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Abstract
The optimal control and its limited version namely the model predictive control represent one of the most 
important nonlinear control alternatives nowadays. The success of them are also proven in many practical 
applications. These can provide for several industrial applications the optimal trajectory calculation as well 
as calculation of the real-time control signal. One successful version of this is Generalized Predictive Control 
(GPC). A big advantage of these control algorithms is that they solutions are able to take into account the 
limitations of the inputs, and the states. In some cases, it is important to know the mathematical model cho-
sen and the complete state information. Otherwise, the model can be estimated during the operation. Our 
study shows through the control of the cathode heating of a high-power electron beam device the self-tun-
ing adaptive control thus constructed. Using a suitable dynamic model and an extended Kalman estimator, 
we determine the estimated temperature of the two cathodes during operation and the saturation electron 
current, which ensures the maximum cathode life. The practical application was tested on a CTW 5/60 type 
electron gun.

Keywords: optimal control, Kalman filter, model predictive control, optimal trajectory.

1. Introduction

It is a known fact that today, due to the spread of 
digital embedded systems (although the numeri-
cal control algorithms are very often used), a sig-
nificant proportion of these operate with a clas-
sical PID or equivalent control algorithm. It can 
also be observed that the so-called adaptive PID 
algorithms have become very popular because 
they are easy to implement and very simple to 
review. However, for high standard controls, the 
maximum one-step prediction provided by PID is 
not always adequate in practice. In this case the 
so-called minimum variance and model-based 
predictive controls can be useful, where the hori-
zon can be chosen by the designer. In these con-
texts, the equivalent of a PID control algorithm is 

the General Predictive Control (GPC). This is easily 
feasible in practice and - thanks to the prediction 
horizon and the fact that it can obtain an adaptive 
algorithm (supplemented with a parameter esti-
mator) - it can certainly be a good alternative to 
the mentioned control algorithms. In practice, a 
GPC algorithm together with a least-squares pa-
rameter estimation algorithm already provides 
adaptive control. The parameter estimation block 
specifies the regression parameters correspond-
ing to the current operating point, and based on 
this, the GPC control calculates the corresponding 
sequences of the control signal. 

Naturally, the question here is whether we have 
an algorithm that can perform both tasks in a 
given sampling time, which is often of the order 
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control signal of the used regression model B(z-1), 
is neglected then the designed closed-loop control 
will be unstable if this polynomial has unstable 
roots. They proposed the introduction of an auxil-
iary output that modifies the structure of the used 
regression model [3]. Unfortunately, this meth-
od did not work either. The one-step estimation 
used here does not consider the dead time as a 
separate horizon, and this significantly limits the 
quality and effectiveness of the estimation (here-
inafter referred to as prediction). Based on this it 
is easy to understand the opinion expressed by 
Grimble in 2002, the classic MVC theory performs 
large bandwidth, high gain, and implausibly high 
fluctuation in the control signal. Otherwise, the 
authors also encountered frequently this phe-
nomenon, and we tried to limit this unacceptably 
large control signal change in an empirical way. 
After this, however, it became necessary to elimi-
nate the unmanageable quality degradation (and 
the empirical tuning) caused by the neglected 
limitation in the design of the control algorithm. 
Therefore, the amendment proposed by Bitmead, 
Graves, and Wertz (1990) and Clarke and Mohtadi 
(1989), is very useful, being known in the litera-
ture as the Generalized Minimal Variance Control 
(GMVC) algorithm. In this method, the original 
objective function is supplemented with control 
signal constraints as well as the specified path. 
Naturally, this method also retained the one-step 
horizon prediction. Thus, the solution to reduce 
the indicated large control signal change could 
only be a significant weighting of the control sig-
nal or the change of the control signal in the ob-
jective function. This, in turn, reduces the control 
signal both outside and within the limits, and thus 
results in quality degradation. An effective solu-
tion to this problem is the Generalized Predictive 
Control (GPC) algorithm, developed by Clarke and 
Gawthrop. This in itself provides self-tuning adap-
tive control just like MVC and GMVC algorithms. 
However, - through the efficient constraint man-
agement algorithm and arbitrary extension of its 
prediction horizon - it also provides an effective 
solution to the listed deficiencies: handles the 
non-minimal phase and open-loop unstable pro-
cesses as well as the unknown or variable dead 
time phenomena. Before superficially concluding 
that we have the ideal control algorithm (since 
the on-line estimation of the regression ARX mod-
el creates an opportunity to calculate the control 
algorithm in each sampling) let us look at the 
practical experience. In the case of application to 
linear or near-linear processes, this statement is 

of milliseconds. Well, there are many processes 
where an adaptive GPC algorithm is unable to do 
this. Moreover, in the case of nonlinear systems 
(where the estimated parameters are valid only 
in a narrow environment of the operating point 
and therefore the estimation has to be performed 
in all samples), these control implementations 
can be more sensitive to the calculation times. 
The question is, what would be the algorithm that 
would be able to perform the estimation over the 
entire operating range, even for nonlinear sys-
tems, and thus would not have to waste expensive 
computational time during operation?

One such variant of the GPC control would be 
the Neural GPC control. This method performs 
the regression estimation with a neural network 
and not with one of the ARMAX, ARIMAX, CARI-
MAX models. Naturally, this is also a regression 
estimate, known in the literature as the NARMAX 
estimate; with this, the corresponding GPC con-
trol signal can calculated based on a preliminary 
estimate. Although many have dealt with this (for 
example even Professor Norgaard who introduce 
the NARMAX, has developed a software package), 
yet a significant number of applications apply the 
method only to linear processes. This work aims 
to study the possible advantages and disadvan-
tages of these control methods in the case of a 
strongly nonlinear process. 

Our test process is a cathode-assembly heating 
controller, applied to high power electron-beam 
equipment. This was originally accomplished 
with a PID controller, and cannot be used espe-
cially at very high-power conditions. As a conclu-
sion, it was possible to control up to a maximum 
of 80-90 W, in stable mode, which in many cases 
was not enough to achieve the maximum electron 
beam processing current.

A very important chapter in the develop-
ment of control algorithms can be classified 
as the adaptive control algorithms, such as the 
self-tuning control algorithm. Åström and Wit-
tenmark [1], originally proposed only for SISO 
systems as a Minimal Variance Control (MVC) 
algorithm supplemented with a parameter esti-
mation part. For multivariable MIMO systems, 
Keviczky, Hetthéssy, Hilger, and Kolostori [2].  
developed this method, among others. Clarke and 
Gawthrop, the developers of GPC control, also 
noted that in these cases, in addition to knowing 
the exact dead time, here is required a non-zero 
value of the control signal limit of the objective 
function. Moreover, it has been observed that if - 
in the design phase - the polynomial defining the 
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true. However, if we want to control a strongly 
nonlinear process, a linear ARX estimate will not 
always be adequate, especially if we need a hori-
zon at a significant distance from the operation 
point. This problem can be solved by neural re-
gression model estimation, which has been used 
effectively in many practical processes over the 
past two decades.  

In the following sections, we will present in de-
tail the practical implementation of the very pop-
ular generalized predictive control.

2. Thermal model of the indirect heat-
ed cathode assembly and comparison 
between MVC and GPC algorithms

2.1. Dynamic state-space model of the cath-
ode heating process

The task is to implement a minimal variance 
(minimum standard deviation) adaptive control 
algorithm that controls the heating power of the 
indirectly heated massive cathode of a high-pow-
er electron beam machining equipment to a con-
stant value. First, let us see what this task means. 
It is a known fact that in high power electron 
beam processing equipment – n × 100 mA elec-
tron beam – an indirectly heated thermo-emis-
sion cathode is usually used as the electron 
source (Figure 1). Typically, the electron source 
structure consists of two parts: a massive cath-
ode, which provides the machining current and 
a spiral shape primary cathode with an indirect 
heating function. 

If the massive cathode is heated with a constant 
power - provided by electrons emitted by the pri-
mary cathode, operating in a saturated range - it is 
possible to achieve with a good approximation, a 
temperature at the emission surface of the active 
current cathode that is constant. The Ipk current, 
considered as the control signal passing through 
the primary cathode, heats the primary cathode 
to a Tp temperature, which as a result, emits a Js 
electron beam of current density. The free elec-
trons thus excited are accelerated by the constant 
potential Us formed between the primary and 
the massive cathode, and the massive cathode is 
heated to Ts temperature. To operate efficiently, 
i.e. to minimize heat loss, the construction of the 
massive cathode also includes a thermal trap. 
That is, the diameter of the cathode narrows in 
the direction of the perception, 0.6 ... 0.7 mm, as 
opposed to the emission surface with a diameter 
of 1.4 mm. This solution leads to a reduction in 

heat conduction, which also results in a reduction 
in the corresponding heat losses. 

Naturally, this so-called „heat trap” must be 
imagined in the fixing direction of the prima-
ry cathode, thus reducing the power lost by the 
massive cathode due to heat conduction. Further-
more, all these result in nonlinearity in the char-
acteristic of the co-structure of the cathode. The 
task is to design a minimum standard deviation 
(variance) MVC control algorithm, then a gener-
alized minimum variance (GMVC), and finally a 
generalized predictive control (GPC). These algo-
rithms consider the heating power of the massive 
cathode as an output. First, we must write the 
mathematical model describing the operation of 
the joint structure of the cathode, followed by the 
implementation of the MVC, GMVC, and GPC al-
gorithms. 

To determine the distribution of “massive cath-
ode” heating power, it is necessary to know the 
potential distribution between toroid primary 
cathode (torus diameter R = 2.74 mm and wire 
diameter r = 0.15 mm) and the massive cath-
ode (cylindrical with the following dimensions:  
l = 6.6 mm and 0.7 mm). From the motion of the 
electrons, we can determine the charge density 
distribution on the surface of the massive cath-
ode, which is directly proportional to the incom-
ing power density.

The electric current that heats the massive cath-
ode – the current between the primary and mas-
sive cathode – travels along the lines of force of 
the electric field strength. To model the stationary 
mode – in the case of a constant cathode current 
or impact voltage – the current density and the 
heating power distribution on the surface of the 
massive cathode can be determined. Naturally, 
the effect of the current on the generated electri-
cal potential can be determined iteratively over 
several cycles in succession. Based on all these, 
we used a global heating model by omitting the 

Figure 1. Cross section of the indirectly heated cath-
ode assembly and radiation heat transfer be-
tween the two cathodes.
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steps of the electric field strength distribution and 
the electric current density approach. This global 
temperature can be determined based on equilib-
rium formulas of electrical powers. The heating 
power resulting from the collision of electrons 
emitted by the primary cathode, and accelerated 
by the stationary electric field between the cath-
odes, heats the interior of the massive cathode. 
Here, heat loss occurs on the surface through radi-
ation and heat conduction. The heat loss through 
radiation is limited by the placement of certain 
cylindrical reflecting surfaces on the outer por-
tion of the cathode assembly. The use of these also 
forms a kind of stability reserve by eliminating 
the sudden change of the emission current. Ex-
perimental results demonstrated the existence of 
positive feedback due to radiation. The surface of 
the massive cathode uses radiation to heat the pri-
mary cathode. It operates in saturated mode and 
emits a higher electron current density, which is 
proportional to the heating power.  

To determine the dynamic state model the pow-
er of heat and the lost heat by radiation is re-
quired. Calculating the heat transfer surfaces for 
the radiation process, the equations of the ther-
mal model is written under the following simpli-
fication conditions: 

–– The temperature distribution on the primer and 
massive cathode surfaces is uniform; 

–– The primary cathode heated by electric power, 
and by radiation; the surface distribution of the 
temperature is uniform. Heat losses are gener-
ated through radiation, thermal dissipation and 
convection heat losses appear only as unknown 
perturbations. 

–– The massive cathode is heated by the collision 
of electrons emitted by the primary cathode and 
accelerated by 800V. The losses occur through 
radiation and heat dissipation towards the ther-
mal trap (thinned cross-section). Given the vacu-
um in the electron gun, no convection losses are 
expected, more precisely this member is consid-
ered an unknown perturbation member.

–– Heat exchange through radiation is only rele-
vant for the primary cathode and massive cath-
ode, the primary cathode and thermal protector 
together with the massive cathode and thermal 
protector assemblies;

–– The cylindrical concentric thermal protector 
partially reflects the effect of radiation, so that 
the protective surface also heats up. If the wall 
of this thermal protector is thin then the tem-

perature difference between the outer and in-
ner walls is negligible.

The interaction created by radiation is the most 
important element in the heat transfer process. 
It is important to determine the interaction sur-
faces between the primary and massive cathodes 
and to determine the surfaces that completely 
lose heat during radiation. The primary cathode 
heats up under the action of a current considered 
as a controlled control signal Ipk. A portion of the 
radiant heat output emitted by the massive cath-
ode corresponding to the massive angle reaching 
the massive cathode also heats the primary cath-
ode (as positive feedback). This interaction can be 
followed in Figure 1. 

Based on this, the primary cathode loses heat 
through radiation, which affects the energy re-
quired to heat it. Thermal heat conduction must 
be calculated on a massive cathode. Under these 
conditions, the following relation can give the lost 
heat output due to heat conduction: 

	 (1)

The dynamic mathematical model of the heating 
process can be given by the following differential 
equations:

	

(2)
where: 
–– Cp and Cs are the heat capacity of the primer or 
massive cathode, 
–– Pr the heat quantity emitted by radiation and re-
flected by the cathodes, which depends on the 
temperature:
Pr(T)=α∙r0∙Tαr0, where the reflection factor 

determining reflected heat power:  
ε(T)= Pr(T)/(σ∙T4), 

–– js(Tp, R(R-r)) the saturated current density emit-
ted by the primary cathode (which is heated by 
the current, which is the control signal), 
–– Pe (Tp,Us) ) is the total electrical power that heats 
the massive cathode, this represents the mea-
sured output:
Pe(Tp, Us)=4∙π∙R∙104∙vj ∙js(Tp, E(R-r))∙Us  
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tributed, zero-mean signal. The minimum vari-
ance controller performs at minimum of the 
following criterion:

	

(4)
where

–– PMK PMK is the controlled output,  
–– PMKpr is the desired output (this value is modi-
fied as a function of the value of the difference 
between the maximum rated current of the 
electron beam and the estimated maximum 
current), 
–– Ipk is the control signal ,
–– Ipkpr is the desired input value. 

If the delay of the model is μ = 1 1and the param-
eters are known (polynomials A(z-1), B(z-1) and 
C(z-1) are given):

	 (5)

The delay time and the degree of the polynomials 
were chosen experimentally (i.e., the smallest de-
gree that still provides adequate accuracy). To de-
termine the controller parameters, the following 
F(.) és G(.) polynomials need to be defined:

	

(6)
The control signal is:

(7)

–– Pλ(T) is the loss of massive cathode power based 
on thermal heat dissipation. 
–– 2∙R∙r0∙Tp

α ∙r-2 I2 represents the heating power 
generated by the Ipk control current at the pri-
mary cathode.
Naturally, the heating takes place through the 

Joule effect, where certain corrections must also 
be taken into account due to the change in the 
temperature-dependent resistance of the cathode.

2.2. Generalized minimal variance control 
(GMVC) and generalized predictive con-
trol (GPC) algorithms

If the time constants and the implemented in-
terfaces allow computer control for constant re-
quired power, it is important to limit the currents 
Ipk and Is. In this case, the control block consists of 
the amplifiers required to measure Ipk, Us and Is 
and the phase control unit of the thyristors sup-
plying the primary cathode. The measurement 
of the PMK power and the limitation of Ipk and Is  
currents can be solved within the numerical al-
gorithm.

A comparative study was performed regarding 
the dynamic characteristics of a discrete tracking 
controller (prescribed Ts temperature) and a min-
imum standard deviation adaptive controller.

There are several estimation methods for de-
termining linear regression model parameters. 
These methods can filter the measured noisy out-
put signals, to estimate the number of degrees 
of the system models, and estimate the model 
parameters. These algorithms can be used in off-
line (non-recursive) and on-line (recursive, cy-
clic) mode. The resulting estimated models can be 
used to self-tune the controller parameters mini-
mizing a given criterion function. 

We assume that after estimation, we have ob-
tained the following ARMA model type

:

	 (3)

where 
–– PMK is the output signal, 
–– Ipk is the input control signal, 
–– μ is the appropriate delay (expressed as a mul-
tiple of the dead time sampling time), 
–– B(z-1)/A(z-1)-) fraction is the transfer function of 
the plant, 
–– C(z-1) is polynomial characterizes the nature 
of noise. If this is a white noise then C(z-1) = 1.  
The noise vector ek is usually a normally dis-
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If the control signal is unconstrained λ→0, then 
the above equation will be simpler:

	 (8)

Substituting this, we get the control law accord-
ing to the MVC algorithm, such as:

	

(9)
In practice, the important fact is that the round-

ing errors of the DAC converter determining the 
control signal of the computer control system can 
be best modeled with an additive white noise, the 
correlation of which with the useful signal is neg-
ligibly small [4], [5]. The simulation includes two 
types of noise: a limited white noise at the output 
(that models the quantization errors) and a nor-
mally distributed noise, which affects the input 
measurements. Figure 2. shows the results of this 
GMVC control.

From this result we can observe that the classic 
GMVC, which does not include the limitation of 
either the control signal or the change of the con-
trol signal, generates a large control signal that 
swings the system.  This is mainly seen where 
the values of heating power have high values and 
where the process characteristics are very steep. 
In this case, a 1mA change in the control signal 
results in a significant power change. Therefore, 
we can introduce an empirical control signal con-
straint performed by a filter. It can be seen that 
this stabilizes the process somewhat, although 
the ramp-up tracking error and the steady-state 
are not completely error-free either. It would be 
useful to formulate the constraint already in the 
objective function. The estimation error of the 
ARMAX model parameters of the estimated pro-
cess can also be well observed (red line). Other-
wise, this relationship is known, and can be used 
often in adaptive control algorithms (so-called for 
self-tuning control algorithms). 

In the case of GPC control of Cathode Heating, 
the prediction is determined in advance for sev-
eral horizons. It has already been mentioned that 
the GMVC algorithm can only be applied success-
fully if we limit the change of the control signal 
by some method. In the above case, an empirical-
ly introduced filter did this. Weakly limiting the 
absolute value of the control signal is not a good 
idea here because it penalizes the control current 

of 7-8 A at the steady-state and not its change. 
Therefore, we do not deal with this implementa-
tion. However, the GMVC algorithm for limiting 
the change of the control signal should be the 
same as the algorithm for GPC control (with one 
sampling horizon) without a strong constraint:

	

(10)
To determine the GPC algorithm the following 

equation is required:

	 (11)

We need to determine the polynomials F(z-1) and 
G(z-1) for different horizon values (p), as:

   

Figure 2. GMVC control results without output filter 
(a) or with an output filter (b).

a)

b)
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Case 1:  p=1, n=3

 

Case 2: p=2, n=3

Case 3: p=3, n=3

Case 4: p=4, n=3

Naturally, we can continue this and gradually 
extend the value of the horizon and we can write 
the following equation (for the value p = 1, 2, 3, 4 
of the different horizon parameters) as:

Rewriting this:

It can be seen here that the first equation can-
not be used due to dead time. So, eliminating the 
first line from these matrices, and in this case, 
using the Gp, FB<0> and FB notations, the relevant 
equations for the free-response and the optimal 
control are:

The value of the control signal sequence (unre-
stricted case) can be obtained such that:

 

 (12)
where:
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Figure 3 shows the control results for the GPC 
algorithm without strong restriction (for differ-
ent horizon values p=1, 2, 3). Here, the weight 
value of the control signal was chosen so that the 
heating current – as a control signal – does not 
reach the selected limit. In this case λ = 10.

From these results, it can be seen that even the 
one-step horizon can ensure stable operation, but 
the two- and three-step horizons already result 
in completely satisfactory operation. However, it 
is not enough to be able to control a given con-
stant power. There is another condition, namely, 
whether or not the heated cathode can provide 
the machining current. This practically depends 
on two factors. First, we have to ask: whether 
the temperature of the massive cathode is high 
enough for the saturation current to be higher 
than the required machining current. This means 
that the process operates within the range de-
fined by the space charge. Of course, it is not a 
solution if the temperature of the cathode is too 
high. In this case, the required current can indeed 
provide, but due to overheating, the life of the 
cathode is significantly reduced This is already a 
problem in terms of economy. It does not matter 
if we have to change cathodes on a monthly or 
daily basis. Secondly, the position of the cathode 
can also be a problem. A cathode inserted too 
deep already shuts off the jet current at a very low 
Wehnelt voltage. Thus, for full opening, the Weh-
nelt voltage is too low to ensure the formation of 
a “cross-over” focal point. So in this case, we can-
not perform the machining itself either, because 
the radius focused in the plane of the machining 
means the “cross-over” mapping.  However, by 
applying the results of modern control technolo-
gy, both phenomena can easily be handled.

2.3. Implementation of the extended Kal-
man estimation  

First, we look at the estimation of the satura-
tion current. It involves two steps. We estimate 
the temperature of the solid cathode emission 
surface, and then assuming that the emission is 
provided by the so-called Schottky thermal emis-
sion, we can calculate the maximum available 
machining electron beam current, influenced by 
the saturation emission current.

The practical estimation of cathodes tempera-
tures can be performed with the classical method 
of the extended-Kalman filter:

Figure 3. Cathode heating - GPC adaptive control for  
p = 1, 2, 3 step horizon.

a)

b)

c)
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1. In each sample are measured the control signal 
IPKk and the output signal PMKk sequence.

2. We determine the discrete state-space model 
matrices valid in the given step Φk and Γk.  These 
can be determined by Taylor series  of the non-
linear equation (2) defining the cathode heat-
ing.

3. We determine the so-called deterministic (un-
corrected) estimation, using a numerical ap-
proximation method (for example Euler or 
Runge-Kutta numerical methods):

	 (13)

In this case, some calculation errors can appear, 
as estimation errors, but the calculation will be 
much faster.

4. Calculation of the extrapolated standard devia-
tion matrix (prediction step):

	 (14)

5. Determination of the feedback gain vector (that 
provides the minimum standard deviation) :

	 (15)

6. Calculation of the estimated state vector adjust-
ed by feedback (updating step):

	 (16)

7. Determination of the feedback-corrected stan-
dard deviation matrix value (updating step):

	 (17)

8. Increase the number of cycle k→k + 1 and jump 
to step 1.

In the case of cathode heating of the electron 
beam equipment, this estimation process can be 
followed in Figure 4.

We can see the estimation of the two tempera-
tures, the estimated standard deviation of the 
massive cathode, and the estimated saturation 
current Is (which is provided by Schottky cath-
ode theory with a good approximation) [6], [7].  
The confidence factor of the estimate is the change 
in the trace of the covariance matrices. A decrease 
in the relatively large initial value (P11 = P22 = 100) 
indicates a correct estimate. Two uncertainties 
are present in this task. First the uncertainty of 
the used model. This simplified model instead of 
the cathode temperature distribution, where a 

uniform temperature was assumed for both cath-
odes. The second uncertainty, is the estimating al-
gorithm. We did not use the very time-consuming 
numerical integration algorithms (Runge-Kutta, 
Adams, etc.) but the much simpler and faster Eu-
ler method where the Kalman filter compensates 
for the numerical inaccuracies. 

The situation must occur at the time of t = 25 sec. 
Opening the valve between the electron gun and 
the machining chamber results in the phenome-
non of convective heat transfer around the heat-
ed cathode due to the decreasing vacuum, which 
cools the cathode. The value of the available 
maximum saturation current begins to decrease 
significantly, which is somewhat compensated by 
the power regulator implemented by GPC, but not 
completely.

Furthermore, the resulting heating and then 
cooling cycles also affect the life of the cathode. 

Figure 4. Results of the cathode heating GPC control 
and extended Kalman filter estimation (tem-
perature and saturation current).
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Therefore, it would be correct to design the re-
quired trajectory (heating rise path) in such a 
way that it also prolongs the life of the cathode 
itself.  This can be achieved with optimal trajecto-
ry planning. In the next paragraph, we present its 
theoretical approach.

2.4. Optimal trajectory planning 
 In the case where we want to design the op-

timal trajectory to track - which is a completely 
different task than following the prescribed tra-
jectory in real-time – linearization methods be-
come meaningless. This task decides the required 
trajectory based on the entire trajectory, which 
should be the best based on the given objective 
function. Here we cannot fix a point wherein 
its immediate vicinity – would be worthwhile to 
apply the method of linearization. This is a com-
pletely different task than the control itself, but it 
is at least as important because it gives the stated 
goal of the best-prescribed trajectory. 

If we know the mathematical model of the pro-
cess, then the necessary conditions for optimiza-
tion such as Hamilton-Jacobi or Hamilton-Jaco-
bi-Bellman equations, can be easily formulated 
and described mathematically. Now there are 
several numerical methods for solving these. In 
many fields of applied sciences, we find differ-
ent nonlinear dynamic optimal control problems 
with increasing complexity. Thus, following the 
theoretical approaches, several numerical algo-
rithms have been developed and applied in the 
last few decades. Moreover, it can now be consid-
ered a separate area in science. Figure 5. shows 
the different numerical methods of optimal tra-
jectory planning .

Based on these, we can see that currently opti-
mal control, as a topic, means the application of 
the software that converts continuous nonlin-
ear optimal control problems into a numerically 
solvable problem. Beginning in the 1980s, their 
main trend has been to transform into a nonlin-
ear programming task (NLP) that has been solved 
by relatively well-studied methods. For example, 
the following software environments SNOPT [11], 
IPOPT [12] and KNITRO [13]. Originally, these 
methods were used to define the time scale of the 
solutions, so that they (the time values) were the 
same for all equations (state equations, the con-
trol signal, and auxiliary state equations). Conver-
gence can be solved by compressing these points 
[14], [15]. Recent research has shown that direct 
orthogonal Gaussian quadrature yields good re-
sults. The point of this is that we choose not only 

the weights but also the abscissa where we want 
to approach a function. The advantage of Gauss-
ian quadrants is that for a given integer denoting 
the number of approximation terms, we always 
find an order wj weight and an orthogonal fj(.) 
function so that the integral approximation ap-
proaching the optimal function of the optimal tra-
jectory is as accurate as possible.

This method is used by the methods known as 
“pseudo-spectrum” known as Legendre-Gauss, 
Legendre–Gauss–Radau, and Legendre–Gauss–
Lobatto [16]. These methods make sense if the 
optimal trajectory to be determined and the dif-
ferential equations describing the system make it 
necessary. 

For general control problem formulation, a 
known general state model written for continu-
ous system is usually used.

	 (18)

where x(t) ϵ n is the vector, y(t) ϵ p the output, 
and u(t) ϵ m the control input vectors. It is also 
important to emphasize that this optimal control 
and the corresponding optimal trajectory calcula-
tion can also be used to generate the prescribed 
trajectory of the given system, along with which 
the controlled system meets certain prescribed 
conditions. The calculation of the generally valid 
control algorithm is only possible by directly con-
sidering the nonlinear characteristic. In the fol-
lowing, a method, which determines – in a more 
or less iterative way – the control signal valid in 
the whole range is presented. 

The optimal control of the studied dynamic sys-
tem means that it provides the minimum of the 
next objective function  

Figure 5. Numerical methods of optimal trajectory 
planning.
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(19)
The states x(t) and control signals u(t) of the sys-

tem are not limited yet, the time horizon tf of the 
control task is fixed and the target state x(tf) of the 
system is free. Following the known method, we 
determine the H(x, u, p, t) Hamiltonian function 
assigned to the problem as:

	 (20)

The algorithm of the method is as follows:
1. In the interval t ϵ [t0,tf] we choose an initial ap-

proximation of the control signal u0(t).
2. Using this, we compute a trajectory of the state 

equations on the time interval t ϵ [t0, tf].
3. Using the boundary condition of the auxiliary 

state vector 

,
	

(21)

we determine an approximation of the auxiliary 
state vector p(t) by integrating back in time the HJ 
equations.
4. We examine the following condition:

	 (22)

5. If this is met, then we have obtained the op-
timal trajectory if it is not met, then we have to 
make the following correction:

	 (23)

The iteration continues from the second step.

The question is what objective function we can 
choose. Practical observations prove that the 
lifetime of an indirectly heated cathode is deter-
mined by the lifetime of the primary cathode. If 
no unexpected event occurs, this service life of 
the cathode can be calculated based on the loss 
of mass or diameter due to its evaporation. If 
this mass loss value is denoted Mw <g/cm2∙s> then 
according to [6] and [9] the estimated lifetime 
Δt can be calculated as the time interval during 
which the cathode loses Δm mass. We can write:

 

where γw = 19.5 g/cm3 is the density of the tung-
sten cathode, lPK <cm> the helical length of the 
primary cathode, and assuming that the diameter 
of the primary cathode decreases from ηi∙(2r) to 
ηi+1∙(2r) then:

 	

result:
 

The weight loss Mw is strongly temperature-de-
pendent (see Figure  6), ) therefore one solution 
would be to calculate the percentage of the cath-
ode that evaporates at a constant controlled tem-
perature for each switch-on and machining, then 
the sum of these should be the smallest projected 
over a given time interval. This results in the cath-
ode temperature being kept as low as possible, 
but not below a certain lower value. We obtain 
almost the same result assuming the following 
empirical result [8]. The performance of a tung-
sten direct-heated thermal emission cathode is 
proportional to the U power of the supply voltage 
U1.6, the luminance is proportional to the power 
output U3.4, and its lifetime is proportional to the 
power U-16 [10].

3. Conclusions 
The dissertation studies processing equipment 

that provides industry-proven technology under 
today's knowledge, which is a serious alternative 
to laser machining. The machining itself is more 
accurate, homogeneous, and more resistant than 

Figure 6. Cathode weight loss as function of tempera-
ture.
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laser machining because the machining itself 
takes place under vacuum. This is electron beam 
machining, which has proven its suitability in 
the last half-century in the fields of welding, sur-
face heat treatment, evaporation, melting, and 
currently, 3D printing with additive has made a 
significant breakthrough. However, all this can 
only be achieved if the parameters of the pro-
cess itself are properly controlled. Such is the 
cathode assembly that provides the jet current 
itself. It is important to control the appropriate 
safe and accurate emission surface temperature, 
as well as to know the saturation (maximum) jet 
stream, and to provide a mode of operation that 
provides maximum life for this assembly. For a 
given existing configuration, we have demon-
strated that an adaptive GPC control can provide 
stable operation, while an extended Kálmán filter 
can adequately provide a preliminary estimate 
of cathode surface temperature and saturation 
beam current, which makes the technology safe. 
In the dissertation, we supplemented all this with 
an optimal trajectory calculation that ensures 
maximum service life, which exerts its effect with 
the help of the prescribed power. All of this was 
developed to improve the performance of a CTW 
5/60 electron gun, which is being refurbished at 
Sapientia Hungarian University of Transylvania.
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