
The impact of the software architecture on the
developer productivity

Gr�aci�an Kokrehelp and Vilmos Bilicki

Department of Software Engineering, Faculty of the Science and Informatics, University of Szeged,
Dugonics t�er 13, H-6726, Szeged, Hungary

Received: December 31, 2020 • Revised manuscript received: June 24, 2021 • Accepted: June 29, 2021
Published online: November 1, 2021

ABSTRACT

Distinct technological trends seriously influence the modern software architectures. In this paper, four
different software architectures and framework combinations were generally compared. The basis for
the analysis is the developer’s productivity.

In a 3 year-long research and development project, a real-world telemedicine application was
efficiently implemented four times with various software architectures and architectural patterns. More
than 5,000 person-hours were spent on carrying out them.

At present, a unique dataset is available, which provides the opportunity to compare the cost of
spent person-hours in different approaches.

The goal of this research is to describe the measurement approach, the dataset and the applied
architectures considering the software developer’s productivity.

KEYWORDS

software architectures, developer productivity, full stack, framework, telemedicine

1. INTRODUCTION

Modern technological trends seriously influence software architectures. Typically, software de-
velopers have to select the best from an enormous variety of possible approaches and extract
information from blogs and Git repositories. Unfortunately, these sources are technology-ori-
ented since they focus on the How, not on the Why questions. There are few phases of software
development: requirement, design, coding/implementation, testing, deployment, maintenance.
This paper focuses on a software design and within that the architectural design. In a 3 years
long Research and Development (R&D) project, a real-world telemedicine application was
efficiently implemented four times with various software architectures and architectural pat-
terns. More than 5,000 person-hours were spent on carrying out them. At present, a unique
dataset is available, which provides the opportunity to compare the cost of spent person-hours in
different approaches. The basis for the analysis is the developer’s productivity.

Is a server-less architecture more efficient than classical server-based software architec-
ture? Questions like this can be answered under these circumstances:

‒ Dataset with Ticket system;
‒ Same team through the development process;
‒ Same or similar architectures;
‒ Similarly experienced team.

2. STATE OF THE ART IN SOFTWARE ARCHITECTURE

It is all too common for developers to start coding an application without a formal archi-
tecture in place. Without a clear and well-defined architecture, most developers and

Pollack Periodica •

An International Journal
for Engineering and
Information Sciences

17 (2022) 1, 7–11

DOI:
10.1556/606.2021.00372
© 2021 The Author(s)

ORIGINAL RESEARCH
PAPER

pCorresponding author.
E-mail: kokrehel@inf.u-szeged.hu

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/15/22 03:19 PM UTC

https://orcid.org/0000-0002-5074-6033
https://doi.org/10.1556/606.2021.00372
mailto:kokrehel@inf.u-szeged.hu

architects will resort to the de facto standard traditional
layered architecture pattern, Mark Richards [1], focuses on
five architectures that are commonly used to organize soft-
ware systems: Layered (n-tier) architecture, Event-driven
architecture, Microkernel architecture, Microservices archi-
tecture and Space-based architecture.

The Layered Architecture style is focused around
dividing software functionality into distinct layers that are
interacted and stacked vertically on top of each other.
Functionality within each layer is related by a common role
or responsibility. Communication between layers is explicit
and loosely coupled. The main application of layering helps
to support great separation of concerns that in turn, support
maintainability and flexibility [2].

Microservices are an architectural style in which a single
application is built by using multiple small services. Each
service runs in its own process and communicates with other
services by using lightweight mechanisms, often REST web
services. Each service is a small component, which performs
a single business purpose - authentication, notification,
payment processing, etc. The different services may use
different technology stacks - databases, frameworks or pro-
gramming languages. They are also independently deploy-
able and scalable [3].

Event-Driven Architecture (EDA) is a popular distrib-
uted asynchronous architecture pattern, which can be used
to overcome the distributed data challenges [3].

Server-less computing is any computing platform that
hides server usage from developers and runs code on-de-
mand automatically scaled and billed only for the time the
code is running [4]. Based on Eismann, et al. [5] analysis of
89 server-less applications, they find that the most
commonly reported reasons for the adoption of server-less
are to save costs for irregular or bursty workloads, to avoid
operational concerns, and for the built-in scalability. Server-
less applications are most commonly used for short-running
tasks with low data volume and bursty workloads but are
also frequently used for latency-critical, high-volume core
functionality. The Berkeley team [6] from the University of
California predicts that server-less use will skyrocket. They
also project that hybrid cloud on-premises applications will
dwindle over time, though some deployments might persist
due to regulatory constraints and data governance rules. So
far, very few sources were found by comparing server-based
efficiency with serverless.

3. STATE OF THE ART IN THE FIELD OF
PRODUCTIVITY MEASUREMENT

In software engineering, productivity is frequently defined,
from an economic viewpoint, as the effectiveness of pro-
ductive effort, measured in terms of the rate of output per
unit of input. Consequently, direct measures do not char-
acterize the construct of productivity in an economic sense
of the term, i.e., by means of an association between some
input effort and the quantity of output obtained as a result
[7, pp. 77]. Enterprise resource planning-system is one of the

instruments to implement disruptive ideas in business and
create long-time competitive advantages [8]. Fuzzy based
production planning became more accurate and more real-
istic than the result of a traditional network model due to the
factors of unpredictability of the human workforce and
those of unforeseeable interruptions in the production [9].

Measurement techniques used worldwide to measure
developer’s productivity [10]: Sprint Burndown, Team Ve-
locity metric, Throughput, Cycle Time, etc.

The throughput method indicates the total value-added
work output by the team. They are represented by tickets
completed by the team within a specified time. The cycle
time is the total time that has elapsed from the moment a
ticket started until the task is completed. A mixture of these
two methods was used in the measurements. All of the
methods mentioned have been tried, but the data set that
stores the data in the form of Tickets has limited and made it
impossible to make measurements in some cases. There are
many variable names for measuring Time, Effort, Task,
Function Points and Lines of Code. The diversity between
Time and Effort occurred because they were measured with
different time units. Function Points and Lines of Code had
different names because of the different methods or strate-
gies used by researchers [7, pp. 83]. A version of the less
popular Task/Time method was used.

4. MEASUREMENT APPROACH

Over the 3 years, 4 projects ran in parallel and 5,000þ man-
hours of logs were collected. Many beginners with no
experience have been involved in the development process.
Developers have created custom guides over the years: clean
code, objective oriented programming, programming para-
digms, design patterns and architectural designs. This also
allowed new trainees and students to integrate faster. In the
research project all the architectures mentioned later have
been tested over the years. The other three projects were
evaluated with just one of the architecture. The research
project is a real world Telemedicine application. Throughout
this project, the managers were the same and the Kanban
[11] development process was used. Everyone receives tasks
in the form of tickets and has been rated based on work-
logs/completed tickets. There are more than 238 tickets in
this project alone.

The FHIR [12] standard for medical purposes is used for
data modeling. Table 1 shows the developer team experi-
ence. Software Architecture version number is SAvn.

Considering that this is an R&D project, so the in-
dividuals involved in the process are still students or trainees
with little or no experience. The measurements were not
biased by this fact.

5. APPLIED SOFTWARE ARCHITECTURES

The main task of the Custom API(SDK) is to connect
Firebase and frontend. All queries, view tables, cloud

8 Pollack Periodica 17 (2022) 1, 7–11

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/15/22 03:19 PM UTC

functions, triggers, email functions, etc. are stored in one
npm package (Fig. 1).

The so-called “Custom LIB” is a set of similar but
parameterizable GUI elements that can then be used in other
projects. It consists mainly of (simple) components suitable
for visualization purposes. It also contains (powerful)

widgets and model-specific elements with complex functions
(Fig. 2). Table 2 shows the used technologies per version.

6. RESULTS AND DISCUSSION

Figure 3 shows the total time spent by developers on
different architecture versions:

Time spentðHÞ ¼
X�

TicketðHÞ
Developer

�
; (1)

where Ticket (H) is the time spent on ticket/task.
The difference is huge but other factors need to be

considered in SAv1:

‒ testing and implementation of agile and kanban methods;
‒ inexperienced team;

Table 1. The developer team experience

SAvn/
number
of the
developers

SAv1 (May
2018 - Jan
2019)

SAv2 (Feb
2019 - Sep

2019)

SAv3 (Nov
2019 - Feb

2020)

SAv4 (Mar
2020 - Sep

2020)

Beginner 16 8 3 0
1YearOld 0 0 5 2
2YearOld 0 0 0 6

Fig. 1. SAv1 and SAv2

Fig. 2. SAv3 and SAv4

Pollack Periodica 17 (2022) 1, 7–11 9

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/15/22 03:19 PM UTC

‒ incomplete functional;
‒ requirement and design plans.

It can be clearly seen that the time between SAv1
(2341H) and SAv4 (191H) differs greatly, the latter being
completed 8 times faster.

The difference between server-based and non-server-
based systems is clearly indicated by the large change be-
tween SAv2 and SAv3. Developers spent a lot less time
learning and setting up the day-to-day system, so a lot more
tickets were completed.

Figure 4 shows the time spent by developers on different
categories. It is clear that Backend-related tasks have taken
up the most time. The frontend was refactored only during
SAv2, later there were only bug fixes. The mobile application
has been completed in SAv3.

Figure 5 shows the subtasks that consumed the most
time. SAv4 tasks: 55.5 h to implement own server to store
patient data, 42 h for Firebase analytics.

Figure 6 shows the completed functions on different
architecture versions. For SAv4, all functions are 100%.

These requirements have changed and expanded over
time. Yet in the post-SAv3 period, it was much easier to
implement and demonstrate the new features described by
customers and managers. It is important to mention that the
maintenance of existing functions has also been greatly
simplified.

Table 2. Technologies per version

SAv1 SAv2 SAv3 SAv4

Web app. Angular Material Angular Material Angular Material Ionic 4
Mobile app. Ionic 3 Ionic 3 Ionic 3 Ionic 4
Database Apache Cassandra Apache Cassandra Firebase Firebase
Plugin Lucene index Lucene index - -
Server/Cloud Loopback Loopback Firebase Firebase
Connector - - Angular Firestore Angular Firestore

Fig. 3. Total time spent by developers on different architecture
versions

Fig. 4. Time spent by developers on different categories

Fig. 5. Subtasks that consumed the most time

Fig. 6. Completed functions on different architecture versions

10 Pollack Periodica 17 (2022) 1, 7–11

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/15/22 03:19 PM UTC

7. CONCLUSION

The results show that in our case, Server-less Firebase-based
architectures can be implemented in up to 8x less time than
private cloud IaaS level architectures.

Based on the measurements our findings are the
following: Server-less architectures are much more efficient
than IaaS level architectures. Based on the results, it is easy
to state that experience and skilled management can give
completely different results for some architectures. If
possible, it would be worth running the experiment again
based on data from larger companies.

Future plans are:

� Command line interface for faster application initializa-
tion;

� Measure how fast the custom library can generate pro-
jects;

� How much code review affects productivity;
� Visualize metrics that motivate developers.

ACKNOWLEDGMENTS

The research project took place at the University of Szeged,
Hungary. This research was supported by the EU-funded
Hungarian grants EFOP-3.6.1-16-2016-00008, EFOP-3.6.3-
VEKOP-16-2017-00002 and GINOP-2.2.1-15-2017-00073.

REFERENCES

[1] M. Richards, Software Architecture Patterns. O’Reilly Media, Inc.,

2015.

[2] F. Akmel, E. Birhanu, B. Siraj, and S. Shifaw, “A comparative

analysis on software architecture styles,” Int. J. Foundations

Comput. Sci. Technol., vol. 7, no. 5/6, pp. 11–22, 2017.

[3] S. Zelev and A. Rozeva, “Using microservices and event driven

architecture for big data stream processing,” AIP Conf. Proc.,

vol. 2172, no. 1, 2019, Paper no. 090010.

[4] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of

server-less computing,” Commun. ACM, vol. 62, no. 12, pp. 44–54, 2019.

[5] S. Eismann, J. Scheuner, E. van Eyk, M. n Schwinger, J. Grohmann,

N. Herbst, C. L. Abad, and A. Iosup, “Server-less applications: Why,

When, and How?,” IEEE Softw., vol. 38, no. 1, pp. 32–39, 2020.

[6] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khan-

delwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J.

E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson, Cloud

Programming Simplified: A Berkeley View on Server-Less

Computing, UC Berkeley, 2019.

[7] E. Oliveira, D. Viana, M. Cristo, and T. Conte, “How have software

engineering researchers been measuring software productivity?” in

Proceedings of the 19th International Conference on Enterprise Infor-

mation Systems, vol. 2, Porto, Portugal, April 26-29, 2017, pp. 76‒87.
[8] M. A. Razzhivina, B. A. Yakimovich, and A. I. Korshunov,

“Application of information technologies and principles of lean

production for efficiency improvement of machine building en-

terprises,” Pollack Period., vol. 10, no. 2, pp. 17–23, 2015.

[9] L. Pusztai, B. Kocsi, and I. Budai, “Making engineering projects

more thoughtful with the use of fuzzy value-based project plan-

ning,” Pollack Period., vol. 14, no. 1, pp. 25–34, 2019.

[10] Top 10 software development metrics to measure productivity,

[Online]. Available: https://www.infopulse.com/blog/top-10-

software-development-metrics-to-measure-productivity/. Accessed:

Dec. 22, 2020.

[11] D. J. Anderson, Kanban: Successful Evolutionary Change for Your

Technology Business, Blue Hole Press, 2010.

[12] Index - FHIR v4.0.1. [Online]. Available: http://www.hl7.org/fhir/.

Accessed: Dec. 22, 2020.

Open Access. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, a link to the CC
License is provided, and changes – if any – are indicated. (SID_1)

Pollack Periodica 17 (2022) 1, 7–11 11

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/15/22 03:19 PM UTC

https://www.infopulse.com/blog/top-10-software-development-metrics-to-measure-productivity/
https://www.infopulse.com/blog/top-10-software-development-metrics-to-measure-productivity/
http://www.hl7.org/fhir/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Outline placeholder
	The impact of the software architecture on the developer productivity
	Introduction
	State of the art in software architecture
	State of the art in the field of productivity measurement
	Measurement approach
	Applied software architectures
	Results and discussion
	Conclusion
	Acknowledgments
	References

