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ABSTRACT

This work, presents a novel optimizer called fertilization optimization algorithm, which is based on levy
flight and random search within a search space. It is a biologically inspired algorithm by the fertilization
of the egg in reproduction of mammals. The performance of the algorithm was compared with other
optimization algorithms on CEC2015 time expensive benchmarks and large scale optimization prob-
lems. Remarkably, the fertilization optimization algorithm has overcome other optimizers in many cases
and the examination and comparison results are encouraging to use the fertilization optimization al-
gorithm in other possible applications.
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1. INTRODUCTION

During its history, optimization algorithms have been inspired by natural or human-made
phenomena to introduce mathematical formulation that can solve problems in different fields
of sciences. Specifically, optimization algorithms used to find the maximum or minimum of a
function, and they have a wide range of applications in the industry [1] and engineering
problems like as robotic [2] and structures [3]. Developers are more interested in phenomena
that could inspire them to develop a new method that can solve new problems or find the
best solutions for the existing ones. One of the inspiration engines is flock of animal, birds,
and insects that lead to developing swarm intelligence [4, 5] methods; this term can be
defined as accumulative and shared knowledge among a group of individuals, and this kind
of intelligence cannot be reached by one of them alone. Examples of swarm intelligence
Particle Swarm Optimization (PSO) [6], Artificial Bee Colony (ABC) [7], and Grey Wolf
Optimization (GWO) [8]. Not all the biologically inspired algorithms are swarm intelligence;
bacteria and invasive weeds optimization do not follow the rules of a swarm. In this article, a
biologically inspired algorithm from the fertilization process in the reproductive tract of
mammal animals during reproduction is presented. The new algorithm is called Fertilization
Optimization (FO) algorithm. Computationally expensive benchmarks CEC2015 [9] are
employed during experiments. On these mathematical optimization problems, FO was
compared with other meta heuristics. Remarkably, FO has shown great performance and
overcome many other algorithms in many cases. The variety and difficulty of the mathe-
matical optimization problems that FO could pass through successfully have proved the
reliability of the fertilization algorithm for mathematical optimization. In brief, the FO al-
gorithms can be described as follows.
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Each solution have a position (X) and velocity (v) in the
search space. For each iteration, the velocity decreased by
some value d

vtþ1 ¼ dvt; 0<d<1; (1)

Vtþ1
i ¼ Vt

i e
−1

vtþ1 ; (2)

where t is the number of iteration in the optimization pro-
cess. The solutions move in the search space using levy flight
L and the solution is updated by the following equation:

Xtþ1
i ¼ L

�
Xt
i � Vt

i

�
; ði ¼ 1; 2 . . . ; n Þ; (3)

where i the index of solution components, and n is the total
number of variables in the solution (3). The average value of
the best Xt

first, medium best Xt
middle, and worst solutions Xt

end
can also have effect on the update solution process:

Xtþ1
i ¼

Xt
first þ Xt

middle þ Xt
end

3
: (4)

The combination of equations (1)�(4) give the search
engine of the F algorithm:

Xtþ1
ij ¼ Xt

ij � Vt
ije

−1
vtþ1 þ L

�
Xt
i � Vt

ij

�
�

�
Xt
first þ Xt

middle þ Xt
end

3
; ð j ¼ 1; 2 . . . ;m Þ;

(5)

where m is the number of variables in the proposed solution,
and the pseudocode can be seen in Code 1.

2. RESULTS AND DISCUSSION

CEC2015 benchmark functions, which are described in
Tables 1 and 2, are used in this study to examine the per-
formance of the FO algorithm. The run conditions on
CEC2015 experiment are: variable dimensions 10, popula-
tion size 10, maximum number of iterations 1,000, and 20
independent runs. Firstly, FO algorithm is compared with
Hybrid Particle Swarm Optimization algorithm and FireFly
algorithm (HPSOFF) [10], and Hybrid Firefly and Particle
Optimization (HFPO) algorithm [11]. Tables 3 and 4 show

Code 1. The pseudocode
Define problem parameters (No. of variables, objective, limits)
Define algorithm parameters (population size, max iteration, velocity reduction coefficient, damping)
Initialize random positions and velocities for the population
Initialize best cost
Repeat from 1 to max iteration
Define new solution
Repeat from 1 to the number of population
Use equation (26) to calculate new position of the new solution
Stop when the maximum number of population is reached

Merge the old solution with the new solution
Sort solutions
Choose the first solution in the population
Choose the solution in the middle of population
Choose the last solution in the population
The first solution in the sorted group is the best solution
The cost of the best solution is the best cost
Update best cost
Stop when the maximum number of iterations is reached

Table 1. CEC2015 expensive benchmark problems F1 to F9

CEC2015

Type No. Description fmin

Unimodal functions F1 Rotated Bent Cigar Function 100
F2 Rotated Discus Function 200

Simple Multimodal Functions F3 Shifted and Rotated Weierstrass Function 300
F4 Shifted and Rotated Schwefel's Function 400
F5 Shifted and Rotated Katsuura Function 500
F6 Shifted and Rotated HappyCat Function 600
F7 Shifted and Rotated HGBat Function 700
F8 Shifted and Rotated Expanded Griewank's plus Rosenbrock's Function 800
F9 Shifted and Rotated Expanded Scaffer's F6 Function 900
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the results of comparison on mean solutions and standard
deviation among FO, HPSOFF, and HFPSO.

Table 5 reveals the comparison on standard deviation
results among FO, PSO, FFPSO algorithm [12], and FireFly
(FF) algorithm while Table 6 reveals the comparison on

mean solutions results among the same algorithms in
Table 5.

Another experiment has been done to compare the
performance of the FO algorithm on large scale optimi-
zation problems against Ant Lion Optimizer ALO [13],
Butterfly Optimization Algorithm (BOA) [14], GWO [7],
PSO, Sine Cosine Algorithm (SCA) optimization [15],
Dynamic Differential Annealed Optimization (DDAO)
[16], Bat Algorithm (BA) [17], and Tree-Seed Algorithm
(TSA) [18]. Tables 7 and 8 illustrate the statistical results
for this test in terms of best solution (Best), worst solution
(Worst), mean solution (Mean), and STandard Deviation
(STD). Four large scale optimization problems are chosen
in these experiments, and the run conditions are: variable
dimensions 1,000, population size 25, number of itera-
tions 100, and 51 independent runs. The description and
formulation of the large scale problems can be written as
follows:

� F16: Rastrigin: f ðxÞ ¼ 10nþPn
i¼1½x2i − 10 cosð2pxiÞ�,

Range 5 [�5.12, 5.12], Fmin 5 0,

� F17: f ðxÞ ¼ Pn−1
i¼1 ½100ðxiþ1 − x2i Þ2 þ ð1− xiÞ2�,

Range 5 [�2.048, 2.048], Fmin 5 0,

� F18: f ðxÞ ¼ −a exp

0
@

− b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd

i¼1
x2i

r 1
A

−

− exp

0
@

− b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd

i¼1
cosðcxiÞ

r
Þ þ aþ expð1Þ;

Range 5 [�32.768, 32.768], Fmin 5 0,

� F19: f ðxÞ ¼ Pd
i¼1

x2i
4000 −

Qd
i¼1cos

�
xiffi
i

p
�
þ 1,

Range 5 [�600, 600], Fmin 5 0.

The FO algorithm is less efficient on high-degree
multimodal benchmarks, and this behavior can be seen on
the statistical results. The experimental results show that the
FO algorithm is more effective on large scale optimization
than small scale. The behavior on large and small scale
problems needs a dedicated study that can be suggested for a
future work. In brief, the FO algorithm can be stable and fast
convergent on unimodal optimization problems as well as its
efficiency on large scale problems.

Table 2. CEC2015 expensive benchmark problems F10 to F15

CEC2015

Type No. Description fmin

Hybrid functions F10 Hybrid Function 1 (N 5 3) 1,000
F11 Hybrid Function 2 (N 5 4) 1,100
F12 Hybrid Function 3 (N 5 5) 1,200

Composition Functions F13 Composition Function 1 (N 5 5) 1,300
F14 Composition Function 2 (N 5 3) 1,400
F15 Composition Function 3 (N 5 5) 1,500

Table 3. Standard deviation results of the FO algorithm vs.
HPSOFF and HFPSO on CEC2015

HPSOFF HFPSO FO

F1 3.4292Eþ07 6.6375Eþ06 0Eþ00
F2 1.2383Eþ04 1.5696Eþ04 1.9569E�06
F3 1.5636Eþ00 1.4189Eþ00 7.0195E�02
F4 3.0718Eþ02 3.9950Eþ02 1.8913Eþ00
F5 8.2275E�01 5.7466E�01 2.0303Eþ02
F6 1.4097E�01 1.4584E�01 7.1663E�10
F7 9.3694E�01 2.5433E�01 6.1138Eþ00
F8 2.8927Eþ00 4.0866Eþ00 4.7333Eþ04
F9 2.3372E�01 2.6387E�01 4.6656E�13
F10 2.9730Eþ05 3.3036Eþ05 8.8424Eþ04
F11 1.9652Eþ00 2.6814Eþ00 0Eþ00
F12 9.5565Eþ01 1.0221Eþ02 2.9857E�01
F13 2.5959Eþ01 2.8341Eþ01 3.3013Eþ01
F14 5.0554Eþ00 5.8221Eþ00 2.8957Eþ02
F15 1.8650Eþ02 1.0398Eþ02 6.8567Eþ00

Table 4. Average solutions results of the FO algorithm vs. HPSOFF
and HFPSO on CEC2015

HPSOFF HFPSO FO

F1 4.8387Eþ07 1.3768Eþ07 7.0974Eþ07
F2 3.8331Eþ04 3.8542Eþ04 1.1254Eþ10
F3 3.0845Eþ02 3.0671Eþ02 3.2049Eþ02
F4 1.7084Eþ03 1.3159Eþ03 4.8685Eþ02
F5 5.0273Eþ02 5.0250Eþ02 2.1652Eþ03
F6 6.0063Eþ02 6.0054Eþ02 1.6116Eþ06
F7 7.0087Eþ02 7.0060Eþ02 7.5666Eþ02
F8 8.0740Eþ02 8.0773Eþ02 1.6292Eþ05
F9 9.0388Eþ02 9.0393Eþ02 1.0413Eþ03
F10 3.5402Eþ05 3.3099Eþ05 6.8481Eþ04
F11 1.1067Eþ03 1.1074Eþ03 1.4195Eþ03
F12 1.4517Eþ03 1.3983Eþ03 1.3391Eþ03
F13 1.6333Eþ03 1.6452Eþ03 1.3908Eþ03
F14 1.6053Eþ03 1.6021Eþ03 1.5594Eþ04
F15 1.8365Eþ03 1.9233Eþ03 2.0528Eþ03
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Table 6. Average solutions results of the FO algorithm vs. PSO, FF, and FFPSO on CEC2015

PSO FF FFPSO FO

F1 2.4553Eþ08 4.3059Eþ08 1.6287Eþ10 7.0974Eþ07
F2 3.8112Eþ04 3.3304Eþ04 1.4957Eþ08 1.1254Eþ10
F3 3.0779Eþ02 3.0773Eþ02 3.1455Eþ02 3.2049Eþ02
F4 2.2534Eþ03 1.5473Eþ03 3.1120Eþ03 4.8685Eþ02
F5 5.0277Eþ02 5.0293Eþ02 5.0350Eþ02 2.1652Eþ03
F6 6.0089Eþ02 6.0092Eþ02 6.0673Eþ02 1.6116Eþ06
F7 7.0193Eþ02 7.0586Eþ02 8.0586Eþ02 7.5666Eþ02
F8 8.1583Eþ02 8.6344Eþ02 2.7632Eþ05 1.6292Eþ05
F9 9.0391Eþ02 9.0395Eþ02 9.0451Eþ02 1.0413Eþ03
F10 2.9540Eþ05 5.3162Eþ05 5.1186Eþ07 6.8481Eþ04
F11 1.1088Eþ03 1.1080Eþ03 1.2198Eþ03 1.4195Eþ03
F12 1.4620Eþ03 1.3995Eþ03 2.1953Eþ03 1.3391Eþ03
F13 1.6415Eþ03 1.6437Eþ03 3.0005Eþ03 1.3908Eþ03
F14 1.6076Eþ03 1.6111Eþ03 1.6770Eþ03 1.5594Eþ04
F15 1.9149Eþ03 1.9269Eþ03 2.1840Eþ03 2.0528Eþ03

Table 7. Results for large scale optimization on F16 and F17

Function F16 F17

ALO Best 1.2463Eþ04 9.6145Eþ04
Worst 1.5088Eþ04 2.6251Eþ05
Mean 1.3352Eþ04 1.2072Eþ05
STD 5.7343Eþ02 2.5922Eþ04

BOA Best 0.0000Eþ00 9.9873Eþ02
Worst 1.1460E�10 9.9894Eþ02
Mean 3.3526E�12 9.9885Eþ02
STD 1.5967E�11 4.6350E�02

GWO Best 6.3429Eþ03 3.3616Eþ03
Worst 7.4800Eþ03 7.2573Eþ03
Mean 6.9049Eþ03 4.8800Eþ03
STD 2.6947Eþ02 8.9692Eþ02

PSO Best 1.4774Eþ04 4.2109Eþ05
Worst 1.7302Eþ04 4.6887Eþ05
Mean 1.6192Eþ04 4.5065Eþ05
STD 6.4158Eþ02 1.0330Eþ04

SCA Best 5.1110Eþ02 1.2307Eþ05
Worst 4.6834Eþ03 3.0827Eþ05

(continued)

Table 5. Standard deviation results of the FO algorithm vs. PSO, FF, and FFPSO on CEC2015

PSO FF FFPSO FO

F1 1.3549Eþ08 2.8945Eþ08 4.9786Eþ09 0Eþ00
F2 1.5114Eþ04 9.7404Eþ03 4.6261Eþ08 1.9569E�06
F3 1.3259Eþ00 1.2487Eþ00 1.6124Eþ00 7.0195E�02
F4 3.5521Eþ02 3.2112Eþ02 2.6203Eþ02 1.8913Eþ00
F5 6.3611E�01 5.9796E�01 9.3430E�01 2.0303Eþ02
F6 2.8490E�01 5.8361E�01 1.3580Eþ00 7.1663E�10
F7 1.8947Eþ00 5.8077Eþ00 3.3329Eþ01 6.1138Eþ00
F8 2.7690Eþ01 1.7256Eþ02 2.7423Eþ05 4.7333Eþ04
F9 3.2749E�01 2.3842E�01 1.7883E�01 4.6656E�13
F10 1.9786Eþ05 6.5054Eþ05 7.7896Eþ07 8.8424Eþ04
F11 2.9153Eþ00 2.4020Eþ00 6.7179Eþ01 0Eþ00
F12 1.1574Eþ02 9.1615Eþ01 4.3894Eþ02 2.9857E�01
F13 1.9141Eþ01 2.9519Eþ01 9.8971Eþ02 3.3013Eþ01
F14 4.5254Eþ00 3.5980Eþ00 4.2292Eþ01 2.8957Eþ02
F15 1.4570Eþ02 7.4514Eþ01 1.0567Eþ02 6.8567Eþ00

Table 7. Continued

Function F16 F17

Mean 1.7431Eþ03 2.3237Eþ05
STD 9.1819Eþ02 3.8524Eþ04

DDAO Best 2.2573E�01 9.9897Eþ02
Worst 6.4277Eþ03 1.4620Eþ03
Mean 5.7423Eþ02 1.0382Eþ03
STD 1.0834Eþ03 8.9853Eþ01

BA Best 1.2667Eþ04 5.4067Eþ04
Worst 1.7947Eþ04 4.3425Eþ05
Mean 1.4585Eþ04 1.8689Eþ05
STD 1.3142Eþ03 7.7892Eþ04

TSA Best 6.3653Eþ03 1.2015Eþ04
Worst 1.4767Eþ04 5.2552Eþ04
Mean 1.0217Eþ04 2.7948Eþ04
STD 2.1618Eþ03 9.2913Eþ03

FO Best 0.0000Eþ00 9.9890Eþ02
Worst 0.0000Eþ00 9.9899Eþ02
Mean 0.0000Eþ00 9.9896Eþ02
STD 0.0000Eþ00 2.2892E�02
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3. CONCLUSION

The fertilization optimization algorithm is a powerful bio-
logically inspired algorithm developed for mathematical
optimization problems. It mimics the interaction between
sperms and uterus in the process of fertilization the egg. The
statistical results on 19 test functions; CEC2015 time
expensive benchmarks, unimodal, multimodal, small scale,
and large scale problems have shown the efficiency of the
proposed algorithm compared with many optimization al-
gorithms. During examinations of the FO algorithm, it has
been noticed that the performance of the FO algorithm on
large scale problems is better than its performance on small
scale problems. The statistical results illustrate that FO al-
gorithm is stable with less STD and best solutions than other
eight competitive. The FO algorithm has proven its powerful
on unimodal functions and it has promising applications on
continuous differentiable objective functions and large scale
optimization. The FO algorithm is fast and simple and can
efficiently skip local points in the search space and go-ahead
to the global point.
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