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ABSTRACT

Bacteria can enhance their survival by attaching to inanimate surfaces or tissues, and presenting as
multicellular communities encased in a protective extracellular matrix called biofilm. There has been
pronounced interest in assessing the relationship between the antibiotic resistant phenotype and biofilm-
production in clinically-relevant pathogens. The aim of the present paper was to provide additional
experimental results on the topic, testing the biofilm-forming capacity of Escherichia coli isolates using in
vitromethods in the context of their antibiotic resistance in the form of a laboratory case study, in addition
to provide a comprehensive review of the subject. In our case study, a total of two hundred and fifty (n 5
250) E. coli isolates, originating from either clean-catch urine samples (n 5 125) or invasive samples (n 5
125) were included. The colony morphology of isolates were recorded after 24h, while antimicrobial
susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Biofilm-formation of the
isolates was assessed with the crystal violet tube-adherence method. Altogether 57 isolates (22.8%) isolates
were multidrug resistant (MDR), 89 isolates (35.6%) produced large colonies (>3mm), mucoid variant
colonies were produced in 131 cases (52.4%), and 108 (43.2%) were positive for biofilm formation. Biofilm-
producers were less common among isolates resistant to third-generation cephalosporins and trimetho-
prim-sulfamethoxazole (P 5 0.043 and P 5 0.023, respectively). Biofilms facilitate a protective growth
strategy in bacteria, ensuring safety against environmental stressors, components of the immune system
and noxious chemical agents. Being an integral part of bacterial physiology, biofilm-formation is inter-
dependent with the expression of other virulence factors (especially adhesins) and quorum sensing signal
molecules. More research is required to allow for the full understanding of the interplay between the MDR
phenotype and biofilm-production, which will facilitate the development of novel therapeutic strategies.
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INTRODUCTION

The emergence of antimicrobial resistance (AMR) is a
continuously evolving challenge, which threatens the effec-
tive therapy of patients and successful operation of health-
care institutions worldwide [1, 2]. Pathogenic bacteria may
become resistant to a wide range of chemically-unrelated
antibiotics through a multitude of (either chromosomally-
encoded or plasmid-mediated) resistance mechanisms [3];
multidrug resistance (MDR) is defined as non-susceptibility
to at least one antimicrobial compounds in three or more
antimicrobial categories [4]. Based on the projections of the
“Burden of AMR Collaborative Group”, in 2015, over
700,000 MDR infections and ∼33,110 excess death have
been recorded in the European Union (EU) alone, while
according to the O’Neill Report (sequestered by the National
Health Service in the United Kingdom), MDR infections
may lead to 10 million excess deaths by 2050 [5, 6]. At
present, the group of “ESKAPE” bacteria (E: Enterococcus
faecium [7], S: Staphylococcus aureus [8], K: Klebsiella
pneumoniae [9], A: Acinetobacter baumannii [10], P: Pseu-
domonas aeruginosa [11] and E: other members of Enter-
obacteriaceae [12]) receive the most attention, due to their
overall disease burden, mortality rates and continuously
increasing rates of resistance.

During in vitro experiments (i.e. when bacteria are
cultivated in various culture media), bacteria most often
present in their planktonic (or free-living) states. However,
in harsh environmental conditions or in vivo in the infected
host, bacteria enhance their survival by attaching to inani-
mate surfaces or tissues, and presenting as multicellular
communities encased in a protective extracellular matrix,
called biofilm [13]. In fact, based on a recent estimation by
the National Institute of Health (NIH), >60% on infections
in vivo are caused by microorganisms embedded in biofilm
[14]. Biofilms are composed of exopolysaccharides (EPS),
nucleic acids (environmental DNA), proteins, lipids, various
ions and water, secreted by multiple bacterial communities,
providing a survival advantage for all embedded bacteria
[15]. In addition to “classical” resistance-determinants
expressed by bacteria, the production of biofilms is another
major concern, often leading to recalcitrant, chronic in-
fections (e.g., in catheter-associated infections, skin and soft
tissue infections, dental caries) [16–18]. Biofilms protect
bacteria against the penetration and accumulation of various
noxious substances and antibiotics in effective concentra-
tions (resulting in 10–10,000-times higher minimal inhibi-
tory concentrations); additionally, antibiotics are not
effective against metabolically-inactive/dormant bacteria
(often called as small-colony variants) [15, 16]. Strong bio-
film-formation is an important characteristic of all members
of the “ESKAPE” pathogens [19]; thus, in recent years, there
has been pronounced interest in assessing the possible
relationship between their antibiotic resistant/MDR status
and biofilm-production in these bacteria [20, 21]. Despite
the large number of published studies available, many of
these experiments employed different methodologies, and

they often resulted in conflicting findings [22, 23]. The aim
of the present paper was to provide additional experimental
results on the topic of potential relationships between the
biofilm-forming capacity and the antibiotic resistance
phenotype in Escherichia coli using in vitro methods (in the
form of a laboratory case study), in addition to a compre-
hensive review of the subject.

CASE STUDY

Collection and identification of E. coli isolates

A total of two hundred and fifty (n 5 250) E. coli isolates
were included in this study, which were kindly provided
from the strain collection of the Department of Medical
Microbiology, Albert Szent-Gy€orgyi Health Center and
Faculty of Medicine, University of Szeged. The study uses a
cross-sectional design, with microorganisms that were
isolated between 2018.07.01. and 2020.01.31., from two
types of different clinical materials, i.e. clean-catch urine
samples from patients with laboratory-confirmed urinary
tract infections (UTIs) (n 5 125) and from invasive in-
fections (n 5 125), being randomly selected to be included
in our experiments. Identification of the isolates was car-
ried out based on classical phenotypic and biochemical
panel-based methods [24]. All isolates included in the
study were re-identified as E. coli before further assays.
During our experiments, E. coli ATCC 25298 (pan-sus-
ceptible, “wild strain”, strong biofilm-producer [25]), E. coli
ATCC 35218 (blaTEM-1-producer, weak biofilm-producer
[26]; obtained from the American Type Culture Collection,
Manassas, VI, USA), E. coli 15/12569 (resistant to cipro-
floxacin; MICciprofloxacin 5 2mg L�1), E. coli 17/47012
(resistant to fosfomycin; MICfosfomycin 5 64mg L�1) and E.
coli 16/30098 (resistant to trimethoprim-sulfamethoxazole;
MICtrimethoprim-sulfamethoxazole 5 16mg L�1) were used as
control strains [27].

Colony characteristics

The bacterial specimens were cultured using eosine methy-
lene blue (EMB) agar (bioM�erieux, Marcy-l’�Etoile, France)
plates. To record colony morphology of the bacterial isolates,
EMB plates were inoculated and incubated at 37 8C for 24 h,
in an aerobic atmosphere. After the incubation period, col-
ony morphologies were assessed visually (for size, mucoid
nature and lactose-fermentation) and these data were
recorded. Colonies were considered small if their side was
below ≤3mm, or large if their size was >3mm [26].

Antimicrobial susceptibility testing, detection of
resistance

Antimicrobial susceptibility testing (AST) for ciprofloxacin
(CIP), nitrofurantoin (NIT), fosfomycin (FOS), cefpodoxime
(CFP), meropenem (MER), gentamicin (GEN) and
trimethoprim-sulfamethoxazole (SXT) was performed with
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the disk diffusion method (Liofilchem, Abruzzo, Italy) on
Mueller–Hinton agar (MHA) plates. The interpretation of
the results was based on EUCAST breakpoints v. 9.0. (http://
www.eucast.org), corresponding to the members of Enter-
obacterales. During AST, E. coli ATCC 25298 was used as a
quality control strain. Isolates were considered resistant to
third-generation cephalosporins (3GCs) if the inhibition
zone diameter around cefpodoxime 10 mg disks was <21mm
[28]. Isolates were defined as MDR based on the recom-
mendations of Magiorakos et al. [4].

Crystal violet (CV) tube-adherence biofilm-production
assay

Screening for biofilm-formation in the isolates was carried
out using the tube-adherence method previously described
[29]. Briefly, glass tubes containing 1mL of sterile trypti-
case soy broth (TSB; bioM�erieux, Marcy-l’�Etoile, France)
were inoculated with 1 mL of the overnight culture of the
tested bacterial strain. The tubes were then incubated
statically for 24 h at 37 8C. Verification of planktonic
growth was detected visually. After the incubation period,
the supernatant was removed, the adhered cells were
rinsed three times with phosphate buffer saline (PBS;
Sigma-Aldrich; Budapest, Hungary) and the tubes were
patted dry on a paper towel. The contents of the tubes were
treated for 3 h at room temperature with a 1mL solution of
0.1% crystal violet (CV; Sigma-Aldrich; Budapest,
Hungary) to stain the adhered biomass. The CV solution
was removed and the tubes were again rinsed three times
with PBS; subsequently, the tubes were patted dry on a
paper towel. Biofilm-formation was observed visually; the
appearance of visible biofilm lining at the bottom and on
wall of the glass tubes were considered positive for biofilm-
production [29].

Statistical analysis

Descriptive statistical analysis (including means and per-
centages to characterize data) was performed using Micro-
soft Excel 2013 (Microsoft Corp.; Redmond, WA, USA).
Additional statistical analyses were performed with IBM
SPSS Statistics for Windows 22.0 (IBM Corp., Armonk, NY,
USA), using the chi squared-test. P values <0.05 were
considered statistically significant. The agreement between
the results of the biofilm-production studies and colony
morphology was also calculated [27].

Ethical considerations

The study was conducted in accordance with the Declaration
of Helsinki and national and institutional ethical standards.
Ethical approval for the study protocol was obtained from
the Human Institutional and Regional Biomedical Research
Ethics Committee, University of Szeged (registration num-
ber: 140/2021-SZTE [5019]).

Antibiotic resistance of E. coli isolates included in the
study

The results of the AST studies are summarized in Table 1.
Out of the n 5 250 E. coli isolates included in this study, the
highest resistance rates overall were observed for CIP
(43.6%), followed by SXT (34.4%), FOS (18.8%), GEN
(11.6%) and NIT (11.2%); resistance against 3GCs was seen
in 19.6% of isolates, while no MER resistant isolate was
detected. Higher resistance rates in invasive E. coli isolates
were seen for CIP (P < 0.001; c2 5 10.51; degrees of freedom
[DOF]: 1), SXT (P < 0.001; c2 5 12.78; DOF: 1), 3GCs (P <
0.001; c2 5 7.63; DOF: 1) and GEN (P 5 0.049; c2 5 4.62;
DOF: 1), while no such differences were seen for FOS and
NIT. The number of MDR isolates was also higher among
invasive isolates (P < 0.001; c2 5 9.33; DOF: 1) (Table 1.)

Association of antibiotic resistance with colony
characteristics in E. coli

35.6% (n 5 89) of isolates produced large colonies (>3mm),
including n 5 51 from urinary samples and n 5 38 from
invasive samples (P > 0.05; c2 5 2.69; DOF: 1). Isolates
growing large colonies were less common in E. coli strains
resistant to CIP (P 5 0.028; c2 5 11.83; DOF: 1), FOS (P 5
0.043; c2 5 8.11; DOF: 1) and 3GCs (P 5 0.39; c2 5 10.02;
DOF: 1). Mucoid variant colonies were produced in 52.4%
(n 5 131) of cases, representing n 5 78 from urinary
samples and n 5 53 from invasive samples (P < 0.001; c2 5
20.06; DOF: 1). No association was seen among the resis-
tance traits and the mucoid presentation of the isolates. All
tested clinical isolates (100%) were lactose-fermenters.
During the testing of the control strains, all strains were
positive for lactose-fermentation. E. coli ATCC 25298 pre-
sented with small, mucoid colonies, E. coli 16/30098 showed
large, non-mucoid colonies, while E. coli ATCC 35218, E.
coli 15/12569 and E. coli 17/47012 presented with small,
non-mucoid colonies on EMB agar.

Table 1. Rate of antibiotic resistance among E. coli isolates included in the study

Urinary tract isolates (n 5 125) Invasive isolates (n 5 125) Overall (n 5 250)

Ciprofloxacin 32.8% (n 5 41) 54.4% (n 5 68) 43.6% (n 5 109)
Fosfomycin 16.0% (n 5 20) 21.6% (n 5 27) 18.8% (n 5 47)
Gentamicin 7.2% (n 5 9) 16.0% (n 5 20) 11.6% (n 5 29)
Nitrofurantoin 8.8% (n 5 11) 13.6% (n 5 17) 11.2% (n 5 28)
Trimethoprim/sulfamethoxazole 23.2% (n 5 29) 45.6% (n 5 57) 34.4% (n 5 86)
Third-generation cephalosporins 12.0% (n 5 15) 27.2% (n 5 34) 19.6% (n 5 49)
Meropenem 0% (n 5 0) 0% (n 5 0) 0% (n 5 0)
MDR 14.4% (n 5 18) 31.2% (n 5 39) 22.8% (n 5 57)
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Association of antibiotic resistance with biofilm-
formation in E. coli

Out of the tested isolates, n5 43.2% (n5 108) were positive
in the CV tube-adherence assay: no relevant differences were
shown between the urinary and invasive isolates (59 out of
125 vs. 49 out of 125, respectively; P > 0.05). On the other
hand biofilm-producing isolates were less common among
E. coli resistant to 3GCs (P 5 0.043; c2 5 6.89; DOF: 1) and
SXT (P 5 0.023; c2 5 10.19; DOF: 1); similar association
was not shown for CIP, FOS, NIT and GEN-resistant iso-
lates. The agreement (i.e. predictive value) of the production
of mucoid-variant colonies on EBM on the results of the
biofilm formation assay were calculated: overall, the agree-
ment was 0.824 or 82.4% (urinary isolates: 0.756 or 75.6%;
invasive isolates: 0.925 or 92.5%). When assessing control
strains, E. coli ATCC 25923 presented as positive, while all
other control strains were negative.

DISCUSSION, REVIEW OF THE LITERATURE

The objective of our present study was to evaluate the
antibiotic resistance levels in a collection of UTI-causing
and invasive E. coli isolates (acquired via purposive sam-
pling), in addition to scrutinizing a possible relationship
between the resistance phenotypes and the biofilm-forming
capacities of the respective isolates. Overall, less than 45% of
isolates tested were positive for biofilm production in our in
vitro assay; colony morphology was useful in predicting the
results of the biofilm-assay in 82.4% of cases (this was more
reliable for invasive E. coli isolates). The relatively high
predictive value of mucoid-variant colonies for biofilm-
production has been demonstrated by our previous study,
where n 5 250 UPEC isolates were tested; in this study, the
predictive value for the same tests was 88.1%, and larger
colonies were less common in isolates non-susceptible to
any antibiotic. In addition to this, mucoid-colony variants
and biofilm-producing isolates were less common among
UPEC isolates resistant to 3GCs [27]. In this round of ex-
periments, isolates positive for biofilm-formation were less
common among 3GC and SXT non-susceptible strains,
while no such association was noted for the formation of
mucoid colonies. MDR-levels and resistance rates for many
individual antibiotics were higher among invasive isolates.
Based on recent studies by Magyar et al. and Gajd�acs et al.,
E. coli represented the most common causative agent in
both community-associated and nosocomial UTIs, being
the causative agent in 42–56% (between 2005–2014) and
46–66% (between 2008–2017) of cases, respectively [30, 31].
Resistance rates reported by these studies to NIT, FOS,
GEN, SXT, CIP and 3GCs were <2% and 1–9%, 0–5% and
∼9%, <7% and 3–8%, 19–31% and 20–28%, 19–25% and
13–26%, and 8% and 8–10%, respectively [30, 31]. On the
other hand, resistance-levels in invasive E. coli isolates
(based on EARS-Net Surveillance Data for Hungary for
2017) were ∼20% for 3GCs, ∼30% for fluoroquinolones and
∼17% for aminoglycosides [32].

The inverse relationship of 3GC-resistance and biofilm-
production was also highlighted by Lajhar et al., when
testing E. coli O26 isolates: while resistance to other anti-
microbials had no effect on biofilm-formations, positivity
was less common in extended-spectrum b-lactamase
(ESBL)-producers [33]. Dumaru et al. studied both members
for the Enterobacterales order and non-fermenting Gram-
negative bacteria for this purpose: in their report, ∼63% of
isolates were positive for biofilm-production overall, and a
strong association was seen between biofilm-positivity, MDR
status, and production of carbapenemase enzymes, while no
such association was seen for the production of ESBLs [34].
Similarly, various Gram-negative bacteria were included in
the study of Cepas et al., where resistance biofilm-positivity
was more commonly seen in isolates resistant to amino-
glycosides and 3GCs, while no overall association was
proven with the MDR phenotype for E. coli [35]. Soto et al.
compared the virulence and biofilm-forming capacity of E.
coli originating from infections of various portions of the
genito-urinary tract (i.e. cystitis, pyelonephritis and prosta-
titis): in their study, prostatitis-associated isolates expressed
biofilm and virulence-factors more frequently, while biofilm-
positivity was less common in fluoroquinolone-resistant
strains [36]. In a similar study to ours, involving n 5 208
UPEC strains, Neupane et al. concluded that ESBL-positive
strains were more common among biofilm-producers [37].
In a Nepalese study by Raya et al., over a thousand clean-
catch urine samples were processed from 182 diabetic and
917 non-diabetic patients, respectively: UTIs were more
common among diabetic patients (17.4% vs. 42.9%); in
addition, biofilm-production was more commonly seen in
association with SXT, 3GCs and CIP resistance, and the
MDR phenotype [38]. Whelan et al. have also assessed the
possible predictive power of colony morphology in relation
to biofilm-formation in E. coli; however, in their setting,
colony presentation on Cysteine Lactose Electrolyte Defi-
cient (CLED) agar had a very low (4%) predictive power,
when n 5 50 strong biofilm-producing strains were assessed
[39]. Demonstrating the relevance of this research area,
Zhao et al. have recently published a systematic review and
meta-analysis regarding the available evidence on the cor-
relation between biofilm formation, virulence factor-
expression and antibiotic resistance in UPEC isolates [40].
Their paper reported a pooled rate of 84.6% for biofilm-
positivity (out of which, 44.6%, 24.8% and 26.1% were weak,
moderate and strong biofilm-producers, respectively), in
addition, most of the papers included in the review high-
lighted a possible association between bacterial resistance,
biofilm-positivity and virulence factor-expression in urinary
E. coli [40]. Even though a growing number of studies are
exploring this field with respect to all relevant “ESKAPE”
bacteria, no overarching conclusions may be drawn so far on
this topic, based on the available data at present time.
Among these published reports, a pronounced heterogeneity
may be found, when it comes to the origin of the bacterial
isolates, their clonality and antimicrobial susceptibility rates,
in addition to the methodologies utilized to ascertain bio-
film-formation rate (tube or microtiter-plate based assays
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with staining, specific culture media [e.g., Congo Red agar],
spectrophotometric assays, electron microscopy or flow
chambers, complemented with polymerase chain reaction
(PCR) assessing the presence and expression-levels of bio-
film-associated and virulence genes, and genetic relatedness
of the isolates [41–44]. Our study provides additional data,
aiming to provide more clarity and evidence to this field. In
the future, the meticulous planning of mechanistic studies
on biofilm-formation in MDR ESKAPE bacteria of impor-
tance is warranted.

E. coli is an important colonizer in the human and ani-
mal gastrointestinal tracts – acting as an equalizer in the gut
microbiota – providing nutrients and vitamins to the host as
a synergistic act, in addition to inhibiting the growth of
other, potentially pathogenic bacteria [45]. Nevertheless, it is
also one of the most frequently encountered microorganisms
(both among the members of the Enterobacterales order and
among „ESKAPE” bacteria) in clinical samples sent to
diagnostic microbiology laboratories [46]. While E. coli is
not an obligate pathogen per se, due to its relatively large
genome (4.5–5.5Mb) and high genomic plasticity, strains
possessing an appropriate combination of virulence de-
terminants (i.e. adhesins, pili, toxins, iron acquision systems
and biofilm) may prove to be successful in their survival in
vivo [47]; in fact, virulence factors of E. coli are more
commonly encoded on genomic pathogenicity islands (PAIs;
e.g., PAI IIJ96, PAI IJ96, PAI IICFT073, PAI I536, PAI
II536, PAI III536, PAI IV536, PAI ICFT073), representing
large segments of the bacterial chromosome, often charac-
terized by high cytosine and guanine content [48]. As a
matter of fact, based on their disease-causing capacity, E. coli
strains are often differentiated into various pathotypes,
including extra-intestinal pathogenic E. coli (ExPEC;
including uropathogenic strains [UPEC] and strains
responsible for meningitis and sepsis [MNEC]) and various
pathotypes causing gastrointestinal ailments, like entero-
pathogenic E. coli (EPEC), enterohaemorrhagic E. coli
(EHEC), enterotoxigenic E. coli (ETEC), enteroaggregative
E. coli (EAEC), enteroinvasive E. coli (EIEC) and diffusely
adherent E. coli (DAEC) [49, 50]. On the other hand – based
on the growing number of genomic data available for this
species – based on the phylogeny of E. coli sensu stricto,
eight phylo-groups (A, B1, B2, C, D, E, F and a cyptic clade
I) may be distinguished, based on the new Clermont
phylogenetic grouping method [51].

Since the recognition of the clinical role biofilms have in
the outcome of infectious processes, biofilm-forming ca-
pacity has been a research topic garnering significant interest
[52]. Biofilms facilitate a protective growth strategy in bac-
teria, ensuring safety against environmental stressors (sheer
forces, heat and drying damage), components of the im-
mune system (phagocytes, complement) and noxious
chemical agents (disinfectants and antimicrobials) [53, 54].
The EPS matrix alters the the pharmacokinetic properties of
the anatomical niche and the speed by which antibiotics may
penetrate to reach the target pathogens [55]. Although
species-wise, a principal secreted component in the biofilm-
matrix may be identified, even the composition of

monospecies biofilms are mostly heterogenous (owing
physiological heterogeneity in adaptation and genetic vari-
ability), while multi-community biofilms are even more
complex [56]. In E. coli biofilm, colanic acid (which is a
polymer of glucose, galactose, fucose, and glucuronic acid) is
a relevant component of mature biofilms, providing pro-
tection against temperature and osmotic changes due to its
negative surface charge, while cellulose is important for the
structural integrity of these biofilms [57, 58]. On the other
hand, biofilms produced by Pseudomonas spp. have high
alignate content, which provides protection from mechani-
cal damage and biocides (e.g., disinfectants), while for Aci-
netobacter spp. and Burkholderia cepacia complex, the poly-
b-1,6-N-acetylglucosamine (PNAG) polysaccharide is the
critical component for the stability of the biofilm produced
[59–62]. Bacteria embedded in the deep layers of biofilm are
often metabolically inactive (dormant), which may be a
result of low oxygen-density and transcriptional changes to
adapt to the nutrient-scarce community-based lifestyle. This
state of dormancy also poses and important hurdle for
therapy, as many drugs (especially bactericidal agents)
require the active division of bacterial cells to be effective
[63]. As E. coli is one of the most common nosocomial
pathogen (especially in catheter-associated UTIs, corre-
sponding to >50% of cases), biofilm-production is of critical
importance for its persistence, pathogenicity and survival
[64, 65]. The origin of many nosocomial infections is asso-
ciated with the use of implanted devices and biomaterials,
including catheters (urinary, central venous), heart valves,
dental, hip or cochlear implants, cerebrospinal fluid shunts
or even contact lenses, as contaminant bacteria may rapidly
colonize these inanimate surfaces and lead to infections in
vivo [66, 67]. Biofilm-formation is one of the critical factors
in the development of chronic infections, especially ones
associated with urinary or intravascular catheters and
implanted devices [68].

Irrespective of the disease-presentation, the first key step
in the pathogenesis of E. coli infections is the adherence to
mucosal surfaces; subsequently, aggregation of bacteria in-
side the biofilm protects them from sheer forces and the
onslaught of immune cells [52, 69, 70]. The relevant viru-
lence-determinants of E. coli include adhesins (representa-
tive genes e.g., afa, CSH, fimH, fimP, pap, sfa, traT), toxins
(cytotoxic necrotizing factor: Cnf1, haemolysin: hlyA, others:
saT, vaT), suppressors of the immune system (shiA, sisA,
sisB, sivH) and siderophores (aerobactin: aer, salmochelin:
iro, enterobactin: ent, yersiniabactin: irp, others: iuD, iutA,
yfcv), which all contribute to their survival and invasiveness
in the infected host [71–74]. Surface factors, such as various
adhesins have a pivotal role in mediating the adhesion of E.
coli to biotic and abiotic surfaces, and the subsequent pro-
duction of EPS. These include flagella, type 1 fimbriae
(encoded by the fim operon), P fimbriae (encoded by the
papA-K operon), S fimbriae and F1C fimbriae (encoded by
the sfa/focDE genes), curli fimbriae (mediated by the crl and
csgA genes), afimbrial adhesins (encoded by the afa and tos
genes), conjugative (F) pili and cell surface hydrophobicity
(mediated by the CSH) [75–78]. So-called fimbria-associated
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regulators (responsible for the interplay between the pap, foc,
and fim operons) have an important role in synchronizing
the expression of the various adhesins, depending on the
external conditions present [79]. Type 1 fimbriae are critical
in the initial step of colonization, through mediating the
primary adhesion of the bacteria to the surface, this adhesin
has proven to be relevant in the resistance to numerous
hydrodynamic conditions in UPEC, including the intra-
vesical and intraluminal parts of the urinary catheter [80]. P,
S, F1C fimbria and afimbrial adhesins serve by strengthening
the adhesion among the bacteria and the surface; in the
subsequent steps mediated by curli fimbriae, aggregation of
more bacteria, and production of EPS may take place [81,
82]. Many experimental studies have shown that the pres-
ence of genes encoding for adhesins, and their increased
expression-levels were associated with strong biofilm-for-
mation in Gram-negative bacteria, which may mirror the
processes taking place in the initial stages of biofilm-for-
mation [83]. In the paper by Bunduki et al., a systematic
review and meta-analysis was performed from the studies
assessing the relationship between virulence genes and bio-
film-formation in UPEC, which included nine studies uti-
lizing molecular methods: among adhesins, CSH (80%),
fimH (75.3%), fimP (35.6%) and pap (30.2%) were the most
common, among immune suppressors shiA (92.1%), sisA
(72.2%) and sisB (24.7%) were the representatives, while
among secreted factors and siderophores, aerobactin
(52.4%), haemolysin (22.1%), and the cytotoxic necrotizing
factor-1 (13.3% were the most relevant. Overall, this study
also concluded that the presence of virulence factors (espe-
cially adhesins) positively correlated with biofilm-formation
[84]. Similar findings were published by Selasi et al. for A.
baumannii, where biofilm-formation showed positive cor-
relation with the expression levels of a number of relevant
virulence factors (pili, surface proteins) [85].

Another significant factor in the mediation of bacterial
physiology and virulence factor-expression is bacterial cell-
cell communication or quorum-sensing [QS], which – in the
case of E. coli and many other members of Enterobacterales
– is mediated by the binding of acyl-homoserine lactones
(AHL) and autoinducer-2 (AI-2) directly to transcription
factors of relevant genes, to modulate their expression [86,
87]. As QS-mediated changes often occur due to reaching a
threshold concentration of these signal molecules (which is
a proxy for the population density in the given ecological
niche), it is not surprising that biofilm-formation and QS-
based mechanisms observe a close interdependence, given
that the production of EPS is beneficial for the entire pop-
ulation of the bacteria present [88]. Many authors provided
hypotheses on the genetic or biochemical link between
biofilm-formation and drug resistance. The perturbation of
QS-signaling (either by the degradation of signal molecules
or by inducing differential gene expression patterns) offers a
possible link, and may explain why high-dose antimicrobials
may limit biofilm-formation in microorganisms still in the
planktonic phase [89]; on the other hand, many studies have
observed that non-lethal concentrations of antibiotics
induced biofilm-production in various Gram-positive and

Gram-negative bacteria, which may be due to the activation
of global stress (SOS) responses, leading to the expression of
genes with protective functions against external noxa [90].
In E. coli, many of the important virulence factors are found
on the PAIs, which may easily be removed from the chro-
mosome, leading to isolates with less potential to cause
invasive infections [91]. This may occur through an expo-
sure to fluoroquinolone (FQ) antibiotics – which increases
the chance of deletions and transposition of DNA in the
chromosome – consequently leading to FQ-resistant strains,
with reduced potential to cause invasive infection in the
urinary tract [92]. Other authors suggested another expla-
nation, with regards to biofilm-formation and the presence
of specific b-lactamases: Aziz et al. studied A. baumannii
carrying the the extended spectrum b-lactamase blaPER-1,
and found that these isolates produced a more robust bio-
film, compared to non-carriers. They have proven in vitro,
that blaPER-1-positive isolates adhered to epithelial cells
more efficiently, which is a prerequisite for the early stages
of biofilm-production [93]. In contrast, in a study involving
P. aeruginosa isolates, Gallant et al. noted an opposite trend,
where isolates carrying the blaTEM-1 b-lactamase had low
potential to form biofilm (compared to non-carriers), which
was then attributed to the low adhesive potential of these
isolates [94]. The interaction between cell surface proteins
and biofilm-formation was further verified by Zeighami
et al. for Acinetobacter spp., where they found that isolates
with a deficient biofilm associated protein (Bap; with
important roles in the first stages of attachment and ag-
gregation) had lower capacity to form biofilm; it is worth
noting that under physiological conditions, Bap interacts
with the major porin (OmpA) of Acinetobacter spp.,
therefore porin-deficient mutants (which may show
phenotypic resistance to a variety of antibiotics) will be less
efficient EPS producers [95].

CONCLUSIONS

Biofilm-forming pathogens are an important clinical
concern, as they are an important cause of recalcitrant,
difficult-to-treat infections, which often affect hospitalized,
co-morbid patients. The removal of catheters and other
implanted devices may be an important aspect of managing
biofilm-associated infections, these interventions are often
invasive, and decrease the quality of life in the affected pa-
tients. On the other hand, while there have been progress in
the development of synthetic compounds affecting the
metabolic processes of bacteria or the structural integrity of
EPS, there are currently no licensed agents available to
specifically target biofilms. As of now, the association be-
tween drug resistance and biofilm-forming capacity is still a
matter of debate, which may also be influenced by the origin
and phylogroup distribution of the isolates. More research is
required to allow for the full understanding of the interplay
between the MDR phenotype and biofilm-production, which
will facilitate the development of novel therapeutic strategies
for ESKAPE pathogens.
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