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Abstract. In its additive version, Bohr-Mollerup's remarkable theorem states
that the unique (up to an additive constant) convex solution f(x) to the equa-
tion �f(x) = lnx on the open half-line (0;1) is the log-gamma function
f(x) = ln�(x), where � denotes the classical di�erence operator and �(x)
denotes the Euler gamma function. In a recently published open access book,
the authors provided and illustrated a far-reaching generalization of Bohr-
Mollerup's theorem by considering the functional equation �f(x) = g(x),
where g can be chosen in a wide and rich class of functions that have convex-
ity or concavity properties of any order. They also showed that the solutions
f(x) arising from this generalization satisfy counterparts of many properties of
the log-gamma function (or equivalently, the gamma function), including ana-
logues of Bohr-Mollerup's theorem itself, Burnside's formula, Euler's in�nite
product, Euler's re�ection formula, Gauss' limit, Gauss' multiplication for-
mula, Gautschi's inequality, Legendre's duplication formula, Raabe's formula,
Stirling's formula, Wallis's product formula, Weierstrass' in�nite product, and
Wendel's inequality for the gamma function. In this paper, we review the
main results of this new and intriguing theory and provide an illustrative
application.

1. Introduction

One of the best-known special functions of mathematical analysis is the Euler

gamma function. Its restriction to the real open half-line R+ = (0;1) is usually

de�ned as the following improper integral (see, e.g., Srinivasan [15])

�(x) =

Z 1

0

tx�1 e�t dt; x > 0:

It is well known and easily seen that this function satis�es �(1) = 1 and the

identity (using integration by parts)

�(x+ 1) = x�(x); x > 0:

In 1922, Bohr and Mollerup [6] established the following simple, but remarkable

characterization of the gamma function.

Theorem 1.1 (Bohr-Mollerup's theorem). The gamma function is the unique

logarithmically convex solution f : R+ ! R+ satisfying f(1) = 1 to the equation

(1) f(x+ 1) = x f(x); x > 0:
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A decade later, Artin [3] (see also Artin [4]) investigated and simpli�ed the proof

of this characterization, which has become also known as the Bohr-Mollerup-Artin

theorem. He also showed that many classical properties of the gamma function are

actually very elementary consequences of this theorem and its proof. Among these

properties, recall the Stirling formula

(2) lim
x!1

�(x)p
2� e�x xx�

1
2

= 1;

the Gauss multiplication formula

(3)

m�1Y
j=0

�

�
x+ j

m

�
=

�(x)

mx� 1
2

(2�)
m�1

2 ; x > 0; m = 1; 2; : : : ;

and the Gauss limit

(4) �(x) = lim
n!1

n!nx

x(x+ 1) � � � (x+ n)
; x > 0:

It is not di�cult to see that Bohr-Mollerup's theorem above can be slightly

generalized as follows.

Theorem 1.2 (Bohr-Mollerup's theorem). All logarithmically convex solutions

f : R+ ! R+ to equation (1) are of the form f(x) = c�(x), where c > 0.

Indeed, if f : R+ ! R+ is a logarithmically convex solution to equation (1),

then clearly so is the function f=f(1), which must be the gamma function by Bohr-

Mollerup's Theorem 1.1.

The following theorem provides a reformulation of the latter result using the

additive notation, where � stands for the classical di�erence operator.

Theorem 1.3 (Additive version of Bohr-Mollerup's theorem). All convex solu-

tions f : R+ ! R to the equation �f(x) = lnx are of the form f(x) = c+ln�(x),

where c 2 R.
It is natural to ask whether analogues of Theorem 1.3 can be obtained by re-

placing the logarithm function in the di�erence equation �f(x) = lnx with any

other real function. In a recently published monograph [12], the authors showed

that such analogues do exist for a very wide variety of functions. We now state

this result in the following uniqueness theorem, which actually constitutes a major

generalization of Bohr-Mollerup's theorem.

Recall �rst that a function f : I ! R, where I is any nontrivial real interval, is

said to be p-convex (resp. p-concave) for some integer p � 0 if for any pairwise

distinct points x0; x1; : : : ; xp+1 in I we have that

f [x0; x1; : : : ; xp+1] � 0 (resp. f [x0; x1; : : : ; xp+1] � 0);

where the symbol f [x0; x1; : : : ; xp+1] stands for the divided di�erence of f at the

points x0; x1; : : : ; xp+1. It can be shown [12, Chapter 2] that, if I is an open interval

and f is p times continuously di�erentiable, then it is p-convex (resp. p-concave) if

and only if f (p) is increasing (resp. decreasing).

A function f : R+ ! R is said to be eventually p-convex (resp. eventually

p-concave) if it is p-convex (resp. p-concave) in some neighborhood of in�nity.
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For any integers p � 0 and n > 0, and any function g : R+ ! R, we de�ne the

function f
p
n[g] : R+ ! R by the equation

fpn[g](x) =

n�1X
k=1

g(k)�
n�1X
k=0

g(x+ k) +

pX
j=1

�
x

j

�
�j�1g(n); x > 0:

Theorem 1.4 (Uniqueness). Let p � 0 be an integer and let the function

g : R+ ! R have the property that the sequence n 7! �pg(n) converges to zero.

Suppose that f : R+ ! R is an eventually p-convex or eventually p-concave

function satisfying the di�erence equation �f = g. Then f is uniquely deter-

mined (up to an additive constant) by g through the equation

f(x) = f(1) + lim
n!1

fpn[g](x); x > 0;

and the convergence is uniform on any bounded subset of R+.

Taking p = 1 and g(x) = lnx in Theorem 1.4, we immediately retrieve both

Bohr-Mollerup's Theorem 1.3 and Gauss' limit (4). It is actually not very di�cult

to see that Theorem 1.4 provides a generalization of Bohr-Mollerup's theorem to a

vast spectrum of functions.

Example 1.5 (The polygamma function  �2). Consider the polygamma function

 �2 : R+ ! R de�ned by the following equation (see, e.g., Adamchik [1])

 �2(x) =

Z x

0

ln �(t) dt; x > 0:

It is known (see, e.g., Adamchik [1, p. 196] and Remmert [14, p. 46]) that this

function satis�es

 �2(1) =
1

2
ln(2�):

Moreover, it is 2-convex since its second derivative is the digamma function  ,

which is increasing on R+ (see, e.g., Srivastava and Choi [16]). Furthermore, for

any x > 0 we have

�f(x) =

Z 1

0

ln �(t) dt+

Z x+1

1

ln �(t) dt�
Z x

0

ln �(t) dt

=  �2(1) +

Z x

0

(ln �(t+ 1)� ln �(t)) dt

=  �2(1) +

Z x

0

ln t dt:

Thus, we have �f = g on R+, where the function g : R+ ! R is de�ned by the

equation

g(x) = x lnx� x+
1

2
ln(2�); x > 0;

and has the property that the sequence n 7! �2g(n) converges to zero. It follows

from Theorem 1.4 that the function  �2 is the unique (up to an additive constant)

eventually 2-convex solution to the equation �f = g on R+. �
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In [12, Chapter 3] we also provided the following result, which yields the existence

of an eventually p-convex or eventually p-concave solution to the di�erence equation

�f = g when the function g satis�es certain properties.

Theorem 1.6 (Existence). Let p � 0 be an integer and suppose that the function

g : R+ ! R is eventually p-convex or eventually p-concave and has the asymp-

totic property that the sequence n 7! �pg(n) converges to zero. Then there

exists a unique (up to an additive constant) eventually p-convex or eventually

p-concave solution f : R+ ! R to the di�erence equation �f = g. Moreover,

(5) f(x) = f(1) + lim
n!1

fpn[g](x); x > 0;

and f is p-convex (resp. p-concave) on any unbounded subinterval of R+ on

which g is p-concave (resp. p-convex). Furthermore, the convergence in (5) is

uniform on any bounded subset of R+.

We observe that Theorem 1.6 was �rst proved in the special case when p = 0 by

John [9]. It was also established in the case when p = 1 by Krull [10, 11] and then

in its multiplicative version by Webster [18,19].

We also observe that identity (5) actually provides for the function f an ana-

logue of Gauss' limit (4) for the gamma function. More generally, for every solution

f : R+ ! R arising from Theorem 1.6, we yielded in [12] counterparts of various

classical properties of the gamma function, including analogues of Burnside's for-

mula, Euler's in�nite product, Euler's re�ection formula, Gauss' limit, Gauss'

multiplication formula, Gautschi's inequality, Legendre's duplication formula,

Raabe's formula, Stirling's formula, Wallis's product formula, Weierstrass'

in�nite product, and Wendel's inequality for the gamma function. We also intro-

duced and discussed analogues of Binet's function, Euler's constant, Fontana-

Mascheroni's series, Stirling's constant, Webster's inequality, and Webster's

functional equation. We also provided and discussed some additional properties,

including asymptotic equivalences, asymptotic expansion formulas, Taylor series

expansion formulas, and Gregory formula-based series representations.

All these properties, combined with the uniqueness and existence theorems

above, actually o�er a unifying setting that enables us to systematically inves-

tigate a very wide variety of functions. This fact was largely discussed in [12] and

even extensively illustrated through various examples, ranging from the gamma

function itself and its best-known variants to important special functions such as

the Hurwitz zeta function and the generalized Stieltjes constants.

In the present paper, we provide a summary of the main results of this new

and intriguing theory. We also illustrate these results by applying them to the

polygamma function  �2 (see Example 1.5), which will be our guiding example

throughout.

The outline of this paper is as follows. In Section 2, we introduce the concept

of the principal inde�nite sum from the solutions arising from the existence The-

orem 1.6. In Sections 3 to 9, we introduce the analogues of Gauss' limit, Euler's

in�nite product, Wendel's inequality-based limit, Raabe's formula, Binet's func-

tion, Stirling's formula, Gauss' multiplication formula, and Euler's constant. In
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Section 10, we provide a large list of properties of the polygamma function  �2
that we can derive from this theory. Finally, in Section 11, we give some concluding

remarks.

2. Principal indefinite sums

In this section we introduce the map, denoted �, that carries any function

g : R+ ! R satisfying the assumptions of Theorem 1.6 for some integer p � 0

into the unique function f : R+ ! R de�ned in identity (5) and such that f(1) = 0.

For more details, see [12, Chapter 5].

For any integer p � 0, let Dp denote the set of functions g : R+ ! R that have

the asymptotic property that the sequence n 7! �pg(n) converges to zero. Let

also Kp denote the set of functions g : R+ ! R that are eventually p-convex or

eventually p-concave. We can easily show [12, Chapter 4] that Dp � Dp+1 and that

Kp � Kp+1.

De�nition 2.1. Let the map �: dom(�)! ran(�), with

dom(�) =
[
p�0

(Dp \ Kp);

be de�ned by the condition

g 2 Dp \ Kp ) �g(x) = lim
n!1

fpn[g](x);

where dom(�) and ran(�) denote the domain and range of �, respectively.

We observe that the map � is well de�ned; indeed, if g lies in both sets Dp \Kp

and Dp+1 \ Kp+1 for some integer p � 0, then necessarily

lim
n!1

fp+1n [g](x) = lim
n!1

fpn[g](x); x > 0:

We also readily observe that the map � is actually a bijection and its inverse is

the restriction to ran(�) of the di�erence operator �.

We can also show that

ran(�) =
[
p�0

ff 2 Kp : �f 2 Dp \ Kp and f(1) = 0g:

Interestingly, Theorem 1.4 immediately provides the following characterization

result. If f : R+ ! R is a solution to the equation �f = g, then it is eventually

p-convex or eventually p-concave if and only if f = c+�g for some c 2 R.
De�nition 2.2. We say that the principal inde�nite sum of a function g lying

in dom(�) is the class of functions c+�g, where c 2 R.
Example 2.3 (The log-gamma function). If g(x) = lnx, then we have �g(x) =

ln�(x), and we simply write

� lnx = ln�(x); x > 0:

Thus, the principal inde�nite sum of the function x 7! lnx is the class of functions

x 7! c + ln�(x), where c 2 R. With some abuse of language, we can say that the

principal inde�nite sum of the log function is the log-gamma function. �
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Example 2.4 (The polygamma function  �2). The function g : R+ ! R de�ned

by the equation

g(x) = x lnx� x+
1

2
ln(2�); x > 0;

clearly lies in D2 \ K2. Its principal inde�nite sum is the eventually 2-convex

function

�g(x) =  �2(x)�  �2(1); x > 0;

where  �2 is the polygamma function de�ned in Example 1.5. �

3. Analogue of Gauss' limit and Eulerian form

If the function g : R+ ! R lies in Dp \ Kp for some integer p � 0, then by

De�nition 2.1 we have

(6) �g(x) = lim
n!1

fpn[g](x); x > 0:

As already discussed above, this latter identity is precisely the analogue of Gauss'

limit for the gamma function. Moreover, it can be proved that the sequence n 7!
f
p
n[g] converges uniformly on any bounded subset of R+ to �g (see Theorem 1.6).

More generally, it was shown [12, Section 7.1] that, if g is r times continuously

di�erentiable and lies in Dp \Kmaxfp;rg for some integer r � 0, then �g is r times

continuously di�erentiable and the sequence n 7! Drf
p
n[g] converges uniformly

on any bounded subset of R+ to Dr�g. In particular, both sides of (6) can be

di�erentiated up to r times and we have

Dr�g(x) = lim
n!1

Drfpn[g](x); x > 0:

Moreover, if g is continuous, then the function f
p
n[g](x)��g(x) can be integrated

on any bounded interval of [0;1) and the integral converges to zero as n ! 1
(see [12, Section 5.3]).

Interestingly, the limit in (6) can be equivalently written in a series form. For

instance, when g(x) = lnx, the series representation of �g, once converted in the

multiplicative notation, is precisely the following Euler product form of the gamma

function

(7) �(x) =
1

x

1Y
n=1

(1 + 1=n)x

1 + x=n
; x > 0:

This general observation is stated in the next theorem [12, Section 8.1], which also

shows that, under suitable assumptions, the series can be integrated and di�eren-

tiated term by term.

Theorem 3.1 (Eulerian form). Let g lie in Dp \ Kp for some integer p � 0.

Then the following assertions hold.

(a) For any x > 0 we have

�g(x) = �g(x) +
pX

j=1

�
x

j

�
�j�1g(1)�

1X
n=1

0
@g(x+ n)�

pX
j=0

�
x

j

�
�jg(n)

1
A

and the series converges uniformly on any bounded subset of [0;1).
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(b) If g is continuous, then so does �g and the series above can be inte-

grated term by term on any bounded interval of [0;1).

(c) If g is r times continuously di�erentiable and lies in Kmaxfp;rg for some

integer r � 0, then �g is r times continuously di�erentiable and the

series above can be di�erentiated term by term up to r times.

Example 3.2 (The log-gamma function). Consider the functions g(x) = lnx and

�g(x) = ln�(x) given in Example 2.3 with the value p = 1. Then, identity (6)

clearly reduces to the additive version of Gauss' limit (4), that is

(8) ln �(x) = lim
n!1

 
ln(n� 1)! + x lnn�

n�1X
k=0

ln(x+ k)

!
:

Similarly, using Theorem 3.1 we retrieve the additive version of the Euler product

form (7) of the gamma function, that is

ln �(x) = � lnx�
1X
n=1

�
ln(x+ n)� lnn� x ln

�
1 +

1

n

��
:

Moreover, the convergence is uniform on any bounded subset of R+. �

Example 3.3 (The polygamma function  �2). Consider the functions g and �g

given in Example 2.4 with the value p = 2. We �rst observe that

�g(n)� lnn ! 0 as n!1;
and hence (6) yields the following identity

 �2(x) = lim
n!1

 
� x

n�1X
k=1

ln k �
n�1X
k=1

(x+ k) ln
�
1 +

x

k

�
� x lnx

+ x (g(n) + n) +

�
x

2

�
lnn

!
;

where the �rst sum clearly reduces to ln �(n). Now, using Stirling's formula (2),

i.e.,

ln �(n)� g(n) + 1

2
lnn ! 0 as n!1;

we can easily see that the previous identity reduces to

 �2(x) = lim
n!1

 
nx� x lnx+ (lnn)

x2

2
�

n�1X
k=1

(x+ k) ln
�
1 +

x

k

�!
:

Thus, this latter identity is a simpli�ed form of the analogue of Gauss' limit for the

gamma function. Interestingly, it can also be obtained directly by integrating both

sides of (8). The corresponding Eulerian form can be obtained similarly; we get

 �2(x) = x� x lnx+

1X
n=1

�
x+

x2

2
ln

�
1 +

1

n

�
� (x+ n) ln

�
1 +

x

n

��
:

Moreover, the convergence is uniform on any bounded subset of R+. �
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4. The generalized Wendel's inequality-based limit

For any integer p � 0, any real number a > 0, and any function g : R+ ! R, we

de�ne the function �
p
a[g] : [0;1)! R by the equation

(9) �pa[g](x) = g(x+ a)�
p�1X
j=0

�
x

j

�
�jg(a); x � 0;

or equivalently,

�pa[g](x) = g(x+ a)� Pp�1[g](a; a+ 1; : : : ; a+ p� 1;x+ a); x � 0;

where the function

x 7! Pp�1[g](a; a+ 1; : : : ; a+ p� 1;x)

is the unique interpolating polynomial of g with nodes at the p points a; a +

1; : : : ; a + p � 1. Thus, the quantity �
p
a[g](x) is precisely the corresponding in-

terpolation error at x+ a.

We now present an important convergence result, which was established in [12,

Section 6.1].

Theorem 4.1 (Generalized Wendel's inequality-based limit). For any integer

p � 0, any real number a � 0, and any function g lying in Dp \ Kp, we have

�p+1x [�g](a) ! 0 as x!1 ;

or equivalently,

�g(x+ a)� �g(x)�
pX

j=1

�
a

j

�
�j�1g(x) ! 0 as x!1 :

Moreover, if g is r times continuously di�erentiable and lies in Kmaxfp;rg for

some integer r � 0, then this convergence result still holds if we di�erentiate

the left-hand side with respect to x up to r times.

Applying Theorem 4.1 to the functions g(x) = lnx and �g(x) = ln�(x), with

p = 1, we immediately obtain

(10) �2x[� ln](a) = ln�(x+ a)� ln �(x)� a lnx
and hence also the following well-known limit for any a � 0 (see, e.g., Titch-

marsh [17])

lim
x!1

�(x+ a)

�(x)xa
= 1 :

This latter result was also proved by Wendel [20], who �rst provided the following

double inequality�
1 +

a

x

�a�1
� �(x+ a)

�(x)xa
� 1 ; x > 0 ; 0 � a � 1 ;

or equivalently, in the additive notation,

(a� 1) ln
�
1 +

a

x

�
� �2x[� ln](a) � 0 ; x > 0 ; 0 � a � 1 :
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Example 4.2 (The polygamma function  �2). Let us apply Theorem 4.1 to the

functions g and �g given in Example 2.4 with the value p = 2. Observing that

�g(x)� lnx ! 0 as x!1;
we can easily obtain the following limit for any a � 0,

 �2(x+ a)�  �2(x)� a
�
g(x)� 1

2
lnx

�
� a2

2
lnx ! 0 as x!1:

Using Stirling's formula as in Example 3.3, we �nally obtain

 �2(x+ a)�  �2(x)� a ln �(x)� a2

2
lnx ! 0 as x!1;

or equivalently,Z a

0

ln �(x+ t) dt� a ln �(x)� a2

2
lnx ! 0 as x!1: �

5. Analogue of Raabe's formula

The asymptotic constant [12, Section 6.2] associated with a continuous function

g : R+ ! R lying in dom(�) is the number

�[g] =

Z 2

1

�g(t) dt =

Z 1

0

�g(t+ 1) dt:

Using this de�nition, we can immediately derive the following identity

(11)

Z x+1

x

�g(t) dt = �[g] +

Z x

1

g(t) dt; x > 0:

Indeed, both sides of this identity are functions of x that have the same derivative

and the same value at x = 1.

For instance, when g(x) = lnx, we obtain

�[g] =

Z 1

0

ln �(t+ 1) dt =

Z 1

0

(ln �(t) + ln t) dt

= �1 + 1

2
ln(2�):

Moreover, combining this value with (11) we obtain the following more general

identity

(12)

Z x+1

x

ln �(t) dt = x lnx� x+
1

2
ln(2�):

This latter identity is known by the name Raabe's formula (see, e.g., [14, p. 46]).

Thus, identity (11) provides for the function �g an analogue of Raabe's formula.

Example 5.1 (The polygamma function  �2). Let us consider the functions g

and �g given in Example 2.4. One can show [1, p. 196] thatZ 1

0

 �2(t) dt = lnA+
1

4
ln(2�);
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where A is the Glaisher-Kinkelin constant (see, e.g., Finch [7, Section 2.15]). From

this identity we immediately derive (see also [12, Section 10.3])

�[g] =

Z 1

0

 �2(t+ 1) dt�  �2(1) =

Z 1

0

( �2(t) + g(t)) dt�  �2(1)

= lnA+
1

4
ln(2�)� 3

4
:

Identity (11) then provides for the function �g the following analogue of Raabe's

formula Z x+1

x

 �2(t) dt =  �2(1) + �[g] +

Z x

1

g(t) dt;

or equivalently,Z x+1

x

 �2(t) dt =
1

2
x2 lnx� 3

4
x2 +

1

4
(2x+ 1) ln(2�) + lnA: �

6. Generalized Binet's function

Recall that the Binet function related to the log-gamma function is the function

J : R+ ! R de�ned by the equation (see, e.g., Henrici [8, p. 39])

(13) J(x) = ln�(x)� 1

2
ln(2�) + x�

�
x� 1

2

�
lnx; x > 0:

Using identity (10) and Raabe's formula (12), we can easily provide the following

integral form of Binet's function

J(x) = �
Z 1

0

�2x[� ln](t) dt; x > 0:

This latter formula motivates the following de�nition, in which we introduce a

very useful generalization of Binet's function [12, Section 6.3].

De�nition 6.1 (Generalized Binet's function). For any integer p � 0 and any con-

tinuous function g : R+ ! R lying inDp\Kp, we de�ne the function Jp+1[�g] : R+ !
R by the equation

(14) Jp+1[�g](x) = �
Z 1

0

�p+1x [�g](t) dt; x > 0:

We say that the function Jp+1[g](x) is the generalized Binet function associated

with the function �g and the parameter p+ 1.

Taking g(x) = lnx and p = 1 in identity (14), we thus simply retrieve the Binet

function

J(x) = J2[� ln](x)

related to the log-gamma function, as de�ned in (13).

Now, combining (9) with (11) and (14), we easily obtain the following explicit

form of the generalized Binet function:

(15) Jp+1[�g](x) = �g(x)� �[g]�
Z x

1

g(t) dt+

pX
j=1

Gj�
j�1g(x); x > 0;
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where Gj is the jth Gregory coe�cient [5, 13] de�ned by

Gj =

Z 1

0

�
t

j

�
dt:

Example 6.2 (The polygamma function  �2). Consider the functions g and �g

given in Example 2.4 with the value p = 2. Using identity (15), we obtain the

following generalized Binet function

J3[�g](x) =  �2(x)� 1

12
(x+ 1) ln(x+ 1) +

1

12
(3x� 1)2

� 1

12
x(6x� 7) lnx� 1

2
x ln(2�)� lnA: �

7. Generalized Stirling's formula

We observe that the Binet function J(x) = J2[� ln](x) de�ned in (13) clearly

satis�es the following identity

�(x) =
p
2� xx�

1
2 e�x+J(x)

and hence Stirling's formula (2) simply states that J(x) ! 0 as x ! 1. This

observation is at the root of the following generalization of Stirling's formula [12,

Section 6.4].

Theorem 7.1 (Generalized Stirling's formula). For any integer p � 0 and any

continuous function g : R+ ! R lying in Dp\Kp, the function Jp+1[�g] vanishes

at in�nity. That is, using (15),

�g(x)�
Z x

1

g(t) dt+

pX
j=1

Gj�
j�1g(x) ! �[g] as x!1:

Moreover, if g is r times continuously di�erentiable and lies in Kmaxfp;rg for

some integer r � 0, then this convergence result still holds if we di�erentiate

both sides with respect to x up to r times.

Thus stated, the generalized Stirling formula enables one to investigate the as-

ymptotic behavior of the function �g for large values of its argument. When

g(x) = lnx and p = 1, we immediately retrieve the original Stirling formula (2).

Example 7.2 (The polygamma function  �2). Consider the functions g and �g

given in Example 2.4 with the value p = 2. The corresponding generalized Stirling

formula states that the function J3[�g] vanishes at in�nity. Using the fact that

(x+ 1) ln(x+ 1)� (x+ 1) lnx� 1 ! 0 as x!1;
this result can be restated as follows

 �2(x)� 1

12
(6x2 � 6x+ 1) lnx+

1

4
(3x� 2)x� 1

2
x ln(2�) ! lnA

as x ! 1. Di�erentiating both sides of this convergence result, we immediately

retrieve the original Stirling formula. �
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8. Analogue of Gauss' multiplication formula

The additive version of Gauss' multiplication formula (3) can be stated as follows;

for any integer m � 1 we have

m�1X
j=0

ln �

�
x+ j

m

�
= ln�(x)�

�
x� 1

2

�
lnm+

m� 1

2
ln(2�); x > 0:

A generalization of this formula exists for any continuous function �g lying in

ran(�). It is stated in the following theorem [12, Section 8.6].

Theorem 8.1 (Analogue of Gauss' multiplication formula). Let m � 1 be an

integer and let g : R+ ! R be a continuous function lying in dom(�). De�ne

also the function gm : R+ ! R by the equation

gm(x) = g
� x
m

�
; x > 0:

Then the function gm also lies in dom(�). Moreover, for any x > 0 we have

m�1X
j=0

�g

�
x+ j

m

�
= �gm(x) +m�[g]� �[gm]�

Z m

1

gm(t) dt:

Applying Theorem 8.1 to the function g(x) = lnx, we retrieve the original Gauss

multiplication formula in its additive version. Let us now consider the case of the

polygamma function  �2.

Example 8.2 (The polygamma function  �2). Let us apply Theorem 8.1 to the

functions g and �g given in Example 2.4 with the value p = 2. For any integer

m � 1, we have

gm(x) =
1

m
g(x)� x lnm

m
+
m� 1

2m
ln(2�)

and hence

�gm(x) =
1

m
 �2(x)�

�
x

2

�
lnm

m
+

1

2

�
m� 1

m
x� 1

�
ln(2�):

Using Theorem 8.1, after some algebra we then obtain the following analogue of

Gauss' multiplication formula

m�1X
j=0

 �2

�
x+ j

m

�
=

1

m
 �2(x)� 1

12m
(6x2 � 6x+ 1) lnm

+ (m� 1) ln(2�)

�
x

2m
+

1

4

�
+

�
m� 1

m

�
lnA:

In particular, setting x = 1 in this identity we obtain

mX
j=1

 �2

�
j

m

�
=

1

4
(m+ 1) ln(2�)� 1

12m
lnm+

�
m� 1

m

�
lnA: �
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9. Generalized Euler's constant

Recall that Euler's constant (also called Euler-Mascheroni constant) is de-

�ned as the limit


 = lim
n!1

 
nX

k=1

1

k
� lnn

!
:

This value actually represents the remainder in the numerical integration of the

function g(x) = 1=x on the interval [1;1) using the left rectangle method with the

integer nodes k = 1; 2; 3; : : : (see, e.g., Apostol [2]).

A generalization of this value to any continuous function g : R+ ! R lying in

dom(�) was introduced in [12, Section 6.8] as follows.

De�nition 9.1 (Generalized Euler's constant). Let p � 0 be an integer and let

g : R+ ! R be a continuous function lying in Dp \ Kp. If p � 1, we also assume

that g does not lie in Dp�1. The generalized Euler constant associated with the

function g is the number


[g] = �Jp+1[�g](1);
or equivalently, using (15),


[g] = �[g]�
pX

j=1

Gj �
j�1g(1):

This de�nition can be justi�ed by the following geometric interpretation. We

can prove [12, Section 6.8] that

(16) 
[g] =

Z 1

1

�
P p[g](t)� g(t)

�
dt;

where P p[g] : [1;1)! R denotes the piecewise polynomial function whose restric-

tion to the interval [k; k+1), for any integer k � 1, is the interpolating polynomial

of g with nodes at k; k + 1; : : : ; k + p; that is,

P p[g](x) = Pp[g](k; k + 1; : : : ; k + p;x); x 2 [k; k + 1):

Moreover, if g is p-convex or p-concave on [1;1), then the graph of g always lies

over (or always lies under) that of P p[g]; and identity (16) simply tells us that j
[g]j
is the surface area between both graphs on [1;1).

Example 9.2. If g(x) = lnx and p = 1, then we obtain


[g] = �[g] = �1 + 1

2
ln(2�) � �0:081:

The function g is 1-concave and its graph on [1;1) always lies over that of the

polygonal line P 1[g]. The surface area between both graphs is precisely j
[g]j. �

Example 9.3. If

g(x) = x lnx� x+
1

2
ln(2�)

and p = 2, then we obtain


[g] = lnA+
1

6
ln 2� 1

3
� 0:031:
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The function g is 2-concave and its graph on [1;1) always lies under that of P 2[g].

The surface area between both graphs is precisely 
[g]. �

10. The polygamma function  �2

In the previous sections we have stated only some of our main results, starting

from the generalization of Bohr-Mollerup's theorem and the analogue of Gauss'

limit, and we have illustrated these results using our guiding example, the func-

tion  �2. As mentioned in the introduction, many other results were established

and illustrated in the book [12], where it was also demonstrated through several

examples that all those results actually constitute a very powerful toolbox for the

investigation of a large variety of functions.

To give the reader a taste of the scope of this new theory, in this section we

simply present (without the detailed computations) what we can learn from it

about the polygamma function  �2.

Recall �rst that the polygamma function  �2 : R+ ! R is de�ned by the equa-

tion (see Example 1.5)

 �2(x) =

Z x

0

ln �(t) dt; x > 0:

Moreover, we have the identity (see Example 2.4)

�g(x) =  �2(x)�  �2(1); x > 0;

where  �2(1) =
1
2 ln(2�) and

g(x) = � �2(x) = x lnx� x+  �2(1):

Clearly, the function g lies in D2 and the function �g lies in D3. Moreover,

both function are in�nitely many di�erentiable. Furthermore, it is not di�cult to

show that, for any even integer q � 1, the function g is eventually (2q)-concave

and eventually (2q+1)-convex, while the function �g is eventually (2q)-convex and

eventually (2q + 1)-concave.

Remark 10.1. We also observe that the function  �2 is strongly related to the so-

called hyperfactorial function (or K-function). Indeed, the latter is the function

K : R+ ! R+ de�ned by the equations

lnK(x) = � 0(�1; x)� � 0(�1)
=

�
x

2

�
+  �2(x)� x �2(1) for x > 0;

where �(s; x) denotes the Hurwitz zeta function and � 0(s; x) denotes its derivative

with respect to the variable s (see, e.g., [1, p. 196] and [12, Section 12.5]). Thus

de�ned, the hyperfactorial function clearly satis�es the identity �lnK(x) = x lnx

on R+ (or equivalently, K(x + 1) = xxK(x) on R+). Moreover, the analogue of

Bohr-Mollerup's theorem states that the function f(x) = lnK(x) is the unique (up

to an additive constant) eventually 2-convex solution to the equation�f(x) = x lnx

on R+. �
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10.1. Analogue of Bohr-Mollerup's theorem. The function  �2 can be char-

acterized as follows (see Example 1.5).

Theorem 10.2. A function f : R+ ! R is a solution to the equation �f = g

that lies in K2 if and only if it is of the form f = c+  �2, where c 2 R.

We also have the following alternative characterization [12, Section 3.1].

Theorem 10.3. A function f : R+ ! R is a solution to the equation �f = g

that has the property that, for each x > 0, the sequence

n 7! f(x+ n)� f(n)� x ln �(n)� x2

2
lnn

converges to zero, if and only if it is of the form f = c+  �2, where c 2 R.

10.2. Asymptotic constant and generalized Euler's constant. We have the

following values (see Examples 5.1 and 9.3)

�[g] = lnA+
1

4
ln(2�)� 3

4
;


[g] = lnA+
1

6
ln 2� 1

3
:

We also have the following integral representations [12, Section 10.3]

�[g] =
1

2
g(1)� 1

2

Z 1

1

B2(ftg)
t

dt;


[g] =

Z 1

1

�
�g(t) + g(btc) + 1

2
�g(btc)� 1

12
�2g(btc)

�
dt;

where ftg = t� btc and B2 is the Bernoulli polynomial B2(x) = x2 � x+ 1=6.

10.3. Analogue of Raabe's formula. We have the following analogue of Raabe's

formula (see Example 5.1)Z x+1

x

 �2(t) dt =
1

2
x2 lnx� 3

4
x2 +

1

4
(2x+ 1) ln(2�) + lnA; x > 0:

Moreover, the function f =  �2 is the unique continuous solution lying in K2 to

the equation (see [12, Section 8.5])Z x+1

x

f(t) dt =
1

2
x2 lnx� 3

4
x2 +

1

4
(2x+ 1) ln(2�) + lnA; x > 0:

10.4. Generalized Binet's function. We have the following generalized Binet

function (see Example 6.2)

J3[�g](x) =  �2(x)� 1

12
(x+ 1) ln(x+ 1) +

1

12
(3x� 1)2

� 1

12
x(6x� 7) lnx� 1

2
x ln(2�)� lnA:
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10.5. Inequalities. The following inequalities holds for any x > 0 and any a � 0.

� Generalized Wendel's inequality [12, Section 6.1]

0 � sign(a(a� 1)(a� 2))
�
 �2(x+ a)�  �2(x)� a g(x)�

�
a

2

�
�g(x)

�
� ���a�1

2

��� (�g(x+ a)��g(x)) � dae ���a�12 ����2g(x):

� Generalized Webster's inequality [12, Appendix E]

0 �  �2(x+ a+ 1)�  �2(x+ bac+ 1)

� fag g(x+ bac+ 1)� �fag2 ��g(x+ bac+ 1)

� 1

2
fag (g(x+ a)� g(x+ bac+ 1)� (fag � 1)�g(x+ bac+ 1)) ;

where fag = a� bac.
� Generalized Gautschi's inequality [12, Section 10.3]

(a� dae) ln �(x+ dae) �  �2(x+ a)�  �2(x+ dae)
� (a� dae) g(x+ bac);

provided x + bac � x0, where x0 = 1:461 : : : is the unique positive zero of

the digamma function.

� Generalized Stirling's formula-based inequality [12, Section 6.4]

0 � �J3[�g](x) �
Z 1

0

�
t�1
2

�
(�g(x+ t)��g(x)) dt

� 5

12
�2g(x):

We also have the following double inequality [12, Appendix E]

�(x) �  �2(x) � �(x); x > 0;

where

�(x) = lnA� 5

18
+

1

24
x� 5

6
x2 +

1

2
x ln(2�)� 1

12
x(x2 + 12) lnx

+
1

12
(x+ 1)(x2 + 5x+ 1) ln(x+ 1)

and

�(x) = lnA� 1

3
� 3

4
x2 +

1

2
x ln(2�)� x lnx

+
1

12
(x+ 1)(6x� 1) ln(x+ 1) +

1

12
(x+ 2) ln(x+ 2):

This double inequality provides a rather �ne bracketing of the function  �2 for

large values of x. Indeed, we have

sup
x2R+

j�(x)� �(x)j =
1

18
(3 ln 2� 1) � 0:06

and

�(x)� �(x) =
1

16x
� 13

180x2
+

13

144x3
+O(x�4) as x!1:
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10.6. Generalized Stirling's and related formulas. For any a � 0, we have

the following limits as x!1 [12, Section 10.3]

 �2(x+ a)�  �2(x)� a ln �(x)� a2

2
lnx ! 0;

 �2(x)� 1

12
(6x2 � 6x+ 1) lnx+

1

4
(3x� 2)x� 1

2
x ln(2�) ! lnA;

 �2(x)� x ln �(x) + 1

12
(6x2 � 1) lnx� 1

4
x(x+ 2) ! lnA� 1

12
;

 �2(x+ a)

x2 lnx
! 1

2
:

10.7. Asymptotic expansions. For any integers m; q � 1, we have the following

expansion as x!1 [12, Section 10.3]

1

m

m�1X
j=0

 �2

�
x+

j

m

�
=

1

2
x2 lnx� 3

4
x2 +

�
1

2
x+

1

4

�
ln(2�) + lnA

+

qX
k=1

Bk

mkk!
g(k�1)(x) +O(g(q)(x)):

Setting m = 1 in this formula, we obtain

 �2(x) =
1

2
x2 lnx� 3

4
x2 +

�
1

2
x+

1

4

�
ln(2�) + lnA

+

qX
k=1

Bk

k!
g(k�1)(x) +O(g(q)(x)):

For instance, we have

 �2(x) =
1

12
(6x2 � 6x+ 1) lnx� 1

4
(3x� 2)x+

1

2
x ln(2�) + lnA

+
1

720x2
� 1

5040x4
+

1

10080x6
+O(x�8):

10.8. Generalized Liu's formula. For any x > 0, we have [12, Section 10.3]

 �2(x) =
1

12
(6x2 � 6x+ 1) lnx� 1

4
(3x� 2)x+

1

2
x ln(2�) + lnA

+
1

2

Z 1

0

B2(ftg)
x+ t

dt;

where ftg = t� btc and B2 is the Bernoulli polynomial B2(x) = x2 � x+ 1=6.

10.9. Limit, series, and integral representations. We have the following for-

mulas for any x > 0 (see Example 3.3 and [12, Section 8.2])

� Analogue of Gauss' limit

 �2(x) = lim
n!1

 
nx� x lnx+ (lnn)

x2

2
�

n�1X
k=1

(x+ k) ln
�
1 +

x

k

�!
:
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� Eulerian form

 �2(x) = x� x lnx+

1X
n=1

�
x+

x2

2
ln

�
1 +

1

n

�
� (x+ n) ln

�
1 +

x

n

��
:

� Weierstrassian form

 �2(x) = �
 x
2

2
+ x� x lnx+

1X
n=1

�
x+

1

2n
x2 � (x+ n) ln

�
1 +

x

n

��
;

where 
 is Euler's constant.

� Integral form

 �2(x) =

Z x

0

ln �(t) dt = x ln �(x)�
Z x

0

t  (t) dt;

where  (x) = D ln �(x) is the digamma function.

10.10. Analogue of Gauss' multiplication formula. For any x > 0 and any

integer m � 1, we have (see Example 8.2)

m�1X
j=0

 �2

�
x+ j

m

�
=

1

m
 �2(x)� 1

12m
(6x2 � 6x+ 1) lnm

+ (m� 1) ln(2�)

�
x

2m
+

1

4

�
+

�
m� 1

m

�
lnA:

Letting x! 0 in this identity, we obtain

m�1X
j=1

 �2

�
j

m

�
= � 1

12m
lnm+

1

4
(m� 1) ln(2�) +

�
m� 1

m

�
lnA:

For instance, when m = 2 we immediately derive the formula

 �2

�
1

2

�
=

5

24
ln 2 +

1

4
ln� +

3

2
lnA:

Interestingly, we can also derive the following limit [12, Section 10.3]

lim
m!1

�
1

m2
 �2(mx)� 1

2
x2 lnm

�
=

1

2
x2 lnx� 3

4
x2; x > 0:

10.11. Gregory's formula-based series representation. For any x > 0, we

have [12, Section 10.3]

 �2(x) =
1

2
x2 lnx� 3

4
x2 +

�
1

2
x+

1

4

�
ln(2�) + lnA�

1X
n=1

Gn�n�1g(x);

where Gn is the nth Gregory coe�cient. Setting x = 1 in this identity, we obtain

the following analogue of Fontana-Mascheroni series

1X
n=1

Gn�n�1g(1) = �[g] = lnA+
1

4
ln(2�)� 3

4
:
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10.12. Analogue of Wallis's product formula. We have the following analogues

of Wallis's product formula [12, Section 10.3]

lim
n!1

 
h1(n) +

2nX
k=1

(�1)k�1g(k)
!

=
1

12
ln 2� 3 lnA;

lim
n!1

 
h2(n) +

2nX
k=1

(�1)k�1  �2(k)
!

= lnA� 1

12
ln 2;

where

h1(n) =

�
n+

1

4

�
lnn� n(1� ln 2);

h2(n) = n2 ln(2n)� 3

2
n2 +

1

2
n ln(2�)� 1

12
lnn:

10.13. Generalized Webster's functional equation. For any integer m � 1,

there is a unique solution f : R+ ! R to the equation

m�1X
j=0

f

�
x+

j

m

�
= g(x)

that lies in K2, namely [12, Section 10.3]

f(x) =  �2

�
x+

1

m

�
�  �2(x):

10.14. Analogue of Euler's series representation of 
. The Taylor series ex-

pansion of  �2(x+ 1) about x = 0 is [12, Section 10.3]

 �2(x+ 1) =
1

2
ln(2�)� 
 x

2

2
+

1X
n=3

(�1)n�1 �(n� 1)

n(n� 1)
xn; jxj < 1;

where z 7! �(z) denotes the Riemann zeta function. Integrating both sides of this

equation on (0; 1), we obtain the following analogue of Euler's series representa-

tion of 

1X
n=2

(�1)n �(n)

n(n+ 1)(n+ 2)
=

1

6

 � 3

4
+

1

4
ln(2�) + lnA:

10.15. Analogue of Euler's re�ection formula. For any x 2 (0; 1), we have [12,

Section 10.3]

 �2(x)�  �2(1� x) = x ln� � 1

2
ln(2�)�

Z x

0

ln sin(�t) dt:

11. Conclusion

The authors recently published an open access book [12] that presents a signif-

icant generalization of Bohr-Mollerup's theorem to higher order convex functions.

This generalization shows that a very rich spectrum of functions satisfy analogues

of several classical properties of the gamma function, including Bohr-Mollerup's

theorem itself, Euler's re�ection formula, Gauss' multiplication theorem, Stirling's

formula, and Weierstrass' canonical factorization.
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In this paper, we have summarized the main results of this new theory and have

illustrated these results as well as many others by applying them to the polygamma

function  �2 (i.e., the integral of the log-gamma function).

Actually, the uniqueness and existence theorems given in the introduction show

that it is usually not very di�cult to check whether a given function can be inves-

tigated through our results or not. If so, then we may gain a lot of insight into this

function just by applying those results systematically.

In writing this survey paper, our hope is to convince the reader that our theory

o�ers a unifying approach that enables us to systematically handle a wide variety

of functions all at once using elementary means.

Beyond this systematization aspect, this theory introduces some new important

and useful objects. For instance, the map � itself is a new concept that seems to be

as fundamental as the basic antiderivative operation. Other concepts such as the

asymptotic constant and the generalized Binet function also appear to be new fun-

damental objects that merit further investigation. These objects are used, e.g., in

the remarkable generalized Stirling formula, but also in many other useful formulas

such as the analogue of Raabe's formula and the analogue of Gauss' multiplication

formula.

Lastly, this theory also revealed how natural and useful are the higher order

convexity properties. Although these properties seem to be still rather poorly

investigated in mathematical analysis, they clearly play a crucial role in this setting

and hence also merit further study.
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