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Abstract
While the forward kinematic task of robots can be solved easily through homogenous transformation matri-
ces, the inverse kinematic task leads to difficulties as the construction of the system becomes more complex. 
In this paper, a solution has been worked out for a three Degree-of-Freedom (DOF) robot-arm based on recent 
research, by the use of a novel, fixed-point transformation based technique.
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1. Introduction
The inverse kinematic task of an open kinemat-

ic structure, that is, determining the required 
joint coordinates for a desired position of the 
end-effector, is usually a difficult task. The de-
sired location of the end-effector can be achieved 
in infinitely many configurations („poses”) for a 
redundant, multiple DOF system. The traditional 
method of solving this task usually consists of a 
matrix inversion operation, which cannot be de-
termined when the robot is at its kinematic sin-
gularities. During motion, this can cause rapid 
„yank” types of movement, which might damage 
itself or its environment. In [1], a new method has 
been worked out, which transforms the problem 
into a fixed-point task, one that does not include 
the matrix inversion operation. This way, we can 
avoid the usual difficulties in the kinematic sin-
gularities, and nearby in the so-called ill-condi-
tioned areas.

1.1. In short about the „quasi-differential” 
fixed-point transformation based method

Let us consider an array , which 
contains the joint coordinates of an n DOF open 

kinematic chain, and an array 
which contains the Cartesian workshop-coordi-
nates of certain points of the robot-arm. Further-
more, let us take the parameter , 
which might be the time itself, or a function of 
the time. This way, the x(s) function describes the 
nominal motion.

Let us suppose, that a nonlinear, differential 
real function is given as x=f(q), where 
the task is to find q based on a known x value. This 
task was transformed in the following way in [2]. 
Let us take a differentiable function , 
which has an “attractive fixed-point” . 
We can create a sequence using F(ξ) and the re-
peating signals:

 	

	         (1)
where the norm is calculated based on the Frobe-
nius formula, and  is a constant parameter. 
In case of an iteration k, when satisfies 
the condition , the equation (1) will 
lead to , that is, will be the solu-
tion and a fixed-point as well. As long as we can 
guarantee that (1) is convergent, we can insert a 
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desired value x(s) into the algorithm, which will 
get close to the fixed-point of the function after 
several iterations. That is, qs,i will go to the solu-
tion of the problem, and we can identify the re-
quired joint coordinates qs.

The constant parameter A is important in order 
to guarantee the convergence, which is usually a 
small, signed value. It is also important to clari-
fy that the method expects that in the following 
time instant s+1 the coordinates qs,i are nearby 
the fixed-point, which can be assumed from the 
fact that we know the initial state and position of 
the robot, and from that point it is moving step 
by step.

In addition, the method suggests using an ap-
proximate Jacobian matrix that is conducive to 
the convergence, and at the same time avoids 
further problems when the configuration of the 
robot-arm leads to a Jacobian matrix which is 
not quadratic. The suggestion is using a modified 

instead of the array x.

2. Implementation
The realization of the method and the examina-

tion of its potential were achieved through sim-
ulations due to its availability and its simplicity.

2.1. System under investigation
The model of the robot-arm can be seen in Fig-

ure 1. The more-detailed description of forward 
kinematics and its derivation can be found in [3].

As long as the aim is the trajectory tracking of 
the end effector, it is enough to know its Carte-
sian-coordinates in order to implement the meth-
od. We can easily calculate these through forward 
kinematics. (In order to simplify the Jacobian ma-

Figure 1. The kinematic model of the robot-arm under 
investigation in the „default position” 

trix and the description of the Cartesian-coordi-
nates, let us introduce the following notations. 
Let , and , and in 
similar manner let us introduce their si ,sij sinus 
variations.)

(2)

By taking the corresponding partial derivatives 
in (2) we can obtain the Jacobian matrix of the 
robot, that is 

J = 

(3)

2.2. Simulation
The simulation was processed by the help of a 

self-developed „Julia” script called fmtu_simula-
tion.jl.

For function F(ξ) in equation (1) we used F(ξ) = 
ξ/2 + D. The other parameters required by the sim-
ulation can be seen in Table 1.

The nominal trajectories were generated by a 
simple sinusoidal function that is the robot-arm 
is moving around continuously in a “scan” type 
of movement. First, there is a loop when we cal-
culate and save into the memory the generated 
nominal trajectory. Then we can simply insert 
that as the desired trajectory into the algorithm 
introduced above. We allow the algorithm to cal-
culate the required joint coordinates on its own. 
Finally, the program plots all the calculated data.

Table 1. The parameters of the simulation

Length of 1st link L1 [m] 1.5
Length of 2nd link L2 [m] 0.8
Length of 3rd link L3 [m] 0.5

A -1.0
D 0.3

2.3. Results
The results of the simulation can be seen in the 

following Figures 2, 3. and 4.
It is clearly visible that the tracking of the Car-

tesian-coordinates are fairly accurate, while the 
calculated joint coordinates differ somewhat 
from the nominal joint coordinates. This is due to 
the fact that some parts of the trajectory can be 
reached through different arm configurations, in 
other words, the solution that the method offers 
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It is worth examining the eigenvalues of the 
Jacobian matrix during the simulation. It can be 
plotted with minimal extension in the program 
code.

It can be seen that there are several points where 
at least one of the eigenvalues is zero, which is 
where the robot-arm goes through several kine-
matic singularities during the motion.

3. Conclusion
This “quasi-differential” approach to solving 

the inverse kinematic task can be implemented 
easily, its parameters can be set relatively fast 
through simulations. It gives fairly accurate tra-
jectory tracking even in the kinematic singulari-
ties and nearby those points as well.

In the case that we wish to achieve more precise 
tracking of the joint coordinates, (for example, if 
we want to get back the same configurations as 
the generated one), we can extend the array x 
with the end point of the second link, and also 
extend the corresponding Jacobian. This way we 
can get closer to the desired solution.

Figure 2.	3D plot of the nominal and the calculated 
Cartesian-coordinates

Figure 3.	Trajectory tracking error

Figure 4.	The nominal and the calculated q2 joint co-
ordinates

is realized in tracking via different configurations 
than the configurations we generated for the tra-
jectory originally. The separation of the two paths 
can happen in the kinematic singularities.

Figure 5.	The nominal and the calculated q3 joint co-
ordinates

Figure 6.	The real part of the eigenvalues of the Jaco-
bian matrix
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