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ABSTRACT 

Pathway-based analysis is introduced to define useful biological knowledge 

by considering the whole pathway features. However, most of these analyses have 

several shortcomings, such as less sensitivity towards data that could lead to some 

important information being missed. Because of the deficiency, pathway-based 

analysis has been shifted to subpathway-based analysis, which is seen to be more 

relevant in understanding the biological reactions. This is strengthened by the fact 

that several studies have found abnormalities in pathways caused by certain regions 

that respond in the etiology of diseases. In addition, subpathway-based analysis has 

been found to be more effective and sensitive than the whole pathway. Due to this 

orientation, many tools have been developed to accomplish the inadequate 

interpretation in biology system. The Differential Expression Analysis for Pathway 

(DEAP) is one of the methods in subpathway-based analysis which identifies a local 

region perturbed by complex diseases in large pathway data. However, the method 

has shown low performance in identifying informative pathway and subpathway. 

Hence, this research proposes a modified DEAP method (termed iDEAP) for 

enhancing the identification of perturbed subpathways in pathway activities and 

aimed at achieving higher performance in the detection of differential expressed 

pathways. To this end, firstly, asearch algorithm adapted from DMSP algorithm was 

implemented to DEAP in search for informative subpathways. Secondly, the relation 

among subpathways was taken into account by averaging the maximum absolute 

value (termed DEAP score) to emphasize the reaction among subpathways so that 

efficient identification of informative pathways can be achieved. Three gene 

expression data sets were applied in this study (head and neck tumour, colorectal 

cancer and breast cancer). The results were obtained in terms of the number of 

differential expressed pathways (head and neck tumor-81 pathways, colorectal 

cancer-78 pathways, breast cancer-95 pathways) and they suggest that the proposed 

method yielded better performance as compared to previous work. In fact, when the 

selected genes from the results were evaluated using 10-fold CV in terms of 

accuracy, the proposed method showed higher accuracy for Colorectal (90%) and 

Breast cancer (94%). Finally, a biological validation was conducted on the top five 

(5) significant pathways and selected genes based on biological literatures. 
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ABSTRAK 

 Analisis berasaskan laluan diperkenalkan untuk mentakrif pengetahuan 

biologi yang bermanfaat dengan mempertimbangkan keseluruhan ciri laluan. Walau 

bagaimanapun, terdapat beberapa kekangan pada kebanyakan analisis ini seperti 

kurang kepekaan terhadap data yang boleh membawa kepada keciciran beberapa 

maklumat penting. Menerusi kelemahan yang dikenal pasti, penggunaan analisis 

berasaskan laluan telah beralih kepada analisis berasaskan sub-laluan, yang lebih 

relevan dalam memahami reaksi biologi, kerana beberapa kajian telah menemukan 

keabnormalan dalam laluan yang disebabkan oleh bahagian tertentu yang bertindak 

balas dalam etiologi penyakit. Di samping itu, analisis sub-laluan didapati lebih 

berkesan dan sensitif daripada keseluruhan laluan. Oleh kerana orientasi ini, pelbagai 

peralatan dibangunkan untukmemenuhi tafsiran yang tidak lengkap dalam sistem 

biologi. Analisis Ekspresi Berbeza untuk Laluan (DEAP) adalah salah satu kaedah 

dalam analisis berasaskan sub-laluan yang mengenal pasti kawasan setempat yang 

dipengaruhi oleh penyakit kompleks dalam data laluan besar. Walau bagaimanapun, 

kaedah ini menunjukkan prestasi rendah dalam mengenal pasti laluan bermaklumat 

dan sub-laluan. Oleh itu, penyelidikan ini mengusulkan kaedah DEAP yang telah 

diubah suai (dinamakan iDEAP) untuk meningkatkan pengesanan sub-laluan yang 

terganggu dalam aktiviti laluan dan bertujuan untuk meningkatkan keberkesanan 

dalam mengesan laluan yang dinyatakan di atas. Pertama, algoritma carian yang 

disesuaikan daripada algoritma DMSP dilaksanakan kepada DEAP untuk mencari 

sub-laluan bermaklumat. Kedua, penyelidik telah mengambil kira hubungan antara 

sub-laluan dengan purata nilai mutlak maksimum (disebut sebagai skor DEAP) untuk 

mengambil kira tindak balas antara sublaluan supaya pengenalan laluan bermaklumat 

dapat dicapai secara efektif. Terdapat tiga set data ungkapan gen yang digunakan 

dalam kajian ini (tumor kepala dan leher, kanser kolorektal dan kanser payudara). 

Keputusan diperolehi dari segi bilangan laluan yang dijumpai dan menunjukkan 

bahawa kaedah yang dicadangkan menghasilkan prestasi yang lebih baik berbanding 

penyelidikan terdahulu. Selain itu, gen yang dipilih daripada keputusan dinilai 

menggunakan CV 10 kali ganda dari segi ketepatan. Akhir sekali, pengesahan 

biologi dijalankan kepada lima (5) jalur penting dan gen terpilih berdasarkan literatur 

biologi.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

In the era of life science, emerging high–throughput technologies such as 

next-generation sequencing, omics technology, and microarray have brought a 

massive dimension of biological data. The biological data that have been discovered 

including data in genome, transcriptome, epigenome, proteome, metabolome, 

molecular imaging, and molecular pathways. As a result, biological data is 

exponentially increasing the database size due to the information at various levels of 

biological systems (Penisi, 2011). Microarray technology has been introduced, which 

is known for its capability of analyzing thousands of data with multiple samples 

simultaneously. Therefore, many sophisticated analytic methods have been 

developed to analyze microarray data for intepreting important biological function. 

Differential expression analysis is an analysis in finding genes that are differentially 

expressed across biological conditions. It has been commonly used for finding 

biomarkers, drug target and candidates for understanding the molecular mechanism 

of complex disease (Walker, 2001). Traditionally, genes expression is analyzed gene-

by-gene without considering the interaction and association mechanism. By ignoring 

the biological interaction and structure, the analysis would become less effective and 

lead to misleading interpretation. 

The earliest approach  introduced in gene-by-gene analysis is individual gene 

analysis or IGA that naturally produces a list of altered genes from a cutoff threshold 

(Nam and Kim, 2008). Subsequently, systems-level methodologies have pushed 

forward the transition of IGA to gene set analysis (GSA), since cutoff-based method  

has deficiency in consideration of many informative genes, which causes low 

statistical identification efficiency of true positive. GSA methods have also received 

attention among researchers since it is free from issues of “cutoff-based” methods. 
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Moreover, this method is able to identify gene sets in a subtle way, coordinated by a 

single-step process. The biological meaning of gene expression data can be directly 

inferred by applying a sample or a gene randomization test. Gene Set Enrichment 

Analysis (GSEA) is one of the popular methods in GSA, which interprets the ranked 

genes based on the correlation between their expressions from two sample classes 

(Subramanian et al., 2005). The significance of the informative gene set is analyzed 

based on maximum running sum, where each gene set is calculated simultaneously 

throughout the ranked gene list. Then, the significant gene sets are analyzed based on 

two types of comparison methods which are competitive approaches that compare 

gene sets relative to another and self-contained approaches that compare individual 

gene sets across conditions without consideration for other sets. Even though GSA 

methods give advantage to researchers in characterizing a group of genes, they still 

have a limitation when being applied to pathway dataset.  Most of GSA methods 

neglect the graph structure of the pathway data, therefore, they might miss important 

information such as the biological interaction between melocules that leads to 

inaccurate result.  

At this point, pathway topology-based analysis has been introduced to 

overcome the limitation of GSA methods by considering the pathway structure.  This 

analysis has integrated the benefits of GSA and extended them with information 

from gene-gene interaction in the pathway database. In addition, there are two 

hypothesis tests that can be observed in this analysis: first, entire pathways are tested 

for differential expression; second, an informative path identified represents the 

entire pathway with massive information to that differential expression. As a result, 

researchers can identify the associated pathways with a biological condition related 

to targeted phenotype accurately. Previous studies stated that the pathway structure 

information is able to provide relevant biological insights and contributes for 

comprehension of higher-order of biological system functions (Emmert- Streib et al., 

2012). One of the popular methods in the topology-based analysis is signaling 

pathway impact analysis (SPIA), which associates the information from the classical 

enrichment analysis with pathway information in identifying perturbated pathway 

under a given condition (Tarca et al., 2009). But as a whole, the topology-based 

analysis methods test the generic hypothesis of pathways without identifying specific 

paths (Daraghici et al., 2007). 
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Recently, topology-based analysis has shifted towards subpathway-based 

analysis, which provides information of biological phenomena more precisely, and 

contributes in identifying regions of the pathway that are dysregulated by disease 

(Bezerianos et al., 2017). This analysis is based on assumption that biological 

process related to complex diseases can be described through local region topologies 

in the pathway. In addition, previous studies have proved that deformities in 

subpathway regions of the pathway might contribute to etiology of disease (Li et al., 

2012). From this evolution, several subpathway-based analysis methods have been 

developed which share the same target in the search pathway portion related to 

disease modelling, drug targeting and other objectives (Chen et al., 2011; Martini et 

al., 2013; Judeh et al., 2013; Nam et al., 2014). The earliest subpathway-based 

analysis methods are TAPPA (Gao et al., 2007), Subpathway-GM (Li et al., 2013), 

TEAK (Judeh et al., 2013) and many more. These methods identify subpathways 

through the incorporation of genes information and metabolites pathway data by 

taking account their topology structures and interactions.  The overview of 

subpathway-based analysis is illustrated in Figure 1.1.  

In the present biological studies, identification of perturbed subpathways and 

genes in cancer-related pathways is crucial to provide insights for better biological 

interpretation of the biological processes. Comprehensive interpretation of biological 

processes is important to drugs discovery and targeted treatment design. For the past 

few years, the development of subpathway-based analysis methods shows an 

increasing trend to take advantage on the incorporation of pathway activity data in 

order to enhance the outcome. However, there are also challenges discovered by 

previous studies. One of the challenges is how to examine the subpathway (Li et al., 

2009). Most of subpathway methods independently search the subpathway without 

implementing any search algorithm. This reduces the tendency to find the perturbed 

subpathway related to disease. In addition, the pathway structure is complex since it 

involves the combination of many subpathways and interaction. Due to this problem, 

an efficient subpathway-based analysis method is functional to identify specific 

region that is differentially expressed by utilizing every information within a 

pathway. 
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Figure 1.1: Overview illustration of subpathway-based analysis 

 

1.2 Research Background 

In the past few years, there is a large gap between data collection in 

molecular biology and data analysis method to derive accurate functional 

information. As the data constantly growing, the capability of obtaining an 

informative list of genes from different phenotypes has become a routine in research 

nowadays. Even though there are various methods developed to analyse high-

throughput data, the ability to interpret biological interaction is as challenging as 

ever. In fact, living organisms are complex systems with evolving phenotypes that 

cause thousands of complex interactions taking part in various pathways data. The 

complexity of pathway data has affected the performance identification of 

informative pathways where there are uncountable reactions need to consider. Hence, 

the ability to correctly define perturbed pathways under case study in pathway-based 

analysis becomes a challenge in order to transform the abundant high-throughput 

data into biological knowledge (Mitrea et al., 2013). According to (Khatri et al., 

2012), the identification of number of significant pathways under case study 

currently has come into failure due to the weakness and limitation of pathway-based 

analysis methods. This shows that an effective pathway-based analysis method is 

essential in order to achieve more promising results. 
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However, recent methods that have been developed still have limitation and 

weaknesses. For instance, they can only search informative pathways without 

knowing the abnormal condition within the pathway and which set of interaction 

leads to diseases (Khatri et al., 2012). Thus, the generation analysis has emerged to 

subpathway-based analysis that finds the informative local region known as 

subpathway by considering all the interactions between subpathways in each 

pathway. From there, the informative subpathway can be represented as the whole 

pathway and assist the medical team to discover diseases in short time through 

complex pathway data.  Since few years ago, many researchers have started to 

develop methods in order to find relevant subpathways related to targeted phenotype. 

But, most of the methods still have constraints that need to be improved. For 

example, Subpathway-GM (Li et al., 2013) and Teak (Judeh et al., 2013) have a 

limitation in defining subpathway in a given pathway. Both methods do not consider 

the interaction between nodes that can affect the efficiency of identifying significant 

subpathway under case study. Meanwhile, TEAK method implements two ways of  

subpathway extraction which are known as linear subpathway and non-linear 

subpathway. This method has some weaknesses where the nodes inside subpathway 

could be redundant, hence causing analysis confusion. 

With the complexity of the pathway data, the identification of significant 

subpathway has shown less promising result due to the presence of many interactions 

within the pathway (Amadoz et al., 2018). As shown in Figure 1.2, Ras signalling 

pathway comprises of many interactions and biological molecules that have their 

own roles in biological system. It is impossible to obtain an accurate result with huge 

number of interactions and molecules within the pathway data. Therefore, current 

approaches are designed to analyse specific local region in biological system by 

assuming that each subpathway is independent of each other. The lack of a method 

that accounts for dependence among subpathways at a time point limits our ability to 

observe changes at a pathway level in a biological system (Li et al., 2015). 

Recent advancements of omics research and the intensive biological 

researches have made available some well-known online biological pathway 

databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa 
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and Goto, 2000), Gene Ontology (GO) (Ashburner et al., 2000), Biocarta 

(www.biocarta.com) and many more. Generally, many of the biological pathway 

databases are not specific to certain biological context such as cancer. By 

implementing subpathway-based analysis, many informative pathways can be 

identified and directly improve the biological database. In addition, the knowledge of 

genes within informative subpathway highly related to diseases can be applied for 

future study such as cancer classification. In the study of complex diseases like 

cancers, the pathway data might contain irrelevant genes that do not contribute to the 

development of cancer or involve in cancer-related biological processes. The 

presence of non-informative genes in the classifier construction might impair the 

performance of classification (Wang et al., 2008). Therefore, it is crucial to 

efficiently identify the informative subpathways related to cancer in order to enhance 

the classification performance.  

 

Figure 1.2: Example of complex pathway data that comprises of many interactions 

and biological molecules. Ras signaling pathway map 

(https://www.genome.jp/kegg/) 
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1.3 Problem Statement 

The researcher focuses on the problem regarding limitation in identifying the 

perturbed subpathway that is significantly related to cancer disease. Since the 

pathway data consists of various biological interactions, the subpathway-based 

method is required in order to improve the performance of identifying target region 

or known as subpathway, which interacts with targeted phenotype. Previous studies 

showed that some information of the genes is enough to identify significant pathway 

related to targeted phenotype. However, the problem arises when defining the 

position of the significant genes requiring interactions among each other in order to 

obtain the perturbed region in each pathway. In addition, the weakness can also be 

seen when the subpathways are assumed independently by neglecting the interactions 

between them (Li et al., 2015). In previous method (DEAP), a single subpathway 

with maximum score was selected to represent the corresponding significant 

pathway. In order to improve the performance of subpathway-based analysis method, 

an effective and practical approach is needed to address the problems. The method 

should be able to identify the informative subpathway within the pathway and take 

into account the interaction between subpathways to improve the performance of 

such identification. 

It can be concluded that the main problem in this research is the weakness of 

subapathway-based analysis method in identifying the significant subpathway and 

the inefficiency of analysis when neglecting the interaction between subpathways 

which affects the performance of pathway identification. Thus, this research intends 

to address the aforementioned problems based on the following research questions: 

How to effectively identify important subpathway related to complex diseases from 

differential expression data in a given pathway? 

How to effectively validate the identified informative subpathways and genes? 
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1.4 Research Goal 

The goal of this research is to propose an improved differential expression 

analysis for pathway method to efficiently identify the informative subpathways and 

genes in a pathway.   

1.4.1 Research Objectives 

Several objectives have been set as the research direction. The objectives are 

expressed as below: 

(a) To propose an improved Differential Expression Analysis for the pathway 

(iDEAP) with Detect Module from Seed Protein (DMSP) algorithm features 

for more efficient identification of informative subpathway and genes in 

better prediction of pathway related to cancer.  

 
To verify and validate the performance and result of improved differential expression 

analysis for the pathway (iDEAP) with previous research and biological database. 
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1.5 Research Scope 

The scope of the research is bounded under some limitations, as stated below:  

(a) Three types of cancer microarray dataset applied in this research are obtained 

from Gene Expression Omnibus (GEO) database and pathway data with a 

total of 177 pathways obtained from the Protein Analysis Through 

Evolutionary Relationships (PANTHER) database.  

 
This research is carried out in Phyton with R programming base with implementation 

of “Rpy2” Python package index (Gautier, 2008), used as statistical analysis freely 

available at http://rpy.sourceforge.net  

  
Classification support vector machine (10-fold CV) is used for performance 

measurement in this research.  

 
Genecards that are available at www.gencards.com are used for biological validation 

of selected genes in subpathway.  

  

http://rpy.sourceforge.net/
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1.6 Significance of Research 

This research is conducted to improve the performance of subpathway-based 

analysis method by modifying the search algorithm and taking account all the 

interactions between subpathways for identifying the informative subpathway and 

genes under case study. The significance of this study can be summarized as follows: 

(a) Investigate the potential improvement of identification of perturbed 

subpathway within the pathway. 

Provide clear information on the perturbed region related to targeted phenotype in a 

given pathway by using a computational method and analysis that provide better 

understanding in biological processes. 

The development of subpathway-based analysis method can provide precise 

information in complex diseases which will eventually help medical team in targeted 

treatment design. 
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1.7 Thesis Outline 

In this section, general description of each subsequent chapter is stated as 

below: 

(a) Chapter 1 presents the introduction of this research including background of 

the problem, problem statement, goal, objectives, scope and significance of 

the study. 

Chapter 2 presents the concept and recent trends applied by previous researchers 

related to the research topic. Besides, the details regarding the techniques and 

methods applied in the subpathway-based analysis on cancer diseases are explained 

and presented.  

Chapter 3 states the research methodology including the research framework adopted 

in this study, datasets used, performance measurements and software requirements to 

achieve the goal and objectives.  

Chapter 4 describes the proposed method in detail, an improved differential 

expression analysis for pathway by modifying the search algorithm and averaging the 

maximum absolute value (termed DEAP score) of subpathway. Besides, the data 

preparation and the result are explained and discussed wisely. 

Chapter 5 concludes the research study. The contribution, limitations, and future 

work suggestions for this research are also presented.  
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