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ABSTRACT

Telemedicine is one of the most rapidly developing areas of healthcare and it plays an increasing role in
modern medicine. As the amount of data and demand for features increase, the data paths are becoming
ever-more complex. Owing to this, it is vital in telemedicine to find a proper balance between con-
sistency and availability under any given circumstances. However, making a trade-off can significantly
influence the quality of the data. This study seeks to get an in-depth view of the problem by considering
a real-world telemedicine use-case and elaborating the formal system specification of the scenario. After
evaluating the specification, the constructed state graph is examined using graph coloring and other
graph algorithms.
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1. TELEMEDICINE WEB SYSTEMS

Telemedicine is one of the fast developing areas of medicine. Today, more and more data
items in a healthcare system are handled electronically, stored in the cloud and can be shared
readily with other systems. Telemedicine is a comprehensive area of healthcare that concerns
many specialties. Due to them, telemedicine systems have to be designed so as to be easily
integrated with other system. There are various techniques available for having secure access
to external systems, like standards, Application Programming Interfaces (API), portable
server instances. There can also be self-developed parts, caches, Content Delivery Networks
(CDN) in a system that can raise the level of availability. Server-side computational units are
also frequent because they are responsible for unburdening the client-side by performing
resource-intensive tasks. Sometimes the closeness of data is essential, so computation tasks
are outsourced to edge devices [1]. Although telemedicine systems are usually viewed as
simple client-server architecture-based systems, the reasons and solutions mentioned above
can lead to very complex data paths. Figure 1 shows a schematic form of a real-world
telemedicine system that shows how complicated the data paths can be in distributed tele-
medicine systems. However, the set of data portions and aggregations may produce a result
table that is visible for a patient or a practitioner.

Since telemedicine applications are mostly web-based, a significant number of requests
have to be performed simultaneously on the server-side. However, huge amounts of data and
a lot of computational tasks are present. In order to serve so many requests, a distributed
system is necessary. Besides the advantages of distributed systems, there are some disad-
vantages as well. Eric Brewer’s theorem about Consistency, Availability and Partition toler-
ance (CAP) [2] states that there are no distributed systems that can guarantee at most two of
the three desirable properties. The extension of the CAP Theorem states that in the case of
network Partitioning (P) a trade-off has to be made between Availability (A) and Consistency
(C), but Else (E), when the system is running normally in the absence of partitions, another
trade-off has to be made between Latency (L) and Consistency (C). This extension is the so-
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called PACELC theorem [3]. Both theorems assert that the
availability and consistency cannot be guaranteed simulta-
neously at 100%.

Additionally, the data goes through many stages, so the
round-trip and the production of the finally visible data
takes some time. These latencies are external factors that are
always present in these systems and play important roles.
Latency not only strongly influences the availability, but also
the consistency and data quality [4].

In this paper, the following results are explained in
distributed telemedicine systems.

� The formal modeling of a concrete telemedicine system
that operates today and the evaluation of the system
specification via model checking: the system specification
consists of a client, a distributed database system,
computational units and a cache. The correctness of
system model is verified with a model checker and the
state graph is dumped into graph files;

� Visualizing the new metrics for reliability of data: the
model checking results in a state graph file that contains
the simulations under different circumstances grouped
into graph components. The nodes of the components
contain information concerning the Quality of Data
(QoD) limited by caching strategies and latency values;

� Analyzing the state graph of the system model with graph
theoretical algorithms: the structure of the state graph
components contains graph theoretically relevant infor-
mation, and they can be applied for clustering.

2. SYSTEM MODELING APPROACH

In telemedicine systems, availability and consistency are
both important, and it is hard to make a trade-off between
them, because different telemedicine use-cases need specific
configurations.

It is found that measuring the consistency level in a
distributed system is not trivial. Finding the proper metrics
and measurement techniques are essential. The Probabilis-
tically Bounded Staleness (PBS) is a promising method that
was presented by Peter Bailis et al. [5]. It shows how much
time has to elapse for eventual consistency in quorum-based
distributed database systems. In their study, t-visibility and
k-staleness metrics describe the trade-off between availabil-
ity and consistency. Operation latency is described with 4
latency values, these are write request to replica, replica write
acknowledgement, read request to replica and replica read
response latencies. This is the so-called WARS model. Their
results were obtained by Monte Carlo simulations, and good
approximations can be achieved. However, this approach
cannot be used for evaluating whole telemedicine systems.

Simple simulation is not satisfactory because some parts
of the state space can be ignored due to randomization, so a
modeling approach was chosen. Formal modeling is a widely
spread technique for verifying the correctness of systems [6].
Amazon and Microsoft have already used the Temporal
Logic of Actions (TLA) and its TLAþ formal language [7]
for creating specification about their distributed systems [8,
9]. During the model checking, they found several serious
bugs that had not come up before. After studying their
approach and system specifications, several telemedicine
systems were modeled [10], and it was shown that an easily
tunable system can assist the design of information critical
heterogeneous systems.

Making the trade-off between availability and consis-
tency has notable effects on the QoD. Data quality can be
measured in different ways. Its application greatly depends
on the type of dataset and the context. In telemedicine
systems, the most rapidly changing data portions are
numeric data sets. QoD calculations are usually based on a
distance function and an aggregation that describes in-
consistencies between the real-world phenomena and the
data obtained from resources. Hinrichs’ formula stated in
Eq. (1) describes what QoD means in the context of tele-
medicine, where xdb represents the data stored in a database
and xreal stands for real-world data at a given t point [11],

QoDðxÞ ¼

8><
>:

1
d xdb; xrealð Þ þ 1

; if xdb ≠ xreal;

1; otherwise:

(1)

3. TELEMEDICINE USE-CASE

A former study [10] revealed the importance of availability
and consistency in information critical heterogeneous sys-
tems. This paper presents a concrete, active telemedicine
use-case maintained by Inclouded [12], through which the
formal system modeling and a new graph-based evaluation
technique are performed.

The selected project concerns patients that have been
diagnosed with metabolic syndrome. They have high blood
pressure along with high fasting glucose levels and

Fig. 1. Expected structure of telemedicine systems versus data paths
in real telehealth systems
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abdominal obesity that can lead to cardiovascular disease
[13]. Hence, different types of vital signs are measured, and
often simultaneously. All the measurements go through a
similar data path that includes a sensor and a mobile client
that collect the raw data and send them to the cloud. These
devices are usually in the patient’s home. In the cloud, there
is a distributed database and computational units that are
responsible for persistence and performing resource-inten-
sive tasks. There are also other computational tasks that
depend on earlier aggregations and these can make the data
path more complicated. The result is available at different
places: it is stored in the database, but it may also exist in the
cache. The request for the final result is performed by a Web
client that is controlled by a doctor or a nurse.

Here, the patient’s 24-h long electrocardiography mea-
surement is taken from the project of metabolic syndrome.
In this scenario, the raw data are sent to the database, and
the computational unit calculates the Q-wave, R-wave,
S-wave (QRS) interval [14], and it sends back the result to
the database.

4. METHODOLOGY OF MEASUREMENT

4.1. Formal specification

Firstly, the fact that an approximation does not examine the
whole state space is taken into account, so the chosen
methodology for system verification is system modeling with
formal tools. In TLAþ, a complete system specification can
be made with its own syntax. In the system spec, the main
processes are defined; that is, client operations (Client Write
(CW), Client Read (CR), Client Read from Cashe (CRC)),
DataBase Write (DB_W) for persistence Data Base PRO-
Cessing (DB_PROC)) for aggregation. Both database
persistence and aggregation are performed by distributed
systems, so multiple server instances are initiated. In order
to increase the availability of the system, the read operation
of the client is separated into two parts, namely sending
requests to the database and sending requests to the cache.
Furthermore, to make the system easily tunable, the caches
are configurable with the k-staleness parameter derived from
the PBS method. Besides k-staleness, the latency is also taken
into account. Code 1 shows the formal definition of the CW
process. The original specification was written in PlusCal,
but the TLAþ toolbox converts the spec using the TLAþ
syntax.

4.2. Simulation environment

The verification of the system spec can be performed by a
model checker. The TLAþ toolbox has a built-in model
checker, called TLA Checker (TLC). It constructs state
graphs and evaluates them via graph traversals. The result is
the diameter of the graph, the number distinct states and the
total number of states found.

In order to terminate the model checking, it is necessary
to set up a threshold that limits the size of the state graph.
Here, the threshold is given by the maximum allowed

number of write operations and it is set to 5. Also, the la-
tency is restricted to the ½0 . . . 5� interval because the state
space is rapidly growing by increasing the interval by 1. 4
different latency types are taken into account, there being
latency for client write, aggregation, client read from data-
base and client read from cache. It is stated in [15] that there
are huge differences among different computer actions. In
the model checking only Central Processing Unit (CPU) and
Random Access Memory (RAM) are used, and the RAM
access takes the most of the time in the calculation of a new
state in the graph. So, a new state of the graph can be
generated within 100 ns. The significant amount of latency is
caused by the network. It is also known that a network
connection is almost 10,000,000 times slower than accessing
the RAM [16], so increasing the latency by 1 means
approximately 100ms delay in our simulation environment.
A delay between 0 and 500ms can be valid for all the units
in the system. The data used for simulation was obtained
from the MIMIC-III Waveform Database [17–20] and
transferred to integers in order to work with them in TLAþ.
The cache is configured with the k-staleness parameter that
uses values from 0 to 3. If k ¼ 0, the client tries to obtain the
most up-to-date data. The higher the k-parameter, the more
tolerance is added to the system for the staleness of the data.

4.3. Evaluation of state graph

TLC produced 4 variants of state graphs because of the 4
given k-staleness parameter values. Each graph file is 12GB
and dumped in dot format. Dot is the basic file extension for
the Graphviz [21] library that is able to visualize and process
graphs. On the one hand, the whole state space of the graphs
consists of 335,409 nodes and 664,587 edges, and it is not
understandable in one piece. On the other hand, this huge
graph is hard to fit in memory and it would produce an
image file with a similar size. A tile system [22] could solve
the visualization problem, but Graphviz cannot make this
conversion at this point.

In order to execute graph algorithms on these graphs, a
smarter tool is needed. NetworkX [23] is a well-known
Python package that was designed for studying structures

Code 1. The CW process definition in TLAþ
CW55/\pc[10]5"CW"
/\IF (numOp<MaxNumOp)
THEN
/\ numOp05numOpþ1
/\ finalD05finalDþ1
/\ cRawD05<<[d|->finalD0,
op|->numOp0]>> \o ecgRawD
/\ pc05[pc EXCEPT ![10]5"CW"]
ELSE
/\ pc05[pc EXCEPT ![10]5"Done"]
/\ UNCHANGED<<finalD,cRawD,numOp>>
/\UNCHANGED<<readD,dbL,
calcL,dbRawD,
dbProcD,lenCRawD,
lenDbRawD,latR,latW,latP
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and analyzing complex networks, but it is not compatible
with dot graphs. Hence, the original dot file must be con-
verted to another format. Graphviz supports conversion
from dot to the Graph Modeling Language (GML) format.
The result is another graph file that has a bigger size due to
the syntax of GML. This giant graph file does not fit in
memory, so some reductions have to be made.

The original dot files contain long labels describing the
current state of the system. If one or two values are only
investigated, a significant number of bytes can be dropped
and the size of the files can be considerably reduced. This
study focuses on the QoD in the project of metabolic syn-
drome, so only QoD values are kept. These values are the
labels of the nodes that represent the possible states of the
system. In order to make the graphs clearer, QoD values are
converted to Red, Green, Blue (RGB) colors that are useful
during visualization.

Hence, nodes have only an identifier and a fill color.
Doing this, a file-size reduction of 75% was achieved and the
original file size was cut to 3GB. After reading GML files,
NetworkX found the weakly connected components in the
graph. Each weakly connected component represents a
simulation performed by TLC under given circumstances.
Lastly, every weakly connected component can be dumped
into separate GML files to make further examination and
visualization easier.

5. RESULTS

5.1. Evaluation of state graphs

TLC produced state spaces with more than 280,000 com-
ponents. After checking the content of the variables in each
state, it was found that the evaluation order of the time
windows in QRS interval calculations is non-deterministic
due to the multiple computational instances. This issue was
identified and fixed in the system.

The graph components produced by TLC can have
different sizes and various shapes depending on the number
of states that can be reached from the initial ones. At first
glance, these graphs appear to be acyclic, but after a quick
graph analysis, it turns out that the original graph files
contain cycles. These cycles are caused by self-loop edges at
the leaves of the graphs. TLC adds edges to the graph
depending on the next executed TLAþ process. The self-
loop edges at leaves are added to indicate the termination.
Since TLC did not find any deadlocks and errors, every
execution of processes terminated and worked properly.

After removing terminating self-loop edges, it was found
these graphs had a Directed Acyclic Graph (DAG) [24]
structure. Since DAG is also feasible for describing data
process networks [25], it is a suitable structure for charac-
terizing distributed telemedicine systems as well. If the entire
system is modeled, all the weakly connected components
will have a DAG structure because the whole history of the
system is kept, and it is impossible to have an edge to a node
that has already been visited. The density of these DAGs is
less than 0.3, so they are called sparse graphs.

5.2. Critical paths in information critical
heterogeneous systems

The methodology and the elaborated system model show
whether there are executions that lead to drastic reduction in
QoD. This information can help limit the caches and la-
tencies in order to get the required level of QoD.

DAGs carry lots of information within themselves. If
DAGs are adapted to distributed telemedicine systems, to-
pological ordering and the longest paths can present those
paths and nodes that lead to critical operations [26]. To-
pological ordering returns an order of events in a system in
which the system works properly or when the system does
not work as expected.

Finding the longest paths in arbitrary graphs is a Non-
deterministic Polynomial-time hard (NP-hard) problem, but
it can be carried out in linear time if the graph is a DAG
[27]. The longest path in a DAG can be used to find a critical
path that can lead to inconsistency in the system or the
system can go into unexpected states that may result in a
lower QoD.

In Fig. 2, axis X stands for the length of the possible
critical paths that group DAGs. QoD measurements were
grouped by the longest paths found in DAGs. In this
simulation environment, the possible longest path is 24 in
the biggest components. However, there are some compo-
nents that have only a 2-step-length longest path. Based on
the topological ordering and finding the longest path algo-
rithms, after examining the components, it is found that the
data quality starts to straighten out after the point where the
latencies start to have similar values (when the longest path
is above 13). Since computational unit works as a trigger,
with no further restrictions, consistent data can only be
guaranteed if data arrival is slower than processing. Figure 2
shows this phenomenon in peaks. If the delay of persistence
is increased while other processes left unchanged, a rapid

Fig. 2. The changes in QoD depending on the longest path in DAG
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improvement can be seen in the QoD with given k-staleness
parameter values.

5.3. QoD-based graph clustering

There are well-known and well-tried clustering techniques
for finding similar objects and they can be applied to graph
components as well [28]. After seeing how the QoD changes
if the longest path in DAG is increased, graph components
still cannot be clustered because of their cardinality. Several
graph editor tools contain clustering methods and algo-
rithms, but none of them found clear similarities among the
components. It is found that if components had the same
QoD values in leaves, they had the same structure. There-
fore, after grouping the components of the whole state space
by taking into account the QoD values in leaves, about 4,000
clusters were created. Some clusters contain 2 or 3 compo-
nents, but others have thousands of graphs.

Figure 3 shows 3 different graphs that were obtained by
this clustering method. These were created via the Graphia
[29] visualization tool. Black nodes are root nodes of com-
ponents that represent the 5 defined TLAþ processes. The
white color means that the QoD value is 100% in the given
state, but in the gray leaves, the QoD is reduced to 25%. The
number in the upper-left corner stands for the identifier of
the component in the state space. Table 1 lists the whole
clustering results in numerical terms. It can be seen that
many different executions of the system result in the same
graph.

With this technique, not only the similar graph com-
ponents can be grouped, but also the separate components
can be dumped into graph files and visualization can be
performed using low performance applications and

computers. All in all, this clustering technique is the most
helpful in the reduction of complexity in enormous graph
spaces.

6. CONCLUSIONS

In this study, it is found that formal modeling and model
checking can achieve a complete simulation of a real-world
telemedicine system. At this level of abstraction, the meth-
odology pointed out phenomena that cannot be observed on
the basis of knowing the system. The created state space can
be described by a giant graph that has thousands of weakly
connected components. Due to the size of the state space,
the complexity of the graph must be reduced in order to
obtain valuable graph analytical results. Grouping the
components of this system graph by data quality measure-
ments seems to be an appropriate clustering technique that
makes visualization and analysis easier and clearer. All the
weakly connected components in a telemedicine system
graph have a DAG structure, and this composition makes
many graph algorithms feasible in linear time. Based on the
length of the longest paths in DAGs, critical paths can be
found, and it was also shown in which component sizes the
highest QoD is most likely to occur. In the future, it is
planned to extend these graph analytical techniques and
examine other telemedicine use-cases as well.
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