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ABSTRACT 

 

Micro- and nano plastic pollution poses a global threat and causes a future problem, 
and needs greater global attention. Its pollution is exacerbated recently by the exces-

sive use of plastic polymers to prevent and handle the COVID-19 pandemic at a global 
scale. This review covered the major concerns about the characteristics, effect, and 
bioremediation of micro-and nano plastics. Many aquatic organisms easily ingest mi-
cro-and nano plastic at different trophic levels. This ingestion caused negative health 
impacts to all living organisms. Microplastic directly affects living organisms like 
mechanical injury, false satiation, declined growth, promoted immune response, and 
energy loss. Other debilitating effects include disrupted enzyme activity and produc-
tion, decreased fecundity, oxidative stress, and mortality. Nano plastic could enter the 

circulatory system and caused negative effects on the cellular and molecular levels. 
Bioremediation of microplastic by selected higher and lower eukaryotes, bacteria, fun-
gus, and algae on several polymers was previously reported. However, not much lit-
erature is available on nano plastic biodegradation. Therefore, the current review will 
focus on the characteristics, effect, and bioremediation effort of micro-and nano plas-
tic.  
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Introduction 

Today, plastic has been a global problem, es-
pecially for aquatic ecosystems. After their first 

commercial development in the 1930s and 1940s, 

plastics became widespread because of their con-
venience, durability, and low cost [1]. The world 

plastic production reached 288 million in 2012, a 

620% increase since 1975 [2]. The plastic industry 
grew rapidly up to 335 million tons in 2016 [3].  

During the COVID-19 pandemic, research 

showed a decrease in air pollution in China [4], In-

dia [5], Rio de Janeiro [6], and Sao Paolo [7]. On 
the other hand, the COVID-19 pandemic causes a 

serious problem about the plastic used by many 

people in various working and healthcare person-
nel. During a pandemic, the demand for face 

masks, gloves, coveralls, gowns, goggles, and face 
shields has been increased dramatically [8]. It will 

be a serious problem for the environment during 

post-COVID-19. 
COVID-19 started in Wuhan, China, where 

116 million personal protective equipment (PPE) 

was needed per day or about 12 times the usual 
condition [9]. If the global population uses a stand-

ard disposable face mask (one per day), this pro-

duces a monthly wastage of 129 billion face masks 

and 65 billion gloves [10]. Until February 2020 
last year, to complete this demand, China intensi-

fied its daily production of medical masks to 14.8 

million [11]. In April 2020, The Japanese Ministry 
of economy, trade, and industry (METI) ordered  
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face masks per month over 600 million [12]. 

A dramatic increase in medical waste was also 
reported in Catalonia and Spain (350% and 370%, 

respectively) [13]. About 5336–38426 million 

face masks were estimated for Saudi Arabia. The 

total microplastic content from Bahrain and Qatar 
was 1.7–12.3 and 3.10–22.31 thousand tons, re-

spectively [14]. On the other hand, Singapore was 

produced 1,400 tons of plastic waste from package 
take-out meals and home-delivered groceries 

during an 8-week lockdown [15]. All this plastic 

waste generated at a global scale will end up in 
landfilled or incinerated, leading to higher nega-

tive environmental impacts. Very minor of these 

wastes were sent to the recycling plant because 

plastic mixtures were difficult to recycle because 
of their natural characteristics. Current estimations 

of 4–12 million tonnes/year of plastics go into the 

seas and oceans without properly treated [16]. 
There were two polymer characteristics of  

 
Figure 1. Effect of microplastic on organism 

 

Figure 2. Effect of nano plastic to different organism 
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plastic: thermoplastic (can be molded repeatedly 
on heating), such as polyethylene terephthalate 

(PET), polyvinyl chloride (PVC), polyethylene 

(PE), polypropylene (PP), and polystyrene (PS); 

and thermosets (once formed, cannot be heated 
and remolded), such as polyurethane (PUR) and 

epoxy resins for coatings [17]. Large plastic pieces 

were degraded to micro-and nano plastic size par-
ticles by various mechanisms, such as physico-

chemical and biological degradation [18, 19]. 

 

Micro- and Nano plastic 

The microplastic were spread all over the 

oceans [20, 21], lands [22], and freshwaters like 

rivers and lakes [23]. Microplastics consist of nu-
merous size-ranges; diameters of <10 mm [24], <5 

mm [25], 2–6 mm [26], <2 mm [27] and <1 mm 

[28]. Microplastics can be described according to 
the main categories are fragments (rounded and 

angular), pellets (cylinders, disks, and spherules), 

filaments (fibers), and granules.  

Nano plastic was referred to any particles 
smaller than 100 nm, or the upper limit to 1 µm 

and with a Brownian motion (random motion of 

particles suspended in a medium) in the aqueous 
system [29]. Nano plastics with high surface reac-

tivity could, directly and indirectly, affect soil eco-

systems and in all habitats, including groundwa-
ters and surprisingly at the north Atlantic subtrop-

ical gyre [30]. The gyre itself is part of 75% of the 

open ocean on earth. Nano plastics were formed 

by degradation of polyethylene (PE) and polypro-
pylene (PP) by UV irradiation [31] and on dispos-

able polystyrene (PS) cup lids [32] or by physical 

mechanism [33]. 
 

Effect of Microplastic on Aquatic Organism 

Microplastics' sizes make them easily ingested 

by a lot of aquatic organisms at different trophic 
levels [34]. The ingestion can cause negative 

health impacts (Figure 1).  

Microplastics were also found in ostracods 
(Notodromas monacha), annelids (Lumbriculus 

variegatus), gastropods (Potamopyrgus antipo-

darum), and crustaceans (Gammarus pulex and 
Daphnia magna) [35]. The effects of microplastics 

on zooplankton crustaceans include abnormal em-

bryonic development, decreased lipid droplet stor-

age, decreased feeding rates, energy depletion 
[36], and decreased survival [37]. Some studies 

also observed reduced growth [38], altered repro-

duction [36, 38], delay in molting [39], abnormal 

swimming behavior [38], and damaged intestinal 
microvilli [40]. Microplastics reduce growth, re-

production [41], assimilation efficiency [42], and 

a mortality increase that was exponential to the ex-

posure dose on amphipods [43]. Microplastics in-
gestion by Mytilus edulis can cause tissue inflam-

mation and decrease cell membrane stability of the 

digestive system [48]. Oryzias latipes fed polyeth-
ylene exhibit bioaccumulation, liver glycogen de-

pletion, fatty vacuolation, and single-cell necrosis, 

and early tumor formation [49]. Microplastics can 

cause nuclear membrane disruption, oxidative 
stress, the release of damage-associated molecular 

patterns [44].  

The effects of microplastics on organisms can 
be divided into chemical and physical mecha-

nisms. Chemical effects of microplastics involve 

the absorption of other contaminants on the sur-
face or the release of plastic monomers if they 

physically interact with the organisms’ tissues 

[45]. Microplastics can be found on the gastroin-

testinal tract of fish, gills, liver, and muscle of wild 
specimens [46]. Effect of microplastics on 

zebrafish (Danio rerio) liver was shown on induc-

tion of anti-oxidative enzyme activity, the altera-
tion of metabolism, tissue inflammatory [47] im-

mune response activation, and increase of genes 

regulation related to the complement system [50]. 
Microplastics accumulate waterborne contam-

inants including metals (Al, Fe, Sn, Cu, Zn, Cd, U, 

Sb) [51], nonylphenol and bisphenol A [52], and 

bio-stabilization, bioaccumulation, and toxic com-
pounds [54]. Microplastics can be a vector for hu-

man waterborne pathogens (Genus Vibrio) influ-

encing the water quality [55].  
 

Effect of Nano plastic on Aquatic Organism 

Nano plastic can enter the circulatory system 

and cause negative effects at cellular and molecu-
lar levels (Figure 2). Nano plastics can be easily 

adsorbed by green algae and affect the microbe’s 

photosynthetic mechanism [56]. Nano plastics can 
accumulate in the digestive tract of sea urchin 

[53], while polystyrene-NH2 nano plastics could 

attach with lipid bilayers on the cell membrane. -
NH2 could also decrease lysosomal membrane sta-

bilization, increase oxyradical production in he-

molymph serum, and induce rapid cellular damage 

(membrane blebbing and loss of filopodia) [57]. 
Nano plastics changed the mussel’s (Mytilus 

galloprovincialis) expression of the gene and de-

creased enzymatic activity. Other induced effects 
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include disrupted neurotransmission, increased 
the oxidative status and peroxidative damage [58]. 

Also, nano plastics could increase regulation in the 

central nervous system and inhibit acetylcholines-
terase activity of zebrafish (Danio rerio) signifi-

cantly [59].  

Nano plastics cause the overexpression of re-
active oxygen species (ROS), inhibited the devel-

opment, growth, and reproduction of Daphnia 

pulex. Low nano plastics (0.1 and 0.5 mg.l-1) were 

caused by overexpression of the MAPK pathway 
genes, HIF-1 pathway, Cu,Zn-superoxide dis-

mutase (SOD), and activity of glutathione-S-trans-

ferase. Antioxidant enzymes such as catalase, 
SOD, and Cu, Zn-SOD were decreased after expo-

sure to nano plastics [60]. Nano plastics could re-

duce population growth and chlorophyll concen-

trations in the green alga Scenedesmus obliquus. 
For Daphnia, nano plastics could reduce its body 

size and disturbed reproduction system [61].  

Increased nano plastics concentration in Mac-
robrachium nipponense effect decreased antioxi-

dant enzymes and increased lipid peroxidation and 

hydrogen peroxide. The activities of non-specific 
immune enzymes increased and then decreased 

when nano plastics concentration increased. Simi-

larly, the expressions of immune-related genes 

generally increased and then decreased [62; 63].  
Accumulation of nano plastics on Corbicula 

fluminea occurred in the mantle, visceral mass, 

and gill. This accumulation of nano plastic also 
produces oxidative stress that causes oxidative 

damage to the liver, neuron, and intestine by anti-

oxidation system imbalance [64].  

 
Bioremediation of Micro- and Nano plastic 

The microbial micro-and nano plastic degra-

dation is a multistep process involving biodeterio-
ration (changing the physio-chemical properties of 

the polymer by an enzyme), bio-fragmentation (re-

duction of the complex into a simpler polymer by 
enzymes or acids), assimilation (merger of the 

molecules by microorganisms), and mineraliza-

tion (oxidized metabolites produced by degrada-

tion) [65]. UV radiation and photooxidation can 
increase bioremediation [66, 67]. 

The previously reported microplastic degrada-

tion by selected microorganisms is listed in Table 
1. Past research has been focused on bacteria and 

lower eukaryotes (fungi) as bioremediation agent 

[68]. Many literatures have shown that unicellular 
microalgae, single species or consortia with bac-

teria can degrade endocrine disrupting chemicals 
like microplastics in wastewaters. Seaweeds like 

Fucus vesiculosus are also good plastic degraders 

as they can remain suspended on the water surface 
[69]. 

Several freshwater Magnoliophyta such as 

Eichhornia crassipes, Pistia stratiotes, and Lemna 
minor were used for removing heavy metals and 

several pollutants in Waste Water Treatment 

Plants (WWTPs) [70]. In addition, higher eukary-

otes have potential for elimination of microplas-
tics from WWTPs for instance annelids (sand-

worms), echinoderms (sea cucumbers) and some 

other animals that still under investigation. Sea-
grasses and macrophytes seem to be good candi-

dates as well for future consideration. [71].  

Microorganisms like Rhodococcus ruber [72] 

and fungus Penicillium simplicissimum [73] able 
to degrade polyethylene (PE) by producing an ex-

tracellular enzyme. The thermophilic bacterium  

 
Table 1. Selected microorganisms for microplastic 

degradation  

No. Species Organism Type Ref. 

1 Fucus vesiculosus Algae [69] 

2 Egeria densa Macro-

phytes 

[71] 

3 Brevibacillus borstelen-

sis 

Bacteria [66] 

4 Streptomyces sp. Bacteria [74, 75] 

5 Pseudomonas stutzeri Bacteria [75] 

6 Pseudomonas chlorora-

phis  

Bacteria [80] 

7 Pseudomonas putida  Bacteria [81] 

8 Alcaligenes faecalis Bacteria [75, 76] 

9 Clostridium botulinum Bacteria [75] 

10 Rhodococcus ruber Bacteria [73] 

11 Aureobasidium pullulans 

sp 

Bacteria [79] 

12 Bacillus brevis  Bacteria [78] 

13 Bacillus cereus Bacteria [83] 

14 Rhodococcus ruber  Bacteria [82] 

15 Comamonas testosteroni 

F4 

Bacteria [84] 

16 Delftia sp. WL-3 Bacteria [85] 

17 Ideonella sakaiensis Bacteria [87] 

18 Fusarium sp. Fungi [77] 

19 Fusarium moniliforme Fungi [77] 

20 Fusarium solani Fungi [79] 

21 Penicillium roqueforti  Fungi [77] 

22 Penicillium simplicissi-

mum 

Fungi [73] 

23 Aspergillus flavus 

PEDX3 

Fungi [88] 
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Brevibacillus borstelensis [66] and Streptomyces 
sp. can also degrade the same polymers [74]. Al-

caligenes faecalis, Streptomyces sp., and Pseudo-

monas stutzeri [75, 76] can degrade polyhydroxy-

alkanoates (PHA) and polyhydroxy butyrate 
(PHB). PHA also can be degraded by fungi that 

have been isolated from soil (Basidiomycetes, 

Deuteromycetes, and Ascomycetes) [77]. 
Polycaprolactone (PCL) is easily degraded by 

Alcaligenes faecalis [76] and Clostridium botuli-

num [75], and Fusarium [77]. Polylactic acid 

(PLA) is degraded by Bacillus brevis [78], 
Fusarium moniliforme, and Penicillium roqueforti 

[73, 77].  

Polyurethane is degraded by Fusarium solani, 
Aureobasidium pullulans sp., [79], and Pseudo-

monas chlororaphi [80]. Polyvinyl chloride 

(PVC) could be degraded by the Pseudomonas 
putida [81], whereas polystyrene by the actinomy-

cete Rhodococcus ruber [82]. 

After 40 days, Bacillus cereus was reported to 

degrade 1.6% polyethylene (PE), 6.6% Polyeth-
ylene terephthalate (PET), and 7.4% polystyrene 

(PS). Bacillus gottheilii could degrade 6.2% poly-

ethylene (PE), 3.0% polyethylene terephthalate 
(PET), 3.6% polypropylene (PP), and 5.8% poly-

styrene (PS) [83]. A combination of Comamonas 

testosteroni F4 and high pH showed effective deg-
radation of PET [84]. Delftia sp. WL-3 can also 

consume 94% of 5 g.l-1 of diethyl terephthalate 

(DET) as a carbon source in 7 days [85].  

Biodegradation of nano plastic is a relatively 
new issue. Degradation of nano plastics still using 

an OH-mediated degradation process. This 

method could affect the ecosystems by increasing 
the amount of dissolved organic matter [86].   

 

Conclusion 

Microplastics and nano plastics have been 
shown serious effects on organisms ranging from 

genes to behavior. Bioremediation efforts are re-

quired to solve the microplastic and nano plastic 
problems, let alone reducing their utilization at the 

consumer’s level. Microplastic bioremediation 

can be carried out by various organisms like algae, 
bacteria, and fungi. However, nano plastics are 

difficult to degrade. Nano plastics can disrupt the 

activity of organisms down to the level of genes 

and proteins. This may be difficult for many or-
ganisms to anticipate and, therefore, open for fur-

ther research. On the other hand, fungi for micro-

plastic bioremediation are still limited and require 

further exploration and research efforts, especially 
at genomic and proteomic levels. Currently, post-

COVID-19 derails efforts to reduce plastic utiliza-

tion and plastic consumption. At the same time, its 

global production is expected to increase continu-
ously. Recently, there has been a high number of 

scientific papers related to microplastic and little 

on nano plastic degradation.  This may fill the 
knowledge gap regarding current occurrence 

level, fate, and environmental and health impacts. 
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