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The small-angle neutron scattering data of nanostructured magnetic samples

contain information regarding their chemical and magnetic properties. Often,

the first step to access characteristic magnetic and structural length scales is a

model-free investigation. However, due to measurement uncertainties and a

restricted q range, a direct Fourier transform usually fails and results in

ambiguous distributions. To circumvent these problems, different methods have

been introduced to derive regularized, more stable correlation functions, with

the indirect Fourier transform being the most prominent approach. Here, the

indirect Fourier transform is compared with the singular value decomposition

and an iterative algorithm. These approaches are used to determine the

correlation function from magnetic small-angle neutron scattering data of a

powder sample of iron oxide nanoparticles; it is shown that with all three

methods, in principle, the same correlation function can be derived. Each

method has certain advantages and disadvantages, and thus the recommenda-

tion is to combine these three approaches to obtain robust results.

1. Introduction

Small-angle neutron scattering (SANS) probes chemical and

magnetic structure on the mesoscale (�1–500 nm) (Jeffries et

al., 2021), which makes SANS an ideal tool to investigate

nanostructured magnetic materials such as bulk ferromagnets

or magnetic nanoparticle systems (Mühlbauer et al., 2019). In

SANS data analysis, it is good practice to perform a Fourier

transform to obtain starting parameters for the characteristic

magnetic and structural length scales that are relevant for a

system (Feigin & Svergun, 1987).

In the case of pure nuclear scattering the extracted corre-

lation function corresponds to the autocorrelation function of

the scattering length density profile (Li et al., 2016). This is not

the case for magnetic neutron scattering due to the anisotropic

nature of the dipole–dipole interaction (Mettus & Michels,

2015). However, the derived correlation functions still contain

important information that reflects the real-space magnetiza-

tion over the mesoscale (Bender et al., 2021). Thus, the Fourier

transform of reciprocal SANS data is an easy and straight-

forward approach to obtain model-independent information

regarding the chemical and magnetic nanostructure of the

sample.

Real experimental data usually have measurement uncer-

tainties and a restricted q range, which can lead to ambiguous

correlation functions when performing a direct Fourier
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transform of the data. To circumvent these issues the indirect

Fourier transform (IFT) was introduced in the 1970s (Glatter,

1977). In this case, the correlation function is essentially

obtained by a fit of the experimental data using a Tikhonov

regularization to force smooth distributions. To find the

optimal value for the smoothing degree a Bayesian analysis

can be applied (Hansen, 2000). This approach allows for the

inclusion of the maximum size of the scattering, which defines

the size range for which the correlation function is computed,

as fit parameter (Hansen, 2012). Such a model-free analysis of

scattering data has proven to be a powerful approach to study

several categories of materials, e.g. polymer solutions (Ham-

mouda, 2010), protein conformation (Sanchez-Fernandez et

al., 2017) and the structure of colloidal particles (Fritz et al.,

2000).

The IFT can further be used to derive the 2D correlation

functions from the complete scattering pattern (Fritz-

Popovski, 2013). However, this approach is computationally

intensive for large data sets. Therefore, two faster numerical

approaches were recently introduced to determine the 2D

correlation functions from scattering patterns, namely the

singular value decomposition (SVD) (Bender et al., 2019) and

the iterative Kaczmarz algorithm (KA) (Bender et al., 2021).

Here, we analyze 1D scattering data and apply all three

model-free approaches, namely the IFT, SVD and KA. We use

these methods to determine the correlation functions of a

powder sample of magnetic iron oxide nanoparticles from the

magnetic-field-dependent SANS intensities measured at the

multipurpose neutron spin-echo spectrometer RESEDA in

modulation of intensity with zero effort (MIEZE)-SANS

mode (Franz, Säubert et al., 2019; Franz, Soltwedel et al., 2019;

Jochum et al., 2019).

2. Methods

2.1. Pre-characterization of the sample

The sample was a dense powder of �200 mg freeze-dried

iron oxide nanoparticles. The spherical single-crystalline

particles were synthesized by thermal decomposition and had

an average diameter of around 10 nm with a very narrow size

distribution (� < 0.1). Fig. 1(a) shows a transmission electron

microscopy (TEM) image of the nanoparticles.

The macroscopic magnetic properties of the powder at

300 K were determined by quasistatic direct-current magne-

tometry (DCM) and alternating-current susceptibility (ACS)

[see Figs. 1(b) and 1(c)]. The DCM measurement, measured

from 6 T ! �6 T! 6 T, exhibits a Langevin-type magneti-

zation behavior with vanishing coercivity and remanence,

indicating a superparamagnetic behavior of the sample. This is

verified by the ACS measurement whose imaginary part is

close to zero at low frequencies (Ludwig et al., 2017). This

means that the magnetic moments of the nanoparticles can

freely follow the external magnetic field via Néel-type

relaxation. With increasing frequency the imaginary part

slightly increases and the real part decreases accordingly.

However, within the accessible frequency range (i.e. 10–

106 Hz) no relaxation peak in the imaginary part is observed,

which indicates that the characteristic relaxation times of the

particles are significantly below � = 1/! = 1/(2�f) < 1.6� 10�7 s.

2.2. Magnetic SANS measurements

For the SANS measurements the particle powder was

placed into a quartz glass cuvette with an optical path length

of 1 mm. The scattering patterns were measured with the

neutron spin-echo spectrometer RESEDA using the MIEZE-

SANS arm (Franz, Soltwedel et al., 2019). The 2D detector was

positioned off-center of the direct neutron beam as shown in

Fig. 2. The neutron wavelength was 6 Å with a wavelength

spread ��/� of 11.7%. The experimental setup included a
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Figure 1
(a) TEM image of the iron oxide nanoparticles. (b) DCM measurement of the powder sample of nanoparticles normalized to the magnetic moment mS

measured at saturation. (c) Normalized real (full blue triangles) and imaginary parts (open red circles) of the ACS measurement.

Figure 2
(a) 2D SANS pattern of the powder sample of iron oxide nanoparticles
measured at zero field with the instrument RESEDA. The 2D detector
was positioned off-center of the neutron beam. (b) Sector average along
the horizontal (i.e. field) direction (�10�).



magnet with the field applied in the horizontal plane. From the

scattering patterns we determined the sector average in the

horizontal direction, i.e. along the magnetic field direction,

with a sector width of �10�. In the following, we use three

different approaches to derive the underlying correlation

functions from the 1D sector averages.

3. Data analysis

3.1. Introduction of the three model-free approaches

From the 1D scattering intensity shown in Fig. 2, the

underlying correlation function PðrÞ was determined by three

different approaches. First the IFTwas applied. In this case the

N-dimensional vector PðrÞ is determined by minimizing the

functional

1

2�2
APðrÞ � IðqÞ
�� ��2

þ� LPðrÞ
�� ��2

: ð1Þ

Here, � ¼ �ðqÞ is the standard deviation of each data point

and IðqÞ is the measured scattering intensity with M data

points. The matrix A in equation (1) is the M � N data

transfer matrix with Ai;j ¼ 4�f½sinðqirjÞ�=ðqirjÞg�rj. The matrix

L is an N � N regularization matrix, which is multiplied with

the regularization parameter �. To penalize oscillations within

the extracted distributions, the non-singular approximation of

the discrete second-order derivative operator can be used

for L:

L ¼
1
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For numerical computation, equation (1) is inconvenient and

the least-squares solution of

ð1=�ÞA
2�ð Þ1=2L

� �
PðrÞ �

ð1=�Þ IðqÞ
0N;1

� �����
����

2

ð3Þ

is determined, where 0N;1 is a zero vector of length N. To

perform the IFT the size range 0–Dmax of PðrÞ has to be

defined a priori. However, Dmax can be included as an addi-

tional fit parameter. Here, we performed the IFT for a total of

251 Dmax values (between 10 and 30 nm). Furthermore, we

varied � over six orders of magnitude (from 100 to 105) and

determined for each set of ðDmax; �Þ the evidence according to

Hansen (2000) and as described in detail by Bender et al.

(2017). The Dmax value for which the highest evidence was

found was then used for the SVD and the KA as well.

With the SVD the data transfer matrix A is decomposed

according to A ¼ USVT, where U and V are orthogonal

N � N and M �M matrices, respectively, and S is an N �M

matrix whose main diagonal elements are the singular values

si. The correlation function PðrÞ is then calculated using

PðrÞ ¼ VSþUTIðqÞ: ð4Þ

The diagonal of Sþ contains the reciprocal values 1=si, and all

off-diagonal entries of Sþ are zero. In the case of ill-posed

problems, many of the singular values will be very small which

amplifies measurement uncertainties. Thus, using all singular

values usually results in large unphysical oscillations in the

derived distributions. The singular values of S are usually

given in descending order, and thus a smoothing can be

accomplished by reducing the number of singular values Ns

which are considered for the reconstruction (Berkov et al.,

2000).

Using the KA, PðrÞ is calculated by updating the elements

PðrjÞ after each iteration according to

Pkþ1ðrjÞ ¼ PkðrjÞ þ
IðqiÞ � AiP

kðrjÞ
� �

�jjAijj
2

Ai; ð5Þ

where Ai is the ith row of the matrix A, Ai is its transpose, k is

the iteration number, and one iteration contains a sweep over

all rows i. Here we shuffle randomly through all rows Ai and

normalize the residuals [i.e. IðqiÞ � AiP
kðrjÞ] to �ðqiÞ, similar

to a weighted least-squares fit.

3.2. Results of the model-free data analysis

Fig. 3 shows the results for the IFT. The highest evidence

was found for Dmax = 22 nm. The fit of the data is shown in

Fig. 3(a). In Fig. 3(b) the correlation functions for all � values

are plotted and the corresponding evidences are shown in

Fig. 3(c). The PðrÞ with the highest evidence is highlighted in

red. The correlation function exhibits one oscillation with the

first zero crossing at around 10 nm. This value agrees well

with the physical particle size. The oscillations can be attrib-

uted to a structure factor due to inter-particle interference
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Figure 3
(a) Fit of the 1D sector average at zero field by IFT. (b) Correlation functions PðrÞ determined for all � values at Dmax = 22 nm. The PðrÞ with highest
evidence is marked red. (c) The evidences computed for all � values.



(Fritz-Popovski et al., 2011), which leads to a shift of the zero

crossing towards smaller sizes and concerns nuclear and

magnetic contributions as discussed at the end of this section.

Fig. 4 shows the results for the SVD. As can be seen, by

increasing the number of singular values that are considered

for the reconstruction of PðrÞ to Ns ¼ 6, the total weighted

error �2 decreases [Fig. 4(c)] before leveling out. But for

Ns > 6, large unphysical oscillations are obtained in the

resultant correlation functions PðrÞ, as shown in Fig. 4(b). The

PðrÞ determined for Ns ¼ 6 is highlighted in blue and the

corresponding fit of IðqÞ is plotted in Fig. 4(a).

Fig. 5 shows the results for the KA. As plotted in Fig. 5(c),

by increasing the iterations of the KA the total error �2 tends

to decrease until approaching �2 ’ 3, similar to the SVD. The

correlation function obtained after k ¼ 100 iteration steps is

plotted in green in Fig. 5(b) and the corresponding fit is shown

in Fig. 5(a).

Fig. 6(a) shows the correlation functions determined by the

IFT, the SVD and the KA. All three curves are basically

identical. However, when Dmax is not determined by the IFT

but randomly chosen, this is not the case anymore. Fig. 6(b)

shows as an example what happens when Dmax is fixed to

50 nm. The correlation functions determined by the SVD and

KA are basically the same as before, whereas the IFTresults in

a completely different one. This inability to automatically

determine the appropriate maximum accessible sizes for the

system and the need for a sophisticated guess by an informed

user are significant issues for most of the common available

tools to estimate PðrÞ.

To better understand the physical meaning of PðrÞ, we will

now analyze the field-dependent data.

Fig. 7(a) shows the sector averages at 3 and 0 T [as shown in

Fig. 2(b)], as well as the difference between the two. The

sectors are parallel to the applied field and thus the scattering

intensity IðqÞ at 3 T is dominated by the nuclear scattering

intensity as the sample is nearly completely magnetically

saturated at this field [see Fig. 1(b)]. Therefore, the correlation

functions derived from IðqÞ are essentially the autocorrelation

function of the nuclear scattering profile, and thus the oscil-

lations in PðrÞ shown in Fig. 7(b) can be attributed to the

nuclear structure factor (Weyerich et al., 1999). Negative

values of PðrÞ are associated with distances that connect

particle volumes with a scattering length density below the

average. The difference between the scattering intensities

measured at zero field and 3 T, on the other hand, is of purely

magnetic origin (Mühlbauer et al., 2019). Thus, the derived

correlation function PðrÞ contains information regarding the
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Figure 4
(a) Fit of the 1D sector average at zero field by the SVD. (b) Correlation functions PðrÞ determined for a varying number of singular values (Ns = 1–8).
The PðrÞ reconstructed with Ns ¼ 6 is marked in blue. (c) The total weighted error �2 as a function of Ns.

Figure 5
(a) Fit of the 1D sector average at zero field by the KA. (b) Correlation functions PðrÞ determined after all k ¼ 100 iteration steps. The PðrÞ
reconstructed after k ¼ 100 is plotted in green. (c) The total weighted error �2 computed after each iteration step k.

Figure 6
(a) Comparison of the correlation functions determined by the IFT [red,
from Fig. 3(b)], SVD [blue, from Fig. 4(b)] and KA [green, from Fig. 5(b)]
at zero field. Dmax = 22 nm was determined by the IFT. (b) Comparison of
the correlation functions determined by the IFT (red), SVD (blue) and
KA (green) when Dmax is fixed to 50 nm.



moment correlations between neighboring particles at zero

field. The observed negative values at r > 10 nm indicate

antiferromagnetic-like moment correlations similar to what

was observed by Bender et al. (2018). A comparison of the

magnetic correlation functions with the distributions from

Fig. 7(a) shows pronounced differences in the range 10–15 nm.

This demonstrates that the nuclear and magnetic structure

factors are not the same (Honecker et al., 2020). Furthermore,

the magnetic correlation functions have no second positive

peak in the range 17–22 nm, which indicates that magnetic

order only exists between nearest neighbors. For larger

distance, no correlation exists due to thermal fluctuations of

the particle moments. Regarding the comparison of the three

approaches for the determination of PðrÞ we reiterate that all

three approaches result in very similar correlation functions

[Figs. 7(b) and 7(c)].

4. Discussion and summary

Here, we have analyzed the magnetic-field-dependent SANS

pattern of a powder sample of 10 nm iron oxide nanoparticles

measured with the neutron resonant spin-echo spectrometer

RESEDA. Our analysis of the 1D sector averages shows that

the IFT, SVD and KA all result in identical correlation

functions PðrÞ. IFT is the standard approach for such problems

and well established. In comparison with the IFT, both SVD

and KA are less sensitive to the size range chosen for the

reconstruction of PðrÞ. This means that, for the IFT, the Dmax

value has to be included as a fit parameter, but this is not the

case for the SVD and KA, which also significantly reduces the

computational costs. In general, an advantage of the SVD and

KA is the faster computation times. While this is negligible

when handling 1D data, it is a huge advantage for 2D data

analysis as shown e.g. by Bender et al. (2019, 2021). Regarding

an automated data analysis, the KA in particular has great

potential as also discussed in the context of other measure-

ment techniques (Karpavičius et al., 2021). This approach

could also be applied when simultaneously analyzing data sets

of complementary characterization techniques. Such a global

fit could be pursued for dilute spherical nanoparticle systems,

e.g. to determine the functional form of the size distribution or

the magnetic volume without skewing the data to a given,

potentially false, distribution (e.g. log-normal) form.

Regarding small-angle scattering data analysis, we recom-

mend applying the SVD and KA approaches in addition to the

IFT, as a consistent result with all three methods significantly

strengthens the confidence in the obtained correlation func-

tions. The corresponding Python scripts can be found at

https://github.com/PBenderLux/Data-analysis and are free to

use. Furthermore, the SVD and KA will be implemented in the

open-source SasView software package to provide easy access

for data analysis.
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(orange). (b) Comparison of the correlation functions determined by the IFT (red), SVD (blue) and KA (green) at 3 T. (c) Comparison of the correlation
functions determined by the IFT (red), SVD (blue) and KA (green) from the difference between the zero field and the 3 T measurement. The gray
curves are the distributions from panel (b).
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Barquı́n, L. & Johansson, C. (2018). Phys. Rev. B, 98, 224420.
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