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Abstract: With the development of remote sensing algorithms and increased access to satellite data,
generating up-to-date, accurate land use/land cover (LULC) maps has become increasingly feasible
for evaluating and managing changes in land cover as created by changes to ecosystem and land use.
The main objective of our study is to evaluate the performance of Support Vector Machine (SVM),
Artificial Neural Network (ANN), Maximum Likelihood Classification (MLC), Minimum Distance
(MD), and Mahalanobis (MH) algorithms and compare them in order to generate a LULC map using
data from Sentinel 2 and Landsat 8 satellites. Further, we also investigate the effect of a penalty
parameter on SVM results. Our study uses different kernel functions and hidden layers for SVM
and ANN algorithms, respectively. We generated the training and validation datasets from Google
Earth images and GPS data prior to pre-processing satellite data. In the next phase, we classified the
images using training data and algorithms. Ultimately, to evaluate outcomes, we used the validation
data to generate a confusion matrix of the classified images. Our results showed that with optimal
tuning parameters, the SVM classifier yielded the highest overall accuracy (OA) of 94%, performing
better for both satellite data compared to other methods. In addition, for our scenes, Sentinel 2
date was slightly more accurate compared to Landsat 8. The parametric algorithms MD and MLC
provided the lowest accuracy of 80.85% and 74.68% for the data from Sentinel 2 and Landsat 8.
In contrast, our evaluation using the SVM tuning parameters showed that the linear kernel with the
penalty parameter 150 for Sentinel 2 and the penalty parameter 200 for Landsat 8 yielded the highest
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accuracies. Further, ANN classification showed that increasing the hidden layers drastically reduces
classification accuracy for both datasets, reducing zero for three hidden layers.

Keywords: land cover; machine learning; remote sensing; satellite imagery; classification accu-
racy; Saqqez

1. Introduction

In recent years, the demand for land use/land cover (LULC) maps has grown, in part
due to the growing availability of free satellite imagery [1], but also due to their function in
land and resource planning and management [2]. Land cover maps show the biophysical land
coverage, while land use maps show human activities in a specific type of land cover [3,4]. LULC
maps have many useful applications, but for more effective planning and management, the
information about ecosystem changes due to human activities is often considered more important
than just land cover information alone [5]. There are various methods for producing LULC
maps, but satellite imagery and remote sensing [6] offer advantages such as wide scope, using
different parts of the electromagnetic spectrum to represent the features of phenomena, low cost,
faster analysis (especially for large areas), and the option for repeated, short-term monitoring
cycles [7]. The development of remote sensing increased satellite data with medium to high
resolutions. Their availability to users worldwide has led to the increasing development of a new
generation of algorithms for image classification based on the subject [5,8]. Each classifier has
its specific operation process and, depending on the classifier and the software capabilities, the
results generally vary. Both unsupervised and supervised algorithms may be used. Unsupervised
algorithms use no site data and perform clustering only based on reflection attributes [9]. K-
Means [10,11] and ISODATA [12] are examples of such algorithms. These methods are used when
the studied region is unidentified. However, supervised algorithms use training site samples for
classification, that is, these training samples are unique spectral signatures attributed to each class
by the user [13]. Therefore, the human factor (and bias) is directly involved in deciding the training
data and influences the end results. Supervised algorithms include minimum distance [14,15],
maximum likelihood [16–18], artificial neural network [19,20], random forest [21–23], and support
vector machine [24,25]. Compared to unsupervised algorithms, supervised ones perform better in
class differentiation and hence offer better accuracy [26,27].

Although different studies use a variety of classification methods, in recent years more
advanced machine learning (ML) methods have favor [28,29] especially in the assessment
and prediction of natural hazards such flood, snow avalanche, and landslide [8,30–33], due to
their greater accuracy and flexibility. However, the obtained results are different. Thus,
machine learning models are used increasingly in the production of LULC maps [25,34].
Mondal et al. [35] compared SVM and MLC to classify land use, finding that non-parametric
SVM classification performs better than MLC. Gosh and Joshi [36] showed that SVM and RF
algorithms offer highly accurate, similar classification results.

Further, Gopinath et al. [37] found that compared to SAM, the SVM algorithm pro-
duces more accurate land use maps. Karan and Samadder [38] reported that SVM and
ANN offer the best performance from six supervised classification algorithms. Noi and
Kappas [2] classified land cover by comparing random forest, k-nearest neighbor, and SVM
algorithms for land cover classification using Sentinel-2 imagery. They concluded that
SVM had the highest overall accuracy with the least sensitivity to the training sample sizes,
followed by RF and KNN algorithms. Additionally, Pouteau et al. [39] used six classifica-
tion algorithms, including SVM, Naïve Bayes, C4.5, RF, Boosted Regression Tree, and KNN,
and resulted that KNN better performed for the classification. Moreover, Mountrakis [40]
compared Naïve Bayesian, KNN, SVM, Tree ensemble, and Artificial Neural Network
algorithms to classify land cover and stated that SVM and KNN were the best classification
methods for Landsat classification.
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The challenge many users face is choosing the most appropriate algorithm. The algo-
rithm choice depends on parameters such as site conditions, existing data, and spectral
similarity of the classes [2,41]. For algorithms such as ANN, SVM, and RF, in addition to the
above parameters, tuning parameters also significantly influence the output accuracy [42].
Regardless of the algorithm, accurate image classification is fundamental [18]. The present
study followed the said steps to produce an accurate map.

In order to develop and improve the performance of classification algorithms, they
have to be used in different sites through research. This study uses the satellite data of
Sentinel 2 and Landsat 8 to generate LULC maps using the supervised algorithms Support
Vector Machine (SVM), Artificial Neural Network (ANN), Maximum Likelihood Classi-
fication (MLC), Minimum Distance (MD), and Mahalanobis (MH) algorithms. The main
objective of this study is that the best machine learning selects among SVM, ANN, MLC,
MD, and MH for each image, in which image performs higher accuracy and applicability
in similar conditions. Moreover, the effect of changing the tuning parameters evaluate for
improving the results. Finally, we evaluate the overall accuracy, Kappa coefficient, and
user accuracy to determine and compare the results.

2. Study Area

The study area is located around Saqqez city in Kurdistan province, west Iran (Figure 1). The
1250 km2 study area has an elevation range from 1383 to 2237 m in which including a heterogeneous
land cover and topography. The area has a Mediterranean climate based on the De Martonne’s
climatic system [43], with an average annual temperature of 10.02 ◦C and mean annual precipitation
of 520 mm. The seasonal cycle is closely tied to seasonal changes in large-scale air movement
and solar configuration, which results in four seasons that spatially and annually differ in timing
and length due to the variability in precipitation: hot season (June to September) and cool season
(December to March). In addition, it has a cold and snowy winter, typically up to 40 days in duration.
The cool season begins in December and continues until late April. The significant features of the
region are the existence of groundwater, springs, and permanent rivers. Soil types in the area typically
comprise semi-wet lithosol soils, brown steppe soils, and oak soils. The characteristics area features
include rangeland, agricultural (cultivated) land, water bodies, bare land, and residential land.Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 23 
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3. Material and Methods
3.1. Data Acquisition and Pre-Processing
3.1.1. Sentinel-2B

Data from Sentinel-2B satellite image freely downloaded from the Copernicus Sci-
entific Data Hub website (https://sentinels.copernicus.eu/web/sentinel/user-guides/
sentinel-2-msi, accessed date: 18 February 2021) were used. Four tiles of Sentinel-2B cover
the whole study area. Table 1 presents the details of data acquired. Two Sentinel 2A
and 2B satellites were launched by the European Space Agency on 23 June 2015 and 7
March 2017, respectively. Both satellites are in the same orbit and have the same char-
acteristics. Table 2 shows the spatial resolution of different bands based on wavelength.
For pre-processing of Sentinel-2 B, first of all, visual image analysis was done to confirm the
agreement of the georeferenced images. In the following, Sen2Cor tool, which is available
in the Sentinel Application Platform (SNAP) software, was used for atmospheric correction.
Then, we combined layer stacked image bands of 2, 3, 4, 8 into one file and image bands of
11 and 12, 20 m were added to a 10 m layer stack. Then, a 20 m resolution with layer stack
was created to define the wavelength for each band in order to indicate relative abundance
of features of interest, spectral indices (combinations of surface reflectance at two or more
spectral bands).

Table 1. List of the selected Sentinel-2B and Landsat-8 images for the study area.

Granule ID Sensing Date UTM Zone Clouds Percentage

LIC-T073609-NO206-
RO92-T38SNE-

20180618-T104438
19-4-2018 38 <10

LIC-T073609-NO206-
RO92-T38SNF-

20180618-T104438
19-4-2018 38 <10

LIC-T073609-NO206-
RO92-T38SPE-

20180618-T104438
19-4-2018 38 <10

LIC-T073609-NO206-
RO92-T38SPF-

20180618-T104438
19-4-2018 38 <10

LC08-L1TP-20180501-
01-T1 10-04-2018 38 <10

Table 2. Spectral bands of the Sentinel-2 B and Landsat-8 OLI satellite imagery.

Sentinel-2B Landsat-8 OLI

Band
Central

Wavelength
(nm)

Spatial
Resolution

(m)
Band

Central
Wavelength

(nm)

Spatial
Resolution

(m)

1 0.4430 60 1 0.4430

30

2 0.4900
10

2 0.4826
3 0.5600 3 0.5613
4 0.6650 4 0.6546
5 0.7050

20
5 0.8646

6 0.7400 6 1.6090
7 0.7830 7 2.2010

8 0.8420 10 8 0.5917

15
8A 0.8650 20
9 0.9450

60
9 1.3730

10 1.3750

11 1.6100
20

10 10.9000
3012 2.1900 11 12.0000

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi
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3.1.2. Landsat-8

Data from Landsat-8 satellite image is open and freely available on the USGS website
(https://glovis.usgs.gov/, accessed date: 18 February 2021). The whole area was covered
by one tile for Landsat 8 on June 2018 (Table 3). As shown in Table 2, the OLI sensor has
nine bands and is co-registered with the TIRS (Thermal Infrared Sensor) sensor, which has
two spectral bands. The ground sampling distance for OLI and TIRS is 30 and 100 m,
respectively. Unfortunately, the 12 µm TIRS band (band 11) has been remarkably affected
by stray light, which compromises its utility for split-window atmospheric correction [44].

Table 3. List of the selected the Landsat-8 operational Land Imager (OLI) images for the study area.

Granule ID Sensing Date UTM Zone Clouds Percentage

LC08-L1TP-20180501-
01-T1 10 April 2018 38 <10

The pre-processing steps for the Landsat-8 involve radiometric calibration, top of the
atmosphere reflectance and surface reflectance. In the first step, we broke Landsat 8 data
into subsets as we did for the Sentinel-2 dataset. Then, Digital Number (DN) for each pixel
was converted to radiance values using radiometric calibration. Removing the influence of
the atmosphere is a necessary step to reach surface reflectance values. To do so, ENVI V5.3
software was used. This program offers various methods for atmospheric correction such
as Dark Subtraction, FLAASH, Empirical Line, and Flat Field. In this work, we applied the
Dark Object Subtraction (DOS) on the calibrated image to extract surface reflectance values.
DOS works by searching each band to identify dark pixels. For this purpose, it is assumed
that a dark object does not reflect any light and that any value greater than zero is the result
of atmospheric scattering. Subtracting this value for each pixel from each band, scattering
is then removed [45]. After atmospheric correction, the values of pixels show the surface
reflectance. The methodology of this research is presented as a flowchart in Figure 2.

3.2. Classification Training and Testing Data

We identified training and testing datasets that represent different surface cover types
based on previously known actual surface cover types. These cover types were selected by
field surveys in each land covers such as irrigated land, dry farming, range land (pasture),
bare land, residential, and waterbodies. These areas were detected based on different
supervised machine learning classification methods. We made sure that the training set
had a sufficient number of independent samples for each class to exhibit the interclass
variability [46]. After this, we used these specifically categorized training areas to recognize
similar areas for each class using statistical algorithms. We used GPS (global positioning
system) and high-resolution orthorectified Google Earth imagery as a reference for the
selection and quality control of the training and testing samples with 2086 randomly
selected ground truth points with a combination of 70%/30% (Table 4). The ground truth
points used in this study is shown in Table S1 as Supplementary Materials.

https://glovis.usgs.gov/
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Figure 2. Flowchart in this study.

Table 4. The training and testing samples for land use/cover units.

Land Cover Training Testing

Irrigated land 278 83
Dry-farming land 233 70

Range land 270 81
Bare land 277 83

Residential area 274 82
Waterbody land 274 81

3.3. Background of Image Classification Methods
3.3.1. Support Vector Machine Algorithm

The Support Vector Machine (SVM) model is a high-performing supervised machine
learning technique that employs a binary classifier based on optimal separating hyper-
plane and statistical machine learning theory [47]. The purpose of the optimal classification
hyperplane is to distinguish between the two classes of used samples (the presence and
absence classes) appropriately for a maximum of the classification margin in a feature
space.
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In general, the typical SVM model is separated into the two-class and multi-class SVM
(combing a chain of two-class SVM). The two-class SVM is the most frequently applied
machine learning model [48,49]. During the process of SVM, the separating hyperplane (H)
is the probable planes for separating the two classes. SVM can find an optimal hyperplane
by distinguishing the classes using the following equation [47]:

Min
w,b,ξ

:
1
2

wTw + c
1

∑
i=1

ξ
i

(1)

Subjected to the constraints as below:

yi(wTφ(xi) + b) ≥ 1− ξi
ξi ≥ 0

(2)

where, w, b, ξi, and c (>0) signifies a coefficient vector, the offset of the hyperplane from the
beginning, the positive slack variable, and the penalty parameters of the errors, respectively.
The details of two-class SVM can be referred in studies [50–52].

3.3.2. Artificial Neural Network Algorithm

Artificial Neural Network (ANN), which is based on the human biological neural
network, is a nonlinear modeling tool that solves problems without any assumptions.
Therefore, it has capability to identify complex relationships between input data types.
This method has been widely used in different fields, such as landslide susceptibility
mapping (LSM), landslide detection, classification, etc. [53–55]. The general structure
of this method consists of three different layers. The first layer involves receiving data.
In the second layer, which is also known as the hidden layer, the necessary calculations
are applied to the data. These calculations are based on processing units called neurons.
The number of neurons is obtained by the user based on a trial-and-error process. The last
layer also specifies the final outputs. The network training structure of this method is
such that the training samples enter the network through the input layer and then enter
the middle layer after multiplying by the connecting weights of neurons. In the middle
layer, the neurons also perform the necessary calculations and then send the resulting
values to the output layer. Weights and biases are determined by means of a non-linear
optimization procedure (training) that aims at minimizing a learning function conveying
closeness between the observation and the ANN output.

Let u = (u1, u2, . . . , un) signify n input neurons, while v = (v1, v2) is output neurons.
For the classification, the activation function applied in hidden neurons is expressed as
below:

v = f

(
n

∑
i=1

ωiui + β

)
(3)

where ωji are the connected weights between input neurons ui and output neurons and v
and β are the bias.

In this process, the number of nodes on the hidden layers used in ANN Algorithm is
exactly equal to the number of bands. In addition, the training algorithm used to adjust
weights and minimize the value of a loos function was gradient descent [56]. Furthermore,
number of output neurons is the same as the number of the classes of land use map classes
of the study area.

3.3.3. Maximum Likelihood Classification

Maximum likelihood classification is one of the most well-known and widely used
classification algorithms in remote sensing, which is considered as a basic pixel method [35].
In this method, a pixel is assigned to the class that has the maximum likelihood (maximum
probability) to it. This method relies on the assumption that the data of each class from
each band has a normal distribution [35]. Therefore, selecting a few pixels is sufficient
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to provide an accurate estimate of the mean vector and the variance–covariance matrix.
Moreover, as many samples as possible should be used so that the algorithm can take into
account the many changes in spectral features. In general, two features of mean vector
and covariance matrix are estimated for each pixel in order to calculate the similarity of
each pixel with the considered classes. Bayesian law is used to calculate this likelihood as
follows [45]:

D = ln(ac)− [0.5 ln(|COVc|)]− [0.5(X−Mc)T(COVc − 1)(X−Mc)], (4)

where D (weighted distance) indicates the likelihood, c represents the specified class, X is
the measurement vector of the desired pixel, Mc is the mean vector of the class c, and COVc
represents the covariance matrix of the pixels of the class c.

3.3.4. Minimum Distance

The minimum distance classification method is based on calculating the mean vector
of each class and the distance of unknown pixels to these mean vectors. In other words,
the class whose mean values have the minimum distance to the desired pixel is assigned
to the pixel. This method is a part of the supervised classification. Of the advantages of
this method that have made it popular are its simple mathematics and the need for mean
vector for each band of the training data [57]. Due to its simple logic, it does not require
complex calculations and therefore has a good speed. It should also be considered that
this method is not suitable in places where spectral classes are very close to each other,
according to the following equation [58]

Dist =

√(
BVijk − µck

)2
+
(

BVijl − µcl

)2
, (5)

where Dist (distance) represents the distance of mean score to the unknown pixel), µck is
the mean vector of the class c in the band k, and µcl is the mean vector of the class c in the
band I.

3.3.5. Mahalanobis Algorithm

The Mahalanobis algorithm (MH) proposed by Mahalanobis [59] originally relates
to a distance measure that combines the correlation among the features MH relates to a
generalized Euclidean Distance (ED) by means of the inverse of a variance-covariance
matrix. In classification, the correlation among the image data plays an important role.
It has been observed that MH provides greater accuracy than ED [60,61] where MH is used
to measure the difference between the inverse similarity and dissimilarity matrices. It can
be described by following equation:

D = (x−mi)
TC−1

i (x−mi) (6)

where Ci means the covariance matrix for the particular imagined movement considered
and T represents the transposition operator. The mean vector m stands for the average of
the x vectors calculated.

3.4. Parameter Tuning

Parameter tuning has an effect role in the performance of the machine learning re-
sults [62]. Each machine learning algorithm has different tuning stages and tuned parame-
ters [2]. An advanced machine learning algorithm features different tuning parameters.
Setting the tuning parameters is one of the key phases of classification to improve the accu-
racy [43]. Hence, this study used different series of kernel function and penalty parameters
for non-parametric classification in SVM. For the non-parametric classification of ANN,
it used different hidden layers in order to select the most appropriate tuning parameters
for producing the most accurate map. We in this study, tested a series of values for each
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parameters of the algorithms to obtain the optimal parameters resulted in highest overall
classification accuracy. Then, we used of the overall accuracy and kappa index to compare
the performance of classifiers [42]. We listed the parameters and the optimal values for
each algorithm in Tables 5 and 6.

3.5. Classification Accuracy Scheme

Our classification scheme included six classes: irrigated land, dry farming, range
land (pasture), bare land, residential area, and waterbodies (Table 7). In the study area,
irrigated lands are not cultivated only be wheat but other strategic crops such as potato,
sugar beet, and alfalfa. Therefore, we have to separate these land cover units. For exam-
ple, Du et al. [63], Aslami and Ghorbani [64], Kingwell-Banham [65], Dobrinić et al. [66],
and Eskandari et al. [67] have also been separated the irrigated lands from dry farming
lands. The supervised classification was performed using SVM, ANN, MLC, MD, and Ma-
halanobis. We used of accuracy and kappa index to check and compare the performance of
the algorithms in ability to classify the land cover/use units. Overall accuracy (OA) and
kappa index can be computed based on the following equations:

OA =
Total number of correct samples

Total number of samples (%)
(7)

Kappa =
ε1 − ε2

1− ε2
; ε1 =

∑n
i=1 Dii

N
; ε2 =

∑n
i=1 Di+D+i

N2 , (8)

where Dii is the number of observations in row i and column i of the confusion matrix, n is
the number of rows in the error matrix, N is total number of counts in the confusion matrix,
xi+ is the marginal total of row i, and x + i is the marginal total of column i.

Table 5. Parameter tuning in Support Vector Machine (SVM) model in the LANDSAT and SENTINEL-
2 images.

SVM-Linear

Penalty Parameter: 100, Pyramid Levels: 1, Pyramid Reclassification Threshold: 0.9,
Classification Probability Threshold: 0

Penalty Parameter: 150, Pyramid Levels: 2, Pyramid Reclassification Threshold: 0.9,
Classification Probability Threshold: 0

Penalty Parameter: 200, Pyramid Levels: 3, Pyramid Reclassification Threshold: 0.9,
Classification Probability Threshold: 0

Penalty Parameter: 250, Pyramid Levels: 4, Pyramid Reclassification Threshold: 0.9,
Classification Probability Threshold: 0

SVM-Polynomial

Degree of kernel polynomial: 3, Bias in kernel function: 1, Gamma in kernel
function: 0.143, Penalty Parameter: 100, Pyramid Levels: 3, Pyramid

Reclassification Threshold: 0.9, Classification Probability Threshold: 0

Degree of kernel polynomial: 3, Bias in kernel function: 2, Gamma in kernel
function: 0.143, Penalty Parameter: 150, Pyramid Levels: 3, Pyramid

Reclassification Threshold: 0.9, Classification Probability Threshold: 0

Degree of kernel polynomial: 3, Bias in kernel function: 3, Gamma in kernel
function: 0.143, Penalty Parameter: 200, Pyramid Levels: 3, Pyramid

Reclassification Threshold: 0.9, Classification Probability Threshold: 0

Degree of kernel polynomial: 3, Bias in kernel function: 4, Gamma in kernel
function: 0.143, Penalty Parameter: 250, Pyramid Levels: 3, Pyramid

Reclassification Threshold: 0.9, Classification Probability Threshold: 0

SVM-RBF

Gamma in kernel function: 0.143, Penalty Parameter: 100, Pyramid Levels: 1,
Pyramid Reclassification Threshold: 0.9, Classification Probability Threshold: 0

Gamma in kernel function: 0.143, Penalty Parameter: 150, Pyramid Levels: 2,
Pyramid Reclassification Threshold: 0.9, Classification Probability Threshold: 0

Gamma in kernel function: 0.143, Penalty Parameter: 200, Pyramid Levels: 3,
Pyramid Reclassification Threshold: 0.9, Classification Probability Threshold: 0

Gamma in kernel function: 0.143, Penalty Parameter: 250, Pyramid Levels: 4,
Pyramid Reclassification Threshold: 0.9, Classification Probability Threshold: 0
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Table 6. Parameter tuning in Artificial Neural Network (ANN) model in the LANDSAT and
SENTINEL-2 images.

ANN

Number of hidden layers: 1, Number of training
iteration: 1000, Training threshold contribution: 0.9,

Training rate: 0.2, Training momentum: 0.9, Training
RMSE exit criteria: 0.1

Number of hidden layers: 2, Number of training
iteration: 1000, Training threshold contribution: 0.9,

Training rate: 0.2, Training momentum: 0.9, Training
RMSE exit criteria: 0.1

Number of hidden layers: 3, Number of training
iteration: 1000, Training threshold contribution: 0.9,

Training rate: 0.2, Training momentum: 0.9, Training
RMSE exit criteria: 0.1

Number of hidden layers: 4, Number of training
iteration: 1000, Training threshold contribution: 0.9,

Training rate: 0.2, Training momentum: 0.9, Training
RMSE exit criteria: 0.1

4. Results and Analysis
4.1. Accuracy Assessment

Tables 7 and 8 list the accuracy for SVM, ANN, MLC, MD, and MH for Sentinel 2 and
Landsat 8, respectively. In many cases, the tuning parameters show identical Kappa coeffi-
cients, while their overall accuracies slightly vary. Thus, for a more accurate comparison,
selecting the optimal tuning parameter, and producing the most accurate map, we used
the overall accuracy as assessment criterion (Tables 7 and 8). It is noted that the value in
each class column mean of these tables is producer’s accuracy.

4.2. Comparisons the Classifiers and Tuning Parameters

Our validation results indicated that, in general, SVM offered better accuracy in
producing LULC maps for both sets of satellite data. Figure 3 illustrates the overall
accuracy of the algorithms and the comparison between them for Sentinel 2 and Landsat 8
images. According to overall accuracy and the optimal tuning parameter, SVM algorithm
performed best with overall accuracies of 95.82% and 94.78% for Sentinel 2 and Landsat
8, respectively (with Kappa coefficients 0.94 and 0.93) (Table 7). Figure 3 also shows the
different results from other classification algorithms.
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Table 7. Accuracy and kappa measures of Sentinel 2.

Model
Overall

Accuracy
(%)

Kappa
Coefficient

Irrigated
Land

Dry
Farming

Range
Land Bare Land Residential

Area
Water
Body

SVM-L100 95.21 0.93 99.28 97.45 87.32 92.31 79.22 100
SVM-L150 95.82 0.94 99.28 97.45 88.73 92.31 84.42 100
SVM-L200 95.58 0.94 98.56 97.02 87.32 93.59 85.71 100
SVM-L250 95.21 0.93 98.2 96.17 87.32 93.59 85.71 100
SVM-P100 94.84 0.93 98.56 96.6 85.92 92.31 81.82 100
SVM-P150 95.58 0.94 98.56 97.45 87.32 92.31 85.71 100
SVM-P200 95.7 0.94 98.2 97.02 88.73 93.59 87.01 100
SVM-P250 95.33 0.93 98.2 96.17 88.73 93.59 85.71 100
SVM-S100 94.35 0.92 97.84 95.74 85.92 92.31 81.82 100
SVM-S150 94.96 0.93 98.2 95.74 87.32 92.31 85.71 100
SVM-S200 95.09 0.93 97.84 96.17 87.32 93.59 85.71 100
SVM-S250 94.97 0.92 97.84 94.04 87.32 93.59 85.71 100
SVM-R100 93.86 0.92 97.48 94.47 88.73 91.03 80.52 100
SVM-R150 95.58 0.94 98.56 97.45 87.32 92.31 85.71 100
SVM-R200 95.46 0.94 98.2 97.02 88.73 93.59 84.42 100
SVM-R250 95.09 0.93 97.84 95.74 88.73 93.59 85.71 100
ANN-H1 88.46 0.85 94.24 85.96 69.01 94.87 75.32 100
ANN-H2 38.15 0.15 0 0 0 0 0 0
ANN-H3 18.89 0.1 0 0 0 0 0 0

MLC 93.37 0.91 99.64 90.64 91.55 69.23 98.7 100
MD 80.85 0.75 94.6 66.81 80.28 73.08 63.64 100
MH 88.09 0.84 93.88 95.32 71.83 66.67 90.13 100

SVM: Support vector machine, L: Linear, P: Polynomial, S: Sigmoid, R: Radial basis, (100, 150, 200, 250): Values of penalty parameter,
ANN: Artificial neural network, H: Hidden layer, MLC: Maximum likelihood classifier, MD: Minimum distance, MH: Mahalanobis.

Table 8. Accuracy and kappa measures of Landsat 8-OLI.

Model
Overall

Accuracy
(%)

Kappa
Coefficient

Irrigated
Land

Dry
Farming

Range
Land Bare Land Residential Water

Body

SVM-L100 93.79 0.91 98.2 91.42 84.29 94.81 86.49 100
SVM-L150 94.04 0.92 98.2 91.85 85.71 94.81 86.49 100
SVM-L200 94.78 0.93 98.2 93.56 88.57 94.81 86.49 100
SVM-L250 94.77 0.92 98.1 93.55 88.56 94.80 86.48 100
SVM-P100 91.06 0.88 97.84 81.55 85.71 96.1 86.49 100
SVM-P150 93.3 0.91 98.2 90.13 82.86 94.81 86.49 100
SVM-P200 93.54 0.91 98.2 90.56 84.29 94.81 86.49 100
SVM-P250 93.92 0.92 98.2 91.42 85.71 94.81 86.49 100
SVM-S100 88.46 0.85 97.84 72.53 85.71 96.1 86.49 100
SVM-S150 89.7 0.86 97.48 76.82 87.14 96.1 86.79 100
SVM-S200 90.69 0.88 97.84 79.83 87.14 96.1 86.49 100
SVM-S250 91.06 0.88 97.84 81.55 85.71 96.1 86.49 100
SVM-R100 93.86 0.92 97.48 94.47 88.73 91.03 80.52 100
SVM-R150 93.42 0.91 98.2 90.13 84.29 94.81 86.49 100
SVM-R200 93.17 0.91 98.2 89.7 82.86 94.81 86.49 100
SVM-R250 93.42 0.91 98.2 90.13 84.29 94.81 86.49 100
ANN-H1 91.31 0.88 94.6 89.27 81.43 89.61 87.84 100
ANN-H2 64.76 0.57 38.85 81.12 60.79 71.43 87.84 100
ANN-H3 9.3 0.0014 0 0 0 0 0 0

MLC 74.68 0.68 90.29 75.54 82.86 63.64 91.89 97.29
MD 82.38 0.77 97.12 60.09 88.57 87.01 68.92 100
MH 91.81 0.89 96.33 97.85 90 77.92 70.27 100

SVM: Support vector machine, L: Linear, P: Polynomial, S: Sigmoid, R: Radial basis, (100, 150, 200, 250): Values of penalty parameter,
ANN: Artificial neural network, H: Hidden layer, MLC: Maximum likelihood classifier, MD: Minimum distance, MH: Mahalanobis.
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For Sentinel 2 data, after SVM, MLC ranked second with the overall accuracy of
93.37%. Further, ANN (with optimal parameters), MH, and MD algorithms ranked next
with respective accuracies of 88.46%, 88.09%, and 80.85% and MD performing the poorest.

For Landsat 8 data, (Table 7; Figure 3), the MH classifier yielded the highest overall
accuracy of 91.81%, and the Kappa coefficient of 0.89 had the second-best performance
after SVM for generating LULC maps ta. This was followed by ANN (with optimal tuning
parameters), MD, and MLC algorithms with respective overall accuracies of 91.31%, 82.38%,
and 74.68%. Based on the results, MLC had the weakest performance (Kappa coefficient =
0.68).

In another comparison, different tuning parameters for non-parametric classifiers of
SVM and ANN were used to determine the effect of optimal parameter tuning on the
variation of classification results. For SVM, different values of kernel function and penalty
parameter were tested. In this study, we compared four kernel types (linear, polynomial,
sigmoid, and radial basis). Tables 7 and 8 show how a linear kernel function offered the
best classification accuracy for both Sentinel 2 (95.82% for SL150) and Landsat 8 (94.78% for
SL200 and SL250). Comparing the results also indicated that the lowest accuracies belonged
to radial kernel SR100 (overall accuracy of 93.86%) for Sentinel 2 image and SS100 sigmoid
kernel (overall accuracy of 88.46%) for Landsat 8 image. For the penalty parameter, we
tested values of 100, 150, 200, and 250. The optimal penalty parameter for the most accurate
algorithm of Sentinel 2 data was 150 (SL 150), and these figures were 200 and 250 for Landsat
8 data (SL 200 and SL250). In addition, for the ANN classifier, we tested different numbers of
hidden layers to clarify their effect on processing. As Tables 7 and 8 show, running ANN
with a single hidden layer offers the best performance for both datasets (88.46% for Sentinel 2
and 91.31% for Landsat 8). Further, the results show that increasing the hidden layers reduces
algorithm accuracy. This reduction is such that three hidden layers result in accuracies of
18.89% and 9.3% for Sentinel 2 and Landsat 8, respectively.

4.3. Land Cover Change Assessment

To classify LULC maps, six classes (irrigated land, dry farming, range land (pasture),
bare land, residential, and waterbodies) were used. Following the calculation of confusion
matrix, we employed user accuracy to assess the differentiation of classes. Tables 7 and 8
show these values for Sentinel 2 and Landsat 8 data. The higher the user accuracy, the higher
the algorithm capability in spectrum differentiation for the respective class. First, we analyze
Table 7, where the results indicate that with the optimal tuning parameter, the water body
class has the highest error-free accuracy (100) for all algorithms. This is followed by MLC
algorithm with the differentiation accuracy of 99.64 for the irrigated land class. For the classes
dry farming, range land, bare land, and residential, SVM, MLC, ANN, and MLC offer the
best classification accuracies, respectively (97.45, 91.55, 94.87, and 98.7). Based on the tuning
parameters, SL100 and SL150 have the highest user accuracy for irrigated land class and the
lowest accuracy belonged to ANN-H2 and ANN-H3 (Table 7).

Table 8 shows that similar to the case of Sentinel 2 data, with optimal tuning parame-
ters the waterbody class in Landsat 8 image has the lowest classification error (100 for all
algorithms save for MLC). For the irrigated land class, SVM algorithm (user accuracy= 98.2)
offers the best performance, followed by classes: dry farming, pasture, bare land, and
residential, where MH, MH, SVM, and MLC offer the best accuracy (97.85, 90, 96.1, 91.89).
Among tuning parameters, SL100, SL150, SL200, SL250, SP150, SP200, SP250, SR150, and
SR200 have the highest accuracy and ANN-H3 offers the worst performances. Figure 4
shows ANN RMSE curve under different iterations in Sentinel-2 and Landsat 8.

4.4. Land Cover Change Detection Map

Figure 5 illustrates the land cover differences that are identified within the study
area by five SVM, ANN, MLC, MD, and MH machine learning methods for Sentinel and
Landsat images. In the SVM method, the classification of the study area was done based
on five kernel functions: Linear, Polynomial, Sigmoid, and Radial basis. The purpose



Remote Sens. 2021, 13, 1349 13 of 21

of implementing these models was to estimate and compare the performance of models
with various error levels (100, 150, and 200). Results indicated that all outputs in the SVM
method show the highest degree of accuracy in identifying and distinguishing land use in
the study area compared to other methods for both Sentinel and Landsat images.
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Figure 5. Land cover change maps by sentinel-2: (a) SL150, (b) SP150, (c) SS200, (d) SR150, (e) ANN-H1, (f) MLC, (g) MD, and (h) Mh
and landsat-8: (i) SL 200, (j) SP250, (k) SS250, (l) SR100, (m) ANN-H1, (n) MLC, (o) MD, and (p) MH.

The LULC map of the ANN-H1 model in the Sentinel image shows a larger area of
bare land, which does not correspond to reality. The land cover change map of the ANN-H2
model does not have the ability to identify the blue class (water bodies) and shows a larger
area of the range as bare land. However, the ANN-H3 model was not able to identify any
of the six classification classes and shows the lowest accuracy according to the Table 5.
The land cover change map prepared by the ANN-H1 model based on the Landsat image
depicted land classification with a high degree of accuracy (91.3). However, the land cover
change map by the ANN-H2 model performed very poorly in identifying the irrigated
areas. Moreover, the output of ANN-H3 in the Landsat image did not show any of the six
classification classes.

The MLC method for the Sentinel images, except for a percentage of error in showing
the dry-farming class, performed poorly and showed a higher percentage of the study
area as rangeland unit (93.37). The MLC method did not identify waterbodies by Landsat
images and exaggerated the identification of the residential areas (74.68). The LULC map
obtained by the MD method based on both Sentinel and Landsat images, and especially
by the Sentinel images to detect the dry-farming class, is associated with a very high level
of exaggeration and accuracy of 80.85 and 82.38, respectively. Finally, the classification in
the MH method was not as good as the MD model and showed the highest level as the
rangeland class.



Remote Sens. 2021, 13, 1349 16 of 21

5. Discussion

In this study, we used the same algorithm processing condition (with identical training
and validation dataset), to compare Sentinel 2 and Landsat 8 data for optimal LULC
mapping. First, we compared the algorithms based on optimal tuning parameters for
SVM and ANN. The resulting overall accuracy and Kappa coefficient showed that the
non-parametric SVM algorithm offers the best classification for both satellite datasets.
Nevertheless, Sentinel 2 had a slightly higher accuracy compared to the Landsat 8 OLI
sensor. Comparison with other algorithms confirms the effect of input data on the end
results. For example, the MLC classifier for Sentinel 2 ranks second in accuracy after SVM;
whereas, for Landsat 8 data, it has the poorest performance of all. Likewise, the overall
accuracy of MH algorithm for Sentinel 2 is lower than those for Landsat 8 as the second-best
accuracy after SVM. The observation implies that we cannot be certain about the choice
of an algorithm until we have compared its performance with similar methods, therefore,
simultaneous execution of several methods and comparing their results produces the most
accurate map.

In the second step, we focused on the effect of tuning parameters on SVM and ANN
classifiers. SVM results showed that for both Sentinel 2 and Landsat 8, the linear kernel
offers the optimal output. Here, respective penalty parameters of 150 and 200 were
used for sentinel 2 and Landsat. For Sentinel 2 images, a radial kernel with the penalty
parameter 100 had the lowest accuracy, while for Landsat 8, the sigmoid kernel with the
penalty parameter 100 had a lower classification accuracy. The comparisons show the
effect of tuning parameters on the results, implying that testing different values is critical
to producing a quality map, as optimizing the tuning parameters increases the accuracy
and reduces classification error. Moreover, we used different numbers of hidden layers in
ANN to find the effect of increasing them on the processing and the results. Both datasets
experienced reduced overall accuracy and Kappa coefficient by increasing the number of
hidden layers. Thus, the output analysis revealed that a more complex network structure
does not necessarily mean a more optimal result while forcing the software to increase
processing time.

In the last step, we estimated the accuracy of each algorithm in map classification.
Our investigations showed that with optimal tuning parameters, all algorithms differentiate
the water body with 100% accuracy. After that, MLC algorithm performed best for Sentinel
2 data while SVM performed best for Landsat 8 data in detecting the irrigated land class.
Another comparison showed that in both satellite data, the parametric algorithm MLC
had the most accurate classification for residential zones. This outcome is significant when
put against more advanced classification methods (e.g., SVM and ANN) because due to
the high spectrum similarity of residential regions with other terrain features such as bare
land, their differentiation is one of the most challenging parts of processing. Comparisons
illustrate that although more advanced machine learning methods such as SVM offer more
accurate image classification in the presence of different classes, an algorithm such as MLC
performs better when attempting to classify images in special spectrums such as residential
terrains. In addition, the classes “irrigated land,” “dry farming,” and “range land (pasture)”
have high spectrum similarity, which makes their differentiation difficult. The results also
indicated that for Sentinel 2 data, MLC algorithm offers the best accuracy in differentiating
the spectrums of “irrigated land” and “pasture” classes while SVM performed best for
“dry farming.” For Landsat 8 data, SVM for “irrigated land” and MH algorithm for “dry
farming” and “pasture” offer the highest accuracy in differentiating classes. The MLC
and MD frequently used classification also were compared. The overall accuracy shows
that the MLC algorithm has better performance than the MD for Sentinel-2 data, and MD
provides better accuracy than MLC for LANDSAT8 data. The results display that although
an advanced supervised algorithm such as SVM can have more overall accuracy for a class,
it may perform weaker than a simpler method such as MLC in detecting and differentiating
the spectrum of a specific class in LULC map. The ANN results show that increasing the
hidden layers does not necessarily increase classification accuracy and may even work
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against it. It is essential to compare the results with those of similar studies, because it
both offers a more realistic view of the methods and helps develop the future studies.
There are numerous studies on classification via supervised algorithms, some of which are
the following.

Adam et al. [21] used two machine learning algorithms (SVM and RF) to generate the
LULC of a region on the east African coast. First, they obtained a high-resolution RapidEye
image of the zone and then performed the required pre-processing. After that, they used
training data and advanced methods (SVM and RF) to classify the region into 11 classes.
Then, they generated the classification maps and compared them based on overall accuracy,
Kappa coefficient, and McNamer’s test. They found that RF algorithm (overall accuracy
= 93.07%) is more accurate compared to SVM (overall accuracy = 91.80%). Further, the
Kappa coefficient for both methods was 0.92 Kumar et al. [68] used three algorithms (SVM,
ANN, and SAM) to classify the produce of Varanasi in India. They first created a database
consisting of training and validation data and the LISS IV sensor data. Then, they divided
the zone to 13 classes and compared the results based on overall accuracies. They found
that SVM and ANN with overall accuracies above 90% performed better than SAM. Further,
SVM model with the accuracy of 93.45% performed better in classifying the studied zone
compared to ANN model with the accuracy of 92.32%. Our study obtained similar results
with lower resolution imagery. Based on overall accuracy, SVM algorithm performed better
than ANN for the data of Sentinel 2 and Landsat 8 with respective differences of 7.36% and
3.47%. In another study, Jia et al. [69] attempted to classify land cover in Beijing, China,
by comparing the images of Landsat 7 and Landsat 8 and using supervised algorithms
MLC and SVM. They found that the SVM algorithm with an overall accuracy of 91.03%
and the Kappa coefficient of 0.89 is more accurate compared to the MLC algorithm with
the overall accuracy of 90.4% and the Kappa coefficient of 0.88. Further, they found that the
quality of input data affects the end results, as OLI data performed better than ETM+ data.
The results of the current study also indicate that SVM performs better than MLC with a
difference of 2.45% for Sentinel 2 data and a noticeable difference of 21.1% for Landsat 8
data. Noi et al. [2] compared the results of three algorithms (RF, KNN, and SVM) to classify
the Sentinel 2 data in a region of Vietnam. To show the impact of training pixels on the
accuracy of the output map, they divided the training dataset into 14 sizes. The results
showed that of the three algorithms, SVM offers a higher mean overall accuracy and
performs better in producing the LULC maps, followed by RF and KNN algorithms by the
order of their performance. Talukdar et al. [25] used six machine learning algorithms (RF,
SVM, ANN, Fuzzy ARTMAP, SAM, and MD) to classify the LULC of three different regions
alongside the Ganga River. For this purpose, first they obtained the input data consisting
of the Landsat 8 image, training dataset, and validation dataset and then used the said
algorithms to classify the regions. Ultimately, they used Kappa coefficient, AUC, and RMSE
to compare the results. They found that RF algorithm (Kappa coefficient = 0.89, AUC = 0.91)
performs slightly better than ANN in classifying the studied region, while MD algorithm
(Kappa coefficient = 0.82 and AUC = 0.83) was the least accurate. In another study, Rahman
et al. [59] applied three algorithms (RF, SVM, and their combination) to classify LULC
in the rural (Bhola) and urban (Dhaka) regions using Landsat-8, Sentinel-2, and Planet
satellite images. Their results showed that Sentinel-2 has better results among the three
images. Further, they found that the SVM performs best with an overall accuracy (0.969 and
0.983) and kappa values (0.948 and 0.968) compared to RF and stack algorithms. Keshtkar
et al. [60] compared random forest (RF), decision tree (DT), and support vector machine
(SVM) in pixel-based and object-based approaches to classify land cover change from 1990
to 2010 using Landsat-8 image. They concluded that the object-based SVM classifier has a
better performance than RF and DT (overall accuracy = 93.54% and kappa value = 0.88).
Their results indicated that the expansion of built-up areas (with an annual increase in
4.53%) caused the most significant change (with a yearly decrease in about 0.81% in natural
lands). Tu et al. [61] attempted to improve 10 m resolution land cover classification with
different images (Sentinel-1, Sentinel-2, and Luojia-1) and machine learning algorithms in
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Guangdong province, China. They found that the RF model performs best results with
overall accuracy and kappa coefficient of 86.12% and 0.84, respectively, compared to other
CART, MD, and SVM models.

The results of this study are in line with those of previous studies. The evaluations
illustrate that the SVM algorithm yields higher overall accuracy compared to other super-
vised algorithms. Our data comparison revealed that while using identical training and
validation datasets, the satellite image effects the end results and is therefore one of the key
steps in producing LULC maps. Further, proper tuning parameters increase map accuracy.
The data type and processing used in the study can help local planners and authorities
with producing more accurate maps.

6. Conclusions

The current study evaluated and then compared five supervised classification algo-
rithms for generating LULC maps. To factor the effect of input data, two images from
Sentinel 2 (with resolution of 20 m) and Landsat 8 (with resolution 30 m) were used. Differ-
ent tuning parameters were applied for SVM and ANN algorithms in order to determine
their effect on classification accuracy. With optimal tuning parameters, evaluating the
overall accuracy indicated that among the utilized classification methods, SVM performed
best in classifying the studied region for both images; however, Sentinel 2 data performed
slightly better in class differentiation, although this superiority was not identical for all
algorithms. ANN, MD, and MH algorithms on Landsat 8 data indicated higher accuracy
compared to Sentinel 2 data. Another key finding was the effect of different tuning pa-
rameters on classification accuracy. SVM classification with linear kernel function proved
more accurate in classifying both images. For Sentinel 2 penalty parameter 150 and for
Landsat 8 penalty parameters 150 and 200 performed the best in training SVM. Further,
for Sentinel 2 and Landsat 8, respectively, radial kernel and sigmoid kernel had given the
lowest accuracies. Comparing the hidden layers of the ANN classifier, the best output
was given by a single hidden layer and increasing these layers not only increased pro-
cessing time but also greatly reduced accuracy. Further, considering the user accuracy,
the classification performance of each algorithm in class differentiation was evaluated.
For the “waterbody” class, all algorithms offered an accuracy of 100%. Although the
overall classification accuracy of SVM was higher, analyzing the results indicated that
for both satellite data, the MLC algorithm was more accurate in classifying residential
regions. For the classes “irrigated land,” “dry farming,” “range land (pasture),” and “bare
land,” for Sentinel 2 data, the MLC, SVM, MLC, and ANN algorithms, respectively, offered
the best accuracies, while for Landsat 8 data SVM, MH, MH, and SVM algorithms were
the most accurate. The results also indicated that different satellite data influenced the
processing due to different resolutions and electromagnetic spectrum bands, changing the
classification accuracy of each algorithm.
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