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Abstract—This paper presents a simple overmodulation method
employed in direct torque control (DTC) constant switching fre-
quency (CSF) controller of induction machines. The proposed over-
modulation method is utilized to extend a constant torque region
and hence produce high torque capability in field-weakening re-
gion with six-step operation. It will be shown that the overmod-
ulation operation using the DTC-CSF scheme can be established
by controlling the stator flux locus from circular to the hexag-
onal shape. This is achieved by modifying the flux error status
produced from the flux hysteresis controller before it is fed to
the lookup table. The main benefit of the proposed method is its
simplicity since it requires only a minor modification to the con-
ventional DTC hysteresis-based structure and does not require a
space-vector modulator.

Index Terms—Direct torque control (DTC), field weakening, in-
duction machine, overmodulation.

I. INTRODUCTION

THE capability of induction machine drives to operate in
overmodulation and field-weakening modes is very im-

portant in many industrial applications. It is desirable in order
to achieve high constant power or the maximum torque capabil-
ity over a wide speed range of operation.

Several papers have been published [1]–[14] proposing other
types of solutions for achieving maximum torque capability in
field-weakening region. The most common approach adopted is
to estimate the optimal flux level of the motor based on the max-
imum values of inverter voltage and inverter current. Typically,
the algorithms used require frame transformer, knowledge of
machine parameters, and space-vector modulator. For example,
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Sang-Hoon and Seung-Ki [3] used field-oriented control space-
vector modulation (FOC-SVM) that considers voltage and cur-
rent limit conditions to compute the controllable currents (in
stator flux reference frame) in achieving the appropriate flux
level in field-weakening region. Other papers have reported a
robust field-weakening strategy, so that any variations of ma-
chine parameters used in calculating the optimal flux, can be
compensated [5], [9], [11], [14].

In general, the SVM technique is employed to exploit the in-
verter voltage into the overmodulation region where the voltage
reference is normally used to define the mode of overmodu-
lation [15]. The ability of SVM to fully utilize the available
inverter voltage mainly depends on the vector control strat-
egy to produce the maximum possible voltage reference while
simultaneously maintaining the regulation of flux and torque.
Various methods have been proposed to estimate the voltage
reference [13], [16]–[22]; for instance, in the case of direct
torque control (DTC)-SVM, Tripathi et al. [17] utilized predic-
tive control of stator flux error vector to estimate the reference
voltage. Habetler et al. [16] used dead-beat control, with several
complicated equations, to generate the reference voltage in real
time. Among the various schemes only [12] and [13] can achieve
maximum torque capability in field-weakening region with six-
step voltage operation. In [12], due to the hexagonal shape of the
stator flux locus, the current contains low-frequency harmonic
components even when the drive is operating in steady-state con-
dition. On the other hand, Tripathi et al. [13] achieved the six-
step mode operation through overmodulation using SVM. Ulti-
mately, all of the proposed methods [13], [16]–[18], [21], [22]
complicate the basic control structure of DTC drive systems as
originally proposed in [23].

Until now, no study has been reported to carry out the over-
modulation strategy in DTC hysteresis-based structure mainly
due to the fact that in DTC hysteresis-based structure, unlike
the DTC-SVM, there is no voltage reference available. This
paper presents a simple overmodulation strategy employed in
DTC constant switching frequency (CSF)-based induction ma-
chines. The control structure of DTC-CSF is similar to the
DTC hysteresis-based scheme [36], which does not use SVM
and, hence, does not have the voltage vector reference to oper-
ate in overmodulation modes [15]. However, unlike the DTC-
hysteresis-based scheme, DTC-CSF can be operated with CSF.
It will be shown in this paper that even without SVM, the
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Fig. 1. Structure of basic DTC-hysteresis-based induction machine.

inverter voltage can be gradually transformed from pulsewidth
modulation (PWM) to six-step mode by changing the stator flux
locus from circular to hexagonal shapes. In this way, an exten-
sion of constant torque region can be achieved which results
in higher torque capability in field-weakening region. By us-
ing this technique, it is also possible for the drive to operate in
six-step mode during acceleration (and deceleration) and revert
back to the PWM mode when steady-state condition is reached,
for beyond based speed operation. In Section II, the DTC with
constant frequency torque controller is briefly discussed. Sec-
tion III explains the torque capability in DTC and describes
how the overmodulation is achieved based on stator flux locus
transformation. Section IV presents improved torque capability
with the proposed overmodulation strategy. Section V describes
the proposed control structure. Section VI presents the hard-
ware implementation and experimental results of the proposed
method. Finally, the conclusion is given in Section VII.

II. DTC WITH CSF SCHEME

Unlike FOC, the DTC scheme as shown in Fig. 1, offers
a simple control structure wherein the torque and flux can be
separately controlled using three-level and two-level hysteresis
comparators, respectively. The output of the comparators and the
stator flux angle are used to index a lookup table of optimum
voltage vector as proposed in [23], to determine the appropriate
voltage vectors to control both torque and flux. However, the
hysteresis torque controller utilized in the basic DTC structure
results in two major disadvantages, namely variable inverter
switching frequency and high torque ripple. Several methods
have been proposed to overcome these problems. For example,
the problems were minimized by the use of variable hysteresis
band [24], [25], dithering technique [26], controlled duty ra-
tio cycle technique [27], [28], space-vector modulation (DTC-
SVM) [21], [29]–[31], and most recently the use of predictive
control [32]–[35].

An attempt was made to reduce the torque ripple by replac-
ing the torque hysteresis controller with constant frequency
torque controller as depicted in Fig. 2 [36]. In such a way, the

Fig. 2. Constant frequency torque controller.

Fig. 3. Comparison by experimental of torque control operations in (a) DTC-
hysteresis-based and (b) DTC-CSF-based induction motor.

simple control structure (with decoupled control structure) of
hysteresis-based DTC is retained. For the sake of identification,
in this paper, this scheme will be referred to as DTC-CSF. The
torque error status Tstat (as shown in Fig. 2) generated from the
constant frequency torque controller to compensate the torque
error ETe can be described by

Tstat =

⎧
⎪⎨

⎪⎩

1 for Tc ≥ Cupper

0 for Clower < Tc < Cupper

−1 for Tc ≤ Clower (1)

where Tc is the output of proportional-integral (PI) control and
Cupper and Clower are the upper and lower triangular carriers, re-
spectively. In order to establish CSF and, hence, reduced torque
ripple, the frequency and peak to peak of upper and lower trian-
gular waveforms are set at fixed values. For PI torque controller,
the gain values of Kp and Ki are restricted to ensure the absolute
slope of the output signal, and Tc does not exceed the absolute
slope of triangular carrier [36].

Fig. 3 shows the experimental results of torque control op-
erations for a step change of torque reference from 0.22 to 1.0
p.u obtained in DTC-hysteresis-based and DTC-CSF-based in-
duction machines. The values of machine and control system
parameters are given in Table I. From Fig. 3, it can be seen that
the output torque ripple in DTC-CSF is reduced and the output
torque is regulated closer to the reference with a constant and
higher switching frequency. In general, the output torque ripple
can be decreased by increasing the frequency of the triangular
carriers with proper gain setting of the PI controller. On the
other hand, to increase the switching frequency and to reduce
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TABLE I
INDUCTION MACHINE PARAMETERS, HYSTERESIS-BASED DTC AND

CSF-BASED DTC DRIVES

the torque ripple of the DTC hysteresis-based, one can ideally
reduce the hysteresis band. This may lead to the incorrect volt-
age vector selections (where Tstat = −1) that will cause rapid
decreases in output torque and hence increases the torque ripple
instead of reduces it [36].

III. TORQUE CAPABILITY IN DTC

The behavior of induction machine in DTC drives can be
described in terms of space vectors by the following equations
written in stator flux reference frame

vs = rs is + jωsΨs +
dΨs

dt
(2)

0 = rr ir + j (ωs − ωr )Ψr +
dΨr

dt
(3)

Ψs = Ls is + Lm ir (4)

Ψr = Lr ir + Lm is (5)

Te =
3
4
p

Lm

σLsLr
ΨsΨr sin δsr (6)

where p is the number of poles, δsr is the angle between the
stator flux and rotor flux vectors, ωs is the stator flux angular
frequency, ωr is the rotor angular speed, Ls , Lr , and Lm are the
motor inductances, and σ is the leakage coefficient. The leakage
coefficient σ is given as

σ = 1 − L2
m

LsLr
. (7)

In practice, a rated stator flux and inverter current limit (i.e.,
150–200% of rated current machine) are used to obtain the
maximum torque capability. The maximum output torque can
be retained as long as the operation of rotor speed does not
exceed its base speed. According to (6), the angle δsr plays

Fig. 4. Phasor diagrams at particular flux position for (a) low-speed operation
and (b) high-speed operation.

a vital role in controlling the output torque. Since the angle
δsr mainly depends on the slip angular frequency (ωs − ωr ), to
maintain the output torque to its maximum value, the slip angular
frequency (ωs − ωr ) must always be kept at its maximum value.
This is typically established for speeds below the base speed.

Fig. 4 shows the phasor diagrams of (2) under steady-state
conditions for operations below base speed [see Fig. 4(a)] and
at base speed [see Fig. 4(b)]. For each case, the same magni-
tude of stator flux vector is used and the vectors are drawn in
stator flux d–q reference frame. In the case of low-speed oper-
ation, the back-emf, jωsΨs is small enough such that sufficient
stator voltage can be generated to control both stator flux and
torque, simultaneously. At base speed [see Fig. 4(b)], the stator
voltage vector touches the hexagonal stator voltage boundary
limit. Hence, there are two options to further increase the speed
beyond the base and at the same time maintain the maximum
torque capability.

1) Weaken the flux (in normal practice to be inversely pro-
portional with speed), so that the magnitude of the vector
jωsΨs is retained as the frequency increases. However,
the d component of the stator current will be reduced. Un-
der this condition, the average stator voltage will stay on
the hexagonal boundary and the stator flux is regulated
using two active voltage vectors. This is what happens in
the DTC hysteresis-based drive where the flux locus is
circular and no overmodulation is exploited in the stator
voltage.

2) Operate the inverter in overmodulation mode; thus, the
average stator voltage will go beyond the hexagonal
boundary limit. In normal practice, to obtain the maximum
voltage vector (i.e., six-step mode), the voltage vector ref-
erence of the SVM is modified [15]. Once the six-step volt-
age is reached, to further increase the speed, the flux will
have to be weakened. This method can be performed for
the DTC based on SVM. This method cannot be applied
in DTC hysteresis-based drive because no stator voltage
reference is available to implement the overmodulation.

Basically both methods will ensure that (ωs − ωr ) is kept to
the maximum value. In the first method, the zero-voltage vector
is not used; hence, the angular speed of the stator flux will be
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increased. As the speed is increased, a more tangential voltage
vector is selected; hence, higher stator flux angular speed is
achieved. In the second method, the zero-voltage vector is also
not used. The angular speed of the stator flux is increased since
instead of alternating between two vectors, a single voltage
vector is gradually applied as the waveform gradually changes
from PWM to six-step mode. The flux will only be weakened
once the six-step voltage is reached. This means that in the
second method, the constant torque region is extended since the
voltage capability is increased.

The previous discussion indicates that the control of maxi-
mum torque for a wider speed range is very much related to the
ability to extend the limit of stator flux angular frequency or the
stator voltage limit. In this paper, a method that uses an overmod-
ulation strategy is proposed. However, unlike other modulation
strategies, which used SVM (the second method), the proposed
method is based on the DTC hysteresis-based structure, which
contains no voltage vector reference.

IV. IMPROVED TORQUE CAPABILITY WITH THE PROPOSED

OVERMODULATION STRATEGY

This section presents the proposed overmodulation strategy
to improve capability of torque over a wide speed range opera-
tion. The method is different from the SVM-based system where
the reference stator voltage is available and overmodulation is
achieved by modifying the reference voltage. With no reference
voltage available in DTC-CSF, the overmodulation is accom-
plished by gradually transforming the PWM voltage waveform
to six-step mode, which is achieved by transforming the shape of
the stator flux locus from circular to the hexagonal shapes. Since
DTC-CSF uses the same structure as the DTC hysteresis-based,
the control structure is simple yet CSF and reduced torque rip-
ple can be achieved without the need of SVM. This section will
first discuss how the PWM to six-step mode operation is ac-
complished by shaping the stator flux locus without resolving to
DTC-SVM-based drive. Next, the operation in field-weakening
mode using the proposed overmodulation is described.

A. Extending the Stator Voltage Operation to Six-Step Mode

In the SVM-based system, the overmodulation starts when
the reference voltage vector goes beyond the stator voltage
hexagonal trajectory. The reference voltage will be modified
whenever it goes outside the hexagonal limits [15]. If the mod-
ified reference voltage moves along the hexagonal trajectory,
the synthesized voltage will have no zero-voltage vector. In
DTC hysteresis-based drive, zero-voltage vectors will not be
selected when the actual (or estimated) torque does not reach
the reference torque. In order to fully utilize the dc voltage, the
stator voltage magnitude has to go beyond this limit and operate
in six-step mode. However, with the conventional hysteresis-
based structure DTC drive, this is not possible. With regard to
the stator flux locus, when the reference voltage is sinusoidal,
i.e., within the hexagon, the locus of the stator flux is circu-
lar [see Fig. 5(a)]. As a matter of fact, when the stator voltage
vector trajectory moves along the hexagon without any zero-
voltage vector application, the stator flux locus is still circular

Fig. 5. Mapping of the voltage vector and the stator flux trajectories.

[see Fig. 5(b)]. This is because without the zero vectors, the
stator flux is still regulated by the two active vectors and, hence,
will follow the circular locus reference, with limited stator volt-
age and angular flux frequency. To go around this problem, what
we need to do is to modify the output of the stator flux hysteresis
comparator, so that the selected voltage vector will transform
stator voltage to six-step waveform.

In the proposed overmodulation strategy, the stator flux locus
is controlled to form the hexagonal shape during motor acceler-
ation. By doing so, lower harmonic components in stator current
due to the hexagonal flux locus and six-step operations occur but
only during acceleration (or deceleration). The proposed control
structure to establish the hexagonal flux locus utilizing DTC-
CSF will be explained in Section V. When the motor accelerates,
the back-emf increases; therefore, larger stator voltage is needed
to satisfy the torque demand. The demand will be naturally ful-
filled by the controller that will gradually drop the applications
of zero-voltage vectors as the speed increases. As the speed is
further increased and no more zero-voltage vector is available,
the selection of voltage vector will naturally transform to six-
step mode [see Fig. 5(c)]. In other words, by transforming the
stator flux locus to the hexagonal shape, we provide the room
for the stator voltage to increase beyond the hexagonal bound-
ary and the torque demand will naturally transform the stator
voltage from PWM to six-step mode.

Fig. 6 depicts the simulation results to compare the perfor-
mance of stator voltage and torque capability for DTC-CSF with
and without the proposed overmodulation strategy. The values of
the machine and parameter systems used for both cases are given
in Table I. As can be seen, a smooth transition of stator voltage
from PWM to six-step mode is achieved with the proposed over-
modulation strategy and hence extending the constant torque
region.

B. Flux Weakening With Six-Step Mode

In the flux-weakening region, a higher capability of torque can
be achieved as the proposed overmodulation strategy operates
stator voltage in the six-step mode by continuously control-
ling the flux vector to form hexagonal locus. This paper uses a
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Fig. 6. Comparison of the performances of stator voltage and torque capability
for (a) DTC-CSF without the proposed overmodulation and (b) DTC-CSF with
the proposed overmodulation.

Fig. 7. Operational control of the locus and magnitude of stator flux.

conventional flux-weakening method (in order to retain the sim-
ple control structure) but with a minor modification. Using the
proposed method, the magnitude of the hexagonal stator flux is
inversely proportional to the rotor speed when the motor oper-
ates beyond the base speed, ωbase,hex . However, a step reduction
of 13.4% in the flux magnitude is applied as the hexagonal flux
locus is immediately changed back into the circular locus when
the motor speed reaches its target (steady-state speed). The op-
erational control of locus and magnitude of stator flux can be
described as illustrated in Fig. 7. This reduction ensures that
the output torque can be well regulated to its reference. In fact,
higher level of flux reference (which for this case is without
a step reduction), particularly at very high speed operations,
gives insufficient stator flux angular frequency (or appropriate
slip) which may degrade the output torque control, as discussed
in [1]. The reference of flux is given as

Ψs,ref = Ψs,rated
ωbase,hex

ωm
(1 − α. cos (π/6)) (8)

where Ψs ,rated is the stator flux rated and α is used to activate
the step reduction when α equals 1 otherwise it is 0.

V. PROPOSED CONTROL STRUCTURE

Fig. 8 shows the control structure of DTC-CSF with the pro-
posed overmodulation strategy. Notice that all components of
the DTC hysteresis-based scheme are retained, except for the
inclusion of the “modification of flux error status” block which

Fig. 8. Structure of DTC-CSF-based induction machine with the proposed
block of modification of flux error status.

Fig. 9. Proposed digital outputs for modified flux error status corresponding
to the flux positions (subsector in every sector).

is responsible for the overmodulation mode by transforming the
stator flux locus from circular to hexagon. For speed control op-
eration, the torque reference Te ,ref is generated from a PI speed
controller and the reference of flux is calculated using (8) in flux
weakening region or it is held at rated flux in constant torque
region. The locus of stator flux is controlled to form a hexago-
nal shape when the motor operates under acceleration condition
(i.e., by inspecting the error of rotor speed Eω ) by modifying
the flux error status (Ψ+

s ) to a new flux status (Ψ−
s ) before it is

being fed to the lookup table.
The proposed digital outputs of the modified flux error status

Ψ−
s (to perform hexagonal flux locus) according to flux positions

are illustrated in Fig. 9. Each sector in the stator flux plane
is divided into two subsectors: subsector1 (shaded area) and
subsector2 (unshaded area). For example, let us consider a flux
located in sector 1 and rotating in a counterclockwise direction.
When the flux position is in subsector1, the “modification of flux
error status” block will produce a signal that will request the flux
to increase (i.e., v2). As the flux enters subsector 2, the block will
produce a signal that will request the flux to decrease (i.e., v3).
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Fig. 10. Complete drive system. (a) Picture of the experiment setup. (b) Func-
tional block diagram of the experiment setup.

This will be repeated as the flux moves to a different sector and as
a result, the stator flux locus will become hexagonal. As the flux
travels from one tip to another, zero vectors will be alternately
selected between the active voltage vectors. However, as the
rotor speed increases, less zero vector duration will be generated,
and thus, this will ensure the stator flux frequency is increased
to maintain the maximum torque capability.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To verify the feasibility of the proposed overmodulation and
flux weakening strategy, a complete drive system, as shown in
Fig. 10, has been realized. The experimental setup consists of
an insulated gate bipolar transistor inverter and a 1.5-kW, four-
pole squirrel cage induction motor. The actual parameters of an
induction motor and parameters for the hysteresis-based DTC
and CSF-based DTC drives are shown in Table I. For safety
reasons, the dc voltage was limited to 240 V, which means that
the based speed is reduced to 570 r/min. The control algorithm is

implemented on a dSPACE 1102 controller board and an Altera
FPGA (APEX20KE) board. The sampling period of the DTC
scheme, including the proposed overmodulation, is 55 μs.

To investigate the performance of torque capability for a wide
speed range operation, a step change of speed reference from
0.5 to 2.8 p.u has been carried out for five different schemes.
For convenience of identification, these schemes are referenced
as follows.

1) DTC1: conventional hysteresis-based DTC and conven-
tional flux-weakening method [α = 0 in (8)].

2) DTC2: the hysteresis-based DTC with the proposed over-
modulation strategy and conventional flux-weakening
method.

3) DTC3: the hysteresis-based DTC with the proposed over-
modulation strategy with a step reduction of flux applied
when the motor speed reaches its reference in flux weak-
ening region [α = 1 in (8)].

4) DSC: the hysteresis-based direct self control (DSC) as pro-
posed in [12] and conventional flux-weakening method.

5) DTC-CSF2: the CSF-based DTC with the proposed over-
modulation strategy with a step reduction of flux ap-
plied when the motor speed reaches its reference in flux-
weakening region [α = 1 in (8)].

Fig. 11 shows the experimental results of motor torque, stator
flux, motor speed, and stator phase voltage when the step change
of reference speed is applied in DTC1, DTC2, and DTC3 (all
schemes used hysteresis-based controller). From Fig. 11, it can
be seen that the capability of output torque in DTC2 or DTC3
during the motor acceleration is higher than that obtained in
DTC1 and hence gives faster motor acceleration. The proposed
overmodulation strategy (utilized in DTC2 and DTC3), as dis-
cussed in the previous section, provides an extension of constant
torque region and allows the stator voltage to operate in com-
plete six-step mode, particularly in flux weakening region. The
extension of the constant torque region in Fig. 11 can be more
clearly demonstrated through torque–speed curve, as depicted
in Fig. 12, which shows the plot of torque versus speed obtained
from Fig. 11. The figure indicates that the constant torque re-
gion for DTC3 is increased by more than 10% when compared
with DTC1. With the extension of the constant torque region,
the torque capability during the field-weakening mode is also
improved.

The exploitations of stator voltage in overmodulation region
as well as the smooth transition from the PWM to the six-step
mode in DTC2 and DTC3 are shown in Fig. 13. Fig. 13 also
shows the output torque in DTC1, DTC2, and DTC3 as the
motor speed approaches and reachs its target. In these cases, the
data taken (i.e., in the region of “↔”) are plotted using a larger
scale to clearly present the effects. From this figure, it can be
seen that the regulation of output torque in DTC2 is poor when
the stator flux locus returns to the circular shape because of the
excessive flux reference. For this reason, the step reduction of
the flux amplitude as introduced in (8) is applied in DTC3 at the
instant the stator flux returns to the circular locus when the ref-
erence speed is reached. By doing so, the DTC3 provides better
output torque control and higher capability of torque as depicted
in Fig. 13.



2572 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 5, MAY 2012

Fig. 11. Experimental results of output torque, stator flux magnitude, motor speed, and stator phase voltage when a step change of speed reference from 0.5 to
2.8 p.u is applied in (a) DTC1, (b) DTC2, and (c) DTC3.

Fig. 12. Experimental graph of torque–speed for (a) DTC1 and (b) DTC3
(corresponding to the results obtained in Fig. 11).

The operation of stator flux locus for DTC1, DTC2, and DTC3
corresponding to the results obtained in Fig. 11 are depicted in
Fig. 14. It is apparent that the step reduction of flux magnitude
proposed in DTC3 fits into the hexagonal flux locus as the motor
speed reaches its reference. On the other hand, the magnitude of
circular flux locus in DTC2, which is identical to the magnitude
of hexagonal flux locus, gives a flux reference which is too high
and hence causes poor performance of torque control at very
high speed operation as shown in Figs. 11(b) and 13(b). From
Fig. 14, it also can be noticed that the magnitude of the stator
flux in DTC1 and DTC3 are the same as the motor speed reaches
its reference.

Fig. 15 depicts the experimental results of motor torque, stator
flux, motor speed, and stator current when the step change of
reference speed is applied in DTC3, DSC, and DTC-CSF2. From
Fig. 15, it can be observed that the capabilities of torque obtained

Fig. 13. Zoomed images (corresponding to the results obtained in Fig. 11) of
stator phase voltage and output torque in (a) DTC1, (b) DTC2, and (c) DTC3.

Fig. 14. Comparison of stator flux locus obtained in (a) DTC1, (b) DTC2, and
(c) DTC3.

in these schemes, during motor accelerations, are comparable
to the flux locus that forms into the hexagonal shape. Although
the DSC is known to offer superior dynamic performance, this
scheme produces high currents total harmonic distortions (THD)
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Fig. 15. Experimental results of output torque, stator flux magnitude, motor speed, and stator current when a step change of speed reference from 0.5 to 2.8 p.u
is applied in (a) DTC3, (b) DSC, and (c) DTC-CSF2.

Fig. 16. Experimental results of phase current frequency spectrum and output torque for (a) basic DTC and (b) DTC-CSF at the speed of approximately 20, 30, and
55 rad/s.

even operating in steady-state conditions. As can be seen from
Fig. 15(b), the stator current in DSC seems to have high THD
(obviously as the motor speed runs at 0.5 p.u) since the flux
locus is always hexagonal. In Fig. 15, it also can be noted that
the DTC-CSF2 offers lower output torque ripple when the output
torque is controlled at its reference.

Fig. 16 shows the frequency spectrum of the phase current
obtained from the experimental results for the basic DTC and
DTC-CSF at the speed of 20, 30, and 55 rad/s, while the out-
put torque is controlled at 2 Nm. It can be seen that the phase
current in DTC-CSF contains dominant harmonic at triangu-
lar frequency (i.e., at 3.03 kHz) regardless of the speed, as

opposed to the DTC hysteresis-based which has a frequency
spectrum which is spread out and depends on the operating
speed.

VII. CONCLUSION

An overmodulation strategy for DTC-CSF-based induction
machine drives is proposed to achieve higher capability of torque
for a wider speed range operation. In this way, the hexagonal
flux locus is operated to allow the stator voltage increases up to
six-step mode as the rotor speed increases, in constant torque
region. In addition, the proposed overmodulation employed in
DTC-CSF offers improved performance of torque control and
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reduced torque ripple. The main benefit of the proposed strategy
is its simplicity since the proposed control structure does not re-
quire a SVM modulator normally employed for overmodulation
operation.
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