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ABSTRACT

N th Degree Truncated Polynomial (NTRU) is a public key cryptosystem constructed

in a polynomial ring with integer coefficients that is based on three main key integer parameters

N, p and q. However, decryption failure of validly created ciphertexts may occur, at which

point the encrypted message is discarded and the sender re-encrypts the messages using

different parameters. This may leak information about the private key of the recipient thereby

making it vulnerable to attacks. Due to this, the study focused on reduction or elimination of

decryption failure through several solutions. The study began with an experimental evaluation

of NTRU parameters and existing selection criteria by uniform quartile random sampling

without replacement in order to identify the most influential parameter(s) for decryption failure,

and thus developed a predictive parameter selection model with the aid of machine learning.

Subsequently, an improved NTRU modular inverse algorithm was developed following an

exploratory evaluation of alternative modular inverse algorithms in terms of probability of

invertibility, speed of inversion and computational complexity. Finally, several alternative

algebraic ring structures were evaluated in terms of simplification of multiplication, modular

inversion, one-way function properties and security analysis for NTRU variant formulation.

The study showed that the private key f and large prime q were the most influential parameters

in decryption failure. Firstly, an extended parameter selection criteria specifying that the private

polynomial f should be selected such that f(1) = ±1, number of 1 coefficients should be

one more or one less than -1 coefficients, which doubles the range of invertible polynomials

thereby doubling the presented key space. Furthermore, selecting q ≥ 2.5754×f(1)+83.9038

gave an appropriate size q with the least size required for successful message decryption,

resulting in a 33.05% reduction of the public key size. Secondly, an improved modular

inverse algorithm was developed using the least squares method of finding a generalized inverse

applying homomorphism of ring R and an (N ×N) circulant matrix with integer coefficients.

This ensured inversion for selected polynomial f except for binary polynomial having all 1

coefficients. This resulted in an increase of 48% to 51% whereby the number of invertible

polynomials enlarged the key space and consequently improved security. Finally, an NTRU

variant based on the ring of integers, Integer TRUncated ring (ITRU) was developed to address

the invertiblity problem of key generation which causes decryption failure. Based on this

analysis, inversion is guaranteed, and less pre-computation is required. Besides, a lower key

generation computational complexity ofO(N2) compared toO(N2(log2p+log2q)) for NTRU

as well as a public key size that is 38% to 53% smaller, and a message expansion factor that is

2 to15 times larger than that of NTRU enhanced message security were obtained.
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ABSTRAK

Darjah N Polinomial Terpangkas (NTRU) adalah kriptosistem kekunci awam yang dibina
menggunakan polinomial gegelang dengan koefisien integer berdasarkan tiga parameter utama interger
N, p dan q. Walau bagaimanapun, kegagalan penyahsulitan teks yang dijana mungkin berlaku di
mana teks sifer tersebut perlu diabaikan dan penghantaran semula teks dilakukan menggunakan nilai
parameter yang berbeza. Proses ini mungkin membawa kepada kebocoran kekunci peribadi yang
menjadikannya terdedah kepada serangan. Di sebabkan ini, kajian ini memberi tumpuan kepada
pengurangan atau penghapusan kegagalan penyahsulitan melalui beberapa penyelesaian. Kajian
ini bermula dengan melaksanakan eksperimen untuk mengenal pasti parameter NTRU dan kriteria
pemilihan yang sedia ada dengan melakukan persampelan rawak kuartil seragam tanpa penggantian
untuk mengenal pasti parameter yang paling berpengaruh untuk menilai semula dan dengan demikian
membangunkan satu model pemilihan parameter ramalan dengan mengaplikasikan pembelajaran mesin.
Seterusnya, algoritma songsang modular NTRU yang lebih baik telah dibangunkan sebagai penilaian
alternatif bagi algoritma songsang modular dari segi kebarangkalian boleh songsangan, kelajuan
songsangan dan kekompleksan pengiraan. Akhirnya beberapa struktur gegelang algebra alternatif
telah dinilai dari segi pendaraban mudah, songsangan modular, sifat berfungsi sehala dan keselamatan
analisis untuk pembentukan variasi NTRU. Kajian menunjukkan bahawa kekunci persendirian f dan
nilai perdana besar q adalah parameter yang paling berpengaruh dalam kegagalan penyahsulitan.
Pertama, kriteria pemilihan parameter lanjutan menyatakan bahawa polinomial persendirian f dipilih
sebagai f(1) = ±1, di mana bilangan koefisien 1 mesti lebih satu atau kurang satu dari koefisien
-1 yang menggandakan julat songsangan polinomial dan ruang kekunci. Selain itu, pemilihan q ≥
2.5754 × f(1) + 83.9038 memberikan saiz q yang bersesuaian, dengan saiz terkecil yang diperlukan
untuk penyahsulitan mesej berjaya, menghasilkan pengurangan saiz kekunci awam sebanyak 33.05%.
Kedua, algoritma songsang modular yang lebih baik telah dibangunkan dengan menggunakan kaedah
kuasa dua terkecil untuk mencari songsangan umum dengan mengaplikasi gegelang homomorfisma
bagi gegelang R dan matriks beredar (N × N) dengan koefisien integer. Kaedah ini memastikan
adanya songsangan polinomial f kecuali apabila polinomial binari mempunyai kesemua koefisien 1.
Ia telah menghasilkan peningkatan sebanyak 48% ke 51%, di mana bilangan polinominal meluaskan
ruang kekunci serta meningkatkan keselamatan. Akhirnya, variasi NTRU berdasarkan gegelang integer,
gegelang integer terpangkas (ITRU) dicadangkan untuk menyelesaikan masalah songsangan penjanaan
kekunci yang menyebabkan kegagalan penyahsulitan. Berdasarkan analisis ini, nilai penyongsangan
dijamin, dengan pra pengkomputeran yang rendah. Selain itu, kekompleksan pengiraan penjanaan
kekunci yang rendah daripada O(N2) berbanding O(N2(log2p + log2q)) untuk NTRU, saiz kekunci
awam 38% hingga 53% lebih kecil dan faktor pengembangan mesej 2 hingga 15 kali lebih besar daripada
NTRU yang mana dapat meningkatkan keselamatan mesej.
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Kpb - ITRU public key parameter h́
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CHAPTER 1

INTRODUCTION

1.1 Overview

The volume of online transactions has grown tremendously with the advent of
the internet era; which poses a challenge in terms of maintaining the security of these
large volumes of data. This makes cryptography a critical element of modern-day
computer systems. Cryptography is a process that makes information indecipherable
to unauthorized people thereby safeguarding the information for the authorized users
(Patil et al., 2016).

Presently, the most popular public key algorithms are RSA (Rivest, Shamir and
Adleman) and Elliptic Curve Cyptosystems (ECC) (Sameer and Gazi, 2011), whose
security is based on the difficulty in solving the discrete logarithm problem and the
difficulty in factoring large primes respectively. Despite the advent of many new public
key algorithms, RSA continues to have the highest popularity of implementation at
43% (Malhotra and Singh, 2013). Presently, longer key sizes are required to ensure
security (at a key size of 4096 bits) which comes at the cost of slow performance in
devices with limited memory and processing power, thereby necessitating the search
for alternative public key algorithms. Both the integer factorization problem and
discrete logarithm problems can be solved in an exponentially lower time when run on
quantum mechanical systems in comparison to running them on classical computers
(Nguyen, 2014).

Research by Shor (1994) demonstrated the importance of quantum computing
on cryptography through the demonstration of quantum algorithms that could
efficiently solve the discrete logarithm problem and factorization problems. This
goes to show that the introduction of quantum computers would render widely used
public key cryptosystems insecure. During the 2013 Blackhat Conference, researchers
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declared a possible impending ’cryptopolyse’ with the world clamouring to find
an alternative to the most popular encryption algorithms worldwide once quantum
computers are introduced (Adams, 2013).

The N th Degree Truncated Polynomial Ring (NTRU) public key cryptosystem
is one such alternative, whose security is based on the difficulty in solving the closest
vector problem thereby making it resistant to quantum algorithm attacks owing to its
lattice structure. NTRU has faster encryption and decryption speeds coupled with a
smaller key size compared to other practical cryptosystems. These properties make
NTRU well suited for implementation in payment systems, secure messaging, mobile
electronic commerce, vehicular systems, remote backup solutions and cloud data
centres (Nguyen, 2014). NTRU is considered to be one of the strong candidates for
post quantum cryptography which will safeguard information security and privacy in
the post quantum era (Wong et al., 2018).

In comparison to the more commonly used ECC and RSA asymmetric
cryptosystems, the NTRU cryptosystem is significantly faster in terms of key
generation, encryption, decryption (Nguyen, 2014). The NTRU encryption and
decryption operations are roughly two orders of magnitude faster than ECC at
comparable security levels. Furthermore, the NTRU keys are an order of magnitude
larger than ECC key (Karu and Loikkanen, 2001). NTRU is a fast and low cost
cryptosystem by virtue of its computation with small coefficient in the convolution
product of polynomials (Alsaidi and Yassein, 2016).

Overall, NTRU stands out from the rest due to its resistance to quantum
computing algorithms, which makes its security outstanding and future forward.
NTRU is also well suited for implementation in embedded platforms which have
limited resources, owing to its low power consumption and fast encryption speed
(Wong et al., 2018). It is currently implemented in the financial services industry
(Fuller, 2011), in the Philips NXP’s ARM7 LPC2000 and LPC3000 microcontrollers 1

(EETimes, 2008; Philips, 2015) as well as in the Cyph surveillance-free chat software
(Lester, 2015). This research study specifically focuses on the NTRU public key
cryptosystem.

1NXP Semiconductors and NTRU step up microcontroller security, Electronics World UK,
http://www.electronicsworld.co.uk/news/archive/950-950.
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1.2 Problem Background

The N th Degree Truncate Polynomial (NTRU) cryptosystem was developed
due to the need for a faster public key cryptosystem based on complex mathematical
problems other than integer factoring and the discrete logarithm problem (Whyte and
Hoffstein, 2011). NTRU is a proprietary algorithm which was invented by Hoffstein
et al. (1998), patented by NTRU Cryptosystems Inc. and later acquired in 2009 by
Security Innovations, a leading application security solutions provider (Kamat and
Patel, 2010). Since then, it has been standardized as IEEE Std 1363.1-2008 and ASC
X9.98 (Whyte et al., 2008; Whyte and Hoffstein, 2011). In 2013 Security Innovation
made the patent free to use in software licensed under the GPL free software licenses
(Schanck, 2015).

This scheme is based on lattices and combines mixing and reduction modulo
two prime numbers for the encryption process and uses unmixing for the decryption
process, which uses the probability theory (Karu and Loikkanen, 2001). Its security is
based on the use of polynomial mixing as well as the independence of the reduction
modulo operation on the prime integers p and q. Security is also assured by the fact that
it is difficult to find very short vectors in most of the lattices (Hoffstein et al., 1998).
The lattice structure in NTRU enables it to withstand quantum computing algorithm
attacks thus is described as being a quantum-resistant cryptosystem (Jarvis and Nevins,
2013; Whyte and Hoffstein, 2011).

The four crucial problems pertaining to NTRU addressed in this study are
described in the subsequent sections namely, the presence of decryption failure in
NTRU, limited range of NTRU parameter sets, the difficulty in determining whether
a polynomial is invetible and NTRU variant formulation. Countering these problems
will foster security of information encrypted using the NTRU algorithm, which is a
pertinent issue particularly once quantum computers are introduced, particularly since
previous studies show that quantum algorithms can solve the integer factorization
and discrete logarithm problems which are the security basis of the most popularly
implemented algorithms presently.
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1.2.1 Decryption Failure

Recent developments in quantum computing have created interest in post-
quantum cryptography research thereby motivating NIST to organize a post-quantum
cryptography standardization process, with the goal of standardizing one or more
quantum-resistant public-key cryptographic primitives. NIST accepted submissions
from various fields within post-quantum cryptography; lattice-based, code-based and
multivariate cryptography. Research shows that numerous proposed key encapsulation
mechanisms have a small probability of decryption failure for public key algorithms.
This applies for majority of the schemes based on lattices, codes or primes. The
probability of such failure varies with most of the failure probabilities lying around
2−128. As this failure is dependent on the secret key, it might leak secret information to
an adversary. However, as suggested by the wide range of failure probabilities in the
NIST submissions, the implications of failures are still not well understood (D’Anvers
et al., 2018).

Given the trend towards quantum computing systems (Meyers, 2015),
resistance to quantum algorithms is a fundamental property for cryptography
algorithms which positions NTRU as the leading alternative for ECC and RSA in the
post-quantum era. However, there is the possibility for the occurrence of decryption
failure in NTRU. These decryption failures occur with a small probability over a range
of random messages. This flaw can be exploited by an attacker who is able to decipher
which messages induce failure thereby launch a successful cryptanalysis. The attacker
uses this knowledge of the messages inducing decryption failure to extract knowledge
about the private key. Thereby, optimal parameter selection in NTRUEncrypt is vital
to upholding the cryptosystem’s security (Hoffstein et al., 2009).

However, as is the case with DES which were reported as being insecure
thereby justifying the proposal of 3DES in a former NIST Challenge and AES which is
reported as being broken at low rounds, these insecurities were highlighted in research
findings but were not showcased in industrial implementations. The same case applies
to NTRU which has been shown to have cases of decryption failure in previous related
research work but no citations have been made pertaining to failure in its industrial
implementation.

During the decryption process, there is possibility for the occurrence of either
of these two types of failure; wrap failure and gap failure. When a wrap failure occurs,
it can be adjusted but when a gap failure occurs, it is impossible to recover the original
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encrypted plaintext, thereby resulting in a decryption failure. Wrap failures occur more
frequently in comparison to gap failures, thus the use of the range [A,A+ q − 1] serves
as a partial solution to the problem of decryption failures. This process of increasing
the chances of a correct decryption is called re-centering (Howgrave-Graham et al.,
2003a; Scholten and Vercauteren, 2003).

An attacker with access to timing information can be able to detect when a re-
centering has been done thereby leaking information approximately once every million
decryptions and even more often if some pre-computation has been done. For instance,
for N = 251 a wrap failure will take place once in every 221 messages while a gap
failure will take place once in every 243 messages (Howgrave-Graham et al., 2003a).

Some countermeasures were proposed to overcome this weakness including:
adding some check bits to the message block (Hoffstein and Silverman, 1998), use
of a check-errors/re-encrypt protocol (Silverman, 2001; Yu et al., 2005), use of a
centering algorithm (Silverman and Whyte, 2003; Yu et al., 2005),a compensating
algorithm (Yu et al., 2005) and the use of recommended parameters (Hoffstein et al.,
2010a; Hirschhorn et al., 2009; Hoffstein et al., 2015a; Security, 2015b). However,
the use of centering algorithms and check-errors re-encrypt protocol were deemed
to be inefficient leading to the development of a compensating algorithm (Yu et al.,
2005). The use of recommended parameters, which is the most recent countermeasure,
provides a decryption failure of 2−k with k being the security level in bits (Hirschhorn
et al., 2009). This probability was provided for parameters selected using an algorithm
which provides security against lattice reduction and MITM attacks, with particular
emphasis on parameter size and coefficients of the private key.

Howgrave-Graham et al. (2003b) made the assertion that decryption failure
is largely key dependent. This is supported by initial findings in this study which
show that during the key generation process whereby the randomly selected private
polynomial is required to be invertible, in the event that a non-invertible private
polynomial is selected, it goes into an inifinte loop of trying to find an inverse. This
subsequently results in unsuccessful key generation, unsuccessful message encryption
and consequently unsuccessful decryption. At this point, the random polynomial
is discarded, an alternative one is selected and the process of finding an inverse is
repeated. Decryption failure occurs when the adjustment or centering method fails
(Hoffstein et al., 2003b). The encryption process is probabilistic thus decryption errors
can occur for some sets of parameters (Stehlé and Steinfeld, 2011). The guarantee of
successful decryption means there is less re-generation of parameters and subsequently
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reduced likelihood of attacks. This calls attention to the possible of a relationship
between decryption failure in NTRU and key generation, which is explored at length
in this study.

1.2.2 Limited Range of NTRU Family of Parameters

The family of NTRU parameters provided in (Hirschhorn et al., 2009) define
a fixed value of q = 2048, on the basis that a smaller q would reduce the bandwidth
and public key-size used in the cryptosystem. The authors go on to state that the
inclusion of additional parameters would require that more lattice experiments be
conducted at lower values of q while ensuring at the same time, that the decryption
failure probability is still small enough.

The NTRU family of parameters published in previous works consists of
parameter sets for binary variants of NTRU (Hoffstein et al., 2003c; IEEE, 2003b) and
ternary variants of NTRU (IEEE, 2009) with the most recent recommended parameter
sets being for both product and non-product form of the private key polynomial f
(Hoffstein et al., 2015a; Security, 2015b). This existing family of NTRU parameters
prescribe a fixed value of q = 2048. This serves as an indicator of the avenue for
further research into expansion of the NTRU family of parameters for optimal security
and performance. Enlargement of the NTRU family of parameters will enlarge the
polynomial search space and subsequently enhance the security of the algorithm in the
event of an attack.

1.2.3 Difficulty in Determining Whether a Polynomial is Invertible

The NTRU public key cryptosystem entails key generation by the computation
of two modular polynomial inverses. However, previous studies point out the difficulty
in determining whether a polynomial is invertible (Luo and Lin, 2011). To overcome
this difficulty, Nayak et al. (2010) proposed a matrix solution to solve the problem. The
study presented an approach involving the creation of one public key and two private
keys. The authors proposed key generation using a non-commutative ring (matrix ring
of polynomials) on condition that the determinant is one or negative one. However, the
proposed solution resulted in a small selection range thereby making the cryptosystem
more vulnerable to various attacks (Luo and Lin, 2011).
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This was then improved by Luo and Lin (2011), who conducted a study
which presented a new approach of finding the inverse modulo q with the selection of
matrices with non-zero determinants. Given that there are many matrices with non-zero
determinants in accordance with their approach, it was shown to be superior compared
to the original matrix NTRU cryptosystem solution by (Nayak et al., 2010) in terms
of security. The improved solution was based on the concept that the inclusion of
new conditions for key selection leads to an enlarged domain compared to previous
studies and also improves the security against attacks. The approach was free of the
restriction in the use of matrices with a zero determinant which imposes a restriction
on the selection domain thereby providing the possibility of easily hacking the two
private keys in the matrix NTRU. The approach used Gram Schmidt orthogonalization
to find the orthogonal (perpendicular) basis which was then used in generating the
inverse (Luo and Lin, 2011). The security of the approach against lattice attacks and its
comparison with other NTRU variants still remains an open question for exploration.

Other previous studies that look into the NTRU inverse algorithm include the
study by Banks and Shparlinski (2002), who presented a variant of NTRU using non-
invertible polynomials. Zhao and Su (2011) presented an NTRU inverse algorithm
which makes use of matrices in finding the modular polynomial inverse using the naı̈ve
method of matrix inversion. The proposed algorithm proved to be inefficient in terms
of utilization of computational resources and thereby processing time. Moreover, a
subsequent study by Wahab and Jaber (2015) presented a variant of NTRU using
Chebyshev polynomials for the key generation process. This was motivated by
the chaotic nature of Chebyshev polynomials. However, the study by Wahab and
Jaber (2015) only applied the concept of Chebyshev polynomials in generating the
polynomial coefficients of the private polynomial, while the process of finding an
inverse remained unaffected, proceeding as in the classical NTRU. Therefore, the work
by Wahab and Jaber (2015) does not have any effect on the chances of finding an
inverse during key generation.

Despite efforts made by previous works to modify the key generation process
by using matrices, limitations in finding an inverse are still present owing to the use of
naı̈ve matrix inversion which is computational resource intensive and which does not
conclusively tackle the problem of predicting whether a polynomial is invertible and
improving the probability of invertibility.



8

1.2.4 NTRU Variant Formulation

NTRU operates considerably faster than ECC and RSA (Coglianese and Goi,
2005a). However, its speed can be further improved by applying a different ring and
choosing a more linear transformation; the encryption and decryption operations are
akin to applying ring transformations to a ring element (Coglianese and Goi, 2005a;
Hoffstein and Silverman, 2001).

Speed is the key property of the NTRU cryptosystem. The study of a new
variant of NTRU is considered to be of great interest particularly if it enhances the
speed along with security against lattice attacks (Luo and Lin, 2011). However, NTRU
has the likelihood of the occurrence of decryption failure.

Previous research has been conducted on NTRU variants operating in different
rings, in an effort to improve its performance. In Gaborit et al. (2002a), the authors
presented a variant of NTRU whereby the ring of integers was replaced with the ring
of polynomials in one variable over a finite field. Rourke and Sunar (2003) published
a version of NTRU which uses Montgomery multiplication to speed up computation.
Coglianese and Goi (2005b) proposed a variant of NTRU based on matrices. Nayak
et al. (2008) presented a matrix formulation of NTRU, whereby matrices were used in
place of integers. In this study, the matrix elements were computed modulus p as 3 and
q as 32 while the parameters had values in the range [-1,1]. A critical evaluation of
the work by Nayak et al. (2008) in the course of this research revealed the occurrence
of decryption failure using the published parameters and published example. Jarvis
and Nevins (2015) published a variant of NTRU with a structure based on Eisenstein
integers, instead of the classical NTRU structure based on the polynomial ring of
integers. The study by Tripathi and Thakur (2015) presented a variant of NTRU which
uses logical XOR operations throughout the entire cryptosystem. A critical evaluation
of the work by Tripathi and Thakur (2015) in the course of this research study revealed
that the scheme was vulnerable because an attacker can easily obtain the ciphertext by
reducing the ciphertext mod p and furthermore, the private key is zero.

Previous works on variants of NTRU lay emphasis on improving its
performance in terms of speed, however, none of the variants explored the formulation
of a variant which addresses the problem of decryption failure and improvement of the
probability of finding an inverse in NTRU.



9

1.3 Problem Statement

Cryptography ensures the security, secrecy and authenticity of information.
With NTRU being the leading alternative for ECC and RSA in the post-quantum era,
it has the weakness of decryption failure which is said to be largely key dependent.
In order to keep the probability of decryption failure at a level of at most 2−k (with k
being the security level in bits), a list of recommended parameter sets were prescribed
for binary polynomials. Binary polynomials were then replaced with the use of ternary
and product-form polynomials in order to improve the combinatorial search space;
both of which have prescribed lists of recommended parameter sets. However, these
parameter sets are limited in range thereby creating a need to expand the size of the
NTRU family of parameters. Given the lattice structure of NTRU which makes use of
polynomial arithmetic, another inherent difficulty is determining whether a polynomial
is invertible. This is of grave importance, as the key generation process in NTRU
involves the computation of two modular polynomial inverses. In the event that a non-
invertible private polynomial is selected, it goes into an infinite loop of trying to find
an inverse thereby necessitating that the selected polynomial be discarded and another
invertible one be selected in its place. This consequently results in unsuccessful key
generation, encryption and thus unsuccessful message decryption.

There is therefore a need for research investigating the relationship between the
NTRU parameters thereby stating with certainty which parameters have an effect on
successful decryption. This will in turn be used to expand the size of the NTRU family
of parameters by extending the parameter selection criteria. Subsequently, there is the
need for the development of an improved NTRU inverse algorithm which improves the
chances of generating a modular polynomial inverse.

Speed is the key property of NTRU cryptosystem along with its future
forwardness with regards to quantum algorithm attacks. Thus, it is of valuable interest
to study a new variant of NTRU which will not only provide a speed improvement
along with lattice security, but will also improve the chances of finding a modular
inverse and ensure improved probability of successful message decryption.
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1.4 Research Questions

In order to address the issue of decryption failure, difficulty of determining
polynomial invertibility and parameter selection criteria, the following list of research
questions were singled out.

i. How can the existing NTRU recommended parameter sets be extended?

(a) What are the NTRU parameters that have the greatest influence on the
occurrence of decryption failure?

(b) How can the NTRU parameters be selected in a manner that ensures
successful message decryption?

(c) What is the recommendation for selecting an appropriately large size of q
for implementation over a range of security levels covering low, medium
and high security levels?

ii. How can an NTRU inverse algorithm be developed which will always find an
inverse and provide flexibility in polynomial selection?

(a) Which algorithm will find an inverse for any random polynomial chosen
by the user/recipient?

(b) How can the parameters be selected in a way that improves the likelihood
of finding modular polynomial inverses for private key generation.

iii. What variant of NTRU can be developed to overcome the problems
of decryption failure and guarantee modular polynomial inversion when
parameters are selected in accordance with a prescribed parameter selection
criteria?

(a) What manner can be used to select parameters so as to ensure that an
inverse can be found and that decryption is successful?

(b) How will the proposed variant withstand regular cryptanalysis attacks?
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1.5 Research Objectives

NTRU is the top contender to replace ECC and RSA in the post-quantum
era. However, previous studies by Luo and Lin (2011) point out the difficulty in
determining whether a polynomial is invertible while Howgrave-Graham et al. (2003b)
made the assertion that decryption failure present in NTRU, is largely key dependent.

In order to address these problems, this research works towards the aim
of investigating decryption failure in NTRU so as to identify the key determinant
of decryption failure, improve the probability of invertibility during NTRU key
generation and formulate an NTRU variant with improved probability of successful
message decryption and improved invertibility. In order to achieve the above stated
aim, the objectives set out to be achieved in the course of this research study are:

i. To extend the NTRU parameter selection criteria for improved invertibility and
successful message decryption.

An investigation of NTRU parameters is conducted in an effort to identify
the most influential parameters for decryption failure, considering both
binary and ternary polynomial variants. The relationships between the
parameters aid in identifying the influential parameters as well as recommend
an extended parameter selection criteria which ensures invertibility and
reduced probability of decryption failure coupled with an additional list of
recommended parameter sets. The proposed extended parameter selection
criteria is evaluated computationally to determine the probability of decryption
failure in comparison to the published standard criteria.

ii. To improve the NTRU inverse algorithm for enhanced likelihood of modular
polynomial inversion.

Pursuant to identification of the most influential parameters of decryption
failure, thereby the most pertinent section of the NTRU algorithm, the study
works towards improving the NTRU inverse algorithm. Several alternative
solutions are considered and compared in terms of performance efficiency
and ultimately probability of decryption failure, so as to arrive at an optimal
solution. The metrics used for measuring performance efficiency include the
speed of inversion, correctness of the inverse result, provision for random
polynomial selection and computational complexity.

iii. To provide an NTRU variant with improved modular polynomial inversion and
successful message decryption.
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The knowledge of influential parameters for decryption failure in NTRU
coupled with the improved NTRU inverse algorithm are applied in formulating
a variant of NTRU using an alternative ring. The performance of the
formulated variant is evaluated in terms of security in bits, the algorithm’s
computational complexity, public key size, private key size, speed of inversion,
encryption speed, decryption speed, key generation speed and message
expansion factor. A list of recommended parameter sets for the variant along
with the corresponding security strength are presented.

1.6 Scope

The scope of this study is limited to:

i. The study of decryption failure in binary and ternary variants of NTRU.

ii. The study of the key generation process in NTRUEncrypt, the encryption
algorithm.

iii. Test parameters used in the experimentation are limited to the NTRU test
vectors published in Angel (2014, 2016), recommended parameter sets
published in Hoffstein et al. (2003c); EESS (2003b); Hoffstein et al. (1998);
iee (2009) and examples published in related works.

1.7 Significance of the Study

This study provides an exploratory evaluation of the relationship between
NTRU parameters; using this deduced relationship to provide an extended NTRU
parameter selection criteria for improved invertibility. Furthermore, an improved
NTRU inverse algorithm is presented which improves the likelihood of modular
polynomial inversion. The aforementioned findings are integrated to formulate an
NTRU variant which has improved invertibility and probability of successful message
decryption. The outcome of this research study is beneficial to both the cryptography
community and the common body of knowledge in the following aspects:

i. The insight gained in terms of the relationship between NTRU parameters
plays an instrumental role in the concept behind NTRU parameter generation,
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the parameter selection criteria and subsequently the concept behind the
approximation of the probability of decryption failure. Given that previous
research work presents the probability of decryption failure without delving
into the details of how these measures are derived, this study demystifies
the approximation process right from the probability of selecting a certain
polynomial coefficient up to the corresponding variance and probabilities of
decryption failure as a power of the security level k and in bits.

ii. The study of the NTRU key generation process provided insight into the
intricacies of polynomial inversion modulo an integer. This new insight is
used to identify alternative modular polynomial inverse solutions and evaluate
their pros and cons in terms of performance efficiency (speed of finding an
inverse, accuracy of the result and the provision for totally random parameter
selection). This equips the researcher with valuable input for the identification
of an alternative modular inverse solution. The process can also be applied in
other variants of NTRU.

iii. The evaluation of different algebraic ring structures in an effort to identify a
suitable structure for the variant sheds light on the cryptographic properties
of various algebraic structures. Furthermore, knowledge is obtained on
cryptographic security analysis, basis and measurements which are applicable
in the development of other NTRU variants as well as development of other
cryptography algorithms.

This research will ultimately help to improve user confidence in the security of NTRU
during implementation in the financial services industry, in the NXP Philips micro-
controller as well as its implementation in surveillance-free chat applications.

1.8 Thesis Organization

NTRU is a public key cryptosystem that is paramount in ensuring the security
of information, particularly in the financial services industry. Therefore, this requires
that the cryptosystem be sound in terms of key generation which involves calculation
of the modular polynomial inverse and successful message decryption. This thesis
presents findings which will be beneficial in countering these challenges. This chapter
provides insight into the research problem, the background of the challenges to be
addressed and the approach to be applied in countering these highlighted challenges.
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