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Abstract

Over the last decade, field investigations, laboratory experiments, geophysical exploration and petrological, geochemical
and numerical modelling have provided insight into the mechanisms of phreatic and hydrothermal eruptions. These erup-
tions are driven by sudden flashing of ground- or hydrothermal water to steam and are strongly influenced by the interac-
tion of host rock and hydrothermal system. Aquifers hosted in volcanic edifices, calderas and rift environments can be
primed for instability by alteration processes affecting rock permeability and/or strength, while magmatic fluid injection(s),
earthquakes or other subtle triggers can promote explosive failure. Gas emission, ground deformation and seismicity may
provide short- to medium-term forerunner signals of these eruptions, yet a definition of universal precursors remains a key
challenge. Looking forward in the next 10 years, improved warning and hazard assessment will require integration of field
and experimental data with models combining case studies, as well as development of new monitoring methods integrated

by machine learning approaches.
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Introduction

Phreatic and hydrothermal eruptions are explosive phe-
nomena ubiquitous to volcanoes, calderas and tectonic rifts
areas (Browne and Lawless 2001). Phreatic eruptions are
produced by explosive expansion of groundwater due to the
sudden arrival of heat and gas from intruding magma (or
magmatic fluids), whereas hydrothermal eruptions result
from the flashing and expansion of hydrothermal water with-
out the need for any magmatic input (Mastin 1995; Browne
and Lawless 2001; Thiéry and Mercury 2009). Despite their
comparatively small size, these eruptions can be deadly as
they often lack precursors (Barberi et al. 1992; Hurst et al.
2014; Stix and de Moor 2018). When occurring, precursors
are too weak, initiate only shortly before the eruption onset
or affect a small localised area that cannot be detected with
normal monitoring networks (Jolly et al. 2014; Dempsey
et al. 2020). As a result, useful forecasts cannot be made.
Absent or ambiguous signals may be related to temporal
and spatial scales of priming and precursory processes as
in the case, for example, of slow accumulation of magmatic
gas within aquifers (Sano et al. 2015; Battaglia et al. 2019),
or rapid heating and pressurisation of a small volume of
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fluids (Christenson et al. 2010; Kobayashi et al. 2018). This
may result in gradual development of pressurised aquifers
over long timescales versus fast and dynamic interaction of
ascending magmatic fluids with the existing aquifer involv-
ing cold and/or hydrothermal water, where short-term pre-
cursory signals can be present (Chiodini et al. 1995).

Here we discuss advances in processes, characteristics,
triggers and lithological factors influencing fragmentation
and eruptive dynamics of phreatic and hydrothermal erup-
tions on observed or monitored eruptions from the past ten
years. Different precursory signals and their meaning are
explained in the light of their source mechanisms and geo-
logical context. A number of unanswered questions about
triggering and forecasting these eruptions, as well as future
directions and perspectives, are also presented. A video foot-
age of an unheralded phreatic eruption at Rincén de la Vieja
(Costa Rica), and a full library sorted and collated into 17
thematic topics covering the last ten years of research are
supplied in the Online Resources.

Key events of the past 10 years

Researchers have long struggled to provide consistent defi-
nitions and genetic criteria for phreatic and hydrothermal
eruptions (Browne and Lawless 2001; Montanaro et al.
2016c¢c; Stix and de Moor 2018). This problem is further
exacerbated by the similarity of their dynamics and deposits
with those from phreatomagmatic eruptions involving small
amounts of magma, and occurring at “wet” volcanoes where
vent-hosted hydrothermal systems are common (Pardo et al.
2014; Alvarado et al. 2016; Christenson et al. 2017). It also
must be recognised that one eruption type can transition into
another in just a few minutes (Swanson et al. 2014; Battaglia
et al. 2019). These eruptions can last from seconds to hours,
eject large ballistics, generate highly energetic steam-rich
density currents (surges) and expel wet jets of poorly sorted
rock debris (Lube et al. 2014; Maeno et al. 2016; Kilgour
et al. 2019). Deposits are generally of low volume (< 10° m%)
and restricted to within hundreds of metres to a few kilome-
tres from crater margins, while resulting craters range from a
few metres up to hundreds of metres in diameter, with depths
from few to several hundred metres (Kilgour et al. 2010;
Breard et al. 2014; Montanaro et al. 2016b; Strehlow et al.
2017; Terada et al. 2021). As summarised in Table 1, more
than 30 phreatic and hydrothermal eruptions were observed
during 2011-2021. The example of a video obtained during
the recent phreatic eruption at Rinc6n de la Vieja in Costa
Rica (Online Resources 1) shows the unpredictable nature
of these types of explosive events, and how fast products can
be dispersed over wide areas. In addition, hundreds of stud-
ies published during the last decade have provided insight
that elucidate their triggering mechanisms and eruptive

@ Springer

processes (Online Resources 2). [llustrative events during
the past 10 years include:

e On September 27, 2014, the rupture of a hydrothermal
seal produced a phreatic eruption at Mt. Ontake (Japan),
killing 63 people (Kato et al. 2015; Kaneko et al. 2016).
Long-period and volcano-tectonic earthquakes were
detected September 6-11, resuming 10 min prior to
eruption (Zhang and Wen 2015; Kaneko et al. 2016). A
slight deviation in the stress field was observed a week
before the eruptive event; ground inflation of the vol-
canic edifice occurred seven minutes before the eruption
(Terakawa et al. 2016). The eruption launched ballistics
reaching a distance of ~ 1 km, produced a 7 km-high ash
plume and generated low-temperature pyroclastic density
currents (Kaneko et al. 2016; Oikawa et al. 2016).

e On April 27, 2016, Whakaari/White Island (New Zea-
land) produced a phreatic eruption generating a small
pyroclastic density current following weak tremors and
decreasing crater lake levels (Hamling 2017; Walsh
et al. 2019; Kilgour et al. 2019; Caudron et al. 2021).
On December 9, 2019, seismic activity and SO, flux
increased ~40 min before another eruption that produced
a 3—4 km-high ash plume and warm (< 100 °C) pyroclas-
tic density currents that killed 21 people and injured 26
(Dempsey et al. 2020; Burton et al. 2021).

e A hydrothermal eruption at Te Maari/Tongariro (New
Zealand) occurred on August 6, 2012, following seismic
unrest between July 13 and August 1, which resumed
5 min prior to the eruption (Hurst et al. 2014; Jolly
et al. 2014). A landslide unroofed the over-pressured
and sealed hydrothermal system producing a 7 km-high
plume and warm (~ 80 °C) pyroclastic density currents
(Lube et al. 2014; Pardo et al. 2014). A second smaller
eruption occurred without precursors on November 21,
2012, and was observed and recorded by tourists (Erfurt-
cooper 2014).

Ejected ash from the Te Maari’s August eruption included
glassy fragments among the mechanically fragmented host
rock (lavas and pyroclasts). The difficulty in identifying
fresh juvenile pyroclasts in fine ash deposits raised the ques-
tions about the capability to discern juvenile products in
small phreatomagmatic eruptions and requires rethinking
of the long-standing definition of phreatic and hydrothermal
as eruptions involving no magmatic material (Pardo et al.
2014).

Some volcanoes experience periods of prolonged activ-
ity with alternating or consecutive phreatic and phreato-
magmatic events. For instance, between 2014 and 2020
Turrialba (Costa Rica) produced frequent eruptions of
these types due to magma injection and/or breaking of
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hydrothermal sealing that generated ash plumes up to 4 km
high (Alvarado et al. 2016; de Moor et al. 2016; Stix and
de Moor 2018; DeVitre et al. 2019).

The complexity in the processes, sources and dynamics
of these eruptions is striking. Therefore, we suggest that
explosive events with a hydrological component occur on
a spectrum between three end-members: phreatic, hydro-
thermal and phreatomagmatic. Combining a number of
observations from different volcanic systems, we propose
a conceptual classification for different eruption types
(Fig. 1, Table 1). The presence of juvenile material is a
key feature to identify phreatomagmatic events, whereas
phreatic and hydrothermal origins can be defined by con-
sidering: i) energetic source type, ii) hydrologic setting,
iii) erupted lithology, iv) triggers and v) timescale between
any magmatic perturbation and hydrothermal system
response.

Expansion of hydrothermal water with
no magmatic input

Hydrothermal

@® Kverkfjoll/Gengissig 2013

Te Maari/ Tongaririo 2012@
@ Ebinokogen loyama 2018

@ Motoshirane/
Kusatsu-Shirane 2018

@ Hakone 2015
Poas 2014 @

Whakaari/
White Island
2016-2019

@ Poas 2017

@
Ontake 2014

Phreatic
Expansmn of groundwater
with ma matlcmput

(heat, fluid, energy)

Phreatomagmatic
Expansion of magma
and groundwater

Fig. 1 Ternary diagram illustrating the conceptual classification of
volcanic eruptions resulting from the explosive expansion of water
with phreatic, hydrothermal and phreatomagmatic end-members.
Significant eruptions over the last 10 years are plotted qualitatively:
Te Maari/Tongariro August 6, 2012, Ontake September 27, 2014,
Poés February—October 2014, Ebinokogen Ioyama April 19, 2018,
Hakone June 29, 2015, Kverkfjoll/Gengissig August 16, 2013,
Whakaari/White Island 2016—2019, Poas April 14, 2017, Turrialba
2011-2021, Rincoén de la Vieja 2011—2021 (see also Table 1). Dif-
ferentiation between end-members is based on qualitative assessment
of the: i) presence and proportion of juvenile material indicative for
phreatomagmatic contributions, ii) identification of injected fluids—
when present—and their abundance to discriminate magmatic input,
iii) hydrologic setting indicative of the balance between hydrothermal
and groundwater, iv) presence of an active hydrothermal aquifer and
its relative size indicative of the proportion of hydrothermal contribu-
tions, v) erupted lithologies, vi) triggering mechanism and vii) time-
scale between any external perturbations and aquifer response

@ Springer

Processes, triggers and characteristics
Priming and eruption controlling parameters

Phreatic and hydrothermal eruptions are powered by the
sudden conversion of thermal energy stored in fluids into
mechanical work (rock fragmentation and particle ejec-
tion). The main factors controlling the preparatory state
(priming) of both fluids and host reservoir, as well as the
fragmentation and ejection mechanisms, include:

1. The pressure/temperature differential from source region
to ambient surface conditions and the rate of pressure
release (Thiéry and Mercury 2009; Montanaro et al.
2016a);

2. The state of the fluid (gas, liquid, gas +liquid) and its
volume (Mastin 1995; Ohba et al. 2007; Thiéry and
Mercury 2009; Toramaru and Maeda 2013; Montanaro
et al. 2016c¢, a; Fullard and Lynch 2012);

3. The geometry and properties (connected porosity, per-
meability and strength) of the aquifer host rock (Haug
etal. 2013; Galland et al. 2014; Mayer et al. 2016; Ken-
nedy et al. 2020; Montanaro et al. 2021a, b; Fullard and
Lynch 2012).

The first two factors define the overpressure conditions
and the bulk mechanical energy available during an erup-
tion, which could also be augmented by additional dis-
solved gases (e.g. CO,) that lower the liquid stability limit
(Thiéry and Mercury 2009; Thiéry et al. 2010; Hurwitz
et al. 2016). The third factor influences the style of an
eruption, as well as its intensity via the relative partition-
ing of energy between work of rock fragmentation versus
conversion into kinetic energy (Raue 2004; Montanaro
et al. 2016b, 2021a; Rosi et al. 2018; Kilgour et al. 2019).

Geological settings

Phreatic and hydrothermal eruptions can occur in volcanic
and vent-hosted hydrothermal systems, as well as in active
geothermal fields within calderas or volcano-tectonic rifts
(Fig. 2, Table 1). Aquifers can be “primed” for eruption
by sealing via hydrothermal alteration and mineralisation,
including build-up of pore/fracture-filling sulphates, clays,
sulphur minerals and silica (Gurioli et al. 2012; Sutawid-
jajaet al. 2013; Heap et al. 2019; Gaete et al. 2020; Mick
et al. 2021). However, sealing can be localised or affect
extensive areas in these diverse geological environments
and occur progressively or suddenly, as well as can be
contrasted by rapid permeability increase (e.g. fracturing).
Therefore, changes in aquifer conditions can occur over
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Crater lake breaching
phreatic eruptions

aral blast
hydrothermal
eruptions

Magma or hot fluid
injection

M Gas pathways/

' Hydrothermally
altered areas

Fig.2 Conceptual sketch of typical phreatic and hydrothermal erup-
tion types in volcanic and geothermal settings, showing potential trig-
ger mechanisms (e.g., magma/fluid injection; landslide; sulphur seal-
ing; lake drainage). Examples of respective eruption types from Te
Maari/Tongariro 2012, Poas 2014, Mt. Ontake 2014, and Kverkfjoll/

varying space and time scales (Harris et al. 2012; Heap
and Kennedy 2016; Kanakiya et al. 2017; Roulleau et al.
2017; Kennedy et al. 2020; Cid et al. 2021).

At stratovolcanoes, systems with near-surface magma or lava
domes (e.g. Merapi, Lascar, Turrialba, Sinabung, Vulcano), flu-
ids are hosted within primary and reworked pyroclastic deposits,
as well as in fractured lavas. The dynamic interaction of ascend-
ing magmatic gases with the existing aquifer (cold or hydro-
thermal water) yields acid-sulphate alteration that can reduce
conduit or cap rock permeability by orders of magnitude over
timescales of weeks to years (Gurioli et al. 2012; Sutawidjaja
et al. 2013; Heap et al. 2019; Gaete et al. 2020; Mick et al. 2021).
If lakes occupy active craters (e.g. Poas, Kawah Ijen, Ruapehu,
Kusatsu-Shirane), they can act as traps for high temperature
gases, allowing the formation of molten elemental sulphur
(> 114 °C) within the aquifer (Christenson et al. 2017; Yama-
moto et al. 2017). Because sulphur viscosity drastically increases
above~ 160 °C, pore sealing and consequent permeability loss
can occur when temperature rises above this threshold value
(Christenson et al. 2010; Sutawidjaja et al. 2013; Manville et al.
2015; Scolamacchia and Cronin 2016; Rouwet et al. 2021).

Large calderas and volcano-tectonic rift environments are
situated within broad basins containing flat-lying ignimbrites,
fractured lavas and volcaniclastic sediments (Morgan et al.
2009; Rowland and Simmons 2012; Kennedy et al. 2018). In
these cases, pressurised hydrothermal reservoirs develop below
clay caps formed by alteration of feldspar-rich tuffs, breccias
and lavas during circulation of alkali chloride-rich fluids as

Summit crater
phreatic eruptions

Lake
drainage

Geothermal heat

Gengissig 2013, are shown. Note: the Te Maari eruption shown in the
picture is the one from November, while the event of August occurred
overnight. It can be noted how pyroclastic flow move within the scar
left by the landslide triggering the August eruption

at, for example, Yellowstone, Waiotapu, Ebinokogen Ioyama,
Domuyo, Valley of Desolation, Krafla (Mayer et al. 2017;
Fowler et al. 2019; D’Elia et al. 2020; Eggertsson et al. 2020;
Tajima et al. 2020). The presence of clay-rich and impermeable
structures has been confirmed at such systems via geophysical
exploration (e.g. magnetotelluric methods; Tajima et al. 2020;
Tseng et al. 2020). In such data, hydrothermal seals appear as
low resistivity layers overlying a relatively conductive domain
corresponding to pressure sources and low-frequency earth-
quake swarms associated with the dynamics of the hydrothermal
reservoir (Seki et al. 2015; Yoshimura et al. 2018; Mannen et al.
2019; Taussi et al. 2019). Clay, silica and zeolite precipitation
within surficial fluvial and lacustrine sediments may also form
localised to large-scale shallow impermeable layers (Morgan
et al. 2009; Montanaro et al. 2016b; Fowler et al. 2019; D’Elia
et al. 2020).

Triggers

In all geological settings, sealing locally elevates pressure and
increases explosive potential. Addition of gas volume/heat into
aquifers from deeper magmatic or tectonic sources can rapidly
accelerate local overpressurisation and enhance explosive poten-
tial (Fig. 2). Injection of magmatic fluids prior to phreatic and
hydrothermal eruptions has been detected by geophysical, geo-
chemical and petrological investigations (Table 1). Cyclical pres-
surisation and fracturing enhance circulation of hot fluids within
shallow portions of the hydrothermal systems and may indicate a

@ Springer
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greater instability and risk of eruptions (Christenson et al. 2010;
Rouwet et al. 2014, 2021; Jolly et al. 2018; Heap et al. 2019;
Kennedy et al. 2020; Moretti et al. 2020). Such cyclical unrest
periods are observed at Whakaari/White Island where short
explosive paroxysms alternate with periods of pressure-induced
fracturing resulting in “failed eruptions” (Dempsey et al. 2020).
Similar periods of pressure-induced fracturing, and associated
seismic and deformation trends, have also been observed and
defined at Vulcano where they have been termed “apparent heat-
ing” phases (Harris et al. 2012). Characteristic tremor and degas-
sing signals indicate that such behaviour reflects the presence of
imperfect seals that readily leak and accommodate deformation
pulses following magmatic fluid injections as at, for example,
Solfatara in Campi Flegrei (Chiodini et al. 2017; Moretti et al.
2018; Lima et al. 2021).

Another possible trigger of phreatic and hydrothermal
eruptions could be large regional tectonic earthquakes dis-
turbing the local stress regime, provided that the “appropri-
ate” priming conditions are present (Lupi and Miller 2014;
Seropian et al. 2021). It has been observed that modest, prox-
imal earthquakes can cause an increase in near-vent perme-
ability and trigger mild bursts of hydrothermal fluids (Hur-
witz et al. 2014; Reed et al. 2021). Large events may cause
rock fracturing to break aquifer seals or produce seismic
waves that can perturb hydrothermal systems over different
timescales and distances (Rouwet et al. 2019; Gonzalez et al.
2021). For instance, the M7.6 Nicoya earthquake in Costa
Rica in 2012 enhanced seismic and thermal activity at Irazi-
Turrialba and Poas volcanoes (Lupi et al. 2014) and affected
the eruptive activity in the following 2 to 5 years (de Moor
et al. 2017; Salvage et al. 2018). Teleseismic waves from
the M6.7 earthquake in Chile in 2014 triggered seismicity
and a small phreatic eruption in the Tatun volcano group of
Taiwan ~200 s afterwards (Lin 2017). A M5.9 earthquake
located ~ 10 km NE of Whakaari/White Island occurred on
November 24, 2019, about three weeks prior to the deadly
eruption on December 19 (Ardid et al. 2022).

Other eruption triggers include (Fig. 2 and Table 1): 1)
mass movements causing unroofing of hydrothermal aquifers
or burying of gas emission vents (Lube et al. 2014; Procter
et al. 2014; Mayer et al. 2017; Isaia et al. 2021); ii) exten-
sional fracturing (Ort et al. 2016); iii) groundwater-lake
level changes (Montanaro et al. 2016b; Rott et al. 2019);
iv) sudden precipitation events (Gaete et al. 2020); and v)
rapid fracture/vein filling by calcite precipitation (Simpson
et al. 2014).

Lithological factors
The eruptive mechanisms and processes of phreatic and
hydrothermal events are strongly influenced by the properties

of fragmented lithologies (Fig. 3; Breard et al. 2014; Graet-
tinger et al. 2015; Valentine et al. 2015b; Pittari et al. 2016;

@ Springer

Geshi and Itoh 2018; Montanaro et al. 2020, 2021b; Graet-
tinger and Bearden 2021). In particular, rock permeability
determines whether expanding fluids may fragment the host
rocks or escape via efficient outgassing, while rock strength
can modulate fragmentation initiation, craterisation processes,
and eruptive dynamics (Haug et al. 2013; Mayer et al. 2015;
Montanaro et al. 2016a, c, 2021a). Both parameters can be
influenced by alteration, fracturing and compaction processes
(Fig. 3a). Mineral dissolution can increase permeability and
reduce rock strength, whereas mineral precipitation has the
opposite effect, favouring brittle behaviour (Pola et al. 2012;
Mayer et al. 2016; Mordensky et al. 2019). Fractures tend to
enhance permeability, favouring fluid circulation and even-
tual dissolution/precipitation, but might weaken host rocks,
whereas compaction tends to close pores and fractures reduc-
ing permeability and increasing strength (Heap et al. 2015;
Heap and Violay 2021).

Experiments, field studies and modelling (Taddeucci
et al. 2013; Graettinger et al. 2015; Valentine et al. 2015a;
Macorps et al. 2016; Montanaro et al. 2016a, 2021a;
Tsunematsu et al. 2016; Strehlow et al. 2017; Rosi et al.
2018; Gallagher et al. 2020) reveal that fragmentation of
fresh or altered “strong” lithologies requires significant
mechanical energy to create intergranular fractures, thus
reducing the efficiency of size-reduction processes and
ash generation (Fig. 3b, c). Consequently, disruption of
aquifers dominated by lithologies of high rock strength
can result in relatively smaller deposit footprints, abundant
blocks and low particle ejection velocities as inferred from
eruption deposits at King's Bowl and Vulcano (Fig. 3d;
Hughes et al. 2018; Rosi et al. 2018). In contrast, fragmen-
tation and/or disaggregation of weathered and degraded
rocks, or poorly consolidated to unconsolidated “weak”
lithologies requires little energy, and produces a sig-
nificant amount of ash (Fig. 3b, c¢). Thus, eruptions that
disrupt aquifers within lithologies of low rock strength
result in more efficient craterisation and debris dispersion.
That is, they are associated with relatively higher ejecta
volumes, greater particle ejection velocities and larger
ejecta footprints as at, for example, Turrialba, Whakaari/
White Island, Kusatsu-Shirane, and Kverkfjoll/Gengis-
sig (Fig. 3d, Table 1). Aquifers composed of a mixture
of strong and weak lithologies are expected to produce a
mixed spectrum of eruption types and hazards (Fig. 3c),
as at, for example, Te Maari/Tongariro and Mt. Ontake
(Table 1), or as inferred from eruption deposits at Lake
Okaro and El Humazo (D’Elia et al. 2020; Montanaro
et al. 2020). Lithological effects on eruption dynamics
are masked by eruptions through lakes, which can pro-
duce vapour-debris mixtures such as cockscomb jets, base
surges and eventual lake breaching as at, for instance, Poés
and Ruapehu (Fig. 2; Kilgour et al. 2010; Manville et al.
2015).
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Forecasting

To date no phreatic or hydrothermal eruption has been suc-
cessfully forecasted. This presents a significant challenge
to volcano observatories and monitoring systems. Here we
outline four recent notable advances that may aid in increas-
ing our forecasting capabilities: °

e Seismicity and/or tremor commonly occurs just prior
to (e.g. Kawakatsu et al. 2000; Park et al. 2020) or
associated with phreatic and hydrothermal eruptions
(Maeda et al. 2015; Tajima et al. 2020). Such signals
may reflect periods of pressurisation. At Whakaari/
White Island, some of the phreatic and hydrothermal
eruptions were preceded by tremor episodes during
which seismic amplitude increased from 2 to 5 Hz
(Chardot et al. 2015; Dempsey et al. 2020; Ardid
et al. 2022). Seismic velocities and attenuation can
also change preceding the eruptions (Mordret et al.
2010; Saade et al. 2019; Yates et al. 2019). Month to

year-long changes in seismic amplitude ratios prior
to several eruptive events have indicated enhanced
attenuation at shallow levels (Caudron et al. 2019).
These seismic "signatures" may be sensitive monitors
of both sudden gas influx and volatile accumulation
due to sealing.

On timescales of years, increases in radiant heat fluxes
were observed prior to phreatic eruptions at Mt. Ontake
and Ruapehu, possibly related to magmatic fluid-
enhanced hydrothermal activity (Girona et al. 2021).
Deformation signals can also occur, such as at Hakone,
where InSAR and GNSS data revealed ground inflation
starting in mid-2014 prior to a small hydrothermal erup-
tion in June 2015 (Doke et al. 2018; Kobayashi et al.
2018; Mannen et al. 2019). Such anomalies require
spatial resolutions of ~ 100 m if they are to be detected
within the limits of our current remote sensing capabil-
ity (Narita et al. 2020). A similar but subtle signal was
detected in hindsight by stacking GNSS data prior to the
2014 Mt. Ontake eruption (Miyaoka and Takagi 2016).

@ Springer
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Conversely, more widespread deformation was observed
prior to the 2017 Poas eruption, which involved magma
(de Moor et al. 2019).

e Continuous gas monitoring provides significant insight into
eruption “priming” processes at various timescales. Exam-
ples include: i) Poés, where SO, fluxes and MultiGAS SO,/
CO, and H,S/SO, ratios distinguish periods of hydrothermal
sealing (closed-system, SO, flux <20 T/day, SO,/CO,<0.1,
H,S/SO, 1-5) from magmatic inputs (open-system, SO,
fluxes > 50 T/day, SO,/CO, > 1, H,S/SO, near zero) on time-
scales of weeks to months (de Moor et al. 2019); ii) Rincén
de la Vieja, where low concentrations of SO, and H,S are
observed minutes prior to phreatic eruptions—likely due to a
forming sulphur seal—while eruptive gases are characterised
by large increases in SO, relative to H,S and CO, (Battaglia
et al. 2019); and iii) Turrialba with peaks in CO,/SO, prior
to eruptive phases in 2014 and 2015 signal magma injection
that disrupted the overlying hydrothermal system, whereas
the disappearance of H,S in emissions marked the transition
from phreatic to phreatomagmatic activity (de Moor et al.
2016). The distinct degassing behaviour of these volcanoes
highlights the challenge of identifying universal precursors
to phreatic and hydrothermal eruptions.

e Several studies have utilised Bayesian tools to combine
catalogued phreatic and hydrothermal eruptions (e.g.
ballistics and pyroclastic deposit distributions) with
monitoring data (seismic, gas emissions, deformation)
to model multiple variables for probabilistic forecasting
and hazard assessment (Garcia-Aristizabal et al. 2013;
Rouwet et al. 2014; Tonini et al. 2016; Strehlow et al.
2017; Christophersen et al. 2018). New monitoring data
will enable better uncertainty assessment and statisti-
cal analyses to support more accurate risk analysis. A
method of tremor analysis that uses machine learning has
been used to scrutinise continuous seismic energy data to
forecast eruptions at Whakaari/White Island (Dempsey
et al. 2020). Patterns of events preceding past eruptions
were used to classify 48-h-long windows of the seismic
record. Patterns that could indicate pre-eruptive “boiling”
instabilities in the aquifer were identified, and threshold
values of seismic energy indicating higher probabilities
of eruption were constructed for automatic recognition.
Both these novel approaches hold significant promise.

Perspectives

On the basis of our assessment, we identify five priority
areas for research over the coming decade. These are:

1. Unravelling the critical rates of fluid-rock interaction and

related aquifer processes that prime hydrothermal systems
for explosive failure: The kinetics of mineral dissolution and
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precipitation determine if and when unstable conditions are
reached within hydrothermal aquifers. New experimen-
tal, geochemical, mineralogical and numerical techniques
capable of unravelling the spatial and temporal variability
of aquifer sealing are needed. Models built on such knowl-
edge will be pivotal in understanding the relative stability or
instability degree of any given aquifer. The extensive recent
research related to carbon storage could serve as a corner-
stone in advancing experimental, analytical and model-
based research (Kaszuba et al. 2013; Tonini et al. 2016;
Vialle et al. 2018; Wu and Li 2020; Payton et al. 2022).
Identification of areas with potential for future phreatic
and hydrothermal eruptions: Building extensive and new
geological knowledge for areas with long-term hydrother-
mal activity, crater lake floors, histories of previous/ongo-
ing eruptions and geothermal-system crises are pivotal to
delineate cases in which eruptive events are likely to occur
without obvious precursory signals. A challenging, but nec-
essary, step will include the identification of potential sites
at risk of disruption at relatively long-dormant (decades to
centuries) volcanoes, where evidence of past eruptions is
absent or not recognisable. New geophysical and remote
sensing exploration methods for mapping of altered ground
and delimiting covert hydrothermal aquifers might help in
tackling this problem (Kruse 2012; Hiibert et al. 2016;
Gresse et al. 2017, 2021; Vaughan et al. 2020; Mishra et al.
2021; Rodriguez-gomez et al. 2021; Wang et al. 2021).
Building new eruption forecasting tools and indica-
tors over a range of timescales: Currently, forecasting
systems rely on data collected at different sampling
frequencies and under different technical and field con-
straints. For instance the time resolution of continuous
acquisition of seismic or deformation data, in contrast
to sporadic or punctual gas and geochemical sampling.
Real-time seismic amplitude monitoring (RSAM), dis-
placement seismic amplitude ratio (DSAR), radiant heat
flux and Multi-GAS datasets can provide remote and
quasi-continuous, key information capable of indicat-
ing when a system becomes unstable (Caudron et al.
2021). Integrating these tools using a machine-learning
approach can provide means to combine high frequency
with sporadically collected data, and thus enable the
weight of these parameters to objectively forecast an
eruption likelihood. Such an approach requires numeri-
cal advances in order to transfer knowledge between
systems and move from isolated case studies to globally
applicable techniques.

Development of broad, global approaches to statistical
hazard estimation: Current understanding of lithological
influences on explosive energy partitioning allows us
to estimate eruptive scenarios and hazards for a range
of volcanic, geothermal and other lithological settings.
Integrating large datasets involving a number of differ-
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ent sites and using numerical and statistical modelling
is needed to generalise and extend an approach based on
probabilistic or event-tree type methods.

5. Developing new hazard mitigation and communication
strategies: The sudden and unexpected nature of phreatic
and hydrothermal eruptions demands that we develop
rapid and automated warning tools. However, it will
be challenging to understand the limits of such tools,
and consider how best to transfer the alert information
of an imminent eruption as quickly as possible, using
plain language that the public can understand, and also
remaining true to the inherent uncertainties in forecast-
ing events (Fearnley et al. 2017; Fitzgerald et al. 2017,
Yamada 2022). Ongoing strategies used, for example in
Japan, foresee precise and dense monitoring of geother-
mal and fumarolic areas, where anomalies and crises are
assessed in terms of seismicity, geodesy and geochem-
istry. Such dense monitoring allowed, for instance, to
detect the unrest at Hakone, and to rapidly implement
hazard mitigation measures (e.g., pre-established evacu-
ation manual) that reduced the risk of having people
exposed to the volcanic hazard (Mannen et al. 2018).

The last decade has shown great progress in our under-
standing of priming and triggering conditions of phreatic
and hydrothermal eruptions, as well as on the characteri-
sation and modelling of their eruptive processes. Such
progress also enabled a better monitoring and analysis
of seismic, geochemical and deformational “changes” in
the volcanic and geothermal settings eventually preceding
eruptive failures. However, inherent uncertainties in inter-
preting diverse and potentially contradictory signals may
still lead to high rates of false "crises" and, thus poten-
tially, "false alarms". In the next decade comprehensive
models of aquifer priming and explosive failure will build
up on continuous progress through novel approaches and
new technologies. Future advancement will enable for
more accurate, quantitative forecasts that better commu-
nicate uncertainty and mitigate risks from such eruptions.
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