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ABSTRACT
This paper is related to the fluid forces prediction on a

rapidly moving circular cylinder in cylindrical confinement. The
Fritz model, which mainly assumes infinitesimal motions of the
inner cylinder in an inviscid fluid, is one of the simplest model
available in the scientific literature and is often used by design
engineers in the nuclear industry.

In this paper, simple non-linear expressions of fluid forces
are derived for the case of finite amplitude motions of the inner
cylinder. Assuming a potential flow, advection term and geomet-
rical deformations can be taken into account. The problem, for-
mulated as a boundary-perturbation problem, is solved thanks
to a regular expansion. The range of validity of the approximate
analytical solution thus obtained is theoretically discussed. The
results are also confronted to numerical simulations, which al-
lows to emphasize some limits and advantages of the analytical
approach.

NOMENCLATURE
(x,y)(ex,ey) Cartesian coordinates system.
(r,θ)(er ,eθ) Polar coordinates system.
ρ Fluid density.
C (t) Inner circular cylinder.
Ψ Parametric curbe ofC (t).
R1 Inner circular cylinder radius.
R2 Outer circular cylinder radius.

α Cylinder radius ratioR2/R1.

n Exact outward normal to inner cylinder.

n0, n1, n2 Approximate outward normals to the inner cylinder
respectively at leading order, first order and second
order.

e(t), ė(t), ë(t) Displacement, velocity and acceleration im-
posed to the inner circular cylinder.

ξ Ratio between the maximum displacement of the inner cylin-
deremaxand the radial clearanceR2−R1, ξ = emax/(r2−R1)

rc Exact inner circular position.

r0, r1, r2 Approximate inner circular cylinder positions at lead-
ing order, first order and second order.

u Local fluid velocity.

u0, u1, u2 Approximate velocity at leading order and velocity
rectification of first and second order.

p Local pressure.

p0, p1, p2 Approximate pressure at leading order, and first and
second order rectifications.

Φ Velocity potential.

Φ0, Φ1, Φ2 Approximate velocity potentials at leading order,
and first and second order rectifications.

ds Infinitesimal element of the curvilign abscissa ofC (t).
F (t) Integrated force on the inner cylinder.
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INTRODUCTION
Whenamoving body is submerged, it can experience strong

forces induced by the surrounding fluid. Since the body motion
modifies the fluid flow, and the fluid flow can modify the body
motion, this is a non-linear fluid/structure interaction problem.
Furthemore, the induced fluid forces are not only functions of
the whole history of the solid motion, which is sometimes deter-
mined, but also of the ambiant perturbation level. Hence, it can
be helpful to isolate physical phenomena in simple cases so as to
identify their influences. Once it is done, models may be built
and used to interpret real or numerical experiments. Moreover, if
they are validated, they can avoid the use of a numerical code to
solve the fluid domain in fluid/structure interaction problems.

This paper focuses on the fluid forces experienced by a
rapidly moving circular cylinder in a annular fluid region. The
motion is assumed radial, unidirectional and without rotation. It
is related to a study whose aim is to predict impulsive fluid loads
on naval components during a typical military shock. The sim-
plest and most currently used model available in the scientific lit-
terature related to this geometry is the Fritz one [1]. This model
makes the following assumptions:

(i) the flow is two-dimensional,
(ii) the flow is incompressible,
(iii) the fluid is initially at rest,
(iv) the fluid is inviscid,
(v) the advection termu ·∇u can be neglected,
(vi) the displacement imposed to the inner cylinder is very
small compared to its radius :e(t)/R1 << 1.

Assumptions (i) to (iv) are also made in this paper. (i) is valid
if the length of the cylinders is much longer than their radius, if
there is no axial flow and if the two-dimensional flow is stable
- or the effects of three-dimensional instabilities are negligible
in the forces compared to potential effects. Some cases where
hypothesis (ii) is not allowed are discussed in a companion paper
[2] and more generally in [3,4]. Hypothesis (iii) can be relaxed in
this study to an initially irrotational flow. Assumption (iv) is only
roughly valid if the inner cylinder displacements are sufficiently
small so that no separation occurs and if the motions are rapid
enough to produce boundary layers [5] whose thickness are much
thinner than the radial clearance and more specifically for high
numberωR2

1 (α−1)2/ν [4, 6]. This paper puts the focus on the
relaxation of (v) and (vi). Hence the advection term is taken into
account and the fluid force is expected to be valid, as it will be
seen later, when the relation(e(t)/R1)3 << 1 is satisfied, which
is less restrictive than that of (vi). Another way of thinking large
displacements effects can be found in [7,8].

In the first section the problem is formulated as a boundary-
perturbation problem [9] for the velocity potential and a regular
expansion method used to solve it analytically is exposed. The
resolution up to the second order is achieved in the second sec-
tion where the local pressure, velocity and integrated forces are

Figure 1. THEGEOMETRICALCONFIGURATION.

given. In the third section, these results are compared with those
obtained from a CFD code [10] based on a finite-volume dis-
cretization on a moving mesh. Some conclusions are given in
the last part.

PROBLEM FORMULATION
General equations

With assumptions (ii) and (iv) of the last section, the Navier-
Stokes equations governing the fluid motion are reduced to:

∂u
∂t

+(u ·∇)u = −1
ρ

∇p (1)

∇ ·u = 0 (2)

Sincethefluid is inviscid and the density is constant, the Kelvin
theorem1 can be used and provides the classical consequence:
an inviscid fluid initially irrotational remains irrotational at latter
times:

∇×u = 0 (3)

Hence, there exists a functionΦ, called the velocity potential,
such that:

u = ∇Φ (4)

Introducing it in Eqn. (2) gives the equation satisfied byΦ in the
fluid domain:

∇2Φ = 0 (5)

which is the Laplace equation. This derivation is classical and
can be found in all fluid dynamics books (see [11] for example).

1thecirculationonall closed material line is conserved [11].
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Since thefluid is assumed inviscid, only the normal component
of the velocity has to be conserved on the solid boundaries. For
the geometry of interest in this paper (see Fig. 1), the boundary
conditions in term of velocity potentiel are:

∇Φ ·n = 0 on the fixed outer cylinder (6)

∇Φ ·n = ė(t)ex ·n on the moving inner cylinder (7)

In order to make this problem analytically tractable, the inner
cylinder position and the unit outward normaln have to be ex-
pressed in explicit terms in Eqn. (7). This is done in the following
subsection.

Geometrical considerations

By considering the triangleOO′A in Fig. 1, it is straightfor-
ward to find that the inner circular cylinder positionrc satisfies
the following relation:

R2
1 = r2

c +e2(t)−2rce(t)cosθ (8)

Since we are interested by motions of the inner cylinder much
smaller than its radius, the physical solution of Eqn. (8) is:

rc(θ, t) = e(t)cosθ+R1

√
1− e2(t)

R2
1

sin2 θ (9)

This is thepolar equation of the inner cylinderC (t). Expanding
the square root in terms of series gives

rc(θ, t) = R1

(
1+cosθ

e(t)
R1

(10)

+
∞

∑
n=1

(−1)n (sinθ)2n 1
n!

n−1

∏
k=0

(
1
2
−k

)(
e(t)
R1

)2n
)

which always converges for|e(t)/R1| < 1. Thanks to this for-
mula, we define approximate positions of the inner cylinder:

r0(θ) = R1 (11)

r1(θ) = R1

(
1+cosθ

e(t)
R1

)
(12)

r2(θ) = R1

(
1+cosθ

e(t)
R1

− 1
2

sin2 θ
(

e(t)
R1

)2
)

(13)

TheboundaryconditionEqn. (7) will be expressed thanks to this
formula. r0 is used in the Fritz model and is the leading order
approximation of Eqn. (10).r1 andr2, respectivily the first and
second order approximations of Eqn. (10), will be used to locate
C (t) in the first order and second order models. It is also of
interest to write in explict terms the unit outward normaln on
the moving inner cylinder. We consider for this the parametric
curveΨ of C (t) which is defined by:

C (t) : θ 7→Ψ(θ) = O + rc(θ, t)er (θ, t) (14)

whereO is the centre of the outer cylinder. The unit tangentT to
C (t) at the positionθ is given by:

T(θ) =
Ψ′(θ)
‖Ψ′(θ)‖ (15)

whereΨ′(θ) and‖Ψ′(θ)‖ canbewritten:

Ψ′(θ) = r ′c(θ)er + rc(θ)eθ (16)

‖Ψ′(θ)‖ =
√

r ′2c (θ)+ r2
c(θ) (17)

andwhere the prime denotes derivative according toθ. The unit
normaln which is orthogonal toT can then be evaluated thanks
to Eqns. (11-16). Its truncation at the leading, first and second
orders are respectively:

n0(θ) =
1

‖Ψ′(θ)‖ (R1cosθ ex +R1sinθ ey) (18)

n1(θ) =
1

‖Ψ′(θ)‖ (R1cosθ+e(t)cos2θ)ex (19)

+
1

‖Ψ′(θ)‖ (R1sinθ+e(t)sin2θ)ey

n2(θ) =
1

‖Ψ′(θ)‖
((

R1− 3
8

e2(t)
R1

)
cosθ (20)

+ e(t)cos2θ+
3
8

e2(t)
R1

cos3θ
)

ex

+
1

‖Ψ′(θ)‖
((

R1− 3
8

e2(t)
R1

)
sinθ

+ e(t)sin2θ+
3
8

e2(t)
R1

sin3θ
)

ey

In order to evaluate the fluid forces on the inner cylinder, the
knowledge ofnds is also required.ds is an infinitesimal element
of the curviligne abscissa ofC (t) and is given by the formula:

ds=‖Ψ′(θ)‖ dθ (21)

Hence the expression ofnds can be directly deduced from
Eqns. (18,19,20).

Resolution method
Equations (5,6,7) governing the velocity potential can be

rewritten in polar coordinates to give:

∂2Φ
∂r2 +

1
r

∂Φ
∂r

+
1
r2

∂2Φ
∂θ2 = 0 (22)

in thefluid domain(r,θ) ∈]rc(θ),R2[×[0,2π[ and:

∂Φ
∂r

(R2,θ) = 0 (23)

∇Φ(rc,θ) ·n(rc,θ) = ė(t)ex ·n(rc,θ) (24)

on the boundaries. Hence the system of equations to solve is a
laplacian with Neumann boundary condition on the outer cylin-
der. A difficulty arises from the boundary condition on the inner
cylinder sincerc andn are functions ofθ andt. Since there is
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no differentiationwith time in this system,t is only a parameter.
The problem is tackled with a boundary-perturbation method [9]
thanks to a regular expansion. Equation (24) is seen as the ex-
treme boundary condition in the following family of boundary
conditions:

∇Φ(rn(θ),θ) ·n(rn(θ),θ) = ė(t)ex ·n(rn(θ),θ) (25)

wherern(θ) takes the form:

rn(θ) =
n

∑
p=0

Ap εp (26)

and satisfies:

lim
n7→∞

rn(θ) = rc(θ). (27)

The perturbation parameterε is in our casee(t)/R1 and the coef-
ficientsAp can be identified by considering Eqn. (10). Perform-
ing a Taylor expansion of Eqn (24) aboutR1 and using the de-
composition Eqn. (26) allow to turn the original problem into an
equivalent one. We can now divide the problem into a sequence
of problems where we can separately find the functionsΦ0, Φ1,
Φ2 ... in the desired solution:

Φ =
∞

∑
n=0

(
e(t)
R1

)n

Φn (28)

If theperturbationparameter is sufficiently small, the serie will
converge rapidly and few terms will be sufficient to provide a
good approximation of the solution. In this paper, only the main
order Φ0, first orderΦ1 and second orderΦ2 approximations
are found. Hence the solution is expected to be valid in cases
where(e(t)/R1)3 << 1. Once the velocity potential is found,
the velocity distribution is written thanks to Eqn. (4). In order to
obtain the pressure in the fluid domain, Eqn. (1) is rewritten after
elementary manipulations [11]:

∇p =−ρ
∂u
∂t
−ρ

[
∇

(
u2

2

)
−u× (∇×u)

]
(29)

Taking into account Eqn. (3) and integrating the resulting for-
mula in space coordinates gives the following expression for the
pressure:

p(r,θ) =−ρ
∂Φ
∂t

(r,θ)−ρ
1
2

u2(r,θ)+C (30)

whereC is aconstant available in the whole fluid domain and will
be taken as null in the following. This formula is the classical
generalized Bernoulli equation. Since the flow is supposed invis-
cid, integrated fluid forces on the moving inner circular cylinder
are given by:

F (t) =−
∫ 2π

0
p(r(θ)) ¯̄I ·n(θ) ‖Ψ′(θ)‖ dθ (31)

where¯̄I is the identity matrix. In the next section, the problem is
analytically solved at the leading, first and second orders.

Approximate analytical solution

Leading-order resolution

In this model, boundary condition Eqn. (24) is expressed
with the leading-order approximations ofrc andn given respec-
tively by Eqn. (11) and Eqn. (18). In this case, the leading-order
solutionΦ0 satisfies the following problem:

∂2Φ0

∂r2 +
1
r

∂Φ0

∂r
+

1
r2

∂2Φ0

∂θ2 = 0 (32)

for (r,θ) ∈]R1,R2[×[0,2π[, with thesimplified boundary condi-
tions:

∂Φ0

∂r
(R2,θ) = 0 (33)

∂Φ0

∂r
(r0,θ) = ė(t)cosθ (34)

for θ ∈ [0,2π[. Hence, this problem consists in solving a Lapla-
cian with Neumann boundary conditions in an annular geometry
and has been solved by Fritz [1] for example. The main steps are
repeated here for completeness. Since the problem is elliptic, we
search a solution by the method of separation of variables in the
form:

Φ0(r,θ) = Φr(r)Φθ(θ) (35)

Introducing it in Eqn. (32) and noting that Eqns. (32,33,34) are
invariant under the transformations:

(r,θ,Φ0) 7→ (r,θ+2π,Φ0) (36)

(r,θ,Φ0) 7→ (r,−θ,Φ0), (37)

the solution has the form:

Φ0(r,θ) =
∞

∑
n=1

((
Anrn +Bnr−n)cos(nθ)

)
+A0 ln r +B0 (38)

The coefficientsAn and Bn are determined with the boundary
conditions and the leading-order solution arises:

Φ0(r,θ) =− 1
α2−1

(
r +

R2
2

r

)
ė(t)cosθ+B0 (39)

The correspondingvelocity field u0 is found by putting the
decomposition Eqn. (28) into Eqn. (4) and keeping only the
leading-order term. Writingu0 = ur0er +uθ0eθ, it gives:

ur0(r,θ) =
1

α2−1

(
R2

2

r2 −1

)
ė(t)cosθ (40)

uθ0(r,θ) =
1

α2−1

(
R2

2

r2 +1

)
ė(t)sinθ (41)

Introducingthe decompositionEqn. (28) in Eqn. (30) allows to
express the leading-order pressure in the fluid domain:

p0(r,θ) =−ρ
∂
∂t

Φ0−ρ
u0

2

2
(42)
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With theabove expressions for the potential and the velocity, the
pressure is fully determined and can be written:

p0(r,θ) = ρë(t)
1

α2−1

(
R2

2

r
+ r

)
cosθ (43)

− ρė2(t)
1

(α2−1)2

[
1
2

(
R4

2

r4 +1

)
− R2

2

r2 cos2θ
]

At this order, the local pressure on the moving inner cylinder is
evaluated atrc(θ) = r0 (see Eqn. (11)) which gives:

p0(R1,θ) = ρë(t)R1
α2 +1
α2−1

cosθ (44)

− ρė2(t)
1

(α2−1)2

(
1
2

(
α4 +1

)−α2cos2θ
)

This differs from the expression of Fritz [1] in which the second
term of the right hand side in the above equation does not appear.
Integrated forces at the leading order on the inner cylinder can be
expressed thanks to Eqns. (31,18) and take the form:

F0(t) =−
∫ 2π

0
p0(R1,θ)R1cosθ dθ ex (45)

With the pressure given in Eqn. (44), the fluid forces are fully
determined:

F0(t) =−ρπR2
1

α2 +1
α2−1

ë(t)ex (46)

This is exactly the expression given by the Fritz model. It can be
inferred that even if the advection term modifies the local pres-
sure on the moving cylinder, integrated forces are not influenced
by it at the leading-order. In the following subsection, it will be
shown that it nevertheless changes integrated forces at the next
order.

First order resolution

At this order, the boundary condition on the moving in-
ner circular cylinder Eqn. (24) is expressed atrc ≈ r1 (given in
Eqn. (12)) and the unit normaln is approximated byn1 (given in
Eqn. (19)). Flow quantities are truncated at the first order. Using
Taylor series expansions, the boundary condition on the moving
cylinder becomes:

∂Φ
∂r

(R1,θ)+
e(t)
R1

f (Φ,R1,θ) = ė(t)cosθ+
e(t)
R1

ė(t)cos2θ (47)

where f (Φ,R1,θ) = cosθ
∂Φ
∂r

(R1,θ)+R1cosθ
∂2Φ
∂r2 (R1,θ)

+
sinθ
R1

∂Φ
∂θ

(R1,θ)

In accordancewith the pertubation method, we search a function
Φ1 such as:

Φ = Φ0 +
e(t)
R1

Φ1 +O
(

e2(t)
R2

1

)
(48)

Introducingthisdecompositionin Eqn. (47) and keeping in mind
the problem solved byΦ0 in the previous subsection, the bound-
ary condition forΦ1 at the inner cylinder is fully determined.
After some manipulations it gives:

∂Φ1

∂r
(R1,θ) =

2α2

α2−1
ė(t)cos2θ (49)

TheequationgoverningΦ1 in the fluid domain and the boundary
condition on the outer cylinder are found by putting Eqn. (48) in
Eqns. (22,23) which results in:

∂2Φ1

∂r2 +
1
r

∂Φ1

∂r
+

1
r2

∂2Φ1

∂θ2 = 0 (50)

for (r,θ) ∈]R1,R2[×[0,2π[ and:

∂Φ1

∂r
(R2,θ) = 0 (51)

on theouter cylinder. Hence, the problem to solve forΦ1 is
again a laplacian in an annular region with Neumann boundary
conditions. The solution is found with exactly the same method
as that used for the leading-order problem and can be written:

Φ1(r,θ) =
−α2

(α2−1)(α4−1)
ė(t)

R2
2

R1

(
r2

R2
2

+
R2

2

r2

)
cos2θ (52)

Thecorrespondingfirst order velocity and pressure rectifications
u1 andp1 defined such that:

u = u0 +
e(t)
R1

u1 +O
(

e2(t)
R2

1

)
(53)

p = p0 +
e(t)
R1

p1 +O
(

e2(t)
R2

1

)
(54)

arerespectively found by introducing Eqn. (48) in Eqn. (4) and
in Eqn. (30), which gives:

u1 = ∇Φ1 (55)

p1 = −ρ
∂
∂t

Φ1−ρu0 ·u1 (56)

Hence,in explicit terms, the velocity in radial coordinates and
the pressure take the form:

ur1(r,θ) =
2α2

(α2−1)(α4−1)

(
R4

2

R1r3 −
r

R1

)
ė(t)cos2θ (57)

uθ1(r,θ) =
2α2

(α2−1)(α4−1)

(
R4

2

R1r3 +
r

R1

)
ė(t)sin2θ (58)

p1 (r,θ) =
α2

(α2−1)(α4−1)
R2

2

R1

(
r2

R2
2

+
R2

2

r2

)
ρë(t)cos2θ

+
2α2

(α2−1)2 (α4−1)
ρė2(t) (59)

×
[(

R2
2

R1r
+

R4
2

R1r3

)
cos3θ −

(
R6

2

R1r5 +
r

R1

)
cosθ

]

Thelocalpressureon the moving inner cylinder can be found by
performing a Taylor expansion ofp(r1(θ)) aboutR1, inserting

5



Eqn. (54)in the resulting decomposition and keeping terms of
order one. It gives in function ofp0 andp1 and their derivatives:

p(r1(θ)) = p0(R1,θ) (60)

+
e(t)
R1

(
p1(R1)+R1cosθ

∂p0

∂r
(R1,θ)

)
+O

(
e2(t)
R2

1

)

whichcanbeexplicitly written thanks to Eqns. (44,59):

p(r1(θ)) = ρë(t)R1
α2 +1
α2−1

cosθ (61)

− ρė2(t)
1

(α2−1)2

(
1
2

(
α4 +1

)−α2cos2θ
)

+
e(t)
R1

{
ρë(t)R1

[
−1

2
+

(
α2

(
α4 +1

)

(α2−1)(α4−1)
− 1

2

)
cos2θ

]}

+
e(t)
R1

(
ρė2(t)

α2
(
α2

(
α2 +2

)
+1

)

(α2−1)2 (α4−1)
(cos(3θ)−cosθ)

)

Integrating the above formula on the moving cylinder with
Eqns. (31,19) gives the following global fluid forces:

F (t) = −ρπR2
1

α2 +1
α2−1

ë(t)ex (62)

+ ρπe(t)ė2(t)
2α2

(
α2 +1

)

(α2−1)2 (α4−1)
ex +O

(
e(t)
R1

)2

A new term has appeared in the right hand side of the above
formula. It can be inferred that the advection term which does
not influence the fluid force at the leading-order (see Eqn. (46)),
modify the global force at the first order. In the following sub-
section, the governing equations are solved at the second order.

Second order resolution

The boundary condition on the moving cylinder Eqn. (24) is
expressed atrc ≈ r2 (given in Eqn. (13)) with the approximate
unit normaln2 (see Eqn. (20)). Flow quantities are truncated at
the second order, neglecting the terms of order(e(t)/R1)3 and
higher. Then the following decomposition:

Φ = Φ0 +
e(t)
R1

Φ1 +
e2(t)
R2

1

Φ2 +O
(

e3(t)
R3

1

)
(63)

is introducedin the boundary condition. Lastly, the resulting for-
mula is expanded in Taylor series aboutR1. This provides the
boundary condition for the second order rectification potentiel
Φ2, expressed with the known functionΦ0, Φ1 and their deriva-
tives. After some manipulations, the boundary conditions forΦ2

can be explicitly written as:

∂Φ2

∂r
(R1,θ) =

2α2

(α2−1)(α4−1)
ė(t)cosθ (64)

+
3α2

(
α4 +1

)

(α2−1)(α4−1)
ė(t)cos3θ

Equations satisfied byΦ2 in the fluid domain and at the outer
cylinder are found with the same method as that used in the pre-
vious subsection and consist once again of a laplacian with Neu-
mann boundary conditions:

∂2Φ2

∂r2 +
1
r

∂Φ2

∂r
+

1
r2

∂2Φ2

∂θ2 = 0 (65)

for (r,θ) ∈]R1,R2[×[0,2π[ and:

∂Φ2

∂r
(R2,θ) = 0 (66)

Sotheproblem forΦ2 consists in solving Eqns. (65,66,64) which
have exactly the same form as the problems forΦ0 andΦ1. It
gives with the same method:

Φ2 (r,θ) = −ė(t)
2α2

(α2−1)2 (α4−1)

(
r +

R2
2

r

)
cosθ (67)

−ė(t)
α2

(
α4 +1

)

(α2−1)(α4−1)(α6−1)
1

R2
1

(
r3 +

R6
2

r3

)
cos3θ

Thecorresponding second order velocity and pressure rectifica-
tionsu2 andp2 defined such that:

u = u0 +
e(t)
R1

u1 +
e2(t)
R2

1

u2 +O
(

e3(t)
R3

1

)
(68)

p = p0 +
e(t)
R1

p1 +
e2(t)
R2

1

p2 +O
(

e3(t)
R3

1

)
(69)

arefoundby introducing Eqn. (63) in Eqn. (4) and in Eqn. (30)
which results in:

u2 = ∇Φ2 (70)

p2 = −ρ
∂
∂t

Φ2− ρ
2

(
u1

2 +2u0 ·u2
)

(71)
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So they can be written explicitly:

ur2(r,θ) = ė(t)
2α2

(α2−1)2 (α4−1)

(
R2

2

r2 −1

)
cosθ (72)

+ ė(t)
3α2

(
α4 +1

)

(α2−1)(α4−1)(α6−1)
1

R2
1

(
R6

2

r4 − r2
)

cos3θ

uθ2(r,θ) = ė(t)
2α2

(α2−1)2 (α4−1)

(
R2

2

r2 +1

)
sinθ (73)

+ ė(t)
3α2

(
α4 +1

)

(α2−1)(α4−1)(α6−1)
1

R2
1

(
R6

2

r4 + r2
)

sin3θ

p2 (r,θ) = ρë(t)R1
α2

(α2−1)(α4−1)
A(r,θ) (74)

− ρė2(t)
α2

(α2−1)2 (α4−1)
B(r,θ)

whereA(r,θ) andB(r,θ) aregiven by:

A(r,θ) =
2

α2−1

(
r

R1
+

R2
2

R1r

)
cosθ

+
α4 +1
α6−1

(
r3

R3
1

+
R6

2

R3
1r3

)
cos3θ

B(r,θ) =
2α2

α4−1

(
R8

2

R2
1r6

+
r2

R2
1

− 2R4
2

R2
1r2

cos4θ
)

+
2

α2−1

(
R4

2

r4 +1−2
R2

2

r2 cos2θ
)

+
3
(
α4 +1

)

α6−1

(
R8

2

R2
1r6

+
r2

R2
1

−
(

α2 +
R2

6

R2
1r4

)
cos6θ

)

The local pressure until the second order, on the moving inner
cylinder, can then be written by performing Taylor series expan-
sions of the pressurep(r2(θ)) aboutR1, which results in:

p(r2(θ)) = p0(R1,θ)+
e(t)
R1

(
p1(R1,θ)+R1cosθ

∂p0

∂r
(R1,θ)

)

+
e2(t)
R2

1

(
p2(R1,θ)+R1cosθ

∂p1

∂r
(R1,θ) (75)

− R1

2
sin2 θ

∂p0

∂r
(R1,θ)+

R2
1

2
cos2 θ

∂2p0

∂r2 (R1,θ)
)

The functions ofthe right hand side are all known, so the local
pressure until the second order is fully determined. Expressing
explicitly each term of the above formula and integrating the re-
sulting equation with Eqns. (31,20) give the integrated forces up

to the second order:

F (t) = −ρπR2
1ë(t)

α2 +1
α2−1

ex (76)

+ ρπe(t)ė2(t)
2α2

(
α2 +1

)

(α2−1)2 (α4−1)
ex

− ρπe2(t)ë(t)
4α4

(α2−1)2 (α4−1)
ex +O

(
e(t)
R1

)3

A new term appears. It can be seen as a non linear rectification of
the added mass coefficient. Validity and limits of this fluid forces
expression are compared with numerical simulation results in the
next section.

Comparaison of the results with numerical simulations
Comparaisons of the analytical results are performed with a

CFD code [10] based on a second-order finite volume discretiza-
tion scheme. The Navier-Stokes equations are written in their
general conservative form [12] with an arbitrary lagrangian eu-
lerian formulation [13]. Hence moving boundaries can be taken
into account. The PISO algorithm [14] is used to handle the cou-
pling between pressure and velocity. The analytical model will
be only tested on its ability to take advection term and geomet-
rical deformation effects into account. Introduction of the fluid
viscosity is the topic of a work currently in progress and will be
the subject of a future paper. So it will not be considered here.

In order to compare the results issued from numerical simu-
lations with the simple models developped in this paper, a sinu-
soidal motion of periodT is imposed on the inner cylinder. Since
the fluid is assumed inviscid, there is no history effect [4] and this
motion can be considered without loss of generality. Three con-
finements are investigated:α = 1.1, α = 1.5 andα = 2. For each
confinement, nine cases are computed (fromξ = 0,1 to ξ = 0,9)
so as to investigate the influence of large displacements in regards
to the radial clearance. For each case, the numerical results have
been checked to be independent of mesh refinements.

The maximum integrated forces are compared to those pre-
dicted by the Fritz model (which corresponds to the leading-
order formula Eqn. (46)) and the second order model (given in
Eqn. (76)). The results are summarized in Fig. 2. As expected,
the models are all the more valid asξ is small, i.e. as the inner
cylinder displacement is small compared to the radial clearance.
Furthemore, at a givenξ, they are more accurate for small values
of α. It is also an expected result since the perturbation param-
eterε = e(t)/R1 which have been used to construct the models
is all the smaller asα tends to unity. Of course, this argument is
only true as long as the inviscid hypothesis holds, i.e. as long as
the distance between the boundary layers of the inner and outer
cylinder is large enough

√
ν/ω << R2−R1 andmore specifi-

cally ωR2
1 (α−1)2/ν >> 1 [6]. These figures also show that the

second order model gives better prediction than the Fritz one.
The differences between the numerical code and the second or-
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(a)

(b)

Figure 2. COMPARISONS BETWEEN THE MAXIMUM
FORCES FOUND BY NUMERICAL SIMULATIONS WITH
THE FRITZ MODEL (a) AND WITH THE SECOND ORDER
MODEL (b).

der model are all under 3% untilξ = 0.6 whereas they are at
more than 11% for the Fritz model at the sameξ. For the highest
ξ achieved in this paper (ξ= 0.9), the differences are less than
25% for the second order model, whereas they are more than
40% for the Fritz model.

In order to gain some insight into the integrated fluid forces,
it is fruitful to display their time history on a whole period. We
will specialy consider the caseα = 2 for illustration but the same
phenomena occur forα = 1.5 andα = 1.1. The results for differ-
entξ (0.1, 0.6 and 0.9) are shown in Fig. 3. For small amplitudes
of the inner cylinder (ξ = 0.1), the fluid forces predicted by the
Fritz model, the second order model and the numerical simula-
tion are the same at each time (see Fig. 3(a)). Increasingξ, both
the second order model and the numerical simulation predict big-
ger maximum forces than the Fritz model, as it was already men-

(a)

(b)

(c)

Figure 3. DIMENSIONLESSTIME HISTORY FLUID FORCES
FORα = 2 IN CASESξ = 0.1 (a), ξ = 0.6 (b) andξ = 0.9 (c).
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tioned. However a net difference can be seen: the second or-
der model is for each time bigger than the Fritz model, whereas
numerical simulations predict smaller forces during parts of the
oscillation. Furthemore the time history contains two inflection
points in each semi-period]0,T/2[, ]T/2,T[, which are not pre-
dicted by neither the Fritz model nor the second order one. This
behaviour is all the more pronounced asξ tends to 1 (as shown in
Fig. 3(b)(c)) and has been already described in [15]. The follow-
ing physical interpretation is proposed. Once the inner cylinder
is subjected to an imposed motion, the fluid in front of it is sent
back and a significant part finally push it (see Fig. 4(a)). The re-
sulting force is then lower (see Fig. 3(c) att ≈ 0,12) that the one
obtained with the Fritz and second order models, which are not
able to reproduce properly this coupled advection/geometrical
deformation effect. When the inner cylinder approaches more
closely the outer one, this phenomenon is relaxed since the fluid
amount sent back is lower and distributed on a larger area (see
Fig. 4(b)). Moreover, the fluid particules in the squeeze film are
all the more accelerated as the cylinders are closed, which results
in a force increase (see Fig. 3(c) att ≈ 0,25) as in the case of a
body falling to a wall [16,17].

Conclusions
Extensions of the Fritz model are performed by taking ad-

vection terms and the geometrical deformations induced by the
inner circular cylinder movement into account. Approximated
analytical solutions are found with a regular expansion per-
formed until the second order on boundary-perturbation problem.
At the leading-order, the advection term influences the local pres-
sure on the moving inner cylinder, but not the integrated force,
which can help to explain why the Fritz model, which consists in
a pure added mass term, is accurate for small amplitude motions.
At the first order, the advection term influences the fluid force and
no term in the form(e(t)/R1)ë(t) is found. At the second order
the geometrical deformation gives rise to a non linear modifica-
tion of the added mass and no term in the form(e2(t)/R2

1)ė
2(t)

appears. The resulting fluid forces are then compared to numer-
ical simulation predictions performed with a code able to take
into account moving fluid domains. The second order model is
shown to be more efficient than the Fritz model, specialy for high
geometrical deformation. Nevertheless these two models are not
able to reproduce strongly non linear potential effects found with
the numerical simulations for high inner cylinder displacements.
For ξ lower than 0,6, the differences between the Fritz and sec-
ond order models are well below the incertainties on the input
data in impulsive load analysis and these models are sufficient
to have an idea about the forces level. However for higherξ,
these effects could influence the dynamical behaviour in fluid-
structure interaction problems, and could prevent engineers from
performing accurate prediction in case of shock or seismic load-
ing. Hence further investigations need to be done so as to make
this phenomenon more understandable. Moreover, future exten-

(a)

(b)

Figure 4. COUPLED ADVECTION/GEOMETRICAL DEFOR-
MATION EFFECTS FOR SMALL (a) AND HIGH (b) AMPLI-
TUDE MOTIONS

sions of the presented work would include viscous effects in or-
der to characterize the damping term in the fluid forces.
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