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ABSTRACT 

Direct solar insolation on unshaded facade causes severe overheating of the 

indoor environment in a tropical climate, and this would reduce the performance and 

efficiency of task carried out in the office. External shading strategies have been 

identified as one of the passive design strategies to mitigate indoor thermal effect in 

the tropics. As an option, additional design strategy such as recesses on facades, and 

shade buildings provide exterior projected shading devices. However, literature on 

studies related to on the recessed wall facade (RWF) are limited particularly in 

Malaysia. In this study, the influence of RWF on the indoor thermal conditions of an 

office space in Malaysia was investigated. Three RWF types (vertical, horizontal and 

punched-hole) recessed facade were investigated and compared with unshaded facade 

(UF). The thesis aims to investigate the potentials of applying RWF shading strategies 

to improve thermal performance by reducing the harsh indoor environmental 

conditions of office spaces in Johor Bahru, Malaysia. The research design employed 

an exploratory survey to identify RWF types in Malaysia. Further investigation was 

conducted using the integrated environmental solution-virtual environment 

(IES<VE>) simulation software. The results showed that deeper depth, punched-hole 

recessed façade type and RWF with insulation performed better with all the thermal 

parameters such as indoor air temperature, indoor relative humidity, indoor solar heat 

gain and indoor surface temperature. While the comparison evaluated between RWF 

types and exterior shading device (ESD) revealed the possibility of using RWF as an 

alternative to ESD. The findings revealed some effect of thermal performance of the 

RWF shading strategy on office space through the series of simulations. The results 

showed the shading strategies which provide a solar gain reduction ranging from 

53.7% to 64.8%, invariably reduced the percentage of harsh indoor thermal conditions. 

Similarly, the minimum, maximum and average indoor air temperature reduction of 

1.44 °C, 2.09°C and 1. 83 °C respectively were recorded. Surface temperature 

reduction was from 1.0% to 7.4% while the relative humidity was brought down and 

maintained AT a favourable mean value of not more than 55% within the comfort zone 

by horizontal recessed (HR) and punched-hole recessed (PHR). Therefore, these 

findings offer valuable information tool with RWF shading option to building sector 

stakeholders through various design models with various thermal performance levels. 
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ABSTRAK 

Insolasi suria secara langsung pada fasad yang tidak terlindung menyebabkan 

pemanasan persekitaran dalaman yang teruk dalam iklim tropika, dan ini akan 

menurunkan prestasi dan kecekapan tugas yang dilakukan di pejabat. Strategi teduhan 

luaran telah dikenal pasti sebagai salah satu strategi reka bentuk pasif untuk 

mengurangkan kesan haba dalaman di kawasan tropika. Sebagai pilihan, strategi reka 

bentuk tambahan seperti relung pada fasad menjadi peneduh bangunan yang berfungsi 

kepada alat teduhan unjuran luaran.Walau bagaimanapun, kajian mengenai unjuran 

dalaman dinding fasad (RWF) adalah terhad terutamanya di Malaysia. Dalam kajian 

ini, pengaruh RWF terhadap keadaan termal dalaman ruang pejabat di Malaysia telah 

dikaji. Tiga jenis RWF (menegak, mendatar dan lubang- tebukan) diselidiki dan 

dibandingkan dengan fasad tidak berlindung (UF). Tesis ini bertujuan untuk mengkaji 

potensi bagi mengaplikasi strategi teduhan RWF untuk meningkatkan prestasi termal 

dengan mengurangkan situasi tidak menyenangkan pada persekitaran dalaman 

ruangan pejabat di Johor Bahru, Malaysia. Ini diikuti dengan tinjauan penerokaan 

untuk mengenal pasti jenis IWF di Malaysia. Kajian lebih lanjut dilakukan 

menggunakan perisian simulasi integrated environmental solution-virtual environment 

(IES <VE>). Hasil kajian menunjukkan bahawa kedalaman yang lebih besar, jenis 

pembukaan fasad berlubang dan RWF dengan penebat menunjukkan prestasi yang 

lebih baik dengan semua parameter termal seperti suhu udara dalaman, kelembapan 

relatif dalaman, penambahan haba solar dalaman dan suhu permukaan dalaman. 

Sementara perbandingan yang dinilai antara jenis RWF dan Alat Teduhan Luaran 

(ESD) menunjukkan kemungkinan menggunakan RWF sebagai altematif untuk ESD. 

Hasil penemuan menunjukkan beberapa kesan prestasi termal dari strategi peneduhan 

RWF pada ruang pejabat melalui beberapa siri simulasi. Hasil menunjukkan strategi 

teduhan dapat mengurangkan kenaikan tenaga suria antara 53.7% hingga 64.8%, yang 

dapat mengurangkan peratusan keadaan termal yang tidak menyenangkan. Begitu 

juga, bacaan minima, maksima dan purata suhu udara berkurang sebanyak 1.44 ° C, 

2.09 ° C dan 1.83 ° C telah direkodkan. Pengurangan suhu permukaan adalah dari 1.0% 

hingga 7.4% sementera kelembapan relatif dapat diturunkan dan dilaraskan pada nilai 

min tidak melebihi 55% kadar zon selesa oleh Unjuran Dalaman Melintang (HR) dan 

Unjuran Dalam Berlubang (PHR). Oleh itu, penemuan ini menawarkan maklumat 

yang berharga dengan pilihan teduhan RWF bagi pihak berkepentingan melalui 

pelbagai reka bentuk dengan pelbagai tahap prestasi termal. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Buildings consume between 40-45% of gross national energy demand globally 

(Wells et al., 2018; Attia et al., 2017; Zhang and Wang, 2016; Hassan et al., 2014; 

Quarmby, 2013). Large percentage of that energy goes to thermal controls, including 

heating, ventilation and air conditioning (HVAC) (Harish and Kumar, 2016). The 

measure of the energy required for HVAC depends on the building design, thermal 

performance, and climatic suitability. A lot of the energy required can be minimised 

by suitable configuration of facade fenestrations, but particularly, the control of direct 

solar radiation and use of shading strategies. 

The essential climatic factors that affect thermal condition of buildings are; air 

temperature, solar radiation, relative humidity, mean radiant temperature and 

prevailing winds (air velocity) (Mirrahimi et al., 2016; Al Yacouby et al., 2011; 

Szokolay, 2008). The tropical climate experiences severe condition of overheating by 

solar radiation, which leads to increase in cooling load due to occupant’s thermal 

comfort demand.  

Consequently, the initial requirement for an architect who designs climatic 

responsive buildings, is knowledge of solar heat gain. Furthermore, there is also the 

need to determine suitable strategy for controlling the undesirable solar radiation 

(Pereira and Turkienikz, 2001; Kirimtat et al., 2016). An essential strategy of designing 

solar shading in buildings is having the knowledge of the sun’s position and path 

throughout the year in relation to the building structure (Baker and Steemers, 2014; 

DeKay and Brown, 2013). 
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According to Liping and Hien (2007), the indoor thermal comfort of a building 

can be determined by the thermal performance of facade to a large extent, ranking 

second to the local climatic characteristics. There are proven facade design strategies 

that provide optimum modifier to achieve better indoor thermal comfort with 

minimum energy usage. They include the thermal property of construction materials, 

window sizes, shading, building orientations, and effective ventilation strategies 

(Liping and Hien, 2007).  

Architects and engineers have significant roles to play in reducing cooling and 

heating loads through the design of buildings (Heywood, 2012). The role is played by 

using exterior shading strategies on building facades. It has been identified as one of 

the essential criteria a building designer can use to achieve that design goal (Halawa 

et al., 2017). Much literature has shown that, good façade shading design is one of the 

most effective strategies for minimising solar transmission into buildings (Pacheco et 

al., 2012; Sadineni et al., 2011; Tzempelikos and Athienitis, 2007). Various exterior 

shading devices have been used for providing shade expected to reduce, not only cost 

of energy demand, but also to improve thermal comfort of occupants. However, there 

is a need for innovative and multiple shading strategies for sustainable development in 

architecture. 

In achieving shading against direct effect of solar radiation on buildings, Kamal 

(2010) listed five strategies. They include shade by; use of facade recesses, use of fixed 

or dynamic exterior blinds or louvers, and orientation of the building. There is also 

permanent or transient shading provided by surrounding buildings, screens or 

vegetation. The last one is shading of roofs by rolling reflective canvas, earthen pots 

and vegetation. His study concluded that comfort level of the indoor would be 

improved by using any or more of these strategies. 

Previous studies have indicated that the depths of shading devices also affect 

its thermal performance (Al-Tamimi and Fadzil, 2011; Wong and Li, 2007; Ossen, 

2005). There are three primary forms of shading devices widely studied; horizontal 

overhang, vertical fins and egg-crate. These shading devices have resemblance with 

recessed wall façade (RWF) as illustrated in Figure 1.1 (Santos et al., 2016). However, 
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research in the aspect of RWF is minimal. It is within this premise that, the study 

investigates thermal performance of recessed wall façade shading of cellular office 

space in the tropics. Parameters of orientations and various recess depths were used, 

by assuming they have less thermal bridging and more ability to modify the thermal 

condition of the indoor space. 

 

Figure 1.1 Exterior Shading Devices and their Alternative Recessed Wall Facades 

Source: (Santos et al., 2016) 

1.2 Problem Statement 

In Malaysia, the exposure of building façade, constituted of windows and 

walls, to the sun, allows heat from solar radiation, causing increased energy demand 

for cooling due to high temperature and other environmental parameters (Al-Tamimi 

and Fadzil, 2011; Sosa, 2007). A study by Chan (2004), indicated that air-conditioning 

of a tropical office building in Malaysia, consumed the highest total energy of 64%. 

Corroboratively, Saidur (2009) found that in Malaysia, air conditioning systems and 

lighting consumed 57% and 19% of energy consumption in buildings, respectively. 

The consumption was reflected in Malaysian buildings using a cumulative of 48% of 

the electricity produced in the country (Chua and Oh, 2011). As indicated by Energy 

Commission Malaysia (2016), energy consumption record of 2013 showed a high 

percentage of 32.7% of total energy utilised in the country to be, by commercial 

buildings. The reason was that, commercial buildings in a hot-humid climate like 

Malaysia have been regularly installed with air conditioning and mechanical 

ventilation strategies to support and improve indoor thermal space. In most cases, these 



4 

strategies expend the most energy among all other building services (Kwong et al., 

2014). 

On common outcome of those studies has been that, there is a need for 

reduction of the indoor thermal condition in Malaysia by application of passive design 

such as solar shading strategies. It has been ascertained that the application of 

innovative passive design of buildings has the advantage of reducing total energy by 

lowering the harsh environmental condition of space (Omer, 2008). Similarly, to meet 

the set sustainability targets for the building sector; there is a need for continued 

development of new building concepts, technologies and materials (Loonen et al., 

2016). These concepts can further improve the thermal performance of buildings while 

enhancing the indoor environmental condition. 

The work of Ling et al. (2007) indicated that vertical building envelop such as 

facades of buildings, are critical to the impact of solar radiation. It acted as strong 

motivation for subsequent studies to investigate effects of shading devices and their 

impacts on the thermal condition of a space and energy use (Faisal and Aldy, 2016; 

Santos et al., 2016; Kamal, 2010; Aksit, 2010). However, there are limited empirical 

studies on their effects on various types of thermal environmental factors such as solar 

gain,  indoor relative humidity and air temperature (Al-Tamimi and Fadzil, 2011). 

These factors are important because they are mostly the causes of severe thermal 

condition in buildings. A study by Rashid and Ahmed (2009) agreed that, temperature 

is one of the critical measures of human thermal comfort. Therefore, lowering it 

improves thermal comfort. 

Exterior shading devices (ESD) can also reduce severe indoor thermal 

condition of a space by a reasonable percentage depending on the type, material, 

configuration and orientation (Lau et al., 2016; Bellia et al., 2014). However, some of 

their weaknesses have been identified. There are the problems of anchorage, façade 

aesthetic distortion, and the structural attachment of the device, which results in 

thermal bridge (Totten et al., 2008). According to Hassan and Arab (2014), recessed 

wall, balcony, attached roof and roof overhang are typical shading elements in a 

traditional architectural style that prevent sunlight from penetrating into the indoor 
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space. Therefore, the use of building forms for shading was identified as ideal. Among 

the shading forms are recesses of façade with window(s). Building design and 

construction should therefore consider the significant impact of solar radiation on 

building thermal and energy performance (Maestre et al., 2013). 

The application of recessed wall facades (RWF) has been given less 

consideration by researchers, despite its perceived advantage of having less thermal 

transfer. This study examines various types of RWF with different orientations, depths 

and insulation. Four solar shading depths of 0.3m, 0.6m and 0.9m were used in the 

study carried out by Wong and Li (2007), and were found to be effective in reducing 

cooling load. This study, therefore, adopts the same wall recess depths of Wong and 

Li (2007). Thus, experimental measurements were conducted followed by building 

performance simulation using integrated environmental solution-virtual environment 

(IES<VE>) tool. 

The results of this study would afford mitigation of the harsh thermal 

conditions of indoor environment of buildings in Malaysia. Furthermore, the outcome 

of this study would make vital information available for the building sector 

stakeholders. Among the stakeholders are; architects, urban planners, building 

engineers, green building assessors, building owners, estate valuers, facility managers, 

façade manufacturers, and policymakers. 

1.3 Research Gap 

Many studies on sustainable building design revealed that, passive design 

strategies such as exterior shading on building façades, could significantly diminish 

the cooling load in tropical buildings. Conversely, most external shading devices are 

protruded in nature; for example, vertical fins, horizontal overhang, and horizontal 

louvres. Hence, they possess some limiting factors ranging from structural anchorage 

of the devices to façade aesthetic distortion. Therefore, if not correctly handled, there 

would have been high chances of thermal bridging in the building as a result of the 

construction material types used in most exterior shading devices (ESD).  The thermal 
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bridging is a result of the high thermal conductivity of the materials used in the 

construction of many ESD components (Theodosiou et al., 2017). 

Consequently, the use of building forms that would be self-shading, like 

recessed wall façade, was recommended, as they could lower the effect of solar 

radiation in the buildings (Ogunshote, 2011; Arif, 2010). Good façade shading is an 

effective passive design strategy for improving thermal performance and energy 

consumption of tropical buildings (Mirrahimi et al., 2016; Othuman Mydin et al., 

2014). Shading devices could significantly decrease the cooling load of tropical 

buildings by a magnitude between 23% and 89% (Al Yacouby et al., 2011; Dubois and 

Blomsterberg, 2011). It should be understood that, the reduction is dependent on the 

type of shading device used, the building orientation, and the climate.  

Similarly, previous studies in the tropics revealed that, exterior shading 

strategies could significantly reduce the solar radiation effects on the openings and 

windows than the interior shading devices (Ossen et al., 2005; Givoni, 1998; Hassan, 

1996; Olgyay, 1957). Some previous related studies on thermal performance and 

shading strategies are briefly analysed in Table 1.1 below. 
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Table 1.1 Related previous studies on thermal performance and shading strategies 

1.4 Research Questions  

The following research questions will be addressed in this thesis: 

(i) What are the types of recessed wall façade (RWF) applicable in Malaysian 

building designs, and their thermal performance, with regards to different 

orientations as compared with unshaded façades? 
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Wong and U 

(2007) 
Simulation  √ √ √ √             

Study that specified 

depths of ESD 

Chia Sok Ling et 

al. (2007) 

Survey & 

Simulation 
 √    √   √ √        

Solar insolation 

reduction by building 

geometry & orientation 

Aksit (2010) Simulation √ √ √     √  √        Façade texture study 

Kamal (2010) Literature review √ √ √ √ √  √   √   √  √   

Recommended the use 

of RWF as shading 

strategy 

Al-Tamimi and 

Fadzil  (2011) 
Simulation  √ √ √ √    √ √      √ √ 

Study on EST with air 

temperature 

Hassan and Arab 

(2014) 
Simulation √ √       √     √  √ √ 

Terrace building & 

RWF sunlight 

penetration 

Santos et al. 

(2016) 
Simulation  √ √ √ √          √  √ 

ESDs & their relative 

RWF 

Faisal and Aldy 

(2016) 
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Typology of building 

shading elements 

(Shaik et al., 

2016) 
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shading for passive 
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Mathematical 
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Chart to Determine the 

Dimensions of a 

shading device 

Present Study 

Exploratory 

survey, 

Measurement & 

Simulation 

√ √ √ √     √ √ √ √  √  √ √ 
RWF thermal 

performance 



8 

(ii) What are the impacts of various types of RWF on thermal performance, 

with regards to various recessed depths, orientations and the effect of wall 

insulation on them? 

(iii) How does the thermal performance of RWF differ from that of exterior 

shading devices (ESD) in terms of air temperature, relative humidity, solar 

gain and surface temperature? 

(iv) What are the thermal performance abilities of the three types of RWF with 

regards to various recessed depths and orientations? 

1.5 Aim and Objectives of the Research 

This research aims to investigate the potentials of applying recessed wall 

façade (RWF) shading strategies, in the improvement of. thermal performance, and to 

reduce the harsh indoor environmental conditions of an office space in the tropical 

climate of Johor Bahru, Malaysia. The specific research objectives are as follows: - 

(i) To explore the types of RWF applied in Malaysian buildings and their 

thermal reduction ability in comparison with an unshaded facade.  

(ii) To investigate the thermal performance potentials of various RWF types 

with regards to various recessed depths, orientations and the effect of wall 

insulation application on them.  

(iii) To examine the thermal performance capabilities of various types of RWF 

and the ESD regarding indoor air temperature, indoor relative humidity, 

indoor solar gain and façade surface temperature.  

(iv) To provide design recommendation and comparing thermal performance 

ability of the three types of RWF with regards to various recessed depths 

and orientations. 
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1.6 Scope and Limitation 

This research focused on the thermal performance of RWF. Although, lowering 

the solar thermal effect on the building could significantly affect daylighting and visual 

performance, that was excluded from the scope of this study.  

The office building was selected for this study because of its growing 

utilisation in Malaysia. Additionally, it was because the critical thermal periods are 

within the office occupancy period of between 8 am and 6 pm. The day time 

temperature when the offices are in use is higher than the nighttime temperature when 

occupants are at home. The purpose of shading is to block the effect of solar radiation, 

hence, the need for indoor environmental thermal quality control design.  

There are several types of usable spaces in office buildings; cubicle offices, 

closed plan offices, open plan offices, waiting rooms, meeting rooms, and pantries 

among others. The type of space chosen for this study was limited to cellular office 

space. The reason was that, cellular office space has more critical thermal conditions 

than other types of office spaces, due to the limited volume of space that could enhance 

high indoor heat generation. Ventilation is not the focus of this study therefore, was 

not investigated. The study focused on an area of RWF, in order to improve current 

office building façades and provide subtitude to exterior shading device, through the 

use of three types of RWF, to enhance the thermal performance of office space.  

The design variables the study focused on were exterior shading strategy and 

adoption of three types of RWF with fixed WWR of 18%. That was adopted from the 

base case office building since it is within the acceptable openings (Alibaba, 2016; Al-

Tamimi et al., 2011). Depths of 0.3m, 0.6m and 0.9m were used, as demonstrated by 

Wong and Li (2007). The forms of shading strategy are used, not only as building form 

shading, but could also yield a better result than the conventional shading devices. 

Application of insulation on the wall of best performing RWF types were tested to 

ascertain thermal performance.  Other design variables such as, wall thickness, 

components materials, paints, room areas and volumes, glazing types and pane, which 

could affect the potentials of the RWF, were not considered.  
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The determination of appropriate models of various RWF types with their 

implications was necessary for comparison with other shading devices.  Therefore, 

IES<VE> computer simulation method was used for building energy model (BEM) to 

assess the thermal performances of various RWF model to ascertain their potentials in 

shading. However, a qualitative study that is accompanied by other subjective human 

factors and behaviours was not considered in this study.  

The area of study was limited to tropical climate condition of Malaysia. 

Therefore, the climatic data employed study, was that of Singapore due to its closeness 

to Johor Bahru, the case study city. Environmental thermal parameters used were; 

indoor air temperature, indoor relative humidity, indoor solar gain and façade surface 

temperature. They were used for the significant role they play in indoor thermal 

condition of an environment (Mirrahimi et al., 2016; Al Yacouby et al., 2011; 

Szokolay, 2008). 

1.7 The Significance of the Research  

In Malaysia, office buildings consumed huge amount of electrical energy 

through mechanical means to achieve a conducive indoor environment for occupants. 

This high energy use is due to the improper consideration of the thermal performance 

of the building envelope. Therefore, this study aims at examining the thermal 

performance of shaded window with recessed façade for Malaysian office buildings in 

hot and humid tropical climate. It identifies significant thermal design variables of both 

the recessed wall façade and environmental parameters used to minimise over-

dependence on mechanical cooling system. Further, the aim is to achieve indoor 

thermal comfort with minimal energy consumption. It is believe that the result of this 

study would reduce the harsh thermal conditions of the indoor environment of 

buildings in Malaysia. It is also believed that the outcome of this study would make 

vital information available for building sector stakeholders. These include architects, 

urban planners, building engineers, green building assessors, building owners, estate 

valuers, facility managers, façade manufacturers, and policymakers. 
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This study is highly significant to building designers, engineers and urban 

planners. It will also provide basic requirements to be considered and met in designing 

recessed façade window shading for better thermal performance and indoor thermal 

comfort. The strategy will result in a reduction of cooling load demand, consequently 

leading to low consumption of energy. The results of various simulation models will 

provide additional guide, along side the present Malaysia Standard (MS: 1525) and 

Green Building Index (GBI). 

It will be beneficial to all countries within the tropical climate, most especially 

those in the hot and humid climate. It will serve as guide on implementation for energy 

reduction in buildings, thereby contributing to lowering and mitigation of climate 

change challenges. Building sectors stakeholders and most especially architects will 

also find the results useful in preparing their design and planning toward achieving 

good indoor thermal conditions for their clients. 

1.8 Thesis Organization 

This thesis is organized into five chapters. Chapter One presents an 

introduction of the subject and focus of the study. It discusses the research questions, 

research gap, and objectives. The scope and limitations were also presented. The 

significance of the research and the overall thesis organisation was also explained in 

the chapter.  

Chapter Two reviews the literature and theories, divided into four key sections. 

The first section reviews the energy consumption and climatic thermal condition of 

Malaysia. The second section reviews the role of façade in building design. The third 

section presents heat transfer in buildings. This section discourses about the three 

modes of heat transfer and how their adverse effect can be prevented against tropical 

climate buildings. The fourth section discusses issues in the tropical envelope of 

buildings. 

Chapter Three is divided into two sections. The first section presents the 

methods of thermal analysis. The second section explains the thesis methodology, 
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including an exploratory survey of recessed wall façade that resulted in discovering 

recessed wall façade typologies. This section also presents validation of Integrated 

Environment Solution Virtual Environment (IESVE) simulation tools after 

experimental field measurement with Apache computer simulation modelling. 

Chapter Four investigates the impact of various recessed wall façade types on 

thermal performance using IESVE computer simulation. The results are analysed 

according to the thermal performance of various typologies with regards to the 

configurations. The summary of the general performances of the design variables is 

highlighted. 

Chapter Five presents the overall review of the research objectives and research 

questions. This chapter also concludes the principal findings of the thesis as a design 

recommendation for the thermal performance of tropical recessed wall office 

buildings. Lastly, this chapter also suggests future research to complement with this 

thesis findings. The research framework is shown in Figure 1.2. 

Issue/Problems 
Statement

Aim Reseach 

Questions

Research 

Objectives 
Methodology Significance Conclusion

Shading buildings to 

intercept the high effects 

of solar radiation in the 

tropics
Research 

aim:

To 

investigate 

the potentials 

of applying  

RWF 

shading in a 

cellular 

office space 

What are types of RWF

 applicable in Malaysian 

building façade design, 
and what thermal 

performance potential 

does a sample have with 

regards to different 

orientations as 

compared with 

unshaded façade? 
How does the thermal 

performance of RWF 

differ from that of ESD

 in terms of air 

temperature, relative 

humidity, solar gain and 

surface temperature?

 What is the thermal 

performance potentials 

of various types of 

RWF with regards to 

various recessed depths 

and orientations and 

how does insulation 

improve the 

performance?

To explore and 

identify the types of 

RWF applied in 

Malaysian buildings 

and the possibility of 

thermal reduction 

ability of a sample of 

Malaysian RWF in 

comparison with an 

unshaded facade.

To determine the 

thermal performance 

capabilities of 

various types of 

RWF and the ESD 

regarding indoor air 

temperature, indoor 

relative humidity, 

indoor solar gain and 

façade surface 

temperature. 

To investigate the 

thermal performance 

potentials of various 

RWF types with 

regards to various 

recessed depths, 
orientations and the 

effect of wall 

insulation application 

on  RWF type

Exploratory Survey:

1. study 87 Malaysia 

building façades to 

identify 10 types of 

RWF

2. selection of three 

alternative types to 

ESD

Simulations:

1. Models of 

unshaded and base 

case office space

2. Simulate to 

compare their thermal 

performance of RWF 

& ESD

Physical Measurements:

1. identification of the 

base office building

2. study of location & 

microclimate conditions

3. measuring of office 

geometry and materials

4. Measurements of the 

office space conditions 

for validation of IES-VE

IES-VE Simulation:

1. Analysis of 

measured and 

simulated results

2. Model validation 

using statistical tools 

& Percentage 

difference

3. Thermal 

performance 

examinations of all 

RWF types with 

regards orientations, 

depths and insulation

4. Better RWF type, 

depth and orientation

Identification of 

ten RWF types in 

Malaysia, 

revealed the better 

thermal 

performance of 

Base case office 

space over the 

unshaded façade 

and revealed the 

weaknesses and 

the strengths of 

thermal 

performance of 

both RWF & ESD 

with regards to 

indoor 

temperature, 

relative humidity, 

solar gain & 

surface 

temperature 

reductions.

Validating the 

IES<VE> 

Simulation tool

The study 

revealed the 

thermal 

performance 

ability of RWF 

shading strategy 

as an alternative 

to the 

contemporary 

exterior shading 

devices (ESD)

The quest for better 

shading strategies in the 

tropics

Office task performance 

reduction due to harsh 

thermal condition of the 

indoor environment

The outcome of this 

study would make 

vital information 

available for building 

sector stakeholders 

such as architects, 

urban planners, 

building engineers, 

green building 

assessors, building 

owners, estate 

valuers, facility 

managers, façade 

manufacturers, and 

policymakers.

 

Figure 1.2 Research Framework 
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