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ABSTRACT: The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy
has been stored in the ocean as heat since 1970, with ∼60% of that in the upper 700 m. Differences in upper-ocean heat con-
tent anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970–2008—with six instrumental bias
adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups—to evaluate the
spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjust-
ments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and
time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global
OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal
regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30°N–30°S. In both mapping
and XBT cases, spread is higher for 1990–2004. Statistically different trends among mapping methods are found not only in
the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the
best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further
understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies
to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.

KEYWORDS: Bias; Interpolation schemes; In situ oceanic observations; Uncertainty; Oceanic variability; Trends

1. Introduction

The Earth system is accumulating energy due to sustained
increase in concentrations of atmospheric greenhouse gases
associated with human-induced activities (IPCC 2021; https://
www.ipcc.ch; Le Quéré et al. 2018). Since 1971, more than
90% of this energy has been stored in the ocean as heat, with
about 60% of that in the upper 700 m (Fox-Kemper et al. 2021;
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Gulev et al. 2021; Rhein et al. 2013). Upper-ocean heat uptake
delays surface warming (Armour et al. 2013; Otto et al. 2013;
Raper et al. 2002) but causes a wide range of adverse impacts
(IPCC 2019; Stocker 2015), from degradation of marine ecosys-
tems (Bindoff et al. 2019; Hughes et al. 2018; Olsen et al. 2018)
to mean sea level rise and associated extreme events (Church
et al. 2013; Oppenheimer et al. 2019; Seneviratne et al. 2012;
WCRP Global Sea Level Budget Group 2018).

Multidecadal estimates of ocean heat content anomaly
(OHCA)—which provide evidence of physical changes in the
ocean, mean sea level, and climate—are required along with
Coupled Model Intercomparison Project (CMIP) simulations
(Eyring et al. 2016) to attribute the detected changes to natural
and anthropogenic radiative forcing (Bilbao et al. 2019; Gleck-
ler et al. 2012; Marcos et al. 2017; Slangen et al. 2014; Tokarska
et al. 2019) and to constrain uncertainties in CMIP projections
used in policy-making and risk management (Carson et al.
2019; Lyu et al. 2021; IPCC 2019; van de Wal et al. 2019).

The first observational estimate of multidecadal increase in
global OHCA was compiled by Levitus et al. (2000). Since
then, a number of regularly gridded OHCA estimates are pro-
duced by different groups (e.g., Boyer et al. 2016; Johnson
et al. 2019; Meyssignac et al. 2019; von Schuckmann et al.
2020). Following the findings of Gouretski and Koltermann
(2007), these estimates include a diversity of instrumental bias
adjustments applied to a large fraction of the historical ocean
temperature profiles, collected by expendable bathythermo-
graphs (XBTs) (Abraham et al. 2013). With a significant
reduction of systematic depth errors in XBT data (Wijffels
et al. 2008), Domingues et al. (2008) showed that the rate of
multidecadal increase in global upper OHCA and associated
thermal expansion was faster than previously reported in the
Intergovernmental Panel for Climate Change (IPCC) Fourth
Assessment Report (Bindoff et al. 2007). They also showed
that CMIP simulations, including both natural (e.g., solar and
volcanic) and anthropogenic (e.g., aerosols and greenhouse
gases) forcing were in good agreement with their improved
observational estimate. Using this improved OHCA (thermal
expansion) estimate, Church et al. (2011) and Fox-Kemper
et al. (2021) were able to satisfactorily account for the pro-
cesses causing global mean sea level rise since 1971.

All global OHCA (thermal expansion) estimates show a sus-
tained and statistically significant ocean warming (thermosteric
sea level rise) in the upper 700 m, since 1971 (or 1993) (Gulev
et al. 2021; Johnson et al. 2019; Oppenheimer et al. 2019; WCRP
Global Sea Level Budget Group 2018), despite differences in
instrumental bias adjustment, baseline climatology, and methods
used to map the uneven spatiotemporal coverage of ocean tem-
perature profiles onto regular fields. These differences in choices
of estimation, however, introduce uncertainty in linear rates and
spatiotemporal evolution of upper OHCA (Abraham et al. 2013;
Boyer et al. 2016; Cheng et al. 2016; Good 2017; Lyman et al.
2010; Meyssignac et al. 2019; Palmer et al. 2010).

Quality control and XBT bias adjustments were thought
to be the largest source of spread in global OHCA estimates
for 1993–2008 in the upper 700 m (Lyman et al. 2010). Then,
the first coordinated study by Boyer et al. (2016), in which
research groups used the same dataset protocol, showed

that, on average, mapping methods are the largest source of
spread for both 1993–2008 and the longer 1970–2008 period,
followed by spread due to XBT bias adjustment. This coor-
dinated study also noted small differences in global upper
OHCA due to varying definitions in ocean coverage,
although based only on two of the eight mapped estimates,
and on one of the six XBT bias adjustments (their Fig. 2).
Differences in spatiotemporal patterns were seen but the
contribution of the influencing factors were not investigated
for the globally complete fields nor at the observed
locations.

Here, we extend the Boyer et al. (2016) analyses by using
the same gridded datasets for the upper 700 m, produced for
their coordinated intercomparison, to investigate the sensitivity
of 1) global OHCA estimates to the definition of a common
ocean mask (i.e., overlapping spatial coverage) and 2) spatio-
temporal changes in OHCA to (i) XBT bias adjustment and
(ii) mapping method, including a subsampling of mapped esti-
mates where only profiles from surface to 700 m were col-
lected. Unlike Boyer et al. we do not investigate spread due to
baseline climatology because the required combinations of
gridded datasets were not available from all research groups.
Thus, our results are relative to a unique baseline climatology.
Two OHCA estimates used in Boyer et al. (2016) were not
included in our results because one of them is just a global inte-
gral (i.e., no regional maps available) and the other was lost
due to hard disk failure. We largely focus on the period from
1970 (or 1993) to 2004, when XBTs were the major instrument
type (Abraham et al. 2013), as spread is significantly smaller
after 2004 (Boyer et al. 2016).

Section 2 contains an overview of the datasets and approaches,
including the intercomparison protocol (section 2a), the defini-
tion of the common mask (section 2b), the subsampling based on
a specific subset of the global temperature database (section 2c),
and the statistical calculations (section 2d). Section 3 describes
the results from our sensitivity analyses. A summary and discus-
sion are found in section 4, and conclusions and recommenda-
tions in section 5.

2. Dataset protocol

a. Temperature data and intercomparison protocol

We analyzed the same mapped OHCA dataset versions,
depth-integrated for the upper 700 m (Table 1), as used in
Boyer et al. (2016, their Table 1) with two exceptions: 1) the
representative mean from the Pacific Marine Environmental
Laboratory (PMEL-R; Lyman and Johnson 2008), which is
only a global integral (i.e., no regional fields), and 2) the
Gouretski (2012) estimate (GOU), lost after hard disk failure.
Despite these two differences from Boyer et al. (2016) when
our global OHCA analyses (not shown) were compared to
their corresponding analyses (their Figs. 1 and 6), results were
nearly equivalent and did not alter any of their conclusions.

The mapped OHCA dataset versions (Table 1) comprise in
situ ocean temperature profiles from bottles, conductivity–tem-
perature–depth measurements (CTDs), and XBTs in the EN3v2a
global database for 1970–2004 (Ingleby and Huddleston 2007)
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combined with Argo float profiles for 2000–08 (Argo 2000;
Barker et al. 2011). The profiles were mapped by six research
groups, including seven permutations of the XBT data, to account
for six bias adjustments plus an uncorrected case, totaling 42
members. This combination was specifically produced for the
coordinated intercomparison in Boyer et al. (2016). Although it
does not necessarily follow the routine approaches of the research
groups, the coordinated protocol is a good approximation and
one representation that allows us to probe the relative influence
of some estimation parameters in causing spread among OHCA
estimates. Intercomparison of routine OHCA calculations (e.g.,
Wang et al. 2018; Liang et al. 2021), not based on coordinated
protocols, can only document where robust and inconsistent fea-
tures exist and so is unable to differentiate sources of spread, as in
this study. Beyond differences in mapping methods, XBT bias
adjustments, and baseline climatologies, routine OHCA esti-
mations may differ, for example, in horizontal and vertical
spacing resolutions, depth integrations, the variety of data
from instrument types, and regular updates as global databases
are dynamic (i.e., continuously evolving in number of profiles,
metadata recovery, quality control, exact and near-duplicates
removal, etc.). For instance, see the IQuOD (www.iquod.org)
and the Argo floats (https://argo.ucsd.edu) projects.

As described in Boyer et al. (2016), once the in situ temper-
ature profiles from the combined global profile datasets were
assembled, they were converted into potential temperature
anomalies relative to a monthly mean climatology. Anomaly
profiles were depth-integrated for two levels, 0–300 and
300–700 m, and then distributed and separately gridded by
each research group using their respective mapping methods,
and subsequently added together to obtain gridded anomalies
for 0–700 m. To convert potential temperature anomalies into
OHCA, the gridded data were multiplied by the seawater
density (1020 kg m23) and heat capacity (4187 J kg21 °C21)
constants.

The 42 OHCA members for 1970–2008 (Table 1) were
mapped by DOM (Domingues et al. 2008), LEV (Levitus et al.
2012), ISH (Ishii and Kimoto 2009), EN (Ingleby and Hud-
dleston 2007), PMEL (Lyman and Johnson 2008), and WIL
(Willis et al. 2004). WIL, however, starts in 1993, as their

mapping relies on regressions with sea level from satellite
altimeter (WCRP Global Sea Level Budget Group 2018). A
summary of the six mapping methods is found in Boyer et al.
(2016).

All gridded OHCA estimates (Table 1) are relative to the
same monthly mean baseline climatology from Alory et al.
(2007), corresponding to the “C1_H (or H)” case in Boyer
et al. (2016). This climatology comprises bottle and CTD pro-
files from the EN3v1d (the immediate previous version to
EN3v2a) database for 1970–2004 (Ingleby and Huddleston
2007) merged with Argo profile floats for 2000–08 (Barker
et al. 2011), and deliberately excludes XBT profiles. Although
Boyer et al. (2016) tested the effect of three different clima-
tologies, this was only done for a subset of eight estimates
with a single XBT bias adjustment due to limitations in
resources. Other insights on the influence of climatology
choices can be found in Cheng and Zhu (2015), Good (2017),
and Lyman and Johnson (2014).

The 6 (out of 10 or more) proposed XBT bias adjustments
used in this study (Table 1) may not correct for all recom-
mended temperature and depth factors and may not apply
for all types of XBTs manufactured over the years, as
explained in Cheng et al. (2016). The large number of pro-
posed XBT bias adjustments partly reflects the difficulties
imposed by missing metadata (Abraham et al. 2013). To min-
imize this problem, Palmer et al. (2018) developed a deter-
ministic approach to intelligently assign a set of plausible
metadata information to XBT profiles, as part of the IQuOD
Project (www.iquod.org). Probabilistic efforts underpinned
by machine learning are also being explored in the IQuOD
project (Leahy et al. 2018).

More recently, Cheng et al. (2018) developed a set of metrics
to evaluate XBT bias adjustments and reported that out of the
10 adjustments they examined, four of them—CH14 (Cheng and
Zhu 2014), GK12 (Gouretski 2012), GR10 (Gouretski and Rese-
ghetti 2010), and L09 (Levitus et al. 2009)—appear to be the best
performing schemes. In this study, both the L09 and GK12
adjustments were applied to temperature profiles (Table 1),
along with W08 (Wijffels et al. 2008), I09 (Ishii and Kimoto
2009), GD11 (Good 2011), and CW13 (Cowley et al. 2013). The

TABLE 1. Sensitivity experiments used to create the 42 OHCA dataset versions accounting for variations in XBT bias adjustments
(six corrections plus an uncorrected version) and six mapping methods. All experiments are relative to the monthly mean baseline
climatology from Alory et al. (2007), which does not include XBT data. Mapping methods are from DOM (Domingues et al. 2008),
LEV (Levitus et al. 2012), ISH (Ishii and Kimoto 2009), EN (Ingleby and Huddleston 2007), PMEL (Lyman and Johnson 2008), and
WIL (Willis et al. 2004). Periods available are for 1970–2008 or 1993–2008, depending on the mapping method; only the starting year
is listed.

XBT bias adjustments Mapping methods

Acronym/reference Adjustment DOM LEV ISH EN PMEL WIL

No_corr No correction 1970 1970 1970 1970 1970 1993
W08 (Wijffels et al. 2008) Depth 1970 1970 1970 1970 1970 1993
I09 (Ishii and Kimoto 2009) Depth 1970 1970 1970 1970 1970 1993
L09 (Levitus et al. 2009) Temperature 1970 1970 1970 1970 1970 1993
GD11 (Good 2011) Depth (bathymetry approach) 1970 1970 1970 1970 1970 1993
GK12 (Gouretski 2012) Depth 1 temperature 1970 1970 1970 1970 1970 1993
CW13 (Cowley et al. 2013) Depth 1 temperature 1970 1970 1970 1970 1970 1993
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CH14 bias adjustment (Cheng and Zhu 2014), which is recom-
mended by the XBT science community (Cheng et al. 2018;
Goni et al. 2019), was not available at the time our coordinated
OHCA estimates were produced. The XBT profiles from the
recent release of the World Ocean Database 2018 (WOD18;
Boyer et al. 2018) as well as from IQuOD’s first interim release
(v01; Cowley et al. 2021) use the CH14 adjustment.

b. Postprocessing and common ocean mask

For the intercomparisons, we postprocessed the 0–700-m
OHCA datasets mapped by the research groups to the same
spatiotemporal resolution: annual means, interpolated onto
a 1° 3 1° spherical grid, area-weighted and relative to the

same ocean mask (65°N–65°S) in common to all groups
(Fig. 1a). The original masks from each group are shown in
Figs. 1c–h, along with bathymetry (Fig. 1b), and their
respective surface areas listed in the caption. Most coverage
differences are in marginal seas (especially the Indonesian
Throughflow region) and shelf areas along the west bound-
ary margins of the North Pacific and Atlantic (particularly
off South America), shown as boxes in Fig. 1. Global esti-
mates were derived by integrating the yearly, area-weighted
OHCA values for all grid points within the common ocean
mask, from 1970 (or 1993) to 2008. Basin integrals follow
the color-coded areas in Fig. 1a. Our Southern Ocean defini-
tion is poleward of 35°S (not shown).

FIG. 1. Ocean mask definitions and bathymetry. (a) Common mask for global and basins (color). (b) Bathymetry
(km) from ETOPO5 (https://doi.org/10.7289/V5D798BF). (c)–(h) Original masks from DOM, LEV, ISH, EN,
PMEL, and WIL, respectively, where blue denotes where there is data coverage and white where there is not. The
Southern Ocean basin is poleward of 35°S (not shown). Boxes (dotted line) illustrate major differences in the original
masks among research groups. The total area of the common mask (2.86 3 1014 m2) and individual masks are DOM
(3.22 3 1014 m2), LEV (3.04 3 1014 m2), ISH (2.91 3 1014 m2), EN (3.11 3 1014 m2), PMEL (3.18 3 1014 m2), and
WIL (3.113 1014 m2) (see Table 1 for explanations of abbreviations).
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c. 0–700-m subsampling

Subsampling was performed to quantify the OHCA spread
due to XBT bias adjustment without the mapping influence at
the observational locations where a subset of temperature pro-
files was collected from surface to 700 m at least (referred to
herein as “non-gridded subsampled profiles”). In addition, to
compare the influence of the mapping methods on the OHCA
estimates based on these non-gridded subsampled profiles with
different XBT bias adjustments, we extracted the corresponding
profiles (called gridded subsampled profiles) from the globally
complete gridded fields mapped by the research groups, with
our definition of ocean mask applied (section 2b).

There are three aspects to highlight for the subsampling
exercise. First, since the 0–300-m profiles in this study can be
due to a combination of shallow and deep profiles, they were
not used in the subsampling. In other words, although the
mapped estimates contain grid boxes where observed profiles
were available: (i) for the upper 300 m (0–300 m), (ii) for the
upper 700 m (0–700 m), or (iii) none at all (“infilled”), only
grid boxes that matched (ii) were selected for the subsampling.
Second, although the OHCA estimates based on the two sub-
sets of subsampled profiles, gridded and non-gridded, were
area-weighted prior to integrating them over the observed
locations available for each year (section 3d; Figs. 7–9), these
subsampled estimates only contain a small subset of profiles
from the global database, and with no analogous analyses in
Boyer et al. (2016). Third, when more than one 0–700-m
observed profile was available within a 1° 3 1° grid box for a
certain month and year, they were averaged using a median to
create one superobservation (“superobs”) for the location,
prior to the mapping. Although not all observed profiles aver-
aged together in the superobs were necessarily from XBTs
(i.e., could also be from bottles, CTDs, and Argo floats), their
spread can only originate from differences in the XBT bias
adjustments, so a useful measure of the impact of the XBT
bias adjustments on OHCA estimation given that all routine
OHCA estimates include data other than just from XBTs.

d. Statistical calculations

We largely focused on two periods, 1970–2004 and 1993–2004.
Spread in OHCA estimates after 2004 is much reduced due to
Argo data only (Boyer et al. 2016; Liang et al. 2021; Ishii et al.
2017). Spread due to the XBT bias adjustments (section 3b) was
calculated on an annual basis by taking the standard deviation
(STD) of the datasets with the six XBT bias adjustments (exclud-
ing the uncorrected version) for each of the six mapping methods
(Table 1). We also estimated the average STD for 1970–2004
and 1993–2004, and in some cases, we calculated the STD for the
presatellite altimeter era (1970–93). The satellite altimeter era
(1993–2004) coincides with an increase in number of deeper
XBT profiles ($700 m) and wider sampling of the Southern
Hemisphere during the World Ocean Circulation Experiment
(WOCE; Gould et al. 2013; Wijffels et al. 2008). Finally, we aver-
aged the STD due to XBT bias adjustments obtained for each of
the six mapping methods together to estimate an ensemble
spread (EnSTD). The ensemble spread due to mapping method

(section 3c) followed the above, except that STD calculations
were computed among mapping methods for each of the six
XBT adjustments.

The calculation of correlation coefficients for the Taylor dia-
grams in section 3d followed Taylor (2001). Linear trends were
calculated using ordinary least squares regression for 1970–2004
and 1993–2004 (section 3e), with their uncertainty defined as
twice the standard error (95% confidence). The standard errors
(SE) considered autocorrelation (i.e., reduced degrees of free-
dom) and were computed by the variance of the residuals about
the fit, as in Santer et al. (2008) [see their Eqs. (4)–(6)]. Because
our trend periods end in 2004 and the use of the common ocean
mask (Fig. 1a), small differences (not shown) are expected
between our global OHCA trend values and those in Boyer et al.
(2016). For the trend maps, ensemble mean and spread along
with the spread-to-mean ratio were also calculated. The ensem-
ble spread is a measure of the disagreement between the corre-
sponding mean values [i.e., can be considered as a proxy for
uncertainty, under the assumptions in von Schuckmann et al.
(2020)] while the ratio displays their relative weight.

3. Results

a. Effect of common spatial coverage on global estimates

The common mask in Fig. 1a represents the global ocean
domain intersected by the original masks from the six research
groups (Figs. 1c–h; surface areas listed in the caption). This com-
mon domain is mainly determined by the most conservative
mask from ISH (Fig. 1e) which excludes the greatest amount of
combined area, within marginal seas and shelf zones. Thus, dif-
ferences in global OHCA between the original and common
mask is smallest for ISH, regardless of XBT bias adjustment
(Fig. 2i). DOM has the largest OHCA difference (Fig. 2g), about
6 times larger than the other four original masks (LEV, EN,
PMEL, and WIL) with similar ocean area (Fig. 1), primarily due
to the influence of their mapping method. On the ensemble
mean, differences are about 2% for ISH (Fig. 2c) and 13% for
DOM (Fig. 2a), comparable to the OHCA contribution below
2000 m to full depth [e.g., ∼10% in Rhein et al. (2013); 5%–10%
in von Schuckmann et al. (2020); and ∼2% in Boyer et al. (2016)
andMeyssignac et al. (2019)].

Global OHCA differences due to spatial coverage (individ-
ual minus common mask) can vary with XBT bias adjustment
but overall tend to increase with time for all mappings, partic-
ularly after 1990 (Fig. 2, right panels). Compared to the work
of Boyer et al. (2016), where global OHCA estimates were
based on individual masks, we see similar short-term variabil-
ity but smaller multidecadal increases (Fig. 2, left panels). The
effect of the common spatial coverage on trends is presented
in section 3f. All analyses in the rest of this paper are based
on the definition of the common ocean mask (Fig. 1a).

b. Spread due to XBT bias adjustment

Global STD maps (Fig. 3, left panels) show the spread in
gridded OHCA regional patterns for the upper 700 m due to
the six choices of XBT bias adjustments for time series starting
in 1970 (DOM, LEV, ISH, EN, PMEL; Table 1). EnSTD maps
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FIG. 2. Global OHCA time series (ZJ) for six XBT bias adjustments as well as uncorrected version (see legend).
(left) Time series based on the common mask for each mapping method: (a) DOM, (b) LEV, (c) ISH, (d) EN, and
(e) PMEL for 1970–2008, and (f) WIL for 1993–2008. (right) Differences based on the original mask minus common
mask.
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were estimated by averaging the global STD patterns across the
five mapping methods (Fig. 3, right panels) for three periods:
1970–2004 (longest), 1970–92 (prealtimeter era), and 1993–2004
(altimeter era). Inclusion of WIL’s estimates in the EnSTD for
1993–2004 (Fig. 3i) did not modify the results in Fig. 3h.

EnSTD is maximum across all basins within 30°N–30°S,
with the highest values in the Pacific and for 1993–2004 com-
pared to 1970–92 (Fig. 3, right panels). While the Pacific
maximum for 1970–92 is centralized (Fig. 3g), the pattern
for 1993–2004 is broken into two zonally extended cells,
found farther from the equator (Fig. 3h). Consequently, the
longest period, 1970–2004, reflects their combined imprint
(Fig. 3f).

Over 1970–2004, the maximum in the EnSTD pattern
across 30°N–30°S (Fig. 3f) is mainly influenced by LEV, ISH,
and EN (Figs. 3b–d) and their decorrelation radii (shape and
size). The imprint of the radius of influence used by these
mapping methods becomes obvious after comparing with

PMEL (Fig. 3e). PMEL has a clearer delineation of the
repeated XBT lines in their STD maps as their choice of phys-
ically based correlation length scales and signal-to-noise ratios
in their objective mapping relaxes toward the initial guess of
zero anomalies in data-sparse regions (Boyer et al. 2016;
Lyman and Johnson 2008). In contrast, maxima in the STD
along XBT lines are not evident in DOM (Fig. 3a) but are
instead found across the Southern Ocean, where XBT meas-
urements are limited to a small number of meridional repeat
lines (Goni et al. 2019), and where seawater is colder and ver-
tical temperature stratification is weaker relative to lower lati-
tudes. DOM is the only method that can project signals to
other far-reaching places, not necessarily associated with the
XBT sampling, by minimizing a cost function at global and
local scales simultaneously, relying on statistics from a
reduced set of empirical orthogonal functions (EOFs) from
satellite altimeter along with a global constant mode (EOF0)
(e.g., Church et al. 2004; Pittman 2016). All other methods

FIG. 3. OHCA spread (ZJ) due to XBT bias adjustment. (left) Results for each mapping method [(a) DOM,
(b) LEV, (c) ISH, (d) EN, and (e) PMEL] averaged over 1970–2004. (right) Ensemble mean spread (EnSTD) across
mapping methods for different time periods: (f) 1970–2004, (g) 1970–92, (h) 1993–2004 excluding WIL (only available
since 1993), and (i) 1993–2004 including WIL.
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only depend on local fitting to infill the sparser in situ ocean
temperature observations.

Overall, per square meter, DOM has the highest sensitivity
to the differences in XBT bias adjustments, regardless of
ocean basin, and well above the EnSTD for both 1970–2004
and 1993–2004 (Fig. 4, right panels). PMEL is the least sensi-
tive for 1970–2004 but not necessarily for 1993–2004. From a
basin-average perspective, the Pacific has the highest spread
per square meter, followed by the Atlantic and Indian Oceans.
DOM is an exception, in which the Pacific and Indian basins
have similar sensitivities, around 60 MJ m22 or 6 3 10214 ZJ
m22 (1 MJ = 106 J; 1 ZJ = 1021 J), and higher than the Atlantic.
The STD time series for individual basins (Fig. 4, left panels)
have similar variability to the global analysis in Boyer et al.
(2016). XBT spread per square meter is higher during
1989–2000 compared to previous years, with a maximum peak
around 2000 that decays to zero in 2005, when only Argo data
were included in the data protocol (section 2a).

c. Spread due to mapping method

Global maps of STD patterns due to the six choices in map-
ping methods (Table 1) are similar across XBT bias adjustments

(not shown), as XBT bias adjustment differences at grid scale
are negligible. So, we only present the EnSTD patterns (Fig. 5,
left panels), obtained by averaging the STD patterns across the
six XBT bias adjustments. In general, the STD maxima largely
coincide with highly energetic eddy regions and frontal systems
seen in altimeter sea level (Fu et al. 2010), including the Gulf
Stream and Kuroshio–Oyashio boundary current extensions,
the Brazil–Malvinas Confluence, the Agulhas and East Austra-
lian Current retroflections, and along the Antarctic Circumpo-
lar Current (ACC), particularly in the Indian sector. In contrast
with the EnSTD due to XBT bias adjustment (Figs. 3h,i), the
EnSTD due to mapping method increases after inclusion of
WIL’s estimates over all basins for 1993–2004 (Fig. 5d com-
pared to Fig. 5c), also further evident in the zonal integrals
(Fig. 5, right panels).

The zonally integrated EnSTD have similar patterns across
the latitudinal bands for the three time-average periods and is
maximum in the Southern Ocean (35°–60°S) (Fig. 5, right
panels). The highest STD contributions for the Southern
Ocean peak are from the Indian and Atlantic sectors
(40°–50°S), followed by the Pacific sector (50°–60°S). In the
Pacific, the largest peak lies around 0°–20°N, followed by
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FIG. 4. Global and basin OHCA spread due to XBT bias adjustment per square meter (ZJ m22). (left) Annual time series from 1970 to
2008 for each mapping method: (a) DOM, (b) LEV, (c) ISH, (d) EN, (e) PMEL, and (f) WIL. (center) Spread averaged over 1970–2004
organized by (g) mapping method, (h) basin, and (i) ensemble mean spread (EnSTD; gray bars) across mapping methods organized by
basin. (right) As in the center panels, but for 1993–2004.
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three secondary peaks, 30°–40°N, 20°–40°S, and 50°–60°S.
The Atlantic has only one secondary peak (30°–40°N) while
the Indian has a plateau from 10° to 30°S, with STD values
decaying north of 10°S.

Overall, per square meter, the largest spread in OHCA due
to mapping method is in the Indian Ocean for all XBT bias
adjustments, over 1970–2004 and 1993–2004 (Fig. 6, right pan-
els). In fact, the Indian has the highest spread during most years
except in the mid-1980s, when the Pacific has two maxima (Fig.
6, left panels). Over 1993–2004, the EnSTD for the Indian
Ocean basin is almost twice as large as for the other basins,
mainly due to the two maxima in 1997/98 and 2001/02, seen
across all XBT bias adjustments. The EnSTD for the Atlantic
has the smallest mapping spread. In terms of individual XBT
bias adjustments, L09 and W08 have the highest and lowest
spread respectively. Over 1970–2004, the EnSTD difference
between the Indian and the other basins is not as large as during
1993–2004, and the lowest spread is for the global ocean. Note
that, as the EnSTD of each basin was calculated individually,
and so their sum is not necessarily equal to the EnSTD for the
global integral. Rapid decrease in spread after 2004 is mainly
associated with the increasing number of Argo float array

toward the spatiotemporal sampling designed to resolve ocean
climate change signals (Riser et al. 2016; Roemmich et al. 2019).

d. Subset of 0–700-m profiles: The effect of mapping methods

Mapping methods can influence the evolution of global
integrals and the associated spatiotemporal variability of
OHC estimates in diverse ways, thus causing spread, due to
varying covariance length scales, smoothing, etc. Differently
from Boyer et al. (2016) and section 3b, here we examine
OHCA spread due to XBT bias adjustment without mapping
influence, based on a subset of temperature profiles (section
2c), extending from the surface to 700 m at least (Fig. 7a; non-
gridded subsampled profiles). We extracted the equivalent
data from the gridded fields (Figs. 7b–g; gridded subsampled
profiles) to examine the differences (Figs. 7h–m; gridded
minus non-gridded). The subsampled profiles underpinning
Figs. 7–9 were area-weighted before integrating them over
the locations available for each year. Note that, the OHCA
integrals based on these non-gridded and gridded subsampled
profiles do not represent global integrals, as they only contain
a specific fraction of the observed profiles from the global
database used in Fig. 2 (section 3b) and in Boyer et al. (2016).

FIG. 5. OHCA ensemble mean spread (EnSTD; ZJ) due to mapping method across XBT bias adjustments for different periods. (left)
Global patterns for (a) 1970–2004, (b) 1970–92, (c) 1993–2004 excluding WIL, and (d) 1993–2004 including WIL. (right) Zonal integrals (e)
globally and for the (f) Pacific, (g) Atlantic, and (h) Indian Oceans.
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Therefore, this subsampling exercise is not fit for the purpose
of investigating sampling errors (i.e., out of scope) and was
performed to solely examine the influence of mapping meth-
ods on OHCA estimates from a subset of 0–700-m profiles.

The differences in OHCA across the XBT adjustments is
largest during 1990–2004, in both the non-gridded and gridded
subsampled time series (Fig. 7a and Figs. 7b–m, respectively).
The larger spread in recent decades could be explained by a
number of factors, and should be investigated in a separate
study. Potential reasons include the relatively higher ratio of
measurements from bottles and CTDs compared to deep
XBTs prior to 1990 (Fig. 3 in Pittman 2016), the increased
number of deep XBT probe measurements in the 1990s (Fig.
9), with a greater diversity in probe types (Fig. 1 in Cheng and
Zhu 2014), and a larger ratio of unknown-to-known probes
(Fig. 2 in Abraham et al. 2013). Furthermore, there is addi-
tional uncertainty about whether the XBT fall-rate adjust-
ment recommended by Hanawa et al. (1995) was considered
or not due to lack of metadata as well as digital archiving of
the full-vertical profile resolution (and not only inflexion
points) (Abraham et al. 2013). Overall, even though some
XBT bias adjustments for deep probes reaching to 700 m

might be larger prior to 1990 (e.g., Cheng and Zhu 2014),
Fig. 7 shows that their impact on OHCA spread is smaller
compared to the 1990–2004 period. This result suggests that if
the community prioritizes understanding and refinements of
deep XBT bias adjustments in the 1990s, it is very likely to
have the best-cost benefit in reducing OHCA spread.

Interestingly, although L09 and GK12 made the top four XBT
bias adjustments (Cheng et al. 2018), their associated OHCA
estimates differ from each other over 1990–2004, for the non-
gridded (Fig. 7a; without mapping) and corresponding gridded
(Figs. 7b–g; with mapping) subsampled time series. The same
pattern is observed for the global OHC estimates in Figs. 2a–f,
which include all profiles in the coordinated protocol (section
2a). These results suggest that even though XBT bias adjust-
ments might be similar with respect to metrics, they may not
equally translate to global OHCA estimates.

The CW13 non-gridded subsampled time series has a
noticeable OHCA spike during 1999–2000 (Fig. 7a), even
greater than the uncorrected time series (No_corr). This spike
is largely reduced after the mapping procedures were applied
(Figs. 7b–g). CW13 differs from the other schemes in that they
were based on a small fraction of the global dataset with only
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FIG. 6. Global and basin OHCA spread due to mapping method per square meter (ZJ m22). (left) Annual time series from 1970 to 2008
for each XBT bias adjustment: (a) W08, (b) I09, (c) L09, (d) GD11, (e) GK12, and (f) CW13. (center) Spread averaged over 1970–2004
organized (g) by XBT adjustment and (h) by basin, and (i) the ensemble mean spread (EnSTD; gray bars) across XBT bias adjustments
organized by basin. (right) As in the center panels, but for 1993–2004.
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the highest quality-controlled XBT/CTD profiles. Further
investigations (out of the scope of this study) are required to
understand this underadjustment, likely associated with a com-
bination of a relatively small number of comparison data in

the CW13 study, lack of manual quality-control in the EN3v2a
dataset, missing metadata for XBT types, and the impact of
the vertical temperature gradient (dependent on latitude) on
depth (fall rate) and thermal biases.

FIG. 7. Global OHCA annual time series (ZJ) for six XBT bias adjustments as well as uncorrected version (see leg-
end) based on subsampled profiles for 0–700 m only. (left) For observed profiles (a) with no mapping applied (“non-
gridded profiles”), and subsampled profiles (“gridded subsampled”) from each mapping method: (b) DOM, (c) LEV,
(d) ISH, (e) EN, and (f) PMEL for 1970–2008, and (g) WIL for 1993–2008. (right) Differences based on the original
mask minus common mask.
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Overall, the gridded subsampled time series from LEV and
DOM have the largest root-mean-square error (RMSE) and
minimum correlation with the corresponding non-gridded
subsampled time series for most XBT bias adjustments,
PMEL has the smallest RMSE and largest correlation (sug-
gesting that they retain most of the high-frequency small-scale
variability features), and the other mapping methods lie in
between (Fig. 8).

e. Subset of 0–700-m profiles: Spread due to XBT bias
adjustment and mapping method

The OHCA spread for the gridded subsampled time series
due to XBT bias adjustment (Fig. 9a) can be higher than
spread due to mapping method (Fig. 9b), particularly in the
1990s, in contrast to the globally complete gridded fields
(Figs. 4 and 6) for which mapping spread is greater. Although
the globally complete OHCA time series include the same
0–700-m profiles as in the subsampled time series in Fig. 9,
they also contain extra 0–300-m profiles along with infilled
grid areas (section 2c). So, these two extra factors do alter the
relative influence of the mapping methods and XBT bias
adjustments to OHCA spread. The annual variations in
OHCA spread in Fig. 9 are directly correlated with the annual
number of 0–700-m profiles prior to 2005 (e.g., higher spread
with a higher number of profiles). An exception is when the
number of profiles decreases around 1998–2001 while the
XBT-related spread increases (Fig. 9a). This STD peak
reaches 12 ZJ for the time series based on the 0–700-m non-
gridded subsampled profiles and coincides with a peak in
OHCA for the CW13 adjustment (Fig. 7a). After CW13 is
excluded from the 0–700-m non-gridded subsampled profile
estimates, the STD is halved to 6 ZJ (Fig. 9a). After 2005,
there are no XBTs, only Argo floats, so XBT-related spread
is zero. On average, mapping-related spread for the Argo
period (since 2005) is 2 ZJ compared to 4–5 ZJ during the
1990s (Fig. 9b).

The annual maps of 0–700-m non-gridded subsampled pro-
files (Fig. 10) reveal that the higher XBT-related spread seen
in their integrated OHCA time series during the 1990s (Fig.
9a) originates from the XBT lines crossing the ocean basins
within 30°S–30°N, and that the maxima during 1998–2001
mainly originate in the Pacific. When CW13 is removed from
the STD calculations, the Pacific maxima (orange to red)
reduce to the same STD levels (cyan) observed across other
years in the 1990s (not shown).

As expected, mapping-related spread decreases with
improved spatiotemporal coverage during the Argo era (e.g.,
WCRP Global Sea Level Budget Group 2018, their Fig. 4).
The surprising increase in spread with number of profiles
before Argo in Fig. 9b, however, is explained by the spatio-
temporal evolution of the sampling in Fig. 11, based on the
0–700-m gridded subsampled OHCA fields for L09. These
maps reveal that STD maxima stem from eddy-rich regions
and frontal systems of both hemispheres but only the ener-
getic regions of the northwestern Pacific and Atlantic were
measured before the 1990s, with a significant data void in the
Southern Hemisphere.

f. Linear trends

Global OHCA trend maps were estimated for 1970–2004
(DOM, LEV, ISH, EN, and PMEL) and 1993–2004 (the same
plus WIL), including ensemble mean and spread, and shown
for the L09 adjustment (Fig. 12). At grid scale, trend maps are
insensitive to XBT bias adjustment (not shown).

For 1970–2004, the OHCA trend patterns (and related
ensemble mean) are generally consistent across mapping
methods, with warming rates everywhere, except in some
patches of the tropical–subtropical western Pacific, the south-
east Indian Ocean, and the southwestern Atlantic (Fig. 12,
left column). Enhanced warming in the North Atlantic and
North Pacific western boundary extensions is evident in all
mappings (and their ensemble mean), except in DOM, which
shows a weaker trend, particularly in the North Atlantic. ISH
shows a weaker warming trend along the ACC pathway in the
Indian sector of the Southern Ocean compared to the other
mappings, although PMEL has incomplete coverage in most
of the Southern Hemisphere. In the South Pacific, DOM,
LEV, and EN have some cooling patches not evident in ISH.
Some differences are found in the Indian and South Atlantic
for the cooling patches from LEV, ISH, and EN (not fully
sampled by PMEL) whereas DOM displays basin-scale warm-
ing. DOM and ISH tend to have smoother and more zonally
elongated large-scale features. In LEV and EN, the large-
scale features are embedded in smaller noise-like features,
associated with the shape and size of their respective decorre-
lation radii.

For 1993–2004, the global OHCA trend patterns (and their
ensemble mean) are also generally robust across mappings
(Fig. 12, middle column), and mostly resemble altimeter sea
level ENSO-like variability (Hamlington et al. 2020a; Lyu
et al. 2017). The most significant inconsistencies are in the
Southern Ocean and North Atlantic between DOM and the
other methods. DOM has the strongest wavelike cooling pat-
tern (i.e., two cooling patches interposed by warming south of
Australia) and the weakest warming rate in the subpolar
North Atlantic. Although thermosteric variability is a primary
driver of sea level patterns (Hamlington et al. 2020b; Vivier
et al. 2005), DOM cannot rule out the influence of other con-
tributions (Fasullo and Gent 2017; Durack et al. 2014)—such
as halosteric contributions to density compensation (e.g.,
North Atlantic) and ocean bottom pressure (e.g., Southern
Ocean) leading to barystatic (i.e., mass) changes—because
they rely on EOFs from altimeter to interpolate across the
sparsely in situ observations.

Maxima in the EnSTD trend patterns are found in the
highly energetic eddy and frontal regions during both trend
periods (Fig. 12, right column) but are more obvious during
1993–2004 (see Fig. 5). Notably, despite the maximum in
spread across the Gulf Stream Extension over both periods,
the ratio of the spread-to-mean is smaller than 1. The highest
EnSTD regions adjacent to Antarctica in the southern Indian
and Pacific are mainly associated with the trend differences in
DOM, as explained above, and where we also see large-scale
maxima (.2) in the spread-to-mean ratio (Fig. 12, right
column).
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FIG. 8. Taylor diagrams for each XBT bias adjustment comparing “non-gridded profiles” for 0–700 m (only) and
respective subsampled profiles mapped by six methods (color legend), for 1970–2004 in the top two rows and 1993–2004
in the bottom two rows. XBT bias adjustments are (a) W08, (b) I09, (c) L09, (d) GD11, (e) GK12, and (f) CW13. STD
(black axis; ZJ) and root-mean-square error (RMSE; green axis; ZJ). Correlation coefficients (blue axis) are normalized.
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The impact of the various XBT bias adjustments only
becomes relevant to linear trends when grid scale differences
are integrated over large domains (e.g., from zonal to basin to
global) for 1970–2004 (Fig. 13) and 1993–2004 (Fig. 14).
Because of the common ocean mask (section 3a) and slightly
shorter periods (up to 2004), our trend values are not identical

to those in Boyer et al. (2016). For instance, the smallest
global trend for 1970–2004 is from PMEL rather than ISH for
1970–2008, as in Boyer et al. (2016).

For 1970–2004 (Fig. 13), the two most striking features are
from DOM for the various XBT bias adjustments: (i) the larg-
est warming trends are for the globe, North Pacific, and
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FIG. 9. Global OHCA spread time series (ZJ) based on subsampled profiles for 0–700 m only (left axis), and profile numbers per year
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Southern Hemisphere oceans, statistically different in many
instances from the trends estimated by the other mappings;
and (ii) the smallest warming trends are for the North
Atlantic, also statistically different from the other methods.
Generally, the smallest OHCA trends are from PMEL
because they revert to zero anomalies in data-sparse regions,
especially in the Southern Hemisphere (Fig. 12). The fastest
warming rates occur in the North Atlantic for all mapping
methods (note the different vertical axis scale), where EN has
the largest value and DOM the smallest (Fig. 13). Although
the North Atlantic is particularly well observed, the trend dif-
ferences are mostly confined to the highly eddy energetic
regions (Fig. 5). Except for DOM’s W08, GD11, and CW13
adjustments, warming trends in the poorly observed Southern
Ocean for the various mappings are not statistically different
from each other.

For 1993–2004 (Fig. 14), WIL generally has the highest
warming trends, but in many instances they are not statisti-
cally different from other methods. The cooling pattern
observed in DOM (Fig. 12) is associated with the cooling
trend in the Southern Ocean, which can be statistically differ-
ent from the other mappings depending on XBT adjustment.
The North Indian has a cooling trend for all mappings and for
most XBT adjustments. Overall, the higher range in OHCA
trends for 1993–2004 (11 years) compared to 1970–2004 (34
years) is explained by the greater influence of interannual to
decadal variability over the shorter period (Johnson and
Lyman 2020).

4. Summary and discussion

Direct comparison of spatiotemporal changes of upper
OHCA estimates is generally complicated because research
groups do not necessarily use the same bias-corrected datasets,
baseline climatologies, mapping methods, time periods, etc.
Boyer et al. (2016) is the first coordinated study on the sensitiv-
ity of global upper OHCA estimates to XBT bias adjustments,
mapping methods, and baseline climatologies. Here, we focus
on extending their global study. We have analyzed the effect
of applying a common ocean mask as well as quantifying
the spatiotemporal sensitivity (i.e., spread) of upper OHCA
estimates and multidecadal trends due to six choices in
XBT bias adjustments and six mapping methods, using Boyer
et al.’s (2016) internationally coordinated dataset protocol
(section 2a), although with the four minor differences
described below.

Our OHCA gridded analyses comprise an ensemble of 42
dataset members (including six members with uncorrected
XBT data), depth-integrated in the upper 700 m, and mapped
from 1970 (or 1993) to 2008 (Table 1). In relation to Boyer
et al. (2016), our OHCA ensemble members (i) excluded the
estimates from GOU (Gouretski 2012; lost due to disk fail-
ure) and PMEL-R (Lyman and Johnson 2008; no regional
fields available), (ii) are relative to one of their three climatol-
ogies (due to limitations in resources), and (iii) are relative to
an ocean mask that is common to the six mapping methods/
research groups; also, (iv) our linear trends end in 2004
(rather than 2008) to coincide with the last year that XBT

FIG. 10. Annual global maps of OHCA spread (ZJ) due to XBT bias adjustment from non-gridded profiles for 0–700 m only,
from 1970 to 2004.
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data were included in the combined database (section 2a).
Furthermore, we have subsampled the gridded OHCA esti-
mates at locations where temperature profiles were collected
from surface to 700 m (i.e., excluding 0–300-m profiles and
infilled areas) to probe the influence of the mappings on
observed data (section 3d). We also looked at the OHCA
spread due to mapping method and XBT bias adjustment at
those 0–700-m sampled locations, using both non-gridded
(i.e., without mapping) and gridded (i.e., with mapping) esti-
mates (section 3e).

The switch to an ocean mask common to the six research
groups reveals that exclusion of shallower oceans (Fig. 1) may
decrease global OHCA estimates by 2%–13%. This range is
equivalent to the contribution from the global ocean below
2000 m to the full-depth change (Meyssignac et al. 2019),
larger than the ∼2% implied for shallow areas in some studies
(Boyer et al. 2016; Meyssignac et al. 2019) but closer to other
studies (Rhein et al. 2013; von Schuckmann et al. 2020). The
global OHCA differences among the originators’ masks and
the common mask increase during the 1990s, and are more
dependent on mapping method than XBT bias adjustment,
with DOM being the most sensitive method (Fig. 2). The
increasing differences since the 1990s are likely related to the
observed surface ocean warming of western boundary cur-
rents (WBCs)—due to intensification and poleward shift with
a warming climate (Wu et al. 2012; Yang et al. 2016)—which
cannot be fully captured after excluding a large portion of the

shallower oceans from the common mask (Fig. 1a). The com-
bination of two factors may explain the largest sensitivity in
addition to the highest increase in global ocean warming for
DOM compared to the other groups with similar spatial cov-
erage. DOM’s mapping is conditional to a simultaneous fitting
of spatial EOF patterns from satellite altimeter and a global
constant mode for interpolation/extrapolation across areas
where the coordinated protocol did not include in situ data,
such as in depths , 300 or 700 m for 1970–2004 (i.e., the his-
torical era) or depths, 1500 m after 2004 (i.e., the Argo era).
The other five mapping methods in this study only use
local fitting. Furthermore, at times and in specific regions,
DOM’s estimates may be subjected to the influence of signals
other than upper-ocean thermal patterns, expressed in satel-
lite altimeter sea level, such as from halosteric and barystatic
(see Gregory et al. 2019; Landerer et al. 2007; Wu et al. 2019)
as well as thermal patterns below 700 m (e.g., Liang et al.
2021).

By examining OHCA estimates (Figs. 2, 6–8, and 12–14),
using two (L09 and GK12) of the four XBT bias adjust-
ments highly recommended by Cheng et al. (2018), two
(I09 and GD11) not recommended by them, and another
two (W08 and CW13) widely used schemes, our results sur-
prisingly show that the top-rated L09 and GK12 yield
OHCA estimates similar to those of the not recommended
I09 and GD11 schemes, respectively. The best agreement
between L09 and I09 or between GK12 and GD11 is found

FIG. 11. Annual global maps of OHCA spread (ZJ) due to mapping method using the L09 XBT bias adjustment based on gridded
subsampled profiles for 0–700 m only, from 1970 to 2004.
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FIG. 12. OHCA linear trend maps (GJ m22; 1 GJ = 109 J) based on six mapping methods (DOM, LEV, ISH, PMEL, and WIL)
using the L09 XBT bias adjustment and their ensemble mean of the mapping methods, for (left) 1970–2004 and (center) 1993–2004.
(right) Ensemble mean spread (EnSTD) for 1970–2004 in the top two panels and 1993–2004 in the bottom two panels.
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FIG. 13. Linear OHCA trends (ZJ yr21) for different basins (panels) and for each XBT bias adjustment (x axis)
and for each mapping method (color legend) for 1970–2004. Error bars take into account the reduction in the
degrees of freedom due to the temporal correlation in the residuals (section 2d).
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at the locations of the observed 0–700-m profiles (i.e., with
no mapping influence; Figs. 7a, 8b, and 8c for L09 and I09
and Figs. 7a, 8d, and 8e for GK12 and GD11), and next at

the corresponding OHCA values subsampled from the
gridded estimates (more variable due to dependency on
mapping method; Figs. 7 and 8), and to a lesser extent if all

FIG. 14. As in Fig. 13, but for 1993–2004, and including WIL (only available since 1993).

S A V I T A E T AL . 86915 JANUARY 2022

Brought to you by HELMHOLTZ-ZENTRUM FUER | Unauthenticated | Downloaded 06/14/22 01:13 PM UTC



gridded values are considered (Fig. 2). More intriguingly,
our results show that the OHCA estimates from the top
L09 and GK12 schemes differ to a higher degree from each
other in comparison to L09/I09 and GK12/GD11 respec-
tively, and especially over the 1990s. The pairings for L09/
I09 and GK12/GD11 found in this study are also evident in
the global OHCA estimates from Cheng et al. (2016, their
Fig. 3), who additionally noted that GK12 and CH14 XBT
bias adjustments per se are closer to each other than L09
and CH14.

So, even though the top XBT bias adjustments per se are
generally alike with respect to the proposed metrics in Cheng
et al. (2018), our results demonstrate that their impact on
global OHCA estimates are dissimilar. It might be possible
that Cheng et al.’s (2018) metrics may still be imperfect, hav-
ing in mind the disagreements they reported for the global
and side-by-side related adjustments. It might also be possible
that adjustments for all known bias factors, although desir-
able, may not be the single best performance indicator. Other
unknown factors that can contribute toward XBT biases are
not yet understood or accounted for in global schemes (e.g.,
Tan et al. 2021). Not all schemes provide adjustments to all
types of XBTs, including the unknown types (Cheng et al.
2016), which make up about 50% of the XBT profiles from
the global historical database (Abraham et al. 2013). The
XBT science community has achieved tremendous progress
to better understand and develop bias adjustments, greatly
reducing artifacts in OHCA estimates. But until we better
understand the reasons why the top recommended adjust-
ments do not necessarily translate to similar OHCA estimates
and what the causes of disagreement are in XBT bias adjust-
ments developed using global and side-by-side datasets, and
until we have studies corroborating Cheng et al. (2018), it is
plausible to assume that spread due to XBT bias adjustment
for global integrals is not yet smaller than reported in Boyer
et al. (2016). To the best of our knowledge, the six XBT bias
adjustments used in this study were correctly implemented in
the EN3v2a database (section 2a), but we cannot rule out dis-
crepancies in case there is database dependency (e.g., W08
comparison for EN3v1d and EN3v2a in Boyer et al. 2016;
EN4 and WOD13 comparisons in Cheng et al. 2018).

The most significant spread in OHCA due to XBT bias
adjustment lies within 30°N–30°S, especially in the Pacific and
during the 1990s (Fig. 3), except for DOM and PMEL. DOM
is particularly exceptional by being by far the most sensitive
mapping method to XBT-related spread (Fig. 4) as well as by
its spread patterns not being necessarily related to XBT data.
Both results probably arise from the nature of DOM’s cost
function, which minimizes errors simultaneously at regional
and global scales. PMEL’s decorrelation radius better high-
lights the spread along the repeat XBT lines, and thus makes
quite evident how the other mappings with local fitting propa-
gate the XBT-related spread to broader areas based on their
own radii of influence. As in Boyer et al. (2016), the caveat
for the spread due to XBT bias adjustment using the gridded
OHCA estimates is that it is subjected to the inherent interpo-
lation/extrapolation of each mapping, and thus it can be
affected, to a certain extent, in both magnitude and spatial

distribution. We find that XBT-related spread is smaller in
cooler and less stratified waters at high latitudes (e.g., Fig. 9;
see also Hutchinson et al. 2013; Ribeiro et al. 2018), although
the Southern Ocean is quite undersampled. The OHCA anal-
yses from the subset of non-gridded subsampled profiles for
0–700 m (i.e., no mapping influence) reveal that the maxima
in spread in the Pacific around 1999–2000 (Fig. 10) is domi-
nated by CW13. Future OHCA analyses without mapping
influence and with all XBT profiles of the global database
may help to refine bias adjustments where their impact on
OHCA estimates is greatest.

Wang et al. (2018) reported significant OHCA spread in
eddy-rich regions, with differences up to 10 times larger along
the WBCs and across the ACC frontal regions compared
to other ocean regions. Liang et al. (2021) arrived at a
similar conclusion for objectively mapped OHCA Argo-
related products in the upper 2000 m. In this study, significant
OHCA spread (relative to a unique climatology) in eddy-rich
regions is due to mapping method (Fig. 5), including the
well-observed northwest Atlantic and the poorly observed
Southern Ocean. WIL can better account for the energetic
mesoscale features than LEV, ISH, EN, and PMEL (e.g.,
Fig. 12), as resolved by altimeter sea level. Martı́nez-Moreno
et al. (2021) showed that the eddy-rich regions are becoming
richer over the altimeter era. Mesoscale eddy variability can
affect the slower-varying larger-scale climate signals through
an inverse cascade of kinetic energy (Penduff et al. 2019,
2018). In DOM, however, mesoscale variability from altime-
ter sea level is considered as “high-frequency weather noise”
and used as one of the sources of uncertainty in their recon-
struction of the larger-scale OHCA patterns (i.e., low-fre-
quency climate signal). The near-global coverage of the Argo
floats array is designed to capture low-frequency climate sig-
nals and so its spatiotemporal resolution (e.g., 10 days, 3° 3

3°) is not enough to resolve mesoscale signals (Fu et al. 2010;
Hughes and Williams 2010; Penduff et al. 2011). The cost
involved in sustaining such an in situ near-global array to
monitor mesoscale variability is currently unattainable (e.g.,
Palmer et al. 2019). The best approach is to continue explor-
ing synergies with complementary observing systems, such as
satellite altimeter (e.g., Roemmich et al. 2019).

The Indian Ocean by far has the largest basin-scale spread
due to mapping method, over the 1990s, regardless of XBT
bias adjustment (Figs. 5 and 6). Our basin-average OHCA
spread estimates are per square meter, separated due to XBT
bias adjustment and mapping method, and relative to one
baseline climatology. Major spread in OHCA basin estimates
from Wang et al. (2018) are found in the Pacific and Southern
Oceans; however, their values are not per square meter, and
they cannot distinguish sources of spread. During 1993–2004,
our OHCA basin averages per square meter for the Pacific
and Atlantic, inclusive of their respective Southern Ocean sec-
tors, are similarly influenced by both XBT and mapping
spread (e.g., cf. Figs. 4 and 6). Overall, OHCA spread due to
XBT adjustments is largest in the Pacific whereas spread due
to mapping is largest in the Indian Ocean.

At observed 0–700-m locations, spread in global OHCA in
the 1990s is highly correlated with number of observed

J OURNAL OF CL IMATE VOLUME 35870

Brought to you by HELMHOLTZ-ZENTRUM FUER | Unauthenticated | Downloaded 06/14/22 01:13 PM UTC



profiles (Figs. 9a,b) and explained by more extensive and
deeper sampling of the energetic regions in the Southern
Hemisphere (Figs. 10 and 11). This counterintuitive correla-
tion, prior to inclusion of Argo data (section 2a), highlights
the importance of the spatiotemporal design of the observing
system in relation to the ocean dynamics to successfully
resolve climate signals of interest.

The ensemble mean spatial patterns from our multideca-
dal trend maps for 1970–2004 and 1993–2004, based on the
coordinated OHCA protocol (Fig. 12), have been previously
discussed in numerous studies, based on the routine estima-
tion of the various research groups [e.g., see Johnson and
Lyman (2020) and references therein]. This is the first time,
however, that we can directly compare individual trend
maps, along with ensemble mean and spread, and attribute
the inconsistency in patterns solely to differences in map-
ping methods. Major spread is found in the highly energetic
eddy and frontal regions, within WBCs and across the sub-
polar Southern Ocean, over both periods (Fig. 12, right col-
umn), although with stronger and more widespread features
during 1993–2004. The ensemble spread is about 2–3 times
larger than the ensemble mean in the subpolar Southern
Ocean for 1993–2004, and primarily caused by the cooling
patterns in DOM. Except for DOM, the warming (cooling)
trends in Fig. 14 (Fig. 13) for the poorly observed Southern
Ocean basin from the various mappings, and largely regard-
less of XBT bias adjustment, are not statistically different.
The effect of the various XBT bias adjustments only
becomes visible when OHCA grid scale differences are inte-
grated over large-scale areas (e.g., from zonal to basin to
global). Overall, the global ocean in the upper 700 m is warm-
ing over longer/shorter multidecadal periods (e.g., Johnson
and Lyman 2020), with the fastest rates in the North Atlantic.
However, caution should be exercised in the interpretation of
spatial patterns, as differences in individual mapping schemes
per se can lead to statistically distinct trends (in sign and
amplitude), from regional to basin scales.

5. Conclusions and recommendations

Our coordinated results cannot identify the best mapping
or bias adjustment schemes, but they do provide insights into
where and when the greatest spatiotemporal sensitivities (i.e.,
spread) in upper OHCA exist. Hence, our results provide
valuable guidance for future developments aiming to have the
greatest impact in understanding and reducing uncertainty
caused by spread in upper OHCA estimates. By reconciling
differences in OHCA estimation, we hope to achieve a more
accurate spatiotemporal picture of the physical changes,
mechanisms involved, and causes. To promote improved
knowledge on the role of the subsurface ocean in the climate
system, it is important to understand and quantify the full
range of uncertainty and not just the contribution from spread
between estimates (e.g., Kent and Kennedy 2021; Palmer et al.
2021; Thorne et al. 2005). In this larger context, our key mes-
sages and recommendations are the following:

Users should be aware of larger spread in the Pacific and
Atlantic Oceans during the 1990s (due to spread in both XBT
bias adjustment and mapping method), in the Indian Ocean
(largely due to spread in mapping method), and in highly
energetic eddy and frontal regions (e.g., where altimeter sea
level has the largest variances). Undersampling is a limitation
that should be recognized, when considering times and ocean
volumes over which to estimate variability and trends. Contin-
ued recovery of actual historical profile data and metadata is
valuable to reduce spread in estimates [e.g., Global Oceano-
graphic Data Archeology and Rescue (GODAR), https://
www.iode.org]. Now and into the future, having a sustained
observing system fit for monitoring ocean climate change is
the critical course of action—the Global Climate Observing
System (GCOS; WMO 2018).

Further development and refinement of XBT bias adjust-
ments should consider the same database version for both cal-
ibration and benchmarking of schemes. Soon, it will be
possible to benefit from the first internationally coordinated
quality-controlled ocean database (IQuOD), with assigned
observational uncertainty (e.g., Cowley et al. 2021) and intelli-
gent metadata (e.g., Palmer et al. 2018).

Future coordinated intercomparisons are necessary to eval-
uate the performance of mapping methods, including other
methods not examined in this study (Barth et al. 2014; Cheng
et al. 2017; Kuusela and Stein 2018; Su et al. 2021, 2020),
based on synthetic profiles from Argo and/or altimeter obser-
vations as well as from de-drifted model simulations that con-
serve tracer properties (Allison et al. 2019; Cheng and Zhu
2014; Cheng et al. 2017; Garry et al. 2019; Good 2017; Palmer
et al. 2019).

Lessons can be learned from the marine surface tempera-
ture community, which has been subjected to the same prob-
lem of quantifying the imprint of real climate signals from
ocean data analyses based on noisy and unevenly distributed
measurements, including the quantification of instrumental/
methodological biases and the reduction of spurious signals
(Kennedy 2014; Kent and Kennedy 2021). Synergistic efforts
across multidisciplinary communities should be encouraged to
speed up new developments, such as the integration of surface
and subsurface ocean data with the full-range of uncertainty
stated (e.g., Atkinson et al. 2014).

Finally, the relevance of improving estimation of OHCA
and providing full quantification of uncertainty is justified by
the uses in a wide range of climate science, such as hindcast
reanalyses assimilating ocean data (Storto et al. 2019), ocean
and/or climate model analyses investigating the mechanisms
of ocean heat uptake (Couldrey et al. 2020; Dias et al.
2020a,b; Gregory 2000; Gregory et al. 2016; Saenko et al.
2021; Savita et al. 2021), detection and attribution of changes
to natural and anthropogenic drivers (e.g., Gleckler et al.
2012), and constraining model projections of climate and sea
level change relevant for policymakers and decision-makers
(Lyu et al. 2021; IPCC 2007; Oppenheimer et al. 2019).
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