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Abstract: The spread of electric vehicles (EV) contributes substantial stress to the present overloaded
utility grid which creates new chaos for the distribution network. To relieve the grid from congestion,
this paper deeply focused on the control and operation of a charging station for a PV/Battery powered
workplace charging facility. This control was tested by simulating the fast charging station when
connected to specified EVs and under variant solar irradiance conditions, parity states and seasonal
weather. The efficacy of the proposed algorithm and experimental results are validated through
simulation in Simulink/Matlab. The results showed that the electric station operated smoothly and
seamlessly, which confirms the feasibility of using this supervisory strategy. The optimum cost is
calculated using heuristic algorithms in compliance with the meta-heuristic barebones Harris hawk
algorithm. In order to long run of charging station the sizing components of the EV station is done
by meta-heuristic barebones Harris hawk optimization with profit of USD 0.0083/kWh and it is
also validated by swarm based memetic grasshopper optimization algorithm (GOA) and canonical
particle swarm optimization (PSO).

Keywords: electric vehicle; harris hawk optimization; energy management system; renewable
sources; power electronics converter; fast charging station

1. Introduction

Rising energy demand in the transportation sector is one of the most challenging tasks
to meet carbon dioxide (CO2) reduction targets and Green House Gases emission (GHGs).
Due to the sector’s dependence on fossil fuel energy sources along with the monumental
negative consequences in climate change, air pollution and other social impacts—electric
vehicles (EVs) is a cost-effective, eco-friendly, sustainable alternative over conventional
vehicles (CVs) which replace dramatically the conventional Internal Combustion Engine
Vehicles (ICEV) in the present era [1]. EV exposure brings merits to power systems, such as
load leveling, increasing generation capacity during high load periods, likely investment
deferment, voltage regulation, spinning reserve services, reduction of oil dependence,
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yielding high economic and environmental benefits. Apart from supporting the grid with
active power, EVs can enhance the power quality by supplying power to the grid especially
at peak load. The total amount of emissions produced by an electric vehicle over its entire
life cycle, which includes both the energy input and the materials utilized to power the
vehicle from tank to wheel. The direct tailpipe emissions which are termed as well to
wheels is far less than ICEV [2,3]. As EV is empowered by batteries there is remarkable
research in battery technology. Gaston Planté was the first French physicist who invented
the lead-acid battery in 1859. This type of battery was developed as the first rechargeable
electric battery marketed for commercial use and it is widely used in automobiles [4].
From that time battery chemistry is improving day by day and now Lead-acid, Lithium-
ion battery, sodium nickel chloride (NaNiCl2) battery also known as ZEBRA, the name
originated from the Zeolite Battery Research Africa Project (ZEBRA) group in South Africa,
metal air batteries, sodium beta batteries are well competing in the vehicle market [5].
Figure 1 gives a clear comparison between these internal combustion and electric powered
vehicles [6].
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Integrating an EV fast-charging station into a weak AC grid can result in protection
system issues and steady-state voltage/frequency regulation problems. Moreover, the
intermittent and fast load changes associated with the fast-charging of EVs give rise
to dynamic voltage regulation problems [7]. In paper [8] the authors developed green
building management scheme (GBMS) using renewables with the long and short term
storage devices. The simulation shows that control schemes of GBMS is tested superbly. In
another paper [9] driving pattern of commercially vehicle fleet and integration of Battery
Electric Vehicles (BEV) is computed. Lessening of GHG and gross price of possessions
also worked out. An algorithm is based on mixed integer linear program (MILP), utilizing
MATLAB incorporated with solver was developed that combines variable charging set
ups, the mobility contour and variant vehicle classes, to organize an optimized norm for
organization. Similarly in a survey paper [10], the authors discusses various charging tactics
of EVs. The authors also debates about intricacy; socio-economics and line losses on the
mainstream; competence to give ancillary services; operation prospects (charging duration)
and direct effect on the vehicles, public grid and the atmosphere. In paper [11] authors
introduced the new green building network which permits the proficiency of model-based
expansion for energy management algorithms in smart buildings or predictive renewables
strategies for hybrid vehicles with electromotive drive train. In the paper [12], EV charging
station is used using renewables which smoothen the excess power, to enhance features
of the home-grid interface using BMS (Battery Management System) and power inverter.
In the paper [13], the integration of BEV in the commercial company is investigated with
the potential to raise profitability while charging. In the paper [14] the driving pattern of
industrial fleet is rigorously evaluated and possibility of maximum BEV in compliance
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with smart charging scheme. Lessening of nitrogen gases and gross ownership of vehicles
also discussed. In another research [15] the authors simulated the GPS installed taxies
with four different models of PHEV. They developed data set comprising SoC traces, load
charge, charging time and for V2G applications. The authors in [16] proposed a parking lot
management scheme (PLMS) with recharging management scheme (RMS) for rescheduling
of EV empower with solar power with the aim of reducing the power taken from the mains
during high rise pricing duration.

In the studied paper the heuristic supervisory rule-based energy management scheme
is applied to manage the electric vehicle loads from stochastic PV generators in addition to
battery storage buffer for seamless daylight charging operation with a facility at a lower
price as compared to direct charging from the grid. The process runs in such a way that
no interruption in charging and lesser impact on the grid load occurs while the electric
station does not fall in the deficit. The one-line diagram of the precedence allocation of the
vehicle charging is schematically drawn in Figure 2 [17]. The proposed charging station
can mitigate the grid voltage regulation problem by limiting the station’s imported power
to a pre-specified limit and confine the EV-charging dynamics within the station. This
requires a Supervisory Controller (SC) that controls the battery energy storage system
(BESS) charging/discharging by coordinating the operation of controllable units within the
station.
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Figure 2. One line diagram of energy management of charging station. Reprinted with permission from ref. [17]. Copyright
IEEE Xplore.

This paper presents and develops a supervisory controller for the battery-enabled
DC fast charging station based on the Supervisory Control Theory (SCT) of discrete event
systems. The proposed SCT is (i) based on a rigorous mathematical process, (ii) modular,
(iii) scalable, and (iv) logically optimized, i.e., guarantees non-blocking and minimally
restrictive properties concerning the discrete plant behavior and is subject to the supervisory
control specifications. The supervisory control also can use a Finite State Machine (FSM)
for the implementation of complex supervisory control logics which is transparent and
readily implementable on industrial controllers.
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1.1. Work on Smart Fast Charging EV

Despite the environmental and economic benefits, EVs adverse the power utility if
smart charging techniques are not utilized. Due to the unpredictability of both load and
power generation from renewable energy sources, power imbalances occur between the
generation and the load. To maximize the usage of RES and limit the impact of the EVs’
charging from the utility AC grid, a smart power-flow charging algorithm necessitates and
rules should be designed [18].

Papers [19,20], introduced a smart real-time Fuzzy Logic controller (FLC) to minimize
the influence of EVs on the public grids and lessens the vehicle charging cost. The same
author [20], developed a real-time algorithm for a grid-oriented charging carport in a com-
mercial workspace. The algorithm targets to minimize the daily overall price of charging
of the EVs, smoothing the effect of the electric station on the mains, and participating to
shave the peak load curve. The charging rate (C) is assigned depending upon charging
priority levels. However, the paper is good to implement if energy storage banks are
used for standby power for balancing the intermittency issues of photovoltaic. Horizon
Markov finding method (MFM) is selected in the paper [21] for the efficient control of a
solar-oriented EV charging station. The model features the vehicle to grid (V2G) applica-
tion to offer ancillary services and facilitates dynamic electric cost depends on the time
of use (ToU) tariff and takes into consideration the ambiguity of vehicle owners’ parking
behaviors. Similarly Tianxiang Jiang [22], introduced a smart EV charging controller having
a classical charger which has pre-set recharging current profile, irrespective of the battery
state health. Rama et al. [23], directly controlled the EVs charging by regulating the power
converter switches of DC rapid electric station with a novel FC/reduced FC (fixed current)
approach. Another in [24], the paper proposed a control scheme for a station composed of
a photovoltaic (PV) array, energy storage unit and corresponding converters. The practical
feasibility of a control strategy was previously tested by simulations in [25]. The strategy
proposed was based on four different operation modes: grid-connected rectification, PV
charging and grid-connected rectification, PV charging and grid-connected inversion. The
switching between the modes of operation occurred due to the change in the voltage level
at the DC link that varied with the change in the irradiation on the PV plates. In another
recent study [23], the authors developed the model of a DC fast charging station of 50 kW.
The simulations to evaluate the fast charge control, DC-link voltage control and the reactive
power compensation control were carried out by using PSCAD/EMTDC software [26]. In
Ref. [27], a small-sized superconducting magnetic energy storage (SMES) was proposed
as a power stabilizer during transient operation to maintain the DC bus voltage. The
proposed ESS was compared with the other quick response energy storage technologies
like: super-capacitors and flywheels. The regulation strategy was verified by simulations in
MATLAB/Simulink but modelling of the elements and power electronic interfaces needed
to implement the station was not discussed in this reference. The schematic diagram of
SEMS storage is portrayed in Figure 3. In paper [28], the authors proposed an artificial
neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) controller, due
to the limited functions of the classical EV charging controller. This adaptive controller has
a concurrent smart control to meet customer’s demands, provide an active power process,
and extend vehicle battery lifetime. Even though the paper has many settling issues each
problem in a broadband prospect. Oliveira et al. [29], the authors besides transferring
energy to the load during the recharging period, also install capacitor banks to lessen
electrical losses and recuperate voltage states during vehicle charging with the help of
Artificial Immune Systems (AISs). In Ref. [30] defines the control techniques based on smart
communications with or without control scheme, subjugated with multi renewable sources
offering electrical power. In the paper [31], a resilient residential energy management
scheme is devised which is capable of monitor and control of domestic loads. The scheme
is dependent on an enhanced, competitive binary grey wolf accretive satisfaction algorithm,
which is developed on the hypotheses that time-varying priorities are quantifiable in terms
of time and device-dependent features.
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For optimal sizing papers, several papers are written on the subject. In the paper [32]
for system sizing and selecting renewable units (wind/PV/diesel), an energy deterministic
algorithm is used for an autonomous system to lessen the gross price of the network while
assuring the satisfaction of the load demand. In the paper [33], an effective price response
scheme for EV customers is given which facilitates EV diurnal carport station integrated
with solar arrays. For this strategy, a biased PSO applied for the time of use (TOU) tariffs
and peak-flat-valley time-division recharging service is applied.

1.2. Contribution

Previously the configuring of the electric station and the design of energy manage-
ment schemes (EMSs) have not been deeply earthed specifically, in the case of stations
empowered by RES. The paper contributes in the following actions;

• Seamless daylight electric charging is proposed for the employees, staff, and students
which facilitated the owners with less cost.

• By utilizing a shrewd energy management scheme the impact on the mains is very
less and take advantage of the grid whenever the price of the grid decreases.

• Optimum sizing of charging station components is done by artificial indigence, meta-
heuristic swarm-based algorithm for an optimum number of battery units and PV
panels.

• It is also validated with memetic grasshopper optimization (GOA) and canonical
particle swarm optimization (PSO).

1.3. Organization of Paper

The organization of the paper is framed as: architecture of EV fast-charging station,
mathematical modeling of fast charging station components in Section 2. Section 3 covers
the supervisory rule-based energy management methodology of the understudied work,
possible number of modes, big scenarios with a flow chart. Section 4 slots the confab and
discussion with the resiliency of the rule algorithm under different situations. Section 5
ends with the concluding remarks and futuristic approach.

2. Mathematical Modeling of EV/DC Fast Charging Station

The studied system is composed of fast chargers, PV system, Li-ion ESS, and the grid
connection. All of the elements are tied to a medium voltage DC bus (MVDC) common bus
via their corresponding power converter, which ensures the charge of a fleet of EVs with
a precise power supply. Additionally, it controls the power balance between the sources
and the DC bus. Furthermore, the grid connection consists of a bi-directional DC/AC
converter and a transformer. Concerning the DC bus, its application is first reported in
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the design of shipping power [34]. DC architecture advantage is an easy and efficient
way, both for stationary storage systems and RESs. The use of proper unidirectional and
bidirectional DC/DC power converters makes it comfortable to integrate and smart energy
exchange among different energy sources, electric loads and storage systems. This DC
configuration presents the key characteristic of avoiding any kind of AC conversion stage
within the charging station, increasing as a consequence the whole energy conversion
efficiency. The implementation of the DC bus, in general, leads to higher efficiency and
greater system reliability. As obvious, it reduces the necessary power conversion stages.
This in return, reduces the loss in the power conversion process and simplifies the control
algorithm [35–37]. Furthermore, the DC bus provides seamless power management and
increases the prospect of integrating other types of renewable power sources.

The voltage source converter (VSC) control the inverter-based insulated gate bipolar
transistor (IGBTs) which sustains the DC bus voltage at medium voltage VDC, the transient
state fluctuations are minimized with an adequate level of efficiency.

2.1. Modelling of Photovoltaic Generator

PV power generation has numerous advantages if compared with other green sources;
such as installation flexibility with minimum maintenance. PV integration in the distri-
bution system is widely accepted due to universal sunlight availability, high modularity,
easy maintainability, long life cycle and mobility, short time for design, incurring no fuel
operation cost, environment-friendly, installation and start-up, and the ability for off-grid
application [38]. PV array installation is easy and the continuous price reduction of PV
modules makes it more attractive. Hence, PV array-based EV battery charging is adopted
by many EV users [39]. Despite clear advantages, solar PV is un-dis patchable with fluctu-
ating power output which results in voltage variation, degraded protection, leakage power
flow, non-availability during the night and increased fault level [40,41].

An equivalent circuit of a solar cell consist of a single diode model is selected for this
configuration. It consists of a current source in parallel with a diode with shunt and series
resistance. An equivalent model of tandem solar cells is displayed in Figure 4 [17].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 28 
 

DC/AC converter and a transformer. Concerning the DC bus, its application is first re-

ported in the design of shipping power [34]. DC architecture advantage is an easy and 

efficient way, both for stationary storage systems and RESs. The use of proper unidirec-

tional and bidirectional DC/DC power converters makes it comfortable to integrate and 

smart energy exchange among different energy sources, electric loads and storage sys-

tems. This DC configuration presents the key characteristic of avoiding any kind of AC 

conversion stage within the charging station, increasing as a consequence the whole en-

ergy conversion efficiency. The implementation of the DC bus, in general, leads to higher 

efficiency and greater system reliability. As obvious, it reduces the necessary power con-

version stages. This in return, reduces the loss in the power conversion process and sim-

plifies the control algorithm [35–37]. Furthermore, the DC bus provides seamless power 

management and increases the prospect of integrating other types of renewable power 

sources. 

The voltage source converter (VSC) control the inverter-based insulated gate bipolar 

transistor (IGBTs) which sustains the DC bus voltage at medium voltage 𝑉𝐷𝐶, the transient 

state fluctuations are minimized with an adequate level of efficiency. 

2.1. Modelling of Photovoltaic Generator 

PV power generation has numerous advantages if compared with other green 

sources; such as installation flexibility with minimum maintenance. PV integration in the 

distribution system is widely accepted due to universal sunlight availability, high modu-

larity, easy maintainability, long life cycle and mobility, short time for design, incurring 

no fuel operation cost, environment-friendly, installation and start-up, and the ability for 

off-grid application [38]. PV array installation is easy and the continuous price reduction 

of PV modules makes it more attractive. Hence, PV array-based EV battery charging is 

adopted by many EV users [39]. Despite clear advantages, solar PV is un-dis patchable 

with fluctuating power output which results in voltage variation, degraded protection, 

leakage power flow, non-availability during the night and increased fault level [40,41].  

An equivalent circuit of a solar cell consist of a single diode model is selected for this 

configuration. It consists of a current source in parallel with a diode with shunt and series 

resistance. An equivalent model of tandem solar cells is displayed in Figure 4 [17]. 

 

Figure 4. Equivalent model of PV cell. Reprinted with permission from ref. [17]. Copyright 2021 

from IEEE.  

The PV output is calculated with the help of a single diode model. The output current 

of PV primarily depends on temperature (T) and solar irradiance intensity (G). The output 

current of PV, i.e., 𝐼𝑝𝑣, is given in; 

𝐼𝑝𝑣 =  𝐼𝑝ℎ + 𝐼𝑠𝑎𝑡 ( 𝑒
𝑞(

𝑉+ 𝐼𝑝𝑣∗𝑅𝑠
𝑁𝐾𝑇𝑃𝑉

)
) −

𝑉 + 𝐼𝑝𝑣 ∗ 𝑅𝑠

𝑅𝑠ℎ
 (1) 

Figure 4. Equivalent model of PV cell. Reprinted with permission from ref. [17]. Copyright 2021
from IEEE.

The PV output is calculated with the help of a single diode model. The output current
of PV primarily depends on temperature (T) and solar irradiance intensity (G). The output
current of PV, i.e., Ipv, is given in;

Ipv = Iph + Isat

(
eq(

V+Ipv∗Rs
NKTPV

)
)
−

V + Ipv ∗ Rs

Rsh
(1)

Iph = Ipho(1 + k0(T − 300)) (2)

Isat = k1T3e
−qVg

KT (3)
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Iph − solar induced current
Ipho − solar induced current at 300 ◦C
Isat − saturation current of the diode
Vg − voltage applied to the terminals of diode
k0, k1 − constants depend on the value of PV system
TPV − operating temperature
N − diode quality factor

V =
((a× K× t))

q
(4)

V = thermal voltage
q = electron elementary charge (1.602 × 10−19 C)
a = ideality factor (1 < a < 2)
k = Boltzmann constant (1.381 × 10−23 J/K)
Rs and Rp are series and shunt resistances, respectively.
The output power of the PV generator at time step t is calculated by the following

equation [42];

Ppv(t) = Npv × ηpv × Apv ×
Gi(t)
1000

(5)

where ηpv is the efficiency of the PV panels, Apv is the area of each PV panel in m2, Gi(t) is
the aggregate solar irradiation incident on the tilted PV panels in W/m2 at time step t, and
NPV is the optimum number of panels that are determined at each iteration of the optimal
sizing procedure. The most crucial feature of the MPPT is its ability to track the MPP as
quickly and efficiently as possible. These can be configured using a fixed or adaptive time
step. The algorithm used for maximum tacking is used Perturb and Observe method. The
yearly temperature variations and solar insolation are delineated in Figures 5 and 6.
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2.2. Modelling of Energy Storage Stacks

Charging stations with stationary energy storage stacks are intrinsically capable of
providing services to distribution utilities. It plays a fundamental role in the integration of
EV fast electric stations as they act as backup systems and ease fast charging under adverse
generation conditions. The underneath equation is used to model the state charge (SOC) of
the battery banks at each time step t [43]

Eb = Eb(t− 1) + Pch(t)× ηch × ∆t−
(

Pdch(t)
ηdch

)
× ∆t (6)

where Pch(t) is the delivered electricity from the renewable energy sources to the battery
packs, Pdch(t) is the energy delivered from the battery modules to the inverter, ηch and ηdch
are the charging and discharging efficiencies of the battery bank respectively.

Initially, the ESS was reflected to be 30% charged with the rated capacity. When
Pbat(t) < 0, it shows a power generation deficit. Pbat(t) > 0 shows the indicator of battery
power generation having surpassed energy demand. Charging of battery occurs when
SOC > SOCmin or Ppv > Pd and therefore the charge state of the battery is represented
below;

SOC(t) = SOC(t− 1) ∗ ( 1− τ) +

(
Ppv −

Pd
ηinv

)
× ηbat (7)

Likewise, if there is a power demand and the battery storage system can discharge
(i.e., SOC > SOCmin), to meet the demand of energy than it can be represented by the
equation:

SOC(t) = SOC(t− 1) ∗ ( 1− τ) +

(
Pd

ηinv
− Ppv

)
× ηbat (8)

where,

τ = Battery sel f discharge rate; ηbat = Battery e f f iciency; Pd = Power demand
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The power required by the ESS (i.e., Red_ESS_Pwr) is outlined as a least power value
that rises its level of charge from the initial to maximum value of SOC (i.e., SOCM) in
definite time step (∆t) as defined by;

Red_ESS_Pwr(t) =
(SOCM− SOC(t)× Nbat ×Qbat

∆t
(9)

Similarly, the power obtainable with ESS (i.e., Avl_ESS_Pwr) is stated as an extreme
power that can be provided seamlessly by ESS for the given time step (∆t) before the state
of charge reaches its lower bound (called SOCL) defined by:

Avl_ESS_Pwr(t) =
(SOC(t)− SOCL)× Nbat ×Qbat

∆t
(10)

2.3. DC Fast Charger

The primary function of a DC fast charger module is to match the DC bus voltage to
the EV battery so that the charging can be effectively controlled. The bidirectional topology
is used because of the future expectation that the EV charger will include the Vehicle 2 grid
(V2G) function. The DC charger module comprises of parallel off-board converters that
interface the internal bus voltage to the output charging bus. The output bus voltage is
then regulated according to the EV battery pack terminal voltage to charge or discharge
the battery pack. In the MVDC model, the EV charging station employs level 3 DC fast
chargers, which have the capability of charging within 30 min [44]. Figure 7 shows the
charging topology of the constant current constant voltage (CC/CV) charging strategy [23].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 28 
 

𝑅𝑒𝑑_𝐸𝑆𝑆_𝑃𝑤𝑟(𝑡) =
(𝑆𝑂𝐶𝑀 − 𝑆𝑂𝐶(𝑡) × 𝑁𝑏𝑎𝑡  × 𝑄𝑏𝑎𝑡

∆𝑡
 (9) 

Similarly, the power obtainable with ESS (i.e., 𝐴𝑣𝑙_𝐸𝑆𝑆_𝑃𝑤𝑟) is stated as an extreme 

power that can be provided seamlessly by ESS for the given time step (∆𝑡) before the 

state of charge reaches its lower bound (called 𝑆𝑂𝐶𝐿) defined by: 

𝐴𝑣𝑙_𝐸𝑆𝑆_𝑃𝑤𝑟(𝑡) =
(𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝐿) × 𝑁𝑏𝑎𝑡  × 𝑄𝑏𝑎𝑡

∆𝑡
 (10) 

2.3. DC Fast Charger  

The primary function of a DC fast charger module is to match the DC bus voltage to 

the EV battery so that the charging can be effectively controlled. The bidirectional topol-

ogy is used because of the future expectation that the EV charger will include the Vehicle 

2 grid (V2G) function. The DC charger module comprises of parallel off-board converters 

that interface the internal bus voltage to the output charging bus. The output bus voltage 

is then regulated according to the EV battery pack terminal voltage to charge or discharge 

the battery pack. In the MVDC model, the EV charging station employs level 3 DC fast 

chargers, which have the capability of charging within 30 min [44]. Figure 7 shows the 

charging topology of the constant current constant voltage (CC/CV) charging strategy 

[23]. 

 

Figure 7. Processing of 𝑣 and 𝑖 during the charging process. Adapted from ref. [23].” 

3. Research Methodology 

The sizing of the electric station by optimum values of solar modules and battery 

units, a rule-based energy management algorithm (REMA) is understudied in the paper. 

It is envisaged that the proposed REMA is embedded in the centralized controller to au-

tomate control of the system. The framework of the proposed scheme is depicted in Figure 

8.  

Figure 7. Processing of v and i during the charging process. Adapted from ref. [23].”

3. Research Methodology

The sizing of the electric station by optimum values of solar modules and battery units,
a rule-based energy management algorithm (REMA) is understudied in the paper. It is
envisaged that the proposed REMA is embedded in the centralized controller to automate
control of the system. The framework of the proposed scheme is depicted in Figure 8.
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The parameters used for the simulation of the proposed restructured allocation energy
management enlisted in Table 1.

Table 1. Parameters used in the research.

Sr. No Design Parameters Report

1 Grid Electricity Cost (GD_Co) Hypothetical value for par and below
parity

2 Rated capacity of PV modules 325 kilowatts
3 Polycrystalline PV panels Canadian Solar CS6U-325P
4 Charging Cost of EV (Chg_Co) (PV_Co -1.0) = 16 cents/kWhr

5 Levelized cost of electricity (LCOE) of
PV panels (PV_Co) 17 cents/kWhr [45]

6 LCOE of ESS (ESS_Co) 15.2 cents/kWhr [46]

7 Minimum number of ESS batteries
Nbat

Find by HHO, GWO, PSO

8 Minimum number of PV modules
Npv

Find by HHO, GWO, PSO

9 Maximum number of EV Fleets 150/day
10 Location of meteorological data California NREL
11 EV power Demand (EV_Dmd) Using model given in [47]

12 PV Power (PV_Pwr)
By means of a single diode model

with meteorological records extracted
from [48]

13 At Parity state (PS) Mean GD_Co = LCOE of PV
14 Below parity @ (0.83PS) Mean GD_Co = 1.2 * LCOE of PV
15 Below parity @ (0.33PS) Mean GD_Co = 3 * LCOE of PV
16 Grid electricity cost (GD_Co) Variation depend upon load
17 SOC of (ESS_Pwr) Mathematical model from [49]
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3.1. Modeling of Electric Vehicle Power Demand

Power required by the EV (named as EV_Dmd) is modelled from [50]. The request for
the power charging of a single-vehicle at a particular duration t can be estimated as;

PEV,t = PEV,req × st × wt × ht (11)

where PEV,req is the power anticipated by the battery for rising the SOC from the initial
value (SOC0) at the time of plugin to the final value (SOCmax) in an interval period ∆t. st is
the signal for monitoring SOC of the vehicle battery. The wt and ht represent the campus
working days with campus working hours, respectively.

For random EV_Dmd, the displacement covered by the vehicle by the last charging
(Td) is generated randomly between 1 mile to the extreme EV journey (Rt). Based on
journey distance (Tr), the gross energy accumulated by EV during the last journey range
(ER) is computed as;

ER = Td × Em (12)

where Em is energy utilization/mile for the given EV. From Em and the gross battery
capacity (Qbat) of the EV, SOC0 is computed as;

SOC0 = 1− ER
Qbat

(13)

Furthermore, at the start of the plugin, the parameter SOC0 applied to assess the
power desired by the unit vehicle (PEV,req ) as given as:

PEV,req =
(SOCmax − SOC0)×Qbat

∆t
(14)

By inserting PEV,req and decision signals st, wt, and ht in base equation, the power
demand of unit vehicle at time t, PEV,t is computed. However, for a fleet of vehicles, PEV,t
is summed to achieve the accumulated EV_Dmd.

EV_Dmd, t =


N
∑

n=1
Pn

EV,twhere t is the campus hours

0, else
(15)

where N is the maximum number of e-vehicles arrived at the station and Pn
EV,t is the

required power by the nth car at a given time t. Probability distribution was drawn based
on an appropriately ample number of autonomous random variables i.e., inbound and
outbound EV at the charging facility each with the set population mean (µ) and variance
(σ). Cascading the probability distribution function (pdf) of arrival and departure time
(At and Dt), the allied pdf of Dt − At can originate, which is usually parking time. The pdf
of the common parking staying time portrayed in Figure 9 as defined in [19].
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The flow chart of the power-desired model for a unit vehicle is marked in Figure 10.
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3.2. Modes of Charging

Charging modes are linked in the way of power flow throughout the network. In
each mode, the way of power drift is encountered to streamline the power demand and
generation. To attain this goal, a set of predetermined voltage-current thresholds is needed
to switch the modes as exhibited in [24]. The operating modes energize the energy influx
among several entities of the charging station i.e., (PV array, ESS, grid, and EV) according
to certain pre-defined rules.

Fast overlook of the completely proposed procedures incurred in the improvement of
heuristic precedence REMA depicted in pictorial format as marked in Figure 11.
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3.3. Operation of the Transactive Grid with REMA under Variant Scenarios

The operating modes accelerate the energy flux among several entities of the charging
station (solar-powered array, power storage variables, power grid, and vehicles) according
to certain pre-defined rules. The working of the understudied system is explained in four
different modes of operation depending on the solar irradiation conditions and SOC of the
EV battery.

(i) Overload: it executes when EVdemand is more than PVpower
(ii) Under load: it executes when EVdemand is present but less than or equal to PVpower
(iii) No-load: it executes when the PVpower is available but the EVdemand is zero
(iv) Idle condition: it executes when both EVdemand and PVpower is zero.

3.3.1. Overloaded Scenario

In this scenario when the solar panels extracting power, it directly charges the e-cars via
converters instantly (PV2EV). As the condition for an overload scenario is EVDmd > PVPwr,
the sole photovoltaic cannot fulfill the EVDmd; whilst the rest is satisfied by ESS or the
public grid. If the main grid is at off-peak hours, the GD2EV is energized. Simultaneously,
the SOC of the battery bank is rechecked; if SOC is less than SOCM, then the energy bank is
also accumulated by the grid (GD2ESS) at low GD_Co ( Me _GD_Co < ESS_Co). Henceforth,
both vehicles and energy banks are taking advantage of low GD_Co by a valley-filling
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operation. In contrast, if the grid is fully loaded and Avl_ESS_Pwr > EVDmd, the demand
is realized by battery stacks exclusively using ESS2EV. However, if AvlESSPwr < rest EVDmd,
the grid aids the energy bank to supply power to vehicles (GD2EV). In an extreme case,
if both renewable and standby have inadequate energy, the rest EVDmd is encountered by
the grid GD2EV. It is worth citing that the energy is sold to staff vehicles at fixed Chg_Co
regardless of the sources. Besides, no restriction is imposed on vehicle owners to participate
in de-regulated markets without his will even in the overload scenario, hence enjoying
autonomous charging. Figure 12 represents the operation flow path during an overloaded
scenario.
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3.3.2. Under Load Scenario

In this scenario, the empowered PV_Pwr > EV_Dmd; therefore, the extra PV_Pwr
can be injected into ESS to raise its state charge. Otherwise, it may be traded to the
public grid for monetary gain. The surplus PV_Pwr is given preference to accumulate
ESS (PV2ESS). Though, if Red_ESS_Pwr > extra PV_Pwr, the rest of the demand is com-
pensated by a valley-filling option using mode GD2ESS. In contrast, if the additional
PV_Pwr > Red_ESS_Pwr, the residual energy is retailed to the utility grid (PV2GD). In
case, if ESS is priorly fully saturated, then the whole additional PV_Pwr is transferred to
the public grid. Figure 13 expresses the flow path during this scenario.

3.3.3. No Load Scenario

During load less test, the gross PV_Pwr has two options: (i) to recharge the ESS
and/or (ii) to inject the public grid. The state charge of ESS is first monitored; in case
the level is lower than the upper threshold, then PV_Pwr is employed to recharge the
ESS (PV2ESS). Nevertheless, if the PV_Pwr supersedes residual bank power

(
RedESSPwr

)
,

the spare power is shifted to the mains (PV2GD) choosing Mode-1. On the other hand,
if RedESSPwr > PV_Pwr, the ESS can extract the rest of power-extracted from upstream
(GD2ESS) via valley-fill procedure. Conversely, in case the ESS approaches the upper
threshold, the absolute PV_Pwr is translated to the mains (PV2GD). The flow path of the
no-load scenario as shown in Figure 14.
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3.3.4. Idle State Scenario

The recharging of ESS commences when the state charge is lower than the up-threshold
and the mains are at the off-loaded condition. The combined procedure during the dead
(idle) scenario is furnished through a unit operating course. This dead scenario exhibit a
vital show in lessening the financial deficit of the recharging electric station. However, to
enhance the lossless movement of the electric station while servicing a specified fleet of
EVs, it is significant to explore the optimum size of solar arrays and battery bank units.
In this p, the optimal sizes are computed by optimizing the business prototype model of
the electric station. The precedence rule-based heuristic operation of the electric charging
facility in this idle scenario is displayed in Figure 15.
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4. Confab and Discussion

The understudied intelligent charging dock is a prototype carport garage in a workspace,
possibly an academic campus, which covers 1000 parking sides. It accepts that 15% of
the 1000 cars stay every day except holidays in this recharging station, i.e., 150 cars are
EVs while the rest are fossil-powered vehicles. These 150 EVs were selected as a test case
targeted in this study. The variant car models are shown in tabular form in Table 2 [51] and
the distribution of car models is shown in Figure 16.
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Table 2. Parameters of variant sizes of electric vehicles. Adapted from [51].

EV Model
Commute

Percent
Capacity

Consumption Energy Mileage

% kWh kWh/miles

Sedan Delux 32 0.2 0.2

Full size Sedan Standard 38 0.3 0.3

Average (Mid) size SUV 20 0.45 0.45

Full size SUV 10 0.6 0.6
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To facilitate a photovoltaic-grid EV rapid charging facility that assurances seamless
daylight recharging at a fixed value (PV_Co—1.0 cents/kWh), the starting way is to define
the optimum size of components of the recharging area to suppress yearly financial losses
while attaining the targets of REMA. For the e-station size computation, the modeling
equations, techno-economical parameters are used during the diligence of optimization
methods. Furthermore, the optimization algorithm employs dynamic control schemes
(REMA in this understudied paper) that express fitness functions and given constraints [52].
To optimum resize the charging deck, optimal number of PV modules (Npv) and ESS
stationary batteries (Nbat) for a specified number of EVs are extracted using the Harris
Hawk Optimization (HHO) algorithm. The model of vehicles tested in this project are
found in [53,54]. The percentage portion of individual electric vehicle, connected to the car
station is framed in [19].

To ensure the resiliency of the shrewd REM algorithm under a variant number of
occupied days, the network sizing is inhibited for various scenarios of non-occupied days
and city general holidays for the whole year. In this study, resource optimization HHO
was applied as a benchmark for four cases of holidays: (i) general holidays i.e., off campus
days holidays with two weekends (H+2W), (ii) one weekend i.e., public holidays with one
weekend (H+1W), (iii) null weekend and general holidays (H + 0W) and (iv) null holidays
(0H+0W) i.e., 365 days per year.
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4.1. Optimal Number of PV Arrays and Batteries in ESS

As the charging station is assumed to operate based on the optimal profit principle, Npv
and Nbat need to be correctly determined. Otherwise, the station may run into a loss. Since
PV modules and batteries require high investment, the optimized combination of these
two components is very important. Thus, to obtain the best combination, barebones Harris
hawk optimization (HHO) is used to find Npv and Nbat [55]. To validate the supremacy of
HHO, compared with multifarious PSO and memetic GOA.

4.2. Cost Function and Constraints

The target of the barebones HHO is to search the best number of solar modules
and ESS batteries that gratify the EV_Dmd while utilizing the grid energy with the least
priority, such that the disparity between the trading and buying prices of energy (i.e.,
revenue) is minimum. However, the difference in prices should not be less than zero
i.e.,min

{
Pro f it(np)

}
≥ 0, thus to evade the system’s financial losses. Therefore, the profit

minimization results in the optimal number of solar panels and batteries in the charging
station. The selling and trading cost expressed in the following equations.

Selling Cost
(

St
eny

)
= (PV2EVET + ESS2EVET + GD2EVET)× ( PVCo − 1.0) + (PV2GDET)t × (GDCo − 0.1) + (PV2ESSET)
×PVCo + (GD2ESSET)× (GDCo)t

(16)

Buying Cost
(

Bt
eny

)
= (PV2EVET + PV2ESSET + PV2GDET)t × ( PVCo) + (ESS2EVET)t × (ESSCo)
+(GD2EVET + GD2ESSET)× (GD_Co)t

(17)

Applying this condition and values in Equations (16) and (17), the objective function J
for the HHO is written as; St

eny and Bt
eny are energy buying and trading prices at interval

t, respectively. By putting the values of St
eny and Bt

eny in Equation (18), the expanded cost
function J is portrayed as;

minimization→ J
(
np
)
= min

(
1

100

T

∑
t=1

(St
eny − Bt

eny)

)
(18)

where np is a set of decision variables. These decision variables include Npv and Nbat whose
minimum numbers are determined during the optimization process.

The number of solar modules and the battery should be integers and within the
minimum and maximum limits [55].

Npv → integer, Nmin
pv ≤ Npv ≤ Nmax

pv (19)

Similarly, for the batteries stack

Nbat → integer, Nmin
bat ≤ Nbat ≤ Nmax

bat (20)

4.3. Discourse of Charging Station Sizing

The procedure described above for optimal system sizing was used under a different
number of holidays. Additionally, the sizing is done for a specific number of vehicles to be
recharged per day (150). The results are achieved by setting up the parameters of HHO as
given in [55]. These parameters are listed in Table 3.
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Table 3. Decision control parameters of HHO algorithm.

Decision Parameters Notation

Position of Harris Hawk, Position of ith Harris Hawk X, Xi
Prey best position Xrabbit

Location of a random agent Xrand
Mean position of swarm Xmean

Number of eagles, iteration metrics, max set-bounds N, t, T
Randomly value in range (0,1) r1, r2, r3, r4, r5, q

Dimensions, upper and lower bounds of decision variables D, LB, UB
Escape Energy, Initial Escape Energy E, E0

Table 4 portrays the optimal number of battery units and solar modules to get optimal
cost function by the HHO algorithm as a benchmark.

Table 4. Optimal profit using meta-heuristic algorithms.

Fleet of EVs Optimization Npv Nbat

Fitness
Function @

Convergence

Nmin
pv = 100, Nmax

pv = 900, Nmin
bat = 10, Nmax

bat = 50

150

HHO
765 43 0.02805
763 44 0.04194
760 42 0.00833

PSO
765 43 0.02198
752 32 0.06610

GOA
765 43 0.01591
43 13 0.2438

The convergence curve of barebones HHO is simulated in Figure 17. Moreover when
the HHO compares with the other AI based population based canonical PSO [56] and
mimetic grasshopper optimization algorithms (GOA) for charging components sizing it
ranks prominently. Figure 18 shows the supremacy of HHO with counterpart swarm
algorithms.
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The various conditions under which the system was tested for REMA resiliency were:

(a) Meteorological conditions (winter, summer, normal and abnormal days)
(b) Vocations (i.e., H + 2W, H + 1W, H + 0W, 0H + 0W)
(c) EV fleet size (for 150 EVs)
(d) Par and below parity states (PS, 0.83PS, 0.33PS)
(e) LCOE of ESS (15.2 cents/kWh, 18.5 cents/kWh)
(f) Operational periods of electric station (single day, 1 week, and 1 year)

4.4. Results under Diverse Climatic Conditions

The proposed shrewd energy management was validated with different seasonal
times, normal and abnormal days, number of holidays, and parity states condition for its
effectiveness and robustness.

4.4.1. Resiliency in Winter

Figure 19 depicts the recharging horizon of 150 EVs during an explicit winter single
day at par parity state (PS), i.e., PV_Co = Me_GD_Co, as depicted from the subplot (iv). The
generation of the PV_Pwr from solar in the subplot (i) was obvious—which shows that the
insolation was not intervened by abrupt variation in climate such as heavy rain, snowfall,
cloudy day, etc. During this particular normal day, the insolation was low so the PV_Pwr
was inadequate to recharge all vehicles using PV2EV (PV energy to charge EV) operating
mode. In this condition, the EV_Dmd was realized without charging intrusion by other
sources, i.e., by activating additional modes, namely ESS2EV (ESS energy to charge EV),
and GD2EV (grid energy to charge EV).

4.4.2. Resiliency in Summer

Figure 20 depicts the charging simulation results for a specific summer working day.
For the same number of modules, it is to be noted that the PV produced more power
compared to the winter day. Generally, the summer day was lengthy; photo arrays began
to provide power before campus working timings and lasted to supply electricity beyond
the campus hours. This can be noticed in the subplot (i). The surfeit PV_Pwr lessened the
local grid dependency by evading the initiation of GD2EV as delineated by the subplot (ii).
Additionally, the excess PV_Pwr compensated the system financial losses by selling the
surplus energy to the grid using mode PV2GD, shown by the subplot (iii) with the blue
dotted line “vending surplus energy to mains”.
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4.4.3. Resiliency in Abnormal Weather

Figure 21 depicts the working for a defined day (winter) with harsh climatic conditions
i.e., the sporadic solar insolation. This intermittency imitated by fluctuated irradiance
(PV_Pwr) during the entire day, as marked by the subplot (i). Nevertheless, it is clear
from the subplot (i) that the EV_Dmd was satisfied without any disturbance, irrespective
of fluctuations in PV_Pwr as well as in EV_Dmd. Furthermore, subplot (iv) depicts that
recharging was performed with a fixed value regardless of incessant variations in GD_Co.
It is important to note that this fixed price was also lower than Me_GD_Co.
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4.4.4. Resiliency during Holiday

Figure 22 shows the operation for a specific holiday. Subplot (i) reveals the no-load
scenario, where the PV_Pwr was available but there was no EV to be charged due to
an office holiday. However, once the ESS reached the SOCM limit, it remained constant
throughout the day as shown in the subplot (i). The valley-filling operation is shown in
subplot (iii) during the hours 6 to 8 with label “Valley-filling status by ESS”.
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4.4.5. Resiliency under Different Parity States

The previous results are obtained when the charging station was operating at par
parity state, i.e., PV_Co = Me_GD_Co. However, it can be proved that the REMA was
resilient in providing constant and low-cost charging without intervention at low levels of
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parity. Figure 23 presents the behavior of charging station for a specific day for 150 EVs per
day at below parity, i.e., PV_Co was 0.83 times of Me_GD_Co. This condition is depicted in
the subplot (iv) where Me_GD_Co was more than PV_Co.
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Figure 23. Mean Grid cost is 1.2 times than solar module cost for 150 EVs.

Since the results in Figure 23 were computed for the same winter day i.e., the charging
profile was the same as in Figure 19. However, for the below parity there was a small
shift of valley-filling operation by ESS, as shown in plot (iii). For the parity case, the
valley-filling took place for only 1 hour, but for the lower parity, it was delayed by 1 hour.
This is due to the increase of GD_Co. In the present case, the GD_Co fulfilled the condition
of valley-filling (i.e., GD_Co < ESS_Co) during hours 9 to 11. It shows that with higher
GD_Co, the valley-filling operation could be delayed or suspended. The suspension of flat
valley filling by ESS.

Similarly, Figure 24 depicts the graphs once PV_Co was 0.33 times of Me_GD_Co.
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4.4.6. Resiliency in 1 Week

Figure 25 depicts the action of the electric station for one explicit week during the
winter season. The 1-week duration includes all 7 days. It is evident from the graph that
there were no vehicles charging demand in the weekend or public holiday. By taking
advantage of these holidays, the charging station owner sold total PV energy solely to the
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grid using GD2ESS. In addition, from the subplot (iii) that the flat valley time-division
charging (GD2ESS) was executed in each working hour. Henceforth, during the diurnal of
the specified days (particularly in the winter season when solar insolation was low), the
storage stack energy was employed to sustain the seamless charging. Consequently, its
state charge was lessened that triggers the valley-time filling process. Conversely, due to
the sunny climate solar irradiance was quite adequate, the PV_Pwr was normally enough
to satisfy the EV_Dmd. Hence the less utilization of the ESS, which marked a lesser number
of valley-time filling processes in respect to winter seasons.
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4.4.7. Resiliency in 1 Year

Figure 26 depicts the action of the electric station for the whole year. The previously
mention statements that were debated under unit day procedures can be noted from the
results of the whole year. For instance, it is evident from the subplot (i) generated PV_Pwr
(black color dotted lines) was upper in summer season rather than winter which displayed
continuous varying nature during the whole year. Thus, as debated before, subplot (iii)
shows that the amount of solar energy traded to the grid (PV2GD) was higher during
summer as related to winter, which majorly compensateed for the station monetary losses
in the winter season due to low insolation and fixed charge charging pattern.

To summarize the work of the paper, the main theme and value are given as;
Rule-based energy management algorithm (REMA) for the solar-grid tied EV rapid

recharging system in the campus facility was applied to accelerate the operation of electric
energy from the PV modules, storage tanks, and national grid that was established in the
understudied research. The salient features of REMA were to facilitate the owners of EVs
to recharge at a fixed cost lesser than mean grid electricity cost during operational periods.
Additionally, utilizing the REMA algorithm the solar-grid recharging scheme could run
disruption-less at a lower cost subject to PV grid parity was reached.

The rules were verified under various conditions of climate, different parity levels,
LCOE of energy storage banks, zero-carbon vehicle fleet size and operational times. It was
confirmed that the vehicle fleet demand was accomplished at a fixed price regardless of
uncertainties of solar power, grid electricity costs, and vehicle power needs. Additionally,
the charging station of definite size did not suffer any monetary loss even when operated
at par and below parities.
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The proposed optimal sizing using SI based algorithm (HHO) for the grid-connected
microgrid whilst employing the REMA algorithm (REMA-HHO) was also benchmarked
with REMA-PSO and REMA-GOA. The supremacy of the devised REMA-HHO based
approach for optimal sizing of the EV charging station was confirmed in terms of mini-
mizing the objective function. The comparative evaluation of the algorithms showed that
REMA-HHO yielded a better result as it offered the optimal profit at the US $ 0.0083/kWh,
as compared to the REMA-PSO at the US $ 0.0661/kWh and REMA-GOA at the US $
0.2438/kWh.

5. Conclusions

The understudied research has effectively developed and validated the proposed
shrewd REMA to support the RES in delivering an un-disrupted EV charging at a constant
value (which is smaller than the mainstream electricity cost). Simulation and experimental
results were presented to prove the system’s effectiveness under dynamic and various
conditions. Although the rules defined in the energy utilization scheme marked in this
paper explicitly devised for the particular case in hand, the approach is generic and thus
can be a valuable path for practitioners, engineers, planners in building a coherent system
in high dimension. This is vital because the deplore size of the photo modules and battery
storage units are the main sources of optimal implementation of the hybrid solar-grid rapid
charging infrastructure. The presented scheme dealt with the solar-powered EV charging
place. For future work, an annex to the work can integrate with other renewable resources
such as tidal, diesel, wind power, and biomass, etc. Moreover, the proposed supervisory
REMA is applicable only for those geographical regions that have already achieved grid
parity portfolio. The other challenging task is to reconsider systems that can work beyond
the grid level parity (i.e., LCOE of PV modules above than mean grid electricity cost).
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