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Abstract. We solve the problem of estimating the distribution of pre-
sumed i.i.d. observations for the total variation loss. Our approach is
based on density models and is versatile enough to cope with many
different ones, including some density models for which the Maximum
Likelihood Estimator (MLE for short) does not exist. We mainly illus-
trate the properties of our estimator on models of densities on the line
that satisfy a shape constraint. We show that it possesses some similar
optimality properties, with regard to some global rates of convergence, as
the MLE does when it exists. It also enjoys some adaptation properties
with respect to some specific target densities in the model for which our
estimator is proven to converge at parametric rate. More important is
the fact that our estimator is robust, not only with respect to model mis-
specification, but also to contamination, the presence of outliers among
the dataset and the equidistribution assumption. This means that the
estimator performs almost as well as if the data were i.i.d. with density
p in a situation where these data are only independent and most of their
marginals are close enough in total variation to a distribution with den-
sity p. We also show that our estimator converges to the average density
of the data, when this density belongs to the model, even when none of
the marginal densities belongs to it. Our main result on the risk of the
estimator takes the form of an exponential deviation inequality which
is non-asymptotic and involves explicit numerical constants. We deduce
from it several global rates of convergence, including some bounds for
the minimax L1-risks over the sets of concave and log-concave densities.
These bounds derive from some specific results on the approximation of
densities which are monotone, convex, concave and log-concave. Such
results may be of independent interest.

1. Introduction

Estimating a density under a shape constraint has been addressed by
many authors since the pioneer papers by Grenander (1956; 1981), Rao (1969),
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Groeneboom (1985) and Birgé (1989) for estimating a nonincreasing density
on (0,+∞). It is well-known that this problem can elegantly be solved by
the Grenander estimator – see Grenander (1956)– which is the maximum
likelihood estimator (MLE for short) over the set of densities that satisfy
this monotonicity constraint on (0,+∞). Rao (1969) and Grenander (1956;
1981) established the local asymptotic properties of the Grenander estima-
tor while Groeneboom (1985) and Birgé (1989) studied its global estimation
errors for the L1-loss on some functional classes of interest. Birgé proved
that the uniform risk of the Grenander estimator over the set F (H,L), that
consists of nonincreasing densities bounded by H > 0 and supported on
[0, L] with L > 0, is of order (log(1 +HL)/n)1/3. Since this rate is optimal,
the Grenander estimator performs almost as well (apart maybe from numer-
ical constants) as a minimax estimator over F (H,L) that would know the
values of H and L in advance. Even more surprising is the fact that the
Grenander estimator can converge at a parametric rate (1/

√
n) when the

density is piecewise constant on the elements of partition of (0,+∞) into a
finite number of intervals – see Grenander (1981), Groeneboom (1985) and
Birgé (1989). As a consequence, the Grenander estimator can nicely adapt
to the specific features of the target density even though these features are
a priori unknown.

Because of these adaptation properties for estimating a monotone den-
sity, the MLE has widely and almost exclusively been used to solve many
other density estimation problems under shape constraints. We refer to
Groeneboom et al (2001) for convex densities and to Balabdaoui and Well-
ner (2007) and Gao and Wellner (2009a) for k-monotone ones. Although
the construction of the MLE is not based on any smoothness assumption in
these cases, it still needs to have some pieces of information on the support
of the target density. It was already the case for the monotonicity constraint
since the left-endpoint of the support of the density needed to be known to
build the Grenander estimator. This kind of prior information might, how-
ever, not be available in practice and a more reasonable assumption would
be that only an interval containing this support be known. Unfortunately,
under this weaker assumption the MLE does not exist and the search of
alternative estimators becomes necessary to solve this issue.

To our knowledge, the first attempt to solve it dates back to Wegman
(1970). He designed a MLE-type estimator restricted to a class of unimodal
densities that attain their modes on an interval of length not smaller than
some parameter ε > 0. This parameter needs to be tuned by the statistician
and its choice influences the performance of the resulting estimator. Weg-
man and Grenander estimators both converge at the same rate except on
an interval of length ε around the mode. Birgé (1997) proposed a different
approach based on data-driven choice of a Grenander estimator among the
collection of those associated to all possible modes. He proved that the L1-
risk of the selected estimator is the same as that of the Grenander estimator
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that would know the value of the mode in advance, up to an additional term
of order 1/

√
n.

The situation is different when the density is assumed to be log-concave on
R, or more generally on Rd with d > 1. The construction of the MLE is then
free of any assumption on the support of the density. The study the MLE
on the set of log-concave densities has led to an intensive work. We refer
the reader to Dümbgen and K. Rufibach (2009), Doss and Wellner (2016) ,
Cule and Samworth (2010), Kim and Samworth (2016) and Feng et al (2021)
as well as the references therein. Kim and Samworth (2016) described the
uniform rates of convergence of the MLE for the squared Hellinger loss over
the class of log-concave densities in dimension d ∈ {1, 2, 3} and they proved
these rates to be minimax (up to a possible logarithmic factor). Besides, as
for the monotonicity constraint in dimension one, the MLE also possesses for
log-concave densities some adaptation properties: it converges at parametric
rate (for the Hellinger loss and up to a possible logarithmic factor) when the
logarithm of the target density is piecewise affine on a suitable convex subset
of Rd with d ∈ {1, 2, 3}. This result was established by Kim et al (2018)
when d = 1 and extended to the dimensions d ∈ {2, 3} by Feng et al (2021).
In dimension d > 4, Kur et al. Kur et al. (2019) showed that the MLE
converges at a minimax rate - up to a logarithm factor - for the Hellinger
loss.

In the one dimensional case, our aim is to design a versatile estimation
strategy that can be applied to a wide variety of density models, includ-
ing some for which the MLE does not exist, and that automatically results
in estimators with good estimation properties. In particular, these estima-
tors should keep the nice minimax and adaptation properties of the MLE,
when it exists, for estimating a density under a shape constraint. They
should also remain stable with respect to a slight departure from the ideal
situation where the data are truly i.i.d. and their density satisfies the re-
quired shape. In particular, the estimator should still perform well when
the equidistribution assumption is slightly violated and the data set con-
tains a small portion of outliers. It should also perform well when the shape
of the density is slightly different from what was originally expected, that is,
when the true density of the data does not satisfy the shape constraint but
is close enough (with respect to the L1-loss) to a density that does satisfy
it. In a nutshell, our aim is to build estimators that are robust. Except for
the Grenander estimator (which is a particular case of a ρ-estimator — see
Baraud and Birgé (2018)[Section 6]—, we are not aware of any result that
establishes such robustness properties for the MLE.

Actually, we are not aware of many robust strategies for estimating a
density under a shape constraint. For estimating concave and log-concave
densities, Chan et al (2014) proposed a piecewise linear estimator on a data-
driven partition of R into intervals. Their estimator is minimax optimal on
the sets of concave and log-concave densities and it enjoys some robustness
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properties with respect to a departure (in L1-distance) of the true density
from the model. Their approach is based on the estimation procedure de-
scribed in Devroye and Lugosi (2001) and uses the fact that the Yatracos
class associated to the set of the densities that are piecewise linear on a
partition of the line into a fixed number of intervals is VC. Despite the de-
sirable properties described above, this estimator does not possess some of
the nice ones that makes the MLE so popular. For estimating a log-concave
density, the MLE converges at global rate of order n−2/5 (for the L1 and
Hellinger distances) but, as already mentioned, it also possesses some adap-
tation properties with respect to these densities the logarithms of which are
piecewise linear. The estimator proposed by Chan et al does not possess
such a property. Besides, their approach provides competitors to the MLE
for some specific density models only. Chan et al’s approach cannot deal
with the estimation of a monotone density on a half-line for example and
therefore cannot be used to provide a surrogate to the Grenander estimator.

In dimension one, Baraud and Birgé (2016)[Section 7] proposed to solve
the problem of robust estimation of a density under a shape constraint by
using ρ-estimation. Their results hold for the Hellinger loss while ours is
for the total variation one (TV-loss for short). The estimator we propose is
more specifically designed for this loss and quite surprisingly the risk bounds
we get for the TV-loss are slightly different from those obtained by Baraud
and Birgé for the Hellinger one. We do not know if ρ-estimators would
satisfy the same L1-risk bounds as those we establish here.

Our procedure shares some similarities with that proposed by Devroye
and Lugosi (2001). When the Yatracos class associated to density model
is VC, the risk bound we establish is similar to theirs except from the fact
that we provide explicit numerical constants. However, unlike them, we also
consider density models for which the Yatracos class is not VC, which is
typically the case for these models of densities that satisfy a shape constraint.
Nevertheless, it is likely that with the same techniques of proofs, we could
establish for Devroye and Lugosi’s estimators the similar results as those we
establish here for ours.

The theory of `-estimation introduced in Baraud (2021) provides a generic
way of building estimators that possess the robustness properties we are
looking for. Even though the present paper is in the same line, we modify
Baraud’s procedure and establish, for the modified `-estimator, risk bounds
with numerical constants that are essentially divided by a factor 2 as com-
pared to his. Another important difference with Baraud’s result lies in the
following fact. When the data are only independent with marginal densi-
ties p?1, . . . , p?n, we measure the performance of our density estimator p̂ in
terms of its L1-distance ‖p? − p̂‖ between p̂ and the average of the mar-
ginal densities p? = n−1∑n

i=1 p
?
i . In contrast, Baraud considered, as a loss

function, the average of the L1-distances of p̂ to the p?i , i.e. the quantity
n−1∑n

i=1 ‖p̂− p?i ‖. As a consequence, unlike Baraud, we can establish the
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convergence of our estimator to p?, as soon as its belongs to the model, even
in the unfavourable situation where none of the marginals p?i belongs to it.

The risk bounds we obtain hold for very general density models but our
applications focus on the estimation of a density on the line that satisfies a
shape constraint. In a nutshell, we establish the following results which are
to our knowledge new in the literature.

• The procedure applies to a large variety of density model including
some for which the MLE does not exist (the set of all monotone
densities on a half-line, the set of all unimodal densities on R, the
set of all convex densities on an interval, etc).
• The global rates of convergence that we establish for our estimator
are optimal in all the models we consider.
• The estimator possesses some adaptation properties: it converges at
parametric rate when the data are i.i.d. with a density that belongs
to model and satisfies some special properties. In particular, our
estimator shares similar adaptation properties as those established
for the MLE under a monotonicity or a log-concavity constraint.
We also establish some adaptation properties on density models on
which the MLE does not even exist.
• The estimator is robust with respect to model misspecification, con-
tamination, the presence of outliers and is robust with respect to a
departure from the equidistribution assumption we started from.

The paper is organized as follows. The statistical framework is described
in Section 2 and the construction of the estimator as well as its properties
are presented in Section 3. The more specific properties of our estimator
for estimating a mixture of densities that are monotone, convex or concave
can be found in Sections 4 and 5 respectively while the case of a log-concave
density is tackled in 6 respectively. These sections also contain some ap-
proximation results which may be of independent interest and are central to
our approach. The proofs are postponed to Section 7.

2. The statistical framework and main notations

Let X1, . . . , Xn be n independent random variables and P ?1 , . . . , P ?n their
marginals on a measurable space (X ,A ). Our aim is to estimate the n-
tuple P? = (P ?1 , . . . , P ?n) from the observation of X = (X1, . . . , Xn) on the
basis of a suitable model for P?. More precisely, given a σ-finite measure µ
on (X ,A ) and a familyM of densities with respect to µ, we shall do as if
the Xi were i.i.d. with a density that belongs toM, even though this might
not be true, and estimate P? by a n-tuple of the form (“P , . . . , “P ) where“P = “P (X) = p̂ · µ is a random element of the set M = {P = p · µ, p ∈M}.
We refer to M and M as our probability and density models respectively.
For the sake of simplicity, we abusively identify P? with the distribution⊗
P ?i of the observation X.
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The density models we have in mind are nonparametric and gather den-
sities that satisfy a given shape constraint: monotonicity on a half line,
convexity on an interval, log-concavity on the line, among other examples.

In order to evaluate the accuracy of our estimator, we use the TV-loss d
on the set P of all probability measures on (X ,A ). We denote by ‖·‖ the
L1-norm on the set L1(X ,A , µ) that consists of the equivalence classes of
integrable functions on (X ,A , µ). We recall that the TV-loss is a distance
defined for P,Q ∈P by
(1) d(P,Q) = sup

A∈A
[P (A)−Q(A)]

and if P and Q are absolutely continuous with respect to our dominating
measure µ,

d(P,Q) = 1
2

∥∥∥∥dPdµ − dQ

dµ

∥∥∥∥ .
In general, whatever P?, denote by P ? the uniform mixture of the marginals:

P ? = 1
n

n∑
i=1

P ?i .

In particular, when the data are i.i.d., their common distribution is P ? ∈P.
The quantity d(P ?, P ) is small as compared to 1 when only a small portion

of the marginals P ?1 , . . . , P ?n are far away from P . Note that this quantity
can be small even if none of the P ?i equals P .

Throughout this paper, we assume the following.

Assumption 1. There exists a countable subset M of M that is dense in
M for the L1-norm.

We recall that a subset of a separable metric space is separable. In par-
ticular, when the space L1(X ,A , µ) is separable for the L1-norm, so is any
subsetM of densities on (X ,A , µ) and Assumption 1 is automatically sat-
isfied. This is in particular the case when (X ,A ) = (Rk,B(Rk)), k > 1 and
µ is the Lebesgue measure. If a familyM of densities satisfies our Assump-
tion 1, so does any subset D of M. The set D may in turn be associated
to a subset D and a probability set D = {P = p · µ, p ∈ D} that are both
countable and respectively dense in (D, ‖·‖) and D = {P = p · µ, p ∈ D}
for the total variation distance d. We may therefore write

inf
P∈D

d(P ?, P ) = inf
P∈D

d(P ?, P ) .

We shall repeatedly apply this equality to sets D of interest without any
further notice. As a consequence, replacing a density modelD by a countable
and dense subset D changes nothing from the approximation point of view.
Nevertheless, we prefer to work with D rather than D in order to avoid some
measurability issues that may result from the calculation of the supremum
of an empirical process indexed by D.
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Throughout the present paper, we use the same kind of notations as
D,D,D ,D in order to distinguish between the density model, a countable
and dense subset of it and their corresponding probability models. Following
these notations M = {P = p · µ, p ∈ M}. An interval I of R is said to
be nontrivial if its interior I̊ is not empty or equivalently if its length is
positive. Given a ∈ R∪ {−∞} and b ∈ R, (a, b| denotes any of the intervals
(a, b) and (a, b]. When we say that p is a density on a (nontrivial) interval
I, we mean that p is a density that vanishes outside I. The set of positive
integers is denoted N? and |A| is the cardinality of a set A. By convention,∑

∅ = 0. For an integrable function f on (X ⊗n,A ⊗n), E[f(X)] is the
integral of f with respect to the probability measure

⊗n
i=1 P

?
i = P? while

for f on (X ,A ) and S ∈P, ES [f(X)] is the integral of f with respect to
S. We use the same conventions for Var (f(X)) and VarS (f(X)).

3. An `-type estimator for the TV-loss

LetM be a density model that satisfies our Assumption 1 for someM⊂
M. Given P = p · µ and Q = q · µ in M , we define

(2) t(P,Q) = 1lq>p − P (q > p) = P (p > q)− 1lp>q.

Given the family T = {t(P,Q), (P,Q) ∈M 2}, we define for P,Q ∈M and
x ∈X n

(3) T(x, P,Q) =
n∑
i=1

t(P,Q)(xi) =
n∑
i=1

[1lq>p(xi)− P (q > p)]

and
T(x, P ) = sup

Q∈M
T(x, P,Q).

For ε > 0, we finally define our estimator as any (measurable) element“P = p̂ · µ that belongs to the set

(4) E (X) =
ß
P ∈M , T(X, P ) 6 inf

P ′∈M
T(X, P ′) + ε

™
.

We call “P and p̂ a TV-estimator on M andM respectively. The parameter
ε is introduced in case a minimizer of P 7→ T(X, P ) does not exist on M .
Any ε-minimizer would do provided that ε is not too large.

The construction of estimators from an appropriate family of test statis-
tics t(P,Q) is described in Baraud (2021) and our approach is in the same line.
In particular, we use the following key property on the family T (which can
be compared to Assumption 1 in Baraud (2021)).

Lemma 1. For all probabilities P,Q ∈M and S ∈P,

(5) d(P,Q)− d(S,Q) 6 ES
[
t(P,Q)(X)

]
6 d(S, P ) .
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In particular,

(6) d(P,Q)− d(P ?, Q) 6 1
n

n∑
i=1

E
[
t(P,Q)(Xi)

]
6 d(P ?, P ) ,

where P ? = n−1∑n
i=1 P

?
i .

However, our family T does not satisfy the anti-symmetry assumption,
namely t(P,Q) = −t(Q,P ), which is required for Baraud’s construction. The
risk bound that we establish below cannot therefore be deduced from Ba-
raud (2021). In fact, for the specific problem we want to solve here the
anti-symmetry assumption can be relaxed which leads to an improvement
on the numerical constants that are involved in the risk bounds.

Our construction also shares some similarities with that proposed by De-
vroye and Lugosi (2001)[Section 6.8 p.55]. However, a careful look at their
selection criterion shows that it is slightly different from ours. They replace
our function T(·, P,Q) given by (3) by

TDL(·, P,Q) : x 7→
∣∣∣∣∣ n∑
i=1

[1lq>p(xi)− P (q > p)]
∣∣∣∣∣ .

Their approach leads to a set of estimators EDL(X) defined in the same way
as (4) for TDL in place of T (with ε = 1).

Proof of Lemma 1. Let P,Q ∈ M . Using the definition (2) of t(P,Q) and
that of the TV-loss given by (1), we obtain that for all S ∈P,

ES
[
t(P,Q)(X)

]
= S(q > p)− P (q > p) 6 d(S, P ) ,

which is exactly the second inequality in (5). To establish the first one, we
use the fact that d(P,Q) = Q(q > p)− P (q > p). This leads to

ES
[
t(P,Q)(X)

]
= S(q > p)−Q(q > p) + [Q(q > p)− P (q > p)]
> −d(S,Q) + d(P,Q) .

Finally, (6) results from the observation that
1
n

n∑
i=1

E
[
t(P,Q)(Xi)

]
= EP ?

[
t(P,Q)(X)

]
.

�

3.1. Properties of the estimator. Our main result is based on the key
notion of extremal point in a model.

Definition 1. Let F be a class of real-valued functions on a set X with
values in R. We say that an element f ∈ F is extremal in F (or is an
extremal point of F) with degree not larger than D > 1 if the classes of
subsets

C>(F , f) =
{
{x ∈X

∣∣ q(x) > f(x)}, q ∈ F \ {f}
}
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and

C<(F , f) =
{
{x ∈X

∣∣ q(x) < f(x)}, q ∈ F \ {f}
}

are both VC with dimension not larger than D.

Additionally, we say that P is an extremal point of M with degree not larger
than D > 1 if there exists p ∈ M such that P = p · µ and p is extremal
inM with degree not larger than D. For each D > 1, we denote by O(D)
the set of extremal points p in M with degree not larger than D, O(D) a
countable and dense subset of it, O(D) the corresponding set of probability
measures and O =

⋃
D>1O(D) the set of all extremal points inM. Finally,

letM be a countable and dense subset ofM containing
⋃
D>1O(D).

Theorem 1. Let M be a density model satisfying our Assumption 1 for
which O is nonempty. Any TV-estimator “P on M satisfies for all ξ > 0
and all product distribution P?, with a probability at least 1 − e−ξ, for all
D > 1 and all P ∈ O(D),

(7) d
Ä
P, “Pä 6 2d(P ?, P ) + 20

…
5D
n

+

 
2(ξ + log 2)

n
+ ε

n
.

In particular,

d
Ä
P ?, “Pä 6 inf

D>1

ñ
3 inf
P∈O(D)

d(P ?, P ) + 20
…

5D
n

ô
+

 
2(log 2 + ξ)

n
+ ε

n
,(8)

with the convention inf∅ = +∞. As a consequence of (7),

(9) E
î
d
Ä
P, “Päó 6 2d(P ?, P ) + 48

…
D

n
+ ε

n

for all D > 1 and all P ∈ O(D), moreover by (8),

(10) E
î
d
Ä
P ?, “Päó 6 inf

D>1

®
3 inf
P∈O(D)

d(P ?, P ) + 48
…
D

n

´
+ ε

n
.

Proof. The proof is postponed to Subsection 7.2. �

Let us now comment on this result.
In the favourable situation where the Xi are i.i.d. with distribution P ?

in O, infD>1 infP∈O(D) d(P ?, P ) = 0 and we deduce from (10) that the esti-
mator “P converges toward P ? at rate 1/

√
n for the total variation distance.

More precisely, the risk of the estimator is not larger than 48
√
D/n + ε/n

when P ? belongs to O(D) for some D > 1. Note that the result also holds
when the data are independent only, provided that P ? = n−1∑n

i=1 P
?
i is

extremal. This situation may occur even when none of the marginals P ?i is
extremal or even belongs to the model M .
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In the general case where the data are independent only and their marginals
write for all i ∈ {1, . . . , n} as
(11) P ?i = (1− αi)P + αiRi = P + αi

(
Ri − P

)
for some P ∈ O(D) with D > 1, α1, . . . , αn in [0, 1] and distributions
R1, . . . , Rn in P, we deduce from (9) that

E
î
d
Ä
P , “Päó 6 2d

(
P ?, P

)
+ 48

…
D

n
+ ε

n

6
2
n

n∑
i=1

αi + 48
…
D

n
+ ε

n
.

As compared to the previous situation where P ?i = P ∈ O(D), hence αi = 0
for all i, we see that the risk bound we get only inflates by the additional
term 2α = (2/n)

∑n
i=1 αi and it remains thus of the same order when α is

small enough as compared to
√
D/n. Note that this situation may occur

even when αi > 0 for all i, i.e. when none of the marginals P ?i belongs
to O(D). In order to be more specific, we may consider the two following
situations. In the first one, there exists some subset of the data which
are i.i.d. with distribution P ∈ O(D) while the other part, corresponding
to what we shall call outliers, are independently drawn according to some
arbitrary distributions. In this case, there exists a subset S ⊂ {1, . . . , n}
such that αi = 1 for i ∈ S and αi = 0 otherwise in (11). Our procedure
is stable with respect to the presence of such outliers as soon as α = |S|/n
remains small as compared to

√
D/n. In the other situation, which is called

the contamination case, the data are i.i.d., a portion α ∈ (0, 1] of them are
drawn according to an arbitrary distribution R while the other part follows
the distribution P ∈ O(D). Then (11) holds with αi = α and Ri = R
for all i ∈ {1, . . . , n}. The risk bound we get remains of the stable under
contamination as long as the level α = α of contamination remains small as
compared to

√
D/n.

A bound similar to (8) has been established in Baraud (2021) for his
`-estimators. His inequality (48) can be reformulated in our context as
1
n

n∑
i=1

d
Ä
P ?i , “Pä 6 inf

D>1

ñ
6 inf
P∈O(D)

ñ
1
n

n∑
i=1

d(P ?i , P )
ô

+ 40
…

5D
n

ô
+ 2
…

2ξ
n

+ 2ε
n

− inf
P∈M

ñ
1
n

n∑
i=1

d(P ?i , P )
ô
.

In comparison, equation (9) and the triangle inequality imply that
1
n

n∑
i=1

d
Ä
P ?i , “Pä 6 inf

D>1

ñ
3 inf
P∈O(D)

ñ
1
n

n∑
i=1

d(P ?i , P )
ô

+ 20
…

5D
n

ô
+

 
2(log 2 + ξ)

n
+ ε

n
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If we omit the term infP∈M

[ 1
n

∑n
i=1 d(P ?i , P )

]
that appears in his inequality

and log 2 that appears in ours, all the constants we get are divided by a factor
2 as compared to his.

When the Yatracos class {{p > q}, p, q ∈ M} is VC with dimension not
larger than D > 1, all the elements ofM are extremal with degree not larger
than D and (10) becomes

E
î
d
Ä
P ?, “Päó 6 3 inf

P∈M
d(P ?, P ) + 48

…
D

n
+ ε

n
.(12)

In the particular case of i.i.d. data with common distribution P ?, an inequal-
ity of the same flavour was established by Devroye and Lugosi (2001)[Sec-
tion 8.2] for their minimum distance estimate. Both inequalities involve
a constant 3 in front of the approximation term infP∈M d(P ?, P ). In our
inequality the numerical constants are explicit.

In the next sections, we take advantage of the stronger inequality (8) to
consider density models M for which the Yatracos classes {{p > q}, p, q ∈
M} are not VC.

In the remaining part of this paper, (X ,A ) = (R,B(R)) and µ is the
Lebesgue measure on R. Since L1(R,B(R), µ) is separable, Assumption 1 is
automatically satisfied. Each of the forthcoming sections is devoted to the
problem of estimating densities or a mixture of densities with respect to µ
under the assumption that they satisfy one of the following shape constraint:
monotonicity, concavity, convexity or log-concavity.

4. Estimating a piecewise monotone density

We denote by A(k) the class of nonempty subsets A ⊂ R with cardinality
not larger than k > 1. The elements of A provide a partition of R into
l = |A| + 1 6 k + 1 intervals I1, . . . , Il the endpoints of which belong to
A. We denote by I(A) the set {I̊1, . . . , I̊l} of their interiors. Although there
exist several ways of partitioning R into intervals with endpoints in A, the
set I(A) is uniquely defined.

4.1. Piecewise monotone densities.

Definition 2. Let k > 2. A function g on R is said to be k-piecewise
monotone if there exists A ∈ A(k − 1) such that the restriction of g to each
interval I ∈ I(A) is monotone. In particular, there exist at most k monotone
functions gI on I ∈ I(A) such that

g(x) =
∑

I∈I(A)
gI(x)1lI(x) for all x ∈ R \A.

A k-piecewise monotone function g associated to A ∈ A(k − 1) may not
be monotone on each element of a partition based on A. We only require
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that g be monotone on the interiors of these elements. The function

g : R −→ R+
x 7−→ 1√

|x|
1l|x|>0

is 2-piecewise monotone, associated to A = {0} ∈ A(1), but g is neither
monotone on (−∞, 0] nor on [0,+∞).

We denote by Mk the set of k-piecewise monotone densities. The sets
Mk are obviously increasing with k for the inclusion. The setM2 contains
the unimodal densities on the line and in particular all the densities that
are monotone on a half-line and vanish elsewhere.

Of special interest are those densities in Mk which are also piecewise
constant on a finite partition of R into intervals. More precisely, forD > 1 let
OD,k be the subset ofMk that consists of those densities that are constant
on each element of a class I(A) with A ∈ A(D + 1). The number D is a
bound on the number of bounded intervals in the class, hence on the number
of positive values that a density in OD,k may take. The uniform distribution
on a nontrivial interval has a density that belongs to O1,2, and also to OD,k
for all D > 1 and k > 2. The sets OD,k with D > 1 and k > 2 are therefore
nonempty. They satisfy the following property which is a consequence of
Proposition 3 of Baraud and Birgé (2016).

Proposition 1. For all D > 1 and k > 2, all the elements of OD,k are
extremal inMk with degree not larger than 3(k +D + 1).

Proof. The proof is postponed to Subsection 7.3. �

For all D > 1 and k > 2, let OD,k be a countable and dense subset of
OD,k (for the L1-norm) andMk a countable and dense subset ofMk that
contains

⋃
D>1OD,k. It follows from Proposition 1 that the elements of OD,k

are also extremal in Mk with degree not larger than 3(k + D + 1) for all
D > 1. We immediately deduce from Theorem 1 the following result.

Theorem 2. Let k > 2. Whatever the product distribution P? of the data,
any TV-estimator “P on Mk satisfies

(13) E
î
d
Ä
P ?, “Päó 6 inf

D>1

ñ
3 inf
P∈OD,k

d(P ?, P ) + 83.2
…
D + k + 1

n

ô
+ ε

n
.

Our approach solves the problem of estimating a nonincreasing density
on a half-line I by taking k = 2. For this specific problem, a bound of the
same flavour was established by Baraud (2021) (see Proposition 6) for his
`-estimator. When the data are i.i.d. with distribution P ?, our result shows
better constants in the risk bound (13) as compared to Baraud’s. In partic-
ular, the constant 3 in front of the approximation term infP∈OD,k

d(P ?, P )
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improves on his constant 5. Our estimator (as well as Baraud’s) also im-
proves on the Grenander estimator since our construction does not require
the prior knowledge of the half-line I.

For general values of k > 2, the problem of estimating a k-piecewise
monotone density was also considered in Baraud and Birgé (2016). The au-
thors used a ρ-estimator and the Hellinger loss in place of the total variation
one to evaluate its risk— see their Corollary 2. Their bound is similar to
ours except from the fact that the quantity

√
(D + k + 1)/n appears there

multiplied by a logarithmic factor. This logarithmic factor turns out to be
necessary when one deals with the Hellinger loss while it disappears with
the total variation one.

In order to specify further the risk bound given by (13), and see what
properties can be established on our estimator, let us consider different as-
sumptions on the distribution of the data. These assumptions can be done a
posteriori, since the estimator is solely based on the model M k (or a dense
subset of it). Such assumptions enable us to bound the quantity

A = inf
D>1

ñ
3 inf
P∈OD,k

d(P ?, P ) + 83.2
…
D + k + 1

n

ô
that appear in the right-hand side of (13).

If the Xi are not i.i.d. but only independent and their marginals are close
enough to a distribution of the form P = p ·µ, by the triangle inequality we
may bound A by 3d

(
P ?, P

)
+ Bk,n(p) where Bk,n(p) is defined for a density

p on the line by the formulas

Bk,n(p) = inf
D>1

ñ
3 inf
Q∈OD,k

d(P,Q) + 83.2
…
D + k + 1

n

ô
= inf

D>1

ñ
3
2 inf
q∈OD,k

‖p− q‖+ 83.2
…
D + k + 1

n

ô
.(14)

This means that as long as 3d
(
P ?, P

)
remains small as compared to Bk,n(p),

the bound on E[d(P ?, “P )] would be almost the same as if the Xi were truly
i.i.d. with distribution P = p · µ. This property accounts for the robustness
of our approach.

If we apply a location-scale transformation to the data, that is, if in
place of the original data X1, . . . , Xn with density p we observe the random
variables Yi = σXi + m for i ∈ {1, . . . , n} with (m,σ) ∈ R × (0,+∞), the
density pm,σ of the new data would satisfy Bk,n(pm,σ) = Bk,n(p) since the
set OD,k and the total variation distance remain invariant under such a
transformation. This means that the performance of the TV-estimator is
independent of the unit that is used to measure the data.

In the remaining part this section, we provide upper bounds on the quan-
tity Bk,n(p) for some densities p ∈Mk of special interest.



14 YANNICK BARAUD, HÉLÈNE HALCONRUY, AND GUILLAUME MAILLARD

4.2. Estimation of bounded and compactly supported k-piecewise
monotone densities. For k > 3, letM∞k be the subset ofMk that consists
of the densities on R which coincide almost everywhere with a density of the
form

(15) p =
k−2∑
i=1

wipi1l(xi−1,xi)

where

(i) (xi)i∈{0,...,k−2} is an increasing sequence of real numbers;
(ii) w1, . . . , wk−2 are nonnegative numbers such that

∑k−2
i=1 wi = 1;

(iii) for i ∈ {1, . . . , k − 2}, pi is a monotone density on the interval Ii =
(xi−1, xi) of length Li > 0 with variation

Vi = sup
x∈Ii

pi(x)− inf
x∈Ii

pi(x) < +∞.

A density p in M∞k is necessarily bounded and compactly supported. A
monotone density on R+ which is bounded and compactly supported belongs
to M∞3 . A bounded unimodal density supported on a compact interval
belongs toM∞4 .

For p ∈M∞k , we set

(16) Rk,0(p) = inf
[
k−2∑
i=1

»
wi log (1 + LiVi)

]2

where the infimum runs among all ways of writing p under the form (15) a.e.
Note that we allow some of the wi to be zero in which case the corresponding
densities pi may be chosen arbitrarily and their choices do not contribute
to the value of Rk,0(p). For k > 3 and R > 0, letM∞k (R) be the subset of
M∞k that gathers these densities p for which Rk,0(p) < R. When a density
p belongs to M∞k (R), we may therefore write p under the form (15) a.e.
with Li and Vi such that

î∑k−2
i=1

√
wi log (1 + LiVi)

ó2
< R. The classes of

sets (M∞k )k>3 and (M∞k (R))k>3 are both increasing (for the inclusion): if
p ∈M∞l (R) with l < k, we may write

p =
l−2∑
i=1

wipi1l(xi−1,xi) a.e. with
[
l−2∑
i=1

»
wi log (1 + LiVi)

]2

< R

and alternatively

p =
l−2∑
i=1

wipi1l(xi−1,xi) +
k−2∑
j=l−1

0× 1l(xi+j−l+1),xi+j−l+2) a.e.
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hence, p ∈M∞k and

Rk,0(p) 6
[
l−2∑
i=1

»
wi log (1 + LiVi) + 0

]2

< R.

It is not difficult to check that the setM∞k (R) is invariant under a location-
scale transformation.

Theorem 3. Let k > 3 and R > 0. If p ∈M∞k (R),

(17) Bk,n(p) 6 41.3
Å
R

n

ã1/3
+ 83.2

…
2k
n
.

This result is to our knowledge new in the literature. We deduce that the
minimax risk for the L1-norm over M∞k (R) is not larger than (R/n)1/3 ∨
kn−1/2 up to a positive multiplicative constant. For large enough values of
n, the bound is of order (R/n)1/3 while for moderate ones and values of
R which are close enough to 0, which means that the densities in M∞k (R)
are close to a mixture of k − 2 uniform distributions, the bound is of order√
k/n.
It is interesting to compare this result to that established in Baraud and

Birgé (2016)[page 3900] for their ρ-estimators. For the problem of esti-
mating a bounded unimodal density p supported on an interval of length
L, which is an element of M4, Baraud and Birgé show that the Hellinger
risk of the ρ-estimator is not larger than (

√
L ‖p‖∞/n)1/3 logn up to some

numerical constant. With our `-estimator, the bound we get is of order
(log(1 + L ‖p‖∞)/n)1/3 and only depends logarithmically on the quantity
L ‖p‖∞ (which is not smaller than 1 since p is a density).

Proof. The proof of Theorem 3 is based on (14) and the following approxi-
mation result. The complete proof is postponed to subsection 7.3. �

Proposition 2. Let V > 0 and I be a bounded interval of length L > 0.
For all D > 1, there exists a partition J = J (D,L, V ) of I into D > 1
nontrivial intervals with the following properties. For any monotone density
p on I for which

VI(p) = sup
x∈I̊

p(x)− inf
x∈I̊

p(x) 6 V,

the function p = p(J ) defined by

p =
∑
J∈J

pJ1lJ with pJ = 1
µ(J)

∫
J
p dµ,

is a monotone density on I that satisfies

(18)
∫
I
|p− p| dµ 6

î
(1 + V L)1/D − 1

ó
∧ 2 6 2 log (1 + V L)

D
.

Proof. The proof is postponed to subsection 7.3. �
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Although the result is hidden in his calculations, Birgé (1987) has estab-
lished a bound of the same flavour except from the fact that the variation V
is replaced by a uniform bound on p. Unlike his, our bound (18) allows to
recover the fact that when V = 0, i.e. when p is constant on I, the left-hand
side equals 0 as expected. The combination of Theorem 2 and Theorem 3
immediately leads to the following corollary:

Corollary 1. Let k > 3. If X1, . . . , Xn is a n sample which density p ∈
M∞k (R), then the TV-estimator p̂ onMk satisfies

(19) E [‖p− p̂‖] 6 82.6
Å
R

n

ã1/3
+ 166.4

…
2k
n

+ 2ε
n
.

4.3. Estimation of other k-piecewise monotone densities. Corollary 1
provides an upper bound on the L1-risk of the TV-estimator for estimating
a density p ∈M∞k . A natural question is how the estimator performs when
the density p is neither bounded nor supported on a compact interval. Since
for such densities we may write

(20) Bk,n(p) 6 inf
p∈M∞k

ï3
2 ‖p− p‖+ Bk,n(p)

ò
,

an upper bound on Bk,n(p) can be obtained by combining Theorem 3 with an
approximationt result showing how general densities inMk can be approx-
imated by elements ofM∞k . In this section, we therefore study the approx-
imation properties of the setM∞k with respect to possibly unbounded and
non-compactly supported densities. We start with the case of a monotone
density on a half-line and introduce the following definitions.

Definition 3. Given a nonincreasing density p on (a,+∞) with a ∈ R, we
define p̃ as the mapping on (0,+∞) given by
(21) p̃(y) = inf {x > 0, p(a+ x) < y} > 0.
We define the x-tail function τx(p, ·) associated to p as

τx(p, ·) : [0,+∞) −→ R+

t 7−→
∫ +∞

t
p(a+ x)dµ(x) ,

the y-tail function τy(p, ·) as
τy(p, ·) : [0,+∞) −→ R+

t 7−→
∫ +∞

t
p̃(y)dµ(y)

and the tail function τ(p, ·) as
(22) τ(p, t) = inf

s>0
[τx(p, st) + τy(p, p(a+ s))] for all t > 1.

When p is a nondecreasing density on (−∞,−a) with a ∈ R, we define
τx(p, ·), τy(p, ·) and τ(p, ·) as respectively the x-tail, y-tail and tail functions
of the nonincreasing density x 7→ p(−x) .
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Let us comment these definitions. When p is a continuous decreasing den-
sity from (0,+∞) onto (0,+∞), p̃ is the reciprocal function p−1. By taking
the symmetric of the graph x 7→ p(x) with respect to the first diagonal, we
easily see that p̃ = p−1 is a nonincreasing density on (0,+∞). This prop-
erty remains true in the general case as shown by the lemma below with the
special value B = 0. As a consequence, τy(p, ·) can be interpreted as the tail
of the distribution function associated to the density p̃ while τx(p, ·) is that
of p(a+ ·).

Lemma 2. Let p be a nonincreasing density on (a,+∞) with a ∈ R and p̃
the mapping defined by (21). For all B > 0,

(23)
∫ +∞

0
[p(a+ x)−B]+ dµ(x) =

∫ +∞

B
p̃(y)dµ(y) = τy(p,B).

By changing p into x 7→ p(−x), we also obtain that when p is nondecreas-
ing on (−∞,−a),∫ 0

−∞
[p(−a+ x)−B]+ dµ(x) =

∫ +∞

B
p̃(y)dµ(y) = τy(p,B) for all B > 0.

Proof. Let y > 0. Since p is nonincreasing density on (a,+∞), it necessarily
tends to 0 at +∞. The set I(y) = {x > 0, p(a+ x) < y} is therefore a
nonempty unbounded interval with endpoint p̃(y) < +∞ by definition of
p̃(y). In particular,

(p̃(y),+∞) ⊂ I(y) ⊂ [p̃(y),+∞),
and by taking the complementary of those sets we obtain that for all (x, y) ∈
(0,+∞)× (0,+∞)

1lx<p̃(y) 6 1lp(a+x)>y 6 1lx6p̃(y).

Integrating these inequalities on (0,+∞) × (B,+∞) with respect to µ ⊗ µ
and using Fubini’s theorem, we obtain that∫ +∞

B
p̃(y)dµ(y)

=
∫ +∞

B

ï∫ +∞

0
1lx<p̃(y)dµ(x)

ò
dµ(y) 6

∫ +∞

B

ï∫ +∞

0
1lp(a+x)>ydµ(x)

ò
dµ(y)

=
∫ +∞

0

ï∫ +∞

B
1lp(a+x)>ydµ(y)

ò
dµ(x) =

∫ +∞

a
[p(a+ x)−B]+ dµ(x)

6
∫ +∞

B

ï∫ +∞

0
1lx6p̃(y)dµ(x)

ò
dµ(y) =

∫ +∞

B
p̃(y)dµ(y),

which proves (23). �

It follows from (23) that if p is a nonincreasing density on (a,+∞), τ(p, t)
also writes for all t > 1 as

τ(p, t) = inf
s>0

ï∫ +∞

st
p(a+ x)dµ(x) +

∫ s

0
[p(a+ x)− p(a+ s)] dµ(x)

ò
.
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It is not difficult to check that the mapping τ(p, ·) is nonincreasing on
[1,+∞), tends to 0 at +∞ and is invariant under a location-scale transfor-
mation, i.e. by changing p into the density σ−1p[σ−1(·−m)] on (σa+m,+∞)
with m ∈ R and σ > 0.

We consider the general situation where p is an arbitrary element ofM`

with ` > 2. Changing the values of p, if ever necessary, on a negligible set,
which will not change the way it can be approximated in L1-norm, we may
assume with no loss of generality that it writes as

(24) p = w1p11l(−∞,x1) +
`−1∑
i=2

wipi1l(xi−1,xi) + w`p`1l(x`−1,+∞)

where p1 and p` are monotone densities on (−∞, x1) and (x`−1,+∞) respec-
tively, w1 =

∫ x1
−∞ pdµ, w` =

∫+∞
x`

pdµ and when ` > 2, x1 < x2 < . . . < x`−1
is an increasing sequence of real numbers, the pi are monotone densities on
(xi−1, xi) and wi =

∫ xi
xi−1

pdµ for all i ∈ {2, . . . , ` − 1}. For p written under
the form (24), we set
(25) τ∞(p, t) = max

i∈{1,...,`}
τ (pi, t) for all t > 1.

The mapping t 7→ τ(p, t) is nonincreasing on R+ and tends to 0 at +∞.

Theorem 4. Let ` > 2, k > 2` and R > ` log 2. If p is a density of the
form (24) a.e.,

(26) inf
p∈M∞k (R)

‖p− p‖ 6 2τ∞
Å
p, exp

Å
R

`

ã
− 1
ã
.

Proof. The proof is postponed to Subsection 7.3. �

By combining Theorem 3 and Theorem 4 we obtain the following corollary.

Corollary 2. Let ` > 2 and k > 2`. If p is a density of the form (24) a.e.,

(27) Bk,n(p) 6 44.3
Å
` log(1 + rn)

n

ã1/3
+ 83.2

…
2k
n

where

(28) rn = inf
®
t > 1, τ∞(p, t) 6

Å
` log(1 + t)

n

ã1/3´
and τ∞(p, ·) is defined by (25). Then, the TV-estimator p̂ onMk satisfies

(29) E [‖p− p̂‖] 6 88.6
Å
` log(1 + rn)

n

ã1/3
+ 166.4

…
2k
n

+ 2ε
n
.

Proof. Since τ∞(p, ·) tends to 0 at +∞, the set

R =
®
t > 1, τ∞(p, t) 6

Å
` log(1 + t)

n

ã1/3´
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is nonempty, rn is well-defined and for all t > rn > 1,

τ∞(p, t) 6
Å
` log(1 + t)

n

ã1/3
.

Using (20), Theorems 3 and 4 with R = ` log(1 + t) > ` log 2 we obtain that

Bk,n(p) 6 3
2 inf
p∈M∞k (R)

‖p− p‖+ sup
p∈M∞k (R)

Bk,n(p)

6 3τ∞ (p, t) + 41.3
Å
` log(1 + t)

n

ã1/3
+ 83.2

…
2k
n

6 44.3
Å
` log(1 + t)

n

ã1/3
+ 83.2

…
2k
n
,

and the result follows from the fact that t is arbitrary in (rn,+∞). �

Example 1. Let n > 2, α > 0, β > −1, γ ∈ (0, 1) and q be the mapping
defined by

q(x) = 21−γ

x1−γ 1l(0,2) + 21+α (log 2)1+β

x1+α (log x)1+β 1l[2,+∞).

When (α, β) ∈ (0,+∞)× [−1,+∞) and when α = 0 and β > 0, q is positive,
integrable, nonincreasing function on (0,+∞) and we may denote by p the
corresponding density, i.e. p = cq for some c > 0 depending on α, β and γ.
The density p may be written is under the form (24) with ` = 2, w1 = 0,
w2 = 1, a = x1 = 0 and p2 = p. Throughout this example, C denotes a
positive number depending on α, β and γ that may vary from line to line.

It follows from Definition 3 that when α > 0, for all t > 2

τx(p, t)
c21+α (log 2)1+β =

∫ +∞

t

dx

x1+α (log x)1+β =
∫ +∞

log t

e−αs

s1+β ds 6
1

αtα (log t)1+β ,

and when α = 0 and β > 0

τx(p, t)
c21+α (log 2)1+β =

∫ +∞

log t

1
s1+β ds = 1

β (log t)β
,

For y > c, p̃ : y 7→ 2(c/y)1/(1−γ), hence

τy(p, t) =
∫ +∞

t
p̃(y)dµ(y) = 2(1− γ)c1/(1−γ)

γtγ/(1−γ) for all t > c.

We deduce that for all t > 1 and s ∈ [2/t, 2], p(s) > p(2) = c and

C−1τ∞(p, t) 6
{î

(st)α (log(st))1+β
ó−1

+ sγ when α > 0 and β > −1
(log(st))−β + sγ when α = 0 and β > 0.
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Taking

s =


2
ñ(
tα
Ä log(1+t)

log 2

ä1+β)− 1
α+γ ∨ t−1

ô
when α > 0 and β > −1

2
ïÄ log(1+t)

log 2

ä−β
γ ∨ t−1

ò
when α = 0 and β > 0

the value of which belongs to [2/t, 2], we obtain that for all t > 1

C−1τ∞(p, t) 6
{î
tα (log(1 + t))1+β

ó− γ
α+γ ∨ t−γ when α > 0 and β > −1

(log(1 + t))−β ∨ t−γ when α = 0 and β > 0.

If α > 0 and β > −1, by taking

t = tn = C ′n
1
3

Ä
1
α

+ 1
γ

ä
log−κ n with κ = 1

3

Å 1
α

+ 1
γ

ã
+ 1 + β

α

for some constant C ′ > 0 large enough, we obtain that τ∞(p, tn) 6 (2 log(1 + tn)/n)1/3

and consequently, rn defined by (28) satisfies rn 6 tn. Applying Corollary 2,
we conclude that for all k > 4

Bk,n(p) 6 C
ñÅ logn

n

ã1/3
+
…

2k
n

ô
.

If α = 0 and β > 1, we take t = tn such that log(1 + tn) = C ′n1/(1+3β)

for some constant C ′ > 0 large enough, we obtain that

τ∞(p, tn) 6 Cn
−β

1+3β 6
Å2 log(1 + tn)

n

ã1/3
,

hence rn 6 tn = C ′n1/(1+3β) and we get that for all k > 4

Bk,n(p) 6 C
ñ
n
−β

1+3β +
…

2k
n

ô
.

5. Convex-concave densities

5.1. Piecewise monotone convex-concave densities. In this section,
our aim is to estimate a density on the line which is piecewise monotone
convex-concave in the sense defined below.

Definition 4. A function g is said to be convex-concave on an interval I if
it is either convex or concave on I. For k > 2, a function g on R is said to be
k-piecewise monotone convex-concave if there exists A ∈ A(k− 1) such that
the restriction of g to the each interval I ∈ I(A) is monotone and convex-
concave. In particular, there exist at most k functions {gI , I ∈ I(A)}, where
gI is monotone and convex-concave on I such that

g(x) =
∑

I∈I(A)
gI(x)1lI(x) for all x ∈ R \A.
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We denote byM1
k the set of k-piecewise monotone convex-concave densi-

ties. The Laplace density x 7→ (1/2)e−|x| belongs toM1
2, the uniform density

on a (nontrivial) interval belongs toM1
3, all convex-concave densities on an

interval belong to M1
4. A function g ∈ M1

k associated to A ∈ A(k − 1)
admits left and right derivatives at any point x ∈ R \ A. These deriva-
tives are denoted by g′l, g′r respectively. More generally, when a function f
is continuous and convex-concave on a nontrivial bounded interval [a, b], we
define

f ′r(z) = lim
x↓z

f(x)− f(z)
x− z

for all z ∈ [a, b)

and

f ′l (z) = lim
x↑z

f(x)− f(z)
x− z

for all z ∈ (a, b].

These quantities are finite for all z ∈ (a, b) and belong to [−∞,+∞] when
z ∈ {a, b}. We say that f admits a right derivative at a and a left derivative
at b when f ′r(a) and f ′l (b) are finite respectively.

The role played by piecewise constant functions in the previous section is
here played by piecewise linear functions. For D > 1, let O1

D,k be the subset
ofM1

k that consists of those densities that are left-continuous and affine on
each interval of a class I(A) with A ∈ A(D + 1). For example, the left-
continuous version of the density of a uniform distribution on a nontrivial
interval belongs to O1

1,3. The proposition below shows that the elements of
O1
D,k are extremal inM1

k.

Proposition 3. Let k > 2, D > 1. If p ∈ M1
k and q ∈ O1

D,k, the sets
{x ∈ R, p(x) − q(x) > 0} and {x ∈ R, p(x) − q(x) < 0} are unions of at
most D+ 2k− 1 intervals. In particular, the elements of O1

D,k are extremal
inM1

k with degree not larger than 2(D + 2k − 1).

Proof. The proof is postponed to Subsection 7.4. �

For all D > 1, k > 2, let O1
D,k be a countable and dense subset of O1

D,k

(for the L1-norm) andM1
k a countable and dense subset ofM1

k that contains⋃
D>1O1

D,k. By proposition 1, the elements of O1
D,k are also extremal inM1

k

with degree no larger than 2(D + 2k − 1) for all D > 1. We deduce from
Theorem 1 the following result.

Theorem 5. Let k > 2. Whatever the product distribution P? of the data,
any TV-estimator “P on M 1

k satisfies

(30) E
î
d
Ä
P ?, P̂

äó
6 inf

D>1

{
3 inf
P∈O

1
D,k

d(P ?, P ) + 68
…
D + 2k − 1

n

}
+ ε

n
.
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In the remaining part of this section we assume that the Xi are i.i.d.
with a density p ∈ M1

k, in which case, the right-hand side of (30) writes as
B1
k,n(p) + ε/n with

(31) B1
k,n(p) = inf

D>1

[
3
2 inf
q∈O1

D,k

‖p− q‖+ 68
…
D + 2k − 1

n

]
.

As we did in Section 4, our aim is to bound the quantity B1
k,n(p) under some

suitable additional assumptions on the density p.

5.2. Approximation of a monotone convex-concave density by a
piecewise linear function. Let us now turn to the approximation of a
monotone convex-concave density by a convex-concave piecewise linear func-
tion. The approximation result that we establish is actually true for a sub-
density on an interval [a, b], i.e. a nonnegative function on [a, b] the integral
of which is not larger than 1. In the remaining part of this chapter, we use
the following convenient definition.
Definition 5. Let D > 1 and f be a continuous function on a compact
nontrivial interval [a, b]. We say that f is a D-linear interpolation of f
on [a, b] if there exists a subdivision a = x0 < . . . < xD = b such that
f(xi) = f(xi) and f is affine on [xi−1, xi] for all i ∈ {1, . . . , D}.

This definition automatically determines the values of f on [a, b] since
f corresponds on [xi−1, xi] to the chord that connects (xi−1, f(xi−1)) to
(xi, f(xi)) for all i ∈ {1, . . . , D}. The function f is therefore continuous
and piecewise linear on a partition of [a, b] into D intervals and it inherits
of some of the features of the function f . For example, if f is nonnegative,
increasing, decreasing, convex or concave, so is f . If f is convex (respectively
concave), f > f (respectively f 6 f).

Given a continuous monotone convex-concave function f with increment
∆ = (f(b)− f(a))/(b− a) on a bounded nontrivial interval [a, b], we define
its linear index Γ = Γ(f) as

Γ = 1− 1
2

Å |p′r(a)| ∧ |p′l(b)|
|∆| + |∆|

|p′r(a)| ∨ |p′l(b)|

ã
,

with the conventions 0/0 = 1 and 1/(+∞) = 0. Since f is convex-concave,
monotone and continuous

|p′r(a)| ∧ |p′l(b)| 6 |∆| 6 |p′r(a)| ∨ |p′l(b)| and
and

∆ = 0 =⇒ |p′r(a)| = |p′l(b)| = 0.
With our conventions, Γ is well-defined and belongs to [0, 1]. When f is
affine, ∆ = p′r(a) = p′l(b) and its linear index is 0. In the opposite direction
when f is far from being affine, say when for some c ∈ (a, b) and v > 0

f(x) = v

b− c
(x− c)+ for all x ∈ [a, b]
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its linear index Γ = 1− (b− c)/[2(b− a)] increases to 1 as c approaches b.

Theorem 6. Let p be a monotone, continuous, convex-concave density on
a bounded interval [a, b] of length L > 0 with variation V = |p(b)−p(a)| and
linear index Γ ∈ [0, 1]. For all D > 1, there exists a 2D-linear interpolation
p of p such that

(32)
∫ b

a
|p− p| dµ 6 4

3

ïÄ
1 +
√

2LV Γ
ä1/D

− 1
ò2
.

In particular, there exists a continuous convex-concave piecewise linear den-
sity q based on a partition of [a, b] into 2D intervals that satisfies

(33)
∫ b

a
|p− q| dµ 6 5.14

log2
Ä
1 +
√

2LV Γ
ä

D2 .

Since Γ ∈ [0, 1], (33) implies that

∫ b

a
|p− q| dµ 6 5.14

log2
Ä
1 +
√

2LV
ä

D2 .

Nevertheless, when p is affine on [a, b], Γ = 0 and we recover the fact that
we may choose p and q on [a, b] such that

∫ b
a |p− p| dµ =

∫ b
a |p− q| dµ = 0.

The fact that a bounded convex (or concave) function on a compact inter-
val can be approximated in L1 by piecewise affine functions at rate O(1/D2)
had already been established by Guérin et al. (2006). What is novel in The-
orem 6 is the fact that for probability densities the approximation error
depends logarithmically on the product LV .

Proof. The proof is based on several preliminary approximation results whose
statements and proofs are postponed to Subsection 7.4. �

5.3. Estimation of k-piecewise monotone convex-concave bounded
and compactly supported densities. In this section, we consider a den-
sity p ∈M1

k, with k > 3, that is of the form

(34) p =
k−2∑
i=1

wipi1l(xi−1,xi)

where

(i) (xi)i∈{0,...,k−2} is an increasing sequence of real numbers;
(ii) w1, . . . , wk−2 are nonnegative numbers such that

∑k−2
i=1 wi = 1;

(iii) for i ∈ {1, . . . , k − 2}, pi is a monotone continuous convex-concave
density on the interval [xi−1, xi] of length Li > 0, with variation
Vi = |pi(xi−1)− p(xi)| < +∞ and linear index Γi ∈ [0, 1].
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For a density p satisfying (34) we define

(35) Rk,1(p) = inf
[
k−2∑
i=1

Ä
wi log2

Ä
1 +

√
2LiViΓi

ää1/3
]3/2

,

where the infimum runs among all ways of writing p under the form (34).
We denote by M∞k,1 the class of all densities of the form (34) a.e. and for
R > 0,M∞k,1(R) the subset of those which satisfy Rk,1(p) < R.

Note that a concave (or convex) density on a (necessarily) compact inter-
val belongs toM1

4.
The following result holds.

Theorem 7. Let k > 3 and R > 0. For all p ∈M∞k,1(R)

(36) B1
k,n(p) 6 7.71

ñ
15.06

Å
R

n

ã2/5
+ 8.82

…
4k − 5
n

ô
,

where B1
k,n(p) is defined by (31).

Theorem 7 implies, together with Theorem 5, that the TV-estimator con-
verges at rate n−2/5 in total variation distance, whenever the underlying
density p? is bounded, compactly supported and belongs to the classM∞k,1
of k−piecewise monotone convex-concave densities. The rate n−2/5 matches
the minimax lower bound established in Devroye and Lugosi (2001)[Sec-
tion 15.5] for bounded convex densities. This rate is therefore optimal.

To the best of our knowledge, Theorem 8 provides the sharpest known
minimax upper bound in this setting, including the case of a monotone,
convex or concave density on a compact interval. In comparison, Gao and
Wellner (2009b) proved that the MLE on the set of convex non-increasing
densities on a given interval achieves the rate n−2/5 (for the Hellinger dis-
tance). Note that the construction of the MLE requires that the support of
the target density is known while our TV-estimator assumes nothing.

Consider now the special case of a continuous, concave density on an in-
terval [a, b] (which is necessarily bounded). A monotone continuous con-
cave density p on a bounded interval [a, b] with length L > 0 belongs
to M1

3. It necessarily satisfies L|p(a) − p(b)|/2 6 1, hence R3,1(p) 6
log(1 +

√
2L|p(a)− p(b)|) 6 log 3. If p is not monotone but only contin-

uous and concave on [a, b], we may write p as w1p1 +w2p2 where p1 and p2
are monotone and concave densities on the intervals [a, c] and [c, a] respec-
tively where c is a maximizer of p in (a, b). The density p belongs toM1

4 and
by applying the previous inequality to the densities p1 and p2 successively
and the inequality z1/3 + (1− z)1/3 6 22/3 which holds for all z ∈ [0, 1], we
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obtain that

R
2/3
4,1 (p) 6

(
w1 log2(1 +

»
2(c− a) (p1(c)− p1(a))

)1/3

+
(
w2 log2(1 +

»
2(b− c) (p2(c)− p2(b))

)1/3

6
Ä
w

1/3
1 + w

1/3
2
ä

(log 3)2/3 6 (2 log 3)2/3.

We immediately deduce from Theorems 5 and 7 the following corollary.

Corollary 3. If X1, . . . , Xn is a n-sample which density is concave on an
interval of R, then the TV-estimator p̂ onM1

4 satisfies

E [‖p− p̂‖] 6 320
n2/5 + 451√

n
+ 2ε
n
.

In particular,

inf
p̃

sup
p

E [‖p− p̃‖] 6 320
n2/5 + 451√

n
,

where the supremum runs among all concave densities p on an interval of
R and the infimum over all density estimators p̃ based on a n-sample with
density p.

Proof of Theorem 7. Let p ∈ M∞k,1(R). With no loss of generality we may
assume that p is of the form (34) everywhere and choose a subdivision
(xi)i∈{0,...,k−2} in such a way that[

k−2∑
i=1

Ä
wi log2

Ä
1 +

√
2LiViΓi

ää1/3
]3/2

6 R.

Let D > k − 2 and D1, . . . , Dk−2 be some positive integers to be chosen
later on that satisfy the constraint

∑k−2
i=1 Di 6 D. By Theorem 6, we may

find for all i ∈ {1, . . . , k − 2} a density qi that is continuous and supported
on [xi−1, xi], piecewise linear on a partition of [xi−1, xi] into 2Di intervals,
that satisfies ∫ xi

xi−1
|pi − qi| dµ 6 5.14

log2 (1 +
√

2LiViΓi
)

D2
i

.

The function q =
∑k−2
i=1 wiqi1l(xi−1,xi] is a density, that is left-continuous,

convex-concave on each interval I ∈ I({x0, . . . , xk−2}) and affine on each
interval of a partition (x0, xk−2] =

⋃k−2
i=1 (xi−1, xi] into

∑k−2
i=1 2Di 6 2D in-

tervals. It therefore belongs to O2D,k. Besides,

‖p− q‖ 6
k−2∑
i=1

wi

∫ xi

xi−1
|pi − qi| dµ 6 5.14

k−2∑
i=1

wi log2 (1 +
√

2LiViΓi
)

D2
i
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and it follows from (31) that

B1
k,n(p) 6 3

2 inf
q∈O1

2D,k

‖p− q‖+ 68
…

2D + 2k − 1
n

6 7.71
k−2∑
i=1

wi log2 (1 +
√

2LiViΓi
)

D2
i

+ 68
…

2D + 2k − 1
n

.

Let us set c = 68/7.71, s0 = [nR4/(2c2)]1/5,

si =
î
wi log2

Ä
1 +

√
2LiViΓi

äó1/3
for all i ∈ {1, . . . , k − 2}

and choose D = s0 + k − 2 and

Di =
¢

s0si∑k−2
j=1 sj

•
>

s0si∑k−2
j=1 sj

∨ 1 for all i ∈ {1, . . . , k − 2},

so that
∑k−2
i=1 Di 6 D. Then,

B1
k,n(p) 6 7.71

[
k−2∑
i=1

s3
i

D2
i

+ c

…
2D + 2k − 1

n

]

6 7.71

Ä∑k−2
j=1 sj

ä3

s2
0

+ c

…
2s0 + 4k − 5

n


6 7.71

ñ
R2

s2
0

+ c

…
2s0
n

+ c

√
4k − 5
n

ô
= 7.71

ñ
2(2c2)2/5R

2/5

n2/5 + c

√
4k − 5
n

ô
which gives (36). �

6. Log-concave densities

In this section, we consider the setMLC of log-concave densities. With the
convention exp(−∞) = 0,MLC is the set of densities of the form p = expφ
where the set J = J(p) = {x ∈ R, p(x) > 0} is an open interval and the
mapping φ : R → R ∪ {−∞} is a continuous and concave function on J .
Given some D > 1, a subset of MLC of special interest is the set OLC

D of
those densities the logarithm of which is either affine or takes the value −∞
on the elements of a set I(A) with A ∈ A(D). Since a density p ∈ OLC

D is log-
concave, the logarithm of p may take the value −∞ on the two unbounded
elements of I(A) only. For example, the densities x 7→ 1lx>0 exp(−x) and
x 7→ (1/2) exp(−|x|) of the exponential and Laplace distributions belong to
OLC

1 while the standard Gaussian density belongs toMLC.
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Proposition 4. Let D > 1. The elements of OLC
D are extremal in MLC

with degree not larger than 2(D + 2).

Proof. The proof is postponed to Subsection 7.5. �

For all D > 1, let OLC
D be a countable and dense subset of OLC

D (for
the L1-norm) and MLC a countable and dense subset of MLC that con-
tains

⋃
D>1OLC

D . We immediately deduce from Theorem 1 together with
Proposition 4 the following result.

Theorem 8. Whatever the product distribution P? of the data, any TV-
estimator “P on M LC satisfies

(37) E
î
d
Ä
P ?, “Päó 6 inf

D>1

[
3 inf
P∈O

LC
D

d(P ?, P ) + 48
√

2
…
D + 2
n

]
+ ε

n
.

In the remaining part of this section we assume that the Xi are i.i.d. with
a density p ∈ MLC, in which case, the right-hand side of (37) writes as
Bn(p) + ε/n with

Bn(p) = inf
D>1

[
3
2 inf
q∈OLC

D

‖p− q‖+ 48
√

2
…
D + 2
n

]
(38)

In particular, if p belongs to OLC
D for some D > 1, then Bn(p) 6

√
D/n, so

that p̂ converges at the parametric rate. Thus, the TV-estimator shares the
adaptivity property established for the MLE by Kim et al (2018) (and Feng
et al. (2021)), and by Baraud and Birgé (2016) for their ρ−estimator. As
compared to theirs, our upper bound does not involve logarithmic factors.
This difference is due to the fact that Baraud and Birgé’s results are estab-
lished for the Hellinger distance and these logarithmic factors are sometimes
necessary for such a loss.

As we did in Sections 4 and 5 , our aim is now to bound the quantity
Bn(p). This can be done by using the following approximation result.

Proposition 5. Let D > 6. For all log-concave densities p,

inf
q∈OLC

6D

‖p− q‖ 6 2
D2 .

Proof. The proof is postponed to Subsection 7.5. �

Combining (38) with Proposition 5, we deduce that for all D > 6

Bn(p) = inf
D>6

[
3
2 inf
q∈OLC

6D

‖p− q‖+ 48
√

2
…

6D + 2
n

]

6 inf
D>6

ñ
3
D2 + 48

√
2
…

6D + 2
n

ô
.
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By choosing

D =
¢Å 3n

962

ã1/5•
∨ 6 6

Å 6n
2× 962

ã1/5
+ 6,

we obtain the following estimation result for log-concave densities.

Corollary 4. If X1, . . . , Xn is a n-sample which density p is log-concave on
R, then the TV-estimator p̂ onMLC satisfies

E [‖p− p̂‖] 6 300
n2/5 + 837√

n
+ 2ε
n
.

The shape-constrained TV-estimator attains the global convergence rate
of n−2/5 on the class of log-concave densities, i.e. the same global rate as
the MLE — see Kim and Samworth (2016).

Acknowledgement. One of the authors thanks Lutz Dümbgen for asking
if we could establish a result with d(P ?, “P ) in place of n−1∑n

i=1 d(Pi, “P ) at
a conference where a preliminary version of this work was presented. His
question spurred the authors to improve their result and obtain this new
version of Theorem 1.

7. Proofs

7.1. Technical result. First, we need a way to approximate p not just by
nonnegative functions, but by densities. The following lemma shows that
this can be achieved with a simple renormalization.

Lemma 3. Let p be a density on a measured space (E, E , ν) and f a non-
negative integrable function on (E, E , ν) which is not ν-a.e. equal to 0 on E.
Then ∫

E

∣∣∣∣p− f∫
E fdν

∣∣∣∣ dν 6 2
ï
1 ∧

∫
E
|p− f |dν

ò
.

This inequality cannot be improved in general since equality holds when
f = p1lI and I is a measurable subset of E on which p is not ν-a.e. equal to
0.

Proof. The fact that ∫
E

∣∣∣∣p− f∫
E fdν

∣∣∣∣ dν 6 2

comes from the triangle inequality. Let us now prove that∫
E

∣∣∣∣p− f∫
E fdν

∣∣∣∣ dν 6 2
∫
E
|p− f |dν.
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We first assume that c =
∫
E fdν ∈ (0, 1]. Since f/c and p are two densities,∫

E

∣∣∣∣fc − p
∣∣∣∣ dν = 2

∫
I

ï
p− f

c

ò
1l{cp>f}dν 6 2

∫
E

[p− f ]1l{cp>f}dν

6 2
∫
E
|p− f |dν.

This proves the lemma when c ∈ (0, 1]. let us now assume that c > 1. The
previous case of the lemma applies to the density f/c and the nonnegative
function p/c the integral of which is not larger than 1. This yields∫

E

∣∣∣∣fc − p
∣∣∣∣ dν 6 2

∫
E

∣∣∣∣fc − p

c

∣∣∣∣ dν = 2
c

∫
I
|f − p|dν 6 2

∫
E
|f − p|dν.

�

7.2. Proofs of Section 3.

Proof of Theorem 1. Let D > 1 such that O(D) is not empty. Such an
integer D exists since O is nonempty. Let P = p · µ be an arbitrary point
in O(D) with p ∈ O(D). For P,Q ∈M and ζ > 0, we set

Z+(X, P ) = sup
Q∈M

[T(X, P,Q)− E [T(X, P,Q)]]− ζ

Z−(X, P ) = sup
Q∈M

[E [T(X, Q, P )]−T(X, Q, P )]− ζ

and
Z(X, P ) = Z+(X, P ) ∨ Z−(X, P ).

Applying the first inequality of (6) with P = Q and Q = P , we infer that
for all Q ∈M ,
nd
(
P ,Q

)
6 nd

(
P ?, P

)
+ E

[
T(X, Q, P )

]
= nd

(
P ?, P

)
+ E

[
T(X, Q, P )

]
−T(X, Q, P ) + T(X, Q, P )

6 nd
(
P ?, P

)
+ Z(X, P ) + T(X, Q, P ) + ζ

6 nd
(
P ?, P

)
+ Z(X, P ) + T(X, Q) + ζ.

In particular, the inequality applies to Q = “P ∈ E (X) and using the fact
that

T(X, “P ) 6 inf
P∈M

T(X, P ) + ε 6 T(X, P ) + ε,

we deduce that
nd
Ä
P , “Pä 6 nd(P ?, P )+ Z(X, P ) + T(X, P ) + ζ + ε.(39)

Using now the second inequality of (6) with P = P , we obtain that
T(X, P ) = sup

Q∈M
T(X, P ,Q)

6 sup
Q∈M

[
T(X, P ,Q)− E

[
T(X, P ,Q)

]
− ζ
]

+ sup
Q∈M

E
[
T(X, P ,Q)

]
+ ζ

6 Z(X, P ) + nd
(
P ?, P

)
+ ζ,
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which with (39) lead to

(40) nd
Ä
P , “Pä 6 2nd

(
P ?, P

)
+ 2ζ + ε+ 2Z(X, P ).

Let us now bound from above Z(X, P ). We set for P ∈M

w(P ) = E
ñ

sup
Q∈M

[T(X, P,Q)− E [T(X, P,Q)]]
ô

∨ E
ñ

sup
Q∈M

[E [T(X, Q, P )]−T(X, Q, P )]
ô
.

The functions t(P ,Q) satisfy |t(P ,Q)(x) − t(P ,Q)(x
′)| 6 1 for all Q ∈ M and

x, x′ ∈ E, hence∣∣Z+((x1, . . . , xi, . . . , xn), P )− Z+((x1, . . . , x
′
i, . . . , xn), P )

∣∣ 6 1

for all x ∈ E, x′i ∈ E and i ∈ {1, . . . , n}. Following the same lines as in the
proof of Lemma 2 of Baraud (2021) (with ξ+ log 2 in place of ξ), we deduce
that with a probability at least 1− (1/2)e−ξ,

Z+(X, P ) 6 E
[
Z+(X, P )

]
+

 
n(ξ + log 2)

2

(41)

= E
ñ

sup
Q∈M

[
T(X, P ,Q)− E

[
T(X, P ,Q)

]]ô
+

 
n(ξ + log 2)

2 − ζ

6 w(P ) +

 
n(ξ + log 2)

2 − ζ.(42)

Arguing similarly, with a probability at least 1− (1/2)e−ξ,

Z−(X, P ) 6 w(P ) +

 
n(ξ + log 2)

2 − ζ.(43)

Putting (42) and (43) together and choosing ζ = w(P ) +
√
n(ξ + log 2)/2,

we obtain that with a probability at least 1− e−ξ,

Z(X, P ) = Z+(X, P ) ∨ Z−(X, P ) 6 w(P ) +

 
n(ξ + log 2)

2 − ζ 6 0

which with (40) lead to the bound

(44) d
Ä
P , “Pä 6 2d

(
P ?, P

)
+ 2w(P )

n
+

 
2(ξ + log 2)

n
+ ε

n
.

It remains now to control w(P ). Since p ∈ O(D) ⊂ O(D), it is extremal in
M⊃M with degree not larger than D, the classes {{q < p}, q ∈M \ {p}}
and {{q > p}, q ∈M \ {p}} are both VC with dimensions not larger than
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D. We may therefore apply Proposition 3.1 in Baraud (2016) with σ = 1
and get

E
ñ

sup
q∈M\{p}

∣∣∣∣∣ n∑
i=1

(1lp>q(Xi)− P ?i (p > q))
∣∣∣∣∣
ô
6 10

√
5nD,(45)

and

E
ñ

sup
q∈M\{p}

∣∣∣∣∣ n∑
i=1

(1lp<q(Xi)− P ?i (p < q))
∣∣∣∣∣
ô
6 10

√
5nD.(46)

These inequalities entail w(P ) 6 10
√

5nD, and we infer from (44) that

(47) d
Ä
P , “Pä 6 2d

(
P ?, P

)
+ 20

…
5D
n

+

 
2(ξ + log 2)

n
+ ε

n
.

Since P is arbitrary in the set O(D) which is dense on O(D), we infer that
equation (47) holds for all P ∈ O(D), which yields (7). Hence, by the
triangle inequality,

d
Ä
P ?, “Pä 6 inf

P∈O(D)

¶
d(P ?, P ) + d

Ä
P, “Pä©

6 3 inf
P∈O(D)

d(P ?, P ) + 20
…

5D
n

+

 
2(ξ + log 2)

n
+ ε

n
.

With our convention that inf∅ = +∞, the inequality is also true when
O(D) = ∅, hence for all values of D, which leads to (8). Inequality (10)
follows by integrating this deviation bound with respect to ξ. �

7.3. Proofs of Section 4.

Proof of Proposition 2. We restrict ourselves to the case where p is nonin-
creasing on I, the proof in the other case is similar. Let q be the function
that coincides with p on I̊ = (a, b) and satisfies q(a) = supx∈(a,b) p(x) and
q(b) = infx∈(a,b) p(x). Clearly, p = q a.e. and satisfies VI(p) = q(a)− q(b) =
VI(q). With no loss of generality, we may therefore assume that I = [a, b]
and that VI(p) = p(a)− p(b), what we shall do now.

Since p is nonincreasing in I, for all intervals J ⊂ I with endpoints u < v,

(48)
∫
J
|p− pJ | dµ 6

(v − u)(p(u)− p(v))
2 .

In particular, when D = 1 it suffices to take J = {I} and the result follows
from (48) with u = a and v = b and the trivial inequality

∫
I |p− pJ |dµ 6 2.

It remains to prove the result for D > 2 and since (18) is trivially true for
V = 0 we may also assume that V > 0.

Let us set η = (1 + V L)1/D − 1 > 0, x0 = a and for all j ∈ {1, . . . , D},

xj = xj−1 + L
(1 + η)j∑D
k=1(1 + η)k

= x0 + L
(1 + η)j − 1
(1 + η)D − 1 = x0 + (1 + η)j − 1

V
.
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Then, we obtain an increasing sequence of points a = x0 < x1 < . . . < xD =
b = a + L and a partition J of I into D intervals based on {x0, . . . , xD}.
Using (48) and the facts that xj+1−xj = (1 + η)(xj −xj−1) > xj −xj−1 for
j ∈ {1, . . . , D − 1}, we obtain∫
I
|p− p| dµ =

∑
J∈J

∫
J
|p− pJ | dµ 6

1
2

D∑
j=1

(xj − xj−1)[p(xj−1)− p(xj)]

= 1
2

[
p(x0)(x1 − x0) +

D−1∑
j=1

p(xj) [(xj+1 − xj)− (xj − xj−1)]
]

− p(xD)(xD − xD−1)
2

6
1
2

[
VI(p)(x1 − x0) + η

D−1∑
j=1

p(xj)(xj − xj−1)
]

+ p(xD) [(x1 − x0)− (xD − xD−1)]
2

6
1
2

[
V (x1 − x0) + η

D−1∑
j=1

∫ xj

xj−1
pdµ

]
6

1
2 [V (x1 − x0) + η] = η.

Together with the trivial bound
∫
I |p− p| dµ 6 2, this last inequality leads

to (18). The second inequality derives from the fact that (ex − 1) ∧ 2 6
2x/ log 3 6 2x for all x > 0. �

Proof of Theorem 3. Let D,D1, . . . , Dk−2 be positive integers and p a den-
sity inM∞k (R). We may therefore write p under the form (15) with[

k−2∑
i=1

»
wi log (1 + LiVi)

]2

6 R.

Applying Proposition 2 to the density pi, with I = Ii = (xi−1, xi), L = Li =
(xi − xi−1), V = Vi and D = Di > 1 for each i ∈ {1, . . . , k − 2}, we build
a monotone density pi on Ii which is piecewise constant on partition of Ii
into Di nontrivial intervals and that satisfies∫

Ii

|pi − pi| dµ 6
2Si
Di

with Si = log (1 + ViLi) .

Let us now take Di =
†
D
√
wiSi/(

∑k−2
i=1
√
wiSi)

£
∨1 for all i ∈ {1, . . . , k−2}.

Since
D
√
wiSi∑k−2

i=1
√
wiSi

∨ 1 6 Di 6
D
√
wiSi∑k−2

i=1
√
wiSi

+ 1,

the density p =
∑k−2
i=1 wipi satisfies

‖p− p‖ 6
k−2∑
i=1

wi

∫
Ii

|pi − pi| dµ 6
k−2∑
i=1

2wiSi
Di

6
2
D

(
k−2∑
i=1

√
wiSi

)2

6
2R
D
.
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Besides, the density p is k-piecewise monotone, supported on [x1, xk−2] and
piecewise constant on a partition of R consisting of at most

∑k−2
i=1 Di 6

D + k − 2 bounded intervals. It therefore belongs to OD+k−2,k. Finally, let
us choose

D =
⌈Å9R2n

83.22

ã1/3⌉
6
Å9R2n

83.22

ã1/3
+ 1.

Using the sub-additivity property of the square root, we deduce from (14)
that

Bk,n(p) 6 3R
2D + 83.2

…
D − 1 + 2k

n

6
31/3 × 83.22/3

2

Å
R

n

ã1/3
+ 83.2√

n

√Å9nR2

83.22

ã1/3
+ 2k

6

ñ
31/3 × 83.22/3

2 + 31/3 × 83.22/3
ôÅ

R

n

ã1/3
+ 83.2

…
2k
n
,

which is (17). �

Proof of Theorem 4. Let us start with the following lemma where we show
that the mapping τ(p, ·) controls the L1-approximation error of a monotone
density p by the elements of the classM∞3 (R).

Lemma 4. Let p be a density on R, B some positive number and I a
subset of R on which the density p is not a.e. equal to 0. The density
p∧B|I = (p ∧B)1lI/

∫
I(p ∧B)dµ satisfies,

(49)
∥∥∥p− p∧B|I ∥∥∥ 6 2

ï∫
I

(p−B)+ dµ+
∫
Ic
pdµ

ò
.

If p is a monotone density on a half-line
(50) inf

p∈M∞3 (R)
‖p− p‖ 6 2τ (p, exp(R)− 1) for all R > log 2.

Besides, if p is a nonincreasing density on (a, a + l) (respectively a nonde-
creasing density on (a − l, a)) with a ∈ R and l ∈ (0,+∞], we may restrict
the infimum to the nonincreasing densities on (a, a + l) (respectively the
nondecreasing densities on (a− l, a)) that belong toM∞3 (R).

Proof. Since p is not equal to 0 a.e. on I,
∫
I(p ∧ B)dµ > 0 and p∧B|I is

therefore a well-defined density on I. By Lemma 3,∫
R

∣∣∣p− p∧B|I ∣∣∣ dµ 6 2
∫
R
|p− (p ∧B)1lI | dµ

= 2
∫
Ic
pdµ+ 2

∫
I

(p−B)+ dµ.

Changing p into x 7→ p(−x) if necessary and possibly changing the value of
p at the endpoint of the half-line, we may assume with no loss of generality



34 YANNICK BARAUD, HÉLÈNE HALCONRUY, AND GUILLAUME MAILLARD

that p is a nonincreasing density on a half-line of the form (a,+∞) with
a ∈ R. Let us now set

l = sup{z > 0, p(a+ z) > 0} ∈ (0,+∞] and t = exp(R)− 1 > 1.

We first consider the case where l = +∞. Given s > 0, let us take
B = p(a+ s) > 0 and I = (a, a+ st). Since p is nonincreasing on (a,+∞),
p(x) > p(a+ s) = B for all x ∈ (a, a+ s) ⊂ I and consequently∫

I
(p ∧B)dµ >

∫ a+s

a
(p ∧B)dµ = sB.

The density ps = p∧B|I belongs toM∞3 , is supported on an interval of length
not larger than st and its variation on I is not larger that

B∫
I(p ∧B)dµ − p(a+ st) < B∫

I(p ∧B)dµ.

Hence, it follows from (16) that

Rk,0(ps) < log
Å

1 + tsB∫
I(p ∧B)dµ

ã
6 log(1 + t) = R

and consequently, ps ∈ M
∞
3 (R). Applying (49) and Lemma 2, we obtain

that for all s > 0
(51) inf

p∈M∞3 (R)
‖p− p‖ 6 ‖p− ps‖ 6 2 [τx(p, st) + τy (p, p(a+ s))]

and we derive (50) from (22). Since for all s > 0, ps is a density on (a,+∞),
we may restrict the infimum to these densities inM∞3 (R) that satisfy this
property.

Let us now turn to the case where l < +∞ and define s0 = l/t 6 l. Given
s ∈ (0, s0), we take B = p(a + s) > 0 and I = (a, a + st). Since st < l,
p(a+ st) > 0 and by arguing as before, we obtain that

inf
p∈M∞3 (R)

‖p− p‖ 6 2 [τx(p, st) + τy (p, p(a+ s))] for all s ∈ (0, s0).

It follows from the monotonicity of τy(p, ·) that for all 0 < s < s0 6 s′,
τy (p, p(a+ s)) 6 τy (p, p(a+ s0)) 6 τy

(
p, p(a+ s′)

)
,

and since the mapping u 7→ τx(p, u) is continuous and nonincreasing, for all
s′ > s0

inf
s∈(0,s0)

[τx(p, st) + τy (p, p(a+ s))]

6 inf
s∈(0,s0)

τx(p, st) + τy
(
p, p(a+ s′)

)
= τx(p, s0t) + τy

(
p, p(a+ s′)

)
= 0 + τy

(
p, p(a+ s′)

)
= τx(p, s′t) + τy

(
p, p(a+ s′)

)
.

Consequently, (51) remains satisfied for all s > 0. Since it is actually enough
to restrict the infimum to those s ∈ (0, s0) and since for such values of
s the density ps = p∧B|I vanishes outside (a, a + s) ⊂ (a, a + l), we may
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restrict the infimum in (50) to those densities inM∞3 (R) that vanish outside
(a, a+ l). �

Let us set η = τ∞ (p, exp (R/`)− 1). Since R/` > log 2, by applying
Lemma 4 to the densities pi, we may find for all i ∈ {1, . . . , `} a density
pi ∈ M

∞
3 (R/`) such that ‖pi − pi‖ 6 2τ (pi, exp(R/`)− 1). In particular,

the density p =
∑`
i=1wipi satisfies

(52) ‖p− p‖ 6
∑̀
i=1

wi ‖pi − pi‖ 6 max
i∈{1,...,`}

‖pi − pi‖ 6 2η.

When ` > 2 and i ∈ {2, . . . , ` − 1}, it follows from the definition of
M∞3 (R/`) and Lemma 4 that we may choose pi in such a way that it vanishes
outside an interval Ii = (xi,0, xi,1) ⊂ (xi−1, xi) with

log
ñ
1 + (xi,0 − xi,1)

Ç
sup
x∈Ii

pi(x)− inf
x∈Ii

pi(x)
åô

<
R

`

and xi,0 = xi−1 when pi is nonincreasing and xi,1 = xi when pi is nonde-
creasing. The mapping p1 is a nondecreasing density on an interval of the
form I1 = (x1,0, x1,1) with x1,0 < x1,1 = x1 and

log
ñ

1 + (x1,1 − x1,0)
Ç

sup
x∈I1

p1(x)− inf
x∈I1

p1(x)
åô

<
R

`
.

Similarly, p` is a nonincreasing density on an interval of the form I` =
(x`,0, x`,1) with x`,0 = x`−1 < x`,1 and

log
ñ

1 + (x`,1 − x`,0)
Ç

sup
x∈I`

p`(x)− inf
x∈I`

p`(x)
åô

<
R

`
.

The density p =
∑`
i=1wipi also writes as

p11l(x1,0,x1) +
`−2∑
i=2

wi
[
pi1lIi + 01l(xi−1,xi)\Ii

]
+ p`1l(x`−1,x`,1)

and may therefore be written under the form (15) when k > 2`. Moreover,
by Cauchy-Schwarz inequality

Rk,0(p) <
[∑̀
i=1

 
wi

Å
R

`

ã
+ 0
]2

= R

`

[∑̀
i=1

√
wi

]2

6 R

and consequently, p ∈M∞k (R). We deduce from (52) that

inf
q∈M∞k (R)

‖p− q‖ 6 ‖p− p‖ 6 2η

which is (26). �
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7.4. Proofs of Section 5.

Proof of Proposition 3. The proof relies on the following lemma the proof
of which is a direct consequence of convexity and is therefore omitted.
Lemma 5. Let g be a convex and continuous function on a nontrivial in-
terval J . The set {x ∈ J, g(x) < 0} is an interval (possibly empty). The
set {x ∈ J, g(x) > 0} has one of the following forms: ∅, J , J ∩ (−∞, c0),
J ∩ (c1,+∞), [J ∩ (−∞, c0)]∪ [J ∩ (c1,+∞)] with c0, c1 ∈ J and c0 < c1. In
particular {x ∈ J, g(x) > 0} is the union of at most two intervals.

When g is continuous and concave on J , the same conclusion holds with
{x ∈ J, g(x) > 0} in place of {x ∈ J, g(x) < 0} and vice-versa.

Since p belongs toM1
k and q belongs toO

1
D,k, there exists A = {a1, . . . , al}

with l ∈ {1, . . . , k−1} such that p is convex-concave on each element of I(A)
and there exists a subset B ⊂ R with cardinality not larger than D+ 2 such
that q is left-continuous on R and affine on each element of I(B). Since p
and q are densities, p is necessarily convex on the two unbounded intervals
of I(A) and q vanishes on the two unbounded intervals of I(B).

We define J1 = (−∞, a1], Jl+1 = (al,+∞) and when l > 2, Ji = (ai−1, ai]
for all i ∈ {2, . . . , l}. Besides, we set Ii = J̊i for all i ∈ {1, . . . , l + 1}. We
shall repeatedly use Lemma 5 with g = p − q throughout the proof. Given
ε ∈ {±1}, we set

(53) Cε = {x ∈ R, εg(x) > 0} =
l+1⋃
i=1
{x ∈ Ji, εg(x) > 0} .

Our aim is to show that Cε is the union of at most D+2k−1 intervals. The
second part of the proposition is a consequence of Lemma 1 of Baraud and
Birgé (2016).

Ifm1 = |B∩I1| = 0 then q = 0 on J1 (since it is left-continuous), g = p−0
is continuous, monotone (nondecreasing) and convex on I1, {x ∈ J1, g(x) <
0} = ∅ and {x ∈ J1, g(x) > 0} is an interval.

If m1 = |B∩I1| > 1, we may partition J1 into s = m1 +1 > 2 consecutive
intervals K1, . . . ,Ks that we may choose to be of the form (a, b], a < b,
a ∈ R∪{−∞}, b ∈ R. Since p is continuous on I1 and q is left-continuous, g
is continuous on K1, . . . ,Ks−1 and on K̊s. On K1, {x ∈ K1, g(x) < 0} = ∅
and the set Λ+

1,] = {x ∈ K1, g(x) > 0} is an interval which is either empty
or contains the right endpoint of K1. When s > 2, we may apply Lemma 5
to g and the intervals Ki with i ∈ {2, . . . , s − 1}. We obtain that Λ−i =
{x ∈ Ki, g(x) < 0} is an interval and {x ∈ Ki, g(x) > 0} is of the form
Λ+
i,( ∪ Λ+

i,] where Λ+
i,(,Λ

+
i,] are two (possibly empty) intervals and when they

are not, inf Λ+
i,( = inf Ki and the right endpoint of Ki belongs to Λ+

i,]. The
set {x ∈ Ks, g(x) < 0} writes as Λ−s ∪ Λ−s,] where Λ−s ,Λ−s,] are two possibly
empty intervals and when Λ−s,] is not empty, it reduces to {a1}. The set
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{x ∈ Ks, g(x) > 0} writes Λ+
s,( ∪ Λ+

s where Λ+
s,(,Λ

+
s are two possibly empty

intervals and when they are not inf Λ+
s,( = inf Ks and sup Λ+

s = supKs. We
conclude that

{x ∈ J1, g(x) < 0} =
ñ
s−1⋃
i=2

Λ−i

ô
∪
î
Λ−s ∪ Λ−s,]

ó
and

{x ∈ J1, g(x) > 0} = Λ+
1,] ∪
ñ
s−1⋃
i=2

Ä
Λ+
i,( ∪ Λ+

i,]

äô
∪
î
Λ+
s,( ∪ Λ+

s

ó
are both the unions of at most s = m1 + 1 intervals.

By arguing similarly, we obtain that on the interval Jl+1: the sets {x ∈
Jl+1, εg(x) > 0} with ε ∈ {±1} are the unions of at most ml+1 + 1 intervals
where ml+1 = |B ∩ Jl+1|.

When l > 2, let us now consider an interval of the form Ji = (ai−1, ai] with
i ∈ {2, . . . , l} and set mi = |B ∩ Ii|. If mi = 0, g is continuous and convex-
concave on Ii and by arguing as for Ks, we obtain that {x ∈ Ji, εg(x) > 0}
is the union of at most 2 intervals whatever ε ∈ {±1}. If mi > 1, we may
partition Ii with mi + 1 intervals of the form (a, b] with a < b, a, b ∈ R. On
each of these intervals, g is continuous and convex-concave and by applying
Lemma 5 and arguing as previously, we obtain that {x ∈ Ji, εg(x) > 0} is
a union of at most mi + 2 intervals.

Using (53) and the facts that
∑l+1
i=1mi 6 |B| 6 D + 1 and l 6 k − 1, we

conclude that the sets Cε are unions of at most

m1 + 1 +ml+1 + 1 +
l∑

i=2
(mi + 2) 6 |B|+ 2l 6 D + 2k − 1

intervals. �

Proof Theorem 6. The proof is based on Lemma 6 and three preliminary
approximation results given in Proposition 6, Proposition 7 and Proposition
8, whose proofs follow that one.

Proposition 6. Let f be a convex-concave continuous function on a bounded
nontrivial interval [a, b] and `f be the linear function

(54) `f : x 7→ f(a) + f(b)− f(a)
b− a

(x− a) .

The following results hold.

(i) If f admits a right derivative f ′r(a) at a and a left derivative f ′l (b)
at b,

(55)
∫ b

a
|f − `f | dµ 6

(b− a)2

8
∣∣f ′r(a)− f ′l (b)

∣∣ .
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(ii) If f is strictly monotone on [a, b] with f ′r(a) 6= 0 and f ′l (b) 6= 0

(56)
∫ b

a
|f − `f | dµ 6

(f(b)− f(a))2

8

∣∣∣∣ 1
f ′r(a) −

1
f ′l (b)

∣∣∣∣ ,
with the convention 1/(±∞) = 0.

Since `f is the equation of the chord connecting (a, f(a)) to (b, f(b)), it is
clear that `f (x) = f(x) for all x ∈ {a, b}, `f > f on [a, b] when f is convex
on [a, b] and `f 6 f when f is concave.

Proposition 7. Let p be a monotone, continuous and convex-concave sub-
density on a bounded interval [a, b] of length L > 0 with a right derivative
p′r(a) at a and a left derivative p′l(b) at b. For all D > 1, there exists a
D-linear interpolation p of p such that

(57)
∫ b

a
|p− p| dµ 6 4

3

ï(
1 + L

»∣∣p′l(b)− p′r(a)
∣∣)1/D

− 1
ò2
.

Proposition 8. Let p be a strictly monotone, continuous, convex-concave
sub-density with variation V = |p(a)−p(b)| on a nontrivial bounded interval
[a, b]. Assume furthermore that p′r(a) and p′l(b) are nonzero. Then, for all
D > 1 there exists a D-linear interpolation p of p on [a, b] such that

(58)
∫ b

a
|p− p| dµ 6 4

3

Ç1 + V

 ∣∣∣∣ 1
p′r(a) −

1
p′l(b)

∣∣∣∣
å1/D

− 1

2

.

Lemma 6. If F is a nondecreasing, differentiable, concave function on R+,
the mapping

φ : u 7→
[
F
(√
u
)
− F (0)

]2
is concave on R+. In particular for all D > 1,

FD : u 7→
[(

1 +
√
u
)1/D − 1

]2

is concave on R+.

Proof. For all u > 0,

φ′(u) = F (
√
u)− F (0)√
u

F ′(
√
u)

is the product of u 7→ [F (
√
u)−F (0)]/

√
u and u 7→ F ′(

√
u) which are both

nonnegative and nonincreasing since F is nondecreasing and concave. The
function φ′ is therefore nonincreasing and φ concave. �

Let’s turn to the proof of Theorem 6. We first introduce some mappings
of interest we will use in the proofs of of Theorem 6 and Proposition 7. Let
V be the linear space of continuous functions f on [a, b] that admits a right



39

derivative f ′r(a) at a and a left derivative f ′l (b) at b. Given m ∈ R, we define
T1 and T2 as the mappings defined on V by

(59) T1 : f 7→ [x 7→ f(a+ b− x)], T2 : f 7→ [x 7→ m− f(x)].

Although T2 depends on the choice of m, we drop this dependency in the
notation for the sake of convenience. The mappings Tj are one-to-one from
V onto itself, isometric with respect to the L1-norm on V and they satisfy
for all f ∈ V

|f(a)− f(b)| = |Tj(f)(a)− Tj(f)(b)|(60) ∣∣f ′r(a)− f ′l (b)
∣∣ =

∣∣(Tj(f))′r(a)− (Tj(f))′l(b)
∣∣(61)

and T −1
j = Tj for all j ∈ {1, 2}.

Let us now turn to the proof of Theorem 6 and assume first that p is non-
decreasing, continuous and convex on [a, b] so that p′r(a) > 0. If p is con-
stant, the result is clear by taking p = p. We may therefore assume that
p(a) < p(b) and choose a point c ∈ (a, b) such that p(c) > p(a). In particular,
w1 =

∫ c
a pdµ > 0 and

0 < p(c)− p(a)
c− a

6 p′l(c) 6
p(b)− p(c)
b− c

< +∞.

The restriction p1 of p on the interval [a, c] is nondecreasing, continuous and
convex and so is the density p1/w1. We may therefore apply Proposition 7
to p1/w1 and find a D-linear interpolation p1 of p on [a, c] that satisfies

∫ c

a
|p− p1| dµ 6

4w1
3

(1 + (c− a)
 
p′l(c)− p′r(a)

w1

)1/D

− 1

2

.(62)

The restriction p2 of p to [c, b] is increasing, continuous and convex with
nonzero right and left derivatives at c and b respectively. We may therefore
apply Proposition 8 to the density p2/w2 with w2 =

∫ b
c pdµ = 1 − w1 > 0

and find a D-linear interpolation p2 of p on [c, b] that satisfies

∫ b

c
|p− p2| dµ 6

4w2
3

[Ç
1 + p(b)− p(c)

√
w2

 
1

p′r(c)
− 1
p′l(b)

å1/D

− 1
]2

.(63)

We may choose c ∈ (a, b) such that

p′l(c) 6 ∆ and p′r(c) > ∆ with ∆ = p(b)− p(a)
b− a

.
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Then

A = (c− a)2 (p′l(c)− p′r(a)
)

+ (p(b)− p(c))2
Å 1
p′r(c)

− 1
p′l(b)

ã
6 (b− a)2 (∆− p′r(a)

)
+ (p(b)− p(a))2

Å 1
∆ −

1
p′l(b)

ã
= 2(b− a)(p(b)− p(a))

ï
1− 1

2

Å
p′r(a)

∆ + ∆
p′l(b)

ãò
= 2LV Γ.(64)

The function p = p11l[a,c) + p21l[c,b] is a 2D-linear interpolation of p on
[a, b]. Since by Lemma 6 the function FD is concave and increasing, we
deduce from (64), (62) and (63) that

3
4 ‖p− p‖ 6 w1

∫ c

a
|p− p1| dµ+ w2

∫ b

c
|p− p2| dµ

6 w1FD

Å(c− a)2 (p′l(c)− pr(a))
w1

ã
+ w2FD

Å(p(b)− p(c))2

w2

Å 1
p′r(c)

− 1
p′l(b)

ãã
6 FD(A) 6 FD(2LV Γ),

which is (32).
The density q = p/

∫ b
a pdµ is continuous convex-concave on [a, b] and piece-

wise linear on a partition of [a, b] into 2D intervals and it follows from
Lemma 3 that

(65)
∫ b

a
|p− q| dµ 6 2

®
1 ∧
ñ

4
3

ÅÄ
1 +
√

2LV Γ
ä1/D

− 1
ã2ô´

.

The mapping z 7→ (4/3)(ez − 1)2 is not larger than 1 if and only if z 6 z0 =
log(1 +

√
3/4) and for all z ∈ [0, z0], ez − 1 6 (ez0 − 1)z/z0. Consequently,

for all z > 0

2
ß

1 ∧
ï4

3 (ez − 1)2
ò™

= 8
3
(
ez0∧z − 1

)2 6 8
3

Å
ez0 − 1
z0

z

ã2
6 5.14z2.

Applying this inequality with z = D−1 log
Ä
1 +
√

2LV Γ
ä
, we deduce (33)

from (65).
Theorem 6 is therefore proven for a nondecreasing, continuous convex

density p. In order to prove the result in the other cases, we use the trans-
formations T1 and T2 introduced above and defined by (59). These trans-
formations are isometric with respect to the L1-norm and they preserve the
variation of a monotone function. Note that they also preserve the linear in-
dex, i.e. for all continuous convex-concave function f on [a, b] and j ∈ {1, 2},
Γ(f) = Γ (Tj(f)). Applying T1 to nonincreasing continuous convex densi-
ties we establish (33) and we extend it to all monotone concave continuous
densities by applying T2. �
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Proof of Proposition 6. Let us first assume that f is concave on [0, 1], admits
a right derivative at 0, a left derivative at 1 and satisfies f(0) = 0 and
f(1)=1. Let us show that

(66)
∫ 1

0
|f − `f | dµ 6

1
2

(f ′r(0)− 1) (1− f ′l (1))
f ′r(0)− f ′l (1) ,

with the convention 0/0 = 1. If f is linear on [0, 1], then f ′r(0) = f ′l (1) = 1
and the inequality is satisfied with our convention. Otherwise, f ′l (1) < 1 =
f(1)− f(0) < f ′r(0) and since f lies above its chord and under its tangents
at 0 and 1,

`f (x) 6 f(x) 6 min
{
f ′r(0)x, 1 + f ′l (1)(x− 1)

}
for all x ∈ [0, 1].

Since `f (x) = x, we deduce that for all c ∈ [0, 1]∫ 1

0
|f − `f | dµ 6

∫ c

0
(f ′r(0)− 1)xdµ+

∫ 1

c
(1− f ′l (1))(1− x)dµ

= 1
2
[
(f ′r(0)− 1)c2 + (1− f ′l (1))(1− c)2] .

The result follows by minimizing with respect to c, i.e. by taking c = (1 −
f ′l (1))/(f ′r(0)− f ′l (1)) ∈ (0, 1). In particular, we deduce from (67) that∫ 1

0
|f − `f | dµ 6

c(1− c)
2

(
f ′r(0)− f ′l (1)

)
and since c(1− c) 6 1/4, we obtain that

(67)
∫ 1

0
|f − `f | dµ 6

1
8
(
f ′r(0)− f ′l (1)

)
.

Note that the inequality also holds when f ′r(0) = f ′l (1) = 1.
When f is increasing on [0, 1] and satisfies 0 < 1−f ′l (1) < 1, i.e. f ′l (1) 6= 0,

we also deduce from (67) and the convexity of z 7→ 1/z on (0,+∞) that∫ 1

0
|f − `f | dµ 6

1
4

1
1
2

[(
1

1−f ′
l
(1) − 1

)
+
Ä
1 + 1

f ′r(0)−1

ä]
6

1
4

[
1
2

(
1

1
1−f ′

l
(1) − 1

+ 1
1 + 1

f ′r(0)−1

)]

= 1
8

ï1− f ′l (1)
f ′l (1) + f ′r(0)− 1

f ′r(0)

ò
which leads to

(68)
∫ 1

0
|f − `f | dµ 6

1
8

Å 1
f ′l (1) −

1
f ′r(0)

ã
.

Note that the inequality is still satisfied when f ′r(0) = +∞ with the conven-
tion 1/(+∞) = 0.

Let us now turn to the proofs of (55) and (56). Note that (55) is clearly
true when f is constant on [a, b] and we may therefore assume that f(a) 6=
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f(b). We obtain (55) and (56) by applying (67) and (68) respectively to the
function

g(x) = f(a+ x(b− a))− f(a)
f(b)− f(a)

when f is concave and satisfies f(b) > f(a) or when f is convex and satisfies
f(a) > f(b). In the other cases, one may use the function

g(x) = f(b− x(b− a))− f(b)
f(a)− f(b) .

�

Proof of Proposition 7. Let us first consider a function g that is monotone,
continuous and convex on [a, b] and that satisfies g(a) = g′r(a) = 0 and
0 <

∫ b
a gdµ 6 1. Then g is nonnegative and nondecreasing on [a, b]. Since∫ b

a gdµ > 0, g is not identically equal to 0 on [a, b] and consequently,

g′l(b) >
g(b)− g(a)
b− a

> 0.

Let q > 1 and

x0 = a and xi = xi−1 + L
q−i∑D
j=1 q

−j
for all i ∈ {1, . . . , D},

so that xD = b and ∆i+1 = xi+1 − xi = q−1(xi − xi−1) = q−1∆i for all
i ∈ {1, . . . , D − 1} and

∆D = L
q−D(1− q−1)
q−1 − q−(D+1) = L

q − 1
qD − 1 .

Let g′ be any nondecreasing function on [a, b] satisfying 0 = g′r(a) = g′(a),
g′l(b) = g′(b) and g′l(x) 6 g′(x) 6 g′r(x) for all x ∈ (a, b). Since g is convex,
we may write

(69) g(x) > g(xi) + g′(xi)(x− xi) for all i ∈ {1, . . . , D} and x ∈ [a, b].

In particular, for all i ∈ {1, . . . , D − 1}∫ xi+1

xi

(
g(xi) + g′(xi)(x− xi)

)
dµ(x) =

ï
g(xi) + g′(xi)∆i+1

2

ò
∆i+1

6
∫ xi+1

xi

gdµ,

hence,

(70) g′(xi)∆2
i+1 6 2

∫ xi+1

xi

(g − g(xi))dµ.
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Moreover, applying (69) with xi = xD = b and using the facts that g is
nonnegative and nonincreasing, we get

1 >
∫ b

a
gdµ >

∫ b

a

(
g(b) + g′(b)(x− b)

)
+ dµ(x)

=
∫ b

b−g(b)/g′(b)

(
g(b) + g′(b)(x− b)

)
dµ(x) = g2(b)

2g′(b) ,

consequently

(71) g(b) 6
»

2g′(b).

Let gi be the restriction of g on the interval [xi−1, xi] and g the function
on [a, b] that coincides on [xi−1, xi] with `gi defined by (54) with f = gi for
all i ∈ {1, . . . , D}. The function g is a D-linear interpolation of g on [a, b]
that satisfies∫ b

a
|g − g| dµ =

D∑
i=1

∫ xi

xi−1
(g − g) dµ

6
1
8

D∑
i=1

∆2
i

(
g′l(xi)− g′r(xi−1)

)
6

1
8

D∑
i=1

∆2
i

(
g′(xi)− g′(xi−1)

)
= 1

8

[
−∆2

1g
′(a) + ∆2

Dg
′(b) +

D−1∑
i=1

g′(xi)
(
∆2
i −∆2

i+1
)]
.

Since g′(a) = 0 and ∆i = q∆i+1 for all i ∈ {1, . . . , D − 1} we deduce that

(72)
∫ b

a
|g − g| dµ 6 1

8

[
∆2
Dg
′(b) + (q2 − 1)

D−1∑
i=1

g′(xi)∆2
i+1

]
.

Using (70), (71) and the fact that g is nondecreasing,

1
2

D−1∑
i=1

g′(xi)∆2
i+1 6

D−1∑
i=1

∫ xi+1

xi

(g − g(xi))dµ

=
∫ xD

x1
gdµ−

D−1∑
i=1

∆i+1g(xi) =
∫ xD

x1
gdµ− q−1

D−1∑
i=1

∆ig(xi)

6
∫ xD

x1
gdµ− q−1

D−1∑
i=1

∫ xi

xi−1
gdµ =

∫ xD

x1
gdµ− q−1

∫ xD−1

x0
gdµ

= (1− q−1)
∫ xD

x1
gdµ+ q−1

∫ xD

xD−1
gdµ− q−1

∫ x1

x0
gdµ

6 (1− q−1)× 1 + q−1∆Dg(b) 6 1− q−1 + q−1
»

2∆2
Dg
′(b).



44 YANNICK BARAUD, HÉLÈNE HALCONRUY, AND GUILLAUME MAILLARD

It follows from (72) that∫ b

a
|g − g| dµ

6
1
8

[
∆2
Dg
′(b) + 2(q2 − 1)

(
1− q−1 + q−1

»
2∆2

Dg
′(b)
)]

6
(q − 1)2

8

ñ
L2g′(b)

(qD − 1)2 + 2
Å

1 + 1
q

ãÇ
1 + L

√
2g′(b)

qD − 1

åô
.

Finally, choosing q such that

qD − 1 = L
»
g′(b) i.e. q =

(
1 + L

»
g′(b)

)1/D
> 1,

we get that∫ b

a
|g − g| dµ 6 1 + 4(1 +

√
2)

8

ï(
1 + L

»
g′(b)

)1/D
− 1
ò2

6
4
3

ï(
1 + L

»
g′(b)

)1/D
− 1
ò2
.(73)

Let us now prove Proposition 7 in the case where p is convex and nonde-
creasing. Then p′r(a) > 0 and we may set ` : x 7→ p(a) + p′r(a)(x − a) and
g : x 7→ p(x)− `(x). The function g is nonnegative, nondecreasing, continu-
ous and convex on [a, b] and it satisfies g(a) = g′r(a) = 0. If

∫ b
a gdµ = 0, then

p = ` and we may choose p = p. Otherwise 0 <
∫ b
a gdµ 6 1, since ` is non-

negative on [a, b], and we may apply our previous result to g. This leads to
a D-linear interpolation g of g from which we may define p = g− `(x) which
is a D-linear interpolation of p on [a, b]. Inequality (57) follows from (73)
and the facts that |p− p| = |g − g| and g′l(b) = p′l(b)− p′r(a).

In order to prove Proposition 7 in the other cases, we use transformations
defined by (59). We can note that if ` is a D-linear interpolation of f , Tj(`)
is D-linear interpolation of Tj(f) (based on the same subdivision).

If p is convex and nonincreasing, we apply the transformation T1. Then
g = T1(p) is a convex, nondecreasing sub-density on [a, b] and our previous
result applies. We may find a D-linear interpolation g on [a, b] such that

(74)
∫ b

a
|g − g| dµ 6 4

3

ï(
1 + L

»∣∣g′l(b)− g′r(a)
∣∣)1/D

− 1
ò2
,

and the function p = T1(g) is a D-linear interpolation of p = T1(g) that sat-
isfies (57). The result is therefore proven for all convex continuous monotone
sub-density on [a, b].

If p is a concave continuous sub-density, we apply the transformation
T2 with m = 2S/(b − a) and S =

∫ b
a pdµ 6 1. Since p is concave and

monotone, (p(a) ∨ p(b))(b− a)/2 6 S, hence p(x) 6 m for all x ∈ [a, b], and
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g = T2(p) = m− p is a monotone convex sub-density since∫ b

a
(m− p) dµ = 2S

b− a
× (b− a)− S = S 6 1.

Applying the previous result, we may find a D-interpolation g of g that
satisfies (74) and p = T2(g) satisfies (57). This completes the proof of
Proposition 7. �

Proof of Proposition 8. We start with the following lemma.

Lemma 7. If f and g are two continuous increasing or decreasing functions
from on interval I onto an interval J ,

(75)
∫
I
|f − g|dµ =

∫
J
|f−1 − g−1|dµ.

Moreover, if inf I = 0 and f is nonnegative, continuous and decreasing∫
J
f−1dµ 6

∫
I
fdµ.

Proof. Let us first assume that f, g are both increasing. For all (t, y) ∈ I×J

1lg(t)6y6f(t) + 1lf(t)6y6g(t) = 1lf−1(y)6t6g−1(y) + 1lg−1(y)6t6f−1(y).

By integrating this equality on I ×J and using Fubini’s theorem, we obtain
that∫
I
|f(t)− g(t)| dµ(t) =

∫
I

ï∫
J

[
1lg(t)6y6f(t) + 1lf(t)6y6g(t)

]
dµ(y)

ò
dµ(t)

=
∫
J

ï∫
I

[
1lf−1(y)6t6g−1(y) + 1lg−1(y)6t6f−1(y)

]
dµ(t)

ò
dµ(y)

=
∫
J

∣∣f−1(y)− g−1(y)
∣∣ dµ(y).

When f and g are both decreasing, we may apply the above equality to f =
f(−·) and g = g(−·) from K = {−x, x ∈ I} to J then f−1 = −f−1, g−1 =
−g−1 and the result follows from the facts∫

I
|f − g| dµ =

∫
K

∣∣f − g∣∣ dµ and
∫
J

∣∣∣f−1 − g−1
∣∣∣ dµ =

∫
J

∣∣f−1 − g−1∣∣ dµ.
Let us now turn to the proof of the second part of the lemma. Since

inf I = 0 and f is decreasing and continuous from I onto J , for all t ∈ J

µ ({x ∈ I, f(x) > t}) = µ
({
x ∈ I, x 6 f−1(t)

})
= f−1(t).
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Besides, f being nonnegative, the interval J ⊂ R+ and it follows from
Fubini’s theorem that∫

J
f−1(t)dµ(t) =

∫
J
µ ({x ∈ I, f(x) > t}) dµ(t)

=
∫
J

ï∫
I

1lt6f(x)dµ(x)
ò
dµ(t) =

∫
I

ï∫
J

1lt6f(x)dµ(t)
ò
dµ(x)

6
∫
I

ï∫ +∞

0
1lt6f(x)dµ(t)

ò
dµ(x) =

∫
I
f(x)dµ(x).

�

Let us now turn to the proof of (58). We first claim that it is sufficient
to establish (58) when p is decreasing. If p were increasing, we could apply
the result to q = T1(p) defined by (59), which is then decreasing, and find a
D-linear interpolation of q on [a, b] that satisfies

∫ b

a
|q − q| dµ 6 4

3

Ç1 + V

 ∣∣∣∣ 1
q′r(a) −

1
q′l(b)

∣∣∣∣
å1/D

− 1

2

.

We then conclude by using the facts that T1 is an L1-isometry, the function
p = T1(q) which is a D-linear interpolation of p, and q′r(a) = −p′l(b) and
q′l(b) = −p′r(a).

We may therefore assume that p is decreasing and changing p into p(·−a),
which amounts to translate the sub-density p, we may also assume with no
loss of generality that a = 0. By Lemma 7, s = p−1 is then a sub-density on
[p(b), p(0)] which is furthermore decreasing, continuous and convex-concave.
Since the right and left derivatives of p at 0 and b respectively are not zero,
s admits a right derivative at p(b) and a left derivative at p(0) given by
1/p′l(b) and 1/p′r(0) (with our convention 1/(+∞) = 0. We may therefore
apply Proposition 7 and find a D-linear interpolation s of s on [p(b), p(0)]
that satisfies∫ p(0)

p(b)
|s− s| dµ 6 4

3

Ç1 + V

 ∣∣∣∣ 1
p′r(0) −

1
p′l(b)

∣∣∣∣
å1/D

− 1

2

.

Since s is continuous and decreasing from [p(b), p(0)] onto [0, b], so is s,
and we may set p = s−1 : [0, b] → [p(b), p(0)]. The function p is a D-
linear interpolation of p on [0, b] and we conclude by using the equality∫ p(0)
p(b) |s− s| dµ =

∫ b
0 |p− p| dµ which is a consequence of Lemma 7. �

7.5. Proofs of Section 6.

Proof of Proposition 4. Let p = expφ ∈ MLC, p = expφ ∈ OLC
D and A ∈

A(D) associated to p. There exists a partition I of R into at most D + 1
intervals such that the restriction of φ to I with I ∈ I is either affine or
takes the value −∞. Let J be the interval {φ > −∞}. Let I ∈ I, either
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φ is finite on I and I ∩ J ∩ {φ > φ} is an interval since φ − φ is a concave
function on the interval I ∩ J when it is not empty. Otherwise, φ takes the
value −∞ on I and I ∩ J ∩ {φ > φ} = I ∩ J remains an interval. The set
I ∩ Jc ∩ {φ > φ} is empty since φ takes the value −∞ on Jc. Hence

I ∩
{
φ > φ

}
=
(
I ∩ J ∩

{
φ > φ

})
∪
(
I ∩ Jc ∩

{
φ > φ

})
is an interval and

{p > p} =
{
φ > φ

}
=
⋃
I∈I

(
I ∩

{
φ > φ

})
the union of at most D + 1 intervals.

Let us now turn to the set {φ < φ} and define K = (a, b) as the open
interval {φ > −∞}∩ {φ > −∞} with a ∈ R∪ {−∞}, b ∈ R∪ {+∞}, a 6 b.
If K = ∅, i.e. a = b, R = {φ = −∞} ∪ {φ = −∞} are disjoint and

{φ < φ} = {φ > −∞}

is an interval. Otherwise K is not empty, ψ = φ−φ is a continuous function
on K which is either concave on the whole interval K or only piecewise
concave on each element of I ∩K with I ∈ I(A ∩K) when A ∩K 6= ∅. In
any case, {

x ∈ K, φ(x) < φ(x)
}

=
{
x ∈ K, φ(x)− φ(x) < 0

}
is a union of at most |A∩K| intervals plus, possibly, an additional one with
endpoint a and another one with endpoint b. If b < +∞, either φ(b) = −∞
or φ(b) = −∞ and the set {x > b, φ(x) < φ(x)} is either empty or is an
interval that contains b. We may argue similarly to establish that {x 6
a, φ(x) < φ(x)} is either empty or an interval that contains a. This means
that the set {

φ < φ
}

=
(
K ∩

{
φ < φ

})
∪
(
Kc ∩

{
φ < φ

})
is a union of at most |A ∩K|+ 2 6 D + 2 intervals. We conclude by using
Lemma 1 of Baraud and Birgé (2016). �

Proof of Proposition 5. Let us first assume that p = expφ > 0 on R. Then φ
is continuous, concave on R and since p is integrable, φ tends to −∞ at ±∞
and reaches its maximum at a point m ∈ R. The sets MLC and OLC

D are
both location and scale invariant and the L1-distance between two densities
remains unchanged under such transformations. By changing p into

x 7→ σp (m+ σx) = exp [φ (m+ σx) + log σ]

with σ = 1/p(m), if ever necessary, we may assume with no loss of generality
that m = 0 and 0 < φ(x) 6 φ(0) = 0 for all x ∈ R, what we shall do. We
use the following approximation result.
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Proposition 9. Let D be some positive integer and f a convex-concave
function on a non-trivial interval [a, b] such that

∆ = f(b)− f(a)
b− a

6= 0.

(i) If f admits a right derivative at a and a left derivative at b, there
exists a D-linear interpolation `1 of f such that∫ b

a
|f − `1| dµ 6

(b− a)2

2D2
|f ′r(a)−∆| |∆− f ′l (b)|∣∣f ′r(a)− f ′l (b)

∣∣(76)

6
(b− a)2

8D2
∣∣f ′r(a)− f ′l (b)

∣∣ .
(ii) If φ is strictly monotone on [a, b] with f ′r(a) 6= 0 and f ′r(b) 6= 0,
there exists a D-linear interpolation `2 of f

(77)
∫ b

a
|f − `2| dµ 6

(f(a)− f(b))2

8D2

∣∣∣∣ 1
f ′r(a) −

1
f ′l (b)

∣∣∣∣
with the convention 1/±∞ = 0.

Proof. If f is a concave function on [0, 1] satisfying f(0) = 0 and f(1) = 1,
with a right derivative at 0 and a left derivative at 1, Guérin et al (2006)
proved that there exist a D-linear interpolation ` of f on [0, 1] such that

(78)
∫ 1

0
|f − `| dµ 6 1

2D2
(f ′r(0)− 1) (1− f ′l (1))

f ′r(0)− f ′l (1) .

The results established in Proposition 9 are deduced from (78) by arguing
as in the proof of Proposition 6. �

Let t = 2.3, a0 = b0 = 0 and a1, b1 be numbers such that a1 < 0 < b1 and
|φ(a1)| = |φ(b1)| = t > 0. Since φ is concave,

φ(x) > t
Å
x

|a1|
∧ −x
b1

ã
for x ∈ [a1, b1].

In particular,

1 =
∫
R
eφdµ >

∫ 0

a1
etx/|a1|dµ+

∫ b1

0
e−tx/b1dµ,

and consequently,

1 >
(|a1|+ b1)

(
1− e−t

)
t

, i.e. |a1|+ b1 6
t

1− e−t .(79)

Let us now define for all j > 2,

aj = inf {x 6 a1, φ(x) > −jt} and bj = sup {x > b1, φ(x) > −jt} .

Since φ is continuous, concave and tends to −∞ at ±∞, aj and bj exist,
satisfy φ(aj) = φ(bj) = −jt and for all j > 1.
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Let J > 2 and D1, . . . , DJ be positive integers. Applying Proposition 9
to φ, we can find two D1-linear interpolations `−1 and `+1 of φ on [a1, 0]
and [0, b1] respectively that satisfy (76) and for all j ∈ {2, . . . , J}, we can
find two Dj-linear interpolations `−j and `+j of φ on [aj , aj−1] and [bj−1, bj ]
respectively that satisfy (77). The function

φ =
J∑
i=1

î
`−j 1l[aj ,aj−1) + `+j 1l[bj−1,bj)

ó
+ (−∞)1lR\[aJ ,bJ ]

is (2
∑J
j=1Dj)-linear interpolation of φ on [aJ , bJ ] and the function p = expφ

is integrable and satisfies

1 > p(x) = eφ(x) > p = eφ(x) for all x ∈ R.

Since φ is concave and nondecreasing on [a1, 0], φ′l(0) > 0 and

0 6 a2
1

φ′r(a1)− φ′l(0)

Å
φ′r(a1)− φ(0)− φ(a1)

|a1|

ãÅ
φ(0)− φ(a1)
|a1|

− φ′l(0)
ã

6
a2

1
φ′r(a1)− φ′l(0)

Å
φ′r(a1)− t

|a1|

ãÅ
t

|a1|
− φ′l(0)

ã
6

a2
1

φ′r(a1)

Å
φ′r(a1)− t

|a1|

ã
t

|a1|
= t

Å
|a1| −

t

φ′r(a1)

ã
.

By arguing similarly on the interval [0, b1] and using the fact that φ′r(0) 6 0,
we obtain that

0 6 b21
φ′r(0)− φ′l(b)

Å
φ′r(0)− φ(b1)− φ(0)

b1

ãÅ
φ(b1)− φ(0)

b1
− φ′l(b1)

ã
6 t
Å
b1 −

t

|φ′l(b1)|

ã
.

Applying Proposition 9-(i), we obtain that∫ b1

a1

∣∣φ− φ∣∣ dµ 6 t

2D2
1

ïÅ
|a1| −

t

φ′r(a1)

ã
+
Å
b1 −

t

|φ′l(b1)|

ãò
.(80)

Applying Proposition 9-(ii) on the intervals [aj , aj−1] and [bj−1, bj ] respec-
tively with j ∈ {2, . . . , J}, we obtain that∫ aj−1

aj

∣∣φ− φ∣∣ dµ 6 t2

8D2
j

Å 1
φ′l(aj−1) −

1
φ′r(aj)

ã
(81)

∫ bj

bj−1

∣∣φ− φ∣∣ dµ 6 t2

8D2
j

Å 1
φ′l(bj)

− 1
φ′r(bj−1)

ã
.(82)

Choosing K =
√
t/(1− e−t),

D1 =
⌈
KD
»
t/2
⌉

and for all j > 2 Dj =
⌈
KDe−(j−1)t/2

»
t/8
⌉
,
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we deduce from (80) that

∫ b1

a1
|p− p| dµ =

∫ b1

a1
eφ
(

1− e−(φ−φ)
)
dµ 6 eφ(0)

∫ b1

a1

(
φ− φ

)
dµ

6
t

2D2
1

ïÅ
|a1| −

t

φ′r(a1)

ã
+
Å
b1 −

t

|φ′l(b1)|

ãò
6

1
K2D2

ïÅ
|a1| −

t

φ′r(a1)

ã
+
Å
b1 −

t

|φ′l(b1)|

ãò
(83)

and from (81) and (82) that for all j ∈ {2, . . . , J},

∫ aj−1

aj

|p− p| dµ+
∫ bj

bj−1
|p− p| dµ

6 eφ(aj−1)
∫ aj−1

aj

(
φ− φ

)
dµ+ eφ(bj−1)

∫ bj

bj−1

(
φ− φ

)
dµ

6
e−(j−1)tt2

8D2
j

ï 1
φ′l(aj−1) −

1
φ′r(aj)

+ 1
φ′l(bj)

− 1
φ′r(bj−1)

ò
6

1
K2D2

ï
t

φ′l(aj−1) −
t

φ′r(aj)
+ t

φ′l(bj)
− t

φ′r(bj−1)

ò
.(84)

Summing up the inequalities (83) and (84) for j ∈ {1, . . . , J} and using
the fact that φ′r(x) 6 φ′l(x) for all x ∈ R, we obtain

∫ bJ

aJ

|p− p| dµ 6 1
K2D2

ï
|a1|+ b1 −

1
φ′r(aJ) −

1
φ′l(bJ)

ò
.(85)

For j > J+1 and x ∈ [aj , aj−1], p(x) = 0 6 p(x) 6 φ(aj−1)+φ′l(aj−1)(x−
aj−1) and consequently,∫ aj−1

aj

|p− p| dµ 6
∫ aj−1

aj

exp
(
φ(aj−1) + φ′l(aj−1)(x− aj−1)

)
dµ

6
e−t(j−1)

φ′l(aj−1)
Ä
1− e−φ′l(aj−1)(aj−1−aj)

ä
6
e−t(j−1)

φ′l(aj−1) 6
e−t(j−1)

φ′l(aJ) .

Similarly, using that p(x) = 0 6 p(x) 6 φ(bj−1) + φ′r(bj−1)(x− bj−1) for all
x ∈ [bj−1, bj ] with j > J + 1 we obtain that

∫ bj

bj−1
|p− p| dµ 6

∫ bj

bj−1
exp

(
φ(bj−1) + φ′r(bj−1)(x− bj−1)

)
dµ

6
e−t(j−1)

φ′r(bj−1) 6
e−t(j−1)

φ′r(bJ) .
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We deduce that∫
R\[aJ ,bJ ]

|p− p| dµ =
∑

j>J+1

ñ∫ aj−1

aj

|p− p| dµ+
∫ bj

bj−1
|p− p| dµ

ô
6
ï 1
φ′l(aJ) + 1

φ′r(bJ)

ò ∑
j>J+1

e−t(j−1)

=
ï 1
φ′l(aJ) + 1

φ′r(bJ)

ò
e−tJ

1− e−t .

Let us choose J such that

J =
°1
t

log
Å
K2D2

1− e−t

ã§
>
Å1
t

log
Å
K2D2

1− e−t

ãã
.

Note that J > 2 since D > 6 > D0 = et
√

1− e−t/K. With this choice of J∫
R\[aJ ,bJ ]

|p− p| dµ 6
ï 1
φ′l(aJ) + 1

φ′r(bJ)

ò 1
K2D2 .(86)

Adding inequalities (85) and (86), using (79) and Lemma 3 we obtain that
the density q = p/

∫
R pdµ satisfies∫

R
|p− q| dµ 6 2

∫
R
|p− p| dµ 6 2 (|a1|+ b1)

K2D2 6
2t

(1− e−t)K2D2 = 2
D2

and belongs to OLC
D′ with

D′ 6 2
J∑
j=1

Dj + 1 6 KD
√

2t
[

1 + 1
2

J∑
j=2

e−(j−1)t/2

]
+ 2J + 1

6 D

ñ
K
√

2t
Ç

1 + e−t/2

2(1− e−t/2)

å
+ 2
tD0

log
Å
K2D2

0
1− e−t

ã
+ 3
D0

ô
6 6D.

Consequently,

inf
q∈OLC

6D

∫
R
|p− q| dµ 6 2

D2 .

This inequality, which holds for all positive log-concave densities, extend to
nonnegative ones by using the fact that the set gathering of the former are
dense in the set gathering the latter for the L1-norm. �
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