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Electricity generation using renewable energy-based microgrid (REM) is a prerequisite to achieve one of

the objectives of sustainable development goal (SDG 7- Affordable and Clean Energy). Nonetheless, the

optimum design of the REM is challenging due to fluctuating demand and intermittent nature of the

renewable energy sources. The optimum sizing of the REM is also associated with several non-

convexities and nonlinearities, thereby precluding the application of deterministic optimization

searching techniques for the sizing problem. This paper, therefore, proposes a rule-based algorithm and

metaheuristic optimization searching technique (MOST) for the energy management (EM) and sizing

of an autonomous microgrid, respectively. The purpose of the energy management scheme (EMS) is to

provide power delivery sequence for the different components that compose the microgrid. Afterward,

the EMS is optimized using MOST. For benchmarking, the paper compares the success of six different

MOSTs. The simulation is performed for the climatic conditions of Maiduguri, Nigeria. The

comparative results indicate that grasshopper optimization algorithm yields a better result relative

to other studied MOSTs. Remarkably, it outperforms the grey wolf optimizer, the ant lion optimizer,

and the particle swarm optimization by 3.0 percent, 5.8 percent, and 3.6 percent (equivalent to a

cost savings of $8332.38, $4219.87, and $5144.64 from the target microgrid project). Results also

indicate that the EMS adopted for the control of the microgrid has led to the implementation of a clean

and affordable energy system. Moreover, the proposed microgrid configuration has minimized CO2

emission (by 92.3 %) and fuel consumption (by 92.4 %), when compared to the application of a fossil

fuel-based diesel generator.
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Introduction
Renewable energy technologies have been recommended as an

intervention to alleviate the difficulties related to centralized

electricity generation. This difficulties includes: extensive land

use (for power transmission), high emissions (for a fossil fuel-

based power generation), harmful waste generation (for a

nuclear-based power), high power losses, excessive water use

(for thermal-based power plant), and involve high investment

Energy management strategy and capacity
planning of an autonomous microgrid:
Performance comparison of metaheuristic
optimization searching techniques

Renewable Energy Focus d Volume 40 d March 2022 www.renewableenergyfocus.com

R
E
S
E
A
R
C
H

P
A
P
E
R
(B
L
U
E
)

1755-0084/� 2021 Elsevier Ltd. All rights reserved. https://doi.org/10.1016/j.ref.2021.11.00448

https://doi.org/10.1016/j.ref.2021.11.004


cost [1,2]. Nonetheless, the sporadic behaviour of renewable

energy sources (RESs) affects the electricity supply and incurred

additional costs on electricity consumers and the electricity util-

ity company. Thus, this has affected tremendously the deploy-

ment of the RESs specifically for the off-grid usage [3]. As such,

the development of a smart microgrid is a potential approach

to allow the RESs to be incorporated into a microgrid. According

to the United State Department of Energy (DOE), a microgrid is

defined as “a cluster of interconnected distributed energy resources

and loads within clearly defined electrical boundaries that acts as a

single controllable entity with respect to both islanded-mode or grid-

connected network.” In spite of this definition; it is generally

accepted in the research community that this description can

also be applied to the case of an off-grid microgrid which has

no connection to large-scale upstream grid-network [4].

Microgrid capacity planning background: Problem
characteristics and research gap

Microgrid capacity planning belong to a combinational class of

optimization problems. This class of optimization problem is a

multi-modal, multi-variable, multi-objective and is characterized

by various sources of nonlinearities, constraints and non-

convexities [5–8]. The methods used to resolve this class of opti-

mization problem are affected by high overheads during the

computation procedures. Over the last two decades, finding a

realistic approach to accurately compute for the capacities of

the microgrid elements has been the focus of the microgrid

designers.

As such, various optimization methods have been reported in

the literature for resolving the capacity problem of microgrid.

This includes, deterministic optimization searching techniques

(DOSTs) and metaheuristic optimization searching techniques

(MOST) [9–11]. The DOSTs have poor local search ability; follow

rigorous protocols, prone to stagnation in the local optima and

inflexible to trace the changes in the in the optimization fitness

function [5]. Thus, the DOSTs are rarely used nowadays for the

microgrid optimization problems. In recent time, the MOSTs

are often applied to compute for a variety of renewable energy

(RE) systems (nano-grids, virtual power plants, microgrids e.t.c)

design and capacity planning problems, which can be viewed

as a power engineering optimization problems [12]. The MOSTs

alleviate the limitations associated with the DOSTs and are very

Nomenclature

Symbol

r BT self-discharge rate (%/hour)

gB BT efficiency (%)
ginv Efficiency of inverter (%)

gpv Efficiency of PV (%)

gWT Efficiency of WT (%)
Bcap BT bank capacity (kWh)

CBT Cost of BT ($)

CBT ;M BT bank maintenance cost ($)

CBT ;R BT replacement cost ($)
CDGEN

Cost of diesel generator ($)

CGEN;M Diesel generator maintenance cost ($)

CDGEN;R
Diesel generator replacement cost ($)

Cinv Cost of inverter ($)
CPV Cost of PV module ($)

DGEN Diesel generator

H2 Hydrogen
NPV Number of PV module

NWT Number of WT

n
0

BT BT lifespan (Year)

n
0

DEN Diesel generator lifespan (Year)

Abbreviations

ALO Ant lion optimization

BT Battery
CEMS Circle-charging energy management scheme

COE Cost of electricity ($)

CSA Cuckoo search algorithm

DOE Department of energy
DOST Deterministic optimization searching techniques

DFA Dragonfly algorithm

DPSP Deficiency of power supply probability (%)

EM Energy management
FC Fuel cell

GA Genetic algorithm

GA-PSO Genetic algorithm-particle swarm optimization
GOA Grasshopper optimization algorithm

GWO Grey wolf optimization

HGWOSCA hybrid GWO-sine cosine algorithm

HSA Harmony search algorithm
IHSA Improve harmony search algorithm

MOV multi-verse optimizer

NFL No-free lunch
NPC Net present cost ($)

n
0

inv Inverter lifespan (Year)

n
0

WT WT turbine lifespan (Year)

Tnoct Nominal operating temperature (oC)
n

0

PV PV module lifespan (Year)

CPV ;M PV maintenance cost ($)

CWT Cost of WT ($)

CWT ;M WT maintenance cost ($)
DoD Depth of discharge (%)

d’ Nominal interest rate (%)

n
0

WT WT lifespan (Year)
Pl Energy demand (Watt)

PPV
r PV module rated power at standard test condition (Watt)

Pwt
r WT rated power (Watt)

PDG
r Diesel generator rated power (Watt)

Vb BT voltage (Volt)

Vs System voltage (Volt)

V in Cut-in speed (m/s)

Vout Cut-out speed (m/s)
VR Wind turbine rated speed (m/s)

f Inflation rate (%)

PV Photovoltaic

SCA Sine cosine algorithm
SOC State of charge

SSO Social spider optimizer

SSA Salp swarm algorithm
REM Renewable energy based microgrid

RES Renewable energy source

WT Wind turbine

SA Simulated annealing
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easy to execute [13,14]. Even though not all the MOSTs guaran-

tee global optimum, their dominance over the DOSTs has been

verified in the microgrid planning research [9].

As an example, Malaki et al. [15] have proposed an improve

harmony search algorithm (IHSA) to calculate the capacity of a

hybrid photovoltaic (PV)/battery (BT) storage unit. The objective

of the optimization to determine the optimum capacity of the

hybrid system, require to supply the electricity demand of a

remote homes in Iran at minimum life cycle cost (LCC). The

author concluded that the application of the IHSA offers a more

promising result compared simulated annealing (SA) and har-

mony search algorithm (HSA). Li et al. [16] have devised a micro-

grid sizing method using genetic algorithm (GA). The microgrid

incorporate a solar heating system/PV modules/air conditioner/

heat boiler-/hydrogen (H2) based back-up system/BT/heat chil-

ler/a heat storage system, serving as a cooling, thermal, electrical,

and H2 load demand of an isolated area. Mohseni et al. [17] have

devised a month flame optimization algorithm (MFOA) to mini-

mize the net-present cost (NPC) of a grid-independent microgrid

and used equivalent loss factor to evaluate the reliability of the

microgrid. The sizing results computed by the MFOA is com-

pared with the results found by GA, GA-PSO and PSO. In [18],

optimal sizing for a hybrid grid- independent microgrid have

been designed using sine-cosine algorithm. The optimization

aims to minimize the whole LCC the hybrid energy system con-

sidering the loss of load interruption probability (LLP) as reliabil-

ity in index. Fathy [19] have applied social spider optimizer (SSO)

to optimally size a hybrid wind (WT)/BT/PV/diesel generator

(DGENÞ integrated microgrid and have shown its supremacy over

ALO, whale optimization algorithm, GWO, multi-verse opti-

mizer (MVO), harris hawks optimizer (HHO). Nasiraghdam

et al. [20] have employed the artificial bee colony optimization

method (ABC) to optimize the capacity of wind turbine (WT)/-

fuel cell (FC)/PV microgrid system and have demonstrated its

superiority over PSO and GA methods. Chauhan and Saini [21]

have applied discrete HSA for the optimal planning of an off-

grid microgrid incorporating a biomass gasifier/biogas digester

system/WTs/PVs/micro-hydro plant (MHPP).

In addition to the above studies, recently the application

hybrid algorithm has also been reported in the literature. For

example, Mohandas et al. [22] have integrated artificial bee col-

ony (ABC) and chaotic theory optimization method and used it

for the design of distributed generation units. The authors have

affirmed the superiority of the devised hybrid method over the

basic ABC algorithm. In [23], Jahannoosh et al. have used a

hybrid GWO-sine cosine algorithm (HGWOSCA) to design a

cost-effective renewable energy system comprising of PV/FC/

WT to supply the residential demand of a commercial centre sit-

uated in Iran. The authors have demonstrated the superiority of

the proposed HGWOSCA algorithm over PSO, GWO, and SCA.

Jiao et al. [24] have upgraded the standard harmony search algo-

rithm (HSA) by expanding its search space range and enhanced

the interaction between the global and local procedures. The

modified HSA is applied to solve the sizing problem of a stan-

dalone microgrid, and its outperformance have been confirmed

when it is benchmarked with PSO technique and classic HSA.

Derakhshan et al. [25] have enhanced the performance of the

classic cuckoo search algorithm by accommodating crossover

operators and using it to optimize the parameters of a grid-

connected WT-BT-PV microgrid. Despite the hybridization of

the metaheuristic optimization algorithms, a major problem of

making such inferences in the classification of the preceding

works is that there is no insight as to why those MOSTs are cho-

sen to be improved. Hence, this is a thoughtful criticism of all the

previous works that belong into this classification. Likewise,

since PSO and GA are the widely and well-documented tech-

niques in this field of research, they are usually applied as refer-

ences methods to investigate the efficiency of other MOSTs [9]. A

detailed overview and comparison of the MOSTs employed for

microgrid capacity planning can be found in [5,13,26].

Objectives and contributions to the study

Although various MOSTs have been recommended for comput-

ing microgrid capacity planning problem, however, owing to

the stochastic nature of the MOSTs, there is still need for a con-

tinuous examination of the efficiencies of newly developed

MOSTs, whose potential advantages have not yet been investi-

gated in this field of research [5]. This is essential because a minor

improvement in the MOSTs will positively affect the cost of the

microgrid and the capacities of its elements. Moreover, the rea-

son why newly developed MOSTs could outperform those that

have been earlier used in the microgrid planning analysis lies

in the so-called no-free lunch (NFL) theorem [10] and the ever-

evolving nature of the MOSTs. The theorem has logically proven

the inability to generalize the performance of MOST for a partic-

ular problem across different disciplines and research areas. This,

however, creates the possibility to put forward newly emerge

MOSTs and estimate their performance in resolving diversified

polynomial-time hard problems.

In this light, this paper attempt to investigate the efficiency of

six MOSTs for the capacity planning problem of an autonomous

hybrid energy system. The proposed system is intended to supply

the electricity demand of off-grid residences in Nigeria. The fol-

lowing recently developed MOSTs are considered in this compar-

ative study: (i) grey wolf optimization (GWO) [27] (ii) dragonfly

algorithm (DFA) [28], (iii) cuckoo search algorithm (CSA) [29],

(iv) the grasshopper optimization algorithm (GOA) [30], (v) salp

swarm algorithm (SSA) [31], (vi) ant lion optimization (ALO)

[32]. In addition, one of the most widely and well-known MOSTs

used for microgrid capacity planning, i.e. PSO [33], is also embed-

ded in the capacity planning method separately. Afterward, the

efficiencies of the aforementioned MOSTs are compared based

on the quality of solutions and convergence. It should be remem-

bered that in this study, PSO is considered as the reference

method, because its performance is acknowledged and widely

accepted in literature.

On the other hand, based on the review conducted on micro-

grid capacity planning, it indicates that energy management

scheme (EMS) is not modelled and incorporated in the microgrid

capacity planning phase [6,15,18,25,34–36]. This is however, a

drawback, because, without a proper EMS, the computed micro-

grid capacity might rise to reliability issue which in practice is

key in ensuring the resilient operation of the microgrid. Based

on the foregoing drawbacks, this paper incorporates a cycle-

charging EMS (CEMS) during the capacity planning phase of

the microgrid. The rule-algorithm is selected for the implementa-
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tion of the CEMS because it provide exact solution, computation-

ally efficient and efficient for real-time application [37].

The core contributions of this paper are outlined as follows:

1. Modeling of simulation prototype for an autonomousWT-PV-

diesel generator (DGEN)-BT microgrid which serves as a practi-

cal microgrid to examine the applicability of the planned

microgrid capacity planning approach.

2. Based on the simulation prototype modeled in (1) a control

strategy CEMS is developed for the microgrid using a rule-

based algorithm. The CEMS coordinates and provide power

delivery sequence for the different energy sources in the

microgrid.

3. A universally bio-inspired MOST is devised for optimum siz-

ing of the autonomous microgrid, and the efficiencies of six

recently developed MOSTs are investigated. The outcomes of

the MOSTs are compared statistically with the outcome real-

ized by a well-documented and widely MOST used for micro-

grid capacity planning.

4. A comprehensive analysis of the cumulative revenue genera-

tion incurred from the microgrid and the discounted break-

even analysis is performed, which, in turn, indicates the

dynamic payback period of the microgrid.

5. Direct comparison of the CO2 emission and fuel consumption

between the proposed microgrid energy system which adopts

CEMS as its control strategy and conventional DGEN .

The rest of the paper is structured as follows. Section 2 pre-

sents the microgrid prototype employed as a test-case system to

demonstrate the applicability of the microgrid capacity method

and which serves as a platform for the comparison of the perfor-

mances of the selected MOSTs, as well as the CEMS used for the

control and operation the microgrid. In section 3, the control

strategy (EMS) employed for the operation of the microgrid is

elaborated. Section 4 presents the application of the applied

MOSTs to optimize the microgrid and problem formulation is

stated. Section 5 highlights the modelling framework for the

autonomous microgrid, this is followed by the results and discus-

sion of the study in Section 6. The conclusions, drawbacks of the

research, and area for future research are outline in Section 7 and

Section 8, respectively.

Schematic of the autonomous microgrid
The structure and energy flow of the autonomous microgrid is

presented in Fig. 1. The green and blue lines in the figure repre-

sent communication/control and communication only power

lines. The dotted arrows signify the electricity power lines. The

conceptualized microgrid test-case system is composed of a diesel

generator ðDGENÞ, PV panels, WT, battery (BT), a converter, and a

dump load (irrigation system). The mathematical model of the

microgrid test-case system components and as well the technical

and economic parameter of the components depicted in Table 1

is according to Ref. [38].

Proposed microgrid control strategy
The intermittent behaviour associated with RE sources is the rea-

son why the energy management scheme (EMS) has become very

challenging. Consequently, to design a reliable microgrid, single

RE source cannot be relied upon to meet the demand. The relia-

bility of the system can be enhanced by integrating RE sources

and energy storage system as primary backup source to keep a

balance between the generation and the demand. The system

operator must ensure that the RESs are used first to reduce the

electricity cost and optimize the operation of the storage med-

ium (maintain depth of discharge ðDoDÞ, SOC maximum, SOC

minimum). This can only be realized using strategic and robust

EMS. The EMS aims to manage the operating sequences of the

elements in the microgrid, provide a power delivery sequence

for the subsystem that composed the microgrid, minimize BT

degradation, and minimize CO2 emission [39,40].

The microgrid capacity planning method proposed in this

study adopts CEMS as the microgrid operational strategy. The

CEMS operational strategy is developed using a rule-based algo-

rithm. The rule-based method is primarily in the form of ‘if-

then’ descriptions. The “if”, statements are associated with differ-

ent scenarios and ‘then’ statement executes the operating modes.

A comprehensive note on the ruled-based algorithm can be

found in Ref. [37,41]. In this study, the operation scenarios are

defined based on the values of the minimum andmaximum state

of charge (SOC) of the BT, load demand ðPlÞ, the WT power

ðPWT tð ÞÞ, and PV power ðPpv tð Þ). Subsequently, the rule-based

algorithm decides on the subsystem to turn OFF/ON. Hence, five

modes of operation are considered for the operation of the

autonomous microgrid. The microgrid modes of operation are

described in the following subsections.

Operating mode 1: Photovoltaic and wind power supplying
demand

The transfer of energy from PV array and WT to Pl is carried out

using this operating mode, i.e., ðPpv tð Þ þ P
WT

tð ÞÞ power to supply

Pl. Priority is given to PV and WT to fulfill demand since they are

considered as the main power source. This operating mode is

depicted in Fig. 2a.

Operating mode 2: Photovoltaic and wind power supplying
demand and battery charging

This operating mode is responsible for charging of the BT bank.

When PPV tð Þ and PWT tð Þ is sufficient to fulfill Pl and then extra

power that cannot be absorbed by the Pl will be channeled to

the BT bank. This operating strategy is illustrated in Fig. 2b.

Operating mode 3: Photovoltaic and wind power supplying
demand and dump load

This operating mode allows the Edump to be energized. When the

sum of Ppv tð Þ and PWT tð Þ is greater than the Pl tð Þ, and BT bank

SOC tð Þ ¼ SOC
�

, the extra power that cannot be absorbed by the

BT bank and Pl will used to supply the dump load (such as irriga-

tion system). This operating is mode is depicted in Fig. 2c.

Operating mode 4: Photovoltaic, wind power and battery
supplying demand

In this operating mode, if Ppv tð Þ þ P
WT

tð Þ < Pl tð Þ, then the energy

absorbed by the BT bank in operating mode 2 is allowed to dis-

charge. However, BT is allowed to discharge up to its minimum
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allowable SOC set point. This operating is mode is depicted in

Fig. 2d.

Operating mode 5: Diesel generator supplying demand and
battery charging

This operating mode allows the usage of the DGEN . In this mode,

DGEN is turn ON to charge BT bank and supply Pl, for as long as

Ppv tð Þ þ P
WT

tð Þ < Pl tð Þ and BT SOC tð Þ < SOC. The DGEN is

switched OFF when Ppv tð Þ þ P
WT

tð Þ � Pl tð Þ. This operating is

mode is depicted in Fig. 2e. The overall algometric flowchart of

the CEMS is presented in Fig. 3.

The metaheuristic-based optimal capacity planning

method
This section outlines the formulation of the MOST-based method

for determining the optimal capacity of the considered autono-

mous of the microgrid components. The devised method mini-

mizes the cost of electricity (COE) and the deficiency of power

supply probability (DPSP) of the microgrid as the optimization

criterion, to estimate the number or the size of elements in the

microgrid, subject operational and reliability constraints. The fit-

ness function is then minimized iteratively by applying the

aforesaid seven MOSTs to compute for the optimal capacities of

the microgrid elements. The microgrid is then tested according

to the determine capacities at each iteration, to confirm whether

the reliability and operational limits imposed on the microgrid is

met. Lastly, the optimum capacity combination of the elements

at the last iteration count (the best solution set), which has the

lowest COE, is reported.

All the examined MOSTs begin by generating a matrix of ran-

dom particles or individuals. The particles, then evolve towards

the optimum (solution) in the search-landscape, using their fit-

ness function values as the estimation criterion. The stirring

(evolution) procedure towards the optimum solutions is set con-

tinuously according to the different operators and rules specified

for each of the MOSTs until the stopping criterion (i.e., the max-

imum number of iterations) is reached. Detail description of the

employed MOSTs can be found in [27–32].

Fitness function

Based on the above discussion, the minimization of the COE

generation of the considered microgrid project, and at the same

time satisfying the electricity requirement of the demand, a

methodology is devised in this section. The fitness function

(COE) is derived from the life cycle costs of the microgrid using

the total net-present cost (TNPC) concept. The TNPC of the

encompasses the summation of the NPCs of the microgrid ele-

ments. It can be defined as [42,43]:

NPCT ¼ NPCBT þNPCWT þNPCPV þNPCCON þNPCDGEN
ð1Þ

where NPCBT;NPCWT;NPCPV;NPCinv; and NPCDGEN
; respectively

represents the NPCs of the BT bank, WT, PV panels, inverter

and the DGEN, each of which can be determined by Eq. (2) [5].

NPC ¼ N:ðCCþ RC� K þ O&M �
1

CPV d;Rð Þ
ð2Þ

where N denotes the optimum (number/capacity) of the element;

O&M, RC and CC denote the operation and maintenance costs,

replacement cost and capital cost respectively. K and CRF, respec-

tively stand for the one-time payment for the present worth and

capital recovery factor. The CRF can be calculated using Eqs. (3)

and (4) [42].

CRF i;Rð Þ ¼
ðiþ 1Þl

ðiþ 1Þl � 1
ð3Þ

where i stands for the interest rate per annum, it can be deter-

mined using Eq. (4). l stands for the project life-time of the micro-

grid and is considered to be 25 years (in compliance with the life-

span of the PV modules as the most durable element of the

system.

i ¼
d

0

� f

1þ f
ð4Þ

where f represent the inflation rate and d
0

is the nominal interest

rate (i.e the interest rate at which money is borrowed from the
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The architecture of the proposed autonomous microgrid.
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bank for the project). Currently, the inflation and nominal inter-

est in Nigeria are 4% and 12% (The values are computed by taking

the average of the rates obtained from various banks in the Nige-

ria) [44].

As stated previously, the reliability indicator of the microgrid

is assessed using the concept of DPSP. It can be measured using

Eq. (5), and must be 0% [5].

DPSP ¼ 100:

PN
i¼1hours½PsuppðiÞ < PdemðiÞ�

N
ð5Þ

where Psupp and Pdem respectively, represent the supplied electrical

energy and energy demand. N represents the total number of

hours. A DPSP ¼ 0% means electricity demand will be fulfilled

at all times. DPSP ¼ 1% is an indication that consumer demand

will not be met. In this study, a DPSP of zero is considered for

the analysis. The fitness function is to be minimized using the

seven MOSTs. The MOSTs are incorporated with the CEMS to

optimize the microgrid. The PSO being the famous optimization

algorithm is adopted to test and confirm the effectiveness of

GWO, DA, CSA, GOA, ALO, SSA.

Constraints

The optimization of the fitness function is subject to restrictions

on the operation of components. In general, the optimization

problem is formulated with three constraints: (1) the one associ-

ated with the reliability to ensure the steadiness of electricity sup-

ply, refer to Eq (5); (2) those associated with the equality of the

final and initial energy content of the BT bank (SOC minimum

and maximum), and (3) the constraint associated to the lower

and upper boundaries of the non-negative design variables

which are as follows:

20 � NPV � 45; 0 � NWT � 10;0 � NAD � 3 ð6Þ

Summary of the modelling framework for the

autonomous microgrid
The summary of the computational frame for the design of the

autonomous microgrid is depicted in Fig. 4. This modeling

framework is used to optimize the design of the autonomous

microgrid (by minimizing the fitness functions mentioned above

and at the same time adhering to the constraints imposed),

thereby assessing the efficiencies of the MOSTs. The load profile

imposed on the microgrid and climatological data of the case

study region, the economic and technical parameters of the

microgrid components, product model, operating mode of the

CEMS; as well as the interest rate and the project life-span are

used as input to the model. This is followed by implementing

the CEMS program and incorporating it into the MOSTs. The fit-

ness function is minimized iteratively to compute for the opti-

mum capacities of the design variables. The microgrid system is

tested using the values computed for the design variables. Lastly,

the computed capacities of the components are chosen as the

optimum capacities.

Results and discussion
The grid-independent microgrid depicted in Fig. 1, is applied to

investigate and confirm the devised microgrid capacity planning

method by investigating the impact of the applied MOSTs on the

COE of the microgrid, and the rate of convergence. The compu-

tational test was performed on Intel�, processor 3.20 GHz CPU, 8

GB RAM, Core TM i7-8700. All models were coded and run-on

MATLAB 2019a software.

Climatological and energy demand data

A case study region was chosen to test the applicability of the

devised microgrid EMS and capacity planning approach pro-

posed in this paper. The microgrid is intended to supply the elec-

tricity demand of residences in an isolated community in Yobe

TABLE 1

Technical and economic specification of the microgrid components.

Parameters Values Unit

Photovoltaic

n
0

PV
25 years

CPV 2.15 $/Wp

Ppv
r at STC 275 W

Tnoct 45±2 �C

Tcof �3:4� 10�3 1/�C

gpv 16.9 %

CPV;M 20 $/year

Regulator cost 1500 $

Wind turbine

n
0

WT
25 years

Pwt
r

1 kW

VR 9.5 m/s

Vin 2.5 m/s

Regulator cost 1000 $

CWT;M 50 $/year

CWT 3 $/W

Vout 20 m/s

gWT 92 %

Battery

n
0

BT
2 years

CBT 280 $/kWh

CBT;M 5 $/%

Bcap 45.2 kWh

R 0.007 %/hour

DoD 70 %

CBT;R 280 $/kWh

SOC maximum 100 %

SOC minimum 30 %

Vb 12 V

Vs 48 V

gB 0.85 %

Bcap singleð Þ 250 Ah

Diesel generator

CDgen
1000 $/kWh

PDG
r

4 kW

n
0

DEN
24000 Hours (5years)

CDgen;R
1000 $/kWh

Cgen;M 0.064 $/h

Sf 0.689 $/L

Economic Parameter

d
0 12 %

Project n0 25 Year

f 4 %

Inverter

n
0

inv
15 Years

ginv 92 %

CCON 2500 $
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State, Nigeria whose Latitude and Longitude are 12.1871o N and

11.7068o E, respectively. The number of residences for which the

microgrid is conceptually developed is five, with a population of

about forty-five. The study region has good solar and wind

resources with low season variations of electricity generation.

Figs. 5–7 depicts the hourly ambient temperature, the hourly

wind speed (measured at 10 m) and the hourly solar irradiance

with their corresponding contour map for a period of one-year.

The climatological data were sourced from the Nigeria Meteoro-

logical Agency (NIMET) database [45]. While the residential load

profile imposed on the microgrid is given in Fig. 8. The load pro-

file data was sourced from a survey conducted by the Power

Holding Company of Nigeria (PHCN) for the energy consump-

tion pattern in remote residence.
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FIG. 2B

Photovoltaic and wind power supplying demand and battery charging.

FIG. 2C

Photovoltaic and wind power supplying demand and dump load.

FIG. 2A

Photovoltaic and wind power supplying demand.
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Verification of the CEMS resiliency

This section demonstrates the performance of the CEMS opera-

tional strategy before optimizing it with the devised MOST’s

microgrid capacity planning approach. The verification of the

rule-based CEMS is intended to study the resiliency of the rule-

based algorithm and the operation of the scheme over a long per-

iod and to confirm that the BT bank operational limit is not vio-

lated despite the seasonal discrepancies on the output of the

PPV tð Þ and PWT. In this context, the BT bank's initial state of

charge of the initial state of charge of the BT bank is set to

80% and its DoD is set to 70%. A WT rated 5 kW, PV array rated

5.8 kW, DGEN rated 2 kW, and a 12V/250Ah BT, with a rated

capacity of 45.2 kWh is used for the confirmation of the CEMS

resiliency. Fig. 9 portrays the hourly simulation of the energy

mix and the corresponding SOC of the BT, for 1-year operational

time frame. Moreover, for clarity purpose, Figs. 10–12, illustrates

the electricity mix of the microgrid (on the left-ordinate) and the

corresponding BT bank SOC (right-ordinate) during the rainy,

cold, and hot season respectively, for 2-day operational time

frame.

It can be noticed from the figure (Fig. 10) that the rise and fall

of the PPV during day during the cold season is reasonably

smooth. Hence, this indicate a normal weather condition and

the solar irradiance is not disburbed by the weather condition.

During hour 1 h to 9 h, the PPV and PWT is not insufficient to

meet Pl by operating Mode 1 (PPV and PWT to supply Pl). In this

situation, the Pl is fulfilled by activating operating Mode 4 (PPV ,

PWT , and BT to supply Pl), thereby discharging the from the BT

bank ðBTdchÞ to meet the Pl (this is denoted by the positive blue

line of Fig. 10).

For clarity, the summary of the hour-by-hour operation of

the CEMS during the cold, hot and rainy season is given in

Tables 2–4. Regarding, the cold season, it can be noticed that,

from the sunrise to sunset i.e. 9 h to 18 h, the PPV and PWT

has exceed the Pl, as such operating Mode 2 (PPV and PWT to

supply Pl and BT charging) is activated. This mode enables

the Pl to be energies and the surplus power which cannot be

absorbed by the Pl is used to charge the BT bank ðBTchÞ (refer

to the negative blue line of Fig. 10). Moreover from 18 h to

19 h, Mode 1 is activated because the PPV and PWT is sufficient

to meet the Pl, however without any extra power. At 18 h to 33

h, the PV power is no longer available due to sunset, while the

PWT is insufficient to meet the Pl. Therefore, operating Mode 4

is activated to supply the Pl. Similarly, at 33 h to 41 h and 41 h

to 48 h, Mode 3 and Mode 4 are executed to supply demand,

respectively. It is worth mentioning that during the 48 h of

operation time-frame, only Mode 2, Mode 1 and Mode 4 are

executed. Furthermore, the minimum SOC attained by BT is
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FIG. 2D

Photovoltaic, wind power and battery supplying demand supplying demand.

FIG. 2E

Diesel supplying demand battery charging.
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36.07% (17.4 kWh) and the maximum attained is 99.2% (44.74

kWh).

Performance comparison of the applied MOSTs for the
microgrid capacity planning

To perform a fair comparison among the considered MOSTs,

their particles/individual, and the maximum generation (itera-

tion) for all the studied algorithms are kept constant (5 particles

and 100 iterations are considered). The remaining parameters of

the MOSTs examined are tuned according to the values suggested

by their creators, which are given in Table 5 [27,28,30–33]. Note

that the GWO and ALO do not need parameter tuning because

their parameters are modified during iteration. Moreover, it is

commonly demonstrated that 30 independent simulation runs

are sufficient to compare the efficiency of different MOSTs [46].

For each of the MOSTs, therefore, the optimization program is

run for 30 times. Subsequently, a statistical-driven method is

then employed, to compares the efficiencies of the MOSTs, tak-

ing into account their effectiveness in computing for the optimal

design capacity of the microgrid. The comparison method uses

four statistical indicators: the mean outcome (mean), the median

outcome (median), the worst-case outcome (worst), and the best-

case outcome (best) of the COE, discovered for the microgrid

model over the 30 independent simulations conducted. The

R
E
S
E
A
R
C
H

P
A
P
E
R
(B
L
U
E
)

If
No
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Return

Return

No
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Return
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FIG. 3

Algorithmic flowchart of the rule-based CEMS, (a) The main CEMS flowchart algorithm (b) CEMS execution for BT bank to discharge (c) CEMS operation for

DGen to switch ON and OFF (d) CEMS operation for BT bank to charge.
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FIG. 4

Flowchart of the proposed CEMS MOST-based optimal capacity planning method.

FIG. 6

(a) Wind velocity of the studied site and (b) Contour diagram of the

monthly-average ambient temperature (�C).

FIG. 5

(a) Hourly ambient temperature of the studied site (b) Contour diagram of

the monthly-average ambient temperature (�C).
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worst, mean, and best metrics indicate the accuracy of the MOST.

The median reflects the precisions of the MOST (i.e., the number

of successes out of 30 trials to the optimum solution). Table 6

ranks the performance of the MOSTs under investigation based

on the aforementioned statistical framework.

In Table 6, it can be observed that CEMS-ALO and CEMS-GOA

respectively demonstrate the worst and best results within the

context of the devised method. These statistics-based outcomes

give a convincing confirmation of the supremacy of the CEMS-

GOA over CEMS-PSO and CEMS-CSA (which are well-known

MOSTs) and even CEMS-ALO, CEMS-DFA, CEMS-GWO, and

CEMS-SSA (which are most recent MOSTs in the literature).

Based on the outcome of the results, the CEMS-GOA has result

to a saving of 0.32% and 0.69% in the COE of the microgrid in

comparison to CEMS-CSA and CEMS-GWO. It has also con-

tributed to a saving of 0.78%, 0.96%, 1.61%, and 2.34%, respec-

tively in the COE compared to CEMS-PSO, CEMS-SSA, CEMS-

DFA, and CEMS-ALO. The supremacy of the CEMS-GOA stems

from its fair exploitation and exploration capability during the

search process. This is due to the updated procedures of the

grasshoppers, in which the positions of the grasshopper are

updated based on the feasibility and trajectory of the grasshop-

per, which enhances the search of the feasible design search

space. Table 7 provides a detailed combination of the system

constituent computed by the studied MOSTs for the best results

obtained.

Fig. 13 depicts the convergence curves of the employed

MOSTs for the trial, in which the methods showed their best

results in terms of approaching the global optimum. Also indi-

cated in subfigure Fig 13(a), the CEMS-PSO method has the high-

est convergence rate as compared to all the studied techniques

tested and estimates the global optimum in the 6th iterations.

The results in Fig. 13, also indicates that CEMS-GWO, which is

ranked the third-best, has a convergence trend similar to

CEMS-PSO in the early stages of iterations, however, converges

slower at the later stage. The CEMS-GOA shows a strong ability

to explore the design search space in the last iterations, while

the other MOSTs are trapped in the local optimum point. Hence,

this highlights the strong exploitation ability of the CEMS-GOA.

Lastly, the CEMS-SSA, CEMS-DFA, and CEMS-ALO were not only

stuck in the local optimum but also had the characteristics of

poor convergence.

Breakdown of the TNPC

This section presents the breakdown of the TNPC of the micro-

grid over the operational timeframe of the microgrid. The analy-

sis is performed using the results obtained for the CEMS-GOA,

which has demonstrated high superiority among the studied
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FIG. 7

(a) Hourly solar irradiance of the studied site (W/m2) (b) Contour diagram of

the monthly-average solar insolation (W/m2).

FIG. 8

3D diagram of the monthly average day-time discrepancies of residences

load profile.

FIG. 9

CEMS results for a year-round operation.
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MOSTs and having TNPC of $135,899.62. The O&M costs,

replacement costs, and capital cost of the microgrid account for

33.96%, 17.17%, and 44.87% of the TNPC, respectively. Further-

more, it should be noted that this study does not account for the

salvage value of the microgrid investment program. This is

because we believed that the project will not be abandoned at

the end of the payback period of the microgrid. Fig. 14 break

down the TNPC of the microgrid elements. As demonstrated in

the figure, the contribution of the WT, PV array, inverter, and

BT bank to the TNPC amount to 10.81%, 13.18%, 3.8%,

38.51%, and 33.70%, respectively. The BT bank and DGEN which

serve as primary and secondary backup power supply occupies

the largest proportion of the TNPC. Fig. 15 depicts the break-

down of the microgrid energy system cash flow for the case study

area under consideration. As outlined in the figure, the replace-

ment costs are incurred only by the DGEN, BT bank, and the inver-

ter. Moreover, all the elements in the microgrid incur O&M

except the inverter. The DGEN incur large portion of the O&M

due to the fuel cost. It is also worth mentioning that the COE cal-

culated using the CEMS-GOA ($0.36563/kWh) is 80% lower than

the electricity price of the conventional DGEN system, which is

found to be $1.81/kWh. Therefore, it can be concluded that

the devised microgrid is competitive to standalone DGEN cur-

rently used in most microgrid communities. Thus, this makes

the project in the proposed case study area economically viable.

It is also expected that the microgrid project if properly deployed

will reduce greenhouse gasses, improve energy supply efficiency,

and contribute to the constituency sustainable development

goals objective.

Computation of the microgrid payback duration

To confirm the economic viability of the microgrid project, a

detailed assessment of the project costs and revenue (free cash

flow) is performed to determine the dynamic payback period.

The analysis is carried out on the basis of the results obtained

by the CEMS-GOA, as it showed the highest efficiency among

the MOSTs analysed.

The dynamic payback period criterion integrates the concepts

of the discounted cash flow analysis and static payback period

method to determine the date at which the project becomes prof-

itable on the basis of the discount rate. This technique was pro-

posed for the first time by [47]. The criterion can, therefore, be

applied in the field of microgrid sizing problem as follows:

XDPP

t¼0

S 1þ irð Þ�t �NPC ¼ 0 ð16Þ

where S denote the annual income generated by selling of elec-

tricity to the consumer. In this study, the COE value ($0.36563)

as determined by the CEMS-GOA is used for the analysis. The S

can be determined using Eq. (17).

S ¼ 0:36563� Pl;cum ð17Þ

where Pl;cum is the total annual supplied electrical loads (kW). The

graphical discounted break-point of the planned microgrid on a

revenue flow of 25years is shown in Fig. 16. As shown in the plot,
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FIG. 10

Plot of electricity generation mix against the BT bank (cold-season).

FIG. 11

Plot of electricity generation mix against the BT bank (Rainy-season).

FIG. 12

Plot of electricity generation mix against the BT bank (Hot-season).
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if implemented, the microgrid project’s discounted payback per-

iod would be 11 years. Moreover, the discounted net income that

can be made by selling electricity over the operational time-frame

is estimated to be $54,129.6614. The linearity of the revenue

curve shown in Fig. 16, is as a result of the simplistic assumption

that the Pl is constant throughout the microgrid. Also, the non-

linearity of the annualized cost curve is due to the cost associated

with the replacement of the microgrid elements, whose lifespans

are over, as well as the O&M cost. To determine the total cumula-

tive annualized costs, the gross annualized capital expense is first

determined, and then the adjusted O&M costs and replacement

costs are added to the time which they incurred.

Also, note that after the microgrid operational time-frame

(25year), the total annualized costs are equivalent to the best

TNPC the CEMS-GOA has estimated ($135,899.6216). The

break-even analysis shows that the microgrid investment is not

only economically attractive but also offers a low-risk investment

opportunity as a result of a short payback period.

Energy flow analyses

This section highlights the energetic assessments of the micro-

grid according to the optimum combination of microgrid ele-

ments estimated by the CEMS-GOA, whose dominance over

other investigated MOSTs has been confirmed in the preceding

section. This energetic assessment is performed on the basis of

the best-case performance of the CEMS-GOA and the microgrid

energy flow study is based on running the program simulating

the CEMS-GOA for a period of one-year.

Figs. 17a, 17b, and 17c depict the plot PPV, PWT, PGEN (the DGEN

power generation in the CEMS control strategy and it implies to

the switch ON/OFF operation of the DGEN) against the PGEN in a

standalone DGEN for a year-long operation. Accordingly, the elec-

tricity generation mix of the microgrid is also portrayed in

Fig. 17d. Note that, this study can be extended for the whole pro-

ject lifespan. However, during the analysis, the sizes of the micro-

grid elements determined by the proposed capacity planning

method should not be ignored. This will, therefore, prevent the

discrepancies between the supply and demand imposed on the

microgrid. The percentage contribution of the PPV , BT, DGEN,

and PWT to electricity generated by the microgrid is presented

in Fig. 18. From the figure, it can be observed that 44% of the

power generation from the microgrid is contributed by the PV

array. The DGEN, BT bank, and WT have a share of 14%, 16%,

and 26% of the total energy generated. The total annual energy

harnessed from the PV array is 14,041kW/year. While, a total

of 4343.5 kW/year, and 5154.4 kW/year is achieved from the

WT and DGEN, respectively.

In respect of the operation of the DGEN which serves as a sec-

ondary backup supply (refer to Fig. 17c), it operates mostly dur-

ing the hot season. This is due to the higher energy demand

and perhaps, the BT bank is not allowed to be fully charged.

The total operating hours of the DGEN is 672 h per annum. With

50 h operating time dedicated to cold-season, while 470 h and
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TABLE 3

Hour-by-hour execution of the REMS for 48 hours of operation in the

rainy weather.

Time,

hour

Operating

Conditions

Operating Modes Consequence

4300-4304 PPV + PWT

<Pl

Mode 4 PPV , PWT and

BT bank

supplying

demand

4304-408 PPV + PWT

>Pl

Mode 2 PPV , PWT

supplying

demand and

BT

Charging

4308-4315 PPV + PWT

>Pl

Mode 3 PPV and PWT

supply

demand and

dump load

4315-4321 PPV + PWT

<Pl

Mode 4 PPV , PWT and

BT bank

supplying

demand

4321-4322 PPV + PWT

>Pl

Mode 2 PPV , PWT

supplying

demand and

BT Charging

4322-4323 PPV + PWT

<Pl

Mode 4 PPV , PWT and

BT bank

supplying

demand

4323-4329 PPV + PWT

>Pl

Mode 2 PPV , PWT

supplying

demand and

BT Charging

4329-4332 PPV + PWT

<Pl

Mode 4 PPV , PWT and

BT bank

supplying

demand

4332-4337 PPV + PWT

>Pl

Mode 2 PPV , PWT

supplying

demand and

BT Charging

4337-4344 PPV + PWT

<Pl

Mode 4 PPV , PWT and

BT bank

supplying

demand

4344-4346 PPV + PWT

>Pl

Mode 2 PPV , PWT

supplying

demand and

BT Charging

TABLE 2

Hour-by-hour execution of the REMS for 48 hours of operation in the

cold weather.

Time,

hour

Operating

Conditions

Operating

Modes

Consequence

1-9 PPV + PWT

<Pl

Mode 4 PPV , PWT and BT bank

supplying demand

9-18 PPV + PWT

>Pl

Mode 2 PPV , PWT supplying demand

and BT Charging

18-19 PPV + PWT

>Pl

Mode 1 PPV and PWT supplying

demand

19-33 PPV + PWT

<Pl

Mode 4 PPV , PWT and BT bank

supplying demand

33-41 PPV + PWT

>Pl

Mode 2 PPV , PWT supplying demand

and BT Charging

41-48 PPV + PWT

<Pl

Mode 4 PPV , PWT and BT bank

supplying demand
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152 h of operation are dedicated to the hot and rainy seasons,

respectively. Analysis have also been conducted regarding the

CO2 emission, fuel consumption and COE of the proposed

microgrid (scenario 1) and that of a standalone DGEN (scenario

2). The result of the comparison is depicted in Fig. 19. The study

indicates that the devised microgrid has considerably minimized

the CO2 and fuel consumption of DGEN by 92.3%, 92.4%, and

79.8%, respectively.

On the other hand, the monthly projected PPV and PWT for the

optimum capacity from January to December is portrayed in

Figs. 20. The result shows that the PPV trend is similar during

the cold and hot season. The PV and WT generate the highest

total power, of approximately 1243 kWh/month and 564 kWh/-

month, respectively in the month of March. With a minimum

PPV of 34 kWh/day on the 2nd day and minimum PWT of 1.1

kWh/day on the 5th day, respectively. The month of May has

the second-highest power generation of 1225 kWh/month from

the PV array, with a minimum generation of 24 kWh/day on the

10th day. For the WT the month of February, has the second

power generation, of 467 kWh/month, with a minimum genera-

tion of 0.24 kWh/day. The minimum total power generation of

1033 kWh/month and 255 kWh/month is realized from the PV

arrays and WT in August, with minimum power generation of

9.3 kWh/day and 0.15 kWh/day on the 6th and 24th day. The

minimum power generated by the PV on the 6th day of August

is also the minimum power generation in the year 2017, and this

could be as a result of the rainy season in the month.

Furthermore, based on the hourly BT bank SOC exhibited in

Fig. 21, it is shown that the SOC of the BT bank is more than

50% for about 49% hours in a year. The BT bank is drained to

its minimum DoD (30%) for only 27 h in a year, and mostly in

the hot season, to cope with energy demand. The subfigures

shown in Figs. 21a and 21b present the analysis of the BT bank

drain on the 1st day of January and the 2nd day of March. It

can be noticed in Fig. 21a, at 0 h the BT bank began to drain from

an initial SOC of 80% (equivalent 34 kWh) up to 8 h. Afterward,

at 8 h the SOC starts to increase gradually during the charging

process until it becomes fully charged at 14h.

Furthermore, during the period of operation of the microgrid,

the excess power generated by the microgrid which can be chan-

neled to the dump load, has been examined. The excess power

results from microgrid when the demand cannot absorb the

energy generated or when the maximum SOC of the BT is

reached. Figs. 22 and 23 show the plot of the annual excess

power generated and the share of the excess power for the differ-

ent seasons. The analysis indicates that out of the 981.4 kW

excess power generated, 17% (171.5 kW) of the share is gener-

ated during the rainy season, 1% (12.5 kW) in the hot season

and 82% (811.3 kW) are generated in the cold season. The hot

season is characterized by less excess power. This is because the
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TABLE 4

Hour-by-hour execution of the REMS for 48 hours of operation in the hot weather.

Time, hour Operating Conditions Operating Modes Consequence

2356-2358 PPV + PWT < Pl Mode 4 PPV , PWT and BT bank supplying demand

2358-2360 PPV + PWT <Pl Mode 5 Dgen supplying demand and BT Charging

2360-2361 PPV + PWT < Pl Mode 4 PPV , PWT and BT bank supplying demand

2361-2369 PPV + PWT >Pl Mode 2 PPV , PWT supplying demand and BT Charging

2369-2378 PPV + PWT <Pl Mode 4 PPV , PWT supplying demand and BT Charging

2378-2380 PPV + PWT <Pl Mode 5 Dgen supplying demand and BT Charging

2380-2383 PPV + PWT <Pl Mode 4 PPV , PWT supplying demand and BT Charging

2383-2385 PPV + PWT <Pl Mode 5 Dgen supplying demand and BT Charging

2385-2391 PPV + PWT <Pl Mode 2 PPV , PWT supplying demand and BT Charging

2391-2397 PPV + PWT <Pl Mode 4 PPV , PWT supplying demand and BT Charging

2397-2399 PPV + PWT <Pl Mode 5 Dgen supplying demand and BT Charging

TABLE 6

Statistical analysis of the MOSTs in the minimization the COE

Metrics CEMS-GWO CEMS-ALO CEMS-CSA CEMS-DFA CEMS-GOA CEMS-SSA CEMS-PSO

Best 0.367032 0.369835 0.366331 0.366331 0.365629 0.367522 0.367396

Worst 0.378441 0.389661 0.375567 0.387803 0.372358 0.381004 0.378679

Median 0.367032 0.369835 0.366331 0.366331 0.365629 0.367522 0.367396

Mean 0.368437 0.376569 0.367094 0.374257 0.366994 0.368877 0.368610

Avg 0.370235 0.376475 0.368831 0.373681 0.367653 0.371231 0.370520

Rank 3 7 2 6 1 5 4

TABLE 5

Parameters settings for the MOSTs understudy.

MOSTs Settings Reference

(s)

PSO w ¼ 0:7;C1 ¼ 2;C2 ¼ 2 [33]

ALO Parameters are tuned adaptively (dynamic

tuning)

[32]

CSA Pa ¼ 0:2;Pc ¼ 0:5 [48]

GOA f ¼ 0:5; l ¼ 1:5 [30]

GWO Parameters are tuned adaptively (dynamic

tuning)

[27]

DFA a ¼ 0:1;w ¼ 0:7; f ¼ 1; s ¼ 0:1; c ¼ 0:7; e ¼ 1 [28]

SSA Parameters are tuned adaptively (dynamic

tuning)

[31]
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BT bank is extremely exploited during the season and

particularly, the energy demand is high during the season.

Conclusions
This paper has presented MOSTs-based approach for the optimal

design of an autonomous microgrid while trying to emphasize
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TABLE 7

Analysis of the best COE achieved by the MOSTs out of 30 independent simulation run.

MOSTs NPV PV array

(kW)

NWT WT

(kW)

BT bank capacity

(kWh)

DGEN(kW) COE ($) DPSP

(%)

Total capital cost

($)

TNPC

CEMS-

GWO

30.1 8,264 6.9 6,861 45.2 5 0.367032 0 60,976 140,119.5000

CEMS-

ALO

32.8 9,023 7.8 7,681 45.2 5 0.369835 0 65,089 144,232.0000

CEMS-CSA 29.2 8,030 6.6 6,560 45.2 5 0.366331 0 57,802 138,745.4900

CEMS-

DFA

32.5 8,940 7.3 7,320 45.2 5 0.366331 0 63,838 142,980.8923

CEMS-

GOA

26.0 7,154 4.2 4,200 45.2 5 0.365629 0 50,029 135,899.6216

CEMS-SSA 32.0 8,788 7.2 7,150 45.2 5 0.367522 0 63,001 142,144.2266

CEMS-PSO 30.6 8,416 7.0 7,050 45.2 5 0.367396 0 61,901 141,044.2654

FIG. 15

Breakdown of the cash flow categories of the microgrid elements.

FIG. 16

The microgrid project break-even analysis over 25-years of service.

FIG. 13

The convergence plot of the best-case behaviours of the MOSTs over 30

cycles.

FIG. 14

Breakdown of the best TNPC calculated using CEMS-GOA out of 30

simulation runs.
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FIG. 17

(a) Plot of the PPV (b) plot of the PWT (c) plot the DGEN power ðPGENÞ (in the CEMS control strategy) against PGEN in a standalone DGEN (d) the annual

electricity mix.
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FIG. 19

Comparative analysis of scenario 1 and scenario 2 based on CO2, FC;COE.

FIG. 18

The contribution of the PV, WT, DGEN, and BT to the total energy generation

in the microgrid.
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the importance of investigating newly developed MOSTs for

microgrid capacity planning problem. Consequently, the out-

comes of six MOSTs are compared with a well-document MOST

in the research area (i.e., PSO). Moreover, a statistical framework

is devised for comparing of the examined MOSTs, taking into

account the number of hits to the global optimum during the tri-

als. A conceptual autonomous microgrid test-case system,

devised to provide affordable electricity supply to residences of

an isolated region in Yobe State, Nigeria, is selected as a study

area for evaluating the output of MOSTs, and the comparative

findings obtained are presented. The suggested RE-based micro-

grid offers a holistic framework for speeding up usage of RE sys-

tems and also increasing energy supply stability to remote

regions which is in line with objective seven (GOAL 7: Clean

and affordable energy) of the sustainable development goal.

The simulation results indicate that the CEMS-GOA method

has outperformed the CEMS-PSO, CEMS-ALO, CEMS-SSA,

CEMS-GWO, CEMS-CSA, and CEMS-DFA for the microgrid
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FIG. 20

Daily power generation by WT and PV for the month of January and December.
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design problem in terms quality of the solution set. However, the

resilient exploitation capability of the GOA in the last iterations

count decelerates its convergence pace, and this is not a serious

issue since the problem at hand belongs to long-term energy

planning infrastructure horizon, which implies that long-term

simulation run times are acceptable in much as the numerical

tractability is maintained. The exploitation capability exhibited

by the CEMS-GOAmethod in the last iteration can be considered

as its advantage in this research viewpoint. The results have also

indicated that the CEMS adopted for the operational strategy of

the microgrid has helped to better adoption of clean energy sys-

tem since the strategy has significantly minimized the CO2 (by

92.3%) and fuel consumption (by 92.4%), compared fossil fuel-

based DGEN. The discounted break-even analysis has also indi-

cated the economic profitability of the microgrid project and

low-risk investment opportunity because of the low payback per-

iod of 11 years if the project is executed.

Limitations and future prospects
This study has two drawbacks. One is that the study investigates

only a small portion of the newly introduced MOSTs for the

design of the autonomous microgrid problem. Second, the effi-

ciency of the MOSTs is investigated on a single microgrid system

configuration.

To realize the foregoing drawbacks, new MOSTs should be

employed for the microgrid planning problem. In addition, the

efficiency of the MOSTs should be investigated on a complex sys-

tem, such as microgrid pool (interconnection of two or more

microgrids). Another trend for future research is to create a

podium to examine the harmonics emanating from the convert-

ers linking the various energy sources and the loads to the micro-

grid common bus when designing the microgrid.
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