classes—used as in DL terminology (such as person, chair, 
bicycle, etc.), and later exported in a batch by class. Phenotypic dif-
ferentiation of objects can be supported by loading a previously 
annotated class’s objects for comparison as overlay to the image 
and toggling their appearance by a checkbox.

We use the default ImageJ ROI Manager to handle instance an-
notations as individual objects. Annotated objects can be added to 
the ROI list automatically (without the bound keystroke “t” as de-
fined by ROI Manager) when the user releases the mouse button 
used to draw the contour by checking its option in the main window 
of the plugin. This ensures that no annotation drawn is missing from 
the ROI list.

Contour editing is also possible in our plugin using “Edit mode” 
(by selecting its checkbox) in which the user can select any already 
annotated object on the image by clicking on it, then proceed to 
edit the contour and either apply modifications with the shortcut 
“Ctrl” + “q,” discard them with “escape,” or delete the contour with 
“Ctrl” + “delete.” The given object selected for edit is highlighted 
in inverse contour color.

Object-based classification is also possible in “Class mode” (via 
its checkbox): similarly to “Edit mode,” ROIs can be assigned to a 
class by clicking on them on the image which will also update the 
selected ROI’s contour to the current class’s color. New classes can 
be added and removed, and their class color can be changed. A 
default class can be set for all unassigned objects on the image. 
Upon export (using either the quick export button “[^]” in the main 
window or the exporter plugin) masks are saved by classes.

In the options (button “…” in the main window) the user can 
select to use either U-Net or a classical region-growing method to 
initialize the contour around the object marked. Currently only in-
stance annotation can be assisted.

Contour suggestion using U-Net
Our annotation helper feature “Contour assist” (see Figure 2) allows 
the user to work on initialized object boundaries by roughly marking 
an object’s location on the image which is converted to a well-de-
fined object contour via weighted thresholding after a U-Net (Ron-
neberger et al., 2015) model trained on nucleus or other compart-
ment data predicts the region covered by the object. We refer to 
this as the suggested contour and expect the user to refine the 
boundaries to match the object border precisely. The suggested 
contour can be further optimized by applying active contour (AC; 
Kass et al., 1988) to it. We aim to avoid fully automatic annotation 
(as previously argued) by only enabling one object suggestion at a 
time and requiring manual interaction to either refine, accept, or 
reject the suggested contour. These operations are bound to key-
board shortcuts for convenience (see Figure 2). When using the 
Contour assist function automatic adding of objects is not available 
to encourage the user to manually validate and correct the sug-
gested contour as needed.

In Figure 2 we demonstrate Contour assist using a U-Net model 
trained on versatile microscopy images of nuclei in Keras and on a 

fluorescent microscopy image of a cell culture where the target ob-
jects, nuclei, are labeled with DAPI (in blue). This model is provided 
at https://github.com/spreka/annotatorj/releases/tag/v0.0.2-model 
in the open-source code repository of the plugin.

Contour suggestions can be efficiently used for proper initializa-
tion of object annotation, saving valuable time for the expert an-
notator by suggesting a nearly perfect object contour that only 
needs refinement (as shown in Figure 2). Using a U-Net model ac-
curate enough for the target object class, the expert can focus on 
those image regions where the model is rather uncertain (e.g., 
around the edges of an object or the separating line between adja-
cent objects) and fine-tune the contour accurately while sparing 
considerable effort on more obvious regions (like an isolated object 
on simple background) by accepting the suggested contour after 
marginal correction.

The framework of the chosen U-Net implementation, DL4J 
(available at http://deeplearning4j.org/ or https://github.com/
eclipse/deeplearning4j), supports Keras model import, hence cus-
tom, application-specific models can be loaded in the plugin easily 
by either training them in DL4J (Java) or Python (Keras) and saving 
the trained weights and model configuration in .h5 and .json files. 
This vastly extends the possible fields of application for the plugin 
to general object detection or segmentation tasks (see Supplemen-
tal Material and Supplemental Figures S2 and S3).

Exporter
The annotation tool is supplemented by an exporter, AnnotatorJ-
Exporter plugin, also available in the package. It was optimized for 
the batch export of annotations created by our annotation tool. 
For consistency, one class of objects can be exported at a time. 
We offer four export options: 1) multilabeled, 2) multilayered, 3) 
semantic images, and 4) coordinates (see Figure 1). Instance an-
notations are typically expected to be exported as multilabeled 
(instance-aware) or multilayered (stack) grayscale images, the lat-
ter of which is useful for handling overlapping objects such as cy-
toplasms in cell culture images. Semantic images are binary fore-
ground–background images of the target objects while coordinates 
(top-left corner [x,y] of the bounding rectangle appended by its 
width and height in pixels) can be useful training data for object 
detection applications including astrocyte localization (Suley-
manova et al., 2018) or in a broader aspect, face detection (Taig-
man et al., 2014). All export options are supported for semantic 
annotation; however, we note that in instance-aware options (mul-
tilabeled or multilayered mask and coordinates) only such objects 
are distinguished whose contours do not touch on the annotation 
image.

OpSeF compatibility
OpSeF (Open Segmentation Framework; Rasse et al., 2020) is an 
interactive python notebook-based framework (available at https://
github.com/trasse/OpSeF-IV) that allows users to easily try different 
DL segmentation methods in customizable pipelines. We extended 
AnnotatorJ to support the data structure and format used in OpSeF 
to allow seamless integration in these pipelines, so users can manu-
ally modify, create, or classify objects found by OpSeF in Annota-
torJ, then export the results in a compatible format for further use in 
the former software. A user guide is provided in the documentation 
of https://github.com/trasse/OpSeF-IV.

ImageJ
ImageJ (or Fiji: Fiji is just ImageJ; Schindelin et al., 2012) is an open-
source, cross-platform image analysis software tool in Java that has 
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been successfully applied in numerous bioimage analysis tasks (seg-
mentation [Legland et al., 2016; Arganda-Carreras et al., 2017], par-
ticle analysis [Abramoff et al. 2004], etc.) and is supported by a 
broad range of community, comprising of biomage analyst end us-
ers and developers as well. It provides a convenient framework for 
new developers to create their custom plugins and share them with 
the community. Many typical image analysis pipelines have already 
been implemented as a plugin, for example, U-Net segmentation 
plugin (Falk et al., 2019) or StarDist segmentation plugin (Schmidt 
et al., 2018).

U-Net implementation
We used the DL4J (http://deeplearning4j.org/) implementation of 
U-Net in Java. DL4J enables building and training custom DL net-
works, preparing input data for efficient handling and supports both 
GPU and CPU computation throughout its ND4J library.

The architecture of U-Net was first developed by Ronneberger 
et al. (Ronneberger et al., 2015) and was designed to learn medical 
image segmentation on a small training set when a limited amount 
of labeled data is available, which is often the case in biological 
contexts. To handle touching objects as often is the case in nuclei 
segmentation, it uses a weighted cross entropy loss function to en-
hance the object-separating background pixels.

Region growing
A classical image processing algorithm, region growing (Haralick 
and Shapiro, 1985; Adams and Bischof, 1994) starts from initial seed 
points or objects and expands the regions towards the object 
boundaries based on the intensity changes on the image and con-
straints on distance or shape. We used our own implementation of 
this algorithm.
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Abstract 

Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient 

and powerful way of studying cell biology, and requires computational methods for transforming 

images into quantitative data that highlights phenotypic outcomes. Here, we present an 

optimized strategy for learning representations of treatment effects from high-throughput 

imaging data, which follows a causal framework for interpreting results and guiding performance 

improvements. We use weakly supervised learning (WSL) for modeling associations between 

images and treatments, and show that it encodes both confounding factors and phenotypic 

features in the learned representation. To facilitate their separation, we constructed a large 

training dataset with Cell Painting images from five different sources to maximize experimental 

diversity, following insights from our causal analysis. Training a WSL model with this dataset 

successfully improves downstream performance, and produces a reusable convolutional 

network for image-based profiling, which we call Cell Painting CNN. We conducted a 

comprehensive evaluation of our strategy on three publicly available Cell Painting datasets, 

discovering that representations obtained by the Cell Painting CNN can improve performance in 

downstream analysis up to 25% with respect to classical features, while also being more 

computationally efficient.  
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Introduction 

High-throughput imaging and automated image analysis are powerful tools for studying the 

inner workings of cells under experimental interventions. In particular, the Cell Painting assay 1,2 

has been adopted both by academic and industrial laboratories to evaluate how perturbations 

alter overall cell biology. It has been successfully used for studying compound libraries 3–5, 

predicting phenotypic activity 6–9, and profiling human disease 10,11, among many others. To 

reveal the phenotypic outcome of treatments, image-based profiling transforms microscopy 

images into rich high-dimensional data using morphological feature extraction 12. Cell Painting 

datasets with thousands of experimental interventions provide a unique opportunity to use 

machine learning for obtaining causal representations of the phenotypic outcomes of 

treatments.  

 

Improved feature representations of cellular morphology have the potential to increase the 

sensitivity and robustness of image-based profiling to support a wide range of discovery 

applications 13,14. Feature extraction has been traditionally approached with classical image 

processing 15,16, which is based on manually engineered features that may not capture all the 

relevant phenotypic variation. Several studies have used convolutional neural networks (CNNs) 

pre-trained on natural images 17–19, which are optimized to capture variation of macroscopic 

objects instead of images of cells. To recover causal representations of treatment effects, 

feature representations need to be sensitive to subtle changes in morphology. However, 

classical features and pre-trained networks may not have sufficient expressive power to realize 

that potential. Representation learning has been used as a tool to learn domain-specific features 

from cellular images in a data-driven way 4,20–23, but it also brings unique challenges to avoid 

being dominated by confounding factors 24,25.  

 

In this paper, we investigate the problem of learning representations for image-based profiling 

with Cell Painting. Our goal is to identify an optimal strategy for learning cellular features, and 

then use it for training models that recover improved representations of the phenotypic 

outcomes of treatments. We use a causal framework to reason about the challenges of learning 

representations of cell morphology (e.g. confounding factors), which naturally fits in the context 

of perturbation experiments 26,27, and serves as a tool to optimize the workflow and yield better 

performance (Figure 1). In addition, we adopted a quantitative evaluation of the impact of 

feature representations in a biological downstream task, to guide the search for an optimized 

workflow. The evaluation is based on querying a reference collection of treatments to find 

biological matches in a perturbation experiment. In each evaluation, cell morphology features 

change to compare different strategies, while the rest of the image-based profiling workflow 

remains constant. Performance is measured using metrics for the quality of a ranked list of 

results for each query (Figure 1H). With this evaluation framework, we conduct an extensive 

analysis on three publicly available Cell Painting datasets. 

 

Within the proposed causal framework, weakly supervised learning (WSL) 20 is a powerful 

approach to model the associations between images and treatments, and we found that it 

captures rich cellular features that simultaneously encode confounding factors and phenotypic 
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outcomes as latent variables. Our analysis indicates that to disentangle them and recover the 

causal representations of the true outcome of perturbations, it is important to train models with 

highly diverse data for improving the ability of models to learn the difference between the two 

types of variation. Therefore, we constructed a new dataset that combines variation from five 

different sources to maximize the diversity of treatments and confounding factors (Figure 1F). 

As a result, we successfully trained a new, reusable model: the Cell Painting CNN (Figure 1G), 

which yields better performance in the evaluated benchmarks and displays sufficient 

generalization ability to profile other datasets effectively. 

Results 

Recovering features of the causal effects of treatments 

We use a causal model as a conceptual framework to reason and analyze the results of 

representation learning strategies. Figure 1B presents the causal graph with four variables: 

interventions (treatments T), observations (images O), outcomes (phenotypes Y) and 

confounders (e.g. batches C). For simplicity, we assume that there is a single context (X, not in 

the diagram) for experimental treatments, which are clonal cells of an isogenic cell line; 

perturbation experiments with multiple cell lines may need a different model. Some variables are 

observables (shaded circles), while others represent latent variables (empty circles). This graph 

is a model of the causal assumptions we make for representation learning and for interpreting 

the results. 

 

We are interested in estimating a continuous, multidimensional representation of treatment 

outcomes (Y), which can later be used in downstream analysis tasks. A major issue for learning 

a causal representation of the phenotypic outcome of treatments is technical variation (C), 

which groups a set of factors introducing unwanted variation in images. Note that images, 

phenotypes and treatments respond to changes in technical variation. Images are impacted by 

artifacts in image acquisition, including microscope settings and assay preparation. Treatments 

are impacted by plate map designs that are not fully randomized and usually group treatments 

in specific plate positions. Confounders also impact phenotypes due to variations in cell density 

and other conditions that make cells grow and respond differently.  

 

The main direct cause of phenotypic changes in cells in a perturbation experiment is the 

treatment. We observe treatment outcomes indirectly through imaging assays, and thus, we 

need image analysis to recover the phenotypic effect and to separate it from unwanted 

variation. A representation of the phenotypic effect can be obtained with the workflow depicted 

in Figures 1C-E, which illustrates three major steps: 1) modeling the correlations between 

images and treatments using a CNN trained with weakly supervised learning (WSL), 2) using 

batch correction to learn a transformation of the latent representation of images obtained from 

intermediate layers of the CNN, and 3) generating representations of treatment effects in 

cellular morphology for downstream analysis. 
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We use WSL 20 (Figure 1C) for obtaining representations of the phenotypic outcome of 

treatments by training a classifier to distinguish all treatments from each other. This approach 

models the relationship between observed images and treatments using an EfficientNet 28 with a 

classification loss (Methods), and makes the following assumptions: 1) if a treatment has an 

observable effect then it can be seen in images, and therefore, training a CNN helps identify 

visual features that make it detectably different from all other treatments. 2) Treatment labels in 

the classification task are weak labels because they are not the final outcome of interest, they 

do not reflect expert biological ground truth, and there is no certainty that all treatments produce 

a phenotypic outcome, nor that they produce a different phenotypic outcome from each other. 3) 

Intermediate layers of the CNN trained with treatment labels capture all visual variation of 

images as latent variables, including confounders and causal phenotypic features.  

 

To recover the phenotypic features of treatments from the latent representations of the weakly 

supervised CNN, we employ a batch correction model inspired by the Typical Variation 

Normalization (TVN) technique 18. This transform aims to reduce the variation associated with 

confounders and amplify features caused by phenotypic outcomes (Figure 1D). The main idea 

of this approach is to use negative control samples as a model of unwanted variation under the 

assumption that their phenotypic features should be neutral, and therefore differences in control 

images reflect mainly confounding factors. We follow this assumption and use a sphering 

transformation (Methods) to learn a function that projects latent features from the CNN to a 

corrected feature space that preserves the phenotypic features caused by treatments. 

 

As a result of learning latent features with WSL and correcting for unwanted variation, the new 

feature space more cleanly highlights feature representations of treatment effects. These 

representations are continuous multidimensional estimators of the true phenotypic outcome of 

treatments in the perturbation experiment, and because of their unbiased design can be used to 

approach various questions and downstream analysis tasks, such as predicting compound 

bioactivity or inferring the impact of cancer variants (Figure 1E). In this paper, we conduct a 

quantitative evaluation of these representations in a biological matching task (genetic pathway 

or MoA) using a guilt by association approach, which is a meaningful way to validate the 

biological relevance of the resulting features. 
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Figure 1. Framework for analyzing image-based profiling experiments. A) Example Cell Painting 

images from the BBBC037 dataset of control cells (empty status) and one experimental intervention (JUN 

wild-type overexpression) in the U2OS cell line. B) Causal graph of a conventional high-throughput Cell 

Painting experiment with two observables in shaded circles (treatments and images) and two latent 

variables in empty circles (phenotypes and batch effects). The arrows indicate the direction of causation. 

C) Weakly supervised learning as a strategy to model associations between images (O) and treatments 

(T) using a convolutional neural network (CNN). The CNN captures information about the latent variables 

C and Y in the causal graph because both are intermediate nodes in the paths connecting images and 

treatments. D) Illustration of the sphering batch-correction method where control samples are a model of 

unwanted variation (top). After sphering, the biases of unwanted variation in control samples is reduced 

(bottom). E) The goal of image-based profiling is to recover the outcome of treatments by estimating a 

representation of the resulting phenotype, free from unwanted confounding effects. F) Statistics of the 

Combined Cell Painting dataset created to train a generalist model, which brings 488 treatments from 5 

different publicly available sources (Methods): LINCS, LUAD, and the three datasets evaluated here; the 

Venn diagrams illustrate the common treatments among them. There are two types of treatments 

(compounds and gene overexpression), two types of controls (empty and DMSO), two cell lines (A549 

and U2OS), for a total of 8.3 million single cells from 232 plates in the resulting training resource. G) 

Illustration of the Cell Painting CNN, an EfficientNet model trained on the dataset in F to extract features 

from single cells. H) The evaluation of performance is based on nearest neighbor queries performed in 

the space of phenotype representations to match treatments with the same phenotypic outcome. 

Performance is measured with two metrics: folds of enrichment and mean average precision (Methods). 

Representations learned by the Cell Painting CNN encode 

improved biological features 

Figure 2C shows a UMAP projection 29 of the feature space obtained using our Cell Painting 

CNN for the three datasets evaluated in this study. From a qualitative perspective, the UMAP 

plot of the BBBC037 dataset (a gene overexpression screen) shows groups of treatments 

clustered according to their corresponding genetic pathway, and recapitulates previous 

observations of known biology 30. The BBBC022 31 and BBBC036 32 datasets (compound 
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screens) likewise show many treatments grouped together according to their mechanism of 

action (MoA).  

 

For quantitative comparison of multiple feature extraction strategies, we simulate a user 

searching a reference library to find a “match” to their query treatment of interest. We used a 

leave-one-treatment-out strategy for all annotated treatments in the three benchmark datasets, 

following previous research in the field 18,33,34. In all cases, queries and reference items are 

aggregated treatment-level profiles (Methods) matched using the cosine similarity (Methods). 

The result of searching the library with one treatment query is a ranked list of treatments in 

descending order of relevance. A result in the ranked list is considered a positive hit if it shares 

at least one biological annotation in common with the query; otherwise it is a negative result 

(Figure 1H). Biological annotations are genetic pathways for overexpression treatments in 

BBBC037 and MoAs for compound treatments in the BBBC022 and BBBC036 datasets. Then, 

we proceed to quantify performance using the folds of enrichment and mean average precision 

metrics (see Methods).  

 

The generalized Cell Painting CNN model, trained with WSL on the combined set, performs 

better than baseline approaches in the task of biologically matching queries against a reference 

annotated library of treatments, across all three benchmarks (Figure 2B). We consider two 

baseline strategies in our evaluation: 1) creating image-based profiles with classical features 

obtained with custom CellProfiler pipelines (Methods), and 2) computing profiles with a CNN 

pre-trained on ImageNet, a dataset of natural images in RGB (Methods). Intuitively, we expect 

feature representations trained on Cell Painting images to perform better at the matching task 

than the baselines. In the case of CellProfiler, manually engineered features may not capture all 

the relevant phenotypic variation, and in the case of ImageNet pre-trained networks, they are 

optimized for macroscopic objects in 3-channel natural images instead of 5-channel 

fluorescence images of cells.  

 

We found that ImageNet features showed variable performance compared to CellProfiler 

features (Figure 2B), sometimes yielding similar performance (BBBC022), sometimes lower 

performance (BBBC037) and sometimes slightly better performance (BBBC036). The three 

benchmarks used in this study are larger scale and more challenging than datasets used in 

previous studies 17,18 where it was observed that ImageNet features are typically more powerful 

than classical features. Our results indicate that, in large scale perturbation experiments with 

Cell Painting, ImageNet features do not conclusively capture more cellular-specific variation 

than manually engineered features using classical image processing.  

 

Finally, we also assessed models trained on each dataset alone, rather than our generalized 

Cell Painting CNN model trained on various datasets. We found that narrowing the training to 

only the dataset at hand typically diminished performance as compared to the generalized 

model (green dots in Figure 2B), with one exception, BBBC036, where they had comparable 

performance. This brings us to the question of what is necessary to train a successful Cell 

Painting model, which we explore in the next sections.  
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Figure 2. Quantitative evaluation of feature representations of treatment effects. The main 

evaluation task is biological matching, which simulates queries with a treatment and aims to find other 

treatments that match their phenotypic outcome (e.g. same mechanism of action or same genetic 

pathway). A) Table of the three benchmark datasets used in this study. The quantitative results for each 

dataset are the mean across the queries listed in this table. B) Performance of feature representations for 

the three evaluated datasets according to two metrics: Mean Average Precision (MAP) in the x axis and 

Folds of Enrichment in the y axis (see Methods). Each point indicates the mean of these metrics over all 

queries using the following feature representations: CellProfiler (pink), a CNN pre-trained on ImageNet 

(yellow), a CNN trained on the combined set of Cell Painting images (cyan, Figure 1F), and a CNN 

trained on Cell Painting images from the same dataset (green). CNNs trained on Cell Painting images 

have two results depending on the training-validation strategy (see Figure 3 for more details): leave plates 

out (diamonds) or leave cells out (circles). C) UMAP visualizations of the phenotypic profiles of treatments 

recovered with the Cell Painting CNN after batch correction for the three datasets evaluated in this work. 

The plot includes a projection of well-level profiles (gray points), control wells (red points), and 

aggregated treatment-level profiles of treatments (blue points). Dashed lines indicate clusters of 

treatment-level profiles where all or the majority of the points share the same biological annotation.  

Weakly supervised learning captures latent representations of 

confounders and phenotypic outcomes of treatments 

Since we observed that models trained on images from each dataset alone do not succeed at 

improving performance with respect to baselines (green points in Figure 2B) we sought to 

determine whether WSL models are capturing more information from confounding factors than 

phenotypic effects (variables C and Y in the causal graph, respectively). WSL models are 

trained with a classification loss to detect the treatment in images of single cells (Figure 1C, 

Methods), which is a pretext task to learn representations. Given that we always know the 

treatment applied to cells in a well, we can quantify the success rate of such classifiers on this 
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pretext task. We conducted single-cell classification experiments with WSL using two validation 

schemes, herein called leave-cells-out and leave-plates-out validation (Figure 3A), which aim to 

reveal how sensitive WSL is to biological and technical variation. 

 

The leave-cells-out validation regime uses single cells from all plates and treatments in the 

experiment for training, and leaves a random fraction out for validation. By doing so, trained 

CNNs have the opportunity to observe the whole distribution of phenotypic features (all 

treatments) as well as the whole distribution of confounding factors (all batches or plates). In 

contrast, the leave-plates-out validation regime separates different technical replicates (plates) 

for training and validation, resulting in a model that still observes the whole distribution of 

treatments, but only partially sees the distribution of confounding factors.  

 

The results in Figure 3B-D show a stark contrast in performance between the two validation 

strategies. When leaving cells out (results in blue), a CNN can accurately learn to classify single 

cells in the training and validation sets with only a minor difference in performance (Figure 3B); 

when leaving plates out (results in orange), the CNN learns to classify the training set well but 

fails to generalize correctly to the validation set, resulting in a major gap according to the 

learning curves (Figure 3B). The generalization ability of the two models is further highlighted in 

the validation results in Figures 3C,D, which present the distribution of precision, recall and F1-

scores. 

 

Importantly, while these WSL models trained on the same datasets alone exhibit a major 

difference in performance in the pretext classification task, their performance in the downstream 

analysis task is almost the same (green circles vs green diamonds in Figure 2B). In addition, 

WSL models trained on the full distribution of treatments usually fail to improve performance 

with respect to baseline approaches (green points in Figure 2B, except BBBC036). This 

dichotomy between performance in the pretext task and the downstream task reveals that WSL 

models leverage any way in which the relationship between images and treatments can be 

explained, including spurious correlations. In fact, the validation results of leaving-cells-out are 

an overly optimistic estimate of how well a CNN can recognize treatments in single cells, 

because the models leverage batch effects to make the correct connection. On the other hand, 

the results of leaving-plates-out are an overly pessimistic estimate because the CNN fails to 

generalize to unseen replicates with unknown confounding variation. The true estimate of 

performance in the pretext classification task is likely to be in the middle when accounting for 

confounding factors. This is indeed what we observe in the downstream analysis results: after 

batch correction, the representations of models trained with leave-cells-out and leave-plates-out 

come closer together in the biological matching task (green circles vs green diamonds in Figure 

2B). 
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Figure 3. Validation strategies for the single-cell classification task in weakly supervised learning. 

A) Illustration of the two strategies: leave-cells-out (in blue) uses cells from all plates in the dataset for 

training and leaves a random fraction out for validation. Leave-plates-out (in orange) uses cells from 

certain plates for training, and leaves entire plates out for validation. The difference in performance is 

primarily due to confounding factors. B) Learning curves of models trained with WSL for 30 epochs with 

all treatments from each dataset. The x-axis is the number of epochs and the y axis is the average F1-

score. The color of lines indicates the validation strategy, and the style of lines indicates training (solid) or 

validation (dashed) data. C) Precision and recall results of each treatment in the single-cell classification 

task. Each point is a treatment (negative controls are labeled in blue), and the color corresponds to the 

validation strategy. D) Distribution of F1-scores for the single-cell classification task for each treatment: 

the x axis enumerates treatments (sorted by performance according to the leave-cells-out validation 

scheme), and the y-axis is the F1-score. The first and last treatments in the x axis are labeled. 

 

Treatments with strong phenotypic effect can improve 

performance 

The WSL model depicted in Figure 1C captures direct associations between images (O) and 

treatments (T) in the causal graph, while encoding technical (C) and phenotypic (Y) variation as 

latent variables because both are valid paths to find correlations. Given that controlling the 

distribution of confounding factors does not change overall performance, in this section we 

explore the impact of controlling the distribution of phenotypic diversity. Our reasoning is that 

WSL learning favors correlations between treatments and images through the path in the causal 

graph that makes it easier to minimize the empirical error in the pretext task. Therefore, the 

variation of treatments with a weak phenotypic response is overpowered by confounding factors 

that are stronger relative to the phenotype. 
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We start by splitting treatments into two broad categories: treatments with strong phenotypic 

effect, and treatments with weak or no phenotypic effect. To measure the phenotypic strength of 

treatments we calculate the Euclidean distance between control and treatment profiles in the 

CellProfiler feature space after batch correction with a sphering transform. Then, we rank 

treatments in descending order and take a fraction of those most different from controls in the 

strong category (Methods). We interpret this procedure as a crude approximation of the average 

treatment effect (ATE), a causal parameter of intervention outcomes, because the Euclidean 

distance calculates the difference in expected values (aggregated profiles) of the outcome 

variable (phenotype) between the control and treated conditions. However, since we do not 

observe the control and treated condition in the same cells, this remains only an approximation 

of the ATE, even if the cells are isogenic clones of each other. We chose distances in the 

CellProfiler feature space as an independent prior for estimating treatment strength because 

these are non-trainable, and because in our experiments CellProfiler features exhibit more 

robustness to confounding factors (Supplementary Figure 2, and Supplementary Figure 3).  

 

Next, we evaluated the performance of WSL models trained on strong treatments only and we 

found that performance tends to improve in the downstream biological matching task with 

respect to training with the full distribution of treatments in each dataset (Supplementary Figure 

1). These results were obtained by training under a leave-plates-out validation regime, which 

also restricts the distribution of confounding factors. The trend indicates that it is possible to 

break the limitations of WSL for capturing useful associations between images and treatments 

in the latent variables without being overpowered by confounding factors. However, while the 

trend is generally positive, the results are still similar to baseline approaches, which suggests 

that training may need a higher diversity of strong treatments to reach improved performance. 

Training on highly diverse experimental conditions yields 

improved representations 

To increase the diversity of experimental conditions in the training set, we created a combined 

training resource by collecting strong treatments from five different dataset sources, including 

the three benchmarks evaluated in this work plus two additional publicly available Cell Painting 

datasets (Figure 1F, and Methods). In total, this combined set has 488 strong treatments, two 

types of negative controls, and examples from more than 200 plates, resulting in training data 

with high experimental diversity with respect to the two latent variables in the causal graph: high 

technical variation (confounders C) and high phenotypic variation through strong treatments 

(outcomes Y).  

 

Training on this combined Cell Painting dataset of strong treatments consistently improves 

performance and yields better results than the baselines in all benchmarks (cyan points in 

Figure 2B).  According to the MAP metric, a WSL model trained on the highly diverse combined 

set improves performance up to 7%, 8% and 25% relative to CellProfiler features on BBBC037, 

BBBC022 and BBBC036 respectively (difference of cyan points vs pink points in the x axis of 

Figure 2B). Similar improvements are observed in other metrics as well. Importantly, this 
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dataset allowed us to train a single model once and profile all the three benchmarks without re-

training or fine-tuning on each of them, demonstrating that the model captures features of Cell 

Painting images relevant to distinguish more effectively the variation of the two latent variables 

of the causal model.  

 

The dimensionality of the feature space of the Cell Painting CNN is also more compact than 

CellProfiler and the ImageNet CNN model (Supplementary Figure 4B), with the intermediate 

layer Conv6A of the EfficientNet B0 network being the best source of latent representations for 

downstream analysis in all of our experiments (Supplementary Figure 4D). This layer, after 

spatial average pooling, results in 672 features, compared to 1,700 of CellProfiler and 3,360 of 

CNN ImageNet (672 for each of the five imaging channels). The dimensionality of single-cell 

features has an impact on storage space, especially for large scale experiments, making the 

CNN Cell Painting an efficient choice too (Supplementary Figure 4C). 

Learned representations separate factors of variation and 

facilitate batch correction 

Batch-correction is a crucial step for image-based profiling regardless of the feature space of 

choice. We hypothesized that a rich representation might encode both confounders and 

phenotypic features in a way that facilitates separating one type of variation from the other, i.e. 

disentangles the sources of variation. To test this, we evaluated how representations respond to 

the sphering transform, a linear transformation for batch correction based on singular value 

decomposition SVD (Methods). Sphering first finds directions of maximal variance in the set of 

control samples and then reverses their importance by inverting the eigenvalues. This transform 

makes the assumption that large variation is associated with confounders and subtle variation is 

associated with phenotypes. Thus, sphering can succeed at recovering the phenotypic effects of 

treatments if the feature space separates the sources of variation in this way. 

 

The results in Figure 4B show that all the methods benefit from batch correction with the 

sphering transform, indicated by the upward trend of all curves from low performance with no 

batch correction to improved performance as batch correction increases. Downstream 

performance in the biological matching task improves by about 50% on average when 

comparing against raw features without correction. The UMAP plots in Figure 4A show the Cell 

Painting CNN feature space for well-level profiles before batch correction. When colored by 

Plate IDs, the data points are fragmented, and the density functions in the two UMAP axes 

indicate concentration of plate clusters. After sphering, the UMAP plots in Figure 4C show more 

integrated data points and better aligned density distributions of plates. The performance of the 

Cell Painting CNN in the biological matching task also improves upon the baselines (Figure 4B) 

and displays a consistent ability to facilitate batch correction in all the three datasets, unlike the 

CNN - ImageNet. 

 

The sphering transform, while effective, is still far from perfect, and further research is needed to 

better disentangle confounding from phenotypic variation, potentially using nonlinear 

transformations. 
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Figure 4. Effect of batch correction on feature representations. Batch correction is based on the 

sphering transform and applied at the well-level, before treatment-level profiling (Methods). A) UMAP 

plots of well-level profiles before batch correction for the three benchmark datasets (rows) colored by 

plate IDs (left column) and by control vs treatment status (right column). The UMAP plots display density 

functions on the x and y axes for each color group to highlight the spread and clustering patterns of data. 

B) Effect of batch correction in the biological matching task. The x axis indicates the value of the 

regularization parameter of the sphering transform (smaller parameter means more regularization), with 

no correction in the leftmost point and then in decreasing order. The y axis is Mean Average Precision in 

the biological matching task. C) UMAP plots of well-level profiles after batch correction for the three 

benchmark datasets with the same color organization as in A. 

 

Discussion 

In this study, we used three large Cell Painting benchmarks to evaluate training strategies for 

carrying out successful queries identifying matching compounds or genes using image-based 

profiling. Using a causal graph as a conceptual framework for analyzing the results, we found 

that WSL captures confounding and phenotypic variation in the latent variables. We also found 

that treatments with strong estimated average treatment effect have the potential to improve the 

quality of representations. Thus, we constructed a large training resource by combining five 

sources of Cell Painting data to maximize phenotypic and technical variation for training a 

reusable model for learning features. This model successfully improved performance in all the 

benchmarks and while also being computationally efficient. 
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The fact that the best-performing strategy involved training a single model once and profiling all 

the three benchmarks without re-training or fine-tuning has a remarkable implication: it indicates 

that generating large experimental datasets with a diversity of phenotypic impacts could be used 

to create a single model for the community that could be transformational in the same way that 

models trained on ImageNet have enabled transfer learning on natural image tasks. Private 

companies with large image sets might create and share such models. Alternatively, the 

upcoming public release of the JUMP-Cell Painting Consortium’s dataset of more than 100,000 

chemical and genetic perturbations, collected across 12 different laboratories in academia and 

industry, would be an excellent target for such an effort 35.  

 

Methods 

1. Datasets 

1.1 Benchmarks and ground truth annotations 

For this study, we employ five publicly available Cell Painting datasets: gene overexpression 

(BBBC03734 and BBBC043 11) and compound screening (BBBC022 31, BBBC036  32 and LINCS 
5). BBBC037, BBBC022 and BBBC036 are U2OS cell-line datasets and were used for training 

and evaluation of profiling, while BBBC043 and LINCS are A549 cell-line and those were only 

partially used to construct a combined Cell Painting dataset (discussed further). Compounds in 

BBBC022, BBBC036 and LINCS partially overlap. In the compound screening datasets, DMSO 

was used as a negative control, in gene overexpression datasets genes were not perturbed in the 

negative control samples. 

BBBC036 and BBBC037, BBBC022 did undergo quality control by analyzing the extracted 

features with principal component analysis. The outliers observed in the first two principal 

components were suspected to be candidates for exclusion. Those were visually inspected and 

found to be noisy or empty and not suitable for training and evaluation. With this quality control, 

two wells were removed from BBBC037 and 43 wells from BBBC022. Nothing was filtered from 

BBBC036.  

If treatment was present in multiple concentrations in BBBC022 and BBBC036, we kept only the 

maximum concentration in the dataset for further training and evaluation.   

The ground-truth annotations were reused from 34 with minor modifications (see Data Availability 

section). Only treatments with at least two replicates left after quality control are included in the 

ground-truth.  

1.2 Selection of the strong treatments 

The strongest treatments are selected using batch-corrected features obtained with CellProfiler 

(with sphering regularization parameter 1e-2) in the following way:  

For each plate: 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503783doi: bioRxiv preprint 



1. Calculate the median profile of the control subgroup of wells in the plate (median control 

profile) 

2. For each treatment, calculate Euclidean distances between the treatment well-level 

feature vector and the median control profile feature vector. 

3. Calculate Euclidean distances between the median control profile feature vector and each 

control well feature vector from the same plate. 

4. Use the distances from the previous step to calculate the mean and standard deviation. 

5. Using statistics obtained in step 4, apply Z-scoring to the distances obtained in step 2. 

 

After obtaining the Z-scores for each plate, calculate the mean Z-score for each treatment. Rank 

treatments by mean Z-score.  

1.3 Combined Cell Painting dataset 

Motivated to train robust neural network models for feature extraction and an, we decided to take 

advantage of combining five publicly available Cell Painting datasets to maximize both phenotypic 

and technical variation. Treatments for the combined Cell Painting dataset are selected using the 

approach described in the previous section.  

Technical variation is primarily encoded by control wells that are present in each plate of the 

experiment in several wells. Additionally, the negative controls are different between compound 

screening datasets and genetic perturbation datasets. To maximize the biological variation, first, 

we incorporate Cell Painting datasets of different cell-lines and also try to make an overlap of 

treatments between different cell lines to highlight the effect of the treatment. Second, we aimed 

to select the strongest phenotypes out of every dataset.  

The selection started with BBBC022 and BBBC036 datasets. We selected the top 500 strongest 

treatments according to our approach from BBBC022 and took an overlap between BBBC022 

and BBBC036, which resulted in 301 treatments. We additionally selected 50 from BBBC022 and 

62 from BBBC036. Out of those 413 treatments, 122 overlapped with the LINCS dataset. We 

additionally selected 7 random treatments from LINCS, from top 20 (by number of associated 

treatments) MoAs.   

Selection from BBBC037 and BBBC043 was similar, we selected 28 overlapping genes To 

increase overlapping we considered the selected “wildtype” genes as the same from different 

datasets, even though in BBBC037 the wildtypes were annotated to have different sub-

populations. Additionally, we selected 29 top strongest perturbations from the BBBC037 dataset 

and the top strongest perturbations 32 from BBBC043 from non-overlapping subsets. 

Negative controls from compound screening datasets and negative controls from gene 

overexpression datasets are considered as different classes in the combined dataset. Not all 

control wells were included from the LINCS dataset in the final dataset, as the control cells would 

dominate the final dataset, so we randomly sampled three control wells per plate.  

As the final step, the treatments with less than 100 cells were filtered out.  

In total the dataset contains 490 classes (488 for treatments and 2 for negative controls), 8 423 

455 individual single-cells (47% treatment and 53% control cells), the diagrams are in Figure 1C. 
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2. Profiling workflow 

2.1 Segmentation 

The cell segmentation for all evaluated (BBBC037, BBBC022 and BBBC036) datasets is 

performed with methods built in CellProfiler v2 based on Otsu thresholding 36 and propagation 

method 37 based on Voronoi diagrams 38 or watershed from 39. The segmentation is two-stepped: 

first, the images stained with Hoechst (DNA channel) were segmented using global Otsu 

thresholding. This prior information is then used in the second step: cell segmentation with the 

propagation or watershed method. The input channel for the second step depends on the dataset, 

as well as the other specific parameters of segmentation. The segmentation part of the pipelines 

is available in the published CellProfiler pipelines (see Code availability section).   

2.2 Single-cell feature extraction with CellProfiler 

Feature extraction for evaluated datasets was performed with CellProfiler 2. The feature 

extraction steps described in CellProfiler pipelines that are published together with used datasets.  

and can be grouped in several stages: 1) Data loading - load full image 2) Illumination correction 

for each channel 3) Identification of cell nuclei 4) Identification of cells using identified nuclei 4) 

Measurements: intensity, context, radial distribution, size and shape, texture 5) Export the 

features and cell outlines. Parameters of feature extraction can be found in CellProfiler pipelines 

which are available in published pipelines (see Code availability section).   

2.3 CellProfiler features 

The features of CellProfiler are designed to be human-readable and grouped into three large 

groups: “Cell”, “Cytoplasm” and “Nuclei”. Each of those feature groups has several common 

subgroups, such as shape features, intensity-based features, texture features and context 

features 12. The resulting size of a feature vector is approximately 1800.  

In this analysis, we reused well-level CellProfiler features from S3 buckets (see Data availability 

section) to generate the baseline results.  

2.4 Feature aggregation  

Profiles of single-cells are aggregated using median at field-of-view (image) level, fields-of-view 

are aggregated using mean to a well-level profile and, finally, wells are aggregated to treatment 

level profiles using mean aggregation. The feature aggregation steps are the same for CellProfiler 

and deep learning features. CellProfiler well-level features with NA values were filtered in the 

aggregation pipeline. 
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2.5 Batch correction using sphering transform 

One of the possible post-processing methods to reduce batch effects and remove other possible 

nuisance variations is Typical Variation Normalization (TVN) 18. Axes of variation are computed 

using Principal Component Analysis (PCA), then the axes with little variation are amplified and 

the importance of axes with large variation is reduced by axis normalization. We can control the 

strength of signal amplification\reduction by using a regularization parameter. The computation at 

this point involves only profiles of negative controls and as a result, we get the TVN 

transformation. Then, this transformation is applied to all well-level feature vectors in the analyzed 

dataset.  

Sphering transformation used in this paper, similarly it 𝑛 well-level profiles of negative 

controls with vector size 𝑑 as an input  𝑋𝑛×𝑑. Then covariance matrix is calculated 𝛴 =  
𝑋𝑇𝑋

𝑛
 and 

its eigendecomposition is 𝑄 = 𝑈𝛥𝑈𝑇 , where 𝛥 are eigenvalues. Then we divide the diagonal by 

the square root of eigenvalues in addition with a regularization parameter 𝜆. The final ZCA-

transformation 40 matrix is  𝑈 (𝛥 + 𝜆)−1𝑈𝑇.  

The effect of sphering and its regularization on representations and profiling performance 

is demonstrated in Figure 4. 

2.6 Similarity matching 

To assess the similarity between resulting treatment profiles cosine similarity is measured for 

each pair of treatments. Cosine similarity is one of several similarity metrics 12 in profiling and 

used in 33. 

cosine similarity =  
 𝐴 ∙  𝐵

||𝐴|| ||𝐵||  
 

3. Deep learning models 

3.1 EfficientNet 

All deep learning experiments were conducted with EfficientNet 28. We use the base model 

EfficientNet-B0 as the size of single-cell crops is only 128x128. It consists of 9 stages: input, 

seven inverted convolutional blocks from MobileNetV2 41 (with the addition of squeeze and 

excitation optimization) and final layers. The usage of convolutional blocks from MobileNetV2 in 

combination with neural architecture search gave EfficientNet an advantage in terms of 

computational efficiency and accuracy compared to ResNet50. 

EfficientNet was used in biological tasks, for instance, there is an effort to create a model, pre-

trained on cellular images called CytoImageNet 42. Pre-trained EfficientNet was used to extract 

single-cell embeddings 11 of A549 cells. EfficientNets were also used in cell classification Kaggle 

competition of Recursion Pharmaceuticals (https://www.kaggle.com/competitions/recursion-

cellular-image-classification/), the highest scoring solution based on EfficientNet took 6th place in 

the private leaderboard.  
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3.2 Image preprocessing 

The raw Cell Painting images are 16-bit TIFF format. To ease the processing for deep learning 

models, we perform image compression and normalization. The normalization for each image is 

the following: 

● 99.99 percentile of the plate’s illumination distribution. 

● Compute 0.05 and 99.95 percentiles of illumination distribution in the current image. 

● Clip illumination intensity using 0.05 percentile and the minimum of 99.99 percentile of the 

plate’s illumination distribution and 99.95 percentile of illumination distribution in the 

current image. 

● Rescale intensity, create a histogram with 256 bins and save as PNG.  

This preprocessing pipeline is included in DeepProfiler and can be run with metadata which lists 

all the images in the dataset, together with plate, well and site (image or field of view) information.  

3.3 Feature extraction with ImageNet pretrained models 

One approach adopted to extract representations is to use pre-trained models on a dataset of 

similar or different domains. Most of the popular existing deep learning architectures are pre-

trained on the ImageNet dataset 43, which is composed of natural images.  

The idea to use such pre-trained models for morphological profiling starts in the experiments 

demonstrated in 17 with VGG-16, Inception v3 and ResNet models on the BBBC021 dataset. A 

similar approach was used in a subset of the lung adenocarcinoma dataset 20 and then in full with 

pre-trained EfficientNet-B0 11. On a large scale, pre-trained models were also used 10, though the 

dimensionality of extracted features was reduced.  

 

We use DeepProfiler to extract features of single-cells with the pre-trained EfficientNet. The input 

single-cell images of size 128x128 are cropped out from full images. To fit the expected input size 

of 224x224, the crops are resized. The pixel values are then rescaled using min-max 

normalization and adjusted to have values [-1:1] to match the required input range. 

As Cell Painting images are five-channel and ImageNet pre-trained models are for three-channel 

(RGB) images, additional changes are required. For that, we simply replicate each channel three 

times and pass through the model (so each cell requires five inference passes). Features 

extracted for each channel are concatenated and the resulting feature vector size is 3360 (672 is 

the size of the block6a_activation layer in the used EfficientNet implementation). 

3.4 Weakly Supervised Learning 

Weakly supervised learning (WSL) in this analysis means that we train the models not to classify 

single-cells by mechanism of action or pathway (that we don’t know in a real-world setting), but 

with auxiliary task of single-cell classification by treatments (in a real-world setting we always 

know the treatments). Even though we know the treatments, the data is noisy due to several 

reasons 20: 1) treatments might not significantly affect the phenotype of the cell (the treatment is 

neutral or technical problems occurred in the experiment) 2) Applying different treatments might 
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yield cells with similar phenotype 3) Cells might not react uniformly to particular treatments 44, 

which yields not necessarily meaningful subpopulations of cells.  

3.5 Training of Cell Painting models 

The Cell Painting models are trained on crops of single-cells, those are obtained from full images 

using cell locations and full-image metadata. To gather the cropped version of the dataset, we 

use DeepProfiler, it saves five unfolded channels as a single stripe and generates metadata for 

single-cells. The stripe can also contain a single-cell segmentation mask so it can be used to filter 

the crop from neighboring cells and noise (cell masking is not used in the reported analysis). The 

crop size can be determined by the user and depends on the dataset. 

DeepProfiler performs rebalancing of the data for each epoch of training to have an approximately 

equal number of training examples for each target class (treatment). That is especially important 

to prevent the overrepresentation of controls and a few treatments during training. 

The data augmentation pipeline in DeepProfiler consists of three steps:  

1. Random crop and resize. This augmentation is applied with 0.5 probability. The crop 

region size is random, 80% to 100% of the size of the original image, then resized back to 

the original size.  

2. Random horizontal flips and 90-degree rotations. 

3. Brightness and contrast adjustments with built-in Tensorflow methods, each channel is 

adjusted separately for both augmentation steps.  

The parameters for training in all experiments were the following: single-cell crop size 128x128, 

SGD optimizer, learning rate 0.005, batch size 32, augmentations on, no label smoothing or online 

label smoothing, 30 epochs of training, the results for all experiments are reported for the last 

epoch. The model is initialized with ImageNet weights. All models were trained with categorical 

cross-entropy loss.  

We tested two data-split approaches for train and validation subsets for the treatment 

classification task:  

● Leave plates out: we selected the plates in a way that the data of one subset of plates is 

only the train data and another one is in validation.  

● Leave cells out: in all plates present in the training and validation set, we split the data 

randomly on the well-level, meaning that approximately 60% of cells from each well would 

be in the training set and the rest in the validation set. 

 

The training of deep learning models was performed on NVIDIA DGX with NVIDIA V100 GPUs; 

a single GPU was used to train each model.  

3.6 Feature extraction with trained Cell Painting models 

We use DeepProfiler to extract features, profiling yields one NumPy file (one per image) with an 

array of vectors (one per cell). DeepProfiler uses full image metadata and location files for feature 

extraction. As the model is now natively trained for five-channel images, no need to replicate each 

channel separately, thus, each cell requires one inference pass and the feature vector contains 
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representation of all channels simultaneously. The size of the feature vectors is 672 for reported 

results, which were extracted from EfficinetNet’s block6a_activation layer. 

3.7 DeepProfiler 

We developed DeepProfiler, a tool for learning and extracting representations from high-

throughput microscopy images using convolutional neural networks (CNNs). DeepProfiler 

proposes a standardized workflow which unifies image pre-processing, training of CNNs and 

feature extraction discussed in the previous sections. DeepProfiler is implemented in Tensorflow 
45 (version 2), the code is publicly available on GitHub (see Code Availability).  

4. Evaluation 

The evaluation task mostly replicates the one from 34, we check if the most similar treatments 

above a certain threshold do share the same gene pathway or mechanism of action (MoA). For 

that, we use modified folds of enrichment metric (based on 34), in addition we adopt mean average 

precision and propose a new metric: top hits in the top 1%, which can be measured at different 

levels of profiling. Features of single-cell are extracted and used for evaluation disregarding their 

belonging to the training or validation subset of the pretext task.  

For folds of enrichment, precision-recall metrics and first-hit on treatment-level we define query 

and the response as follows:   

● Query treatments - the treatment which belongs to an MoA\pathway with at least two 

treatments, thus it is possible to find a match. 

● Response treatments - all the treatments, but the query treatment. Response treatments 

include the treatments belonging to MoAs\pathways with one treatment. 

4.1 Folds of enrichment 

For each query treatment we calculate odds ratio in a one-sided Fisher’s exact test. The test is 

calculated using a 2x2 contingency table: the first row contains a number of treatments with the 

same MoAs\pathways (matches) and different MoAs\pathways at a selected threshold, the 

second row is the same, but beyond the threshold. Odds ratio is a sum of the first row divided by 

the sum of the second row. It demonstrates the likelihood of observing the treatment with the 

same MoA\pathway in the top connections. 

We report the mean odds ratio over all query treatments. The threshold we use is 1% of 

connections. This metric in the text is referred to as “Folds of Enrichment”. 

The implementation of the metric is available as a part of analysis pipelines (see Code availability 

section).  

4.2 Mean Average Precision 

For each query treatment average precision (area under precision-recall curve) is computed for 

the information retrieval task. The search starts from the most similar treatments to the query and 
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continues until all positive pairs (response treatments with the same MoA\pathway) are found, 

precision and recall are computed at each step of the search.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
      𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

where TP - true positive, FP - false positive, FN - false negative. Interpolated precision at recall 𝑟  

As the number of treatments per MoA\pathway is not balanced, the precision-recall curve has a 

different number of recall points; precision and recall are interpolated to cover the maximum 

number of recall points possible in the dataset. Interpolated precision at each recall point is 

defined as follows 46:  

 

𝑝𝑖𝑛𝑡𝑒𝑟(𝑟)  = 𝑚𝑎𝑥𝑟′ ≥ 𝑟 𝑝(𝑟′)  
 

Average precision for query treatment is the mean of 𝑝𝑖𝑛𝑡𝑒𝑟 at all recall points. The reported mean 

average precision (mAP) is the mean average precision over all queries.  

4.3 Hits in the top 1% 

The purpose of computational drug discovery is to select a small portion of candidate treatments 

from the full set of treatments in physical lab experiments. To simulate this, we introduce hits in 

the top 1% metric, which measures the number of query treatments which have a treatment of 

the same MoA/pathway (a hit) in the top 1% of responses (responses are ranked by similarity 

measure).  

This metric is applicable for several levels of profiling: we report results for image level, well level 

and treatment level. For image-level and well-level we search for an image or well of the same 

treatment as the treatment of the query image or well. In case of image-level the images belonging 

to the same well as the query image, are excluded from possible responses. In the well-level 

analysis, the query well is also removed from possible responses. All treatments in the dataset 

can be queries on those two levels of profiling.  
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Data availability 

Ground truth files for evaluation are available on GitHub 

https://github.com/broadinstitute/DeepProfilerExperiments. 

Link to the pre-trained EfficientNet model https://github.com/Callidior/keras-

applications/releases/download/efficientnet/efficientnet-

b0_weights_tf_dim_ordering_tf_kernels_autoaugment.h5 

   

The Cell Painting datasets (raw images and CellProfiler profiles) are available at public S3 

buckets:  

BBBC037 gene overexpression dataset in U2OS cells 30  

s3://cytodata/datasets/TA-ORF-BBBC037-Rohban/profiles_cp/TA-ORF-BBBC037-Rohban/ 

 

BBBC022 compound screening in U2OS cells 31 

s3://cytodata/datasets/Bioactives-BBBC022-Gustafsdottir/profiles/Bioactives-BBBC022-

Gustafsdottir/ 

 

BBBC036 compound screening in U2OS cells 32 s3://cytodata/datasets/CDRPBIO-BBBC036-

Bray/profiles_cp/CDRPBIO-BBBC036-Bray/ 

 

BBBC043 gene overexpression dataset in A549 cells 11 

s3://cytodata/datasets/LUAD-BBBC043-Caicedo/profiles_cp/LUAD-BBBC043-Caicedo/ 

 

LINCS compound screening in A549 cells 5 

s3://cellpainting-gallery/cpg0004-lincs/broad/images/2016_04_01_a549_48hr_batch1/ 

Code availability 

The DeepProfiler code is available on GitHub https://github.com/cytomining/DeepProfiler. 

The analysis pipelines (Jupyter notebooks and Python scripts to analyze features) are available 

on GitHub https://github.com/broadinstitute/DeepProfilerExperiments. 

DeepProfiler documentation is available here: https://cytomining.github.io/DeepProfiler-

handbook/ 

In DeepProfiler we used the following EfficientNet implementation: 

https://github.com/qubvel/efficientnet. 

 

The code and CellProfiler pipelines for three evaluated datasets can be found in the associated 

GitHub repositories: 

BBBC037: https://github.com/carpenterlab/2017_rohban_elife 

BBBC036: https://github.com/gigascience/paper-bray2017 

BBBC022: Supplementary materials in 31. 
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Abstract
Recent advances in deep learning enable using chemical structures and phenotypic profiles to
accurately predict assay results for compounds virtually, reducing the time and cost of screens
in the drug-discovery process. We evaluate the relative strength of three high-throughput data
sources—chemical structures, images (Cell Painting), and gene-expression profiles (L1000)—to
predict compound activity using a sparse historical collection of 16,170 compounds tested in
270 assays for a total of 585,439 readouts. All three data modalities can predict compound
activity with high accuracy in 6-10% of assays tested; replacing million-compound physical
screens with computationally prioritized smaller screens throughout the pharmaceutical industry
could yield major savings. Furthermore, the three profiling modalities are complementary, and in
combination they can predict 21% of assays with high accuracy, and 64% if lower accuracy is
acceptable. Our study shows that, for many assays, predicting compound activity from
phenotypic profiles and chemical structures might accelerate the early stages of the
drug-discovery process.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2020.12.15.422887doi: bioRxiv preprint 



Introduction
Drug discovery is very expensive and slow. To identify a promising treatment for specific disease
conditions, the theoretical landscape of possible chemical structures is prohibitively large to test
in physical experiments. Pharmaceutical companies synthesize and test many millions of
compounds, yet even these represent a small fraction of possible structures. Furthermore,
although complex phenotypic assay systems have proven extremely valuable for identifying
useful drugs for diseases where an appropriate protein target is unknown 1–3, their reliance on
expensive or limited-supply biological materials, such as antibodies or human primary cells,
often hinders their scalability.

What if computational models could predict the results of hundreds of expensive assays across
millions of compounds at a fraction of the cost? Predictive modeling shows some promise. Most
attempts so far have used various representations of chemical structure alone to predict assay
activity; this requires no laboratory work for the compounds whose activity is to be predicted,
and the compounds do not even need to exist physically, so this is dramatically cheaper than
physical screens and enables a huge search space. Promising compounds can then be
synthesized and tested. Deep learning in particular has substantially advanced the state of the
art in recent years 4–17, and was recently used to discover a novel antibiotic 18. As impressive as
these capabilities are, chemical structures alone do not seem to contain enough information to
predict all assay readouts — their performance may be limited by the lack of experimental
information revealing how living organisms respond to these treatments.

Considerable improvements might come from augmenting chemical structure-based features
with biological information associated with each small molecule, ideally information available in
inexpensive, scalable assays that could be run on millions of compounds once, then used to
predict assay results virtually for hundreds of other individual assays. Most profiling techniques,
such as those measuring a subset of the proteome or metabolome, are not scalable to millions
of compounds. One exception is transcriptomic profiling by the L1000 assay 19, which has
shown success for mechanism of action (MOA) prediction 20, but is untested for predicting assay
outcomes.

Image-based profiling is an even less expensive high-throughput profiling technique 21. It has
proven successful in MOA prediction (reviewed in 22) as well as compound bioactivity
determination during structure activity relationship synthetic chemistry cycles 23. In a novel study,
Simm et al. 24 successfully repurposed images from a compound library screen to train machine
learning models to predict unrelated assays; their prospective tests yielded 60- to 250-fold
increased hit rates while also improving structural diversity of the active compounds. More
recently, Cell Painting 25,26 and machine learning have been used to predict the outcomes of
other assays as well 27,28.

The complementarity and integration of profiling methodologies and chemical structures to
predict compound bioactivity holds promise to improve performance, and has been studied in
various ways. The relationships between chemical structures and phenotypic profiles (including
cell morphology and transcriptional profiles) has been investigated to predict chemical library
diversity 29. Other studies have looked at combinations of profiles, such as integrating imaging
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and chemical structures to complete assay readouts in a sparse matrix 30 , combining L1000
and Cell Painting for MOA prediction 20, and integrating morphology, gene expression and
chemical structure for mitochondrial toxicity detection 31.

In this work, we aim to evaluate the predictive power of chemical structures, cell morphology
profiles, and transcriptional profiles, to determine assay outcomes computationally at large
scale. This study does not aim to make predictions in specific assays, which may result in
anecdotal success, but rather aims to assess the relative potential of data sources for assay
prediction, to guide the design of future projects. Our goal is to train machine learning models
that predict compound bioactivity taking as input high-dimensional encodings of chemical
structures combined with two different types of experimentally-produced phenotypic profiles,
imaging (Cell Painting assay) and gene expression (L1000 assay) (Figure 1). Our hypothesis is
that data representations of compounds and their experimental effects in cells have
complementary strengths to predict assay readouts accurately, and that they can be integrated
productively to improve compound prioritization in drug-discovery projects.

Figure 1. Overview of the workflow and data. A) Workflow of the methodology for predicting diverse
assays from perturbation experiments (more details in Supplementary Figures 1 and 2). B) Types of
assay readouts targeted for prediction, which include a total of eight categories (Supplementary Figure
14). C) Structure of the input and output data for assay prediction. D) Similarity of assays according to the
Jaccard similarity between sets of positive hits. Most assays have independent activity (Supplementary
Figure 12). E) UMAP visualizations of all compounds in the three feature spaces evaluated in this study
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(Supplementary Figure 9). F) Distribution of assay readouts for assays in the horizontal axis sorted by
readout counts. The available examples follow a long tail distribution and the average ratio of positive hits
to tested compounds (hit rate) is 2.548%.

Results

Chemical structure, morphology, and gene expression profiles
provide complementary information for prediction
We first selected 270 assays performed at the Broad Institute over more than a decade (Figure
1); the assays were filtered to reduce similarity (Figure 1D) but not selected based on any
metadata and thus are representative of the activity of an academic screening center. Then, we
extracted a complete matrix of experiment-derived profiles for 16,170 compounds, including
gene-expression profiles (GE) from the L1000 assay 32,33 and image-based morphological
profiles (MO) from the Cell Painting assay 33,34. We also computed chemical structure profiles
(CS) using graph convolutional nets 16 (Figure 1 and Methods). Finally, assay predictors were
trained and evaluated following a 5-fold cross-validation scheme using scaffold-based splits
(Methods and Supplementary Figures 1 and 9). This evaluation aims to quantify the ability of the
three data modalities to independently identify hits in the set of held-out compounds (which had
compounds of dissimilar structures to the training set, to prevent learning assay outcomes for
highly structurally similar compounds).

We found that all three profile types (CS, GE, and MO) can predict different subsets of assays
with high accuracy, revealing a lack of major overlap among the prediction ability by each
profiling modality alone (Figure 2B). This indicates significant complementarity, that is, each
profiling modality captures different biologically relevant information. In fact, only 11 of the 270
assays “overlapped” and were predictable using more than one of the single modalities, and
none could be accurately predicted by all three of the single profiling modalities (median overlap
over 5-fold cross validation is zero). CS shares three well-predicted assays in common with MO
and two with GE, while MO and GE share six, indicating that CS captures slightly more
independent activity. MO profiles predicted 19 assays that are not captured by chemical
structures or gene expression alone, the largest number of unique predictors among all
modalities (Figure 2B).

MO is able to predict the largest number of assays individually (28 vs 19 for GE and 16 for CS)
(Figure 2C), although if a lower accuracy threshold is sufficient (AUROC > 0.7), CS can predict
around the same number of assays as MO, while GE still trails (Figure 2A). We use the count of
predictors with AUROC > 0.9 as our primary evaluation metric, following past studies of assay
prediction 18,20,24, although 0.7 is not unreasonable in practice; one would need to cherry pick
more compounds to obtain sufficient hits in followup testing. The results in Figure 2 reveal the
extent to which profiling modalities capture specific bioactivity and confirm that they are indeed
mostly different from each other.
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Figure 2. Number of assays that can be accurately predicted using single profiling modalities. All
reported numbers are the median result of the five-fold cross-validation experiments run in the dataset.
Detailed results of each partition are reported in Supplementary Figure 4 and Supplementary Table 1.  A)
Performance of individual modalities measured as the number of assays (vertical axis) predicted with
AUROC above a certain threshold (horizontal axis). With higher AUROC thresholds, the number of
assays that can be predicted decreases for all profiling modalities. We define accurate assays as those
with AUROC greater than 0.9 (dashed vertical line in blue). B) The Venn diagrams on the right show the
number of accurate assays (median AUROC > 0.9) that are in common or unique to each profiling
modality. The bar plot shows the distribution of assay types correctly predicted by single profiling
modalities. C) Number of assays well predicted (median AUROC > 0.9) by each individual modality (same
as in Figure 3B).

Combining phenotypic profiles with chemical structures improves
assay prediction ability
Ideally, combining modalities should leverage their strengths and predict more assays jointly, by
productively integrating data. Morphology and gene-expression profiles require wet lab
experimentation, whereas chemical structures are always available, even for theoretical
compounds, with the only cost being computing their fingerprints. Therefore, we took CS as a
baseline and explored the value of adding phenotypic profiles to it.

We first integrated data from different profiling methods using late data fusion and evaluated the
performance of combined predictors using the same 5-fold cross validation protocol described
for individual profiling modalities. We found that adding morphological profiles to chemical
structures yields 31 well-predicted assays (CS+MO) as compared to 16 assays for CS alone
(Figure 3C).  By contrast, adding gene expression profiles to chemical structures by late data
fusion increased the number of well-predicted assays as compared to CS alone only by two

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2020.12.15.422887doi: bioRxiv preprint 



assays (18 vs 16 respectively, Figure 3C). For both phenotypic profiling modalities, early fusion
(concatenation of features before prediction) performed worse than late fusion (integration of
probabilities after separate predictions, see Methods), yielding fewer predictors with AUROC >
0.9 for all combinations of data types (Supplementary Figure 8 and Supplementary Table 1).
The results represent an opportunity for enhancing computational fusion strategies (see
Methods - Data fusion).

Next, we counted the number of unique assays predicted by any of the individual profiling
modalities using a retrospective assessment, which estimates the performance of an ideal data
fusion method that perfectly synergizes all modalities. Note that this retrospective assessment is
not blind, and simulates a decision maker that chooses the best predictor for an assay after
looking at their performance in the hold-out set. It is used here to report the total number of
assays that can be successfully predicted using one or another strategy. For example, we found
that using the best profiling modality from a given pair can predict around 40 assays (Figure 3D,
row “Single”). We use the ★ symbol to denote choosing the best between profiling modalities in
retrospect, and the + symbol to denote combining modalities by data fusion.

In retrospect, there are six unique assays that are well predicted using fused CS+MO that could
not be captured by either modality alone, indicating complementarity to improve performance for
these five assays. Adding them to the list of assays that can be predicted using the single best
from CS★MO would yield 41 well-predicted assays total (Figure 3C, row “Plus fusion”),
resulting in potential to predict more than twice the assays compared to CS alone (16).
Improvements when adding MO to CS were consistently found across other evaluation metrics
(AUROC > 0.7 in Supplementary Figure 3 and Supplementary Table 1) and when adding
morphological profiles to all other data types and combinations (Figure 3D).

At an AUROC > 0.9, the 41 unique assays that are well predicted with CS★MO represent 13%
of the total. An AUROC of 0.7 could be acceptable to find useful hits in real world projects 18,24;
we found that for assays with a low baseline hit rate, this accuracy level may be sufficient to
increase the ability to identify useful compounds in the screen (Supplementary Figure 3). If a
cutoff of AUROC > 0.7 was found to be acceptable, 58% of assays would be well predicted with
CS★MO (157 out of 270, Supplementary Figure 3).

The performance of CS★GE also increased the number of assays that CS can predict alone
from 16 to 33 at AUROC > 0.9. There are four more assays that are well predicted using fused
CS+GE, which results in 37 unique assays well predicted by both modalities in retrospect. Gene
expression also yields similar results when combined with morphology, yielding 41 assays with
GE★MO, and predicting seven additional assays jointly when using data fusion (GE+MO) for a
total of 48 unique assays together.
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Figure 3. Number of assays that can be accurately predicted using combinations of profiling modalities.
Accurate predictors are defined as models with accuracy greater than 0.9 AUROC. We considered all four
modality combinations using late data fusion in this analysis: CS+MO (chemical structures and
morphology), CS+GE (chemical structures and gene expression), GE+MO (gene expression and
morphology), and CS+GE+MO (all three modalities). A) The Venn diagram shows the number of
accurately predicted assays that are in common or unique to fused data modalities. The bar plots in the
center show the distribution of assay types correctly predicted by the fused models. All counts are the
median of results in the holdout set of a five fold cross-validation experiment. B) Performance of individual
modalities (same as in Figure 2C). C) The number of accurate assay predictors (AUROC > 0.9) obtained
for combinations of modalities (columns) using late data fusion following predictive cross-validation
experiments. D) Retrospective performance of predictors using oracle counts. These counts indicate how
many unique assays can be predicted with high accuracy (AUROC > 0.9), either by single or fused
modalities. “Single” is the total number of assays reaching AUROC > 0.9 with any one of the specified
modalities, i.e., take the best single-modality predictor for an assay in a retrospective way. This count
corresponds to the simple union of circles in the Venn diagram in Figure 2B, i.e., no data fusion is
involved. “Plus fusion” is the same, except that it displays the number of unique assays that reach
AUROC > 0.9 with any individual or data-fused combination. This count corresponds to the union of
circles in the Venn diagram in Figure 2B plus the number of additional assays that reach AUROC > 0.9
when the modalities are fused. For example, the last column counts an assay if its AUROC > 0.9 for any
of the following: CS alone, GE alone, MO alone, data-fused CS+GE, data-fused GE+MO, data-fused
CS+MO, and data-fused CS+GE+MO.

Complementarity across all three profiling types
We had hypothesized that data fusion of all three modalities would provide the best assay
prediction ability than any individual or subset. However, data-fused CS+GE+MO yielded 28
well-predicted assays (Figure 3C), fewer than could be obtained by data-fused CS+MO (31
assays), which was the same as MO alone (28 assays). All of these fall short of the 52 unique
assays that, in retrospect, could be identified by taking the single best of any of the three data
types CS★MO★GE (Figure 3D). This highlights the need for designing improved strategies for
data fusion; early fusion did not improve the situation (Supplementary Figure 8 and
Supplementary Table 1).
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Likewise, considering the best single, pairwise and all-fused predictors and their combinations,
the three data modalities have the potential to accurately predict 57 assays jointly at 0.9
AUROC, not a dramatic improvement compared to 52 unique assays that, in retrospect, could
be identified by taking the single best of any of the three data types using CS★MO★GE (Figure
3D). Nevertheless, 57 assays represents 21% of the 270 assays considered in this study. With a
threshold of 0.7 AUROC (Supplementary Figure 3), the three modalities can predict 117 assays
using data fusion (43% of all 270), and with their retrospective combinations the list grows to
174 assays (64% of all 314). We therefore conclude that if all modalities are available, they are
all useful to increase predictive ability, as they appear to capture different aspects of perturbed
cell states.

Models can predict a diversity of assay types
The morphological and gene-expression profiles used for model training derive from cell-based
profiling assays. They can correctly predict compound activity for mammalian cell-based assays,
which were the most frequent in this study (Figure 1B, Supplementary Figure 14), but also other
assay types, such as bacterial and biochemical (Figure 2B, 3A, Supplementary Figure 14,
Supplementary Table 3). Still, cell-based assays were the best-predicted by the phenotypic
profiles as well as by chemical structures: from 156 cell-based assays, 11, 18 and 21 are
accurately predicted by CS, GE and MO respectively (7%, 11%, 13%); by contrast, from 59
biochemical assays, 4, 0 and 1 were predicted by CS, GE and MO respectively (6%, 0%, 1.7%).

We nevertheless conclude that well-predicted assays include diverse assay types, i.e.,
phenotypic profiling strategies are not constrained to predict cell-based assays only, even
though both profiling methods are cell-based assays themselves. Each modality predicted
assays in 2-4 of the 8 assay categories when used alone (Figure 2B).

As noted above, only a few assays benefit from combining information of various profiling
modalities. We examined four assays with increased fused accuracy more closely (Figure 4).
The CFTR activity assay, a cell-based assay, can be predicted with an AUROC of 0.88 using CS
alone, but when combined with MO using data fusion, the performance increases to AUROC
0.97. Similarly, the Ras selective lethality assay reaches a maximum accuracy of 0.69 using CS
alone, but when MO and GE are combined together, accuracy increases to 0.90 AUROC,
increasing performance from low to highly accurate. These two assays have rare hits and
benefit more from data fusion, compared to the other two examples in Figure 4 (esBAF inhibitor
and SirT5 activity) which also benefit from data fusion but to a lesser degree (e.g. increasing
performance from 0.79 to 0.83). These examples indicate that fusing information from various
modalities can improve predictive performance, but the fusion result may depend on several
factors such as the diversity and availability of training examples and the biology measured by
the specific assay.
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Figure 4. Prediction performance of example assays where prediction accuracy benefits from fusion. The
plots are Receiver Operating Characteristic (ROC) curves and the area under the curve (AUROC) is
reported for each modality with the corresponding color. A) Four example assays from left to right: Cystic
fibrosis transmembrane conductance regulator CFTR (cell based), Ras selective lethality (cell based),
esBAF inhibitor (cell based), SirT5 (biochemical). B) Performance of predictors for the same assays
when using combinations of profiling methods.

Assay predictors trained with phenotypic profiles can improve hit
rates
Predictive modeling using machine learning to reuse phenotypic profiles in a large library of
compounds can enable virtual screening to identify candidate hits without physically running the
assays. Here, we compare the hit rate of testing only the top predicted candidates obtained with
a computational model, vs the empirical hit rate of testing a large subset of candidate
compounds physically in the lab (Supplementary Figure 6). The ratio between these two hit
rates is what we term folds of improvement, a factor indicating the expected experimental
efficiency if the computational model identifies relevant compounds to test in follow up
experiments.

We found that predictors meeting AUROC > 0.9 in our experiments produce on average a 25 to
70-fold improvement in hit rate (i.e., compounds with the desired activity, see Supplementary
Figure 7) for assays with a baseline hit rate below 1%. A baseline hit rate below 1% means that
hits are rare for such assays, i.e., in order to find a hit we need to test at least 100 compounds
randomly selected from the library. Assays with low hit rates are the goal in real world screens,
and therefore, more expensive to run in practice. With computational predictions improving hit
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rates by ~50 fold, the speed and return of investment could be potentially high. We also note
that for assays with less extreme baseline hit rates (e.g. 10% to 50%), the machine learning
models can reach the theoretical maximum fold of improvement by accurately predicting all the
hits in the top of the list (Supplementary Figure 7). We conclude that when assay predictors are
accurate enough, they make cherry-picking and testing predicted compounds worthwhile and
can thus significantly accelerate compound screening and reduce the resources required to
identify useful hits.

Discussion
Predicting bioactivity of compounds could become a powerful strategy for drug discovery in light
of ever-improving computational methods (particularly, deep learning) and ever-increasing rich
data sources (particularly, from profiling assays). Here, we used the Chemprop model for
learning predictors from chemical structures, and to combine the molecular fingerprint with
phenotypic profiles obtained from images (Cell Painting) and gene expression (L1000). We
conducted this study using baseline feature representations, and arguably, the results could be
improved in future research by using alternative chemical structure embeddings 35–37, learned
image features 27,38, or latent spaces for gene expression 39.

We discovered that all three profile modalities—chemical structure, morphology, and gene
expression—offer independently useful information about perturbed cell states that enables
predicting different assays. Chemical structure is always readily available for a given compound.
The two profiling modalities that require physical experimentation bring different strengths to the
assay prediction problem, and if available, they can be leveraged to run virtual screens to
prioritize compound candidates in drug-discovery projects.

In retrospect, we found that data fusion strategies increased the number of well-predicted
assays by only 7-17%, depending on the subset of modalities tested, as compared to simply
using each profiling modality independently for prediction. We believe this argues for further
research on how best to integrate disparate profiling modalities, capturing the strengths of each
individually as well as the complementarity of their combinations. Nevertheless, using late data
fusion to combine each subset of available modalities does offer some improvement versus
each individually and is likely worthwhile given its ease of implementation.

Given the low cost of carrying out Cell Painting, it is practical in many settings to profile an entire
institution’s compound library. Then, a modest-sized library of a few thousand compounds would
be tested in each new assay of interest, providing sufficient data to assess whether an accurate
predictor could be trained on these data, using CS alone, MO alone, or a data-fused
combination of CS+MO. Taking into account the baseline hit rate for the assay, researchers
could decide whether the predictor will increase the hit rate sufficiently to warrant a virtual
screen against a large compound library for which morphological profiles are already available
(within an institution, or publicly available profiles 40), followed by cherry picking a small set of
predicted hits and testing them for actual activity in the assay.
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Although we suggest a few thousand compounds for the training set based on the data shown
in Supplementary Figure 5, it remains to be fully evaluated how many training points are needed
to achieve strong predictivity — in fact, it is likely that the number and structural diversity of hits
in the training set more strongly influences predictivity than the total number of assay data
points. Nevertheless, in most academic and industry screening centers, preparing a training/test
set of ~16,000 compounds, as we used here, is practical. It also remains to be explored what
determines if an assay is likely to be predictable, such as the target and assay type (unavailable
for this dataset), and characterizing correlations between the bioactivity of interest and profiling
modalities, as well as the assay activity distribution.

Based on our results, and depending on whether an AUROC of 0.9 or 0.7 is the threshold for
accuracy needed given the baseline hit rate of the assay, 21-64% of assays should be
predictable using a combination of chemical structures, morphology and gene expression,
saving the time and expense of screening these assays against a full compound library.
Especially considering potential improvements in data integration techniques and deep learning
for feature extraction, this strategy might accelerate the discovery of useful chemical matter.

Methods

Profiling datasets
For this study, we began with a compound library of over 30,000 compounds screened in
high-throughput 33. Of these compounds, about 10,000 came from the Molecular Libraries Small
Molecules Repository, another 2,200 were drugs and small molecules, and the remaining
18,000 were novel compounds derived from diversity oriented synthesis. U2OS cells were
plated in 384-well plates and treated with these compounds in 5 replicates, using DMSO as a
negative control. The Cell Painting and L1000 platforms were used to generate morphological
and transcriptional profiling data, respectively, as previously described 33.

Assay readouts
We collected a list of 529 assays from drug discovery projects conducted at the Broad Institute
at different scales, and we kept those where at least a subset of the small molecules in the
compound library described above was tested. After administrative filtering and metadata
consistency, we kept a subset of 496 candidate assays for this study. We prepared assay
performance profiles following a double sigmoid normalization procedure to ensure that all
readouts are scaled in the same range 41. Then, we computed the Jaccard similarity of hits
between pairs of assays to estimate the common set of compounds detected by them, and then
removed assays that measure redundant compound activity (Supplementary Figure 12). That
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resulted in a final list of 270 assays with their corresponding readout results (Supplementary
Figure 11), and the compound-assay matrix had 13.4% of known entries (86.6% sparsity).

Training / Test splits
The total number of compounds in the library that had the three types of information required to
conduct the experiments in our project (Cell Painting images, L1000 profiles, and assay
readouts) was 16,978. We applied all pan-assay interference (PAINS) filters 42 implemented in
RDKit, which removed 786 compounds, resulting in 16,210 compounds. Next, we removed all
assays without hits reducing the set of candidate assays from 496 to 437. Then, we calculated
the Jaccard score between assay hits to identify redundant assays, i.e., assays that measure
similar activity resulting in the same hits. The Jaccard similarity matrix (437x437) was
thresholded at 0.7 to remove highly redundant assays, and hierarchical clustering with the
cosine distance metric was applied for determining further groups of redundant assays. Finally,
we removed frequent hitters, defined as compounds that are positive hits in at least 10% of the
assays (by being hits in 30 assays or more) and an additional step of removing assays that
remain without any hit. In the end, the final dataset consists of 16,170 compounds and 270
assays.

We aimed to evaluate the ability of each data modality to predict assays for chemical structures
that are distinct relative to training data. This is because there is little practical value to screen
for additional, similar structures (scaffolds) to compounds already known to have activity; in drug
discovery, any compounds with positive activity undergo medicinal chemistry where small
variations in structure are synthesized and tested to optimize the molecule. We therefore report
results using cross-validation partitions that ensure that similar classes of structures are not
included in both the training and hold-out sets, given that this scheme corresponds to the most
practical, real world scenario (Supplementary Figure 9).

We used 5-fold cross-validation using Bemis-Murcko clustering 43,44, and assigned clusters to
training or test in each fold accordingly. The main experimental design for the results reported in
the main text is illustrated in the Supplementary Figure 1. The distribution of chemical structure
similarity according to the Tanimoto coefficient metric on Morgan fingerprints (radius=2) is
reported in Supplementary Table 10 for each of the 5 cross-validation groups. As additional
control tests, we run 5-fold cross-validation experiments following the same design as above but
splitting the data according to k-means clusters in the morphology feature space and in the
gene-expression space (Supplementary Figure 9 and Supplementary Table 2), as well as a
control experiment with fully random splits (Supplementary Table 2).

The control splits based on randomized data as well as the MO and GE modalities were used to
check for and identify potential biases in the data. These splits do not have practical
applications in the lab, and were used as computational simulations to test the alternative
hypothesis that predictors have a disadvantage when the training data are drawn from a
distribution that follows similarities in CS, MO or GE. The results in the Supplementary Table 2
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indicate that there is no major change in performance when using CS, GE or random splits;
however, MO splits reduced performance significantly for all data modalities. This process
revealed the need to correct for batch effects in MO data to minimize the influence of technical
artifacts. All results presented in the main text were obtained from MO data that has been batch
corrected (see Image-based morphological profiles below).

Representation of chemical structures (CS) using Chemprop
We used the Chemprop software (http://chemprop.csail.mit.edu/) to train directed-message
passing neural networks for learning chemical structure embeddings. The software reconstructs
a molecular graph of chemicals from their SMILES string representation, where atoms are
nodes and bonds are edges. From this graph, a model applies a series of message passing
steps to aggregate information from neighboring atoms and bonds to create a better
representation of the molecule. For more details about the model and the software, we refer the
reader to prior work 16,18,45. In addition to learning representations for chemical structures, we
used Chemprop to run all the machine learning models evaluated in this work to base all the
experiments on the same computational framework. Also, we evaluated the predictive models
for CS using learned features as well as Morgan fingerprints computed with the RDKit software
(radius=2), and we found that both yield comparable results in our main experiments
(Supplementary Table 2, columns CS-GC [Graph Convolutions] and CS-MF [Morgan
Fingerprints]).

The representation of chemical structures is learned from the set of ~13,000 training examples,
unlike morphological or gene-expression features, which were obtained without learning
methods (hand-engineered features). The scaffold split used in our experiments may pose an
apparent disadvantage to the learning of chemical structure representations because it may not
learn to represent important chemical features in new scaffolds. Previous research by Yang et
al. 16 has shown that Chemprop can generalize to new scaffolds accurately. In addition, the
chemicals may also generate new phenotypes in the morphological and gene-expression
space, which are not seen by the models during training, resulting in a fair comparison of
representation power among all modalities. We tested the effect of creating partitions with other
modalities other than scaffolds from chemical structures, and we discuss these results in the
Train / Test splits subsection above as well as in Supplementary Table 2 and Supplementary
Figure 9.

Image-based morphological (MO) profiles from the Cell Painting
assay
The Cell Painting assay 25,26,29,33 captures fluorescence images of cells using six dyes to label
eight major cell compartments. The five-channel, high-resolution images are processed using
the CellProfiler software (https://cellprofiler.org/) to segment the cells and compute a set of

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2020.12.15.422887doi: bioRxiv preprint 



1,700+ morphological features at the single-cell level. These features are aggregated into well-
and treatment-level profiles that capture the central statistics of the response of cells to the
treatment.

Before computing treatment-level profiles, we used the Typical Variation Normalization (TVN) 46

transform to correct for batch effects using well-level profiles (see Supplementary Figure 9).
TVN is calculated using DMSO control wells from all plates to compute a sphering transform
that reduces the data to a white noise distribution by inverting all the non-zero eigenvalues of
the matrix. This transformation is later used to project all treatment wells in a new space, where
controls have a neutral representation and treatments may have phenotypic variations
highlighted. This transform minimizes batch effects by obtaining a feature space where the
technical variations sampled from controls are neutralized to enhance the biological signal.

After applying the TVN transform at the well-level profiles, we aggregate them into
treatment-level profiles to conduct our assay prediction experiments. Supplementary Figure 8
shows UMAP plots of the morphology data before and after the TVN transformation. In our
study, we used treatment-level profiles in all experiments. For more details about Cell Painting
26, CellProfiler 47, and the profiling steps 48, see the corresponding references.

Gene-expression (GE) profiles from the L1000 assay
The L1000 assay measures transcriptional activity of perturbed populations of cells at
high-throughput. These profiles contain mRNA levels for 978 landmark genes that capture
approximately 80% of the transcriptional variance 19. The assay was used to measure gene
expression in U2OS cells treated with the set of compounds in our library. Both the profiles and
the tools to process this information are available at https://clue.io/ .

Predictive model
Model architecture: The predictive model is a feedforward, fully connected neural network with
up to three hidden layers and ReLU activation functions. This simple architecture takes as input
compound features (or phenotypic profiles) and produces as output the hit probabilities for all
assays (see Supplementary Figure 8). When the representation of chemical structures is
learned, additional layers are created before the predictive model to compute the message
passing graph convolutions. These extra layers and their computation follow the default
configuration of Chemprop models 16 and are only used for chemical structures.

Loss and training: The model architecture described above is trained in a multi-task manner 5,
allocating a binary output for each assay. We used the logistic regression loss function on each
assay output and the total loss is the sum over all assays. During training, the model computes
this loss for each assay output independently using the available readouts. If the assay readout
is not available for some compounds in the mini-batch, these outputs are ignored and not taken
into account to calculate gradients. This setup facilitates learning predictive models with sparse
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assay readouts. We use a mini-batch size of 50 compounds with a sparse matrix of 270 labels,
and no explicit class balancing was applied during training.

Hyperparameter optimization: The hyperparameters of the network are optimized on the
training data for each feature grouping and for each cross-validation round. These parameters
are: number of fully connected layers (choice between 1, 2 or 3), dropout rate for all layers
(between 0 and 1), and hidden layer dimensionality (if applicable, between 100 and 2,500). The
best parameters are identified by further splitting the training set in three parts, with proportions
80% for training, 10% for validation and 10% for reporting hyperparameter optimization
performance. Then, these parameters are used to train a final model that is used to make
predictions in the hold-out partition of the corresponding cross-validation set.

Data fusion
The input to the neural network can be the features of one or all modalities used in our
experiments. To combine information from multiple data modalities, we used two strategies
(Supplementary Figure 8): A) early data fusion, where feature vectors from two or three
modalities are concatenated into a single vector. B) Late data fusion, where each modality is
used to train a separate model, and then the prediction scores for a new sample are aggregated
using the maximum operator. Our results show that, despite its simplicity, late data fusion works
best in practice (see Supplementary Table 2), but the results also suggest that more research
needs to be done to effectively combine multiple data modalities.

Combining disparate data modalities (sometimes called multimodal or multi-omic data
integration) is an unmet computational challenge especially when not all the assays can be
accurately predicted. Our results indicate that the three data modalities do not predict any
assays in common (Figure 2B, no assays are predicted by all modalities when used
independently), suggesting that in most cases, at least one of the data modalities will effectively
introduce noise for predicting a given assay. When one of the data modalities cannot signal the
bioactivity of interest, the noise-to-signal ratio in the feature space increases, making it more
challenging for predictive models to succeed. This explains why late fusion, which
independently looks at each modality, tends to produce better performance.

Performance metrics
To evaluate the performance of assay predictors we used the area under the receiving operating
characteristic (ROC) curve, also known as the AUROC metric, which has a baseline random
performance of 0.5. During the test phase, we run the model over all compounds in the test set
to obtain their hit probabilities for all assays. With these probabilities, we compute AUROC for
each assay using only the compounds that have ground truth annotations (either positive hits or
negative results), and we ignore the rest of the compounds that have no annotation for that
assay (unknown result or compound never tested).
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We define a threshold of AUROC > 0.9 to identify assays that can be accurately predicted, and
with this threshold, our second performance metric is focused on counting how many assays,
from the list of 270 in our study, can be accurately predicted. For comparison, we also
calculated Average Precision (AP) and area under the precision-recall curve (AUPRC) which
are reported in Supplementary Tables 1, 2 and 3.

In addition, we measured hit-rate improvement for individual assays as the ratio between the hit
rate obtained using the computational predictors and the hit rate observed in the lab (the
“baseline” hit rate):

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒

Predictor hit rates are calculated as the proportion of positive hits observed in the top 1% of the
ranked list of predictions, while baseline hit rates are calculated as the number of hits identified
in the complete set of compounds tested for that assay in the original experiment. For an
illustration of this performance metric see Supplementary Figure 6 and Supplementary Figure 7
for the results.

Data and code availability
The morphological and gene-expression profiles were originally created and published by
Wawer, M. J. et al. 33, and can be downloaded from:
http://www.broadinstitute.org/mlpcn/data/Broad.PNAS2014.ProfilingData.zip

The Cell Painting images were also made available by Bray et al. 34, and can be obtained from
the following link: http://gigadb.org/dataset/100351

The latest version of morphological profiles is also available in the following AWS S3 bucket:
https://registry.opendata.aws/cell-painting-image-collection/

The Chemprop software and source code used for training machine learning models can be
found in the following link: http://chemprop.csail.mit.edu/

The analysis code to reproduce the experiments reported in the paper can be found in the
following link: https://github.com/carpenterlab/puma_project

The assay data to reproduce the analysis in the paper is available in the project GitHub
repository: https://github.com/carpenterlab/puma_project/tree/main/data
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Supplementary Material

Experimental design

Supplementary Figure 1. Illustration of the experimental design in this study. A) Data
selection and filtering pipeline to construct the dataset used in this study. The process is linear
and the order of steps is followed one at a time. We first select 270 assays from more than 500
available (see Supplementary Figure 11 and 12), and with those targets fixed, we proceed to
clean the list of compounds with various other filters. B) We considered the problem of assay
prediction from three compound representations: features of the chemical structure, and
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phenotypic features of the effect of compounds measured by imaging (Cell Painting) and gene
expression (L1000). We conducted a 5-fold cross-validation experiment splitting the compounds
in 5 groups according to scaffold similarity using the Bemis-Murcko clustering. The profiles for
compounds in each of these groups were separated together with the corresponding assay
readouts. The training of models and test of predictions is carried out independently for each
fold, and the results are aggregated to generate summarized statistics of the experimental
results.

Supplementary Figure 2. Pipeline of cross-validation experiments. The models trained and
evaluated in our experiments are conducted following this protocol: for each split in the 5-fold
validation scheme, we take the training dataset and split it again in three parts: 80% for training,
10% for validation and 10% for testing. In this partition, we run hyperparameter search using
Bayesian optimization to calibrate the parameters described in the Methods section, subsection
Predictive model and data fusion. The Bayesian optimization model uses the 10% assigned for
validation to search better parameters at each iteration, and when the search is complete, a
final evaluation is performed on the 10% test set with a subset of the best candidates to identify
the hyperparameters with better out of sample generalization. These best hyperparameters are
used to train a final model with the entire training data in the original split, which is later
evaluated with the subset held out for test. The results out of this evaluation are reported in the
main text as well as in the rest of the manuscript.
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Additional results

Supplementary Figure 3. Summary of the number of assays predicted with models that have
AUROC > 0.7, which is a lower performance threshold than the one used throughout our study.
The total number of acceptable assay predictors increases when the threshold is lower, and
chemical structures can yield more predictors that meet this level of performance. Importantly,
predictors that reach performance above 0.7 AUROC are also capable of improving hit rates in
many cases (see yellow points in Supplementary Figure 7). The row “Retrospective” in Table B
presents the number of assays with AUROC > 0.7 that would be predicted by any of the
modalities individually or their combinations.
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Supplementary Figure 4. Area under the curve (AUROC) performance of the three individual
modalities evaluated in our study: Chemical Structures (CS), Gene Expression (GE), and
Morphology (MO). A) Number of assays predicted by each modality at specific AUROC
thresholds. As the AUROC threshold is increased, the number of assays meeting the threshold
decreases for all modalities. The two thresholds discussed in this paper are highlighted in green
(0.7) and blue (0.9). B, C, D) Scatter plots of AUROC for pairs of modalities. Each point in the
plots represents an assay, the x coordinate indicates the AUROC obtained in one modality, and
the y axis represents the AUROC obtained in the other modality. Colors represent the three
individual modalities: CS (yellow), GE (blue) and MO (green). Points (assays) above or below
the diagonal (equal performance) are colored according to the modality that has the highest
AUROC. The two colored numbers inside the plot indicate the total number of assays with
higher AUROC with respect to the other modality in the same plot. The counts of points indicate
the number of assays where one modality is better than the other. Note that there are many
points far off the diagonal, indicating high AUROC in one modality but low in the other. This
indicates potential for complementary and fusion among the different data modalities.
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Supplementary Figure 5. The performance of predictive models is slightly correlated with the
number of available training examples; several assays can be predicted with high accuracy
(AUROC > 0.9) using only a few example hits (points above the purple line). The plots show on
the vertical axis the test set accuracy as a function of (A) the total number of example readouts,
and (B) the number of hits available for training. Plots in the bottom row show the same data
with log scale in the horizontal axis to highlight the trend with few examples. Each point is an
assay predictor and its color indicates what data modality was used for training it. Note that
assay prediction accuracy can vary from very low to very high with a small number of training
examples, indicating that performance depends on the specific activity measured by the assay.
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Folds of improvement

Supplementary Figure 6. Illustration of the “Folds of improvement” metric. The example
assumes a chemist testing a set of 300 candidate compounds where only 5 of them are positive
hits. The ratio of hits vs tested compounds is a rough estimate of the probability of finding a hit
by chance. A pre-trained computational predictor could rank the same compounds in silico from
high probability of being a hit to low probability. We simulate the case where the chemist only
selects the top 1% predictions for further wet lab testing, which is a reasonable cut off in real
world high-throughput screens with very large compound libraries. By estimating the ratio of hits
found in the top 1% subset that is actually tested in vitro, we then compute the folds of
improvement as the ratio of the hit rates in each approach. Folds of improvement can be
understood as the number of times that the experimental efficiency improves by using a
predictor to filter unlikely hits and bring promising candidates to the top of the list.
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Supplementary Figure 7. Improvement of hit rates for the assays in the dataset. Each plot
corresponds to the results in one split of the 5-fold cross-validation experiment (see
Supplementary Figure 1). The points in the plots represent one assay predictor that uses one of
the three data modalities (CS, GE or MO) or combinations of them. Assay predictors with
AUROC > 0.7 are displayed in yellow and predictors with AUROC > 0.9 are displayed in purple.
Assay predictors with AUROC < 0.7 are not shown. The horizontal axis represents the baseline
hit rate, i.e., the proportion of compounds found to be hits in the set of tested compounds for an
assay (see Supplementary Figure 6). The vertical axis presents the folds of improvement of
assay predictions obtained with a machine learning predictor as a function of the baseline hit
rate. Accurate predictors (AUROC > 0.9) often offer improvements up to the theoretical
maximum (100% divided by the assay’s baseline hit rate), and higher-fold improvements are
only possible for assays with a lower baseline hit rate, i.e. with rare hits.
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Data fusion

Supplementary Figure 8. Architecture of early and late data fusion models. The early data
fusion model takes the three data modalities as input by obtaining features from each and then
concatenating their representations. The architecture is a multilayer perceptron with three fully
connected layers, 2,000 input features and 270 output predictions. The late data fusion model
has one multilayer perceptron with three fully connected layers independently for each data
modality. The three feature vectors are analyzed separately to produce 270 output probabilities
in each case, which are later aggregated with a max-pooling operator to reduce them into a
single vector of 270 assay predictions.
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Supplementary Table 1. Overall performance of profiling modalities and their combinations
presented in the columns of the tables. Early fusion refers to concatenation of feature vectors
before training predictive models, while late fusion refers to keeping the maximum prediction of
individual models (see Supplementary Figure 8). The tables present four performance metrics in
the rows: Mean AUPRC, mean AUROC, number of assays predicted with AUROC > 0.7, and
number of assays predicted with AUROC > 0.9. For each experiment, we obtain the mean and
standard deviation of the metric. In the case of the mean value for all metrics, higher numbers
indicate better performance. Late fusion yields the largest number of predictors with AUROC >
0.9 overall, and also for all combinations of descriptors.

Data modalities
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Supplementary Figure 9. Compound embeddings in three different feature spaces.
Visualization of the high-dimensional feature vectors of all compounds using UMAP projections
for the three data modalities used in this work. A) The morphology feature space originally was
grouped by technical variation (plate maps), which was corrected using the Typical Variation
Normalization (TVN) approach (see Methods) to report all experiments in the manuscript. The
color palette for the 94 plate maps is continuous and may have similar tones for consecutive
plates. B) Overview of the three feature spaces for all the 16,170 compounds included in the
evaluation. Note that chemical structures (CS), gene expression (GE), and morphology (MO), all
have very distinctive ways of organizing the signatures of compounds. While CS has many
diverse small clusters, GE presents a single cloud, and MO has a central cloud with some
medium clusters and branches. C) The same visualization as in B, but colored by clusters
obtained for cross-validation experiments (see Supplementary Table 2). We partitioned each
feature space using clustering to identify 5 groups for training and test splits. CS was split using
Bemis-Murcko clustering, which is based on scaffold similarity, while the corresponding UMAP
plot projects data points using the features of the full chemical structure (a different metric,
which explains why the colors don’t reveal scaffold clusters). GE and MO were split using
k-means clustering, with k=5 for cross-validation in simulated control experiments to determine
the influence of the data partition in the results (see Supplementary Table 2).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2020.12.15.422887doi: bioRxiv preprint 



Supplementary Table 2. Results of 5-fold cross-validation control experiments. The tables
present the mean results of 5-fold cross-validation experiments according to different data
partition policies (see Supplementary Figure 9). The scaffold-based splits reflect the real world
scenario more closely, while other split policies are useful as control experiments to identify
potential artifacts or biases in the data. For each data modality, we used two encoding versions
as follows: MO: original features and batch corrected (BC) features. GE: original features and
scaled (S) or renormalized features using the L1 norm. CS: graph convolutional (GC) features
and Morgan fingerprints (MF). We use as baseline the results of scaffold-based splits, which are
reported in the main text and were used to complete all the analysis in this work. Compared to
scaffold-based splits, gene expression and random splits yield slightly higher mean AUROC for
all other modalities, which confirms that separating training and test compounds randomly
makes the prediction problem easier while not being fully informative in a real setting.
Morphology splits decrease performance for all modalities, indicating that the k-means splitting
by morphology features (see Supplementary Figure 9) disrupts effective learning by bringing
together most compounds of certain assays into only one fold. This can be explained partially by
the presence of technical artifacts and by real biological signal that could not be entirely
separated with the adopted batch correction method. Finally, the difference in performance
between graph convolutional representations of chemical structures and Morgan fingerprints is
minor across all experiments. Graph convolutions (CS-GC) have slightly better performance in
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the real world setting, and comparable performance in other splits. We used GC across all the
reported experiments in the main manuscript.

Supplementary Figure 10. Distribution of compound similarities across training-test
splits. We computed the Tanimoto coefficient between Morgan fingerprints of all compounds in
the dataset and obtained the distribution of scores (B), which indicates that most compounds
are relatively equidistant to each other (consistent with Supplementary Figure 9C). After
scaffold-based splitting, this distribution is preserved in training and test partitions in all five folds
(A). No major distribution shift is observed with gene-expression splits (D), but two groups in the
morphology splits (split 2 and 4) show larger differences likely explained by confounded signal
between technical artifacts and biological effects (see Supplementary Table 2 and
Supplementary Figure 9).
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Assay data

Supplementary Figure 11. Distribution of assay readouts. The plot shows in the horizontal
axis assay identifiers sorted by readout count in decreasing order, and in the vertical axis the
count of available readouts for each assay. Readouts can be positive hits (red) or negatives
(blue). The circles in the plot indicate the readout count for specific assays in the distribution.
Assay readouts follow a long tail distribution, with more than half of the assays having less than
a few hundred readouts for training predictive models. Note that the ratio between hits and
negative compounds is very small in general (average hit ratio 2.5%).
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Supplementary Figure 12. Assay similarity. A) Matrix of assay similarities according to the
Jaccard similarity between the sets of positive hit compounds. This matrix presents all the
assays initially available for analysis (437). Groups of redundant assays were removed, defined
as those with Jaccard index above 0.7 (for more details see Methods: Assay readouts). B)
Illustration of the Jaccard similarity J(A,B) between two assays A and B. Each assay has a set
of positive hits and we compute the ratio of the intersection (hits in common) over the union
(count of all total hits) as a metric of similarity between assays. Assays that have many hits in
common are likely measuring the same biological activity, and were excluded from our analysis.
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Supplementary Figure 13. Groups of assays predicted by each modality. The matrix of
assay similarities is the same in the three cases: rows and columns are assays and the matrix
values are the Jaccard index between the set of hits from two assays. The matrices are
clustered in the rows and columns using hierarchical clustering to reveal groups of highly
correlated assays. The only difference between the matrices is the coloring pattern of the
left-hand side bar that indicates whether an assay is correctly predicted by the corresponding
modality (chemical structures (CS), morphology (MO), and gene expression (GE)) in any of the
cross-validation partitions (blue, red otherwise). This visualization is useful to reveal if the data
modalities have preference for making better predictions with certain groups of assays that may
have common biological activity. This result indicates that there are no major groups of
activation, although accurate predictors tend to be close to each other in the cluster map. The
dendrograms reveal a few assay clusters in the center of the matrices, and the visualization
indicates that each modality tends to make accurate predictions in different groups; the
accuracy patterns in the left of the matrices are different from modality to modality.

Supplementary Figure 14. Distribution of assay types as the performance threshold is
decreased. The assays used in our study can be one of the seven types listed in the right hand
side of the figure. A) Distribution of assays according to their type. B) Distribution of assays that
can be predicted with a minimum accuracy of 0.7 AUROC by each of the three data modalities.
C) Distribution of assays that can be predicted with a minimum accuracy of 0.9 AUROC by each
of the three data modalities. These distributions show that none of the modalities has a strong
preference for one type of assay, and that they can predict a diverse array of biological activity.
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Supplementary Table 3. Predicted assays by type at the performance thresholds. A)
Percentage of assays (out of 270 evaluated) that can be predicted by one modality or their
combinations (columns) at high accuracy (>0.9 AUROC) grouped by assay type (rows). B)
Same information as A but with an accuracy threshold of 0.7.
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