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Abstract
The aim of this study is the design, manufacture, and development of a metallic rehabilitation device (tita-
nium frame structure) that is created with a printing process. Product design is inspired by the Computed 
Tomography (CT) based reconstruction method, during which a metallic frame structure is designed that 
perfectly fits the retrieved bone surface. The internal structure of the designed metallic frames is a statically 
analysed three-dimensional construct which makes it possible to create individual product types. Constructs 
with different structure are checked by finite element analysis. Our goal is to establish a standardised manu-
facturing process, in which specific mechanical stressing can be carried out and optimal product type chosen, 
depending on different cases. At the end of this study, our solution of choice is demonstrated with surgical 
pictures.
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1. Introduction 

In recent years, treatment of edentulous jawbones 
with dental implants has become a completely 
routine procedure. The use of dental implants can 
yield a true advantage for edentulous patients who 
have difficulties with conventional prostheses [1]. 
Walton et al. compared patient satisfaction regard-
ing jawbone overdentures that were retained by 
one or two implants. 86 patients were included in 
this randomized clinical study with a follow-up 
time of one year. Researchers reported lower costs 
and reduced treatment times together with similar 
patient satisfaction and similar times for treatment 
compared to single midline implants [2]. However, 
some studies reported unexpectedly high failure 
rates for single implants after immediate loading 
[3]. Other researchers concluded that overden-
tures should be supported by 3 or 4 implants. 
Theoretically, the use of 3 or 4 implants results 
in a stiffer connection instead of a straight-line 
connection. Three-implant-supported prosthesis 
is the most beneficial, implants provide indirect 

retention for the denture. Thus, some authors 
recommend the use of three or four implants in 
those cases where increased retention or higher 
alveolar ridge is required [4]. Meijer et al. did not 
find any relevant difference in clinical and radio-
logical outcomes of two-implant-supported and 
four-implant-supported mandible overdentures 
during a ten-year follow-up time [5]. Together 
with retention, it is also important that implants 
are not subjected to excessive loading. With nat-
ural teeth, the periodontal ligament serves as an 
interstitial soft layer during occlusal loading  [6]. 
With endosseous dental implants, occlusal load-
ing appears directly in the neighbouring bone 
tissue. In the case of overload, extensive deforma-
tion occurs in adjacent bone tissue. If pathological 
overload occurs, stress and strain gradients ex-
ceed the physiological limits of bone tissue. Micro 
cracks can appear on the bone-implant interface, 
which can lead to implant fracture, loosening of 
the implant system components, or unwanted 
bone resorption [7, 8]. Recognizing the damage 
due to excessive loading, specific attention is paid 
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to stress and strain levels in implant-neighbour-
ing bone tissue. Three-dimensional finite element 
analysis can be considered a precise and suffi-
cient approximation in the investigation of stress 
and strain distribution. It has numerous advan-
tages in the simulation of the complexity of clini-
cal situations [9]. 

Bone tissue peri-implantitis emerges in almost 
56% of patients with implant-supported dentures, 
which leads to permanent tooth loss at the end  
[10]. Most of the many causes of peri-implantitis 
are clinically uncontrollable  [11]. Maxillary bone 
loss combined with implant loss, or atrophy due 
to unsuitability present a great challenge. Current 
solutions include “all-on-4” implants if sufficient 
bone volume is present. “Quad zygoma” or in 
other words zygoma implants, and osteoplasty 
followed by (repeated) implantation is also a pos-
sible solution [12, 13]. 

The development of the CADCAM system pro-
vides precise pre-operation planning and person-
alized implant design [14, 15]. The design process 
of personalized implants is the following: conver-
sion of 2D CT images to 3D DICOM files; individual 
implant design with a 3D software; printing the 
3D stereolithography (STL) specimen; three-di-
mensional titanium implant production with a 
3D-printer [16]. 

Additive manufacturing (AM), which is general-
ly called 3D printing, is a group of such process-
es that create parts from three-dimensional (3D) 
model data, and the build-up of objects is carried 
out layer-by-layer  [17]. ]. In recent years, several 
studies have appeared focusing on the use of AM 
technique in tissue surgery [18–21]. Tissues for 
bone and heart were successfully created  [22]. 
According to ASTM F2792-12a standard, both se-
lective laser melting (SLM) and electron beam 
melting (EBM) are classified as powder-bed fu-
sion technologies, where thermal energy melts 
certain regions of the powder bed [17].

Titanium and its alloys are widely used as me-
tallic implant materials for dental and orthopedic 
applications due to their good osseointegration 
properties [23–25]. Pure titanium and titanium 
aluminium vanadium (Ti6Al4V) possess a natu-
rally occurrent passive superficial oxide layer, 
which provides biological benefits and corrosion 
resistance, while the bulk material has good me-
chanical properties and high strength/mass ratio  
[26]. It was found that implant surface roughness 
is such a factor that can promote osseointegration 
process in vivo [27, 28]. Although, success rates 
of dental implants are more than 95% in heathy 

patients (people under treatment), certain risk 
factors still prevent osseointegration. Diabetes 
and smoking dramatically reduce osseointegra-
tion rate  [29]. 

The behaviour of endosseous implants can be 
investigated with numerical methods. In recent 
years, finite element method [30] has been used 
to forecast stress and strain distribution near the 
implant, to investigate the effects of implant and 
prosthesis [31–34], to calculate load magnitude 
and direction, [35, 36] and to model mechanical 
properties of bone [37, 38], and different clinical 
scenarios  [39, 40]. 

Implant endurance is influenced by the biolog-
ical reactions of bone tissue to mechanical load 
[41]. As mechanical stresses appear in the bone 
tissue through the implant and prosthesis, den-
ture design and production must be carried out 
carefully. One of the major aspects of this is the 
achievement of adequate stress distribution in 
bone tissue [42]. In recent times, mainly two-di-
mensional (2D) and three-dimensional (3D) finite 
element analyses (FEA) have been used to investi-
gate bone tissue correlation in implant-supported 
overdentures. Comparative studies have demon-
strated the accuracy of these analyses. Although, 
if detailed information is needed about stresses, 
3D modelling is necessary [43]. 

The most frequent cause of implant failure is 
poor oral hygiene and biomechanical factors  
[44]. A]. Implants must withstand stresses caused 
by intermolar forces. Increased or abnormal load, 
together with fatigue caused by physiological 
load can lead to fracture of the components of the 
implant system [45]. 

Finite element (FE) analysis is widely used to 
evaluate stresses in implant-surrounding bone 
tissue of edentulous jawbones [46]. Meijer et al. 
used a three-dimensional FE model that repre-
sented internal forces exerted by the jawbone 
[47]. 

Finite element method (FEM) contains several 
computational procedures to calculate stress and 
strain distribution. With a structural analysis of 
this kind, we can determine stress and strain lev-
els caused by external forces, pressure, tempera-
ture change, or other factors [48].

2. Materials and methods
2.1. Properties of the chosen titanium alloy

Titanium and its alloys have outstanding cor-
rosion resistance and biocompatibility. The most 
widely-used titanium alloy for prostheses, im-
plants, and medical devices is Ti-6Al-4V, which is 
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the standard material of choice for osteoplasty. 
The material of specimens to be manufactured 
with LMF (laser metal fusion) technology is 
Grade23 Ti-6Al-4V alloy. The manufacturer of the 
metal powder is LPW Technology Ltd. (Runcom, 
United Kingdom). Average particle size of the 
material is typically between 10-45 μm. To avoid 
oxidation, packaging and storing of the powder 
material takes place in argon atmosphere. Mate-
rial composition in mass percentage is shown by 
Table 1.

Apart from the most important reasons, titani-
um is the ninth most occurrent element, making 
up 0.63% of the earth, with low specific weight 
and anti-allergenic effects. In implantology, the 
surface oxide layer is responsible for bone tissue 
connection. Thanks to its low specific weight tita-
nium significantly reduces the total mass of im-
plants and increases patient comfort. Moreover, 
used as a metallic frame structure, it does not 
cause any tinge taste in the oral cavity. Allergic 
reactions re-ported in the literature are even less 
frequent than that for gold material. 

2.2. Additive technology
3D printing is an additive manufacturing tech-

nology that applies/lays on thin layers of material 
to create parts. Three-dimensional objects can be 
built up with 3D printing using digital models. Ad-
ditive manufacturing is preceded by digital mode-
lling (STL) (triangular surface structure). Our 3D 
printer works with own LMF technology, which is 
used for the manufacturing of complex metallic 
parts from powder material. LMF process is capa-
ble of producing complex internal structures. La-

Table 1. Chemical composition of Ti-6Al-4V in mass 
percentage

Alloy
Chemical composition m/m %

Element min max

LPW Ti64 
Grade 23

Al 5.5 6.5

C 0.08

Fe 0.25

H 0.0125

N 0.03

O 0.13

other sep-
arate 0.1

other sum 0.4

Ti rest rest

V 3.5 4.5

ser melts the metal powder and builds up the ob-
ject layer-by-layer to achieve its desired contour. 
Ideal scanning path of solid-state lasers is defined 
by an intelligent software. Printing of specimens 
and models was carried out with a SISMA Mysint 
100 3D printer using laser beam melting. The 
printer can be seen in operation in Figure 1.

3D-printed specimens and models are removed 
from the building platform after the additive 
manufacturing process. Figure 2. presents spec-
imens as they leave the 3D-printer.

The 3D printing process can be separated into 
three main steps:

–– preparation;
–– 3D printing;
–– post-processing 

3. Individual titanium implant

With the realization of the individual implant, 
titanium frame, we provide such a solution in re-
habilitation that can even improve patients’ life 
conditions. The volume of tissue to be removed 
can be so excessive in patients suffering from tu-
mour or other bone defects that skull bone will 
be unable to provide sufficient support for soft 
tissues. Metal frame structures can be used for 
such extensive bridging. Unlike conventional 

Figure 1. SISMA Mysint printer in operation

Figure 2. 3D-printed specimens
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solutions, we prefer using a special metal frame 
structure. 

Product design is performed by using a CT-based 
reconstruction method, where the aim is to cre-
ate a metal frame precisely fitting the extracted, 
real bone surface. Not only is the geometry of the 
metal frame designed, but the internal structure 
of the material is as well. Internal structure of the 
thus created metal frames is sized statically and 
dynamically. This three-dimensional structure en-
ables the production of individual product types. 

The first process step in our developed tech-
nique is virtual design. In this phase, we can cre-
ate the precise, three-dimensional image of the 
affected bone surface thanks to computerized 
imaging and image processing software.  The first 
design phase is CT processing, then bone surface 
generation takes place, as visible step-by-step in 
Figure 3.

An STL file is generated from the CT image, then 
error repair of this STL file is performed. It is then 
followed by the correction of the ideal denture. 
Figure 4. shows the process for the determina-
tion of fixation/breakthrough points based on 
ideal denture design. 

It is followed by metal frame design, which is 
still carried out in a virtual environment. The first 
step of this process is the definition of borderline 
for the titanium frame considering the previously 
optimized denture. Afterwards, parameters for 
this frame (thickness, geometric structure) are 
defined. These steps are visualized in Figure 5. 

Both the bone surface and the implant are avail-
able to be built with 3D printing technology if 
necessary. It provides direct visualization and 
draws attention in time to possible difficulties at 
surgery. Figure 6. shows this step. 

Afterwards, surgical insertion of the titanium 
frame can be carried out with screw fixation that 
is consistent with the previously created holes at 
the computer-aided design process.  

4. Numerical analysis of individual 
implant

The subperiosteal implant, or in other words 
cortically-supported individual implant, as we 
call it today, was first developed in 1936. In those 
days, implant material was Vitallium and a cer-
tain type of carbon steel. [2,8] Dent-Art-Technik 
Kft. (Győr, Hungary) developed a titanium sub-
periosteal implant, for which the Magyar Nagydíj 
Prize was awarded in 2014. 

Different geometrical structures are evaluated 
in this study. Implant geometries can vary dif-
ferently, several solutions can be found in the 
scientific literature. This study mainly focuses on 
three-dimensional implant structure and closed 
or open implant edges. The following figure 
shows the main geometrical structures.

Table 2. presents the extent of structuredness, 
degree for closed or open cells, and thickness. Ev-
idently, more examinations were carried out, but 
those results were not relevant.  In the following 
table, titanium structures are presented accord-
ing to Figure 7. Rows in the table show each of the 
frame structures respectively as seen in Figure 7. 
In the first row, there is the closed-edge plate with 
a thickness of 0.65 mm and internal structures of 
1.5 mm. The second row shows a 0.65 mm thick 
plate with non-closed edges and 1.5 mm inter-

Figure 3. CT processing and bone surface generation

Figure 4. STL file generation and design of an ideal 
denture

Figure 5. Determination of borderline and parame-
ters of titanium frame

Figure 6. Visualization created with 3D printing
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nal structures. The third row contains a 0.65 mm 
thick, closed-edge plate with internal structures 
of 1 mm. Stress levels and strains are listed for 
each titanium frame.  

First, we present the geometrical structure that 
showed the best result. Figure 8. shows the di-
rection of occlusal force with an 11 mm distance 
from the surface of the titanium frame. A sleeve 
that is welded onto the structure is also visible in 
this figure. Material testing of welded zones were 
also carried out. See our article with the title “Ex-
amination of laser micro-welded zones in addi-
tively manufactured individual implants”.  [49] 

In the following, we present the result of finite 
element analysis for the best model. Figure 9. 
shows the 0.65 mm thick plate with closed edges 
and 1.5 mm structure size. Here, it can be noticed 
that the highest stress levels are present where 
the abutment, or in other ways superstructure, 
and the denture-supporting sleeve is inserted. 
Lower stress levels are present at the narrowed 
area of the frame.

Figure 10. represents strain calculated in the ti-
tanium frame. Forces were defined according to 
scientific literature. Occlusal force is not exerted 
vertically, but at a certain angle, which can also 
be found in several studies in scientific literature. 

Such strain levels are calculated due to the occlu-
sal force with an inclined angle of action. The ex-
tent of deformation is minimal.

Surgery was performed following the produc-
tion of the individual implant. Surgical pictures 
are shown in Figure 11, which were taken by Dr. 
Géza Friedreich, who performed a successful op-
eration in Budapest.

Figure 12. presents the fixed, virtually designed 
final denture anchored on individual implants in 
the patient’s oral cavity.

Figure 7. Geometries of tested titanium frames

Titanium frame Stress [Mpa] Strein [mm]

Closed edge, 1,5 
mm structured 34.683 0.0043

Non-closed edge, 
1,5 mm structured 61.105 0.0427

Closed edge, 1 mm 
structured 183.122 0.1243

Table 2. Data and results for tested titanium frames  

Figure 9. Stress levels in the titanium frame 

Figure 8. Forces present on titanium frame; abutment 
and sleeve

Figure 10. Strain levels in the titanium frame

Figure 11. Titanium frame insertion to the patient 

Figure 12. Fixed final denture
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5. Summary

According to our presented technique, it be-
comes possible to create a denture that is aesthet-
ically and functionally similar to that of own nat-
ural dentition without the necessity of replacing 
hard tissues and long, risky series of operations..
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