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A B S T R A C T

The changing dynamics, non-linearity of soil moisture content, as well as other weather

and plant variables requires real-time monitoring and accurate predictive model for effec-

tive irrigation and crop management. In this paper, an improved monitoring and data-

driven modelling of the dynamics of parameters affecting the irrigation of mustard leaf

plant is presented. An IoT-based monitoring framework is implemented using ESPresso Lite

V2.0 module interfaced with different soil moisture sensors (VH-400), flowmeter (YF-S201)

as well as Davis vantage pro 2 weather station to measure soil moisture content, irrigation

volume, and computation of the reference evapotranspiration (ETo). The data collected

including plant images were transmitted to the Raspberry Pi 3 controller for onward online

storage and the data are displayed on the IoT dashboard. The combination of both soil

moisture and ETo values was used for scheduling a drip irrigated plant grown in a green-

house for 35 days. A total number of 20, 703 experimental data samples are collected from

the IoT-based platform was further used for data driven modelling through system identi-

fication in MATLAB. The result shows the development of different predictive models for

soil moisture content prediction. The ARX prediction model is found to perform better than

the ARMX, BJ and State space model in terms of estimated fit of 91.31%, 91.09%, 91.08%, and

90.75% respectively. Therefore, a robust monitoring framework for irrigation system has

been developed, while the performance of the identified ARX model is promising to predict

the volumetric soil water content.
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1. Introduction

The effect of global warming and increasing drought are cre-

ating an unprecedented strain on the continued availability of

water resources. There is also a threat to food security and

water crisis because of the expected increase in population

to 9.8 billion by 2050 [1]. Since irrigation is a significant con-

sumer of freshwater, wastage of resources in this sector could

have substantial consequences on food security [2,3]. Conse-

quently, to improve the efficiency of water use through preci-

sion irrigation, the integration of cutting-edge technology

such as the Internet of Things (IoT), for irrigation manage-

ment, identification, and control strategies for prediction

and optimization is used by taking account of the variabilities

in the environment and also to enhance precision irrigation

system [4,5].

Precision irrigation system plays a significant role in pro-

viding significant contributions to food production and to

reduce the stress experienced by farmers. Therefore, there

is need to precisely design an irrigation system that can pre-

dict, adapt and deliver the appropriate amount of water to the

crops where and when it is needed in response to the chang-

ing dynamics of the soil, weather and the plant [6,7].

The term internet has been associated with things and is

now being identified as IoT, which implies the interconnec-

tion of electronic devices through internet via Wi-Fi, radio fre-

quency identification device (RFID), LoraWan, Zigbee,

Bluetooth, Long term evolution (LTE), and other wireless com-

munication technologies [8,9]. In the current decade, IoT has

provided an efficient means in the monitoring system as the

user can monitor and control the system anywhere and at

any time [10]. In agriculture, the application of IoT has the

main aim to connect physical objects (things) such as sensors,

cameras, flow meters, actuators, and robots to the internet

using wireless network connectivity to measure variables

such as soil moisture, temperature, humidity, images of plant

and other weather conditions [10-18]. Therefore, it would be

advantageous to leverage on IoT system platform towards

enhancing the monitoring and control process of irrigation

operation and to observe plant response in terms of growth

and water stress [7].

The application of IoT and WSN for monitoring has been

successfully implemented on several agricultural operations

such as water quality management [19–21], smart irrigation

system [22–31] data analytics and machine learning

[14,23,32–34], disease monitoring [35], remote sensing and

NDVI imagery [36–42], and greenhouse monitoring [43–47].

Other related underground monitoring domain on sensing

and communication was demonstrated by [29,48], where a

novel internet of underground things was used for soil mois-

ture monitoring and relative permittivity estimation through

the help of propagation path loss and velocity of the propa-

gated wave from an antenna radiating at 433 MHz buried in

different depths of the soil. It was reported that both param-

eters were measure with high accuracy with minimal error

when compared with other methods. Similarly, real time sen-

sor measurement of weather parameters, soil moisture and

nutrient content data using wireless technologies towards

efficient irrigation measurement was reported by [46-48],

where reasonable amount of water usage for irrigation was

optimised through the adoption of IoT-based monitoring.

The data generated by different sensors in modern agricul-

tural operations via IoT platform can enable a better under-

standing in the interaction of dynamic changes of the crop,

soil, and weather conditions of the greenhouse environment,

which can be further used for data-driven modelling predic-

tions for more accurate and faster decision making in real-

time towards achieving water-saving agriculture [49–51].

Predictive modelling involves using dynamic models and

algorithms that combine data from various sources such as

operational, physical, physiological processes and chemical,

in order to predict specific trends or outcomes for decision

making about the process [52]. It helps to improve irrigation

efficiency and productivity of crops as well as mitigating the

effect of the changing dynamics of weather conditions in

order to optimise the use of agricultural inputs [53,54].

Previous work on dynamic modelling in precision agricul-

ture using grey-box system identification was carried out on

baseline temperature in a greenhouse cultivated lettuce crop

and cucumber [55,56], transpiration of lettuce plant [57–59],

tomato plant transpiration dynamics[60,61], volumetric water

content of the soil [62,63], as well as reference evapotranspi-

ration(ETo) [64–66]. Similarly, the identification of underwater

sea cucumber using convolution and residual deep learning

networks was implemented. The results obtained shows that

the accuracy of both models reached 89.53% using stochastic

gradient descent algorithmwhich signifies good identification

of sea cucumber [66].

Before a model-based control system for precision irriga-

tion is designed and implemented, a good predictive model

that can help represent the dynamic behaviour of the soil,

plant and weather condition is needed [61]. Therefore, in

designing the predictive control system, a system identifica-

tion approach can be used to construct the predictive mod-

els of dynamic systems to mimic the interaction of the

observed data for a process [67-69]. The identification of

the system parameters is needed through the use of adjusta-

ble modelling method, which consists of using an existing

fixed model structure to fit the data collected from the sys-

tem. The parameters of that model need to be modified to

make its dynamic behaviour more close to that of the sys-

tem [70]. This model can be obtained through two

approaches: grey-box or black-box modelling approach. The

model obtained must be able to replicate the process beha-

viour of the system actions under all the conditions neces-

sary for the system to function. In this work, the black-box

modelling approach using the volumetric water content of

the soil, reference evapotranspiration estimated from

weather variables, and irrigation volume as input and output

data collected using the IoT-based experimental framework

to construct a predictive model that mimic the dynamic

behaviour of the system.

This paper proposes a data-driven modelling approach to

develop an accurate predictive model for the system using
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the data obtained from the IoT-based irrigation monitoring

system during the cultivation of mustard leaf plant. The

model which represents the changing behaviour of the sys-

tem is needed for simulation of the process, predicting of

the future behaviour of the control variable and designing

adaptive controller for irrigation control.

2. Materials and methods

2.1. Experimental design

The cultivation experiment on mustard leaf vegetable plant

was conducted in a greenhouse environment located at

Universiti Teknologi Malaysia, Johor Bahru, Malaysia (1�
33.5540N, 103� 37.5070E) [71]. A transparent plastic nylon and

tick net material is used as the roof top while treated net is

used to surround and cover up the greenhouse, this is to pro-

vide natural ventilation and prevent attack from pests.

An IoT based drip irrigation system with emitters placed

closed to the roots zone of the plants was installed to supply

water to the coco peat inside the poly bags, which is the grow-

ing medium to minimise soil erosion, runoff, and save water.

The coco peat is a good plant growing medium with high

water holding capacity as well as moderate electrical conduc-

tivity and PH which is suitable for greenhouse cultivation

[72,73].

The cultivation process of the Mustard vegetable leaf

started with planting of the seedling as nursery on the 18th

of July 2019, after which it germinated after 4 days and ready

for transplanting on the 30th of July 2019. About 65 units were

transplanted on the 1st of August 2019 into the poly bag

within that greenhouse that is naturally ventilated. Immedi-

ately after transplant an, electrical conductivity (EC) value of

1 dS/m, was maintain with A and B fertigation used to aid

the growth for two weeks after transplant.

2.2. Developed IoT-based monitoring framework of the
cultivation experiment

Effective monitoring which is crucial for the management

of mustard leaf plant is needed to capture the changing

dynamics of the soil, weather and plant parameters in

the cultivation environment. In order to realise this, an

IoT-based monitoring framework comprising of Davis Van-

tage Pro 2 weather station and a Raspberry Pi as con-

troller was interfaced with the various EXPresso Lite2

with a sensor (flowmeter, VH400 soil moisture sensors)

to setup an IoT-based automatic irrigation monitoring sys-

tem as shown in Fig. 1. The weather station was inte-

grated with an IoT-based Arduino prototyping board

where the ETo was computed to estimate the amount of

water loss from the plant. Evapotranspiration is a process

that relates to the loss of water from the plant as well as

soil surface into the environment, which is being affected

by weather parameters, plant management, and environ-

mental characteristics [74].

The hourly computation and estimation were computed

using an FAO-56 Modified Penman-Montieth equation that

calculated ETo value based on weather data measured by

the Davis Vantage Pro 2 shown in Eq. (1).

ETO¼
0:408D Rn � Gð Þ þ c 900

Tþ273U2 es � eað Þ
Dþ c 1þ 0:34U2ð Þ ð1Þ

where:

Rn is the soil surface solar radiation,

U2 is the speed of the wind measured at 2 m height,

T is the daily mean temperature of the air,

G is soil heat flux density,

es � ea is the saturation vapour pressure deficit,

D are the gradient of the pressure curve and c the psycho-

metric constant as inputs [75,76].

Fig. 1 – Developed IoT-based Drip Irrigation System Monitoring Framework.
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The ETo and other weather variables of the greenhouse

were logged into the cloud database and are available on

the greenhouse IoTwebsite.

The IoT Irrigationmonitoring system is shown in Fig. 1 has

beendevelopedusingESPressoLiteV2andRaspberry Pi 3as the

controller and processing unit. The VH400 moisture sensor

senses the volumetric water content of the soil, while an IoT

based weather station deployed in the greenhouse computed

the ETo value to estimate the crop water use. The YF-S201 flow

meter sensor measures volume of water used for irrigation at

every irrigation time step has been interfaced with Raspberry

Pi via an ESPresso Lite V2.0, where all the sensed data is col-

lected for decision making and action base on the scheduling

algorithm embedded on the Raspberry Pi. In addition to these

sensors, the actuator (water pump) also connected via a

solid-state relay to the Raspberry Pi to supply water, while a

camera connected to the Raspberry Pi was used to monitor

the growth rate and health status of the plant, from which

image isuploadedon the IoTwebpageplatformonhourlybasis.

Fig. 2 shows the stored data which is being displayed

on the dashboard of the agro-IoT website. The data were

stored in a database and displayed on the webpage for

farmers to access and monitor trends as well as perfor-

mance. The irrigation decision algorithm embedded on

the Raspberry Pi is based on the combination of the real

time volumetric water content (VWC) and ETo value which

are used to decide the irrigation instance of the system.

When the ETo is increasing, more water is released to

compensate for the water loss, while the volumetric water

content of the soil is being checked to avoid exceeding the

coco pit field capacity.

3. Data analysis and modelling

The experimental data collected were stored in a comma sep-

arated value (CSV) file on the database of the webpage in Fig. 2

and analysed offline, while the data driven modelling via sys-

tem identification was carried out using MATLAB computa-

tional software.

3.1. System identification of drip irrigation system
variables

System identification is an important method of modelling

which can be applied to develop the representation of a

dynamic system using different model structures [78]. Sys-

tem identification is used to simultaneously linearize and

reduce model complexity, to expose its ‘dominant modes’

of dynamic behaviour [79]. The formulation of the

multiple-input single-output (MISO) model illustrated in

Fig. 3, is based on hydrological balance model showing

their interaction between the irrigation amount, reference

evapotranspiration and volumetric water content of the

soil.

This approach is applied in developing predictive models

of dynamic systems based on the collected time series data

of output-input variables during the cultivation of mustard

leaf from the IoT platform. The basic steps involved in mod-

elling via system identification are; setting up the experiment,

data collection, selection of model structure, estimation of

the model, and finally, validation of the estimated model, as

illustrated in Fig. 4

The Fig. 4 shows the framework for the data-driven mod-

elling approach, where the first two blocks illustrate the culti-

vation of the Mustard Leaf plant and IoT monitoring for data

collection. The pre-processing blocks help in preparing the

data such as remover of trends and means, to get a good

model. Other blocks illustrate the usage of the model struc-

ture to fit the prepared data and also acceptance of the model

based on how good is the performance metrics are such as

the mean square error (MSE), final prediction error (FPE) and

estimated fit of the model [80].

Fig. 2 – UTM AgroIoT Dashboard for Monitoring [77].
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3.2. Parametric model structures and estimation methods

Since the experimental process was multivariable (MISO) with

m manipulated variables (or inputs) which are reference tran-

spiration, canopy temperature, effective irrigation (water

amount) and the controlled variables (or outputs) is the volu-

metric water content of the soil, the sequence of data col-

lected from an identification test is shown in Eq. (2):

m zð Þ ¼ u að Þ;u bð Þ;u cð Þ; � � � � � � ::u zð Þ; y að Þ; y bð Þ; y cð Þ; � � � � � � :y zð Þð
ð2Þ

where u að Þ;u bð Þ � � � � � � : 2 u tð Þ; and u tð Þ is the manipulated vari-

ables which is an m-dimensional input vector, y tð Þ is the con-

trol variable with p-dimensional output vector, and n is the

number of data points. It is assumed that the linear process

derived in Eq. (3) is used to generate the data:

y tð Þ ¼ G x�1
� �

u tð Þ þH x�1
� �

e tð Þ ð3Þ

where x�1 is the unit delay operator, G x�1ð Þ is the process

transfer function and H x�1ð Þ is the noise model and e tð Þ is a

p dimensional white noise vector [81]. The model to be iden-

tified is the same structure as in Eq. (3) while the general

model structure is shown in Eq. (4)[82].

A x�1
� �

y tð Þ ¼ B x�1ð Þ
F x�1ð Þ u tð Þ þ C x�1ð Þ

D x�1ð Þ e tð Þ ð4Þ

where y tð Þ is the volumetric water content of the soil at

instant t, u tð Þ is the input variables while e tð Þ is the estima-

tion error. The polynomials that define the output (soil mois-

ture), inputs to the model(irrigation amount and ETo), and the

error estimation are represented by A xð Þ;B xð Þ;C xð Þ;D xð Þ; and
F xð Þ [83]. The parametric model structures that was used to

model and identify the experimental time series data are

autoregressive with external input model, output error model,

autoregressive moving average with external input model,

and box jenkins model.

3.2.1. The autoregressive with external input model
The autoregressive with external input model (ARX) model

structure is derived from Eqs. (3) and (4) [67].

where G x�1
� � ¼ x�d B x�1ð Þ

A x�1ð Þ and H x�1
� � ¼ 1

A x�1ð Þ ð5Þ

Also, A x�1ð Þ ¼ 1þPna
k¼1akx�k andB x�1ð Þ =Pnb

k¼0bkx�kare poly-

nomial matrices, d is the delay of the system.

Therefore, the ARX model can be expressed, as shown in

Eq. (6) [82].

A x�1
� �

y tð Þ ¼ x�dB x�1
� �

u tð Þ þ e tð Þ ð6Þ

3.2.2. The autoregressive moving average with external input
model
This autoregressive moving average with external input

model (ARMAX) has a broader structure than the ARX shown

as follows:

G x�1
� � ¼ x�d B x�1ð Þ

A x�1ð Þ andH x�1
� � ¼ C x�1ð Þ

A x�1ð Þ ð7Þ

where C x�1ð Þ ¼ 1þPnc
k¼1ckx

�k

which is a polynomial, the presence of which means that

noise term is explicitly modelled and expressed as Eq. (8) [67].

A x�1
� �

y tð Þ ¼ x�dB x�1
� �

u tð Þ þ C x�1
� �

e tð Þ ð8Þ

AM

MISO MODEL Soil Moisture
Content

Flow
(Irrigation Volume)

Reference 
Evapotranspiration

Fig. 3 – Multiple Input Single Output (MISO) model based on the hydrological balance.

No

sejg 
Set up the Experiment

Input and Output Data
Collection

Data Pre-processing

Model Structure 
Selection

Model Estimation

Model Validation

Model 
Accepted?

Model Application
Controller Design

Yes

Fig. 4 – The Data-Based modelling approach.
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3.2.3. The box Jenkins model
The Box Jenkins (BJ) model provides completely independent

parameterisation for the dynamics and the noise using a

rational polynomial function. The box Jenkins model struc-

ture is represented by Eq. (9) [80].

y tð Þ ¼ x�d B x�1ð Þ
F x�1ð Þ u tð Þ þ C x�1ð Þ

D x�1ð Þ e tð Þ ð9Þ

D x�1
� � ¼ 1þ

Xna

k¼1
Dx�k ð10Þ

3.2.4. The output error model
The Output Error (OE) model structure is used in the case

when the process output is disturbed by only white measure-

ment noise as represented by Eq. (11) [80].

G x�1
� � ¼ x�d B x�1ð Þ

F x�1ð Þ and H x�1
� � ¼ 1 ð11Þ

This model can be expressed as

y tð Þ ¼ x�d B x�1ð Þ
F x�1ð Þ u tð Þ þ e tð Þ ð12Þ

where,

F x�1
� � ¼ 1þ

Xnf

k¼1
Fkx

�k ð13Þ

3.2.5. The state space model
The following set of equations describes the state-space (SS)

model of a multivariable process.

x tþ 1ð Þ ¼ Ax tð Þ þ Bx tð Þ þ Pe tð Þ ð14Þ

y tð Þ ¼ Cx tð Þ þ Dx tð Þ þ e tð Þ ð15Þ

In Eqs. (14) and (15), the A, B, C, D and P matrices are esti-

mated by using the subspace state-space identification

method. The vector x tð Þ is the state vector of the process at

a discrete-time (t), y tð Þ denotes the output at the time (t),

u tð Þ represents the input at a time (t), while e tð Þ is called the

process noise disturbance.

3.3. Model identification implementation in MATLAB

This subsection describes the data-driven modelling using

the experimental dataset. A MATLAB Toolbox called system

identification can be used for the dynamic modelling of the

process, starting with the lower order, increasing and

decreasing the order of the polynomial (na,nb, nc; nd, and nf )

and also the variable delay nk[85]. Fig. 5, shows the user inter-

face of the system identification toolbox, where the process-

ing and model estimation was carried out which resulted in

the different model generation of ARX 125, state space, ARX

2221, and box Jenkins.

The total number of 20,703 experimental data sampleswas

used for the modelling, which was split into two halves,

which is 10,351 and the number was used for the model esti-

mation, and

the other half was used for validation of themodel, while a

sampling period of 600 s was chosen. In addition, the experi-

mental data pre-processing was carried out to remove the

trends, filtering, outliers, and means.

3.4. Model evaluation criteria

The developed models using the MATLAB system identifica-

tion toolbox are evaluated by the lowest order of their dynam-

ics to predict the system’s output behaviour and shows the

interaction between the input and output variables of the sys-

Fig. 5 – The MATLAB system identification user interface.
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tem using mathematical model. The statistical performances

of the developedmodels can be evaluated in terms of the final

prediction error (FPE), best fit, and the mean square error

(MSE) [84,86].

3.4.1. Final prediction error
The final prediction error (FPE) describes the measure of the

model quality of the situation when the model is tested on

a different data set. The accuracy of a developed predictive

model depends on how small is the FPE, according to Akaike’s

theory [35]. It is defined as FPE and shown in Eq. (16):

FPE ¼ det
1
N

XN
1

e t; bhN

� �
e t; bhN

� �� �N !
1þ d

N

1� d
N

 !
ð16Þ

where: N is the number of values in the estimation data set, e

(t) is an n-by-1 vector of the prediction errors and,hN repre-

sents the estimated parameters, and d is the number of esti-

mated parameters.

3.4.2. Mean square error
The mean square error (MSE), is a statistical parameter that

assesses the quality of prediction in the same unit of the vari-

able. The MSE value close to zero shows that the model pre-

diction is accurate. The Eq. (17) defines the MSE:

E ¼ 1
n

Xn
i¼1

yi�byi

� �2 ð17Þ

where yi and byi are observed and predicted the value at the

time i (i = 1, 2. . ... . .,n), and n is the data point.

3.4.3. Estimated fit
The Estimated fit (%) is a measure of the correlation between

the measured output yð Þ and the predicted output byð Þ as

shown is Eq. (18). For a N number of input–output pairs, given

the measurement output yð Þ and the simulated or predicted

output byð Þ, the estimated fit can be computed as:

EstimatedFit ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi � byi

� �2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi � 1
N

Pn
i¼1

yi

� �2
s

0BBBBB@

1CCCCCA� 100 ð18Þ

where yi and byi are observed and predicted value at the time i

(i = 1, 2. . ... . .,n), and n is the data point.

4. Results and discussion

This section describes the results of the changing dynamics of

soil, plant and weather during the period of the experiment.

Fig. 6 shows the graph of the daily estimation of reference

ETo and solar radiation. From the figure, there exists a close

relationship between the data of the ETo and solar radiation,

with ETo directly proportional to the solar radiation. The ETo

value is shown to reach its peak by mid-day which also

depends on the changes in daily weather. The maximum

Value of ETo and solar radiation recorded during the period

of experiment is 0.85 mm and 800 W/m2 respectively.

A similar trend of curves between temperature and

humidity measured immediately after transplant, between

July 1st to 22nd 2019 as shown in Fig. 7. The daily data were

sampled every 10 min and stored on the IoT cloud database.

The average maximum temperature and minimum tempera-

ture measured was 36.5�C in the afternoon and around 22�C at

night, respectively while the humidity decrease in the after-

noon as temperature increases, with maximum and mini-

mum value at 98% and 25% respectively. The irrigation

volume in litres measured by the flow meter was compared

with the reference evapotranspiration and shown in

Fig. 8, the irrigation volume applied is able to compensate

for the water loss at every estimated instant while maintain-

ing the volumetric water content of the soil.

The graph of the volumetric water content of the soil

against the time which is maintained within wilting point

(0.1) and field capacity (0.45) of the coco pit after transplant

Fig. 6 – Daily estimation of ETo (mm) and Solar Radiation (W/m2).

276 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e ( 2 0 2 1 ) 8 ( 2 ) 2 7 0 –2 8 3



between 1st and 22nd July 2019 is shown in Fig. 9. It can be seen

that the dynamics is changing, due to the effect of the plant

uptake of water and environmental (weather) effect. As the

water loss due to evapotranspiration increases or decreases,

there is also a corresponding effect on the volumetric water

content of the soil, showing that more or less water is needed

to be supplied for irrigation. Therefore, both variables have a

direct impact on the amount ofwater to be applied to theplant.

With the help of the Crontab scheduling programming of

the Raspberry Pi and its camera, real-time images of the plant

are always captured at intervals during the day and uploaded

to the IoTwebpage where the growth and performance of the

plant in three greenhouses are monitored remotely as shown

in Fig. 10.

The data driven modelling results in terms of model eval-

uation as well as statistical and prediction performance at dif-

ferent step ahead predictions of the developed models is

shown in Tables 1 and 2. The statistical performance of differ-

ent models that was used to fit the experimental dataset as

shown in Table 1. The developed ARX model with the esti-

mated fit of 91.31% with the least MSE and FPE of 0.753 and

0.764 respectively, was chosen from among all other models

that has low performance. The model can predict the mea-

sured output variable effectively as well as another dataset

that was not used for estimation but was collected for the

same cultivation experiment. Table 2 shows the performance

in terms of the best fit of each model at different prediction

step ahead. It can be seen that the 1 step prediction has the

best-estimated fit, with the ARX model having the highest

estimated fit.

The chosen model estimated parameters are shown in

Eqs. (19)–(22):

Fig. 7 – Air Temperature (�C) and Humidity (%).

Fig. 8 – Reference Evapotranspiration-(ETo (mm)) against Irrigation volume (Litres).
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Fig. 9 – Volumetric water content (VWC) of the soil (m3/m3).

Fig. 10 – Experimental setup of smart drip irrigation system for Mustard Leaf cultivation in a greenhouse monitored via IoT

based Raspberry Pi camera.

Table 1 – Statistical Performance of the Models.

Model FPE MSE Estimated Fit

ARX 0.764 0.753 91.31
BJ 2.815 2.812 91.08
ARMX 2.814 2.813 91.09
State space (SS) 2.806 2.829 90.75

Table 2 – Prediction performance of the different models by
Estimated Fit.

Model 5 Step ahead
prediction

3 step ahead
Prediction

1 Step ahead
prediction

ARX 81.47 85.57 91.31
BJ 81.42 85.3 91.08
ARMX 81.35 85.41 91.09
State Space
(SS)

81.28 85.21 90.75
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Discrete-time ARX model:

A zð Þy tð Þ ¼ B zð Þu tð Þ þ e tð Þ ð19Þ

A zð Þ ¼ 1� 0:9991z�1 ð20Þ

B1 zð Þ ¼ 0:0006301z�5 � 0:00035z�6 ð21Þ

B2 zð Þ ¼ 1:035z�5 � 0:9762z�6 ð22Þ
Polynomial orders: na ¼ 1;nb ¼ 66½ �;nk ¼ 55½ �, indicates a

first-order model with a dead time of 5 samples.

Fig. 11 – The measured and predicted output.

Fig. 12 – The error between the real and the estimated models’ interpretation.
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The Fig. 11 shows the output models obtained using the

system identification toolbox while the measured minus the

predicted output ARX model involved is shown Fig. 12. This

error is about 8.69% (100–91.31%), which is acceptable in the

field of agriculture, where the work with empirical relation-

ships is most prevalent [61].

The developed models are evaluated by the lowest order of

their dynamic response of these models as shown in Fig. 13

(a)–(d) are the first-order models and are suitable as there

were no overshoot or undershoot, but with slow response.

Also, there no time delay and lesser rise time except that of

the BJ model with offset.

The frequency response curve is shown in Fig. 14, which

measures themagnitude and phase of the output as a function

of frequency in comparison to the input and shows all the

model structure dynamics are similar. This data-driven mod-

elling has beendone to obtain predictivemodels that is needed

for the design of model-based controller for the real system

The results show that there is anoverall stable output based

on nonlinear inputs. Concordance between the real and esti-

mated models is reached at the output (soil moisture), which

is the aim sought by the farmer and the control specialist.

The predictive model developed in this research is subject to

some margin of uncertainty despite experimental validation.

 (c)                                       (d) 

(a) (b) 

Fig. 13 – The step response of system: (a) ARX model (b) SS Model (c) ARMAX model (d) BJ model.
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5. Conclusion

This experimental framework has demonstrated enhanced

precision irrigation leveraging on the IoT platform, which

was used for monitoring through the use of different sen-

sors and IoT based weather station. An innovative IoT

based irrigation monitoring for the cultivation of Mustard

Leaf together with data driven modelling of experimental

dataset has been carried out. The cultivated plant was har-

vested after four weeks of cultivation period with a total of

1920 Litres of water for a total number of seventy-five (65)

poly bags. The mathematical predictive model describing

the relationship of water flow (irrigation amount), water

loss (ETo) and soil moisture were developed using system

identification toolbox in MATLAB. The ARX model was cho-

sen over the other model such as ARMAX, BJ, and state-

space because it performed better when tested for MSE of

0.753, FPE of 0.764, the best fit of 91.31%, and good response

time. The choice was based on the smallest order, the lin-

earity, and adequate response for prediction of volumetric

water content of the soil. Future work; could focus on inte-

grating the constructed model to develop a model predic-

tive irrigation controller for deployment in a greenhouse.

When implemented, the controller will help achieve opti-

mal control action for better high water saving, reduced

energy use and increased yields.
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