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Abstract

The present PhD thesis is devoted to the development of the use of the magnetic small-
angle neutron scattering (SANS) technique for analyzing the magnetic microstructures of
magnetic materials. The emphasis is on the three aspects: (i) analytical development of the
magnetic Guinier law; (ii) the application the magnetic Guinier law and of the generalized
Guinier-Porod model to the analysis of experimental neutron data on various magnets such
as a Nd-Fe-B nanocomposite, nanocrystalline cobalt, and Mn-Bi rare-earth-free permanent
magnets; (iii) development of the theory of uniaxial neutron polarization analysis and
experimental testing on a soft magnetic nanocrystalline alloy.

The conventional “nonmagnetic” Guinier law represents the low-q approximation for
the small-angle scattering curve from an assembly of particles. It has been derived for
nonmagnetic particle-matrix-type systems and is routinely employed for the estimation of
particle sizes in e.g., soft-matter physics, biology, colloidal chemistry, materials science. Here,
the extension of the Guinier law is provided for magnetic SANS through the introduction of
the magnetic Guinier radius, which depends on the applied magnetic field, on the magnetic
interactions (exchange constant, saturation magnetization), and on the magnetic anisotropy-
field radius. The latter quantity characterizes the size over which the magnetic anisotropy
field is coherently aligned into the same direction. In contrast to the conventional Guinier
law, the magnetic version can be applied to fully dense random-anisotropy-type ferromagnets.
The range of applicability is discussed and the validity of the approach is experimentally
demonstrated on a Nd-Fe-B-based ternary permanent magnet and on a nanocrystalline cobalt
sample.

Rare-earth-free permanent magnets in general and the Mn-Bi-based ones in particular
have received a lot of attention lately due to their application potential in electronics devices
and electromotors. Mn-Bi samples with three different alloy compositions were studied by
means of unpolarized SANS and by very small-angle neutron scattering (VSANS). It turns
out that the magnetic scattering of the Mn-Bi samples is determined by long-wavelength
transversal magnetization fluctuations. The neutron data is analyzed in terms of the general-
ized Guinier-Porod model and the distance distribution function. The results for the so-called
dimensionality parameter obtained from the Guinier-Porod model indicate that the magnetic



iv

scattering of a Mn45Bi55 specimen has its origin in slightly shape-anisotropic structures and
the same conclusions are drawn from the distance distribution function analysis.

Finally, based on Brown’s static equations of micromagnetics and the related theory of
magnetic SANS, the uniaxial polarization of the scattered neutron beam of a bulk magnetic
material is computed. The theoretical expressions are tested against experimental data on a
soft magnetic nanocrystalline alloy, and both qualitative and quantitative correspondence is
discussed. The rigorous analysis of the polarization of the scattered neutron beam establishes
the framework for the emerging polarized real-space techniques such as spin-echo small-
angle neutron scattering (SESANS), spin-echo modulated small-angle neutron scattering
(SEMSANS), and polarized neutron dark-field contrast imaging (DFI), and opens up a new
avenue for magnetic neutron data analysis on nanoscaled systems.
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δ (r) the Dirac’s delta function

δkl the Kronecker delta function, δkl = 0 if k ̸= l and δkl = 1 if k = l

ℏ the reduced Plank’s constant, ℏ= h
2π

∼= 1.055×10−34 Js

Micromagnetics-specific Symbols

lM the magnetostatic exchange length characterizing the competition between the ex-
change and magnetostatic interactions, defined as lM =

√
2A/(µ0M2

s ), see subsec-
tion 2.8.2 for more details

lH the micromagnetic exchange length of the field characterizing the field-dependent size
of perturbed regions around microstructural defects, defined as lM =

√
2A/(µ0MsHi),

see subsection 2.8.2 for more details
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lD the micromagnetic exchange length of the DMI field, defined as lD = 2D/(µ0M2
s ),

see subsection 2.8.2 for more details

A the exchange-stiffness constant, see subsection 2.8.2 for more details

D the DMI constant, see subsection 2.8.2 for more details

Ms the saturation magnetization, see subsection 2.8.2 for more details

Hi the internal magnetic field, Hi = H0 −NMs (N: demagnetizing factor), see subsec-
tion 2.8.2 for more details

M0 the macroscopic saturation magnetization of the sample, M0 =V−1 ∫
V Ms(r)dV , see

subsection 2.8.2 for more details

SH(q) the micromagnetic anisotropy-field scattering function, see subsection 2.11.1 and
subsection 2.11.2 for more details

SM(q) the micromagnetic longitudinal magnetization scattering function, see subsection 2.11.1
for more details

RH(q,θ ,Hi) the dimensionless micromagnetic anisotropy-field response function, see sub-
section 2.11.1 and subsection 2.11.2 for more details

RM(q,θ ,Hi) the dimensionless longitudinal magnetization response function, see subsec-
tion 2.11.1 for more details

Heff(r) the effective magnetic field, Heff(r) = H0 +Hd(r)+Hp(r)+Hex(r)+HDMI(r) see
section 2.8 for more details

Neutron-specific symbols

mn the neutron mass, mn = 1.675×10−27 kg

µn the neutron’s magnetic dipole moment, µn =−1.913µN (µN being the nuclear mag-
neton)

µN the nuclear magneton, µN = eℏ
2mp

∼= 2.051×10−27 JT−1

k0 the wave vector of the incident neutron

k1 the wave vector of the scattered neutron

q the scattering vector, q = k0 −k1



Nomenclature xv

θ the scattering angle in the detector plane, see Figure 2.2 for more details

ψ the scattering angle in the forward direction (in the plane defined by k0 and k1), see
Figure 2.2 for more details

Φ the incident beam flux, the number of neutrons per second per unit area perpendicular
to the direction of neutron beam

dΩ the solid angle, dΩ = sinψdθdψ

d2σ

dΩdE ′ the double differential scattering cross section, d2σ

dΩdE ′ =
n′

ΦdΩdE ′ , see section 2.3 for
more details

dσ

dΩ
the differential scattering cross section, dσ

dΩ
=

∫
∞

0 ( d2σ

dΩdE ′ )dE ′, see section 2.3 for more
details

σ the total scattering cross section, σ =
∫

4π
( dσ

dΩ
)dΩ, see section 2.3 for more details

dΣ

dΩ
the macroscopic SANS cross section, dΣ

dΩ
= N

V
dσ

dΩ

V int
nuc(r) the nuclear interaction pseudo-potential, see section 2.4 for more details

b the atomic scattering length, b = b′− ib′′, where the real part b′ can be both positive
and negative and the imaginary part b′′ describes the neutron capture or absorption by
the given nucleus, see section 2.4 for more details

σcoh the nuclear coherent scattering cross section, σcoh = 4πb2
coh = 4πb

2, see section 2.4
for more details

σinc the nuclear incoherent scattering cross section, σinc = 4πb2
inc = 4π(b2 − b

2
), see

section 2.4 for more details

Ñ(q) the Fourier Transform of scattering-length density N(r), see section 2.4 for more
details

V int
mag the magnetic interaction potential, see section 2.5 for more details

M(r) the magnetization vector field, see section 2.5 for more details

Q̃(q) the Halpern-Johnson (magnetic interaction) vector defined as Q̃ = q̂
(

q̂ ·M̃
)
− M̃,

see subsection 2.5.1 for more details

dΣtot
dΩ

the total unpolarized SANS cross section, dΣtot
dΩ

= dΣnuc
dΩ

+
dΣmag

dΩ
, see section 2.6 for

more details
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the nucleat unpolarized SANS cross section, dΣnuc
dΩ

= 8π3

V |Ñ(q)|2, see section 2.6 for
more details
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the magnetic unpolarized SANS cross section, dΣmag
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V b2
H |Q̃(q)|2, see section 2.6

for more details
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Chapter 1

Introduction

Small-angle neutron scattering (SANS) is one of the most important techniques for mi-
crostructure determination, since it allows the investigation of both microstructural (chemi-
cal) and magnetic inhomogeneities in the volume of materials on a mesoscopic length scale
between a few and a few hundred nanometers. SANS provides statistically-averaged informa-
tion about a large number of scattering objects, in contrast to e.g., electron-microscopy-based
imaging methods. Figure 1.1 gives an overview on the microstructural size regimes which are
accessible through various observational methods. When conventional SANS is combined
with so-called ultra or very small-angle neutron scattering (USANS or VSANS) the spatial
resolution can be extended up to the micrometer range [53, 52]. This is an important size
regime in which many macroscopic material properties are realized. The standard references
for nonmagnetic SANS and its x-ray counterpart, small-angle x-ray scattering (SAXS), are
the well-known textbooks by Guinier and Fournet [36], Glatter and Kratky [32], Feigin and
Svergun [27], Svergun, Koch, Timmins, and May [121], and by Gille [30]. Michels [79] has
recently provided a detailed exposition of magnetic SANS; see also the recent review [92]
for many examples, which highlight the versatility of the magnetic SANS technique for the
study of a wide range of magnetic materials.

In this thesis, the focus is exclusively on the so-called “diffuse” magnetic SANS, i.e., with
magnetic neutron scattering at small scattering angles around the forward direction arising
from quasi-non-periodic, continuous long-wavelength magnetization fluctuations (compare
panel (A1) on the Figure 1.2). The term “diffuse magnetic SANS” is used here to distinguish
it from the magnetic small-angle diffraction, which is the method of choice for investigating
long-range-ordered periodic structures such as helical spin systems, spin-density waves,
flux-line lattices in superconductors, or the recently discovered skyrmion crystals (compare
panel (A2) on Figure 1.2) [92]. Since in “diffuse” experiments the wavelength of the incident
neutrons is typically much larger than the Bragg cutoff of the material, the discrete atomic
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Fig. 1.1 Microstructural size regimes accessible by different observational methods. The
techniques range from neutron diffraction, which is used to investigate atomic structures, to
optical microscopy, which can be employed to image macroscopic objects such as bacteria or
crystalline grain structures. Image courtesy of Roger Pynn, Indiana University, Bloomington,
USA. Taken from [107, 79].

structure of matter is generally of no relevance for SANS. Therefore, diffuse magnetic SANS
can be described within a continuum approach, where the three-dimensional magnetization
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Fig. 1.2 Schematic illustration of the transformation from real space to reciprocal space
for a smooth texture (A1), a discrete lattice with lattice spacing a (A2), and a smooth
incommensurate modulation on top of a discrete lattice (A3). Image courtesy of Sebastian
Mühlbauer, Technische Universität München, Germany. Taken from [107, 79].

vector field of the sample, M(r), is the relevant quantity that determines the elastic magnetic
SANS cross section.

In [79], the theoretical framework for magnetic SANS has been established in terms of the
continuum theory of micromagnetics. Micromagnetism is a mesoscopic phenomenological
theory that in its quasi-static version is designed to compute the equilibrium magnetization
state of an arbitrarily-shaped ferromagnetic body, provided the applied magnetic field, the
geometry of the ferromagnet, and all the materials parameters are known [11, 2, 62]. Ana-
lytical expressions for the magnetic SANS cross section are provided in [79], which permit
the analysis of the magnetic interactions, e.g., the exchange-stiffness constant, the strength
and spatial structure of the magnetic anisotropy field and of the magnetostatic field, and
the field dependence of magnetic correlations. One central result of the present thesis – the
magnetic Guinier law – has emerged from the desire to find a low-q approximation for the
expression of the magnetic SANS cross section (at small scattering angles) [83], similar
to the well-known “conventional” Guinier law in nonmagnetic SANS and SAXS, which
allows for the quick determination of the particle size in the initial stages of the data analysis.
This represents a fundamental result in magnetic neutron scattering theory. The derived
magnetic Guinier law and the so-called generalized Guinier-Porod law have then also been
experimentally tested on nanocrystalline Cobalt and on a rare-free Mn-Bi compound [72],
which is a promising material for permanent-magnet applications. The second central result
of this thesis – development and experimental testing of uniaxial polarization analysis proce-



4 Introduction

dures [73] – is motivated by recent advances in neutron instrumentation, more specifically by
the development of efficient 3He spin filters [4, 101, 98], and by the concomitant availability
of such polarization capabilities at neutron facilities worldwide. The polarization of the
scattered neutron beam can be analyzed in terms of the micromagnetic theory and allows for
the determination of magnetic interaction parameters.

Besides [79], this thesis largely relies on [83, 72, 73], which constitute the main results.
The thesis is organized as follows: in chapter 2, the basic properties of the neutron are
discussed and the expressions for the elastic nuclear (nonmagnetic) and magnetic neutron
scattering cross sections, are established. Both the distinctness of SANS from conventional
particle scattering and the origins of magnetic SANS are discussed, and the expressions for
the magnetization Fourier components are linked to the micromagnetic theory. This results in
a closed-form expression for the SANS cross section, which allows for a quantitative analysis
of experimental data.

Chapter 3 discusses the magnetic Guinier law [83]. Small-angle scattering of X-rays and
neutrons is a routine method for the determination of nanoparticle sizes. The conventional
(nonmagnetic) Guinier law represents the low-q approximation for the small-angle scattering
curve from an assembly of particles. The Guinier law has originally been derived for non-
magnetic particle-matrix-type systems and it is successfully employed for the estimation of
particle sizes in various scientific domains. An important prerequisite for it to apply is the
presence of a discontinuous interface separating particles and matrix. In this chapter, the
Guinier law is introduced for the case of magnetic SANS and its applicability is experimen-
tally demonstrated on the nanocrystalline cobalt sample. It is well known that the magnetic
microstructure of nanocrystalline ferromagnets is highly nonuniform on the nanometre length
scale and is characterized by a spectrum of continuously varying long-wavelength magneti-
zation fluctuations, i.e., these systems do not manifest sharp interfaces in their magnetization
profile. The introduced quantity of the magnetic Guinier radius depends on the applied
magnetic field, on the magnetic interactions (exchange, magnetostatics) and on the magnetic
anisotropy-field radius, which characterizes the size over which the magnetic anisotropy field
is coherently aligned into the same direction. In contrast to the nonmagnetic conventional
Guinier law, the magnetic version can be applied to fully dense random-anisotropy-type
ferromagnets.

Chapter 4 employs the generalized Guinier-Porod model to experimentally investigate a
promising permanent magnet material [72]. More specifically, the results of an unpolarized
VSANS study on Mn-Bi-based rare-earth-free permanent magnets are reported here. For
this material, the magnetic SANS cross section is dominated by long-wavelength transversal
magnetization fluctuations, and has been analyzed in terms of the Guinier-Porod model
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and the distance distribution function. This provides the radius of gyration which, in the
remanent state, ranges between about 220−240nm for the three different alloy compositions
investigated. Moreover, computation of the distance distribution function, in conjunction with
results for the so-called s parameter obtained from the Guinier-Porod model, indicates that
the magnetic scattering of a Mn45Bi55 sample has its origin in shape-anisotropic structures.

Chapter 5 is concerned with the development of the uniaxial polarization analysis tech-
nique, as it can be implemented on a SANS instrument [73]. Based on the solution of Brown’s
static equations of micromagnetics (see chapter 2), the uniaxial polarization of the neutron
beam scattered off a bulk magnetic material is computed. The micromagneic approach takes
into account the isotropic exchange interaction, the antisymmetric Dzyaloshinskii-Moriya
interaction, magnetic anisotropy, the dipole-dipole interaction, as well as the effect of an
applied magnetic field. In the high-field limit, the solutions for the magnetization Fourier
components are used to obtain closed-form results for the spin-polarized SANS cross sections
and the ensuing polarization. The theoretical expressions are compared to experimental data
on a soft magnetic nanocrystalline alloy. Thus, a general framework for polarized real-space
neutron methods is provided, and this approach may open up a new avenue for magnetic
neutron data analysis on magnetic microstructures.

Finally, chapter 6 summarizes the main findings of this thesis and provides an outlook
into future challenges.





Chapter 2

Theory of Magnetic Neutron Scattering

This chapter provides an overview of the theory of neutron scattering in general and magnetic
small angle neutron scattering (SANS further) in particular. It aims to be self-sufficient, but
the reader requiring more details is directed to: a summary lecture on neutrons and magnetism
[25], recent reviews on magnetic neutron scattering [78, 92] or a recently published book
dedicated to the subject [79] in order of the increasing detail.

2.1 Why neutrons?

Neutrons’ particular interest as a probe arise from their key properties: mass, zero net
electrical charge and spin angular momentum.

The value of the neutron mass of mn = 1.675 × 10−27 kg results in the de Broglie
wavelength on the order of interatomic distances in many crystaline and liquid materials,
thus it allows to access the structure of matter. Moreover, the typical velocity of the research
neutrons results in energy on the order of elementary excitations in solids, thus, dynamic
features can be explored too – via the study of inelastic scattering which is beyond the scope
of this work.

The spin angular momentum of the neutron S = ±1
2ℏ brings with it the associated

magnetic dipole moment µn =−1.913µN (µN being the nuclear magneton and ℏ the reduced
Plank’s constant) and allows a neutron to interact with unpaired electrons. Hence, magnetic
structure and dynamics can be investigated.

The zero net charge implies that the neutron is not subject to the Coulomb barrier.
Respectively, the scattering process can be analyzed within the Born approximation i.e.
multiple scattering process can usually be ignored. This brings about very high penetration
depth for most materials, which on the one hand allows for the use of complex sample
environments, measurements on sealed samples (like batteries, [124]) and measurements on
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large industrial samples (like a full wing of an aircraft [49]) but on the other hand implies that
most neutrons interact very weakly with the majority of samples. Additionally, this implies
that neutron measurements would be very non-destructive and, in case one considers typical
transmission scattering experiment, non-sensitive to surface effects.

The neutron-nucleus interaction varies strongly across the periodic table and even between
isotopes in a non-systematic manner. Thus, unlike in X-ray scattering, the light elements
and even isotopes could be distinguished and, by varying the isotopic composition, the
contrast-variation technique could be employed [43, 117].

All these render neutrons extremely attractive for investigating the structure and dynamics
of matter on a wide range of length and time scales. It also makes them irreplaceable when
bulk information needs to be obtained in a non-destructive manner. Naturally, this renders
soft-matter science one of the primary interested parties in the neutron community.

Another major branch of the neutron community are the magnetism users, the reason
being that magnetic neutron scattering is one of the few experimental techniques that allow
to measure the magnetic microstructure in the bulk.

The average life-time of a neutron is about 900 seconds, thus there is no constraint on the
measurement side, neutron can reach the sample, scatter and get to the detector. However,
there is a constraint on storage – there is simply no way to "store neutrons" for a measurement.
Respectively, they have to be generated continuously and this requires a large-scale facility.
Furthermore, neutron sources have an inherently low (compared to X-ray) brightness.

Neutron sources

Neutrons are produced by either nuclear fission of heavy nuclei or by spallation of heavy
metal targets [129]. Yet, thus produced neutrons are highly energetic and are “moderated” by
a moderator like light water, heavy water or graphite to slow them down to the energy of the
moderator. Then, the neutron-velocity spectrum is to a very good approximation described
by a Maxwellian distribution [14].

Comparing the kinetic energy E0 of the moderated neutrons to the thermal energy kT ,
research neutrons are commonly classified as hot, thermal, and cold (see Table 2.1.)

2.2 Neutron interactions

There are two types of interaction that neutrons can have with matter: either a very short-
range one with a nucleus or a dipolar one with unpaired electrons (see Figure 2.1). In
principle, both interactions are always going to be present and for the proper analysis of the
data one would always need to consider both. Though, in non-magnetic systems, magnetic
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E0 (meV) T (K) λ (Å)

Cold Neutrons 0.1−10 1-150 3-30
Thermal Neutrons 10-100 120-1200 1-3
Hot neutrons 100-500 1200-6000 0.4-1

Table 2.1 Classification of the research neutrons into cold, thermal and hot. The values
indicated correspond to the spectra from the ILL. Adapted from [111, 79].

scattering is often considered to be orders of magnitude smaller than the nuclear one and
hence is frequently omitted. Additionally, the dipolar nature of magnetic scattering implies
that it would be highly anisotropic.

Fig. 2.1 Sketch of the penetration depth and interaction types for commonly used probes:
electron, photon, and neutron. Taken from [107].
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Neutron constraints

Notably, both interactions are quite weak, in a typical experiment in transmission geometry
most (> 90%) neutron simply pass through the sample. This brings in a constraint on the
sample dimensions: it has to be thin enough to ensure high transmission and guarantee
the the single scattering event approximation (also known as the Born approximation, see
subsection 2.3.2 for more details) is valid, yet, the irradiated volume has to be as high as
possible to ensure a good signal-to-noise ratio.

Thus, the weak interactions and low fluxes make neutron techniques signal-limited and
they are practised only because they provide the information that is simply unobtainable via
other means [107].

2.3 Scattering principle and quantities

Fig. 2.2 A simplified sketch of a scattering experiment. Incident neutron is characterized by
the wave vector k0, the scattered neutron by k1 and their difference is the scattering vector
q = k0 −k1. Adapted from [12].

Figure 2.2 provides a sketch for the scattering principle and allows to define the relevant
quantities – scattering cross sections. The incident neutron is characterized by the wave-vector
k0, scattering event takes place at the sample and after the scattered neutron is characterized
by k1. The change in the wave-vector defines the momentum transfer or the scattering vector
q:

q = k0 −k1. (2.1)
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Generally speaking, the energy of a neutron can change during the scattering event:

∆E = E0 −E1 =
ℏ2

2mn
(k2

0 − k2
1), (2.2)

but this work is limited to elastic scattering only, i.e. the length of k0 and k1, respectively the
neutron energies before and after the interaction with the sample are the same. Then, it is
readily verified that:

q = |⃗q|= 2k0 sin(ψ/2) =
4π

λ
sin(ψ/2)∼= k0ψ (2.3)

in the small angle approximation. Note, that in various sources different nomenclature is
often employed, and the reader is directed to the nomenclature section in the beginning of
this manuscript for the details on the notaion adopted here.

2.3.1 Microscopic scattering cross sections

The double differential scattering crossection is then defined as follows: the number of
neutrons n′ scattered per second into the solid angle dΩ = sin(ψ)dθdψ with final energy
within dE ′ from the final neutron energy E ′ and normalized to the incident beam flux Φ (i.e.
the number of neutrons per second per unit area perpendicular to the direction of neutron
beam):

d2σ

dΩdE ′ =
n′

ΦdΩdE ′ . (2.4)

The energy-integrated quantity is then the differential scattering cross section:

dσ

dΩ
=

∫
∞

0

n′

dΩdE1
dE1 (2.5)

and integrated over all the directions - the total scattering crossection

σ = 2π

∫
π

0

dσ

dΩ
sinψdψ. (2.6)

It is worth noting, that in the domain of the small-angle scattering the detectors are usually
position-sensitive (in contrast to energy-sensitive). Thus, the quantity of interest is the energy-
integrated differential scattering cross section. Additionally, it is customary to display the
macroscopic differential SANS crossection dΣ/dΩ per unit volume in cm−1 which relates to
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the microscopic dσ/dΩ as [79]:

dΣ

dΩ
=

N
V

dσ

dΩ
. (2.7)

2.3.2 Transition rate and the Born approximation

Quantum mechanically, the cross section can be computed via summing up all the scattering
processes that allow transition from k0 to k1 state:

dΣ

dΩ
=

1
V

1
Φ

1
dΩ

∑
k1 in dΩ

Wk0→k1 (2.8)

where Wk0→k1 is the transition rate from k0 into k1 which can be evaluated using Fermi’s
golden rule [74, 111]:

∑
k1 in dΩ

Wk0→k1 =
2π

ℏ
ρk1|⟨k1|Vint|k0⟩|2 (2.9)

where Vint is the interaction potential and ρk1 is the density of final momentum states (in
dΩ).

Respectively, in an ideal world (e.g. the undegraduate Physics course) when the interac-
tion potential is known, the matrix element can be evaluated and cross section computed in a
straight-forward manner. In reality, however, the task is highly non-trivial, both computation-
ally and due to the fact that the potential is not known. Thus, to simplify the procedure, the
so-called Born approximation of both incident and scattered neutron being in a plane wave
state is employed. Then, the matrix element reduces to the Fourier transform (FT further)
of the interaction potential, respectively, the transition rate is proportional to the magnitude
squared of the FT of the interaction potential.

Since this work mostly concerns with the magnetic neutron scattering, the magnetic
interaction potential will be discussed in more detail further. Details on the nuclear interaction
potential could be found elsewhere (e.g. [66, 116]) and are included here for completeness
reasons only.
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2.4 Nuclear interaction potential

The formal theory models the short-range and isotropic interaction between nucleus and
neutron via Fermi’s pseudopotential:

V int
nuc(r) =

2πℏ2

mn
bδ (r), (2.10)

where b is the atomic (nuclear) scattering length that measures both the amplitude of the
scattering wave and the strength of the potential of a strongly bound nucleus at origin (r = 0)
and δ (r) is the Dirac’s delta function. It should be noted that Equation 2.10 is not the actual
physical interaction potential, however it is the only one that in the Born approximation yields
the required isotropic scattering behavior [116, 66]. Likewise, the b is a phenomenological,
experimentally measured and tabulated quantity (see [113]) rather then derived from first
principles one.

In general, b is a complex quantity b = b′− ib′′, where the real part b′ can be both positive
and negative and the imaginary part b′′ describes the neutron capture or absorption by the
given nucleus. In most elements and isotopes, the neutron capture is negligible, however
there are a few exceptions (e.g. 3He,10 B,113 Cd) which are of immense importance to neutron
shielding and detectors.

It can be shown [128, 116] that by inserting the interaction potential of Equation 2.10
into Equation 2.8 and Equation 2.9 the elastic macroscopic nuclear differential scattering
cross section for a collection of nuclei at positions rk is:

dΣnuc

dΩ
(q) =

1
V
|

N

∑
k=1

bk exp(−iq · rk|2

=
1
V ∑

k,l
bkb∗l exp(−iq · [rk − rl]), (2.11)

where V is the irradiated sample volume, bk are the respective scattering lengths, (*) marks the
complex-conjugated quantity and i2 =−1. Another particularity about b is the fluctuations
between different atoms of the same chemical element [111], related to the isotope variation
and the nuclear spin state. Thus the summation in Equation 2.11 is performed not only
over the atomic configuration, but over both the isotope distribution and the nuclear spin
orientations, so that dΣnuc

dΩ
(q) is an explicitly ensemble-averaged quantity.

Obviously, there is no reasonable way to sum over all the atoms individually to account
for isotope/spin variation. Thus, one assumes there is no correlation between bk and bl values
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at any position pair and formally introduces an ensemble average [116] through:

bkbl = b
2
+δkl(b2 −b

2
), (2.12)

where δkl is the Kronecker delta function and re-writes Equation 2.11 as:

dΣnuc

dΩ
(q) =

N
V
(b2 −b

2
)+

1
V

b
2

N

∑
k,1

exp(−iq · [rk − rl]). (2.13)

The first term collects the self-scattering contributions (k = l) and is denoted as the nuclear
incoherent scattering cross section, since it adds a q-independent background to the elastic
SANS signal:

dΣinc
nuc

dΩ
(q) =

N
V
(b2 −b

2
) =

N
V

b2
inc =

N
V

σinc

4π
. (2.14)

The second term in Equation 2.13 collects all the k ̸= l and is denoted as coherent scattering
cross section since it contains the information about the positional correlations of the sample,
i.e. its structure:

dΣcoh
nuc

dΩ
(q) =

1
V

b
2

N

∑
k,1

exp(−iq · [rk − rl])

=
1
V

b2
coh

N

∑
k,1

exp(−iq · [rk − rl])

=
1
V

σcoh

4π

N

∑
k,1

exp(−iq · [rk − rl]). (2.15)

The quantities

σinc = 4πb2
inc = 4π(b2 −b

2
) (2.16)

σcoh = 4πb2
coh = 4πb

2 (2.17)

define the (per-atom) nuclear incoherent/coherent scattering cross sections and their values
are determined experimentally and tabulated. Values for most isotopes could be found in
[113] or online at the NIST website [93].

In the SANS context, the discrete nature of matter becomes mostly irrelevant, since the
commonly used wavelengths are generally at least twice larger than the lattice plane distance,
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thus the scattering is above the Bragg cut-off. So, it is only natural to replace the sum in
the Equation 2.13 by the integral and continue the discussion in terms of a coarse-grained
approach where atomic scattering length b becomes scattering-length density N(r) which is
assumed to be continuous and smooth function of the position r. Moreover, since incoherent
scattering just adds a flat, q-independent background, accounting for it explicitly is omitted
further.

Thus, the nuclear scattering cross section in the context of this work can be expressed as:

dΣnuc

dΩ
=

8π3

V
|Ñ(q)|2, (2.18)

where Ñ(q) is the FT of N(r).

2.5 Magnetic interaction potential

Magnetic neutron scattering is rooted in the dipolar interaction of the neutron’s spin (i.e. its
magnetic moment) with the magnetic fields due to the electron spin or to electron’s orbital
motion. The generalized magnetic field B(r) at the position r due to the spin (BS) and orbital
motion (BL) of the electron with the magnetic moment µe and linear momentum p is:

B(r) = BS +BL =
µ0

4π

(
∇× µe × r

r3 − 2µB

ℏ
p× r

r3

)
, (2.19)

where µB is the Bohr magneton and ℏ is the reduced Plank’s constant.
Respectively, the leading term in the magnetic interaction potential could be expressed

as [116]:

V int
mag =−µn ·B(r), (2.20)

where µn =−γnµNσP is the neutron’s magnetic moment, γn = 1.913 is the magnetic moment
of a neutron in units of nuclear magneton µN [112] and σP is the Pauli matrix describing the
orientation of the neutron spin.

Higher order contributions (e.g. the atomic electric field) are usually neglected since they
are several orders of magnitude smaller then −µn ·B(r) [14].

Similarly to the nuclear cross section discussion, inserting the interaction potential
into the transition rate Equation 2.9 and computing the quantum mechanical cross section
(Equation 2.8) one obtains the discrete elastic differential scattering cross section [116, 90,
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112]:

dΣmag

dΩ
(q) =

1
V
|

N

∑
k=1

bm,kQk exp(−iq · rk)|2 (2.21)

=
1
V ∑

k,l
bm,kbm,lQkQ∗

l exp(−iq · [rk − rl]), (2.22)

where bm is the atomic magnetic scattering length and Q is the magnetic interaction vector
defined as (see below, subsection 2.5.1 for more details):

Qk = q̂× (q̂× m̂k) = q̂(q̂ · m̂k)− m̂k, (2.23)

where q̂ = q/q = {q̂x, q̂y, q̂z} is the unit scattering vector and m̂k = µµµa,k/µa,k is the unit
vector in the direction of the atomic magnetic moment µµµa,k at the position rrrk.

The atomic magnetic stattering length bm is given by:

bm =
γnre

2
µa

µB
f (q)∼= bH µa, (2.24)

where re = 2.818 × 1015 m is the classical electron radius and f (q) is the normalized
atomic magnetic form factor, which, in the small-angle regime, is f (q)∼= 1. The constant
bH = 2.70×10−15mµ

−1
B = 2.91×108A−1m−1 relates the atomic magnetic moment µa to

the atomic magnetic scattering length bm ∼= bH µa (in the small-angle approximation, µB

being the Bohr magneton) given by [90]. Notably, bm can be if the same order of magnitude
as the nuclear scattering length and is exceptionally large for the heavy rare-earth metals (see
Figure 2.3).

Exactly as in the case of nuclear analysis, the discrete picture has to be transformed into
the continuum, the quantity of interest here being the magnetization vector field M(r), which,
again is assumed to be a smooth and continuous function of r. Replacing the sum by the
integral over the sample volume in Equation 2.21 and the discrete terms in Equation 2.23 by
the corresponding continuum expression, the unpolarized differential SANS cross section
becomes:

dΣmag

dΩ
(q) =

1
V

b2
H |

∫
V

Q(r)exp(−iq · r)d3r|2

=
8π3

V
b2

H |Q̃|2

=
8π3

V
b2

H |q̂×
(

q̂×M̃
)
|2 (2.25)
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Fig. 2.3 Graphical representation of the nuclear coherent (•) and magnetic (⋆) scattering
lengths versus atomic number. Taken from [79].

Thus, the magnetic scattering cross section in the context of this work can be expressed
through the magnetic interaction vector Q̃(q) (also known as the Halpern-Johnson vector
[40]) as:

dΣmag

dΩ
=

8π3

V
b2

H |Q̃(q)|2. (2.26)

2.5.1 Halpern-Johnson (magnetic interaction) vector

Halpern-Johnson vector Q̃ (sometimes also denoted as the magnetic interaction or magnetic
scattering vector, HJ-vector further) [40] is defined as:

Q̃ = q̂×
(

q̂×M̃
)
= q̂

(
q̂ ·M̃

)
−M̃, (2.27)

where q̂ is the unit scattering vector, and M̃(q) = {M̃x(q),M̃y(q),M̃z(q)} represents the
Fourier transform of the magnetization vector field M(r) = {Mx(r),My(r),Mz(r)}.

Thus, essentially, the Halpern-Johnson vector captures the perpendicular component of
M̃ with respect to the scattering vector q (compare Figure 2.4), emphasizing the dipolar
origin of magnetic neutron scattering. Respectively, Q̃ is a linear vector function of the
components of M̃.
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Fig. 2.4 Graphical representation of the Halpern-Johnson vector [92], emphasizing the
fact that the only components of M̃ relevant for the magnetic neutron scattering are those
perpendicular to q̂. Adapted from [79].

Note that different symbols for the Halpern-Johnson vector can be found in the literature.
Examples include M⊥, Q⊥, S⊥, or q, as in the original paper by Halpern and Johnson [40].
Additionally, in many textbooks (e.g. [66, 116]) Q̃ is defined with a minus sign and normal-
ized by the factor 2µB, which makes it dimensionless.

Finally, the essential take-away is that only the components of M which are perpendicular
to q are relevant for magnetic neutron scattering.

2.6 Formal unpolarized SANS cross section

Respectively, formally the unpolarized SANS cross section could be expressed as:

dΣtot

dΩ
=

dΣnuc

dΩ
+

dΣmag

dΩ

=
8π3

V

(
|Ñ(q)|2 +b2

H |Q̃(q)|2
)

=
8π3

V
b2

H

(
b−2

H |Ñ(q)|2 + |Q̃(q)|2
)
, (2.28)

where |Ñ(q)|2 term accounts for the nuclear structure-related scattering processes and |Q̃(q)|2

collects all the magnetic contributions.
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2.7 Description of the SANS setup

Having covered the underlying scattering principles, the particularities of the typical experi-
mental Small Angle Neutron Scattering (SANS) setup and experimental nomenclatures need
to be discussed.

2.7.1 Experimental geometries

The neutron source, the sample and the detector are a necessary minimum as per Figure 2.2,
yet a real instrument will have much more in terms of guiding optics, means to discriminate
neutrons on the basis of their energy (i.e. velocity) or their spin. Figure 2.5 presents a simpli-
fied sketch of a typical SANS setup: an initially polychromatic beam is monochromatized by
a velocity selector, follows a shielded beam-guide up to a sample under a certain external
bias. Scattered neutrons are then captured by a two-dimensional detector. Optionally, the
beam is subjected to polarization manipulations before and/or after the sample. The detailed
description of all the elements, albeit interesting, is beyond the scope of this thesis, for the
details on implementation on different instruments the reader is referred to [48, 103, 58, 24]
and references therein.

The essential moment is the bias applied to the sample - in the present work it is
exclusively the applied magnetic field H0. Thus, a relative orientation of the H0 and incident
neutron wave vector k0 needs to be discussed.

The first intuitive case is the parallel orientation: H0 ∥ k0 (see Figure 2.5(b)). Yet,
remembering that SANS is the volume-averaged technique and that the source of the magnetic
contrast is the perpendicular component of the magnetisation one would expect a largely
isotropic, θ -independent magnetic scattering in this orientation (in case of an isotropic
sample). Compounded with the technical difficulties of delivering a horizontal field magnet
that fulfils the demands of the logistics of scattering experiments (large solid angle access,
flexibility on the sample exchange) while delivering a high and uniform magnetic fields the
result is that the most common design for beamline magnets is a perpendicular one [44].

The second case is the perpendicular orientation: k0 ⊥ H0 (see Figure 2.5(a)). Notably,
there is no physical difference in the actual local field orientation (“top-to-bottom”/“vertical”
or “left-to-right”/“horizontal”), since the Cartesian coordinate frame could be easily rotated
to accommodate either case. Most commonly, such an experimental arrangement is referred
to as the “perpendicular geometry”, though it is not uncommon to see terms “transversal
field”/“pependicular orientation” or a combination of thereof. Note, that the term “horizontal
field” could refer to both k0 ⊥ H0 and H0 ∥ k0 and usually implies that both orientations are
possible (as is the case with [44]).
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Additionally, the reader should not be confused by the use of the right-handed coordinate
frame in Figure 2.5(a) and left-handed coordinate frame in Figure 2.5(b), this is merely a
representation convention to have the positive direction of ez in the forward direction for the
parallel geometry. Again, the coordinate frame could be rotated to accommodate either case
without the loss of generality. Similarly, it is not uncommon to see the q having its origin
at the origin of the coordinate frame. This potential spatial confusion is one of the reasons
one the explicit orientation of the field is usually present on 2D images and, by convention,
the detector images are usually oriented with positive directions to the right and to the top,
regardless if they in qz-qy (for perpendicular) or qx-qy (for parallel) coordinate frame. Yet,
H0 always defines the ez direction.

For clarity, the nomenclature of Figure 2.5(a) is used further, i.e. θ = 0 if q ↿⇂ H0 and the
terms “parallel/perpendicular geometry” are used further in this work.

Fig. 2.5 Sketch of the neutron setup. “P”, “F”, “A” denote the polarizer, spin flipper and ana-
lyzer respectively. In the small-angle approximation the momentum-transfer or scattering vec-
tor q= k1−k0 varies in the plane perpendicular to k0, i.e., q∼= {qx,qy,0}= q{cosθ ,sinθ ,0}.
The magnitude of q for elastic scattering is given by q = 4π

λ
sin(ψ/2), where λ denotes the

mean neutron wavelength (selected by the velocity selector) and ψ is the scattering angle.
The angle θ specifies the orientation of q on the two-dimensional detector. (a) The external
magnetic field H0 ∥ ez is applied perpendicular to the wave vector k0 of the incident neutrons.
(b) The external magnetic field H0 ∥ ez is applied parallel to the wave vector k0 of the incident
neutrons. Adapted from [79].
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In the perpendicular case (k0 ⊥ H0; k0 ∥ ex (compare Figure 2.5(a)), the scattering vector
q has the norm of |q| = q and, since we are dealing with elastic scattering (|k0| = |k1|)
throughout this thesis, q = 2|k0|sin(ψ/2) = 4π

λ
sin(ψ/2).

Thus, bearing in mind that the angle θ specifies the orientation of q on the detector, q
becomes (in Cartesian components):

q⊥ =


qx

qy

qz

= q


−sin(ψ/2)

cos(ψ/2)sin(θ)
cos(ψ/2)cos(θ)

= k0


cos(ψ)−1

sin(ψ)sin(θ)
sin(ψ)cos(θ)

 , (2.29)

and, respectively, for the parallel case (k0 ∥ H0; k0 ∥ ez (compare Figure 2.5(b)),

q∥ =


qx

qy

qz

= q


cos(ψ/2)cos(θ)
cos(ψ/2)sin(θ)

−sin(ψ/2)

= k0


sin(ψ)cos(θ)
sin(ψ)sin(θ)

cos(ψ)−1

 . (2.30)

2.7.2 Small angle approximation

For small angles - i.e. ψ << 1 or, rather, ψ ≤ 5−10◦ the component of q along the incident
beam direction is much smaller than the other two. Thus, q is approximated by a two-
dimensional vector in the plane perpendicular to the incident beam direction. Respectively,
for k0 ⊥ H0 and k0 ∥ H0 one finds (subscripts ⊥ and ∥ refer to the respective scattering
geometry, compare Figure 2.5):

q̂⊥ = {0,sinθ ,cosθ}, (2.31)

q̂∥ = {cosθ ,sinθ ,0}. (2.32)

Inserting these expressions into the Equation 2.27 yields:

Q̃⊥ =


−M̃x

−M̃y cos2 θ + M̃z sinθ cosθ

M̃y sinθ cosθ − M̃z sin2
θ

 , (2.33)

Q̃∥ =


−M̃x sin2

θ + M̃y sinθ cosθ

M̃x sinθ cosθ − M̃y cos2 θ

−M̃z

 . (2.34)

In general, M̃(q) and likewise Q̃(q) are complex vectors.
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2.8 Micromagnetic theory

The further analysis of the magnetic SANS cross section (Equation 2.26) relies on the
simplified expressions of the HJ-vector for a given geometry (Equation 2.33/Equation 2.34),
which, in turn, require expressions for the magnetization Fourier amplitudes M̃x,y,z.

In Refs. [80, 84] a general theory of magnetic SANS based on the continuum theory of
micromagnetics has been developed. The representation here is included for completeness
sake only and aims at sketching the path rather then guiding the reader through all the steps.
It does, however, aim to be complete in all the necessary logical steps.

2.8.1 Fields and the balance of torques

The micromagnetic theory takes into account the isotropic and symmetric exchange interac-
tion, magnetic anisotropy, as well as the Zeeman and the magnetodipolar interaction energies.
As detailed in the pertinent textbooks [11, 2, 62, 33], variational calculus leads to a set of
nonlinear partial differential equations for the equilibrium magnetization configuration M(r).
For the static case, the equations of micromagnetics (so-called Brown’s equations) can be
expressed as a balance-of-torques equation:

M(r)×Heff(r) = 0. (2.35)

Equation 2.35 expresses the fact that at static equilibrium the torque on the magnetization
M(r) due to an effective magnetic field Heff(r) vanishes at each point r inside the material.
The effective field is obtained as:

Heff(r) = H0 +Hd(r)+Hp(r)+Hex(r)+HDMI(r), (2.36)

where H0 is a uniform applied magnetic field, Hd(r) denotes the magnetostatic field, Hp(r)
is the magnetic anisotropy field, Hex(r) = l2

M∆M(r) represents the exchange field (with ∆ the
Laplace operator), and HDMI(r) is the asymmetric field due to the Dzyaloshinskii–Moriya
Interaction (DMI further).

2.8.2 Characteristic length scales

Each of the fields mentioned above could be characterized by a certain length scale which
measures the spacial extent of correlataions due to the given field. The applied field being
homogeneous around the sample, its correlation length is, effectively infinite.

In the context of micromagnetics, the characteristic length scales are:
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• lM, the magnetostatic exchange length, characterizes the competition between the
exchange and magnetostatic interactions, defined as:

lM =

√
2A

µ0M2
s

(2.37)

lM is of the order of a few nanometers for many magnetic materials (lM ∼ 3 −
10nm [62]).

• lH, the micromagnetic exchange length of the field, characterizes field-dependent size of
perturbed (inhomogeneously magnetized) regions around microstructural defects [77]
and is defined as:

lH(Hi) =

√
2A

µ0MsHi
(2.38)

lH(Hi) varies between few and few hundred nanometers [79]. For typical values for
the material parameters of e.g. Co (A = 2.8× 10−11 J/m and µ0Ms = 1.80T [87]),
the lH varies between about 200− 2nm when the internal field is changed between
0.001− 10T. This length scale falls well into the resolution regime of the SANS
technique.

• lD, the exchange length of the DMI, characterizes the DMI field HDMI(r) and defined
as:

lD =
2D

µ0M2
s

(2.39)

typically, lD ∼= 1 − 2nm, however, due to the lack of an established database for
D-values, this estimate should be considered with some care [79].

In all of the above, A is the exchange-stiffness constant, D is the DMI constant, Ms is the
saturation magnetization, Hi = H0 −NMs is the internal magnetic field (N: demagnetizing
factor) and µ0 is the permeability of free space.

The values for the DMI constant D and for the exchange-stiffness constant A are assumed
to be uniform throughout the material, in contrast to the local saturation magnetization Ms(r),
which is assumed to depend explicitly on the position r (see also [75]). Since the Fourier
coefficient of the longitudinal magnetization M̃z(q), is proportional to the abrupt change
in the magnitude of the magnetization at internal particle-matrix interfaces ∆M (for further
details see [47]), it is strongly coupled to Ms(r).

The Figure 2.6 graphically represents typical values for the micromagnetic lengths at a
typical range of fields. Clearly, all these fall perfectly into the SANS regime of several to
several hundred nanometres, thus it often becomes the technique of choice.
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Fig. 2.6 Micromagnetic length scales lM, lH and lD as a function of the internal magnetic
field µ0Hi (log-log scale). Material parameters for iron at 300K were used [62]. Adapted
from [79].

Note, that occasionally one encounters the notation with M0 in stead of Ms quoted here.
The former is defined as M0 = V−1 ∫

V Ms(r)dV and denotes the macroscopic saturation
magnetization of the sample, which can be measured with a magnetometer.

In the approach-to-saturation regime, the micromagnetic equations can be linearised and
closed-form expressions for the magnetization Fourier components M̃x(q) and M̃y(q) can be
obtained (see [80, 84] for details).

2.8.3 Closed-form solutions in the approach to saturation

In the approach-to-saturation regime the Mz ∼= Ms is assumed, Mz being the the longitudinal
magnetization in the direction of the applied field H0.
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The solution of the linearised version of the Equation 2.35 (see [84, 79] for details)
provides closed-form expressions for the transversal Fourier components M̃x(q) and M̃y(q):

M̃x =

p
(

H̃px

[
1+ p

q2
y

q2

]
− M̃z

qxqz
q2

[
1+ pl2

Dq2]− H̃py pqxqy
q2

)
(

1+ p
q2

x+q2
y

q2 − p2l2
Dq2

z

)
− i

p
(

M̃z [1+ p] lDqy − H̃py plDqz

)
(

1+ p
q2

x+q2
y

q2 − p2l2
Dq2

z

) , (2.40)

M̃y =
p
(

H̃py

[
1+ pq2

x
q2

]
− M̃z

qyqz
q2

[
1+ pl2

Dq2]− H̃px pqxqy
q2

)
(

1+ p
q2

x+q2
y

q2 − p2l2
Dq2

z

)
− i

p
(

M̃z [1+ p] lDqx − H̃px plDqz

)
(

1+ p
q2

x+q2
y

q2 − p2l2
Dq2

z

) . (2.41)

The dimensionless function p(q,Hi) is defined as

p(q,Hi) =
M0

Heff(q,Hi)
=

M0

Hi
(
1+ l2

Hq2
) , (2.42)

where Heff(q,Hi) is the the effective magnetic field defined as Heff(q,Hi) = Hi
(
1+ l2

Hq2).
p depends on the internal magnetic field Hi, on q, and on the exchange length of the field lH.

Averaging over the directions of the magnetic anisotropy field in the plane perpendicular
to the applied field, the magnetic terms are:

For the transversal magnetic field geometry (k0 ⊥ H0):

|M̃x|2 =
p2

2

H̃2
p

([
1+ psin2

θ
]2
+ p2l2

Dq2 cos2 θ

)
+2M̃2

z (1+ p)2l2
Dq2 sin2

θ(
1+ psin2

θ − p2l2
Dq2 cos2 θ

)2 , (2.43)

|M̃y|2 =
p2

2
H̃2

p
(
1+ p2l2

Dq2 cos2 θ
)
+2M̃2

z
(
1+ pl2

Dq2)2 sin2
θ cos2 θ(

1+ psin2
θ − p2l2

Dq2 cos2 θ
)2 , (2.44)
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For the parallel field geometry (k0 ∥ H0):

|M̃x|2 =
p2

2
H̃2

p
(
1+ p(2+ p)sin2

θ
)
+2M̃2

z (1+ p)2l2
Dq2 sin2

θ

(1+ p)2 , (2.45)

|M̃y|2 =
p2

2
H̃2

p
(
1+ p(2+ p)cos2 θ

)
+2M̃2

z (1+ p)2l2
Dq2 cos2 θ

(1+ p)2 . (2.46)

In the Equation 2.43 and Equation 2.46, H̃2
p denotes the magnitude-square of the Fourier

transform of the magnetic anisotropy field. Respectively, it characterizes the strength and
spatial structure of the magnetic anisotropy field Hp(r).

By inserting Equation 2.43 and Equation 2.46 into the magnetic SANS cross section
(Equation 2.26) and summing magnetic and nuclear (Equation 2.18) cross sections the total
SANS cross section could be obtained.

2.8.4 Origin of the magnetic scattering contrast

As mentioned above, in the context of the micromagnetic theory the sample is always in the
approach to saturation regime. There is no formal, quantitative definition of the lower limit
of the “approach to saturation”, yet commonly a value of net magnetization of 80-95% of
the saturation magnetisation value is used. Thus, there is always a sufficiently high external
magnetic field H0 applied which defines the quantization axis and most atomic spins are
aligned in the direction of H0. Since all the physical information about the magnetic sample
properties extracted in a scattering experiment is contained in the Halpern-Johnson vector
Q̃(q) through the magnetization vector field M(r), the origins of the magnetic contrast should
be discussed.

Fig. 2.7 Simplified magnetization distribution scetches. (a) Homogeneous and uniformely
magnetized (saturated) ferromagnet; (b) inhomogeneous and uniformly magnetized magnet;
(c) an inhomogeneous and non-uniformly magnetized magnet. Taken from [79].
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Figure 2.7 schematically represents simple magnetization distribution cases. (a) is a
completely homogeneous saturated case, i.e. M(r) = const = {0,0,Ms} is a constant vector
aligned with the applied field H0. A prototypical example of such a system would be a
saturated ferromagnet or a single-domain nanoparticle. Respectively, the FT of the M(r) is
a delta function at the origin of the reciprocal space and, essentially, there is no magnetic
SANS contrast.

(b) is a completely saturated (uniformly magnetized) multiphase case, where the direction
is constant throughout, but the magnitude depends on the position, i.e. M(r) = {0,0,Ms(r)}.
A prototypical example of such a system would be a saturated ferromagnet with pores
or a distribution of single-domain nanoparticles in a non-magnetic or saturated matrix.
Respectively, the FT of the M(r) is a q-dependent scalar function and the magnetic SANS
signal could be expressed as:

dΣmag

dΩ
=

8π3

V
b2

H |Q̃(q)|2 ∝ |M̃s(q)|2. (2.47)

Finally, (c) is the most general case of an inhomogenious non-uniformly magnetized speci-
men, where both the magnitude and direction of M depend on r, i.e. M(r)= {Mx(r,My(r,Mz(r)}.
A prototypical example of such a system would be a polycrystalline elemental magnet (with
crystallites in the nanometer size) or a multi-phase magnetic nanocomposite which includes
most engineering materials like magnetic steels, shape-memory alloys and permanent mag-
nets. Respectively, the FT of the M(r) is a q-dependent vector function with the constraint of
the constant magnitude |M(r)|= Ms.

Note, that at a complete saturation the case (c) reduces to (b).
Thus, in the following two origins of magnetic scattering/spin misalignment are consid-

ered:

• (i) Spatial variations of the saturation magnetization Ms(r)

• (ii) Spatial nanometer-scale variations in the local magnetization profile.

Whereas (i) is intuitively understood via multiphase material or pores, (ii) deserves a closer
look.

A large number of magnetic materials studied using SANS are polycrystalline in nature,
i.e. their macroscopic properties (and the magnetic SANS signal) are largely determined by
the lattice defects, pores and grain/phase boundaries. The local magnetization is coupled
to the disturbance via magnetoelastic coupling energy, i.e. the stress field related to the
inhomogeneity couples to the M(r), resulting in a (small) local deviation from the mean
magnetization. The ferromagnetic exchange interaction with its energy contribution aiming to
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avoid gradients in M(r), extends the stress field further into the material, creating a perturbed
region over many lattice sites around the defect. The extent of this region is quantified via the
(micro)magnetic exchange length lH. Naturally, higher external field H0 reduces the extent
of the perturbed region thus suppressing the fluctuations.

Thus, the orientation and/or magnitude of the magnetic anisotropy field Hp(r) (e.g., at
a grain boundary in a single-phase nanocrystalline ferromagnet) is largely (but not solely)
responsible for the (ii), since anisotropy field fluctuations give rise to torques on the M(r)
and result in a deviation from the mean magnetization direction given by a large H0.

Essentially, the source of the magnetic scattering contrast is either due to variations in the
magnitude of the saturation magnetization or the lack of alignment of the local magnetization
profile to the external field. Thus, it is not uncommon to see the magnetic scattering to be
referred to as the “spin-missalignment” scattering, while the saturated state (Figure 2.7(b)) is
commonly used as a reference.

2.9 SANS cross section at complete saturation

As mentioned above, the total cross section consists of nuclear and magnetic part. Compactly,
it could be written as

dΣtot

dΩ
=

dΣnuc

dΩ
+

dΣmag

dΩ

=
8π3

V

(
|Ñ(q)|2 +b2

H |Q̃(q)|2
)

=
8π3

V
b2

H

(
b−2

H |Ñ(q)|2 + |Q̃(q)|2
)
. (2.48)

In the case of complete saturation, the magnetization vector field is M(r) = {0,0,Ms}, i.e.
all the moments are aligned in the direction of the applied magnetic field H0. This state is
commonly used as a reference for the analysis of the measurements at lower applied fields
[79], since in this case the problem is reduced to finding the scalar function M(r) which is
determined by the microstructure. This is fully analogous to the problem encountered in
nuclear SANS and SAXS thus the well-known procedures can be applied.

Respectively, conceptually, the magnetization profile at lower fields can be expressed
as the saturated case with an added disturbance. It is worth noting, that given the isotropic
material(i.e. a non-textured material), the nuclear contribution is usually isotropic (i.e.
θ−independent). Similarly, the component of Mz parallel to the applied field would be
isotropic as well given the approach-to-saturation regime. Thus, it is not uncommon to
unite both nuclear scattering term and Mz term into the so-called residual scattering dΣres

dΩ
.
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The remaining terms are then united under the term "spin-missalignement scattering" dΣSM
dΩ

.
Note, that there is no single standard, and one might encounter the subdivision into nu-
clear and magnetic scattering rather then residual and spin-missalignment scattering. Thus,
alternatively the cross section is expressed as:

dΣtot

dΩ
=

dΣres

dΩ
+

dΣSM

dΩ
.

For the sake of clarity, since arbitrarily high saturated fields often can not be achieved, the
term "magnetic SANS crossection" denoted as dΣM

dΩ
can also be encountered in the literature.

Practically, it is still the same difference, but the "completely saturated state" is, explicitly, the
state at the highest available field. Respectively, sometimes the terms dΣSM

dΩ
(which denotes

the difference between a completely saturated state SANS and the signal at a lower field)
and dΣM

dΩ
(which denotes the difference between the state at the highest available field and the

signal at a lower field) are used interchangeably.

2.10 SANS cross section in the approach to saturation

Thus, it is a common practice [78, 92, 79] to separate magnetic contribution by subtracting
the scattering data at the highest available (or saturation) field from the scattering data at the
lower field.

To be more precise, the subtraction procedure results in a magnetic SANS cross section
which depends on the differences of the magnetization Fourier components at the two fields
considered, e.g., ∆|M̃x|2 = |M̃x|2(H0)− |M̃x|2(Hmax) (and similarly for the other Fourier
components). The field dependence of the transversal magnetization Fourier components
M̃x and M̃y is different from, and usually much larger than, the longitudinal component M̃z

(see Fig. 8 in [81]); more specifically, M̃x,y are usually larger at lower field than at higher
field, whereas M̃z may weakly increase with increasing field. Effectively, this entails that for
many materials (and for all materials appearing later in this work) the difference SANS cross
section is non-negative at all q and H0 investigated.

Additionally, the magnetization of a bulk ferromagnet is a function of the position
r= {x,y,z} inside the material, i.e., M=M(x,y,z), and that, consequently, M̃= M̃(qx,qy,qz).
However, the Fourier components in subsection 2.8.3 represent projections into the plane
of the two-dimensional detector, i.e., the qy-qz-plane for H0 ⊥ k0 (qx ∼= 0) (compare Fig-
ure 2.5(a)) and the qy-qx-plane for H0 ∥ k0 (qz ∼= 0) (compare Figure 2.5(b)) since in the
small-angle approximation the component of q along the incident beam (k0 ∥ ez in the
parallel geometry and k0 ∥ ex in the perpendicular geometry) is negligible as compared to
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the other two components. This explicitly demonstrates that SANS predominantly measures
correlations in the plane perpendicular to the incident neutron beam.

2.11 Unpolarized cross sections

In the following, V is the scattering volume, bH = 2.70×10−15 m µ
−1
B = 2.91×108 A−1m−1

relates the atomic magnetic moment µa to the atomic magnetic scattering length bm ∼= bH µa

(in small-angle approximation, µB being the Bohr magneton) given by [90]:

bm =
γnr0

2
µa

µB
f (q)∼= 2.70×10−15 m

µa

µB
f (q)∼= bHµa,

where γn = 1.913 denotes the neutron magnetic moment expressed in units of the nuclear
magneton, r0 = 2.818× 10−15 m is the classical radius of the electron, and f (q) is the
normalized atomic magnetic form factor, which we set to unity, f ∼= 1, along the forward
direction.

Ñ(q) and M̃(q) denote, respectively, the Fourier transforms of the nuclear scattering
length density N(r) and of the magnetization vector field M(r), the angle θ is measured
between q and ez ∥ H0 in the perpendicular and between q and ex in the parallel geometry
and the asterisk (∗ ) marks the complex-conjugated quantity.

2.11.1 k0 ⊥ H0

For the perpendicular scattering geometry (H0 ⊥ k0) the unpolarized elastic differential
SANS cross section dΣ/dΩ at momentum-transfer vector q can be written as [78, 92]:

dΣ

dΩ

⊥

H0
(q) =

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃x|2 + |M̃y|2 cos2
θ + |M̃z|2 sin2

θ

− (M̃yM̃∗
z + M̃∗

y M̃z)sinθ cosθ

)
. (2.49)

As noted in section 2.9, in a typical magnetic SANS data analysis routine the total nuclear
and magnetic SANS cross section at the highest available field is subtracted from the data
at lower fields. So, assuming the applied field Hsat saturates the sample and M̃z ∼= M̃s, the
saturated cross section in the perpendicular geometry is:

dΣ

dΩ

⊥

Hsat
(q) =

dΣ

dΩ

⊥

res
(q) =

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃z|2 sin2
θ

)
. (2.50)
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Respectively, at a finite non-saturating field H0 subtracting Equation 2.50 from Equation 2.49
eliminates the nuclear SANS contribution and longitudinal magnetic SANS contribution in
Equation 2.49 and yields the purely magnetic (or spin-misalignment) SANS cross section
dΣSM

dΩ
:

dΣ

dΩ

⊥
SM(q,H0) =

dΣ

dΩ

⊥

H0
(q)− dΣ

dΩ

⊥

res
(q)

=
8π3

V
b2

H

(
|M̃x|2 + |M̃y|2 cos2

θ − (M̃yM̃∗
z + M̃∗

y M̃z)sinθ cosθ

)
(2.51)

Micromagnetic representation

Alternatively, decomposing the spin-misalignment cross section into contributions due to:

• perturbing magnetic anisotropy fields by accounting for the local variations in easy-axis
orientation through the anisotropy-field scattering function SH,

• magnetostatic fields by accounting for the spatial variations in the saturation magneti-
zation through the longitudinal magnetization scattering function SM,

Equation 2.51 can be expressed in terms of the micromagnetic functions [47, 125]:

dΣ

dΩ

⊥

SM
(q,H0) = SH(q)RH(q,θ ,Hi)+SM(q)RM(q,θ ,Hi), (2.52)

where RH/M are the dimensionless response functions defined as:

RH(q,θ ,Hi) =
p2

2

(
1+

cos2 θ

(1+ psin2
θ)2

)
, (2.53)

RM(q,θ ,Hi) =
p2 sin2

θ cos4 θ

(1+ psin2
θ)2

+
2psin2

θ cos2 θ

1+ psin2
θ

, (2.54)

with p(q,Hi) being related to the ratio of saturation magnetization Ms to the effective magnetic
field Heff(q,Hi) defined in Equation 2.42.

While the behaviour of SH and SM depends on the microstructural model chosen, in
case the Fourier coefficients |Ñ|2, |M̃z|2 ∼= |M̃s|2 and |H̃p|2 depend only on the magnitude
of the scattering vector q (i.e., in case of a statistically isotropic magnetic material), after
performing 2π radial averages one finds that the response functions vary asymptotically
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as [79]:

RH(q,θ ,Hi) ∝ q−4, (2.55)

RM(q,θ ,Hi) ∝ q−2. (2.56)

2.11.2 k0 ∥ H0

For the parallel scattering geometry (H0 ∥ k0) the unpolarized elastic differential SANS cross
section dΣ/dΩ at momentum-transfer vector q can be written as [78, 92]:

dΣ

dΩ

∥
(q) =

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃x|2 sin2
θ + |M̃y|2 cos2

θ + |M̃z|2

−(M̃xM̃∗
y + M̃∗

x M̃y)sinθ cosθ

)
. (2.57)

Respectively, the residual cross section takes the form of:

dΣ

dΩ

∥

Hsat
(q) =

dΣ

dΩ

∥

res
(q) =

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃z|2
)
. (2.58)

Following the same logics as the perpendicular geometry case, at a finite non-saturating field
H0 the spin-misalignment SANS cross section dΣSM

dΩ
is:

dΣ

dΩ

∥

SM
(q,H0) =

8π3

V
b2

H

(
|M̃x|2 sin2

θ + |M̃y|2 cos2
θ−

− (M̃xM̃∗
y + M̃∗

x M̃y)sinθ cosθ

)
. (2.59)

Micromagnetic representation

Equation 2.59 can be compactly written in terms of micromagnetic functions as [79, 47]:

dΣ

dΩ

∥

SM
(q,H0) = SH(q)RH(q,θ ,Hi), (2.60)

where the response function simplifies to

RH(q,Hi) =
p2

2
. (2.61)

The quantity SH again denotes the anisotropy-field scattering function, which is proportional
to the magnitude square of the Fourier transform H̃p(q) of the magnetic anisotropy field
Hp(r), i.e., SH ∝ H̃2

p(q). This function contains information on the strength and spatial



2.12 Summary 33

structure of the magnetic anisotropy field. In the approach-to-saturation regime, SH is
independent of the applied magnetic field.

Notably, in this geometry, dΣ

dΩ

∥
SM(q,H0) does not depend on M̃z fluctuations, in other

words, the inhomogeneities in the saturation magnetization are contained in the residual
( dΣ

dΩ

∥
res(q)) scattering cross section. Additionally, even though the individual Fourier com-

ponents (|M̃x| and |M̃y|) are highly anisotropic, their sum in Equation 2.59 is isotropic (i.e.
θ -independent) for statistically isotropic ferromagnets.

DMI contributions

Additionally, it should be noted that up to the transition to the micromagnetic functions (Equa-
tion 2.52 and Equation 2.60) one could explicitly account for the DMI (refer to Equation 2.40
and Equation 2.41 as well as Equation 2.43/Equation 2.44 and Equation 2.45/Equation 2.46
for perpendicular and parallel geometry respectively).

2.12 Summary

Essentially, the take-away from this chapter is the tool-kit necessary to tackle the data
analysis in the following chapters. The micromagnetic theory provides a robust way of
analyzing any and all neutron scattering data - provided the condition of the approach-to-
saturation. Moreover, the different contributions to the effective field (Equation 2.36) can
be explored both individually and in conjunction with one another which naturally opens
a plethora of simulation work. The rest of this work will rely heavily on the results of this
chapter to provide insights into the material properties by always combining the analysis
of the experimental data with numerical analysis stemming from the micromagnetic theory.
Note that, even though the details on the data reduction are not explicitly discussed unless
absolutely necessary, the rigorous measurements of references and all the equipment-related
corrections are of enormous importance to the successful - and reliable - data analysis.
Thus, every (cm−1) unit of the cross section hides cumulative years of efforts of dozens of
contributors to the data processing software packages such as [23, 56, 102, 63].

In the next chapter, the micromagnetic functions in the parallel geometry would be
analyzed in detail to yield a completely new way of treating magnetic SANS data through
the introduction of the magnetic Guinier law.





Chapter 3

Magnetic Guinier Law

This chapter presents the newly established theory of the magnetic Guinier law and provides
the experimental results. It expands on the [83] and adds to both the discussion and the data
presented in the original paper.

3.1 Particle size and Guinier law

The determination of particle sizes is one of the most important daily tasks in many branches
of the natural sciences [27]. Particle sizes in the micrometer regime and above can be
routinely determined using optical microscopy, yet the nanoparticles (with D ≃ 1−100nm)
require electron microscopy (scanning and/or transmission) or scattering methods (such
as dynamic light, x-ray or neutron scattering). While the former microscopy techniques
inherently suffer from low statistics and a small probed area, the latter scattering ones have
the advantage of providing statistically-averaged information over a large volume and a
considerable number of particles. Small-angle scattering, using either x-rays or neutrons, is
one of the most popular methods for analyzing structures on this mesoscopic length scale,
widely employed in a broad range of research topics from condensed-matter and soft-matter
physics, physical chemistry, biology, and materials science [121].

A typical 2π-radially averaged result of a scattering experiment appears on Figure 3.1(a).
Two asymptotic regimes - a high-q (also known as the Porod regime) and a low-q (also
known as the Guinier regime) are often the focus of the data analysis [104, 27]. The Porod
regime gives information on the particle surfaces and the low-q Guinier regime, which is the
focus of the present study, gives the information on the particle size.

If the scattering is from a dilute and monodisperse set of particles with sharp interfaces,
then the Guinier law describing the (elastic) small-angle scattering of x-rays and neutrons
near the origin (q < 1.3/RG) of the reciprocal space applies [37], and the macroscopic
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Fig. 3.1 (a) A sample SANS data with the asymptotic Guinier and Porod regimes marked
(taken from [71]). (b) A sample Guinier plot (adapted from [41]).

differential scattering cross section dΣ/dΩ can be expressed as [104, 27]:

dΣ

dΩ
(q)∼=

dΣ

dΩ
(q = 0)e−

q2R2
G

3 , (3.1)

where the forward scattering cross section dΣ

dΩ
(0) is proportional to the squared total excess

scattering length of the particle, and RG denotes the particle’s radius of gyration. Notably,
the Equation 3.1 is valid for arbitrary particle shapes.

The (linear) Guinier plot of ln(dΣ/dΩ) vs. q2 can be easily constructed (see Figure 3.1(b))
and the RG, which is related to the particle size, (e.g., R2

G = 3
5R2 for a sphere of radius R)

easily determined. The Guinier law is often the first stage of the data analysis and is of
outstanding importance for the analysis of small-angle scattering data, particularly in soft
matter physics [35].

3.2 Magnetic Guinier law – the concept

Conceptually, the magnetic characteristic length is represented on Figure 3.2: the distortion
of the anisotropy field due to the defect extends into the material over many lattice sites.
Magnetic SANS is one of the few techniques that could map such spin disorders in the bulk.
Conceptually, the situation is not far dissimilar from the flow disturbance introduced by a
stationary particle into a flowing liquid matrix. Thus, one might attempt to represent the
extent of the spin disorder through a "magnetic radius of gyration".
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Fig. 3.2 Schematic depiction of the spin disorder around a point defect (vacancy) and
associated characteristic micromagnetic exchange lenght lH. Adapted from [79].

From the discussion in the section 3.1, it should be clear that originally the Guinier law
has been derived in the context of the developments of the small-angle x-ray scattering [37]
for the determination of the particle size in the nonmagnetic particle-matrix-type systems.
Therefore, its application to the magnetic materials has never been tried before the work in
[79] and should be considered with special care.

The Guinier law should be applicable to systems consisting of saturated and homogeneous
magnetic particles in a nonmagnetic and homogeneous matrix or, similarly, to pores in a
saturated matrix. In this context Burke [13] investigated the influence of magnetic shape
anisotropy on the Guinier law of fine ferromagnetic single-domain particles. Yet, when the
sample is inhomogeneously magnetized, i.e., when the magnitude and orientation of the
magnetization vector field M varies continuously with the position r inside the material on
the nanometer scale, then a central assumption of the Guinier law - that of domains (particles)
are separated by sharp interfaces from the matrix - is violated. Thus, the Equation 3.1, with a
constant (and field-independent) RG, cannot describe the low-q region of the magnetic SANS
cross section.

Intuitively, an effective magnetic Guinier radius is expected to depend on the applied mag-
netic field as well as on the magnetic interactions (e.g., exchange, anisotropy, magnetostatics).
In the following the magnetic Guinier law is derived on the basis of the micromagnetic theory
and the analysis of the experimental SANS data of the nanocrystalline Co is provided.
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3.3 Magnetic Guinier law in the context of the micromag-
netic theory

Here and in [83] the discussion is limited to the parallel geometry only, mostly due to the
simplicity of the micromagnetic representation (compare Equation 2.60 and Equation 2.61).
The same approach could be applied in the perpendicular case if one were to consider a
narrow section around θ = 0 or θ = 180, since then the longitudinal magnetization scattering
function SM(q) tends to zero (compare Equation 2.60 and Equation 2.54), but, at the moment,
this is beyond the scope of this work.

Further, the spin-misalignment SANS cross section

dΣ
∥
SM

dΩ
= SH(q)RH(q,θ ,Hi)

is analyzed in the low-q regime to derive a Guinier expression for the magnetic SANS
analogous to the Equation 3.1.

3.3.1 Response function RH

Inserting the definition of p(q,Hi) (see Equation 2.42) into the response function RH(q,Hi)

(see Equation 2.61) yields:

RH(q,Hi) =
p2(q,Hi)

2
=

1
2

(
Ms

Hi(1+ l2
Hq2)

)2

.

Respectively, a simple way of analyzing RH(q,Hi) in the low-q range would be to take the
Taylor expansion around q = 0:

RH(q,Hi)

∣∣∣∣
q→0

∼=
p2

0
2
(
1−2l2

Hq2)∼= p2
0

2
exp(−2l2

Hq2)

=
p2

0
2

exp
(
−q2

3
6l2

H

)
(3.2)

where p0 = p(q = 0) = Ms/Hi. The validity range of this approximation as well as the
deviations from the exact form are demonstrated on Figure 3.3.
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3.3.2 Scattering function SH

The low-q expansion of the scattering function is a more involved process. As per micromag-
netic theory, SH(q) is proportional to the magnitude square of the FT of the anisotropy field
(see the discussion in subsection 2.11.2):

SH ∝ H̃2
p(q),

and contains the information on the vectorial structure (i.e., the variations in amplitude and
direction) of the magnetic anisotropy field Hp(r). Respectively, it depends on the sample’s
microstructure.

In the following, the discussion is limited to the isotropic case only, i.e., there are no cor-
relations between the individual defects (e.g., crystallites separated by grain boundaries) and
there is a statistical distribution in orientation and/or magnitude of the magnetic anisotropy
field. This assumption is definitely applicable to an idealized nanocrystalline ferromagnet,
where the crystallites (i.e., “magnetic defects”) have random crystallographic orientation
and where the anisotropy field arises exclusively from the magnetocrystalline anisotropy.
Additionally, the sample volume probed by the neutrons typically contains many such defects.

A further assumption is that the total magnetic anisotropy field of the sample Hp(r), is
the sum of the anisotropy fields of individual defects “i” [125, 126], i.e.:

Hp(r) =
N

∑
i=1

Hp,i(r). (3.3)

Then, the same summation applies to the Fourier transform H̃p(q) of Hp(r):

H̃p(q) =
N

∑
i=1

H̃p,i(q). (3.4)

Thus,

SH ∝ H̃2
p(q) =

∣∣∣∣∣ N

∑
i=1

H̃p,i(q)

∣∣∣∣∣
2

.

Respectively, assuming the H̃p,i are real-valued quantities, the square of Equation 3.4 yields:

H̃2
p =

N

∑
i=1

H̃2
p,i +

N

∑
i ̸= j

H̃p,i · H̃p, j. (3.5)
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If the H̃p,i of the individual defects are statistically uncorrelated (isotropic case), then terms
H̃p,i · H̃p, j with i ̸= j take both signs with equal probability. Thus, the sum over these mixed
terms vanishes, and:

H̃2
p(q) =

N

∑
i=1

H̃2
p,i(q), (3.6)

and

SH ∝ H̃2
p(q) =

∣∣∣∣∣ N

∑
i=1

H̃p,i(q)

∣∣∣∣∣
2

=
N

∑
i=1

∣∣∣H̃p,i(q)
∣∣∣2.

Equation 3.6 implies that given the solution for the single-defect case H̃p,i(q), the total
anisotropy contribution H̃2

p, and hence SH ∝ H̃2
p, can be computed for an arbitrary arrange-

ment of defects.
In an idealized nanocrystalline ferromagnet each grain is a single crystal and the anisotropy

field in the grain is a constant vector, i.e., Hp,i ̸= Hp,i(r), and the single grain anisotropy field
Fourier amplitude is obtained by the following form-factor integral [126]:

H̃p,i(q) =
Hp,i

(2π)3/2

∫
Vp,i

e−iq·rd3r, (3.7)

where the integral extends over the volume of the grain i. For an example of a spherical grain
shape (Vp,i =

4π

3 R3
i ), the well-known result:

H̃p,i(q) = H̃p,i(qRi) =
Hp,i

(2π)3/2 3Vp,i
j1(qRi)

qRi
, (3.8)

is obtained, where j1(z) denotes the spherical Bessel function of the first order.
The square of Equation 3.8) is identical (except for the prefactor) to the nuclear SANS

cross section of an array of noninterfering spherical particles[126], and asymptotic results
at small and large q are applicable; in particular, introducing the “radius of gyration of the
magnetic anisotropy field” RGH , in the low-q Guinier regime:

SH(q)
∣∣∣∣
q→0

∼= SH(0) exp
(
−q2

3
R2

GH

)
. (3.9)

Notably, RGH may be seen as a measure for the size of regions over which the magnetic
anisotropy field Hp(r) is homogeneous, similar to nuclear SANS and SAXS, where RG is a
measure for the particle size.
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In the special case of an idealized nanocrystalline ferromagnet (random anisotropy and
magnetocrystalline anisotropy only), RGH is closely related to the crystallite size[83].

3.3.3 Magnetic SANS cross section in the low-q limit

Inserting the low-q expansions of the response function (Equation 3.2) and the scattering
function (Equation 3.9) into the SANS cross section dΣSM/dΩ = SHRH yields:

dΣSM

dΩ

∥∣∣∣∣
q→0

∼= SH(0) exp
(
−q2

3
R2

GH

)
p2

0
2

exp
(
−q2

3
6l2

H

)
= SH(0)

p2
0

2
exp

(
(−q2

3
R2

GH)+(−q2

3
6l2

H)

)
= SH(0)

p2
0

2
exp

(
−q2

3
(R2

GH +6l2
H)

)
=

dΣSM

dΩ

∣∣∣∣
(q=0)

exp
(
−

q2R2
GSM
3

)
, (3.10)

where R2
GSM is defined as (see Equation 2.38 for lH definition):

R2
GSM(Hi) = R2

GH +6l2
H(Hi) = R2

GH +
12A

µ0MsHi
(3.11)

and represents the field-dependent magnetic Guinier radius.
The observation that RGSM depends on RGH and on the micromagnetic exchange length lH

is a manifestation of the fact that the magnetic microstructure in real space corresponds to the
convolution of the nuclear grain microstructure (RGH) with field-dependent micromagnetic
response functions (lH).

Note that since dΣSM
dΩ

(0) ∝ p2
0 ∝ H−2

i [compare Eq. (2.42)], dΣSM
dΩ

(0,Hi) can be used to
test the validity of the present derivation in a given q-range.

3.4 Validity range of the magnetic Guinier law

Prior to the look at the actual experimental data, the validity range and the potential caveats
in the Magnetic Guinier Law analysis need to be discussed.
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3.4.1 Larger-q deviations

The "conventional" Guinier Law has a distinct cut-off at q > 1.3/RG [104, 27, 59, 106].
Notably, it is not a hard cut-off but merely a point where deviations become considerable.
Also, the value of 1.3 is not universal, the values from 1.1 [9] up to 2 [133] are quoted,
depending on the system and additional corrections. Within the magnetic Guinier law there
is no established cut-off as of yet. The Figure 3.3 points to purely mathematical deviation
(i.e., on the basis of Taylor expansion) from the expected behavior.

Fig. 3.3 Larger-q limits of the magnetic Guinier theory approximations for the material
parameters of RGH = 20.5nm, A = 1.5×10−11 J/m, µ0Ms = 1.80T [83]. (a) Comparison
between dΣSM/dΩ (solid lines, Equation 2.59) and the Guinier approximation [dashed
lines, Equation 3.10] at selected internal-field values (see inset) (log-log scale). (b) Relative
error of the Guinier approximation. Plotted is the quantity ε(q,Hi) =

√
( f − fG)2/ f , where

f = dΣSM/dΩ (Equation 2.59 and Equation 2.60) and fG is the Guinier approximation
(Equation 3.10). Taken from the Supplementary Material of [83].

Naturally, this is but a narrow selection of fields and material parameters, yet this error is
in-built in the Taylor expansion (see Equation 3.2) and it would be pointless to extend the
Guinier analysis to larger q values given the same material parameters.

3.4.2 lH variations

The second potential problem might arise if the field-dependent part (∝ l2
H) of the RGSM

is small compared to the field-independent part RGH . Figure 3.4 represents the variation
of the micromagnetic exchange length lH over a typical range of applied fields in a SANS
experiment not designed with the intention of performing the Guinier analysis (based on the
data in [7]). Clearly, since there is very little variation in the lH in the experimentally-accessed
high-field regime, the RGSM variations extracted would be small as well and, potentially, well
within the error bars after the final analysis.
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Fig. 3.4 Expected lH variation in a typical SANS experiment. Plots of lH as a function of
the internal field µ0Hi (a) and its inverse (b) indicate that the variation of lH is very small
in the experimentally accessed range of fields (represented with “⋆”)[7]. Respectively, the
variation of R2

GSM (c) is small as well. (A = 12.5 pJ/m; µ0Ms = 1.5 T; N = 0.5 were used).
Taken from [71].

Fig. 3.5 Summary plots of the Nd-Fe-B-based hard magnetic composite. (a) Magnetic SANS
cross sections at the selection of applied field. (b) Guinier plots of the same data. (c) Plot of
R2

GSM vs. H−1
i and fit (dashed line) to Equation 3.11. Taken from [71].

Consequently, the Figure 3.5 presents the magnetic Guinier law analysis of such data
from [7] on a Nd-Fe-B-based hard magnetic composite. Yet, even with such a small variation,
where the relative differences between the RGSM values at the highest and lowest field are,
arguably, comparable to their errors, the Magnetic Guinier analysis results in exchange
stiffness constant A ≃ 13.6± 6.2 pJ/m which coincides with the value obtained via the
micromagnetic route (Aµmag ≃ 13.1± 3.2 pJ/m) and the radius of gyration is comparable
with the particle size d ≃ 22 nm [7].
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3.5 Experimental results on nanocrystalline Co

This section briefly summarizes the results of [83].

3.5.1 Samples and neutron experimental details

The nanocrystalline Co sample under study was synthesized via pulsed electrodeposition and
was kindly provided by Professor Uwe Erb from the University of Toronto. This particular
sample has been extensively studied in the past using magnetometry, wide-angle X-ray
diffraction, as well as both unpolarized and spin-polarized SANS (e.g., [88, 126, 86, 45,
78, 77]). Notably, it is a fully dense polycrystalline bulk metal with a nanometer grain size
(average crystallite size: D = 9.5±3.0nm [126]).

The SANS sample consisted of a single circular disk. Based on the thickness (80 µm)
and the diameter (2cm) of the disk, a demagnetizing factor of N ∼= 0.994 was computed for
the k0 ∥ H0 geometry as per [99]. In the following, all the reported field values are corrected
for demagnetizing effects.

The SANS experiment was conducted at 300K at the instrument D11 at the Institut
Laue-Langevin, Grenoble. The unpolarized incident neutrons with a mean wavelength of
λ = 6.0 and a bandwidth of ∆λ/λ = 10% (FWHM) were used. The instrument offers
access to a low q-range of 0.016nm−1 ≲ q ≲ 0.2nm−1. The external magnetic field H0

(with µ0Hmax
0 = 16.5T) was provided by a 17 T cryomagnet [44] and was applied parallel to

the wave vector k0 of the incoming neutron beam (see the Figure 2.5(b) for a sketch of the
neutron setup). To reduce the influence of inhomogeneous demagnetizing fields at the outer
perimeter of the circular sample, the neutron beam was collimated to a diameter of 0.8cm.
The neutron transmission was larger than 90% in all measurements, indicating a negligible
influence of multiple scattering.

3.5.2 Unpolarized SANS results and discussion

Although the individual scattering contributions to the scattering cross section in Equa-
tion 2.57 are highly anisotropic1, their sum results in an isotropic cross section for a sta-
tistically isotropic sample [79]. Thus, the two-dimensional SANS intensity distributions
of the nanocrystalline Co sample are isotropic (θ -independent) at all fields investigated
(Figure 3.6). This supports the assumption made earlier in the micromagnetic theory of a
statistically-isotropic grain microstructure.

1Due to the trigonometric functions and the fact that magnetization Fourier components themselves may
depend on the angle θ explicitly (see Equation 2.45 and Equation 2.46).
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Fig. 3.6 Two-dimensional unpolarized total (nuclear and magnetic) SANS cross section
dΣ/dΩ of nanocrystalline cobalt at selected applied magnetic fields H0 (see insets) (logarith-
mic color scale). H0 ∥ ez is applied parallel to the wave vector k0 of the incident neutrons.
Taken from the supplementary material of [83].

These two-dimensional total (nuclear and magnetic) SANS intensity maps were azimuthally-
averaged over an angle of 2π . To apply Equation 3.10 and Equation 3.11 to dΣSM/dΩ data
(compare Equation 2.59)), the residual SANS cross section dΣres/dΩ was subtracted from
the total dΣ/dΩ at lower fields. In this experiment, the highest internal field achieved was
14.71T. This procedure removes any background scattering contribution as well as the
nuclear and the longitudinal magnetic scattering, leaving only the magnetic scattering cross
section (see section 2.10 and section 2.11 for more details). The subtraction procedure (for
the radially-averaged data) along with the room-temperature magnetization curve is depicted
on Figure 3.7.

As seen from the Figure 3.7(c), the magnetization state of the specimen used in the
SANS experiment (indicated by “ ”) is mostly within the approach-to-saturation regime
defined here as the µ0Hi ≳ 0.27T (M/Ms ≳ 96%. The strong field dependence of dΣSM/dΩ

supports the notion that scattering due to transversal spin misalignment represents by far the
dominant contribution to dΣ/dΩ (see also Figure 3 in [78]).

The magnetic Guinier analysis is represented on Figure 3.8. The Guinier plots, i.e.,
ln[dΣSM/dΩ] vs. q2, along with the weighted linear least-squares fits to Equation 3.10
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Fig. 3.7 (a) 2π-azimuthally-averaged total (nuclear and magnetic) SANS cross section
dΣ/dΩ of nanocrystalline Co vs. momentum transfer q at a series of internal magnetic fields
(see inset) (log-log scale) (k0 ∥ H0). (b) Corresponding spin-misalignment SANS cross
section dΣSM/dΩ obtained by subtracting the dΣ/dΩ data at 14.71T [orange data points
in (a)] from the dΣ/dΩ at lower fields. (c) Upper right quadrant of the hysteresis loop of
nanocrystalline Co measured at decreasing fields from saturation as in the neutron experiment.
“ ” indicate the internal-field values where the SANS data were taken. Horizontal dashed line
indicates the saturation-magnetization value of µ0Ms = 1.80T. Vertical dashed line indicates
the approach-to-saturation regime (M/Ms ≳ 96%). Taken from [83].

are shown in Figure 3.8(a), whereas Figure 3.8(b) presents the obtained R2
GSM together

with a weighted linear least-squares fit to Equation 3.11 (as a function of H−1
i ). In Fig-

ure 3.8(c) the field dependence of dΣSM/dΩ(q = 0) is displayed as an afore-mentioned (see
subsection 3.3.3) consistency check.

Under careful scrutiny of Figure 3.8(a) a slight upward curvature becomes visible at
the smallest q at the two smallest internal fields of 0.213T and 0.252T. In line with this
observation the data set in Figure 3.8(c) starts to deviate from the expected linear behavior
for these two smallest internal fields (open symbols). This discrepancy is explained with
growing deviations from the small-misalignment (i.e., approach to saturation) approximation
for decreasing fields, and can be taken as a criterion for the validity range of the approach.
Therefore, the two data points at 0.213T and 0.252T were excluded from the subsequent
Guinier analysis. The values of RGH = 20.5± 1.2nm and A = (1.5± 0.2)× 10−11 J/m
were thus obtained. The A-value perfectly fits within the range of values reported in the
literature [62, 115], while the RGH-value corresponds to a spherical particle radius of R ∼=
26.5nm, assuming the monodisperse particles relation R2

GH = 3
5R2. This value is larger than
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Fig. 3.8 Magnetic Guinier analysis on nanocrystalline Co. (a) Guinier plot ln[dΣSM/dΩ]
vs. q2 and fits (solid lines) to Eq. (3.10) at selected values of the internal magnetic field
(see inset). (b) Plot of R2

GSM vs. H−1
i and fit (solid line) to Eq. (3.11). In the fitting routine

RGH and A were treated as adjustable parameters. (c) Field dependence of dΣSM
dΩ

(q = 0).
Solid line: dΣSM

dΩ
(q = 0) ∝ H−2

i . In (b) and (c) the last two data points (open symbols),
corresponding to internal fields of 0.213T and 0.252T, have been excluded from the fit
analysis. Taken from [83].

the average crystallite size of 10nm (determined by the X-ray diffraction), which can be
naturally explained by the presence of a particle-size distribution in the Co sample2.

Lastly, as can be seen in Figure 3.8(c), the extrapolated forward-scattering cross section
dΣSM
dΩ

(q = 0) also obeys the predicted dΣSM
dΩ

(q = 0) ∝ H−2
i scaling (compare Equation 3.2).

3.6 Summary

Based on the continuum theory of micromagnetics the magnetic Guinier law for random-
anisotropy-type ferromagnets (Equation 3.10 and Equation 3.11) was established. The key
variable of the theory - the magnetic Guinier radius RGSM - depends on both the sample
microstructure (via nuclear grain structure and the resulting anisotropy-field) and on the
magnetic interactions (exchange-stiffness constant, saturation magnetization, applied field).
RGSM can be quite straight-forwardly determined by analyzing the magnetic SANS cross
section at a range of applied fields.

2It is well-known from the nuclear SANS theory that a size distribution strongly weighs the RG-value
towards the largest features in the distribution; for instance, for spherical particles and point collimation, R2

G
is then related to the ratio of the eighth over the sixth moment of the size distribution [61, 27]. Therefore,
for the determination of the scaling relation between RGH and the average crystallite size, knowledge on the
particle-size distribution is required.
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The validity range of the magnetic Guinier law was discussed, the methodology was
tested against the data of [7] and the derived material constants and parameters agreed very
well with the results of the original study obtained via the complete micromagnetic routine.
Finally, the approach was subject to a rigorous testing by analyzing experimental data on
nanocrystalline cobalt [79].

Thus, this method is easily applicable to magnetic materials using unpolarized neutrons.



Chapter 4

Magnetic Correlations in
Rare-Earth-Free Mn – Bi Magnets

4.1 Mn – Bi — a promising rare-earth-free permanent mag-
net

Permanent magnets, being of a paramount importance to any electric motor, are of utmost
importance in the modern society. It was estimated in 2010s [67] that in a developed country
over 60% of electricity consumed is due to electric motor drives. Now, with the undeniable
increase in demand for the electric transportation, this figure will keep rising. Thus, any
improvement in efficiency of motors, generators and power converters will have a net positive
impact.

The dominant permanent magnets are the NdFeB-based performance hard magnets and
the Ferrite-based soft magnets. The high-performance ones contain both light rare earth
(Nd, Pr) and a small amount of heavy rare earth (Dy, Tb) elements. Thus, the increased
demand for the raw magnetic materials brings about geopolitical strain, since the majority of
rare-earth production (over 90% as per 2011 [38]) are either in or owned by a single country.

Moreover, there is a significant performance gap (see Figure 4.1) between the ferrites
and rare-earth magnets. Thus, the prospect to fill the gap with something cheap and effective
is a lucrative one [18]. Such a material could be used as a substitute in both ferrite-based
applications (to reduce the size and weight or enhance performance) and in rare-earth-based
applications (to reduce the cost at the expense of the increased size and weight).

All these combined drive the acceleration of research of rare-earth free (RE-free further)
permanent magnet candidates [39, 114, 109, 64, 97, 3, 19].
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Fig. 4.1 Development in the energy density (BHmax) at room temperature of hard magnetic
materials in the 20th century and presentation of different types of materials with comparable
energy density (each magnet is designed so that at a reference point 5 mm from the surface
of the pole, a field of 100 mT is produced). Adapted from [39].

4.1.1 Mn-based abundance

Mn-based magnets are a potential candidate for “plugging the gap” [19, 26, 55, 54] partially
due to the ability of manganese to carry a large magnetic moment in some of its compounds
[19] and partially due to its availability and cost. Figure 4.2(a) presents several such Mn-based
magnets [114].

The low-temperature phase of Mn – Bi binary alloy [100, 68, 3, 16, 60, 95] has received
a lot of attention lately, partially because of a positive temperature coefficient of the magnetic
anisotropy rendering high-temperature applications attractive [16] and partially because Bi,
being a by-product of lead production, is fairly inexpensive at present [19]. Yet, the natural
rarity of Bi might result in a considerable increase in prices were the Mn – Bi demand
increase, though the total cost is still expected to be lower than that of a NdFeB magnet
[122]. The highest reported (BH)max value is 62.1 kJm−3 (7.8 MGOe), from the pre-aligned
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Fig. 4.2 (a) Hysteresis loops for Mn-based Mn70Ga30, Mn53.5Al45C1.7, MnBi and MnAlGe
RE-free permanent magnets. Adapted from [114]. (b) Comparison of magnetic properties of
MnBi, Nd-Fe-B, and ferrite at different temperatures. Taken from [122].

sintered magnets [20]; however, it is less than half of the theoretical value of 143.3 kJm−3

(18 MGOe) [1].
The Figure 4.2(b) provides the performance context for the Mn – Bi in terms of current

dominant magnets present on the market: rare-earth-based hard permanent NdFeB magnets
and soft ferrites (see [122]). Clearly, the overall figure of merit, the energy product (BHmax)
is far below the values demonstrated by NdFeB, yet the increase of coercivity with the
increasing temperature might carve a place for Mn – Bi in the high-temperature applications,
since NdFeB starts dropping rapidly and requires heavy rare-earth dopants to operate at
elevated temperatures.

4.1.2 Engineering versus physics approach

Most of the published studies on Mn-Bi-based magnets have focused on integral measure-
ment techniques and on engineering aspects e.g. [96, 21, 105, 89, 130, 131, 51, 15]. Yet, the
macroscopic magnetic properties arise, from spatial variations in the magnitude and orienta-
tion of the magnetization vector field M(r) on a mesoscopic length scale (a few nm up to the
micron scale). Therefore, a deeper understanding of the correlations and long-wavelength
magnetization fluctuations is of paramount importance both from the basic science point of
view as well as from a materials science perspective aiming to optimize the properties of the
material. These correlations and fluctuations were the main focus of [72]. The following
section details on the main findings and furnishes more details.

Notably, the focus of [72] was on the first ever results of the unpolarized magnetic
small-angle neutron scattering (SANS) experiments on cold-compacted isotropic Mn – Bi
magnets. It is known [79] that the magnetic SANS is ideally suited to characterize the
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magnetic structure and interactions on the mesoscopic length scale, providing insights on
both variations of the magnitude and orientation of the magnetization M(r) in the bulk of the
material.

Additionally, throughout measurements it became necessary to extend the conventional
SANS into the very small-angle neutron scattering, as the real-space length scale of this
material revealed to range from a few hundred nanometers up to the micron regime. The aim
was to estimate the characteristic size of microstructural-defect-induced spin perturbations
in the polycrystalline microstructure of Mn – Bi magnets and to provide first insights into
this material via the SANS technique, not necessarily to advance the current Mn – Bi
performance records. Moreover, the technical challenges throughout the whole process -
from the sample manufacturing to its transport to the beamline to the temporal constraints on
neutron measurements to post-beam sample activation and disposal were carefully assessed
and are presented below.

4.2 Neutron samples and results

All Mn – Bi samples were synthesized using the conventional melting and milling, similar
to [17, 94, 16]. Initial ingots were prepared by arc melting high-purity elements (99.8%
for Mn and 99.99% for Bi) and annealed under Ar atmosphere for 24h at 300◦C followed
by quenching in water at room temperature. Subsequently, the resulting ingots were hand
crushed under N2 atmosphere into powder (with a particle size < 60 µm) and ball milled
for 2h in hexane with a ball-to-powder weight ratio of 1:10 at 150RPM, as detailed in
[15]. The ball milled powder was washed in ethanol, magnetically separated, dried under
N2 atmosphere and cold compacted at a pressure of ∼ 1.0GPa into 10×5×1mm pellets.
Magnetization isotherms were recorded using a vibrating sample magnetometer (Cryogenic,
µ0Hmax = 14T, Figure 4.3).

The coercivity Hc of the samples varies between 0.47−0.56T for the compositions inves-
tigated, while the saturation magnetization Ms varies from about 33Am2kg−1 (Mn55Bi45)
to 36Am2kg−1 (Mn50Bi50) to 34Am2kg−1 (Mn45Bi55). These values are far below the
theoretical saturation magnetization of the low-temperature Mn – Bi phase (80Am2kg−1)
and indicate a magnetic content of ∼ 40−45%1.

1No single processing route alone has been reported to yield LTP-MnBi with purity> 90 wt % [110].
Moreover, the reader is reminded here that the emphasis of the current work was on the neutron analysis rather
then on optimising the synthesis procedure.



4.2 Neutron samples and results 53

A field larger than 1.8T is sufficient to close the hysteresis loop and to reach the reversible
part of the M(H0) curve. This observation is of relevance since in the neutron-data analysis
the measurement at 2.2T is used for subtraction to eliminate the nuclear scattering.

For more details on sample preparation and characterization using x-ray diffraction and
scanning electron microscopy see [17].

Fig. 4.3 Room-temperature hysteresis loops M(H0) of Mn45Bi55, Mn50Bi50 Mn55Bi45. (see
inset). Taken from [72].

4.2.1 Preliminary SANS measurements on SANS-1

First, preliminary set of the neutron measurements was performed on the instrument SANS-1
at MLZ [91] were performed (see Figure 4.4 and Figure 4.5 for details). Three observations
are of notice here:

1. The total scattering cross sections dΣ/dΩ (which include nuclear and magnetic scat-
tering, see section 2.9 and section 2.10 for more details) appear to be isotropic for all
the fields investigated (compare (a)−(d) Figure 4.4).

2. The magnetic SANS cross section dΣM/dΩ exhibits a slight elongation in the direc-
tion of the field (compare (e)−(h), which points to the existence of long-range spin
perturbations on a scale of at least several tens and at most few hundreds of nanometers.
Figure 4.4).
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3. The 2π-azimuthal-averages of the data of Figure 4.4 is virtually featureless and exhibits
only a very small field-dependence.

Fig. 4.4 Field dependence of the two-dimensional SANS cross section of Mn55Bi45 rare-
earth-free permanent magnet (H0 ⊥ k0; logarithmic color scale; data measured at SANS-1,
MLZ). (a)−(d) Total nuclear and magnetic dΣ/dΩ. (e)−(h) Magnetic SANS cross section
dΣM/dΩ, obtained by subtracting the dΣ/dΩ at 4T from the data at lower fields. Taken
from the Supplementary Material of [72].

Fig. 4.5 2π-azimuthal-average of the data shown in Fig. 4.4 (log-log scale). (a) dΣ/dΩ;
(b) dΣM/dΩ. Lines are guide to the eyes. Inset in (a) shows the full q-dependence of dΣ/dΩ.
Taken from the Supplementary Material of [72].

An essential experimental feature was the fact that even 1mm thick samples demonstrated
quite low transmission values, potentially hinting at the multiple scattering effects. This
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feature was not investigated further and the samples for the subsequent measurements were
ground down to the the thickness of 0.1mm. Another critical feature - the oxidation of
Mn and the resulting reduction in the magnetic Mn – Bi phase content on a fairly quick
time scale [50, 20] - necessitated in sample storage under Ar or N2 atmosphere up to the
measurement itself. No detailed study of the degradation dynamics was conducted, for a
comparative XRD patterns and magnetisation curves the reader is referred to the Figure A.1
in the Appendix A which indicate the considerable decline in the magnetic phase content
over a course of several weeks. Yet, since the measurement series on a single sample takes
at most several days, SANS is the bulk technique and oxidation is most pronounced at the
surface the effects of the sample degradation, even though undeniably there, were considered
negligible further.

4.2.2 VSANS measurements on KWS-3

The lack of features in the 2π-azimuthal-averages of the data brought the attempt to extend
the q-range to lower values to capture larger real-space correlations. This extension, together
with a generalised Guinier-Porod model (see below) formed the basis of [72].

The bulk of the unpolarized SANS experiments presented in [72] were performed at
the room temperature at the very small-angle neutron scattering instrument KWS-3 [103]
at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. The external magnetic
field H0 was applied perpendicular to the incident neutron beam (H0 ⊥ k0), and a mean
wavelength of λ = 12.8Å with a bandwidth of ∆λ/λ ∼= 10% (FWHM) was chosen. The
covered momentum transfer ranges between about 0.002nm−1 ≲ q ≲ 0.2nm−1. The neutron
experiments were performed by first applying a field of 2.2T and then reducing the field.
SANS data reduction (correction for background scattering, transmission, detector efficiency)
was carried out using the QTI-SAS software package [102].

Figure 4.6 illustrates the standard neutron data analysis procedure, which is based on the
subtraction of the total dΣ/dΩ at the highest field (Figure 4.6(a)) from data at lower fields
(e.g., Figure 4.6(b)). This eliminates the strong and presumably isotropic nuclear SANS
contribution (compare Equation 2.49) and the discussion in section 2.9 and section 2.10) and
provides access to the magnetic SANS cross section dΣM/dΩ (Figure 4.6(c)) [78, 92].

The 2D reduced and corrected dΣM/dΩ appear on Figure 4.7. The dΣM/dΩ are
anisotropic, elongated along the direction parallel to the applied magnetic field H0, with
increasing elongation at reducing field, in line with the expectation that higher H0 suppresses
the spin missalignment. Comparing to the expression for dΣ/dΩ in the H0 ⊥ k0 geometry
(Equation 2.49) this angular anisotropy can be related to the transversal Fourier compo-
nent |M̃y|2 cos2 θ in dΣM/dΩ. The feature is clearly observable for all Mn – Bi samples
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Fig. 4.6 Demonstration of the neutron data analysis procedure on corrected two-dimensional
SANS cross sections of a Mn55Bi45 rare-earth-free permanent magnet (H0 ⊥ k0; logarithmic
color scale). (a) Total (nuclear and magnetic) SANS cross section dΣ/dΩ at µ0H0 = 2.2T
(H0 is horizontal in the plane, see inset). (b) dΣ/dΩ at remanence (0T). (c) Magnetic
(difference) SANS cross section dΣM/dΩ at remanence. The dashed white line emphasizes
the slight elongation of dΣM/dΩ along H0. Taken from [72].

in the remanent state (Figure 4.7(c),(f),(i)), and suggests the presence of long-range spin-
misalignment correlations on a real-space length scale of at least a few ten to a few hundreds
of nanometers.

4.3 Generalized Guinier-Porod model

The magnetic SANS cross section dΣM/dΩ was analyzed in terms of the generalized Guinier-
Porod model, developed by Hammouda [42]. The model describes the 2π-azimuthally-
averaged scattering from both spherical and nonspherical objects. It is purely empirical
and, essentially, decomposes the I(q) = dΣM

dΩ
(q) curve into a Guinier region for q ≤ q1 and

a Porod region for q ≥ q1. Both parts of the scattering curve are then joined by demand-
ing the continuity of the Guinier and Porod laws (and of their derivatives) at q1; more
specifically [42]:

I(q) =
G
qs exp

(
−

q2R2
G

3− s

)
for q ≤ q1, (4.1)

I(q) =
D
qn for q ≥ q1, (4.2)

where the scaling factors G and D, the Guinier radius RG, the dimensionality factor s, and the
Porod power-law exponent n are independent parameters. From the continuity of the Guinier
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Fig. 4.7 Field dependence of the two-dimensional magnetic SANS cross section dΣM/dΩ of
Mn – Bi rare-earth-free permanent magnets (H0 ⊥ k0; logarithmic color scale; data measured
at KWS-3, MLZ). The dΣM/dΩ are obtained by subtracting the dΣ/dΩ at 2.2T from the
data at lower fields. Taken from the Supplementary Material of [72].

and Porod functions and their derivatives it follows that:

q1 =
1

RG

[
(n− s)(3− s)

2

]1/2

, (4.3)

D = Gqn−s
1 exp

(
−

q2
1R2

G
3− s

)
, (4.4)
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where n > s and s < 3 must be satisfied. Note that q1 is not a fitting parameter, but an
internally computed value (via Equation 4.3). For a dilute set of homogeneous spherical
particles with sharp interfaces one expects s = 0, n = 4, and R2

G = 3
5R2, where R is the particle

radius [42].

Fig. 4.8 Field dependence of the 2π-azimuthally-averaged SANS cross sections of Mn – Bi
magnets (H0 ⊥ k0; log-log scale). (a),(c),(e) Total nuclear and magnetic dΣ/dΩ. (b),(d),(f)
Magnetic SANS cross section dΣM/dΩ, obtained by subtracting the dΣ/dΩ at 2.2T. Solid
lines in (b),(d),(f): fit to the generalized Guinier-Porod model. Taken from the Supplementary
Material of [72].
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The two-dimensional magnetic SANS cross sections Figure 4.7 were azimuthally-
averaged and the resulting data was fitted to the generalized Guinier-Porod (GP) model
(Equation 4.1−Equation 4.4). The weighted nonlinear least-squares fits appear on Figure 4.8
and, for the remanent-state only, on Figure 4.9 (solid lines). In all cases, the GP model can
very well describe the q-dependence of the dΣM/dΩ. The obtained Guinier radii RG are
shown in Figure 4.10, while Table 4.1 lists the results for the remaining fit parameters (for
the remanent state only).

Fig. 4.9 2π-azimuthally-averaged dΣM/dΩ of Mn – Bi rare-earth-free permanent magnets in
the remanent state (H0 ⊥ k0; log-log scale). Solid lines: fit to the generalized Guinier-Porod
model [Eqs. (4.1)−(4.4)]. Error bars are selectively shown only for the Mn55Bi45 sample.
Taken from [72].

Mn55Bi45 Mn50Bi50 Mn45Bi55

RG (nm) 224 ± 8 242 ± 12 218 ± 13
s 0.30 ± 0.07 0.35 ± 0.10 1.07 ± 0.09
n 3.38 ± 0.04 3.42 ± 0.04 3.58 ± 0.03

Table 4.1 Results of the fit analysis on Mn – Bi rare-earth-free permanent magnets using the
generalized Guinier-Porod model [42] (remanent state).

The reader is reminded that the origin of magnetic SANS is due to spatial mesoscale
variations in the magnitude and orientation of the magnetization (see the subsection 2.8.4 for
the detailed discussion). Such magnetization fluctuations are (among others) caused by the
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microstructural defects (e.g., dislocations, interfaces, pores) via the magnetoelastic coupling
of the magnetization to the strain field of the defect [62]. The range and the amplitude
of defect-induced spin disorder can be suppressed by an applied field. The value of RG is
associated with the size of such perturbed, nonuniformly magnetized regions around defects.

Fig. 4.10 Magnetic field dependence of the Guinier radii RG resulting from the generalized
Guinier-Porod model. Lines are a guide to the eyes. Taken from [72].

The Guinier radii in Figure 4.10 do not exhibit a systematic variation with the composition
of the Mn – Bi samples. At remanence, their values range between RG ∼ 220−240nm. While
the RG for the Mn55Bi45 sample are field independent within error bars, the Mn45Bi55 data
exhibits a decrease of RG with increasing field, from about 220nm at remanence to ∼ 100nm
at 1.5T. Such a behavior is, again, in qualitative agreement with the suppression of spin-
misalignment fluctuations around defects with increasing applied field [77]. On the other
hand, the Mn50Bi50 sample exhibits an increase of RG with the increasing field, from about
240nm at remanence to ∼ 285nm at 1.0T.

Yet, the considerable uncertainties in the RG-values hinder any unambiguous conclusions
about the field or composition dependence.

Finally, a cumulative plot of all fit parameters appears on the Figure 4.11. A particular
oddity is the unusually low values of the Porod exponents n. In the context of particle
scattering the reduction below the sharp-interface value of n = 4 could be interpreted as a
roughening of the surfaces of the scattering objects [42]. However, for magnetic SANS,
where continuous rather than sharp scattering-length density variations are at the origin of
the scattering, asymptotic power-law exponents smaller than 4 have only been reported for
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Fig. 4.11 Cumulative fit parameters of the data from Figure 4.8. (a) The Porod exponent
related to the interface smoothness. (b) Dimensionality parameter describing the shape of the
scatterers. (c) The radius of gyration related to the particle size.

amorphous magnets [76]. Similarly, exponentially correlated magnetization fluctuations
would give rise to n = 4, corresponding to a Lorentzian-squared cross section. Thus, the
systematic reduction of the Porod exponents n in Mn – Bi remains to be explored by future
studies.

The s-parameter models nonspherical objects in the context of the generalized Guinier-
Porod model [42]. For spherical particles (or domains in the magnetic case), s is expected
to take on a value of s = 0. The Mn55Bi45 and Mn50Bi50 samples are close to this value
for all the fields, whereas Mn45Bi55 exhibits s = 1.07 at remanence and this value seems to
be increasing with the increasing field, which would indicate scattering due to elongated
rod-like or even platelet-like objects. The latter observation is surprising in view of the fact
that extended electron-microscopy investigations on similar samples, albeit on a different
length scale, did not reveal the presence of shape-anisotropic particles [17] and, considering
that some previous studies (e.g., [94]) demonstrated enhanced coercivity over a wide range
of temperatures with increasing Bi content, points an exciting direction for further analysis.
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4.4 Distance distribution function

In addition to the generalized Guinier-Porod analysis, distance distribution function [5]:

p(r) = r2
∫

∞

0

dΣM

dΩ
(q) j0(qr)q2dq, (4.5)

where j0(qr) = sin(qr)/(qr) is the zeroth-order spherical Bessel function was calculated
on the remanent state data. The p(r) function corresponds to the distribution of real-space
distances between volume elements inside the particle weighted by the excess scattering-
length density distribution; see the reviews by Glatter [31] and by Svergun and Koch [120]
for detailed discussions of the properties of p(r) and for information on how to compute p(r)
by indirect Fourier transformation [5]. p(r) provides the information on the characteristics
(e.g., size and shape) of the scattering objects [120, 28], and on the presence of interparticle
correlations [65, 29]. This approach allows to model-independently asses the anisotropies
and estimate characteristic sizes.

Fig. 4.12 Distance distribution functions p(r) [Eq. (4.5)] of the remanent-state Mn – Bi data
shown in Fig. 4.9. Dashed line: analytical p(r) ∝ r2(1− 3r

4R + r3

16R3 ) of a sphere of radius

R = 290nm, corresponding to a Guinier radius of RG =
√

3
5R = 225nm. Taken from [72].

The results for the p(r), that appear on the Figure 4.12, are generally consistent with the
Guinier-Porod model analysis both in terms of the characteristic lengths and the anisotropies
of the scattering objects. Both Mn55Bi45 and Mn50Bi50 samples exhibit a p(r) which is
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typical for globular scatterers2. Though, small shoulder at the larger r points towards the
presence of slightly anisotropic structures. By contrast, the p(r) of the Mn45Bi55 sample
clearly shows a broad maximum at r ∼= 470nm followed by a long tail at the larger r,
suggesting that the scattering originates from shape-anisotropic elongated objects (compare
Fig. 5 in the review by [120]). The broad maximum of p(r) at the smaller distances of the
Mn45Bi55 specimen corresponds to the shorter dimension of the structure, which, again, is in
line with the behavior of the s-parameter obtained from the Guinier-Porod model.

4.5 Summary and outlook

The SANS measurements conducted in this work are, to the author’s knowledge, the first
experiment of this type on the Mn – Bi system, a promising rare-earth free permanent magnet
candidate. The main objective of this work was to pave way for further studies and to provide
the first insights rather then advance the state-of-the-art of Mn – Bi permanent magnet
development for economically feasible applications.

The Guinier radius RG, represents the characteristic size over which microstructural-
defect-induced perturbations in the spin structure are transmitted by the exchange interaction
into the surrounding crystal lattice. Thus, RG is a measure for the size of inhomogeneously
magnetized regions around lattice imperfections. This length scale is paramount for the
understanding of the coercivity mechanism in Mn – Bi magnets – domain nucleation versus
pinning – which is currently discussed in the literature [22, 94, 132]. For instance, the
nucleation of a reverse domain in a grain usually starts at a defect site, where the magnetic
anisotropy may be reduced relative to the bulk phase. Therefore, the presented neutron
methodology (analysis of the magnetic SANS data using the generalized Guinier-Porod
model and calculation of the distance distribution function) provides a means to systematically
correlate the spin-misalignment length, which is a property of the defect, to the macroscopic
parameters (e.g., coercivity, maximum energy product) of a permanent magnet. Moreover,
previous studies (e.g., [94]) indicate increased coercivity with shifting the alloy composition
towards Bi, which was explained by differences in the grain-size distribution. The SANS
analysis conducted here indicates that an increase of the Bi content results in increasingly
elongated magnetic structures (4.12). Thus, a further controlled increase of Bi might be a
valid approach to enhance the magnetic hardness of the compound via shape anisotropy. In

2Note that for these two samples the respective maximum of the p(r) function, which is indicative of the
"particle" radius R, roughly agrees with the RG-value computed according to R2

G = 3
5 R2 (assuming a spherical

particle shape).
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this respect, magnetic SANS permits the determination of the relevant figures of merit (RG, s,
n), which are otherwise not accessible by integral measurement techniques.



Chapter 5

Uniaxial Polarization Analysis

This chapter briefly summarizes the results of [73] and expands on the discussion presented
herein.

5.1 Neutron polarization

Up to now, only unpolarized SANS cross sections were discussed. Yet, with the external field
H0 one could define the polarization axis for both incident and scattered neutrons, for both
parallel and perpendicular geometry. Notably, since in both cases H0 defines the ez-direction,
in the perpendicular (k0 ⊥ H0) geometry the polarization axis is perpendicular to the wave
vector k0 and in the parallel (k0 ∥ H0) geometry the polarization axis is parallel to the wave
vector k0.

In a classical picture, the polarization P of a neutron beam containing N spins can be
defined as the average over the individual polarizations P j of the neutrons as [112]:

P =
1
N

N

∑
j=1

P j, (5.1)

where 0≤ |P| ≤ 1. Practically, the beam is polarized with a certain efficiency (usually ≥ 90%)
along the guide field direction (here and further the ez-direction is assumed). In case the
expectation values of the perpendicular polarization components vanish, i.e. ⟨Px⟩=

〈
Py
〉
= 0,

and that ⟨Pz⟩= P, the fractions:

p+ =
1
2
(1+P) and p− =

1
2
(1−P) (5.2)
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of neutrons in the spin-up (+) and spin-down (−) state can be introduced, with

p++ p− = 1 and p+− p− = P. (5.3)

Obviously, for an unpolarized beam p+ = p− = 0.5 and P = 0, while P =+1 (p+ = 1)
or, respectively, P =−1 (p− = 1) for a fully polarized beam.

Using a radio-frequency spin flipper (positioned after the polarizer and before the sample,
refer to Figure 2.5 for a schematics), the initial polarization can be inverted. The efficiency
of the spin flipper is ε± with ε+ = 0 for flipper off and ε− = ε ∼= 1 for the flipper on.

With an analyzer behind the sample, selecting only neutrons with spins either parallel or
antiparallel to the initial polarization1, four scattering cross sections can be distinguished
[8, 90, 112], two of which conserve the neutron-spin direction and two of which reverse the
neutron spin, each a result of a separate scattering process:

• a neutron in a spin-up (+) state remains in the spin-up (+) state after the scattering
process, commonly denoted with (++) superscript index in the cross section expression

• a neutron in a spin-down (−) state remains in the spin-down (−) state after the
scattering process, commonly denoted with (−−) superscript index in the cross section
expression

• a neutron in a spin-up (+) state switches (or flips) into the spin-down (−) state after
the scattering process, commonly denoted with (+−) superscript index in the cross
section expression

• a neutron in a spin-up (−) state switches (or flips) into the spin-up (+) state after the
scattering process, commonly denoted with (−+) superscript index in the cross section
expression.

This results in 4 partial SANS cross sections, the first two [(++) and (−−)] are known
as the non-spin-flip cross sections and could be written in terms of the Cartesian components
of the Halpern–Johnson vector Q̃ as (compare Equation 2.48 and subsection 2.5.1):

dΣ++

dΩ
=

8π3

V
b2

H

[
b−2

H |Ñ|2 +b−1
H (ÑQ̃∗

z + Ñ∗Q̃z)+ |Q̃z|2
]
, (5.4a)

dΣ−−

dΩ
=

8π3

V
b2

H

[
b−2

H |Ñ|2 −b−1
H (ÑQ̃∗

z + Ñ∗Q̃z)+ |Q̃z|2
]
. (5.4b)

1Or an additional flipper before the analyzer with the fixed direction
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The latter two [(+−) and (−+)] are the so-called spin-flip cross sections:

dΣ+−

dΩ
=

8π3

V
b2

H

[
|Q̃x|2 + |Q̃y|2 − iez · (Q̃× Q̃∗)

]
, (5.5a)

dΣ−+

dΩ
=

8π3

V
b2

H

[
|Q̃x|2 + |Q̃y|2 + iez · (Q̃× Q̃∗)

]
. (5.5b)

As before, V denotes the scattering volume, Ñ(q) denotes the Fourier transform of the nuclear
scattering-length density N(r), and bH = 2.91×108 A−1m−1 is a constant relating the atomic
magnetic moment µa to the atomic magnetic scattering length bm.

Inspection of Equations 5.4a - 5.5b reveals that the transversal components Q̃x and
Q̃y give rise to the spin-flip scattering, while the longitudinal component Q̃z results in the
non-spin-flip scattering.

Considering the cartesian components of the HJ-vector in both geometries (Equation 2.33
and Equation 2.34 respectively):

Q̃⊥ =


−M̃x

−M̃y cos2 θ + M̃z sinθ cosθ

M̃y sinθ cosθ − M̃z sin2
θ

 ,

Q̃∥ =


−M̃x sin2

θ + M̃y sinθ cosθ

M̃x sinθ cosθ − M̃y cos2 θ

−M̃z

 ,

one observes that if the scattering vector is along the neutron polarization (i.e., θ = 0◦), the
Q̃⊥ reduces to (compare Equation 2.33):

Q̃θ=0◦
⊥ =


−M̃x

−M̃y

0

 , (5.6)

in the perpendicular (k0 ⊥ H0) geometry and, respectively, (ÑQ̃∗
z + Ñ∗Q̃z) terms in Equa-

tion 5.4a and Equation 5.4b vanish, so that nuclear coherent and magnetic scattering are fully
separated.

Thus, in the case of the parallel geometry (k0 ∥ H0), spin-flip scattering probes only the
transversal magnetization Fourier components M̃x,y, whereas the longitudinal scattering is
entirely contained in the non-spin-flip channels. In contrast, in the perpendicular geometry
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(k0 ⊥ H0), the longitudinal and transversal magnetization Fourier components are separated
only for certain directions on the detector.

5.2 Scattered beam polarization

The total SANS cross section dΣ/dΩ can then be expressed in terms of the initial spin
populations p± as [8, 90, 112]:

dΣ

dΩ
= p+

dΣ++

dΩ
+ p+

dΣ+−

dΩ
+ p−

dΣ−−

dΩ
+ p−

dΣ−+

dΩ
. (5.7)

Inserting the expressions for p+ and p− (Equation 5.2 and Equation 5.3) and for the partial
SANS cross sections dΣ±±/dΩ and dΣ±∓/dΩ (Equations 5.4a – 5.5b), dΣ/dΩ evaluates
to:

dΣ

dΩ
=

8π3

V
b2

H

[
b−2

H |Ñ|2 + |Q̃|2 +P ·b−1
H (ÑQ̃∗+ Ñ∗Q̃)− iP · (Q̃× Q̃∗)

]
. (5.8)

Distinguishing two cases with respect to the initial neutron polarization orientations with
respect to the ez-direction:

• P = {0,0,Pz = P} parallel orientation or P+

• P = {0,0,Pz =−P} anti-parallel orientation or P−

Equation 5.8 can be rewritten as:

dΣ±

dΩ
=

8π3

V
b2

H

[
b−2

H |Ñ|2 + |Q̃|2 ±Pb−1
H (ÑQ̃∗

z + Ñ∗Q̃z)∓ iPez · (Q̃× Q̃∗)
]
. (5.9)

Conceptually, the the polarization Pf of the scattered beam along the direction of the incident
neutron polarization P counts only the neutrons in a given polarization state in the scattered
beam, i.e., explicitly:

• the neutrons that originally were in the (+) state and that scattered in the non-spin-flip
scattering into the (+) state (symbolically corresponding to p+ dΣ++

dΩ
)

• the neutrons that originally were in the (−) state and yet scattered via the spin-flip
scattering into the (+) state (symbolically corresponding to p− dΣ−+

dΩ
term)

as a positive contribution and subtracting
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• the neutrons that originally were in the (−) state and that scattered in the non-spin-flip
scattering into the (−) state (p− dΣ−−

dΩ
symbolically)

• the neutrons that originally were in the (+) state and yet scattered via the spin-flip
scattering into the (−) state (p+ dΣ+−

dΩ
symbolically).

Thus, omitting the nuclear-spin-dependent scattering2, the polarization Pf of the scattered
beam along the direction of the incident neutron polarization P is obtained from the following
expression [8, 90, 112]:

Pf
dΣ

dΩ
= p+

dΣ++

dΩ
+ p−

dΣ−+

dΩ
− p−

dΣ−−

dΩ
− p+

dΣ+−

dΩ

=
8π3

V
b2

HP
[
b−2

H |Ñ|2 + |Q̃z|2 −|Q̃x|2 −|Q̃y|2
]

+
8π3

V
b2

H

[
b−1

H (ÑQ̃∗
z + Ñ∗Q̃z)+ iez · (Q̃× Q̃∗)

]
. (5.10)

The first four (8π3

V b2
HP) terms on the right-hand side of the Equation 5.10 demonstrate that

the nuclear coherent scattering3 and the scattering due to the longitudinal component Q̃z of
the magnetic scattering vector Q̃ do not reverse the initial polarization, i.e. maintain the sign
of P whereas the two transversal components Q̃x and Q̃y give rise to spin-flip scattering, i.e.
switch the sign of P.

The last two (8π3

V b2
H) terms in the Equation 5.10 create polarization: these are the nuclear-

magnetic interference terms (ÑQ̃∗
z + Ñ∗Q̃z), which are commonly used to polarize beams,

and the chiral term iez · (Q̃× Q̃∗), which manifests in the inelastic scattering (e.g., dynamic
chirality) [69, 34], in elastic scattering on spiral structures and weak ferromagnets (e.g.,
canted antiferromagnets) [123], or in the presence of the Dzyaloshinskii–Moriya interaction
in microstructural-defect-rich magnets [85, 108].

From the Equation 5.10 it follows that the polarization Pf(q) of the scattered neutron
beam at momentum-transfer vector q can be expressed as [70, 8, 10]:

Pf =
p+ dΣ++

dΩ
+ p− dΣ−+

dΩ
− p− dΣ−−

dΩ
− p+ dΣ+−

dΩ

p+ dΣ++

dΩ
+ p+ dΣ+−

dΩ
+ p− dΣ−−

dΩ
+ p− dΣ−+

dΩ

, (5.11)

2In the general expression for the polarization of the scattered neutrons, a term iP× (ÑQ̃∗− Ñ∗Q̃) ap-
pears [112], which is ignored in equation (5.10). This term rotates the polarization perpendicular to the initial
polarization and cannot be observed in the uniaxial setup. In linear neutron polarimetry it is not possible to
distinguish between a rotation of the polarization vector and a change of its length [90, 69].

3To be more precise, the nuclear coherent scattering, the isotopic disorder scattering, and 1/3 of the
nuclear-spin-dependent scattering.
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which for p+ = 1 (p− = 0) and p− = 1 (p+ = 0) reduces to, respectively:

P+
f =

dΣ++

dΩ
− dΣ+−

dΩ

dΣ++

dΩ
+ dΣ+−

dΩ

, (5.12a)

P−
f =

dΣ−+

dΩ
− dΣ−−

dΩ

dΣ−−
dΩ

+ dΣ−+

dΩ

. (5.12b)

Alternatively, recalling that the half-polarized SANS cross sections dΣ+/dΩ and dΣ−/dΩ

which are used to denote the experiments with a polarized incident beam only, and no spin
analysis of the scattered neutrons (also known as SANSPOL technique [78, 92]) combine
non-spin-flip and spin-flip scattering contributions, according to (p± = 1):

dΣ+

dΩ
=

dΣ++

dΩ
+

dΣ+−

dΩ
, (5.13a)

dΣ−

dΩ
=

dΣ−−

dΩ
+

dΣ−+

dΩ
, (5.13b)

Equation 5.12a and Equation 5.12b could be re-written as:

P+
f = 1−2

dΣ+−
dΩ

dΣ+
dΩ

, (5.14a)

P−
f = −

(
1−2

dΣ−+

dΩ

dΣ−
dΩ

)
. (5.14b)

Note that the minus sign in front of the round brackets in equation (5.14b) is simply a
manifestation of the positive ez direction and thus it is dropped in the further discussion.

5.3 Polarized SANS cross sections

This section is included for completeness sake only, it expands Equations 5.4a – 5.5b us-
ing the HJ-vector (see Equation 2.33 for k0 ⊥ H0 and Equation 2.34 for k0 ∥ H0) and
substitutes micromagnetic expressions of the Fourier components M̃x,y,z(q) of the magne-
tization (see subsection 2.8.3 for details, Equation 2.43/Equation 2.44 for k0 ⊥ H0 and
Equation 2.45/Equation 2.46 for k0 ∥ H0 respectively).

The superscripts (++) and (−−) denote the non-spin-flip scattering cross sections
whereas (+−) and (−+) mark the two spin-flip scattering cross sections. The subscripts ⊥
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and ∥ refer to the respective perpendicular and parallel scattering geometries.

dΣ
±±
⊥

dΩ
=

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃y|2 sin2
θ cos2

θ + |M̃z|2 sin4
θ

−CTyz sin3
θ cosθ

∓b−1
H CTÑM̃z

sin2
θ ±b−1

H CTÑM̃y
sinθ cosθ

)
, (5.15)

dΣ
±±
∥

dΩ
=

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃z|2

∓b−1
H CTÑM̃z

)
, (5.16)

dΣ
±∓
⊥

dΩ
=

8π3

V
b2

H

(
|M̃x|2 + |M̃y|2 cos4

θ + |M̃z|2 sin2
θ cos2

θ

−CTyz sinθ cos3
θ ∓ iχ

)
(5.17)

dΣ
±∓
∥

dΩ
=

8π3

V
b2

H

(
|M̃x|2 sin2

θ + |M̃y|2 cos2
θ

−CTxy sinθ cosθ) , (5.18)

where the chiral function χ(q) is given by:

χ =
(

M̃xM̃∗
y − M̃∗

x M̃y

)
cos2

θ −
(

M̃xM̃∗
z − M̃∗

x M̃z

)
sinθ cosθ . (5.19)

The two SANSPOL cross sections dΣ+

dΩ
(Equation 5.13a) and dΣ−

dΩ
(Equation 5.13b) are:

dΣ
±
⊥

dΩ
=

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃x|2 + |M̃y|2 cos2
θ + |M̃z|2 sin2

θ

−CTyz sinθ cosθ

∓b−1
H CTÑM̃z

sin2
θ ±b−1

H CTÑM̃y
sinθ cosθ

∓iχ) , (5.20)
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dΣ
±
∥

dΩ
=

8π3

V
b2

H

(
b−2

H |Ñ|2 + |M̃x|2 sin2
θ + |M̃y|2 cos2

θ + |M̃z|2

−CTxy sinθ cosθ ∓b−1
H CTÑM̃z

)
.

(5.21)

Notably, for k0 ∥ H0 geometry χ(q) = 0.
The magnetic-magnetic and nuclear-magnetic cross terms were abbreviated as:

CTyz = M̃yM̃∗
z + M̃∗

y M̃z, (5.22a)

CTxy = M̃xM̃∗
y + M̃∗

x M̃y, (5.22b)

CTÑM̃z
= ÑM̃∗

z + Ñ∗M̃z, (5.22c)

CTÑM̃y
= ÑM̃∗

y + Ñ∗M̃y. (5.22d)

Additionally, as mentioned in passing before, in the actual experiments the neutron optics is
not perfect and polarization corrections become necessary. The incident beam polarization
efficiency is denoted by P= I+/(I++I−), where I± are, respectively, the number of neutrons
with spins aligned antiparallel and parallel with respect to H0. The efficiency of the spin
flipper is ε± with ε− = ε ∼= 1 for the flipper activated and ε+ = 0 for flipper off.

Essentially, the half-polarized SANSPOL cross sections dΣ+/dΩ and dΣ−/dΩ can be
measured directly and corrected for the nonideal optics, provided that the parameters P and ε

are known from reference measurements. For POLARIS, it is necessary to measure all four
partial cross sections (dΣ++/dΩ, dΣ−−/dΩ, dΣ+−/dΩ, and dΣ−+/dΩ) to correct for the
spin leakage between the different channels [127]. Such corrections can e.g. be accomplished
by means of the BerSANS [56, 57], Pol-Corr [63], and GRASP [23] software tools, assuming
the existence of reference measurements and provided the instrument parameters.

Finally, for many polycrystalline bulk ferromagnets dΣ+−/dΩ = dΣ−+/dΩ [46]. How-
ever, in the theoretical treatment presented here, the polarization dependence of the SANS-
POL and spin-flip cross sections is explicitly accounted for via the chiral function χ(q). This
is extremely relevant for systems where e.g., the inversion symmetry is broken and the DMI
is non-neglectable [85, 108].

For a quantitative analysis of P±
f , a theoretical model for the magnetization Fourier

components M̃x,y,z(q) and for Ñ(q) is required. This is the focus of the subsequent section.
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5.4 Models and assumptions

Respectively, with the explicit expressions for polarized SANS cross sections, Equation 5.14a
and Equation 5.14b could be re-written in terms of the magnitude and orientation of the
scattering vector q, the applied magnetic field H0, the magnetic-interaction parameters (A, D,
M0, ∆M, Hp), microstructural quantities (particle-size distribution, crystallograpic texture,
etc.) and the Fourier components of the nuclear scattering function Ñ, the longitudinal
magnetic and the magnetic anisotropy fields M̃z and H̃ respectively.

The latter depend of a particular models chosen and in the initial treatment Ñ2, M̃2
z , and

H̃2
p are all assumed to be isotropic (i.e. θ -independent), as is appropriate for polycrystalline

texture-free bulk ferromagnets. Secondly, M̃2
z and H̃2

p are represented by Lorentzian-squared
functions, i.e.

M̃2
z (qξM) =

A2
Mξ 6

M(
1+q2ξ 2

M
)2 , (5.23)

H̃2
p (qξH) =

A2
Hξ 6

H(
1+q2ξ 2

H
)2 , (5.24)

where the amplitudes A2
M and A2

H (both in units of A2nm−2) are related to the mean-square
magnetization fluctuation and anisotropy-field variation respectively. The characteristic
structure sizes (ξM for M̃2

z and ξH for H̃2
p ) are generally different and are related, respectively,

to the spatial extent of regions with uniform saturation magnetization (ξM) and magnetic
anisotropy field (ξH).

A system with ξM = ξH is e.g., a collection of homogeneous and defect-free magnetic
nanoparticles in a magnetic and homogeneous matrix. Alternatively, an example of a
ξH < ξM system is the introduction of atomically-sharp grain boundaries: the direction of
the magnetic anisotropy field will change due to the change of crystallographic directions at
the intraparticle interfaces, but the value of Ms remains the same.

In [80] it was shown that, assuming ξH = ξM and using the sphere form factor for both
M̃2

z and H̃2
p , it is the ratio Hp/∆M (related to the amplitudes AH and AM) which determines

the angular anisotropy and the asymptotic power-law dependence of dΣ/dΩ as well as the
characteristic length of spin-misalignment fluctuations.

Finally, it is assumed that the nuclear scattering could be described as a ratio of the
longitudinal magnetic scattering, denoted as α . Generally (if the nuclear correlation length
ξnuc is different from ξM) α is a function of q. Here, no particular ξnuc is defined and and it
is assumed to be contained in α(q):

Ñ2(qξnuc) = α(q)b2
HM̃2

z (qξM). (5.25)
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Of course, other scattering functions such as the form factor of a sphere and various
structure-factor models (e.g. a Percus-Yevick hard-sphere structure factor) can be straightfor-
wardly implemented [77].

Finally, given theoretical models (or experimental data) for the longitudinal magnetization
Fourier component M̃z(q) and for the nuclear scattering amplitude Ñ(q), the corresponding
terms in the SANS cross sections (see section 5.3) and, hence, in the final polarizations could
be straight-forwardly computed.

5.5 First experimental results on NANOPERM

5.5.1 Neutron samples and experimental details

The neutron data presented further originates from [47]. The sample under study was a two-
phase magnetic nanocomposite from the NANOPERM family of alloys [118] with a nominal
composition of (Fe0.985Co0.015)90Zr7B3 [119]. The alloy was prepared by melt spinning,
followed by an annealing treatment for 1h at 883K, which resulted in the precipitation of
b.c.c. iron nanoparticles in an amorphous magnetic matrix. The average iron particle size of
D = 15±2nm was determined by the analysis of wide-angle x-ray diffraction data [47]. The
crystalline particle volume fraction is about 65% and the saturation magnetization is µ0M0 =

1.64T. The exchange-stiffness constant A = (4.7± 0.9)× 10−12 J/m has been previously
determined by the analysis of the field-dependent unpolarized SANS cross section [47]. For
the SANS experiments, several circular discs with a diameter of 10mm and a thickness of
about 20 µm were stacked and mounted on a Cd aperture (for further details see [82, 47]).

The polarized neutron experiment was carried out at room temperature at the D22
instrument at the Institut Laue-Langevin, Grenoble, France. Incident neutrons with a mean
wavelength of λ = 8 and a wavelength spread of ∆λ/λ = 10% (FWHM) were used. The
beam was polarized using a 1.2m-long remanent Fe-Si supermirror transmission polarizer,
installed immediately after the velocity selector. A radio-frequency spin flipper, installed
close to the sample position, allowed the reversal of the initial neutron polarization. The
external magnetic field was provided by an electromagnet and was applied perpendicular
to the wave vector k0 of the incident neutrons. Measurement of the four partial POLARIS
cross sections dΣ++/dΩ, dΣ−−/dΩ, dΣ+−/dΩ, and dΣ−+/dΩ was accomplished through
a polarized 3He spin-filter cell, installed inside the detector housing, about 1m away from the
sample position. The polarization between polarizer, flipper, and 3He filter was maintained
by magnetic guide fields on the order of 1mT. The efficiencies of the polarizer, spin
flipper, and 3He analyzer were, respectively, 90%, 99%, and 87.5%. The scattered neutrons
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were detected by a multi-tube detector consisting of 128×128 pixels with a resolution of
8×8mm. Neutron data reduction, including corrections for background scattering and spin
leakage [127], was performed using the GRASP [23] and BerSANS [56] software packages.

Fig. 5.1 Qualitative comparison between experiment and theory. (a)−(e) Two-
dimensional experimental polarization P+

f⊥(q) of the scattered neutrons of NANOPERM
[(Fe0.985Co0.015)90Zr7B3] at a series of applied magnetic fields (see insets). H0 is horizontal
in the plane. The range of momentum transfers is restricted to q ≲ 0.35nm−1. (f )−(j) Pre-
diction by the analytical micromagnetic theory (no free parameters) using the experimental
ratio αexp(q), the structural (ξM = ξH = D/2 = 7.5nm) and magnetic (A,M0) interaction
parameters of NANOPERM ([82, 47, 73]). The central white octagons mark the position of
the beam stop. Taken from [73].

5.5.2 Intensity maps of the polarisation of the scattered beam

The two-dimensional experimental distribution of the polarization of NANOPERM is
depicted in Figure 5.1 (P+

f⊥) and Figure 5.2 (P−
f⊥) at selected field values together with

the comparison to the polarization based on the micromagnetic SANS theory presented
above (see Refs. [82] for some selected spin-resolved SANS cross sections). The simula-
tion uses as the input values the experimental ratio αexp(q) ([82, 73]), and the structural
(ξM = ξH = D/2 = 7.5nm) and magnetic (A,M0) interaction parameters. In agreement
with the previous micromagnetic SANS data analysis of this sample [82, 47], the ratio
AH/AM = 0.2 was set. The overall qualitative agreement between experiment and theory
(no free parameters) is evident, although the angular anisotropy of the data does not exhibit
a large variation with field. Only at the smallest momentum-transfers can one notice a
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change in the anisotropy with decreasing field (in particular in P−
f⊥), which is related to the

emerging spin-misalignment scattering; compare e.g. scattering terms ∝ |M̃y|2 cos4 θ and
∝ CTyz sinθ cosθ in equations (5.17) and (5.20).

Additionally, the existence of (seemingly isotropic) scattering contributions at small
q ≲ 0.1nm−1 (especially at 1.27T) is noted, which is likely due to large-scale structures
that are not contained in the micromagnetic theory [compare Figure 5.1(a) and (e) and
Figure 5.2(a) and (e)].

The 1D fits of the experimental data from Figure 5.1 and Figure 5.2 (i.e., (a)-(d) on
both figures) are represented on Figure 5.3. The fits provide a reasonable description of
the experimental data. The obtained values for ξM and ξH are depicted on Figure 5.4;
ξH ∼= 6−15nm is at all fields comparable with the particle size, while ξM takes on larger
values between about 22−66nm and seems to increase with the field. For the exchange-
stiffness constant, the best-fit values (from the four local fits) range between A = (4.8−9.7)×
10−12 J/m, which agrees very well with data in the literature [47, 6].

Fig. 5.2 Same as Fig. 5.1, but for P−
f⊥(q). Taken from [73].

5.6 Summary and conclusion

Thus, since the uniaxial polarization analysis is becoming more and more available on
SANS instruments worldwide and, in view of the recent seminal progress made regarding
several techniques which exploit the neutron polarization to characterize large-scale magnetic
structures (SESANS, DFI, SEMSANS), the micromagnetic SANS framework presented here
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Fig. 5.3 (Data points) Experimental polarizations P+
f⊥(q,θ = 90◦) (a) and P−

f⊥(q,θ = 90◦) (b)
of the scattered neutrons of NANOPERM [(Fe0.985Co0.015)90Zr7B3] at a series of applied
magnetic fields (see inset). For the general clarity, error bars are shown for one field only.
(Solid lines) Prediction by the analytical micromagnetic theory. Note the different scales on
the ordinates in (a) and (b). Taken from [73].

Fig. 5.4 Resulting best-fit values for the correlation lengths ξM and ξH (see inset). Taken
from [73].

and in [73] forms the basis for all of these neutron techniques and open up a new avenue for
magnetic neutron data analysis on mesoscopic magnetic systems. This approach provides
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information on the magnetic interactions (exchange and DMI constants) and on the spatial
structures of the magnetic anisotropy and magnetostatic fields.

Additionally, the anisotropies captured by the theory provide a fairly quick way of
assessing the relative contributions of the interactions present, e.g. the ratio of amplitudes of
anisotropy field fluctuations to magnetization fluctuation, as shown on Figure 5.5. Additional
explorations of the phase space could be found in [73].

Fig. 5.5 Plot of P+
f⊥(qy,qz) (upper row) and P−

f⊥(qy,qz) (lower row) at different values of α

(see insets). Taken from the Supplementary Material of [73].



Chapter 6

Summary and outlook

The main aim of this thesis has been to add to the existing methodology and to push
the frontiers of the magnetic small-angle neutron scattering (SANS) analysis. From its
conception, the project relied on the combination of an analytical approach in terms of the
continuum theory of micromagnetics combined with the analysis of the experimental neutron
scattering data on magnetic materials. Overall, the results of the study are:

1. The development of the magnetic Guinier law for the analysis of magnetic scattering
data on statistically-isotropic magnetic materials.

2. The study of the magnetic correlations in a promising rare-earth-free Mn-Bi-based
permanent magnet and its analysis in terms of the generalized Guinier-Porod model.

3. The development of a rigorous framework for the analysis of the neutron polarization
of the scattered beam and the testing of existing experimental neutron data.

The magnetic Guinier law introduces the concept of the magnetic Guinier radius (RGSM),
which reflects the nature of local magnetization fluctuations. It contains both a field-
independent part related to the sample’s microstructure (anisotropy-field radius) and a
field-dependent part related to the magnetic interactions (exchange constant, saturation
magnetization). Moreover, being fully analogous to the conventional Guinier law, the frame-
work provided offers a robust, quick, and straightforward way of treating magnetic neutron
scattering data to extract the micromagnetic exchange length or the exchange-stiffness con-
stant. For the original publication on the magnetic Guinier law, the reader is referred to [83].
All the theoretical predictions of the model were verified on several different magnetic
materials and in all the cases the material parameters extracted agreed very well with the data
in the existing literature, despite the fact the magnetic Guinier law is an entirely new concept
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in the magnetic SANS theory. Thus, the outcome of the work presented here advances the
analysis methodology and opens up a promising avenue for further studies.

Secondly, the first neutron scattering experiment on Mn – Bi magnets was performed
and revealed both the characteristic magnetic sizes and the potential origin for increased
coercivity in one of the compositions studied in elongated magnetic structures. Additionally,
it was elucidated that in the SANS regime, the field-dependence of the magnetic scattering
cross section is very weak, rendering the experimental statistics a major factor for the
subsequent data analysis. Nevertheless, a weak anisotropy was observed even in this regime.
The majority of the magnetic correlations in this material are realized at a larger length
scale, as demonstrated by the analysis using the generalized Guinier-Porod model in the very
small-angle regime (VSANS). Further extension of the q-range into the ultra small-angle
regime (USANS, with qmin ∼= 10−4 nm−1) could be a potential next step in the study of these
materials. For the original neutron study of Mn – Bi permanent magnets the reader is referred
to [72]. To the author’s knowledge, this is the first neutron study of such a kind, utilizing the
strengths of the SANS technique in mapping the magnetic interactions in the bulk and on the
mesoscopic length scale. Naturally, it adds to the body of the scientific knowledge on the
material and paves the way for further analysis of the fundamental magnetic interactions of
rare-earth-free permanent magnets through the neutron lens.

Finally, progress in the polarized neutron instrumentation, more specifically, the devel-
opment of efficient 3He spin filters, allows the analysis of the polarization of the scattered
neutron beam. This is of great importance to the neutron community, since uniaxial polariza-
tion analysis has become a routine option on many SANS instruments worldwide. Likewise,
real-space neutron techniques that exploit the neutron polarization as a degree of freedom in-
cluding but not limited to e.g., spin-echo small-angle neutron scattering (SESANS), spin-echo
modulated small-angle neutron scattering (SEMSANS), and polarized neutron dark-field
contrast imaging (DFI), measuring the projected correlation function and yielding informa-
tion on large-scale (i.e., beyond the resolution limit of the conventional SANS) magnetic
correlations, are on the rise. The here-developed uniaxial SANS polarization framework is
rooted in the micromagnetic SANS theory and allows both an easy qualitative analysis on
the level of the angular anisotropies (and the respective ranges of ratios of structural and
magnetic interaction parameters) and a comprehensive quantitative evaluation of the data.
The theory is transferable to the above mentioned real-space methods and might open up a
new avenue for their interpretation and exploitation.
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Appendix A

Additional ageing characterization of Mn
– Bi

This Appendix furnishes the rudimentary ageing characterization results on Mn – Bi.
As depicted on Figure A.1(a), the aged sample exhibits a slightly lower saturation

magnetization, indicating lower content of the magnetic phase. The Figure A.1(b) supports
this notion, showing an increase in the Bi peaks intensity. Yet, even on the studied 2-week
time frame the degradation is on the order of 20 % (determined by considering the decrease
in the saturation magnetization), thus it was assumed that the bulk of the volume would be
affected only marginally in the time frame of a single neutron measurement.

Fig. A.1 Ageing influence on the Mn–Bi samples. (a) Magnetization loop. (b) XRD data.
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