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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Energy release rate of small cracks under finite 
multiaxial straining

M. Aït-Bachir & E. Verron
Institut de Recherche en Génie Civil et Mécanique UMR CNRS 6183, 
École Centrale de Nantes, Nantes Cedex, France

W.V. Mars
Cooper Tire and Rubber Company, Findlay, USA

ABSTRACT: The energy release rate of small cracks governs fatigue crack nucleation. A method is 
presented here to efficiently and accurately evaluate the energy release rate of such cracks, arbitrarily 
oriented, under general conditions of finite multiaxial loading. As a motivation, the dependence on crack 
length is then investigated. It is demonstrated that the energy release rate of small cracks is proportional 
to the crack length and that the proportionality factor is a function of the far-field parameters only. An 
attempt is then made to search for a general expression of this proportionality factor under simple load-
ing conditions.

1 INTRODUCTION

Studies carried out in the recent years have 
brought to light the physical phenomena gov-
erning fatigue life of  rubber (Cam et al. 2004; 
Le Gorju 2007). It turns out to be driven by the 
growth of  small cavities transforming then into 
small cracks and propagating throughout the 
material up to a critical size that leads to a major 
loss of  material properties. The propagation of 
these small cracks represents the main stage of 
fatigue life.

Regarding small crack growth prediction two 
distinct approaches are usually considered. The 
crack initiation approach is based on the evaluation 
of the mechanical fields of a crack-free material in 
order to study how a small flaw would propagate 
when subjected to these mechanical  conditions; 
this approach lies thus within the framework 
of continuum mechanics. Some predictors have 
already been developed to predict crack initiation 
(Mars 2002; Verron and Andriyana 2008). To the 
contrary, the crack propagation approach studies 
the propagation of an existing small crack embed-
ded in the material (Gent et al. 1964; Lake and 
Lindley 1965).

Actually, in some simple cases it is possible to 
reconcile these two approaches. Indeed, consider-
ing a small crack of length c under plane stress 
uniaxial tension, Rivlin and Thomas have been 

able to factorize the energy release rate T (Rivlin 
and Thomas 1953):

T = 2kWc (1)

where W stands for the strain energy  density 
of  the far-field region and k is a factor that 
depends only on the far-field loading conditions. 
This result has later been extended to both pure 
shear and equibiaxial tension (Yeoh 2002). Thus, 
it turns out that for a small crack subjected to 
simple loading conditions, the energy release rate 
is proportional to the crack length and the pro-
portionality factor is a function of  the far-field 
parameters only.

In this paper we aim at developping a method 
to easily estimate the energy relase rate of small 
cracks under arbitrary plane stress loading con-
ditions and then at investigating the factorization 
of the energy release rate with respect to the crack 
length.

2 METHODS

2.1 A simple tool to model a small crack under 
arbitrary loading conditions

A method is needed first to model a small crack, 
arbitrarily oriented, under general conditions of 
far-field multiaxial loading.
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2.1.1 Present definition of a small crack
In order to define the concept of  small crack we 
introduce first the notion of  “boundary” as a 
 circular region drawn around the crack, on which 
we compare solutions for the “body” and the 
“crack neighbourhood” (see Figure 1):

• “body” refers to the solution obtained for a
deformed body without considering the effects
of a crack. As we move away form the edge, the
gradients induced by edge effects get smaller
and imply an upper limit on the size of the
“boundary”.

• “crack neighbourhood” refers to the solution
obtained for a crack embedded in an infinite
medium, with specified far-field loading con-
ditions. As we move away from the crack, the
gradients induced by the crack get smaller
and imply a lower limit on the size of  the
“boundary”.

A crack is then said to be small when one can
draw a boundary around it such that the solution 
on the boundary, in both the “body” and in the 
“crack neighbourhood”, is constant to within a 
given tolerance.

Note here that this definition is very general 
because edge effect is considered. However, in the 
present study, the body is made up of an isotropic 
hyperelastic material and is subjected to multiaxial 
homogeneous loading conditions; thus gradients 
of the mechanical fields in the body are nul. The 
body-crack neighbourhood boundary is then cho-
sen at a location where gradients tend to zero.

2.1.2 Modelling boundary displacements under 
plane stress multiaxial straining

The small crack assumption permits us to impose the 
far-field state of stress directly via the  displacement 
at the boundary. Indeed, except in a very small 
region around the crack, the stress and strain fields 
are homogeneous and are the same as in the crack-
free model for which the analytical expressions of 
strain and stress fields along with the strain energy 
density are  completely known.

The original model consists of a small through-
crack with orientation θ (in the undeformed 
configuration) under a far-field equibiaxial strain-
ing (λ1, λ2) in the frame of reference ( , )e e

� �
1 2  

(see Figure 2). Throughout the deformation the 
crack rotates and ends up with an orientation ψ 
with respect to its orientation in the undeformed 
configuration. The problem with this method is 
that a new geometry is required whenever the crack 
orientation θ is to be changed.

However, from the perspective of the crack, 
changing the crack orientation boils down to chang-
ing the far-field loading (or equivalently the far-field 
straining) (see Figure 3). Thus, by performing first 
a change of basis and then a pull-back to maintain 
the crack orientation fixed throughout the deforma-
tion, we can express the associated far-field strain in 
the crack-based frame and capture the same range 
of conditions with a single FE model. Moreover, no 
restriction is made on the geometry of the far-field 
boundary which requires working out a very gen-
eral expression of the displacement to be imposed 
to a node at the boundary. In order to conven-
iently study the effect of biaxiality, far-field load-
ing parameters (λ1, λ2) are replaced by (λ, B) with 
λ2 = λ and λ1 = λB. Thus B = log λ2/log λ1 quantifies 
the biaxiality and can be called the biaxiality 

Figure 1. Body (whitish grey), crack neighbourhood 
(dark grey) and boundary (grey).

Figure 2. Small through-crack under finite biaxial 
straining with arbitrary orientation.
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 factor (Mars 2002). The relationship between the 
 undeformed  coordinates (X, Y) and the deformed 
coordinates (X′, Y′) of a point P in the crack-based 
frame ( , )′ ′e e1 2

�� ���
 (see Figure 2) under the far-field load-

ing conditions described above is given by:
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where
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and

R( )
cos sin
sin cos

ψ
ψ ψ
ψ ψ

=
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⎞
⎠⎟

(4)

It should be pointed out that the implementa-
tion of the previous calculation (Eq. 2) and fur-
ther computations carried out in this study were all 
obtained with the finite element software Abaqus 
in which the displacement of a node at the far-field 
boundary was imposed via a DISP subroutine.

2.2 Basic validations 

First we have validated the calculations described 
in 2.1.2 by verifying that a crack-free model gives 
homogeneous loading for all B, λ and θ.

We then focused our attention on the “small 
crack” requirement. Indeed, far from the crack, 
it is desired to get a homogeneous stress field. This 
condition can never be met rigorously because of 
the finite dimension of the model and the pres-
ence of the crack. However, on using the method 
presented in section 2.1.1 a criterion was set to 

check accuracy of the approximation. The latter 
was considered acceptable when the relative error 
on the far-field stress when compared to the crack 
free model was less than 1%. From the experience 
a crack length 40 times smaller than the dimension 
of the model fits well into this criterion.

Note here that an additional satisfactory way to 
validate the calculations is to compare the energy 
release rate computed by Abaqus (J-integral) with 
the fracture mechanics solutions and from some 
studies carried out in finite strain (Yeoh 2002).

2.3 Energy release rates of small cracks 
and their factorization

It is first desired to develop a method that ena-
bles us to capture the influence of the presence of 
a small crack on the variation of the mechanical 
fields in the crack neighbourhood and that reveals 
how that variation makes up for the energy release 
rate. Using this method, the factorization of the lat-
ter with respect to the crack length is then investi-
gated. Finally, on the basis of the numerical results 
obtained via finite element analysis, we examine 
the dependence of the energy release rate of small 
cracks on the farfield parameters B, λ and θ.

2.3.1 J-integral
The J-integral represents a way to calculate the 
energy release rate. It was first introduced within the 
framework of planar small strain as a contour path 
integral around the crack tip (Rice 1968). Thereaf-
ter, it was extended to planar finite strain. Indeed, 
on considering a contour Γ surrounding the crack 
tip and leaning on both faces of the crack in the 
undeformed configuration, the J-integral writes:

J q NdS= ⋅ ∑∫� ���
Γ

(5)

where ∑ stands for the Eshelby stress tensor, q→ is 
the crack direction vector and N

→
 is the outward 

normal vector to the surface element dS in the 
under formed configuration.

We remind the reader that, for an elastic mate-
rial, the J-integral is path-independent which 
permits the arbitrary choice of the contour sur-
rounding the crack tip to calculate the energy 
release rate (Rice 1968). For the sake of simplic-
ity, the far-field Eshelby stress tensor is denoted ∑∞ 
throughout the rest of this paper.

Let us focus now our attention on the contour. 
A rectangular contour of characteristic dimen-
sion R has been chosen (see Figure 4). On choos-
ing R such that R/c → ∞ the evaluation gets highly 
simplified (see Table 1). Indeed, ΓA, ΓB and ΓC lie 
then in the far-field region wherein the Eshelby 
stress tensor is uniform and is equal to ∑∞.

Figure 3. Original and new models after performing the 
appropriate change of basis (undeformed configuration).
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It follows that

J l dlR
R

R
= −( )→ + ∞

∞

− ∑ ∑∫lim ( )11 11 (6)

Using the symmetry with respect to the crack 
line, we deduce that:

J l dl= −( )∞+ ∞ ∑ ∑∫2 11 110
( ) (7)

Note here that the expression above is not an 
approximation but the exact formula of the energy 
release rate. However, because the model has finite 
dimension, the upper bound for the integral is 
necessarily < + ∞. Thus, we can only compute an 
approximation of the energy release rate:

J l dl
L

≅ −( )∞∑ ∑∫2 11 110
( ) (8)

where L is the maximum distance to the crack face 
in the ′e2

���
-direction.

2.3.2 Proportionality of J with respect 
to the crack length

Let us consider two different small cracks: one with 
length cand the other one with length kc where k is 
a real number. Both are subjected to the same far-
field loading conditions. Using Eq. (7), the energy 
release rate of a crack of length cwrites:

J c l dl
c( ) ( )= −( )∑∑∫ ∞+ ∞

2 11110
(9)

while the energy release rate of a crack of length 
kc writes:

J kc l dl
kc( ) ( )= −( )∑∑∫ ∞+ ∞

2 11110
(10)

where ∑11
c  (respectively ∑11

kc) denotes the Eshelby 
stress associated with the crack of length c (respec-
tively of length kc).

By using the substitution l = kl′, we obtain that 
dl = kdl′. It follows that:

J kc k kl dlkc( ) ( )= − ′( ) ′∑∑∫ ∞+ ∞
2 11110

(11)

Let us focus now on the effect of multiplying the 
crack length by a factor k on the transformation 
of the mechanical fields with respect to the origi-
nal problem of a crack of length c. We recall that 
the latter consists in a small crack embedded in a 
medium that has infinite dimension; thus changing 
the crack length by a factor k boils down to per-
forming a homothetic transformation with a scale 
factor k and where the homothetic center is the 
center of the crack. And as the segment Γ+ goes by 
the center of the crack, the mechanical fields along 
its length obey the homothetic transformation with 
respect to the crack length. Hence we have:

( ) ( )kl lckc = ∑∑ 11
on +11

Γ (12)

and we deduce that:

J kc k kl dl
kc( ) ( )= −( )∑∑∫ ∞+ ∞

2 11110
(13)

= −( )∑∑∫ ∞+ ∞
2 11110

k kl dl
c ( ) (14)

= kJ c( ) (15)

Note here that no limits were placed on the par-
ticular plane stress loading condition. Thus, the 
argument we have just made is completely general 
and is valid for all λ, B and θ.

This result implies that it is sufficient to work 
out the energy release rates for one crack size, and 

Figure 4. Contour for the evaluation of the J-integral.

Hence we have: 
Table 1. Contributions to the energy release rate.

Segment N
��� q Nd

� ���
⋅ ∑∫ Γ

Γ

Γ+ − ′e1
��

− ∑∫ 110
( )l dl

R

ΓA ′e2
���

∑∞
12 R

ΓB ′e1
��

2 11∑∞ R

ΓC − ′e2
���

− ∑∞
12 R

Γ– − ′e1
��

− ∑
−∫ 11
0

( )l dl
R
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that the energy release rate of all other crack sizes 
are then determined.

3 NUMERICAL RESULTS

The behaviour of the isotropic hyperelastic material 
was modeled by an incompressible neo-Hookean 
model.

3.1 Variation of the energy release rate versus 
crack length

In order to validate the proportionality law demon 
strated previously (see Eq. (15)), the dependence 
of the energy release rate on the crack length has 
been investigated for various far-field loading con-
ditions (B ranging from –0.5 to 1, λ ranging from 
1 to 5 and θ ranging from 0° to 90°). Indeed, for 
each and every far-field state of stress, the energy 
release rate has been computed twice for two differ-
ent crack lengths: c and 2c. All the results obtained 
so far show that, for Bincreasing from –0.5 to 1 with 
an increment of 0.25, for λ increasing from 1.1 to 5.0 
with an increment of 0.1 and θ increasing from 0° to 
90° with an increment of 15°, we always verify:

J B c
J B c
( , , , )
( , , , )

λ θ
λ θ

2 2= (16)

3.2 Variation of the energy release rate versus 
crack orientation

For various biaxiality factors (B ranging from –0.5 
to 1), the influence of λ on the variation of the 
energy release rate versus the crack orientation has 
been investigated.

As we can observe (see Figure 5 and Figure 6), for 
B in [−0.5, 1] the energy release rate strictly decreases 
as the crack orientation increases in both small and 

Figure 5. Energy release rate under simple loading 
conditions (uniaxial tension ---, pure shear – - – and 
equibiaxial tension —) in small strain (λ = 1.1).
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Figure 6. Energy release rate under simple loading con-
ditions (uniaxial tension ---, pure shear – -– and equibiax-
ial tension —) in large strain (λ = 2.5).
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finite strain: the maximum is reached at θ = 0° and 
the minimum is reached at θ = 90°. However, under 
equibiaxial tension (B = 1), the energy release rate 
is independent from the crack orientation in both 
small and finite strain and thus only depends on λ.

4 DISCUSSION: FAR-FIELD PARAMETER 
OF THE SCALE LAW

The proportionality of the energy release rate with 
respect to the crack length (section 2.3.2) permits 
the following factorization:

J (λ, B, θ, c) = f (λ, B, θ) c (17)

where f is a function of the far-field parameters 
only.

4.1 Comparison with linear elastic fracture 
mechanics (LEFM)

From the solution of LEFM for a rubberlike mate-
rial (Mars 2006), f can be factorized into: 

f B f B( , , ) ( , ) (cos sin )λ θ λ θ β θ= +0 2 2 2  (18)

where

β =
+

+
2 1

2
B

B
(19)

and f 0 is a function of λ and B only. f 0(λ, B) is basi-
cally the value of f(λ, B, θ) at θ = 0°. Thus, regard-
ing the original problem (see Figure 2), f 0 depends 
only on the far-field state of stress.

Note here that all the energy release rates com-
puted in small strain for B ranging from –0.5 to 
1 and θ ranging from 0° to 90° completely match 
this theoretical factorization.
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4.2 Factorization of the energy release rate 
in finite strain under simple loading cases

Under equibiaxial tension, because the energy 
release rate is independent from the crack orienta-
tion, the previous factorization of f remains obvi-
ously valid. Under uniaxial tension, we can draw 
the same conclusion from the numerical results. 
Indeed, on comparing the factorization with the 
energy release rate values computed for λ ranging 
from 1.1 to 5, we always have:

f (λ, −0.5, θ) = f (λ, −0.5, 0°) cos2 θ (20)

However, under pure shear and actually for all B 
in [−0.5, 1.0], a simple comparison with numerical 
results clearly shows that the previous factoriza-
tion (Eq. 18) cannot be extended to finite strain.

As for now, all the arguments that we made in 
this subsection are based only on finite  element 
results but they have the benefit to guide us towards 
the simplification of the expression of f under 
simple loading cases. From the remarks above we 
deduce that:

J (λ, −0.5, θ, c) = (f 0(λ, −0.5) cos2 θ) c (21)

and

J(λ, 1, θ, c) = f 0(λ, 1) c (22)

wherein the general expression of f 0 still needs to 
be determined.

5 CONCLUSIONS

A new method for modelling small cracks under 
arbitrary loading states and finite straining has 
been presented. The latter was successfully tested 
against the most known cases (uniaxial tension, 
equibiaxial tension and pure shear).

We have also investigated how the energy 
release rate is balanced by the distribution of 

configurational stresses. It has then been proved 
that the energy release rate of a small crack (suit-
ably defined) always follows a linear scale law with 
respect to crack size, regardless of loading state.

Finally some progress has been made towards a 
general-purpose expression for energy release rate 
under arbitrary loading.
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