
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

TESI DI LAUREA MAGISTRALE

in

Infrastructures for cloud computing and big data M

A performance analysis of mesh models for cloud-

based workflows

Tesi di Laurea di:

Francesco Maria Cultrera

Relatore:

Chiar.mo Prof. Ing. Antonio Corradi

Correlatore:

Dott. Ing. Andrea Sabbioni

 Anno Accademico 2021-2022

Sessione I

1

2

ABSTRACT

Nell'ambito della loro trasformazione digitale, molte organizzazioni stanno adottando

nuove tecnologie per supportare lo sviluppo, l'implementazione e la gestione delle

proprie architetture basate su microservizi negli ambienti cloud e tra i fornitori di

cloud. In questo scenario, le service ed event mesh stanno emergendo come livelli

infrastrutturali dinamici e configurabili che facilitano interazioni complesse e la

gestione di applicazioni basate su microservizi e servizi cloud. L’obiettivo di questo

lavoro è quello di analizzare soluzioni mesh open-source (istio, Linkerd, Apache

EventMesh) dal punto di vista delle prestazioni, quando usate per gestire la

comunicazione tra applicazioni a workflow basate su microservizi all’interno

dell’ambiente cloud. A questo scopo è stato realizzato un sistema per eseguire il

dislocamento di ognuno dei componenti all’interno di un cluster singolo e in un

ambiente multi-cluster. La raccolta delle metriche e la loro sintesi è stata realizzata con

un sistema personalizzato, compatibile con il formato dei dati di Prometheus. I test ci

hanno permesso di valutare le prestazioni di ogni componente insieme alla sua

efficacia. In generale, mentre si è potuta accertare la maturità delle implementazioni

di service mesh testate, la soluzione di event mesh da noi usata è apparsa come una

tecnologia ancora non matura, a causa di numerosi problemi di funzionamento.

As part of their digital transformation, many organizations are adopting new

technologies to support the development, deployment, and management of their

microservice-based architectures across cloud environments and across cloud

providers. In this scenario, service and event meshes are emerging as dynamic and

configurable infrastructure layers that facilitate complex interactions and the

management of microservice-based applications and cloud services. The aim of this

work is to analyze open-source mesh solutions (istio, Linkerd, Apache EventMesh)

from the performance point of view, when used to manage the communication of

microservice-based workflow applications in the cloud environment. For this purpose,

a system was created to perform the deployment of each component within a single

3

cluster and in a multi-cluster scenario. The collection of metrics and their synthesis

was carried out with a customized system, compatible with the Prometheus data

format. The tests allowed us to evaluate the performance of each component along

with its effectiveness. In general, while it was possible to ascertain the maturity of the

tested service mesh implementations, the event mesh solution we used appeared to be

a not yet mature technology, due to numerous operational problems.

4

SUMMARY

INTRODUCTION .. 7

1 CLOUD COMPUTING ... 10

1.1 ADVENT OF CLOUD .. 10

1.1.1 Virtualization .. 12

1.2 MODELS ... 13

1.2.1 Cloud deployment models ... 13

1.3 DEVOPS ... 18

1.4 MICROSERVICES ... 19

1.4.1 Properties .. 20

1.4.2 Benefits and challenges ... 21

1.5 CONTAINERIZATION ... 23

1.5.1 Differences between virtual machines and containers .. 24

1.6 ORCHESTRATION .. 26

1.6.1 Kubernetes .. 27

2 MESH TECHNOLOGIES AND PARADIGMS ... 30

2.1 FROM TRADITIONAL DATA PLATFORMS TO DATA MESH .. 30

2.1.1 Limits of traditional data platform architectures .. 30

2.1.2 The great divide of data .. 32

2.1.3 Data mesh ... 33

2.1.4 Conclusion .. 36

2.2 MICROSERVICES MANAGEMENT USING SERVICE MESH ... 37

2.2.1 Challenges with microservices .. 37

2.2.2 Service mesh.. 38

2.2.3 General architecture ... 40

2.2.4 Orchestrators versus service meshes .. 41

2.3 ENTERING THE WORLD OF EVENT-BASED ARCHITECTURES .. 43

2.3.1 Event-driven communication structures.. 43

2.3.2 Event-driven microservices ... 44

2.3.3 Event mesh .. 46

2.3.4 Comparison between service and event mesh ... 47

3 SERVICE AND EVENT MESH IMPLEMENTATIONS .. 50

3.1 ISTIO .. 50

5

3.1.1 Architecture .. 51

3.1.2 Control plane .. 51

3.1.3 Data plane ... 57

3.1.4 Control plane and Data plane communication ... 59

3.1.5 Advanced features ... 60

3.2 LINKERD 2 ... 61

3.2.1 Architecture .. 62

3.2.2 Control plane .. 62

3.2.3 Data plane ... 63

3.3 CONSUL CONNECT ... 65

3.3.1 Architecture overview ... 65

3.3.2 Data and control planes .. 66

3.3.3 Ingress-egress ... 68

3.3.4 Orchestrators and Consul ... 69

3.4 NGINX SERVICE MESH ... 70

3.4.1 Architecture overview ... 70

3.4.2 Control plane .. 71

3.4.3 Data plane ... 73

3.5 OPEN SERVICE MESH ... 73

3.5.1 Architecture overview ... 73

3.5.2 Control plane and data plane ... 74

3.6 COMPARISON OF SERVICE MESHES ... 76

3.7 APACHE EVENTMESH .. 80

3.7.1 Architecture .. 81

3.7.2 Apache RocketMQ .. 84

3.7.3 Conclusion .. 86

4 PROJECT OVERVIEW ... 87

4.1 OBJECTIVES ... 87

4.2 TECHNOLOGIES CHOSEN... 89

4.3 EVOLUTION OF THE PROJECT STRUCTURE... 91

5 PROJECT IMPLEMENTATION .. 96

5.1 ISTIO .. 96

5.1.1 Single cluster installation.. 96

5.1.2 Multi-cluster installation... 99

5.1.3 Sidecar injection ... 102

5.2 LINKERD .. 103

6

5.2.1 Single cluster installation.. 103

5.2.2 Multi-cluster installation... 104

5.3 APACHE ROCKETMQ ... 106

5.3.1 Container image.. 106

5.3.2 Single cluster deployment ... 107

5.3.3 Multi-cluster deployment .. 111

5.4 APACHE EVENTMESH .. 113

5.4.1 Container image.. 113

5.4.2 Kubernetes deployment ... 113

5.5 WORKFLOW APPLICATION .. 116

5.5.1 Synchronous application ... 117

5.5.2 Asynchronous communication .. 122

5.6 METRICS .. 124

6 EXPERIMENTAL RESULTS .. 132

6.1 TEST CONFIGURATIONS .. 132

6.2 SINGLE CLUSTER TESTS .. 135

6.2.1 Results of tests with constant load .. 136

6.2.2 Results of tests with incremental load ... 143

6.3 MULTI-CLUSTER TESTS .. 149

6.3.1 Results of tests with constant load .. 149

6.3.2 Results of tests with incremental load ... 156

6.4 FINAL CONSIDERATIONS ... 163

7 CONCLUSIONS .. 164

BIBLIOGRAPHY ... 168

7

INTRODUCTION

In recent years, many organizations realized that keeping private infrastructures is a

major expense and they started to outsource their infrastructure, leaving other players

to take charge of the hardware maintainance. With the advent of cloud, the evolution

of distributed architectures took a step further with companies providing elastic, pay-

per-use services accessible from remote locations, but with the appearance of being

internal to the enterprises. The evolution of architectures came together with the one

of software applications that were designed first as big monoliths, running either as a

single process or as a small number of processes spread across a handful of servers.

These monoliths, characterized by slow release cycles, were updated relatively

infrequently: at the end of every release cycle, developers packaged up the whole

system and handed it over to the operations team, who then deployed and monitored

it. In case of hardware failures, the operations team manually migrated it to the

remaining healthy servers. Today, these big monolithic legacy applications are being

broken down into smaller, independently running components, termed microservices.

Since microservices are decoupled from each other, they can be developed, deployed,

updated, and scaled individually, making possible to change components quickly and

as often as necessary to keep up with today rapidly changing business requirements.

In this scenario, where many technologies arise to support the development of

microservices and more specifically, the advent of containers has led to the

development of technologies able to manage the entire lifecycle of business

applications, in particular, Docker and Kubernetes: the first provided a way to package

an application, together with the libraries it needs, by defining a boundary with the

machine on which it runs; Kubernetes made it possible to create services with

automation to help with autoscaling and management.

However, there are still many challenges involved in developing, deploying, and

managing microservices-based applications and even though an orchestrator like

Kubernetes does the heavy lifting, the growth in complexity of business applications

made service and event meshes emerge. At the same time, with the explosion of big

8

data, many enterprises are investing in their next generation data infrastructures, based

on a paradigm that draws from modern distributed architectures called data mesh.

Service mesh is a term used to describe a decentralized application networking

infrastructure that allows applications to be secure, resilient, observable, and

controllable. It defines an architecture made up of a data plane that uses application-

layer proxies to manage networking traffic on behalf of an application and a control

plane to manage proxies. This architecture allows to build important application-

networking capabilities outside of the application without relying on a particular

programming language or framework.

Event mesh is an architectural layer that dynamically routes events from one

microservice to another irrespective of deployment location. The dissemination of

massive amounts of data across a highly distributed infrastructure challenges

enterprises on how to move this data, in an efficient, scalable, and economical way,

across infrastructure that is not just geographically dispersed, but also exists in separate

and heterogeneous clusters. The event mesh solves this problem by using a set of

brokers in charge of distributing events across any environment. In fact, this

technology does not necessarily require Kubernetes, but it can work seamlessly with

it, enabling event-driven microservices to scale.

Data mesh, finally, is a new approach to thinking about data based on a distributed

architecture for data management: the idea is to make data more accessible and

available to business users by directly connecting data owners, data producers, and

data consumers. Data mesh aims to improve business outcomes of data-centric

solutions as well as drive adoption of modern data architectures. This approach to data

allows companies to improve decision-making, help detect fraud or alert the business

to changes in supply chain conditions. To create high-value data products, companies

must address culture and mindset shifts and commit to a more cross-functional

approach to business domain modeling.

Given, then, the importance and the recent rise of meshes, with this work we want to

carry out a theoretical study of meshes, to then proceed to experiments that involve

9

service and event mesh technologies, selected for being open-source (isio, Linkerd,

and Apache EventMesh), in order to test their performance when used to manage the

communication of microservice-based workflow applications in the cloud

environment, considering both the case of single cluster and multi-cluster.

Below is an overview of the thesis structure.

Chapter 1 discusses about concepts regarding cloud computing, which is the basis of

our work, and some of the main topics covered in this dissertation. From Chapter 2 the

meshes are discussed with first dealing with the data mesh, and then continuing with

service and event mesh. In Chapter 3 different implementations of mesh technologies

are analyzed, explaining the architecture and main characteristics of each. In Chapter

4 an overview of the project carried out for the thesis work is presented. Chapter 5

illustrates the implementation of each element of our design used to carry out the tests.

Finally, Chapter 6 illustrates the experimental results obtained.

10

1 CLOUD COMPUTING

During the last few decades, the concept of outsourcing resources and services and the

notion of utility computing merged in preparing a unique technological environment

termed cloud computing that impacts organizations of any size, creating new

opportunities by inspiring businesses not only to fulfill existing goals, but also to set

new objectives based on the extent to which cloud-driven innovation can further help

optimize business operations [1]. The wide adoption of the cloud has led to the

development of new technologies and paradigms, such as microservices, orchestrator,

and meshes, to cope with a growing system complexity. As mentioned in the

introduction, the analysis of these technologies is the specific object of this work. Since

we will focus on their application on cloud, we want to start from the analysis of the

fundamental concepts of cloud computing.

1.1 ADVENT OF CLOUD

From the early days of computing, there has been the need, in many situations, for a

great computational power. Distributed systems allowed developers to get results from

computational demanding jobs and many companies adopted their own hardware,

sometimes dividing it across different departments, to enhance business processes.

Then the growth of the Web expanded many businesses, requiring more demand in

hardware and technological competences [2], [3].

With time passing, the cost of keeping the infrastructure private became a major

expense and new solutions were adopted. Third-party entities started providing ways

to outsource the infrastructure, taking charge of the hardware maintenance. This

organization also allowed companies to concentrate server equipment in a single

physical location, a Data Center.

From this situation, the industry gradually moved to a more organized model which

provides elastic and pay-per-use services from a remote location, but with the

appearance of being internal to the company. This new approach has been called cloud

computing.

11

It is possible to identify a set of characteristics common to the majority of cloud

environments that enable the remote provisioning of scalable and measured IT

resources in an effective manner [4]:

• On-demand resource usage: a cloud consumer can use cloud resources on-

demand usually with a pay-per-use subscription model. Generally, cloud

consumers do not know the exact location of the provided resources, but they

may be able to specify the region or zone like country, state, or even Data

Center.

• Ubiquitous access: cloud platforms are widely available, sometimes with

world-wide coverage, allowing customers to access them from remote through

a web interface.

• Multitenancy: a cloud provider can serve different consumers (tenants)

whereby each is isolated from the other.

• Elasticity: cloud services can transparently scale by provisioning and releasing

resources, as required in response to changing runtime conditions. In many

cases, the demand for resources changes throughout the year, month or even

the day. Elasticity allows customers to change the allocation of resources

dynamically, adding facilities to deal with service peak times and removing

them when they are no more needed, paying just for the facilities they use.

• Measured usage: this characteristic represents the ability of a cloud platform

to keep track of the usage of the IT resources. This allows the cloud provider

to charge consumers depending on how many resources were used for a

specific timeframe. In that sense, measured usage is closely related to the on-

demand characteristic. From the consumer point of view, measured usage

encompasses monitoring of the cloud resources allowing for comprehensive

usage reports.

• Resiliency: cloud services provide robust systems through the distribution of

reduntant copies of the resources across physical locations. In case of one

resource becoming deficient, another redundant copy can take it over. Thanks

12

to the resiliency of cloud-based IT resources, cloud consumers can increase

both reliability and availability of their applications.

• Flexibility: to accommodate an incremental business growth a startup can

begin by leasing minimal computing, storage, and communication facilities.

Then, it can adapt the requirements by adding more resources.

1.1.1 VIRTUALIZATION

The flexibility of cloud in the allocation of resources has been made possible thanks

to virtualization. A cloud provider does not need to allocate groups of physical servers,

but it can just create a set of software-defined virtualized servers [5].

This allowed for a rapid creation and removal of new virtualized istances at any time,

without changing or rebooting physical machines. Furthemore, many virtualized

resources can be consolidated in a few physical servers, running concurrently, each

one completely isolated from others not only on the computational side, but also on

the data one. For that reason, the cloud provider can choose where to create new virtual

machines to get the best benefit in terms of resource usage and business cost. This

guarantees also to avoid placing too many virtualized servers on the same physical

machine balancing the load across all physical servers in the Data Center.

Figure 1-1. Differences between a traditional architecture (left) and a virtual architecture (right).

From a customer point of view, a virtualized server appears like a physical one,

running applications that communicate through the internet. Cloud providers offer

13

options to easly deploy applications in a cloud environment, including the possibility

to handle increasing flows of requests arriving from the internet by creating more

application copies quickly. But they also provide the possibility to create test

environments in which developers can create new software before staging it in

production systems.

Virtualization gives also more security and replication defines generally more robust

systems that, by tolerating faults and surviving to crashes, can always give an answer

to the customer.

1.2 MODELS

Before the cloud computing emerged, private clusters and grid computing made use of

many parallel machines to solve high demanding jobs, while utility computing and

Software as a Service (SaaS) provided services managed and delivered from remote

by one or more providers through a pay-per-use subscription model [6].

The concept of cloud computing has gradually evolved from these models and the way

resources are owned and organized defines two different kinds of models in which

cloud offerings can be divided.

1.2.1 CLOUD DEPLOYMENT MODELS

A cloud deployment model represents a specific type of environment, primarly

distinguished by ownership, size, and access [1], [7].

1.2.1.1 PUBLIC CLOUD

From the early 2000s, when Amazon started its own cloud service, many different

companies arose in the cloud industry. Those companies have been offering a public

cloud accessible through a pay-per-use or a subscription model.

The cloud provider oversees managing the cloud infrastructure and all the IT resources

and it makes the service accessible from the internet by any user who paid for it. Many

providers offer a worldwide presence of their services.

14

1.2.1.2 COMMUNITY CLOUD

Similar to the public, a community cloud limits its access to a specific community of

consumers. It may be owned by the community itself or by a third-party vendor that

provisions a public cloud with limited access. Members of the community generally

share similar security, privacy, performance and compliance requirements [8].

1.2.1.3 PRIVATE CLOUD

A company can also decide not to use a public cloud solution, but to use that

technology to build a private cloud within the domain of an intranet owned by the

organization. The company must maintain the infrastructure and limit the access to

owning clients and their partners. By giving local users a flexible and agile private

infrastructure to run service workloads within their administrative domains, a private

cloud is supposed to deliver more efficient and convenient cloud services, but it may

impact the cloud standardization, while retaining greater customization and

organizational control.

1.2.1.4 HYBRID, MULTI AND DISTRIBUTED CLOUD

Many companies are adopting a hybrid solution in which multiple cloud models are

taken into consideration. It provides orchestration, management, and application

portability across different platforms, resulting in a single, unified, and flexible

environment. For example, private clouds can implement a local infrastructure with

computing capacity from an external public cloud: the organization can keep

production applications on-site while conducting all its testing in the cloud or enabling

on-demand scaling as needed.

The rapid growth of the hybrid cloud led to new challenges on how to take full

advantage of the public cloud capabilities without the need to actually deploy

applications on public cloud, on how to introduce those capabilities on-premises and

on the edge, or how to use all these technologies on other public cloud services.

Some of these challenges were addressed by the multi-cloud, an approach that enables

cloud solutions to not belong to just one stack, such as the Azure public cloud with

Azure Stack on-premises, but applications, data, and cloud services can be used from

15

different cloud vendors, such as Microsoft Azure and Google Cloud Platform [9]. The

multi-cloud allows companies to reach great flexibility when building business

services, preventing performance problems, limited options, or unnecessary costs

resulting from the dependence from a single provider. Usually, this kind of solutions

rely on open-source, cloud-native technologies because in many cases, they are

supported by the majority of the public cloud providers.

There are different reasons why an organization would choose a multi-cloud solution

[9], [10]:

• Redundancy: it is possible to rely on multiple cloud providers to keep the

business running in case of a failure or to take advantage of the right technology

for the specific business requirements.

• Latency minimization: applications highly sensitive to latency benefit from

local cloud providers that are near to the organization. In some situations,

business processes can be accelerated thanks to the combination of edge and

public cloud computing.

• Enhanced scalability: applications can take full advantage of the cloud power

by quickly scaling on multiple cloud provider solutions.

• Legality and governance: in some cases, there is the need to use different cloud

providers to comply with local data regulations, which require certain types of

data to reside in specific geographies.

In most of the cases, the management of a multi-cloud solution can be very difficult.

For example, changing access roles or security constraints can require accessing each

individual operations dashboard of the various cloud providers. The distributed cloud

solution solves operational and management inconsistencies through a central control

plane and it can also help by replicating the capabilities of a cloud service provider on

infrastructures located outside of the public offering. In that way, it allows to extend

the public cloud to on-premises, private cloud, or even edge environments. Many

providers are offering that service and some major names are: IBM Cloud Satellite,

AWS Outposts, Google Anthos, and Microsoft Azure Stack; each of these has its own

16

strength points, but all of them are sharing the same idea of extending the public cloud

capabilities to customer environments while having a single control pane [11].

1.2.1.5 CLOUD DEPLOYMENT MODEL COMPARISON

Private clouds leverage existing IT infrastructure and personnel within the company,

balancing workloads more efficiently within the same intranet. A private cloud can

provide high customization and enforce data privacy and security policies more

effectively.

On the other hand, public cloud solutions promote standardization, offer application

flexibility, and preserve capital investments by avoiding expenses due to the

mantainance of IT hardware, software, and personnel [12].

Hybrid clouds operate in the middle, offering the benefits of both public and private

cloud and taking advantage of existing architecture in a Data Center. The hybrid

approach allows applications and components to interoperate across boundaries,

between cloud instances, and even between architectures driving cost savings and

supporting fast-moving digital business transformation.

Figure 1-2. Cloud computing deployment models.

17

1.2.1.6 CLOUD DELIVERY MODELS

While some organizations started virtualizing their own computing machines to lower

the IT costs, companies engaged in the public cloud industry started delivering

different levels of virtual environments: infrastructure, platform, and software as

services [12]. These cloud delivery models represent a specific, pre-packaged

combination of resources that allow public cloud customers to upgrade their IT

efficiency significantly. These models are available in a pay-as-you-go subscription

and they are often offered based on Service Level Agreements (SLA)1, addressed in

terms of service availability, performance, data protection, and security.

Three common cloud delivery models have become widely established and

formalized:

• Infrastructure as a Service (IaaS): the cloud provider offers the network, the

storage, and the virtual machines on demand. In that case, customers are

responsible for all the layers on top of the virtual machine together with the

configuration of the operating system and its updates. The purpose of that

solution is to give to the customers the highest control and responsibility level

over the configuration and the usage of the virtualized resources.

• Platform as a Service (PaaS): this model represents a pre-defined environment

usually comprised of already deployed and configured IT resources. The cloud

provider oversees mantaining the operating system and provides the

middleware solution like database, enterprise messaging, and runtime

containers. In that model, the customers are focused on the application features

and on the automation of their distribution.

• Software as a Service (SaaS): in this model the cloud provider manages the

hardware and the software offering it as a final product or a generic utility. It

is used to make a reusable cloud service widely available commercially to a

range of cloud customers.

1 An SLA is a documented agreement between a service provider and a customer that identifies both

the services required and the expected level of service.

18

Figure 1-3. Cloud delivery models.

These models are the basis on top of which companies can deploy their own business

processes. The adoption of an automatable, scalable, elastic and highly resilient cloud

platform makes possible to innovate the way applications are provided by supporting

a higher velocity product lifecycle that moves a software product through a

development, test, stage and production environment without making huge

investments in on-premises infrastructures [13].

1.3 DEVOPS

In the context previously mentioned, it is important to talk about DevOps that is a set

of principles and practises that encourage the participation of both the development

and operations teams in the entire software development lifecycle, software

maintenance, and operations [14].

In the past, the development phase was separated from the one responsible for

operating the software. Developers were focused on developing new features then

passing the software to the operating staff, who ran and maintained it in production.

19

There was a little overlap between the two figures because the two departments had

quite different goals [2], [15]. With the advent of cloud, the DevOps movement took

its origin because it was more evident that things traditionally separated are now

interconnected and interdependent [14]. The team responsible for the development

must understand how their software relates to the rest of the system, and people

responsible for the operations have to understand how the software works or fails.

The DevOps movement brings the two teams to collaborate, to share understanding

and responsibility for systems reliability and software correctness, and to improve the

scalability [16]. The companies that want to embrace this new approach can use several

processes and tools to help automating the software delivery, improving speed and

agility, reducing release times through continuous integration and delivery (CI/CD)

pipelines, and monitoring the applications running in production.

The adoption of this new perspective in the organization requires a deep cultural

transformation for businesses, but companies engaging it are more agile in the

marketplace, while improving the quality of their products.

1.4 MICROSERVICES

The development of an application often involves best practices and architecture

patterns to take full advantage of a specific platform. In the case of cloud computing,

the application development moved in many cases from the classic monolithic

approach in which all the features are integrated in a single package, to a new one in

which the application is divided into different microservices, loosely coupled between

them, simplifying the development and the testing phases and enhancing the

modularity, fault tolerance and more generally, the quality [17], [18].

20

Figure 1-4. Differences between a typical monolithic and a microservice-based applications with

different deployments.

Micro is not intended in the sense of the size of the application, but in its purpose.

Every microservice implements a single feature of the whole business application with

the greatest quality through well defined contracts [19]. This simple concept is the

basis for the properties and the design of the microservice architecture.

1.4.1 PROPERTIES

Within the context of implementing a funcionaltity with quality, microservices exhibit

some other properties and behaviors that characterize themselves from previous

incarnations of service-oriented approaches [13], [20]:

• Autonomous and isolated.

• Elastic, resilient and reactive.

• Message-oriented and programmable.

• Configurable.

• Automatable.

More in detail, microservices are capable of existing autonomously with loosely

coupled dependencies on other services. Each one can respond, react, or develop

21

independently of the whole and each of the microservices is designed, developed,

tested, and released according to that.

They can be reused into different scenarios providing scalability, fault tolerance, and

high availability. For that reason, they should be able to scale independently from the

other microservices according to the required usage; the failure due to a single service

should not extend to other services and it must guarantee a recovery in short times; at

the end, they must guarantee the right performance for their usage scenario [21].

Microservices are also message-oriented and programmable because they must define

clearly and completely the way through which they communicate to reach their

common goal. For that reason, API interfaces are defined and they realize a set of

endpoint visible on the network, and contracts over the data that define the structure

of the exchanged messages.

Furthermore, microservices must be reusable and must be able to address the needs of

each system. This is the reason why each one must provide a means by which it can

be appropriately molded to the usage scenario.

Finally, complex projects could cause the proliferation of independent microservices.

This situation requires a fully automated control over the software development cycle.

1.4.2 BENEFITS AND CHALLENGES

Microservices are providing great benefits to application development, but when

systems become complex, they can be difficult to manage. Before adopting a

microservices-based architecture is important to be able to compare benefits and

challenges.

1.4.2.1 BENEFITS

By combining the concepts of information hiding and domain-driven design with the

power of distributed systems, microservices can help deliver significant gains over

other forms of distributed architectures [20], [22]:

22

• Clear module boundaries: each service responds to the principle of “single

responsibility” and it has simple and well-defined interfaces, thus reinforcing

the modular structure and making the software more robust in time.

• Independent distribution: it becomes possible to modify and update a single

service without involving the entire application. This allows to distribute bug

fixes and new features faster, while remaining competitive in the market.

• Independent development: developers have a better awareness of

responsibilities and control, and this leads to greater innovation, with a

consequent improvement in release rates.

• Error isolation: each malfunction remains confined within the area of a single

service, without involving the entire application. However, resilience must be

ensured by developers through adequate precautions.

• Granular scaling: services can scale as needed independently. Furthermore,

the higher density of components, which can be instantiated on each machine,

allows to take advantage of the most of available resources.

• Heterogeneity of technologies: it becomes possible not only to use the

technology suitable for a specific problem, but also to experiment and

introduce technically heterogeneous software easier. Furthermore, the

managing libraries and dependencies becomes much easier.

1.4.2.2 CHALLENGES

Introducing microservices in an enterprise system can bring a host of complexity.

Some of the most important points are [20], [23]:

• Complexity and skills: the design of a microservices application, seen in its

entirety, is more complex than other solutions. It is therefore necessary to have

coordinated and particularly skilled development teams to be able to develop

and administer it.

• Lack of governance: the decentralized approach to application development,

combined with the great freedom in the use of technologies, can lead to

excessive fragmentation of languages, libraries and frameworks used, making

the entire project difficult to manage.

23

• Development and testing: in addition to the tests that are traditionally carried

out on an application, it is necessary to specifically test microservices and their

interactions. This can be complex especially when development is very fast.

• Network congestion and latency: building a distributed project with an

excessive number of services can lead to an increase in network

communications. This problem, if not properly managed, causes a problematic

increase in latencies.

• Data integrity: given that persistence is managed directly by each

microservice, it is necessary to maintain consistency between different

components.

1.5 CONTAINERIZATION

With the industry adoption of microservices, some new technologies were created to

deal with the growing complexity of applications. One of the most important is the

containerization of microservices that is a technology that allows to run an application

in isolation from the rest of the system, including all the necessary resources: code,

runtime, system tools and libraries, and configuration files [24]. Assuming the need to

create an application, each developer uses his own machine to deal with a portion of

code. Often the developed application makes use of libraries and configuration files

that may vary slightly from one development environment to another. Furthermore, in

order to maintain a certain uniformity in the project, there is the need to emulate the

company test and production environments, including the related software (e.g.,

database) [25] which is not always easy to install and configure, with a consequent

waste of time and resources.

Containers are used in this context, making an application easily portable from one

environment to another, without having to change the source code or correct errors in

the configuration as the software moves from one phase of production to another [26].

24

Figure 1-5. Differences between a native application (left) and a containerized one (right).

Containers fit into the DevOps development cycle, helping to reduce conflicts and

clearly separating areas of responsibility: developers can focus on the source code of

applications, while information technology (IT) people can focus on infrastructure

[27]. It is a very flexible technology, applicable in many contexts in which portability,

configurability, and isolation are necessary, without however depending on the

infrastructure used. Containers can thus be deployed on-premises, in the cloud or,

where necessary, in a hybrid solution.

1.5.1 DIFFERENCES BETWEEN VIRTUAL MACHINES AND CONTAINERS

Before containers were born, technologies were already available on the market that

allowed the creation of virtual machines [3]. Today the containers are widely used

[28]; however, the two techniques coexist, each with their own advantages.

Traditional virtualization allows to run a complete operating system inside a virtual

machine. This allows to have multiple instances of systems, even different from each

other, operating at the same time on the same physical machine. This is made possible

by a hypervisor that provides optimal isolation between physical and virtual machines

[29].

25

Figure 1-6. Comparison between containers (left) and virtual machines Type-2 (right).

Virtual machines, although technologically complete, present some problems. First,

booting a full operating system usually takes a long time. Second, each virtual machine

requires a fixed amount of memory to work and has a significant overhead in CPU

usage. Furthermore, I/O communications are inefficient: in the case of a Type-2

virtualization, an application makes calls to the guest kernel which in turn calls what

it believes to be the hardware; however, this call is intercepted by the hypervisor,

passed to the host kernel and finally to the hardware. The answer will necessarily have

to retrace the same route in the opposite direction. Although Type-1 virtualization

technologies exist, which allow the hypervisor to rely directly on the hardware, it is

always necessary to traverse the entire stack, resulting in performance degradation in

terms of both overhead and latency. Furthermore, the resources are not allocated in a

granular way as the inactive ones remain associated with a single virtual machine and

cannot be reused. Finally, maintaining virtual machines is difficult: since the size of

the software to be managed is considerable, it becomes more complex to keep the

system updated, also considering the downtime necessary for the update. Otherwise,

containers allow to reduce overhead to a minimum as a single kernel manages logically

separate instances of applications (process containers) or operating systems (machine

containers) [30]. The I/O communications go directly through the host kernel and the

26

performance is very similar to that of native applications. The isolation is weaker than

virtual machines, but still present: containers can, in fact, share some resources.

Additionally, container startup times are much faster as there is no need to boot the

operating system. Finally, resource allocation is very flexible because it is managed

by the host kernel.

1.6 ORCHESTRATION

With the increase in complexity of their systems, organizations needed to automate the

configuration, coordination, and management of computer systems and software [31].

In this scenario, an orchestrator is a system that can deploy and manage applications,

dinamically responding to changes, such as adapting to the current business demand

[32].

In the cloud field, when running very complex microservices-based applications

(hundreds or even thousands of entities) in a cluster environment, the container

orchestration is a system that automates the deployment, management, scaling, and

netwoking of containers. Orchestrators can be used in any environment like private or

public clouds, making easier to manage complex business situations [33].

More in detail, one of the first problems this kind of software addresses is resource

scheduling. In fact, it is possible that the services require to be performed on machines

that meet particular requirements, but not all of them are adequate [34]. Moreover,

very often, it is necessary to carry out load balancing which consists in making the

most of the cluster resources, without having containers that work too much and others

that are inactive. Applications must be able to scale as needed. It is therefore necessary

to launch new containers in the case of intense traffic, in order to serve all requests;

when they are no longer needed, they must be eliminated automatically. It is very

important to be able to handle peak customer demands. Finally, it should be possible

to easily monitor and control in a simple way all the containers.

Generally, container orchestration tools are configured through user-defined

guidelines, labels, or metadata. Once the host is assigned, the orchestration tool

27

automates and manages the services throughout the lifecycle based on the rules

defined.

In general, orchestrator tools provide the following services:

• Containers configuration and scheduling.

• Containers provisioning and deployment.

• Resource allocation.

• Scaling of containers to balance requests.

• Service discovery.

• Containers monitoring.

• Traffic routing.

Figure 1-7. A basic overview of an orchestrator architecture and an application running on top of it.

Due to their importance in managing microservice-based applications, many different

orchestrator tools were implemented. One of the most famous is Kubernetes [32].

1.6.1 KUBERNETES

Originally developed by Google, Kubernetes is an open-source orchestrator that allows

to coordinate containerized applications across clusters of machines. It is a platform

28

designed to manage the entire lifecycle of containerized applications and services

through methods that provide reliability, scalability and high availability [35], [36].

The core concepts on which Kubernetes has been based are:

• Immutability.

• Declarative configuration.

• Online self-healing systems.

Containerization tools like Docker2 and orchestration tools like Kubernetes are based

on the concept of infrastructure immutability. The current state of a system is not

represented by a set of updates and changes applied incrementally, but by a single and

unchangeable entity. In this way, any updates or changes are made through new

container images that replace the previous ones.

For the configuration of an immutable system, it is not convenient to use the traditional

imperative approach, which envisages exercising control over the system through the

direct execution of a series of instructions, but it is encouraged instead the use of

descriptions of the present objects called declarative configuration objects. These

define the state of the system and have some advantages: being in written form,

versioning and code revision can be applied; the effects of the declarative

configuration can be understood before being executed, drastically reducing the

number of possible errors in the system configuration; finally, it is possible to rollback

easily by restarting the system previously stated.

The configuration mentioned above does not only describe the initial state, but it is

also used to keep the current system state consistent with the provided configuration.

This requires an orchestration system, such as Kubernetes, to monitor the state of the

entire cluster so that it can react to failures or problems that could destabilize the

system (online self-healing).

Orchestrators, such as Kubernetes, led to many benefits in terms of velocity, scaling,

efficiency, and infrastructure abstraction, but they focus largely on scheduling,

2 Docker is a popular platform used to create and manage containerized applications.

29

discovery, and health, primarly at a low infrastructure level, usually leaving

microservices with unmet service-level needs. For this reason, new specialized

technologies and paradigms were defined, sometimes relying on container

orchestrators, to deal with service-to-service communications and big data growth.

30

2 MESH TECHNOLOGIES AND PARADIGMS

In this chapter we want to focus on the mesh that is a recent concept about distributed

architectures that regulates complex topologies based on connections and constraints

among all nodes and components of business applications. Recent solutions that

started from this concept are technologies and paradigms that are modernizing the

development and management of business applications and they are termed as service,

event, and data mesh.

Service and event mesh are configurable infrastructure layers that facilitate complex

interactions and management of microservices-based applications and cloud services.

More specifically, the first is focused on synchronous interactions, while the second is

dedicated to the distribution of events. On the other hand, a data mesh, from whose

analysis we will start, is a paradigm that evolved from traditional data platforms,

introducing organizational and process changes that companies need to manage data

as a tangible capital asset of the business.

2.1 FROM TRADITIONAL DATA PLATFORMS TO DATA MESH

Capturing and analyzing the right information is crucial and companies are also using

data as an asset both to improve customer interactions and to increase efficiency. Data

can be, for example, the basis for personalization, dynamic pricing, market expansion,

product innovation, or supply chain optimization [37], [38].

2.1.1 LIMITS OF TRADITIONAL DATA PLATFORM ARCHITECTURES

The goal of becoming a data-driven organization has many challenges and traditional

architectural paradigms are no more efficient in many contexts. To cope with

information complexity and business needs, there were three different generations of

data platform architectures before data mesh was defined [39]:

31

• The first generation was composed mainly by proprietary enterprise data

warehouse3 and business intelligence (BI)4 platforms mantained by a

specialized team. Those systems were expensive and they left companies with

large amounts of technical debt in terms of numerous of unmaintainable ETL

(Extract, Transform, Load) jobs, tables, and reports.

• The second generation shifted to the concept of Data Lake, a complex

enterprise data platform architecture chatacterized by being flat, centralized,

monolithic, and domain agnostic. This means that it stores in a central position

large and varied sets of unstructured, semi-structured, or structured data

collected from different sources across the organization [40].

• The third generation is similar to the previous one with the addition of

streaming data, cloud, machine learning, and other technologies.

Usually, a Data Lake sits in what is called an analythical data plane which is a

temporal and aggregated view of the facts of the business over time. It depends on the

operational data, organized in a different plane, that sits in databases behind business

capabilities served with microservices, has a transactional nature, keeps the current

state and serves the needs of the applications running the business. In this scenario, the

two planes are different but yet integrated through Extract, Transform, Load (ETL)

jobs producing many difficulties in connecting those two planes with an ever-growing

complexity of the data pipelines.

3 A data warehouse is a system designed for data analytics, which involves reading large amounts of

data to understand relationships and trends across the data.
4 Business Intelligence refers to a set of technologies that enable data preparation, data mining, data

management, and data visualization. Business intelligence tools and processes allow end users to

identify actionable information from raw data, facilitating data-driven decision-making within

organizations across various industries.

32

Figure 2-1. Schema of the division between the operational and the analytical data planes connected

by complex ETL pipelines.

2.1.2 THE GREAT DIVIDE OF DATA

The separation between the analytical and the operational data planes on one side and

the ETL pipeline organization on the other are not the only problem originated from

the systems previously mentioned. In fact, it must be considered that they also have

other limitations:

• Centralized and monolithic architecture: the data platform contains all the

information that logically belong to different domains. This organization may

work for small organizations, but it is not suitable for enterprises with large

numbers of data sources and diverse data consumers.

• Siloed and hyper-specialized ownership: the organizational units who build

and own the data platform consist of hyper-specialized data engineers

separated from the teams providing source data and the consumer units

retrieving the processed data. While the latter groups are domain-oriented, the

former team must be domain-agnostic.

33

In order to address the previous limitations of information platforms, a change in

thinking about data, its locality, and ownership is required to successfully implement

a data mesh architecture.

2.1.3 DATA MESH

The data mesh is a new approach in sourcing, managing, and accessing data for

analytical purposes at scale, involving both teams and technical architectures

organization [41]. It breaks the traditional monolithic Data Lake paradigm into several

independent subsystems or domains, each of those managed by a dedicated team. This

allows to move from a centralized ownership of data, collected into monolithic data

platforms, to a decentralized model of data products whose ownership is near the

business domains where data is produced. In addition, a data mesh removes the gap

between where the data originates and where it gets used in its analytical form, deleting

all the pipelines between the operational and the analytical data planes. At the same

time, it attempts to connect the two planes through an inverted model and topology

based on domains and not technology stack, with a focus on the analythical plane [42].

In other words, it shifts from technology solutions that treated data as a bybroduct of

pipelines, governed in a centralized operational model, to solutions in which data and

the code that mantains it, are treated as an autonomous unit, inside a federated

organizational model with computational policies embedded in the nodes on the mesh.

34

Figure 2-2. Comparison between a centralized data ownership on the left in which the responsibility

for data becomes the domain of the data warehouse (DWH) team and a decentralized one on the right

in which ownership of a data asset is given to the “local” team that is most familiar with it.

A Data mesh is based on four principles [43]:

• Decentralized architecture and ownership organized into domains.

• Data as products.

• Self-serve data infrastructure as a platform.

• Federated management of computing resources.

The data mesh has a decentralized architecture in which each domain is an

independently deployable cluster of related microservices which communicate with

users or other domains through modular interfaces. To promote the decomposition of

the data ecosystem and the ownership of each component, there is the need to model

an architecture that organizes the analytical data by domains. In this architecture, the

domain interface to the rest of the organization not only includes the operational

capabilities, but also access to the analytical data that the domain serves. The

decomposition follows the separation between different business domains that

organizations already provide and it makes possible to localize the impact of

continuous change and evolution to the domain bounded context.

35

The data is treated as a product like any other, complete with a data product owner,

consumer consultations, release cycles, and quality and service-level agreements.

From an architectural point of view, the data mesh introduces the concept of data

product as its architectural quantum which is the smallest unit of the architecture that

can be indeplendently deployed with high functional cohesion, including all the

structural elements for its own functioning. These elements are mainly three:

• Code: for data pipelines responsible for consuming, transforming and serving

upstream data; for APIs that provide access to data; to enforce traits such as

access control policies, compliance, provenance, etc.

• Data and metadata: depending on the nature of the domain data and its

consumption models can be served as events, batch files, relational tables,

graphs, etc., while maintaining the same semantic. Usually, data comes

associated to metadata.

• Infrastructure: it enables building, deploying, and running the data product

code, as well as storage and access to big data and metadata.

A key point of data mesh is a self-serve data infrastructure as a platform that

empowers consumers to independently search, discover, and consume data products.

Data product owners are provided standardized tools for populating and publishing

their data product. A self-serve data platform supports the provisioning of the

underlying infrastructure required to run the components of a data product and the

mesh of products. It should provide an interface that abstracts the provisioning

complexities to support data product developers workflow.

The last principle on which a data mesh is based is federated management. It is

embodied by a cross-organization team that provides global standards for the formats,

modes, and requirements of publishing and using data products. This team must

maintain the delicate balance between centralized standards for compatibility and

decentralized autonomy for true domain ownership.

The four principles described above are collectively necessary and sufficient. Each of

them complements the others, addressing challenges that may arise from each principle

36

took alone. For example, decentralized domain-oriented ownership of data can result

in data siloing within domains, and this can be addressed by the data as a product

principle that demands domains have an organizational responsibility to share their

data with product-like qualities inside and outside of their domain [42].

Figure 2-3. Representation of the interplay of the four data mesh principles. Each arrow starts from the

principle that may present a challenge and it reaches the principle that addresses it.

2.1.4 CONCLUSION

Traditional data architectures are becoming difficult to manage and use with the

increase of big data. Companies can rely on monolithic architectures, keeping all the

data just in a single place, but to stay competitive they need to create new products,

services, and solutions, or enhance existing ones, for their customers. This requires a

human and technical organization that lets an enterprise to spend time looking for

business opportunities, rather than for data in the Data Lake, analyzing the market and

chasing new customers. On the other side, a data mesh can be an effective way of

building enterprise data platforms as distributed architectures that make data

accessible and available to business users by directly connecting data owners,

producers, and consumers. Approaching data mesh can be a huge undertaking for

companies, but it means building a solid foundation that supports the evolution of the

data-driven business.

37

2.2 MICROSERVICES MANAGEMENT USING SERVICE MESH

Turning now to the analysis of the service mesh, in order to better define it, it is

necessary to observe that with the advent of microservices, many of the problems for

developing agile applications in a distributed environment were addressed by splitting

the business logic of applicatives into different entities. Although this approach

allowed organizations to embrace agile principles, enhancing their production

velocity, efficiency, and by decoupling the different parts of their applications,

achieving better quality of service, it became important to document and control how

different parts of an application share data.

2.2.1 CHALLENGES WITH MICROSERVICES

Microservices communicate significantly over the network to achieve the business

logic of the application they realize. This dependency adds many potential hazards that

grow with the number of connections microservices business applications depends on.

The fast development cycles lead to new challenges in managing an increasing

deployment complexity [44], [45]:

• Observing interactions between services in a large and distributed

environment with many loosely coupled components can be difficult.

• Traffic management at each service endpoint becomes more important to

enable specialized routing such as for A/B testing5 or canary deployments6

without impacting clients within the system.

• Securing communications by encrypting the data flows between decoupled

services with different binary processes and written in different languages is

more complicated.

• Network unreliability can be experienced in a complex scenario where dealing

with timeouts, high-latency routes, and communication malfunctions can lead

to cascading failures that are difficult to correctly address.

5 A/B testing refers to a randomized experimentation process wherein two or more versions of a variable

(web page, page element, etc.) are shown to different segments of website visitors at the same time to

determine which version leaves the maximum impact and drives business metrics.
6 A canary deployment is a strategy that reduces the risk of releasing new software that could impact

the workload by allowing to release the software gradually to a small subset of users.

38

Many companies in the web market tried to resolve the problems mentioned above

directly in the services code, developing specialized frameworks and libraries. This

approach was not ideal, because it required an agreement on the same solution

approach between all the microservices involved in a communication to assure

consistency. These frameworks that companies created were very language and

platform specific and in some cases, made it difficult to bring in new application

services written in programming languages that did not have support from these

resilience frameworks. Whenever these frameworks were updated, the applications

also needed to be updated to stay in lock step. Finally, adding extraneous logic to the

application code to provide a solution to the problems mentioned above is extremely

error prone.

2.2.2 SERVICE MESH

A service mesh is a different approach to address challenges in a complex business

scenario. It is a programmable infrastructural layer that provides a uniform way to

connect, secure, manage, and monitor microservices. It does not establish connectivity

between microservices, but instead it has policies and controls that are applied on top

of an existing network to govern interactions between microservices. Service meshes

are language agnostic and can be used in existing environments usually without

applications code changes [46], [47].

39

Figure 2-4. Comparison between a traditional microservices-based architecture (left) and a service

mesh (right). Interactions between components are mediated by proxies specifically configured.

A service mesh enhances a microservices-based infrastructure by providing the

following chatacteristics [48]:

• Observability: service meshes are deployed in a transparent way, giving

visibility into and control over the traffic without requiring changes to the

application code.

• Traffic control: service meshes provide granular, declarative control over

network traffic. That enables advanced features that enhance overall resiliency

such as circuit-breaking7, latency-aware load balancing, eventually consistent

service discovery, retries, timeouts, and deadlines.

• Security: service meshes enforce security, policy, and compliance

requirements. Most solutions provide a certificate authority (CA) to secure

service-to-service communication.

The value service meshes provide is independent from the number of services running

and many organizations are adopting this technology in their business environments.

7 The circuit breaking is a pattern that provides stability while the system recovers from a failure and

minimizes the impact on performance.

40

Many of these companies use service meshes to modernize their business keeping their

existing applications (monoliths or microservices) in the actual environment. To serve

that purpose some service mesh implementations work in diverse enviroments, from

containers to virtual machines and bare-metal hosts. In any case, all the systems share

a common architectural composition.

2.2.3 GENERAL ARCHITECTURE

Although there are a few variants, each service mesh architecture is composed of two

structural components [49]:

• The data plane manages the real communication between services.

• The control plane manages the configuration and policies of the data plane

communications.

Figure 2-5. General architecture scheme of a service mesh.

2.2.3.1 DATA PLANE

The data plane (sometimes called proxying layer) is composed by a set of proxies that

are responsible to mediate and control the communication between services. When

used with containers and orchestrators, the proxy is inserted in the container as a

sidecar, acting transparently, so that applications, while communicating, are unaware

41

of the data plane existence. The proxy intercepts every packet in the request coming

from or arriving to the application. By having communication routed between proxies,

each of those serve as a key control point to perform complicated tasks. Each proxy is

responsible for routing, health checking, load balancing, authentication, authorization,

and generation of observable signals. The proxies used in many service mesh

implementations can understand a variety of communication protocols, including

application-level data.

The data plane is not only responsible for intra-service communication, but also for

inbound (ingress) and outbound (egress) service mesh traffic. Wether the traffic is

entering the mesh (ingress) or leaving it (egress), the application service traffic is

directed first to the proxy for handling prior to sending, or not sending, along to the

application [50]. Since all the communication complexity is handled by proxy sidecars,

applications are freed from the network logic. In a real business scenario with high

complexity and many components running, the management of proxies can be

difficult. In that situation a control plane acts as a single point of visibility and control

over the data plane.

2.2.3.2 CONTROL PLANE

In general, control planes provide policy and configuration for service meshes, turning

isolated and stateless proxies in a complete service mesh. The role of a control plane

is to operate out-of-band, without touching any network packet. It is responsible for

injecting proxy sidecars before new applications start, informing proxies of the

presence of services, updating the mesh topology, enforcing traffic and authorization

policies, and gathering metrics. It must be noted that generally proxies cache the state

of the mesh, but they are considered stateless.

2.2.4 ORCHESTRATORS VERSUS SERVICE MESHES

As already mentioned, an orchestrator allows microservices-based applications to be

executed and distributed on a large scale. On the other hand, service meshes are

demanded to service-to-service communication management.

42

Container orchestrators like Kubernetes have different mechanisms for dealing with

network management. In a Kubernetes native cluster, a kube-proxy component is

deployed on each node and it mediates the communication between the different pods.

It also communicates with the Kubernetes API Server and gets information about the

services in the cluster. Because each node in a Kubernetes cluster runs many pods,

adding a sidecar on a per-pod basis can increase the response latency than a single

kube-proxy, due to more hops when the sidecar intercepts the traffic. Each kube-proxy

has global settings and for this reason, they cannot control each service at a granular

level [50], [51]. Kube-proxy does not offer advanced features to control network

traffic. It implements load balancing across multiple pod instances of a service, but it

does not provide, for example, traffic division by percantage to different applications

or applying canary and blue-green releases.

On the other hand, in a service mesh, sidecar proxies allow for a more fine-grained

traffic management because they work on a per-pod basis.

Figure 2-6. Kubernetes general architecture versus a service mesh deployment.

Many service mesh solutions run seamlessly with orchestrators like Kubernetes giving

the advanced tools to build, deploy, and manage, microservices-based architectures.

In particular, service meshes are able to monitor what services are communicating with

43

each other, if those communications are secure, and they can control the service-to-

service communication in Kubernetes clusters so that applications can run securely

and resiliently [52].

2.3 ENTERING THE WORLD OF EVENT-BASED ARCHITECTURES

The growth of many companies set new challenges for maintaining and scaling

enterprise systems. In many cases, as data, connection count, and performance

requirements increase, these problems do not involve only technical topics, but also

teams organization. Particularly, the dissemination of massive amount of data across

a highly distributed infrastructure becomes difficult to manage for a large enterprise.

Accessing data on another teams domain is always more difficult than accessing it

locally, because this requires crossing both implementation and business

communication boundaries. Often, this situation can create a strict technical

dependency between teams, requiring them to work in synchronicity whenever a

change is made.

In many real situations, data is copied across the enterprise system and the inability to

correctly disseminate data throughout a company is very problematic. The larger the

data set and the more complex its sourcing, the more likely a copy will be out of sync

with the original. Often, systems expect each other to have perfect, up-to-date copies,

particularly when interacting about the same data.

A weak or non-existent data communication structure can have a severe consequence

for the company service quality and for that reason, new architectural solutions, such

as those based on events, were defined.

2.3.1 EVENT-DRIVEN COMMUNICATION STRUCTURES

An event-driven architecture is a software paradigm that offers an alternative to the

traditional communication structures: it serves dynamic business needs decoupling the

production and ownership of data from access to it. In particular, this kind of

architectures can be useful when there is the need for handling big data sets at scale

and with real time constraints. Event-based communications do not replace request-

44

response ones, but instead they define a completely different way of interacting based

on events.

An event is used to share information and it can be defined as a change, action, or

observation in a system or domain that produces a notification. In most cases, the

application generating the event notification does not expect any response, and it lets

the consuming application decide what to do with that information. Even if the

applications generating the event notification expect a response, they expect it only

indirectly [24], [53].

In an event-based system, all shareable data is published to a set of event streams that

continuously describe what has happened in the organization, from simple occurrences

to complex, stateful records. It is important to notice that events are not just signals

indicating some information, such as the readiness of a certain element in the system,

but they are the data: events act both as data storage and as a means of asynchronous

communication between services [54].

2.3.2 EVENT-DRIVEN MICROSERVICES

Many organizations are migrating from the monolithic approach to microservice-based

architectures to reach better agility, scalability, and reusability. In a real-world scenario

this means overcoming challenges associated with distributed processing, ecosystem

integration and service harmony.

Joining the two approaches, the event-driven and the microservice-based, gives the

best of the two worlds, sharing many of the same microservice architecture principles,

while the interaction between services is focused on events [55]. Unlike in

synchronous communication patterns, event-driven architectures define indirect

communication, i.e., it is not possible to directly send messages to consumers and get

an acknowledgment about successful consumption. In most cases, there is an

intermediate system, such a message broker, able to consume, store, and deliver events

to consumers in a reliable way.

45

Figure 2-7. Scheme of an event-based microservice architecture.

The adoption of asynchronous event-driven microservice architectures can give many

benefits [54]:

• Granularity: services map neatly to bounded contexts and can be easily

rewritten when business requirements change.

• Scalability: individual services can be scaled up and down as needed.

• Technological flexibility: services use the most appropriate languages and

technologies. This also allows for easy prototyping using pioneering

technology.

• Business requirement flexibility: ownership of granular microservices is easy

to reorganize. There are fewer cross-team dependencies compared to large

services, and the organization can react more quickly to changes in business

requirements that would otherwise be impeded by barriers to data access.

• Loosely coupling: event-driven microservices are coupled on domain data and

not on a specific implementation API. Data schemas can be used to greatly

improve how data changes are managed.

• Continuous delivery support: it is easy to ship a small, modular microservice,

and roll it back if needed.

46

• High testability: microservices tend to have fewer dependencies than large

monoliths, making it easier to mock out the required testing endpoints and

ensure proper code coverage.

2.3.3 EVENT MESH

The event mesh was born from event-driven architectures and it is a dynamic

infrastructure layer for delivering events among decoupled applications, supporting

complex and widely distributed topologies, from on-premises to multi-cloud

deployments. An event mesh intelligently handles information routing between

brokers allowing the cluster of brokers to appear as a single virtual entity, decoupling

producers and consumers from a logical, geografic, and administrative or platform

domain point-of-view.

The usage of traditional event-based microservice architectures can have its own

challenges because it focuses mainly on an application level. In contrast, an event mesh

works at the infrastructure level, allowing event-based network communication

between applications, cloud services and devices [56], [57]. Event meshes are

characterized by being environment-agnostic: they are designed to deliver events

across disparate platforms, from cloud to IoT devices, no matter where applications

are deployed and without the need for configuration of event routing.

Parts of the event-based systems, such as brokers, are integrated in the architecture

and managed independently from the applications. This allows services written in

different languages to produce and consume events independently of the specific

event-based system implementation. The architectural organization makes an event

mesh support a loosely coupled integration between legacy applications, databases and

devices, and the latest microservice-based and cloud-native applications.

An event mesh is usually characterized by the following capabilities [56], [58]:

• Support for various messaging services.

• Fault tolerance for reliable message delivery, including automated recovery

from network failures and fallback destinations for undeliverable messages.

47

• Support for multi-protocol bridges between disparate events, applications, and

messaging platforms.

• Support for both on-premises and multi-cloud deployment.

• Support for multicast (all subscribers receive a copy of each message) or

anycast (one subscriber receives a copy of each produced message) addresses.

• Secure connections and transmission of event messages.

In summary, an event mesh gives application developers and architects a foundation

on which to build and deploy distributed event-driven applications, wherever they need

to be built and deployed, dinamically and all in real-time.

2.3.4 COMPARISON BETWEEN SERVICE AND EVENT MESH

Both meshes implement at the infrastructure level advanced features to handle

application components communications. The two solutions are complementary,

providing different communication options.

Figure 2-8. Comparison between service mesh and event mesh architectures.

Service meshes connect components in a synchronous way, supporting sometimes

multiple cloud environments and legacy applications. They are subjected to some

important restrictions [59]:

48

• No support for asynchronous event or streaming processing.

• Most traffic shaping and network services only apply to synchronous request-

reply message exchange patterns and HTTP transport.

• Limited to connection-oriented routing and the targeting of transport

connections, not the routing of actual data.

• Service mesh is currently mostly available on Kubernetes clusters.

Many microservice deployments can work well within the constraints of a service

mesh, but companies are shifting to a more modern approach that requires also to

introduce event-driven applications to achieve better performance, decoupling, and

real-time response beyond the single Kubernetes cluster. In that context, an event mesh

can help by connecting different type of applications, wherever they have been

deployed, through asynchronous and event-based messaging.

Service meshes and event mesh can cohexist, providing developers the flexibility to

choose which option best fits the application they are designing. From an infrastructure

point of view, both can operate in the cloud and with the support of Kubernetes, but

the event mesh can also connect nodes that are cloud-native without Kubernetes, on-

premises, and even bare-metal. This expands the deployment options, giving

enterprises the possibility to embrace hybrid solutions.

However, adding a new tool can often increase complexity and costs. For example,

service meshes require injecting a sidecar alongside each component and this requires

an additional number of resources while an event mesh requires a set of replicated

brokers that need to keep messages even when a failure happen. For this reason, while

for a small number of microservices, without explicit security requirements, or

complex deployments, adding meshes can make a company incur in some exceeding

costs and management complexity, in the case of enterprises, that have highly

distributed modern applications, often with high scaling requirements, benefits

outweigh the costs of operating microservices. This explains why many

implementations of these technologies were born from enterprises who were publicly

using microservices in production for many years, such as Google and Twitter [60],

[61].

49

Figure 2-9. This graph represents a real complex microservice-based application from Monzo as of

2019 comprising 1500 components. Black points are microservices, blue lines are enforced network

rules allowing traffic.

In the next chapter we will analyze some of these implementations, starting from

service mesh and then concluding with event mesh.

50

3 SERVICE AND EVENT MESH IMPLEMENTATIONS

During the past few years, the service mesh ecosystem grew with many different

implementations, some proprietary and other open source. The fact that there are

several options on the market validates the interest on service mesh and it shows that

the community has not already selected a de facto standard. While most of the

solutions share the same reference architecture mentioned in the previous chapter,

there are variations in approach and project structure that need to be taken into

consideration when selecting a service mesh for a specific situation.

The implementations that we will analyze are Istio, Linkerd, Consul, NGINX Service

Mesh, and Open Service Mesh. These were chosen because they appear as the most

interesting for our work: either because they are particularly popular, or because they

are open-source, or because they have an interesting architectural feature such as an

alternative interaction system.

Later, we will take into consideration an event mesh implementation from the Apache

Incubator project that actually is the only completely open-source in that scenario.

3.1 ISTIO

Originally founded by Google, IBM, and Lyft, Istio is a completly open-source service

mesh implementation, licensed under the Apache License 2.0, and part of the CNCF

Cloud Native Landscape.

Istio has grown to include contributions from companies beyond the original founders,

such as VMware and Cisco and it is used by many organizations to design their

commercial products to protect, connect and monitor large distributed applications that

are deployed in hybrid or multi-cloud environments. For all these reasons it is one of

the most important players in the service mesh scenario [46].

Istio itself has been built on top of other open-source projects, such as Envoy,

Kubernetes, Jaeger, and Prometheus.

51

3.1.1 ARCHITECTURE

Istio logically subdivides into a control plane and a data plane:

• the control plane manages and configures proxies to route traffic, it applies

policies, and it acquires telemetry data too. Up to Istio 1.4 it was divided into

five independently deployable microservices, but from version 1.5 the control

plane has been unified into a single entity called istiod [62].

• the data plane is composed of a set of intelligent proxies deployed as sidecars.

These proxies mediate and control all network communication between

microservices and they also collect and report telemetry on all mesh traffic.

Figure 3-1. Scheme of istio architecture.

3.1.2 CONTROL PLANE

As already mentioned, istiod packages all the control plane components in a single

binary and it is built on the same code and API contracts as the separate components,

keeping the same features: service discovery, configuration and certificate

management. Because of that, looking at the separate components can help in

understanding the different areas covered by the control plane.

52

3.1.2.1 PILOT

Pilot is used to manage traffic and control inter-service traffic flows and API calls. It

acts as a central controller of the service mesh and it is in charge of communicating

with the sidecars by using the Envoy APIs. All the high-level routing rules that control

traffic behaviour are converted into Envoy-specific configurations and propagated to

the sidecars at runtime. Pilot is also responsible for resiliency features such as circuit

breakers and retry logic.

Pilot abstracts the service discovery mechanisms into a canonical representation

(standard format) independent of the underlying platform and it generates a specific

configuration based on the canonical representation that all the sidecars conformant to

the Envoy API can consume.

Platform-specific adapters in Pilot are responsible for populating this canonical model

appropriately. For example, the Kubernetes adapter implements the necessary

controllers to watch the Kubernetes API server for changes to the pod registration

information, ingress resources, and third-party resources that store traffic management

rules.

Figure 3-2. Pilot architectural scheme with platform-specific adapters.

53

3.1.2.2 MIXER

Mixer was a central component in istio architecture, mainly responsible for collecting

telemetry data from the sidecar proxies as-well-as other control plane services.

Figure 3-3. Scheme of istio with the Mixer component.

In the architecture shown in Figure 3-3, each Envoy sidecar calls Mixer after each

request to report telemetry information. The proxies are sending data about the source

and destination side of the request and most importantly the unique ID of the source

and destination workloads used essentially as a unique Pod ID in a Kubernetes

environment. After that operation, it is a Mixer responsibility to enrich the reported

traffic information with metadata from Kubernetes and to expose the metrics on a

specific endpoint for Prometheus to scrape [63].

Although the Envoy sidecars buffer the outgoing telemetry requests, that architecture

generated significant resource consumptions in larger environments because an active

connection was necessary between every proxy and Mixer. That obviously caused

higher CPU and memory consumption in the proxies, and subsequently caused higher

54

latencies as well. To reduce the resource consumption, the telemetry feature was re-

factored with a focus on the data plane.

3.1.2.3 ISTIO NEW TELEMETRY SYSTEM

The second version of istio telemetry system (Telemetry V2), thanks to an

implementation of an Envoy extension, removed the Mixer central component,

requiring the proxies themselves to directly access the Kubernetes metadata to enrich

metric information.

Figure 3-4. Scheme of istio without the istio component.

This was hard to do in older versions because developing an extension for Envoy

required a monolithic development process: the binary needed to be deployed, needed

rolling updates, etc. and the overall process was difficult to manage8.

To enhance the development process, istio implemented on Google V8 engine a

WebAssembly (WASM) runtime for Envoy through which developers can write their

custom code, compile it to WebAssembly plugins, and configure Envoy to execute it.

These plugins can hold arbitrary logic, so they are useful for all kinds of message

integrations and mutations.

8 In addition, the extensions needed to be written in C++.

55

In-proxy service-level metrics in Telemetry V2 are provided by two custom plugins:

• metadata-exchange: how to make client/server metadata about the two sides

of a connection available in the proxies.

• stats: it records incoming and outgoing traffic metrics into the Envoy statistics

subsystem and makes them available to monitoring systems.

Envoy proxies collect metrics automatically from the traffic they handle: the

WebAssembly-based plugin system allows Envoy to process traffic data that flows

through the proxy and then it can prepare metrics in Prometheus format to be emitted.

Then Prometheus, that is a software that can be used to monitor the service mesh

deployment, uses Kubernetes built-in service discovery to directly scrape the Envoy

proxies and collect the results. Finally, the metrics can be visualized by using tools

such as Grafana and Kiali.

3.1.2.4 GALLEY

Another component in the istio control plane architecture is Galley. It is used to

validate and process the istio API configurations made by users. It insulates the other

istio components from the details of obtaining data from the underlying platform, such

as Kubernetes.

3.1.2.5 INJECTOR AND CITADEL

The last relevant istio control plane elements are Injector and Citadel.

The first was responsible for auto-injecting the data plane proxies in the application

containers and setting up bootstrap, while the second was used to enforce strong

service-to-service and end-user authentication with built-in identity and credential

management.

3.1.2.6 CONTROL PLANE UNIFICATION

From its beginning, the entire istio project was developed following the microservices

design approach. As already shown, the control plane was divided into different

services, like a modern cloud-native application.

56

As istio adoption increased, the development team decided to shift to a monolithic

approach. By receiving customers feedback, they noticed that in most istio

installations, all the control plane components were delivered and managed as a single

entity, mainly because operated by a single team or individual. The istio operators were

paying for the greater operational complexity without gaining much of the benefits

typically associated with microservices: independent rollout, scale, and security

isolation.

The solution to this problem was to consolidate the control plane into a monolith called

istiod, comprising Pilot, Citadel, Galley, and Injector. As already mentioned, the Mixer

component was removed in a concurrent project aimed in which the Envoy proxies

became directly responsible of the telemetry reporting to the monitoring back end. This

change was due to similar reason to that of istiod in that a design pattern, identified as

necessary at massive operational scale, was not justified against the maintenance and

performance overheads for typical users [64], [65].

Figure 3-5. The architectural evolution of istio control plane: (a) microservices-based and (b) monolith.

Compared with the microservices-based approach, this new monolithic control plane

offers several benefits [66], [67]:

57

• Simplified installation: it is simpler to deploy a single binary than multiple

components with their associated configurations.

• Easier configuration: many of the configuration options that istio had before

were related to the orchestration of the components.

• Simple debugging: having fewer services means less cross-service

environmental debugging.

• More scalable: the control plane monolith becomes relatively easy to scale

because it is made of just one component.

• Easier version management: the time to start, upgrade, and remove are

reduced because the monolith does not require to deal with dependencies and

start-up orders.

The costs of istio control plane are mainly dominated by serving the Envoy dynamic

resource discovery (xDS) APIs, which we will describe later, that program the data

plane [66]. Every other feature has a marginal cost. This means there is very little value

to having those features in separately scalable microservices.

It should be noted that internally istio still maintains the logical separation between

some of its original control plane components and that each capability is exposed as a

discrete API. This is required when there is the need to be retrocompatible, but also it

can be particularly useful when making complex deployments, such as multicluster

ones, where istiod can be deployed as a single-purpose service such as “injection”,

“certification provider”, or “validation”.

3.1.3 DATA PLANE

The second element of the istio architecture, the data plane, has Envoy as the main

component. Envoy is a proxy for the container it comes up beside and because it is

injected as a sidecar, there is no need to redesign the microservices-based application

running on Kubernetes [68]. Developers can write the code the way they used to,

without having to worry about the operational and security aspects.

Istio also uses Envoy to run gateways [46] and this allows to manage inbound and

outbound traffic from a mesh by defining a specific proxy at the edge of the mesh

58

capable of managing HTTP/TCP connections. Each gateway communicates with the

control plane like any other proxy in the data plane does.

3.1.3.1 ENVOY ARCHITECTURE

The Envoy architecture is made of a Listener followed by a filter chain. The first

component allows Envoy to listen to network traffic at a configured address, so that it

is possible to enable a flow of traffic through the proxy. Each Listener defines a filter

chain: built-in or custom filters can be composed and arranged in such a way to

configure Envoy to compute different operations like translating protocol messages or

generating statistics [69].

Figure 3-6. General overview of the Envoy filter chain architecture.

Envoy provides three types of filters that form a hierarchical filter chain:

• Listener Filters access raw data and manipulate metadata of L4 connections

during the initial (pre)connection phase. For example, the TLS Inspector Filter

identifies if a connection is TLS encrypted and parses the TLS metadata

associated with the connection.

• Network Filters access and manipulate raw data on L4 connections i.e., TCP

packets. For example, the TCP Proxy Filter routes client connection data to

upstream hosts and it also generates connection statistics.

• HTTP Filters operate at L7 and are optionally created by a final Network filter

i.e., the HTTP Connection Manager. These filters access and manipulate HTTP

requests and responses. For example, the gRPC-JSON Transcoder Filter

exposes a REST API for a gRPC backend and translates requests and responses

into corresponding formats.

59

Once a routing decision has been made by a filter stage (L3/L4 connection or a new

HTTP stream), these filters ask the cluster manager for connection to an upstream

service. This component handles all the complexity of knowing which hosts are

available and healthy.

3.1.3.2 SIDECAR INJECTION PROCESS

One important feature introduced firstly by istio was the ability to automatically inject

a sidecar proxy.

Before the initialization of a container, istio prepares the environment for sending the

traffic to the proxy. For this specific task an init container called istio-init is used to

setup the iptables rules of the container. In that way all the inbound and outbound

traffic goes through the sidecar proxy.

An init container is different than an app container in the following ways:

• It runs before an app container is started and it always runs to completion.

• If there are many init containers, each should complete with success before the

next container is started.

3.1.4 CONTROL PLANE AND DATA PLANE COMMUNICATION

After having described the two planes of the istio architecture, we want to delve into

the communication between those.

Envoy is architected such that it is possible to make static and dynamic proxy

configurations. The first case can be useful in simple scenarios with a limited number

of entities in the service mesh. But the more the complexity, the less static

configuration helps: configurations must be provided by hand and proxies must be

restarted to accept them. In the second case, each Envoy proxy discovers dynamic

resources at runtime, without the need to restart, by watching a path in the local

filesystem or by querying one or more management servers. These discovery services

and their corresponding APIs are known as x Discovery Service (xDS) [70], [71].

60

The resources can be requested by proxies through three different kind of

subscriptions:

• filesystem watching: it monitors files in a specific path.

• gRPC streaming subscription: each xDS API can be individually configured

to point to the cluster of the corresponding upstream management server.

• REST-JSON polling subscription: a single xDS API can perform synchronous

polling of REST endpoints.

Figure 3-7. General overview of a service mesh. Black lines indicate the xDS communication.

Istiod acts as a central xDS management server and it uses gRPC streaming

subscriptions to configure the data plane. Inside each pod resides a component that is

called istio-agent or pilot-agent. It is still part of the control plane, but it runs on a per-

Pod basis and it helps istiod to discover endpoints, TLS secrets and other cluster

information.

3.1.5 ADVANCED FEATURES

Istio is often used toghether with Kubernetes, on which it relies to realize some

features. For example, it does not provide any service discovery, but it keeps an

internal service registry containing the set of service endpoints running in the mesh.

61

Pilot adapters automatically add to the registry the services discovered from

underlying platforms, such as Kubernetes, through its APIs.

Although one of the main scenarios in which istio is usually deployed is in a single

Kubernetes cluster, it can work also in different and more advanced situations:

• It supports not only containers, but virtual machines too.

• The mesh can be confined in a single cluster or distributed across multiple

clusters.

• The services can be located in a single fully connected network or they can be

deployed across multiple networks by using gateways.

• To ensure high availability it is possible to use multiple control planes instead

of a single one.

• The clusters can be connected in a single multi-cluster service mesh or they

can be federated into a multi-mesh deployment.

• The service mesh can also support multi and hybrid cloud deployments.

• Locality allows to deploy istio to create in multi-zonal services.

3.2 LINKERD 2

Linkerd is an open-source service mesh solution specifically designed for Kubernetes

with a focus on providing a lightweight implementation with a minimalist design [46].

It is licensed under the Apache License 2.0 and it is hosted by the CNCF, with major

contributions from Buoyant, which founded the project.

First based on Twitter Finagle, Linkerd was written in Scala and designed to be

deployed on a per-host basis, but criticisms of its comparatively large memory

footprint led to the development of Conduit [72], a lightweight service mesh

specifically designed for Kubernetes, written in Rust and Go. This project was since

folded into Linkerd, which relaunched as Linkerd 2.0 [50].

The previous 1.x version is still accessible, but it is in maintainance and no new

features will be added. For this reason, when Linkerd will be mentioned during the

dissertation, we will implicitly refer to version 2.0.

62

3.2.1 ARCHITECTURE

Like many other service meshes, the Linkerd architecture is logically divided in a

control plane and in a data plane [73]:

• the control plane aggregates telemetry data, provides user-facing APIs,

manages and configures proxies. It is composed by a set of services that run in

a dedicated Kubernetes namespace (linkerd by default).

• the data plane consists of transparent proxies deployed as sidecars that mediate

and control all network communication between microservices and that send

also telemetry data to the control plane.

Figure 3-8. Linkerd general architecture.

3.2.2 CONTROL PLANE

Linkerd control plane is not made of a single entity, but it is splitted into a multiplicity

of operational components based on their functional boundaries (destination, api, web,

etc.). These components run on the same data plane as the application does, allowing

to use the same tooling to inspect the behavior.

63

The first component is the command-line interface (CLI) that typically runs outside of

the cluster, helping users accomplish various tasks by interacting directly with the

control plane.

Other notable components are the following:

• The Controller oversees mediating the communication between CLI and the

Linkerd internal controller components by exposing an API interface.

• The Destination is mainly responsible for service discovery and it mediates the

communication between the data plane and the information Kubernetes

provides. Linkerd Destination looks up the IP address in the Kubernetes API

and then, if the IP corresponds to a Service, Linkerd will load balance across

the endpoints of that Service and will apply any policy from that Service

Profile. Otherwise, if the IP address corresponds to a Pod, Linkerd will not

perform any load balancing or apply any Service Profiles.

• The Proxy Injector relies on a Kubernetes admission webhook and it is

responsible, if enabled, to automatically add the data plane proxy to pods.

• The Identity component acts as a TLS Certificate Authority that accepts CSRs

from proxies and returns signed certificates.

• The Service Profile Validator validates new service profiles before they are

saved.

In addition to the built-in components, Linkerd provides some other features as

extensions. One of those is viz that includes by default a full on-cluster metrics stack,

comprising CLI tools, a web dashboard, a Prometheus instance, and a pre-configured

Grafana dashboard. The metrics stack may require significant cluster resources.

Prometheus, in particular, consumes resources as a function of traffic volume within

the cluster.

3.2.3 DATA PLANE

The proxy on which the data plane relies, Linkerd2-proxy, is specifically designed for

the second version of the Linkerd service mesh and because it is tightly coupled with

the control plane, it cannot be used by other projects [74].

64

With respect to other proxies, such as Envoy, NGINX Plus and other solutions that are

flexible enough to provide many different features (ingress, egress, proxy sidecar, API

gateway etc.), Linkerd proxy is designed just for service meshes and for that reason it

has a simpler architecture. Less complexity means not only a more maintainable code,

but also it allows to optimize resource consumption: the aggregate CPU and memory

consumed by the data plane by many proxies in a production system is a critical cost

of a service mesh; so simplyfing the proxy architecture means better resource usage.

Moreover, keeping the complexity at the minimum allows to define a smaller attack

surface, so better security overall.

Linkerd2-proxy is designed also to work with zero-config [75]. That means that there

is no user-facing YAML because it is configured automatically through environment

variables set at injection time and then modified when needed by the Linkerd control

plane at runtime. This simplifies a lot the service mesh setup, requiring no tuning nor

tweaking thanks also to features like protocol detection and Kubernetes native service

discovery.

It is important to highlight that Linkerd2-proxy is written in Rust to achieve high

performance and memory safety, but, unlike Envoy, it is not possible to develop

extensions for that proxy. However, by installing, for example, the viz control plane

extension, it is possible to access a wide variety of features for metrics analysis: so

each proxy is capable to gather metrics automatically from the traffic they handle and

subsequently, the Prometheus instance will collect and will store all Linkerd metrics

by scraping proxy /metrics endpoint.

Finally, Linkerd shares with istio the same out-of-process architecture design: the

proxy is language agnostic and it runs alongside the application requiring to be injected

at the container creation. For this reason, the data plane comprises also the linkerd-init

container that, similarly to the istio-init container, is added to each meshed pod before

any other container starts using iptables to route all the inbound and outbound TCP

traffic through the pod.

65

3.3 CONSUL CONNECT

Consul Connect is an open-source, distributed and highly available system with a

unique architecture that allows to use each feature individually, such as the service

discovery, or together to build a complete service mesh solution [46].

The project was founded by HashiCorp and it is licensed under the Mozilla Public

License 2.0. HashiCorp provides also a commercial version called Consul Enterprise.

3.3.1 ARCHITECTURE OVERVIEW

A distinctive feature of Consul Connect is that it works per-node instead of per-pod.

Each node in the service mesh need to run an agent that is responsible for health

checking the services on the node as well as the node itself [76]. The agent is not

required for discovering other services or to store data because this information is kept

by servers which are responsible for storing and replicating data. The servers maintain

a catalog, which, formed by aggregating information submitted by the agents,

maintains the high-level view of the cluster, including which services are available,

which nodes run those services, health information and more.

Consul has been developed to support complex deployment scenarios and for this

reason it is organized into Data Centers, each running a cluster of Consul servers.

When a cross-data center service discovery or configuration request is made, the local

Consul servers forward the request to the remote Data Center and return the result [77].

66

Figure 3-9. Consul Connect general architecture showing multiple data centers involved in the service

mesh.

Consul Connect has a different architecture than istio and Linkerd, but it is possible to

recognize the control and data planes:

• the control plane provides mainly four features: service discovery, secure

communication, resource configuration and network segmentation. It is

composed by agents which can act as clients or servers.

• the data plane uses proxies to control the communication that happens between

services.

3.3.2 DATA AND CONTROL PLANES

With respect to the data plane, while Consul ships with a simple built-in proxy, it

cannot be used for production deployments because it does not support many Consul

Connect features and it is not in active development. Instead, Consul data plane relies

mainly on the same third-party proxy istio uses which is Envoy [78], [79]. Since Consul

67

uses this component in the same way that other service mesh implementations use it,

and having already covered it previously, we continue our discussion by addressing

Consul control plane analysis.

At its core Consul control plane is composed by agents that, deployed on each node of

the cluster, maintain membership configuration, register services, run checks etc.

Each agent can run in two modes:

• client node makes up the majority of the cluster, and it is very lightweight as it

interfaces with the server node for most operations and maintains very little

state of its own;

• server node has the extra burden of participating in the consensus quorum9,

storing cluster state, and handling queries.

The control plane is therefore made up of a single binary, without multiple components

that need to be deployed and configured. Each client keeps a local cache that is

constantly updated by the server. This reduces the need for any external

communication and allows for quick and effective changes to be made at the edge.

Moreover, because there are no centralized planes that could cause bottlenecks and

adversely affect performance, APIs respond quicker.

To better understand the control plane architecture, it is appropriate to take a look at

the agents lifecycle.

When an agent is first started, it has no information about others and it must discover

its peers by joining the cluster. After the node joins, this event is gossiped to the entire

cluster. If the agent is a server, existing servers will begin replicating to the new node.

In the case of a network failure, some nodes may become unreachable and for that

reason they are marked as failed and the catalog is updated accordingly. Because it is

impossible to distinguish between a network failure or a node crash, both cases are

9 The higher burden on the server nodes means that usually they should be run on dedicated instances.

So, they are more resource intensive than a client node.

68

treated in the same way. Once the network recovers or a crashed agent restarts the

cluster will repair itself and unmark a node as failed.

When a node wants to leave, it must specify its intention and the cluster marks that

node as having left. Unlike the failed case, all the services provided by a node are

immediately deregistered. If the agent was a server, replication to it will stop.

To prevent an accumulation of dead nodes, the ones in either failed or left states,

Consul automatically removes them out of the catalog with a process termed reaping.

The balance between the number of clients and servers is not static, but it can change

over time to keep balance between availability and performance, as consensus gets

progressively slower as more machines are added. To be noted that there is no limit to

the number of clients and they can easly scale.

3.3.2.1 TELEMETRY

The Consul agent collects and periodically aggregates various runtime metrics about

the performance of different libraries and subsystems. These data, if properly

configured, are streamed to a statsite or statsd server which is responsible for

collecting all telemetry information, then flushing it to Graphite or any other metric

store [80].

3.3.3 INGRESS-EGRESS

Consul uses gateways to provide connectivity into, out of and between service meshes.

Different modes are provided by different kind of gateways [81]:

• mesh gateways enable service-to-service traffic between Consul data centers.

Those data centers can reside in different clouds or runtime environments

where general interconnectivity between all services in all datacenters is not

feasible.

• ingress gateways accept potentially unauthenticated traffic from outside to

services in the mesh.

• terminating gateways route traffic from services in the Consul service mesh to

external services that do not have sidecar proxies or are not integrated natively.

69

These may be services running on legacy infrastructure or managed cloud

services running on infrastructure not in direct control. Terminating gateways

effectively act as egress proxies that can represent one or more services,

terminating mTLS connections, enforcing Consul intentions, and forwarding

requests to the appropriate destination.

3.3.4 ORCHESTRATORS AND CONSUL

With regards to orchestrators, Consul Connect is well integrated with HashiCorp

Nomad10, providing features like secure service-to-service communication between

Nomad jobs and task groups, while taking advantage of some Nomad characteristics

such as the ability to use the dynamic port feature. Consul can, however, also run

directly on Kubernetes providing a way to automate, secure, and observe the

connections between pods and clusters, at the same time enhancing the scalability and

resiliency of the microservices platform.

One of the most important features Consul provides is consistency when securely

connecting nodes within Kubernetes clusters with external services. This is possible

as long as they can communicate to the Consul server nodes via the network,

responsible for the cross-data center communication, as already explained. Within the

Kubernetes environment, Consul clients can run as pods on every node and expose the

Consul API to running pods, enabling many Consul tools to work on Kubernetes since

a local agent is available. This will also register each Kubernetes node with the Consul

catalog for full visibility into the infrastructure.

The Consul catalog can be synchronized with the Kubernetes service registry so that,

on one hand, pods inside a Kubernetes cluster can connect to external services using

the native Kubernetes service discovery, on the other hand, external services can

connect to registered Kubernetes services using the Consul service discovery.

10 Nomad is a flexible scheduler and workload orchestrator that enables an organization to easily deploy

and manage any containerized or legacy application using a single, unified workflow. Nomad can run

a diverse workload of Docker, non-containerized, microservice, and batch applications.

70

The synchronization between Consul and Kubernetes can occur in three ways [82]:

• Bidirectional sync allows Kubernetes services to be available to Consul agents

and services registered in Consul, but external to the Kubernetes cluster, can

be available as first-class Kubernetes services.

• Kubernetes services synced to the Consul catalog enables the first to be

accessed by any node that is part of the Consul cluster, including other distinct

Kubernetes clusters.

• Syncing Consul services to Kubernetes service enables non-Kubernetes

services, external to the cluster, to be accessed in a native Kubernetes way,

through kube-dns or environment variables. This makes it very easy to

automate external service discovery, including hosted services like databases.

3.4 NGINX SERVICE MESH

NGINX Service Mesh (NSM) is a complete service mesh solution for QoS and

resilience in general, thanks to the highly proven technologies on which it builds. The

project is owned and developed by F5 and it is not open source, but some of the

technologies it uses are, such as the Kubernetes Ingress Controller and NATS.

3.4.1 ARCHITECTURE OVERVIEW

Like the other service mesh solutions that we have already analyzed, NGINX Service

Mesh is divided in two layers [83]:

• The control plane is responsible to enforce a desired state across managed

applications.

• The data plane follows the sidecar pattern so that it replicates with the

applications workload.

The service mesh can be controlled using the NSM CLI, an utility that communicates

with the control plane through the Kubernetes API server.

71

Figure 3-10. NGINX Service Mesh general architecture.

3.4.2 CONTROL PLANE

The NSM control plane is composed by the following elements [84]:

• NSM Controller;

• NATS;

• NSM metrics server.

NSM Controllers, the core of the control plane, oversee setting the desired service

mesh configuration. They watch a set of native Kubernetes resources (Services,

Endpoints and Pods), a collection of custom resources defined by the Service Mesh

Interface (SMI) specification, and individual resources specific to NGINX Service

Mesh. When a new event occurs in Kubernetes that NSM Controllers are looking for

(e.g., a new application or traffic policy has been created), then the control plane builds

an internal configuration based on this data and it sends it to the sidecars. The

communication between the control plane and the data plane is transparently managed

by NATS, an advanced technology for messaging in large, cloud-native, distributed

systems.

72

Figure 3-11. NATS publish subscribe model.

NATS follows the publish-subscribe model, and it manages addressing and discovery

not based on hostnames and ports, but on subjects, sometimes called topics, that are

categories for messages [85], [86]. In this way, the communication does not depend

on network location and this provides an abstraction layer between the application or

service and the underlying physical network. Differently from the other service mesh

solutions, in which the control plane communicates through 1:1 API calls, NATS

allows NSM to perform M:N communications, reducing the control plane

development complexity and the consumption of resources at runtime, enhancing the

scalability of the whole system. Other advantages of using NATS are that it is language

agnostic and it can run on multiple platforms, such as inside Kubernetes clusters,

virtual machines, or bare metal, enabling hybrid deployments.

The NSM control plane comprises also the metrics server that provides quick access

to the metrics data in a standard format by extending the Kubernetes APIs. NGINX

Service Mesh automatically deploys a Prometheus instance that directly scrapes data

plane sidecars and the control plane metrics server to collect all information about the

service mesh cluster11.

11 Metrics can be accessed by directly querying Prometheus, the NSM metrics server, or viewing the

built-in Grafana dashboard.

73

3.4.3 DATA PLANE

NGINX data plane follows the sidecar pattern like other service mesh solutions, but it

consists of two components12: an agent and a NGINX Plus instance.

The agent accepts the NGINX Service Mesh control plane configuration via NATS

and uses this data to configure the NGINX Plus instance.

NGINX Plus is a commercial version of the famous NGINX web server. Here it is used

mainly with the purpose of being a proxy, managing the communications between

services, but it can be used also in other ways, such as a load balancer and API

gateway. In particular, it is possible to deploy NGINX Plus as an Ingress or Egress

Controller to provide production-grade control over north-south traffic13 with a single

configuration. Because of its integration within the NSM solution, the Ingress

Controller can communicate without a sidecar injected with the workloads, reducing

latency and complexity to the Kubernetes environment.

3.5 OPEN SERVICE MESH

Open Service Mesh (OSM) is an open source, lightweight, and extensible cloud native

service mesh, initially developed by Microsoft. It leverages out-of-the-box

observability features for highly dynamic microservice environments and it configures

through SMI open standard specification [87], [88].

3.5.1 ARCHITECTURE OVERVIEW

Open Service Mesh relies on Kubernetes and, like the projects we already analyzed, it

is divided in two parts:

• The control plane manages and configures proxies to route traffic.

• The data plane is responsible for mediating the communication between

services.

12 NSM uses init containers to inject sidecars and they work in the same way as the projects we already

described.
13 North-South is the traffic that goes in and out of the cluster, while East-West resides in it.

74

Figure 3-12. Open Service Mesh general architecture with the main components and their interactions.

3.5.2 CONTROL PLANE AND DATA PLANE

The OSM data plane uses by default Envoy for proxy sidecars, but it accepts also other

reverse-proxy solutions with service mesh capabilities. The data plane receives

configuration updates, through mTLS gRPC calls, from the control plane, which

implements the Envoy xDS API.

The OSM control plane is made of the following components:

• Proxy Control Plane;

• Endpoints Providers;

• Certificate Manager;

• Mesh Specification;

• Mesh catalog.

The Proxy Control Plane is responsible for the communication with the proxies in the

data plane. It oversees enforcing the configuration updates and it implements the

interfaces required by the specific reverse proxy chosen. Because the Proxy Control

Plane has a central role in the service mesh when it comes to traffic policy enforcement

and connectivity management between services, it is designed to be stateless and

highly available.

75

The Endpoints Providers abstract the controller workings from the underlying

compute platforms (Kubernetes clusters, on-premises machines, or cloud-providers

VMs) participating in the service mesh.

The Mesh catalog collects inputs from all other components and dispatches

configuration to the proxy control plane. It combines the outputs of all other

components into a structure, which can then be transformed into proxy configuration

and dispatched to all listening proxies via the Proxy Control Plane.

The Certificate Manager provides each service participating in the service mesh a TLS

certificate that is used to establish and encrypt connections between services using

mTLS.

The Mesh Specification is a wrapper around the existing SMI Spec components. It

provides simple methods to retrieve SMI Spec resources, abstracting away cluster and

storage specifications.

Figure 3-13. OSM control plane architecture with the scheme of its interaction with the data plane.

The Figure 3-13 shows not only the OSM architecture, but also how the control plane

components interact to communicate with the data plane:

76

1. The Mesh Catalog communicates with the mesh specification module (4) to

detect when a Kubernetes service is created, changed, or deleted via SMI

Specification.

2. Then it reaches out to the Certificate Manager and requests a new TLS

certificate for the newly discovered service.

3. It retrieves the IP addresses of the mesh workloads by observing the compute

platforms via the Endpoints Providers.

4. Combines the outputs of points 1, 2, and 3 above into a data structure, which

is then passed to the Proxy Control Plane (1), serialized and sent to all relevant

connected proxies.

3.5.2.1 TELEMETRY

Open Service Mesh comes with the observability stack by default, including

Prometheus for metrics collection, Grafana for metrics visualization, Jaeger for

tracing, and Fluent Bit for log forwarding to a user-defined endpoints.

Each sidecar proxy collects information for incoming and outgoing traffic, errors, and

response timing for requests. Periodically, Prometheus directly gathers and stores

consistent traffic metrics and statistics for all applications running in the mesh by

scraping over the proxies. Then, the collected metrics can be viewed with Grafana,

which uses Prometheus as backend timeseries database.

3.6 COMPARISON OF SERVICE MESHES

Finished the analysis of the single service meshes, we want now to summarize in a

table the characteristics of each of the implementations, in order to offer an overall

picture that can immediately show the differences and similarities between the

different technologies.

77

 Istio Linkerd Consul NGINX OSM

Legal

Founder(s) Google, IBM,

Lyft

Buoyant HashiCorp F5 Microsoft

Open source ✔ ✔ ✔ -

Community

version only

✖ ✔

License Apache

License 2.0

Apache

License 2.0

Mozilla

Public

License 2.0

Proprietary Apache

License 2.0

Hosted by OUC CNCF HashiCorp F5 CNCF

Architecture

Control Plane Monolithic -

Single binary

Multiple

components

Agent -

Single binary

Multiple

components

Multiple

components

Data Plane Custom

Envoy proxy

Ad-hoc

micro-proxy

Envoy Agent +

NGINX Plus

Envoy

Deployment Per-pod Per-pod Per-node Per-pod Per-pod

DP

extensibility
✔ - multiple

languages, but

WASM

compatible

✖ ✖ ✔ ✔ - multiple

languages,

but WASM

compatible

Ingress-egress ✔ - like any

other proxy,

HTTP/TCP

✖ ✔ ✔ ✔ - Third-

party

Service

discovery

Third-party

(default

Kubernetes)

Third-party

(default

Kubernetes)

✔ ✔ - by NATS Third-party

(default

Kubernetes)

Service

catalog

Kept internal,

platform-

agnostic

NA ✔ ✔ Kept

internal,

platform-

agnostic

CP main

language

Go Go Go NA Go

DP main

language

C++ Rust C++ NA C++

Control plane – data plane communication

Static

configuration
✔ ✔ - automatic ✔ ✔ ✔

Dynamic

configuration
✔ ✔ - automatic 〰 ✔ ✔

Interaction

system

xDS API

through gRPC

protocol,

central istiod

calls proxies

NA xDS API

through gRPC

protocol

pub-sub

through

NATS

xDS API

through gRPC

protocol, CP

Proxy calls

proxies

78

 Istio Linkerd Consul NGINX OSM

Observability

Prometheus

compatible
✔ ✔ ✔ ✔ ✔

Works with

Grafana
✔ ✔ ✔ ✔ ✔

Works with

Kiali
✔ ✔ - through

SMI

✖ NA ✖

Works with

Jaeger
✔ ✔ ✖ ✔ ✔

Monitoring Envoy

prepares data,

Prometheus

directly

scrapes

proxies

Linkerd2-

proxy

prepares data,

Prometheus

directly

scrapes

proxies

Client

aggregate

data, then it

streams to the

metrics server

NGINX Plus

prepares

data,

Prometheus

directly

scrapes

proxies

Envoy

prepares

data,

Prometheus

directly

scrapes

proxies

Supported protocols

TCP ✔ ✔ ✔ ✔ ✔

UDP ✔ ✖ ✖ ✔ ✖

HTTP/1 ✔ ✔ ✔ ✔ ✔

HTTP/2 ✔ ✔ ✔ ✔ ✔

HTTP/3 ✖ - but

experimental

in Envoy

✖ ✖ - but

experimental

in Envoy

✖ ✖

gRPC ✔ ✔ ✔ ✔ ✔

QUIC ✖ - but

experimental

in Envoy

✖ ✖ - but

experimental

in Envoy

✖ ✖

Traffic management

Blue/Green

Deployments
✔ ✔ ✔ ✔ ✔

Circuit

Breaking
✔ ✖ 〰14 ✔ ✔

Fault

Injection
✔ ✔ ✔ ✔ ✔

Rate Limiting ✔ ✖ ✔ ✔ NA

Complex scenario deployment

Multi-cluster

support
✔ ✔ ✔ NA ✖

Multiple

network

support

✔ ✔ ✔ NA NA

14 Circuit-breaker for Envoy is currently supported, but only Consul 1.10 (currently in beta) supports

custom configurations beyond the default one.

79

 Istio Linkerd Consul NGINX OSM

Multiple

control planes
✔ ✔ ✔ NA ✖

Multiple mesh

support
✔ ✖ ✔ NA ✖

Multiple cloud

support
✔ ✖ ✔ ✔ NA

Hybrid cloud

support
✔ ✔ ✔ ✔ NA

Multiple zone

support
✔ ✔ ✔ ✔ NA

External CP

deployment
✔ ✖ ✔ ✖ ✖

Supported

workloads

Kubernetes &

VM

Kubernetes

only

Kubernetes,

VM, bare-

metal

Kubernetes,

VM, bare-

metal

Kubernetes

Supported Hardware architectures

x86 ✔ ✔ ✔ ✔ ✔

amd64 ✔ ✔ ✔ ✔ ✔

arm ⚠ ✔ ✔ NA ✖

arm64 ⚠ ✔ ✔ NA ✖

power NA ✖ ✖ ✖ ✖

Security

Traffic

encryption

mTLS mTLS mTLS mTLS mTLS

Certificate

Management
✔ ✔ ✔ ✔ ✔

Installation

Deployment via istioctl,

Operator and

Helm

via Helm and
linkerd

command

via Helm via Helm or
nginx-
meshctl

via Helm or

OSM CLI

Namespace(s) Multiple Single Multiple Multiple Multiple

Observability

plane installed

by default

✖ ✖ ✔ ✔ ✔

Table 3-1. Qualitative summary of service meshes. ✔: present; ✖: missing; ⚠: experimental; 〰: partial;

NA: data not available.

As it is evident, istio, that is widely adopted, is an open source, mature, and feature-

rich service mesh implementation, capable of offering many features for the more

advanced business scenarios. In fact, it has support for all the major communication

protocols, for all the traffic management options, and it supports complex

deployments, such as multi-cluster or multi-cloud.

80

Linkerd has as its main strength a simple architecture which certainly has important

advantages in terms of speed, safety, and simpler configuration, but which can reveal

at the same time to be a limit itself. In fact, it does not allow extensions to the data

plane, but only at the control plane level; furthermore, as stated in the documentation

[89], for simplicity reasons Linkerd does not provide an ingress controller, but it can

use third-party solutions such as Ambassador, Kong, or NGINX. Finally, it must be

considered that having been recently refactored, some advanced features are missing.

In fact, actually its proxy implementation does not support the UDP protocol and some

traffic management options, such as circuit breaking and rate limiting, while it

supports, as a control plane extension, only a multi-cluster option which unlocks also

the hybrid-cloud possibility [90].

The Consul service mesh solution makes no assumptions about the underlying network

and uses a pure software approach with a focus on simplicity and broad compatibility.

It works in many different complex scenarios, such as multi-cluster or multi-cloud,

with a different architecture approach with respect to the ones previously analyzed,

that deploys agents per-node instead of per-pod, and it is organized into Data Centers

allowing services inside a Kubernetes cluster to communicate with services located

outside, on virtual machines or bare-metal.

NGINX Service Mesh is the only completely proprietary solution analyzed, based on

NGINX Plus as an alternative to Envoy proxy, with an interesting feature related to

the service discovery that is built using NATS, allowing a publish-subscribe

interaction between the control and the data planes.

Finally, Open Service Mesh, that we have chosen to analyze because it is the latest

technology in the service mesh panorama, is also the most limited. In fact, while it

supports many of the key features, it still does not support many of the more advanced

business scenarios, such as multi-cloud.

3.7 APACHE EVENTMESH

Turning now to the analysis of an event mesh solution, as we have already written in

the introduction of this chapter, we will examine the Apache EventMesh project which

81

is an open-source implementation of a dynamic event-driven application runtime that

distributes events across different environments, decoupling the application and the

back-end middleware layer. Born at WeBank, a private chinese neobank, with help

from Oppo, Huawei, and the OpenMessaging community, the objective of this project

is to build an infrastructure layer that can support a wide range of use cases, from

complex multi-cloud deployments to on-premises, using diverse technology stacks

[91].

The nature of Apache EventMesh allows to implement the data mesh paradigm

offering the possibility to build a completely decentralized architecture, with multiple

clusters available on different environments, and allowing customers to independently

consume data as events, that can be described in a standard format, such as

CloudEvent, simplifying the consumption of messages. To help in separating the

organization domains, events are organized into topics that are managed by the

underlying back-end messaging engines, such as Apache RocketMQ, with guarantees

of delivery.

Apache EventMesh is an open-source project, licensed under the Apache License 2.0,

with an active community of developers. Actually, it is in early stages, with many

features that need to be implemented yet, but the central components are completed

and they can be sufficient to build an event mesh, locally or in the cloud. We want now

to take a look to its architecture and to the messaging engine it actually relies on.

3.7.1 ARCHITECTURE

Apache EventMesh has a simple architecture made of the following primary

components [92]:

• Runtime;

• Connector API;

• SDK.

82

Figure 3-14. Apache EventMesh general architecture.

At the core of Apache EventMesh there is the Runtime component which is the

middleware that manages the communication between producers and consumers

through the use of a messaging engine, such as Apache RocketMQ. This component

operates as a standalone entity and it can be deployed as a microservice in the cloud

or it can run on a local machine. The Runtime server receives messages that the

applications prepare by using the SDK component and then it initiates the

communication that, depending on the protocol, can generally be asynchronous,

broadcast, or even synchronous [93].

83

Figure 3-15. Interaction schemes for TCP protocol: synchronous message (a), asynchronous message

(b), broadcast to multiple subscribers (c). Publishers and subscrbers communicate, through the SDK,

with the Runtime server which forwards and receives messages to and from the EventStore (Apache

RocketMQ).

Applications that want to participate in the communication must create a client through

the SDK that allows to prepare messages and to forward them to the Runtime server,

which can be located on the same machine or it can be in a different node. The SDK

supports TCP, HTTP, and gRPC protocols and it can handle both native EventMesh

messages or CloudEvents. This last option is a specification for describing event data

in a standard format, providing interoperability across services, platforms, and

systems.

One of the strong points of Apache EventMesh is that it implements just the event

mesh logic, leaving the event storing and exchanging details to the underlying

platforms that are pluggable through the connector API, an api layer based on the

Service Provider Interface (SPI) mechanism, which allows to automatically find and

load concrete implementation classes of the extended interfaces at runtime [94]. This

allows Apache EventMesh to maintain a simple architecture, adding new and advanced

features through plugins. Actually, the only back-end messaging engine supported is

Apache RocketMQ that we now want to analyze.

84

3.7.2 APACHE ROCKETMQ

Apache RocketMQ is a distributed messaging and streaming platform, which the

developers claim guarantees low latency and reliability. It has been used in production

for many years and it has been chosen by EventMesh to be the default back-end

messaging engine.

Apache RocketMQ consists of the following components [95]:

• Name server;

• Broker;

• Producer;

• Consumer.

Figure 3-16. Apache RocketMQ general architecture with each component replicated.

Producers and consumers are the actors sending and receiving event messages that

RocketMQ organizes into topics [96]. The latter have very loose relationship with

producers and consumers: a topic can have zero, one, or multiple producers that send

messages and it may also be subscribed by zero, one, or multiple consumer groups.

85

The name server is the routing information provider that allows lightweight service

discovery inside the RocketMQ cluster, coordinating each component (producers,

consumers, and brokers) of the distributed system. It manages brokers, accepting their

registration when new brokers are introduced, removing them when they are crashed

or deleted, and syncing routing information between them. In addition, the name server

indicates to producers and consumers which broker they can communicate with in

order to allow publishing and consuming events [97].

Brokers are servers mainly responsible for message storing and delivery and for these

reasons it is very important to achieve high availability and strong fault tolerance

guarantees. With respect to the first need, brokers can be organized into master-slave

groups, in which the slave is a read-only server that does not accept messages from

the publishers. Each group can be replicated to enhance high availability. With respect

to fault tolerance, each broker can be configured to save event data on the disk,

reducing the performance by a little. Otherwise, to maximize brokers performance,

they can be configured to avoid storing events on disk, but in case of failure messages

are lost [98].

Each broker server is composed of several sub-modules:

• Remoting module is the entry of the broker and it handles the requests from

clients.

• Client manager, as the name suggests, manages the producers and consumers,

maintaining, for example, topic subscription of consumers.

• Store service provides simple API to store or query message in physical disk.

• High Availability service provides data sync feature between the master and

the slave brokers.

• Index service builds an index for messages by specified key and provides quick

message delivery.

86

Figure 3-17. Inner working of an Apache RocketMQ broker server.

3.7.3 CONCLUSION

In conclusion, we can say that, in the event mesh panorama, that is recently emerging15,

Apache EventMesh is the only open source modern solution that supports standard

messages through CloudEvent format, a pluggable messaging engine, with Apache

RocketMQ as the default back-end [91]. This last feature allows EventMesh to keep

its own architecture simple, concentrating on realizing the mesh logic. Finally, Apache

EventMesh, although in early development stages, it can be already used in different

scenarios such as inside a Kubernetes cluster as we will do in our project and describe

in subsequent chapters.

15 Actually, the main competitor is Solace PubSub+ that can create an event mesh. However, it is not

open source and it has limited access.

87

4 PROJECT OVERVIEW

The project that has been decided to carry out has the purpose of testing the

performance of a workflow microservices-based application in a cloud environment

through the use of different mesh technologies.

The project focuses, as we will explain in detail in this and in the next chapters, on the

infrastructure layer, looking at the differences between diverse service meshes and

how they compare in performance with an event mesh implementation. The applicative

part consists of a series of echo applications that simulate a generic workflow system.

4.1 OBJECTIVES

Microservices based architectures, as we already discussed about, offer many benefits

with respect to traditional monolithic application development, because they allow to

achieve a huge degree of flexibility in choosing technology, handling robustness and

scaling, organizing teams, and more. Precisely this flexibility is, in part, why many

organizations, especially larger ones, are adopting microservices, thus demonstrating

how these can be effective [22].

However, microservices bring with them a significant degree of complexity that needs

to be correctly managed. In fact, implementing a large system as a collection of many

microservices, can simplify the development of the whole application, but the

operations can be more complicated: orchestrating a large number of entities into a

coherent and complex system cannot be expected to be an easy task.

Think for example of an online store application divided into a store front-end, an order

management service, a payment processing service, and a shipment management

service, in which these parts are made of multiple microservices; these must be highly

available and must handle high workloads, scaling up when necessary and finally must

communicate reliably and efficently, sometimes across different environments: from

on-premises to cloud.

88

Figure 4-1. An example of a store application with the different services.

So even for microservices seems to be valid what Frederick P. Brooks wrote in the

article “No Silver Bullet” [99]:

There is no single development, in either technology or management

technique, which by itself promises even one order of magnitude

improvement in productivity, in reliability, in simplicity.

According to Brooks, the reason for this phenomenon is the presence of essential

complexity in software systems. In fact, he points out that, while in any codebase there

is always some accidental complexity, the one related to our own implementation

choices, most of the complexity in designing and implementing software systems is

not accidental, but, instead, it is related to the very essence of the complexity of

modeling the problem domain itself so that if we try to simplify a system beyond its

essential complexity, we would take away from its core model, and it would no longer

be the same system.

Regarding the large distributed systems, such as microservices-based architectures, we

can therefore affirm that it is impossible to eliminate the essential complexity.

However, it must be considered that it is possible to shift the complexity from one area

89

of the system to another and this can be particularly beneficial when it is possible to

automate the part that we are making “harder”.

In other words, we can simplify the code by breaking it up into multiple microservices,

but it might seem like we have not gained so much as we complicate the operational

part. In reality, the increased complexity of operations matters much less if they can

be automated: shifting complexity from the area we cannot, yet, automate, design and

code, into the area we have the possibility to automate, the operations, constitutes a

substantial advantage. For this reason, it was pointed out that a microservices

architecture can be materially simpler than its alternatives when implementing

complex systems [18].

In this scenario, many technologies emerged in the past years to deal with the

complexity of operations, such as Docker and Kubernetes, but also service and event

mesh. In our work we decided, precisely because of their relevance also in the

perspective we have talked about, to focus mainly on the infrastructural components,

in particular, testing service and event meshes, to see how the different system parts

interact when using synchronous and asynchronous communications and with which

performance.

4.2 TECHNOLOGIES CHOSEN

Passing now to the analysis of the technologies used in our project, it must first be

noted that a complex microservices-based system can in principle profit greatly from

using common protocols and data formats, or from choosing in general a certain

homogeneity in the technologies. However, as pointed out by Carneiro and Schmelmer

in “Microservices From Day One” about polyglot services16, “the majority of services

in a microservice environment expose many areas that together make up a

multidimensional vector for potential improvements” [20]; therefore, apply the

uniformity of programming languages, data stores, or other technology components

16 Polyglot services allow developers to select the programming language of their choice in order to

capture additional functionality and efficiency not available in a single language. Numerous companies

evolved to support a polyglot microservice architecture, like Google, eBay, Twitter, and Amazon,

prooving that this approach enhances developer creativity and out-of-the-box problem solving [100],

[101].

90

across all the services might not be the best choice. There are many reasons why to

select a technology with respect to another: different technologies can offer different

performances, security features, protocol support, deployment options, ease of

configurability and maintanability, and it is important to study which could be the right

technology from which we can take advantage for our specific application purpose,

before we move to it.

For this reason, we selected, for our technological choices, the following guiding

principles that we will illustrate in this paragraph:

• Reproducibility;

• Cost and license;

• Resource usage.

At first, it is necessary to provide the ability to reproduce the software tests, allowing

anyone, before choosing the technology, to reproduce them in the same environment,

with the same tools and conditions, to verify the results. It is also important to take

into account costs and licenses: an open-source tool allows us to carry out tests using

a technology that is openly available and very often widely adopted in the industry;

moreover, this type of license generally allows the distribution, visualization, and

sharing of the source code, also to the advantage of reproducibility. Finally, the

applications created must work well even on relatively powerful machines and must

consume the least possible amount of resources, to be cheaper and ensure better

exploitation of the cluster. Furthermore, in the specific case of containers, whose

images require to be archived in a registry, it is advantageous that these are of a smaller

size both because in this way it is easier to upload, download, create and archive them,

and because the optimization of these factors also leads to a reduction in costs.

In consideration of these guiding principles, we have decided to use in the range of

service mesh solutions Istio and Linkerd. The first is a complete, open-source, and

quite popular implementation; the second is equally open-source, stable and provides

a different data plane from the one that istio and the other solutions we have analyzed

in the previous chapters offer.

91

On the other hand, in the field of event mesh, we have chosen to use Apache

EventMesh, an open-source technology part of a foundation of great importance such

as the Apache Foundation, which, being still in incubation, we wanted to test to verify

its actual potential.

4.3 EVOLUTION OF THE PROJECT STRUCTURE

At this point, before moving on to the description of the project that we will carry out

in the next chapter, we believe it is important to briefly illustrate the most significant

passages through which the final structure of our work was articulated.

We want to start from the studies we conducted to learn how service meshes work and

how to implement a simple testing environment. Being focused on istio and Linkerd,

we decided at first to run benchmarks to load-test each different technology using

Fortio17, an open-source tool from the istio community with a simple client-server

architecture and specifically designed to run benchmarks. This tool packages also a

report server which allowed us to generate graphs from statistics made persistent by

the client.

17 Fortio was chosen with respect to other tools, like locust.io, because it has complete protocols support

(HTTP, HTTP/2, GRPC, and TLS) without requiring complex configurations. Locust has experimental

GRPC support and statistics are less complete with respect to the ones created by Fortio, but Locust

could be more suitable in a real scenario in which a business application is deployed. In fact, it allows

to create ad-hoc tests for a specific application with finer control than Fortio.

92

Figure 4-2. Fortio architecture with browser accessing the reports generated by the relative server and

the volume used to persist benchmark data.

The Fortio application was containerized using Docker and its distribution was

supported by a Kubernetes infrastructure: at first it was sufficient conducting tests on

minikube to verify the correct functioning and configuration, then we moved to cloud

solutions to enhance our test environment and proceed with more advanced

developments. In particular, we were interested in an topic that is increasingly

important in cloud infrastructures that is the observability18, that refers to a

characteristic of a system that is measured by the level to which it is possible to

understand and reason about a system internal state just by looking at its external

signals and characteristics [103]. In that perspective, the statistics just provided by

Fortio were no more sufficient and we decided to adopt more advanced solutions that

could give us the possibility to collect and visualize not only the application statistics,

but also any information that Kubernetes could expose: Prometheus and Grafana.

Subsequently, after carrying out the tests for the service meshes in the cloud

environment, we focused on the study of Apache EventMesh which, as already

explained above, relies on Apache RocketMQ to realize the underlying event-driven

architecture. We then configured and deployed RocketMQ first and the Apache

EventMesh server afterwards. Finally, to verify the correct functioning of the system,

18 This definition is based on the study of control theory first introduced in the 1959 paper from “On the

General Theory of Control Systems” by Rudolf E. Kalman [102].

93

we created a workflow application adapted to the event case, an application which was

then used and extended in subsequent comparative tests. This application was created

using Java, because it actually19 is the only language supported by Apache EventMesh.

To keep uniformity through tests we decided to build in Java also the application to be

used to test service meshes.

At this point, as a further step, in order to improve our metrics detection tools, with

particular reference to the need to make data persistent, we decided to replace

Prometheus and Grafana with our own system, compatible with the Prometheus data

format. The system we realized is written in Python and it is capable not only of

collecting data directly from Kubernetes and to directly scrape metrics from

infrastructural entities deployed in the cluster, such as Apache EventMesh server,

RocketMQ components, and service mesh proxies, but it is also capable of synthetize

statistics directly from the workflow application components, transforming, when

needed, these data in Prometheus format. It must be noted finally that our system can

work in a multi-cluster environment, that we decided to realize to simulate a real

business scenario, by deploying in each cluster a server controlled by a client that runs

in the local environment.

19 The reference is to May 2022; the developers foresee Go and Rust as the next supported languages.

94

Figure 4-3. Overview of our project architecture: on the left the service mesh deployment and on the

right the event mesh one. The local metrics client gathers data directly from the Kubernetes APIs and

from each component through a metrics server deployed in each cluster.

As we already wrote, for the realization of microservices components, we used Java

and Python and for this reason, according to the guiding principle, stated previously,

of keeping resource usage low, we analyzed the sizes of the container images for these

languages.

Tag Operating System Size (MB)

openjdk:8-alpine Alpine 3.9 ⁓ 105

openjdk-8 Debian 11 ⁓ 526

python:3-alpine Alpine 3.16 ⁓ 47,6

python:3 Debian 11 ⁓ 920

centos:7 CentOS 7.9.2009 ⁓ 204

Table 4-1. Size of the container images available on Docker Hub20.

As we can see from the Table 4-1, the images using Debian are bigger than the ones

that use Alpine, so we decided to use this OS not only for the workflow applications

20 Data updated to June 2022.

95

and the metrics server, but also for the components of the event mesh infrastructure,

whose official images are based on CentOS.

96

5 PROJECT IMPLEMENTATION

In this chapter is described the realization of the workflow applications as well as of

the metrics system and the infrastructural components of our project. We will start

with the latter and then proceed in order with the workflow application and the metrics

system, analyzing both single and multi-cluster deployments.

5.1 ISTIO

Istio, as stated earlier, is supported in multiple environments like Kubernetes and

Nomad. We will now discuss about our istio setup restricting to Kubernetes.

5.1.1 SINGLE CLUSTER INSTALLATION

There are many ways of installing istio and we chose to do it by using istioctl, a

command-line tool which provides rich customization of the control plane and of the

sidecars for the data plane. With respect to other solutions, this tool does not only allow

for controlling the istio installation, but also it has user input validation to help

preventing installation errors and customization options to override any aspect of the

configuration. istioctl supports the full IstioOperator API21 via command-line

options for individual settings or for passing a YAML file containing an IstioOperator

custom resource (CR) and it can be installed through the following command:

5.1.1.1 CONFIGURATION OPTIONS

istioctl allows to install istio according to a configuration, expressed as a YAML

file, that is termed profile. istioctl comes with some predefined profiles that is

possible to visualize through the following command:

21 Up to Istio 1.4, Helm was used as the primary tool for installing and upgrade istio. Version 1.4 of

Istio started deprecating it and introduced istioctl with IstioOperator API, a Kubernetes operator, which

provides a pattern to easly configure planes installation version and shape [104].

$ curl -L https://istio.io/downloadIstio | sh -

97

As we can see from the previous output, there are several built-in options available.

To choose the right one it is needed to look at the internal configuration each of those

provides by using the sub-command dump. In addition, it is possible to compare two

different profiles with the sub-command diff:

In the previous code, with the first command it is possible to visualize the YAML file

with all the configurations for the default profile; with the second command a file

containing all the differences between the two profiles is generated.

We want now to describe each built-in profiles more in detail:

• Default deploys istiod control plane, adds an ingress gateway, and enables

proxy auto-injection when namespaces or pods are labeled accordingly. Each

pod in the data plane requires at least 128MiB and 100mcpu and the status is

exposed on port 15020. As stated in the istio documentation [105], this profile

is recommended for production deployments and for primary clusters in a

multi-cluster mesh. In fact, it has the same settings as the remote profile.

• Demo is designed to test many features istio provides requiring just few

resources. It enables not only istiod and the ingress gateway, but it also

provides an egress gateway, disables autoscaling for ingress-egress and proxy

requires at least 40MiB of memory and 10mcpu. Since it enables high levels

of tracing and access logging, this profile is not suitable for performance tests.

• Minimal is designed from the default profile with the only difference of

deploying just istiod control plane, without the ingress gateway.

$ istioctl profile list
Istio configuration profiles:
 default
 demo
 empty
 external
 minimal
 openshift
 preview
 remote

$ istioctl profile dump default
$ istioctl profile diff default demo > compare.yaml

98

• External can be used for configuring a remote cluster that is managed by an

external control plane or by a control plane in a primary cluster of a multi-

cluster mesh.

• Empty, as the name suggests, deploys nothing and therefore it is useful as a

base for custom profile configuration.

• Preview is used to showcase istio experimental features and for this reason

stability, security, and performance are not guaranteed.

• Openshift is an adaptation of the default profile to be used with RedHat

Openshift.

Among the options listed above, we have chosen to use the default profile in our

project because, as already mentioned, it provides the possibility of preparing a

production-ready configuration for both the single cluster and the multi-cluster case.

After choosing the profile, it is recommended to save the manifest data that istioctl

uses to express all the details of the installation; so, it will be possible not only to

inspect what exactly is being installed, but also to track changes to the manifest over

time.

Code 5-1. Storing the istio manifest in a file. The ISTIO_PROFILE variable is expanded to default.

The last step before the installation required to verify that any prerequisites have been

met in our Kubernetes cluster. Then we proceeded with the istio installation on the

single cluster followed by the verification of the success of the operation by comparing

it with the manifest previously generated and by checking if the cluster deployments

are running:

$ istioctl manifest generate --set profile="$ISTIO_PROFILE" > istio-manifest-
"$ISTIO_PROFILE".yaml

$ istioctl x precheck
$ istioctl install --set profile="$ISTIO_PROFILE" -y
$ istioctl verify-install -f istio-manifest-"$ISTIO_PROFILE"
$ kubectl -n istio-system get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
istio-ingressgateway 1/1 1 1 90s
istiod 1/1 1 1 2m6s

99

5.1.2 MULTI-CLUSTER INSTALLATION

As we have already anticipated in Chapter 3, istio is not bound to a single cluster, but

it can span many clusters and provide the same capabilities across all of them. We

decided to run our tests also in this scenario because many companies choose to adopt

it [103]. The benefits it provides are:

• Improved isolation: separated clusters can implement different business

scopes while cooperating, enhancing isolation between domains.

• Failure boundaries: errors and faults of configurations and operations for a

cluster do not affect the others.

• Regulatory and compliance: services that access sensitive data from other

parts of the architecture can be restricted.

• Increased availability and performance: one cluster can take over another in

case of a failure, regional or not, or it is possible to route traffic to the closest

cluster to reduce latency.

• Multi and hybrid cloud: workloads can run in different environments, whether

different cloud providers or hybrid clouds.

The multi-cluster implementation connects services across clusters in a way that is

transparent to the apps, meanwhile maintaining all of the service mesh capabilities:

fine-grained traffic management, resiliency, observability, and security for cross-

cluster communication. To do that istio requires the following criteria:

• Cross-cluster workload discovery: the API Server on each cluster must be

accessible to others because the control plane uses it to discover the workloads

in the peer clusters in order to configure the service proxies.

• Cross-cluster workload connectivity: workloads must have connectivity

between each other.

• Common trust between clusters: cross-cluster workloads must mutually

authenticate to enable the security features istio provides.

100

5.1.2.1 ISTIO MULTI-CLUSTER DEPLOYMENT MODELS

When installing as a multi-cluster, istio distingushes between primary clusters, which

are the ones containing the istiod control plane, and remote clusters, which allow only

the deployment of the data plane. The combinations of these two types of clusters

define the models istio allows:

• multi-primary: the control plane is installed on each cluster involved in

forming the mesh.

• primary-remote: the control plane, installed only on one cluster, observes the

API Servers on each cluster for endpoints, providing in such way service

discovery for workloads in each cluster involved in forming the mesh.

Figure 5-1. Difference between multi-primary and primary-remote control plane installations. In the

first case each control plane observes the API Servers in both clusters for enpoints. In the second case

the istiod in cluster 1 observes the API Servers in both clusters, while the services in cluster 2 reach the

control plane in cluster 1 via an ingress gateway for east-west traffic. In this figure, both clusters reside

on the same network, meaning workloads communicate directly (pod-to-pod) across cluster boundaries.

These deployment models differ mainly on two aspects: availability and performance.

The primary-remote option has a single control plane managing the mesh and for this

reason, it uses less resources on the remote clusters, but an outage in the primary one

affects the entire mesh, undermining availability. On the other hand, the multi-primary

101

model ensures higher availability by replicating the control plane, but at the same time,

it requires more resources.

Choosing a deployment model with respect to the other depends on the business needs,

but in general it is possible to affirm that nowadays availability can be considered more

important with respect to the performance criterion. For example, if we think to an

online store, such as the one cited in the previous chapter, it must be always available

to customers because every minute of it being down would cost the business a lot.

Hence, high availability is important and we chose this last option to prepare the multi-

cluster for our tests.

The profiles used to install istio on two clusters are the following:

Code 5-2. YAML configuration for the first istio cluster.

Code 5-3. YAML configuration for the second istio cluster.

The previous code was used by istioctl to override some parameters in the default

profile, before the installation process starts22:

22 It is possible to verify the substitutions by inspecting the generated profiles using the istioctl

profile dump command as in the single cluster case.

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:
 values:
 global:
 meshID: mesh1
 multiCluster:
 clusterName: cluster1
 network: network1

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:
 values:
 global:
 meshID: mesh1
 multiCluster:
 clusterName: cluster2
 network: network1

102

Once the istio control plane has been installed, it is needed, to permit it, to access to

the Kubernetes API server of the remote cluster in order to discover cross-cluster

workloads. To do that we needed to create remote secrets:

Code 5-4. Installation of a remote secret in cluster2 that provides access to API server in cluster1.

Code 5-5. Installation of a remote secret in cluster1 that provides access to API server in cluster2.

5.1.3 SIDECAR INJECTION

After the installation, in order to use the service mesh it is necessary to instruct istio to

insert the sidecars in the data plane and it is possible to do this in two different ways.

In the first case, labeling a namespace instructs the istiod injector to automatically

insert a sidecar when a new pod resource is added in the target namespace; in the

second case it is possible to manually indicate to the control plane to inject the sidecar

by labeling the deployment when passing the YAML configuration to kubectl.

In our scripts we can use both methods, but in the final tests we preferred the last

option; in fact, we created a Python script which can inject the correct metadata for

both istio and Linkerd, allowing us to keep the deployment code cleaner:

inject.py uses pyYAML to read the deployment file, then adding to it the label

spec.template.metadata.labels:sidecar.istio.io/inject:true.

$ istioctl install --context="$CLUSTER1" -f cluster1.yaml
$ istioctl install --context="$CLUSTER2" -f cluster2.yaml

$ istioctl x create-remote-secret \
 --context="${CLUSTER1}" \
 --name=cluster1 | \
 kubectl apply -f - --context="${CLUSTER2}"

$ istioctl x create-remote-secret \
 --context="${CLUSTER2}" \
 --name=cluster2 | \
 kubectl apply -f - --context="${CLUSTER1}"

$./inject.py deployment.yaml istio | kubectl -n $NAMESPACE apply -f -

103

5.2 LINKERD

Passing now to our Linkerd setup, we must preliminarily emphasize that, unlike istio,

Linkerd is able to work only on Kubernetes, not supporting other platforms.

5.2.1 SINGLE CLUSTER INSTALLATION

Regarding the single cluster setup, the first step is necessarily to install the Linkerd

command line interface, a tool that works similarly to istioctl, allowing the

connection to the service mesh control plane:

As we saw for istio, it is a good practise to run checks before proceeding with the

installation of the control plane so to validate if the cluster does not have some

incompatibilities or incorrect configurations:

After the validation of the Kubernetes cluster, it is possible to proceed with the

installation of the control plane of Linkerd and then check for deployment readiness

and health:

The linkerd install command generates a Kubernetes manifest containing all the

control plane resources to be applied. By default, the Linkerd control plane is installed

in the linkerd namespace, but if needed it can be changed by passing the argument

--linkerd-namespace.

The linkerd check command will verify any mismatch in the Kubernetes version, the

ability to connect to the API server, and other aspects. It will wait for the Linkerd

control plane pods to be available and for this reason it may take a long time to

complete. At any point after the install, it is possible to run linkerd check config to

$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/install | sh

$ linkerd check --pre

$ linkerd install | kubectl apply -f –
$ linkerd check

104

ensure that all the necessary resources of the control plane are available and correctly

configured.

The injection is similar to the one we wrote about istio with the only exception that the

injection annotation is:

5.2.2 MULTI-CLUSTER INSTALLATION

Multi-cluster support in Linkerd requires extra installation and configuration on top of

the single cluster installation decribed above. To keep uniformity along our project,

we decided to define a multi-primary installation, like we did for the istio setup.

After the installation of the Linkerd control plane on the first cluster, we need to

prepare a trust anchor that we use to secure the connection between the two clusters.

The trust anchor allows the control plane to encrypt the requests that go between

clusters and verify the identity of those requests. This identity is used to control access

to clusters, so it is critical that the trust anchor is shared.

For our testing purposes it was sufficient to create a single trust anchor certificate

shared between our two clusters with the following code:

At this point, we used the new bundle to upgrade the existing cluster and to install

Linkerd on the new cluster together with the issuer certificate and key:

spec.template.metadata.annotations:linkerd.io/inject:enabled

$ kubectl --context="$CLUSTER1" -n linkerd get cm linkerd-config -
ojsonpath="{.data.values}" | yq e .identityTrustAnchorsPEM - > trustAnchor.crt

$ step certificate create root.linkerd.cluster.local root.crt root.key \
 --profile root-ca --no-password --insecure
$ step certificate create identity.linkerd.cluster.local issuer.crt issuer.key \
 --profile intermediate-ca --not-after 8760h --no-password --insecure \
 --ca root.crt --ca-key root.key

$ cat trustAnchor.crt root.crt > bundle.crt

105

After this step, it is possible to proceed with the installation of the multi-cluster control

plane, using the following commands:

After the setup of the resources needed for the multi-cluster control plane, it is

necessary to link the two clusters. This step consists of installing several resources in

the source cluster including a secret containing a kubeconfig that allows access to the

target cluster Kubernetes API, a service mirror control for mirroring services, and a

Link custom resource for holding configuration. The linking of the two clusters is

performed using the following code:

Finally, to check if the installation was correctly executed, beyond using the check

command, we listed the gateways for each cluster to see if each of those could see the

other:

$ linkerd --context="$CLUSTER1" upgrade --identity-trust-anchors-file=./bundle.crt |
kubectl --context="$CLUSTER1" apply -f -

$ linkerd --context="$CLUSTER2" install \
 --identity-trust-anchors-file bundle.crt \
 --identity-issuer-certificate-file issuer.crt \
 --identity-issuer-key-file issuer.key | \
 kubectl --context="$CLUSTER2" apply -f -

$ linkerd --context="$CLUSTER2" check

$ linkerd --context="$CLUSTER1" multicluster install | kubectl --context="$CLUSTER1"
apply -f -
$ linkerd --context="$CLUSTER2" multicluster install | kubectl --context="$CLUSTER2"
apply -f -

linkerd --context="$CLUSTER2" multicluster link --cluster-name "cluster2" | kubectl
--context="$CLUSTER1" apply -f -
linkerd --context="$CLUSTER1" multicluster link --cluster-name "cluster1" | kubectl
--context="$CLUSTER2" apply -f -

$ linkerd --context="$CLUSTER1" multicluster gateways
CLUSTER ALIVE NUM_SVC LATENCY_P50 LATENCY_P95 LATENCY_P99
cluster2 True 0 2ms 3ms 3ms

$ linkerd --context="$CLUSTER2" multicluster gateways
CLUSTER ALIVE NUM_SVC LATENCY_P50 LATENCY_P95 LATENCY_P99
cluster1 True 0 1ms 3ms 3ms

106

5.3 APACHE ROCKETMQ

Proceeding now to the examination of the Apache RocketMQ setup, it must be noted

that this project does not provide any official installation process in a Kubernetes

cluster, but there exists a community-driven project, recognized by the Apache

Foundation, which maintains an Operator to automatically take care of the installation,

upgrade, and runtime maintenance processes. Although it could be considered useful

to setup a simple cluster, this tool has many limitations such the fact that it runs only

in the default namespace or that there are some scalability issues. Since we wanted

greater control over the installation process, we decided to create our own.

5.3.1 CONTAINER IMAGE

The apache/rocketmq:4.9.3 image from DockerHub is based on CentOS and, as we

already mentioned in the previous chapter, we opted for our own image which is lighter

and which allowed us to insert customized launch scripts. We describe now the

Dockerfile we made.

Code 5-6. Beginning of the RocketMQ Dockerfile.

Since Apache RocketMQ is a central component for the event mesh, we decided to run

it as a user just named rocketmq, avoiding the use of root. Then we proceeded with

the installation of this software, verifying if it was correctly done, and finally, adding

our launch scripts.

FROM openjdk:8-alpine
ARG user=rocketmq
ARG group=rocketmq
ARG uid=3000
ARG gid=3000

RUN addgroup -g ${gid} ${group} \
 && adduser -u ${uid} -G ${group} -D ${user}
...
USER ${user}

107

Code 5-7. Installation of Apache RocketMQ and copying the launch scripts.

5.3.2 SINGLE CLUSTER DEPLOYMENT

To distribute the containerized application, we

proceeded to the creation of a Kubernetes

infrastructure, initially a vanilla setup, moving then

to Google Kubernetes Engine (GKE), a more

advanced system. The deployment consists of the

following components that share the same

RocketMQ container image:

• A master broker deployment with its

configuration.

RUN set -eux ; \
 apk --no-cache add curl gnupg ; \
 curl -L https://archive.apache.org/dist/rocketmq/${ROCKETMQ_VERSION}/rocketmq-
all-${ROCKETMQ_VERSION}-bin-release.zip -o rocketmq.zip ; \
 curl -L https://archive.apache.org/dist/rocketmq/${ROCKETMQ_VERSION}/rocketmq-
all-${ROCKETMQ_VERSION}-bin-release.zip.asc -o rocketmq.zip.asc ; \
 curl -L https://www.apache.org/dist/rocketmq/KEYS -o KEYS ; \
 gpg --import KEYS ; \
 gpg --batch --verify rocketmq.zip.asc rocketmq.zip ; \
 unzip rocketmq.zip ; \
 mv rocketmq*/* . ; \
 rmdir rocketmq-* ; \
 rm rocketmq.zip rocketmq.zip.asc KEYS

COPY scripts/ ${ROCKETMQ_HOME}/bin/

RUN chown ${uid}:${gid} ${ROCKETMQ_HOME}

RUN mv ${ROCKETMQ_HOME}/bin/runserver-customize.sh ${ROCKETMQ_HOME}/bin/runserver.sh
\
 && chmod a+x ${ROCKETMQ_HOME}/bin/runserver.sh \
 && chmod a+x ${ROCKETMQ_HOME}/bin/mqnamesrv ; \
 mv ${ROCKETMQ_HOME}/bin/runbroker-customize.sh ${ROCKETMQ_HOME}/bin/runbroker.sh
\
 && chmod a+x ${ROCKETMQ_HOME}/bin/runbroker.sh \
 && chmod a+x ${ROCKETMQ_HOME}/bin/mqbroker

RUN export JAVA_OPT=" -Duser.home=/opt" ; \
 sed -i
's/${JAVA_HOME}\/jre\/lib\/ext/${JAVA_HOME}\/jre\/lib\/ext:${JAVA_HOME}\/lib\/ext/'
${ROCKETMQ_HOME}/bin/tools.sh

ENV PATH "$PATH:${ROCKETMQ_HOME}/bin"

WORKDIR ${ROCKETMQ_HOME}/bin

Figure 5-2. Single cluster

deployment schema.

108

• A name server with an associated Service that allows to access to the name

server without the explicit need of the IP address.

• A console application which allows to control the deployment, adding, for

example, new topics.

We will now describe each of these Kubernetes objects in more detail.

5.3.2.1 NAME SERVER

The name server is the central component in the RocketMQ setup and it comprises a

Deployment and a Service. The code of the first is shown below.

Code 5-8. Deployment of the RocketMQ name server.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: rocketmq-name-service
 labels:
 environment: research
 app: rocketmq
 role: name-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: rocketmq
 role: name-service
 ...
 containers:
 - name: name-service
 image: framctrdh/rocketmq:4.9.3
 command: ["sh", "mqnamesrv"]
 imagePullPolicy: IfNotPresent
 resources:
 requests:
 cpu: "250m"
 memory: "512Mi"
 limits:
 cpu: "500m"
 memory: "1Gi"
 ports:
 - containerPort: 9876
 name: main
 protocol: TCP
 volumeMounts:
 - mountPath: /home/rocketmq/logs
 name: namesrv-log
 subPath: logs/namesrv
 volumes:
 - emptyDir: {}
 name: namesrv-log

109

As we can see, the deployment is univocally identified through the app and role labels.

The first indicates the application used, while the second which role it has in the

cluster. The name server has just one replica and it is launched with the standard

configuration through the command mqnamesrv and by default the TCP communication

happens through the port 9876.

The access to the name service is mediated by a Service resource, as shown below,

and this allows to communicate with it through its own name instead of the IP address.

Code 5-9. Service definition for the RocketMQ deployment.

5.3.2.2 BROKER

The broker requires, with respect to the name server, some configuration which is kept

in the ConfigMap shown below.

Code 5-10. Configuration of the RocketMQ broker.

The BROKER_MEM variable is required by the broker to tune the JVM performance

settings [106]. Specifically, it defines the initial and minimum of the Java heap size (-

Xms) and the maximum size of the memory allocation pool (-Xmx).

apiVersion: v1
kind: Service
metadata:
 name: rocketmq-name-service
spec:
 selector:
 app: rocketmq
 role: name-service
 ports:
 - port: 9876
 name: main

apiVersion: v1
kind: ConfigMap
metadata:
 name: broker-config
...
data:
 BROKER_MEM: " -Xms2g -Xmx2g "
 broker-common.conf: |
 namesrvAddr=rocketmq-name-service:9876
 flushDiskType=ASYNC_FLUSH
 brokerRole=ASYNC_MASTER

110

In addition, the ConfigMap specifies a file, named broker-common.conf, which

contains all the data related to the broker specific configuration: the name service

address with the associated port, the broker role (master or slave), and the flush type

which defines if the messages need to be stored on disk for high availability

(SYNC_FLUSH) or kept just in memory to increase performance (ASYNC_FLUSH).

apiVersion: apps/v1
kind: Deployment
metadata:
 name: rocketmq-broker-master
 labels:
 environment: research
 app: rocketmq
 role: broker
spec:
 replicas: 1
 selector:
 matchLabels:
 app: rocketmq
 role: broker
 ...
 spec:
 containers:
 - name: broker-master
 image: framctrdh/rocketmq:4.9.3
 command: ["sh", "mqbroker", "-c", "/home/rocketmq/broker/conf/broker-
common.conf"]
 imagePullPolicy: IfNotPresent
 resources:
 requests:
 cpu: "250m"
 memory: "2Gi"
 limits:
 cpu: "500m"
 memory: "4Gi"
 env:
 - name: BROKER_MEM
 valueFrom:
 configMapKeyRef:
 name: broker-config
 key: BROKER_MEM
 ports:
 - containerPort: 10911
 name: main
 protocol: TCP
 volumeMounts:
 - mountPath: /home/rocketmq-broker/logs
 name: broker-log
 subPath: logs/broker-master
 - mountPath: /home/rocketmq-broker/store
 name: broker-store
 subPath: store/broker-master
 - mountPath: /home/rocketmq/broker/conf/broker-common.conf
 name: broker-config
 subPath: broker-common.conf

111

Code 5-11. The broker deployment.

5.3.2.3 CONSOLE

The console application allows to take control over the RocketMQ cluster from

command line and it is defined by a Deployment which creates a pod running

indefinitely, consuming just few resources. It is possible to connect to the pod through

the following command:

After the connection, it is possible to execute many operations, such as adding a topic

to the default RocketMQ cluster, verifying the insertion, as shown below:

5.3.3 MULTI-CLUSTER DEPLOYMENT

The multi-cluster deployment is similar to the single cluster with the only exception

for the following changes:

• Broker and name server deployments have each one 2 replicas, one for each

cluster. The console does not require to be replicated, but, to simplify the

scripts responsible for the deployment of the workflow application, the console

has 2 replicas.

• The name servers are accessible through public IP because they are deployed

on different clusters.

 volumes:
 - emptyDir: {}
 name: broker-log
 - emptyDir: {}
 name: broker-store

$ kubectl exec -ti $(kubectl get pod -l app=rocketmq -l role=console-admin -o
jsonpath="{.items[0].metadata.name}") -- sh

$ sh mqadmin updateTopic -c DefaultCluster -t TEST-TOPIC-TCP-ASYNC -n rocketmq-name-
service:9876
$ sh mqadmin topicList -n rocketmq-name-service:9876

112

Figure 5-3. Apache RocketMQ multi-cluster schema.

More in detail, the name servers have a Deployment and a Service, but with respect

the the single cluster case, the Service is a LoadBalancer, which publicly exposes an

IP address to access the name server. Since the broker needs the name servers IP when

booting, there is the need to wait until the public IP becomes available as presented by

the code below.

Subsequently, we deployed the brokers, inserting both addresses of the server names

in each of these. In many YAML files we use custom defined variables (whose name

is indicated between angular parenthesis), that we then substitute with their values

before the deployment, using the BASH sed command. An example is given by the

following code showing the replacement of the < ADDR > variable with the name servers

public IPs.

while [-z "$(kubectl -n eventmesh get svc rocketmq-name-service -
o=jsonpath='{.status.loadBalancer.ingress[0].ip}')"]
do
 sleep 2
done

cat cluster-2/broker-config-fast.yaml | sed "s/< ADDR >/${NAMESRV}/g" | kubectl -n
eventmesh apply -f -
cat cluster-2/broker-fast.yaml | sed "s/< ADDR >/${NAMESRV}/g" | kubectl -n
eventmesh apply -f -

113

5.4 APACHE EVENTMESH

After the deployment of Apache RocketMQ, we proceeded with the one of Apache

EventMesh, creating a custom Docker image and subsequently the deployments for

single and multi-clusters.

5.4.1 CONTAINER IMAGE

The Docker image is based on Alpine and it is built by downloading the official

Apache EventMesh binaries that contain also the start.sh script that we set as the

container launcher, after its adaptation to the Alpine shell.

Code 5-12. Apache EventMesh Dockerfile.

5.4.2 KUBERNETES DEPLOYMENT

Regarding the deployment of Apache EventMesh, it must be initially noticed that it is

the same for the single and multi-cluster environments. In fact, the EventMesh server

uses the same deployment configuration in both cases: the only element that could be

different is the address of the RocketMQ name server, however Apache EventMesh

requires just the name server of the cluster it resides in.

FROM openjdk:8-alpine

ARG em_version
ENV EVENTMESH_VERSION ${em_version}
WORKDIR /opt

RUN wget https://github.com/apache/incubator-
eventmesh/releases/download/v${EVENTMESH_VERSION}/apache-eventmesh-
${EVENTMESH_VERSION}-incubating-bin.tar.gz -O - | tar -xz \
 && mv apache-eventmesh-${EVENTMESH_VERSION}-incubating eventmesh-
${EVENTMESH_VERSION} \
 && chmod +x eventmesh-${EVENTMESH_VERSION}/bin/*.sh \
 && rm eventmesh-${EVENTMESH_VERSION}/bin/start.sh

COPY bin/start.sh eventmesh-${EVENTMESH_VERSION}/bin/

WORKDIR /opt/eventmesh-${EVENTMESH_VERSION}/bin

ENV DOCKER true
CMD sh start.sh

EXPOSE 10000
EXPOSE 10105

114

The first element for the deployment of the Apache EventMesh runtime is the

ConfigMap, shown below, that contains all its configuration properties. We enabled

the TCP communication, required by the workflow applications, and the metrics,

exposed in Prometheus format on the port 19090.

Besides this ConfigMap, there is another one containing the file rocket-

client.properties with the RocketMQ name server address.

The second element is the Apache EventMesh server Deployment object which has one

replica per cluster, requires the configuration files provided by the ConfigMap, and

opens ports for communication and metrics.

apiVersion: v1
kind: ConfigMap
metadata:
 name: eventmesh-config
data:
 eventmesh.properties: |-
 eventMesh.server.idc=DEFAULT
 eventMesh.server.env=PRD
 eventMesh.server.cluster=COMMON
 eventMesh.server.name=EVENTMESH-runtime
 eventMesh.sysid=0000
 eventMesh.server.http.port=10105
 ############ eventMesh tcp configuration
 eventMesh.server.tcp.enabled=true
 eventMesh.server.tcp.port=10000
 eventMesh.server.tcp.readerIdleSeconds=120
 eventMesh.server.tcp.writerIdleSeconds=120
 eventMesh.server.tcp.allIdleSeconds=120
 eventMesh.server.tcp.clientMaxNum=10000
 # client isolation time if the message send failure
 eventMesh.server.tcp.pushFailIsolateTimeInMills=30000
 # rebalance internal
 eventMesh.server.tcp.RebalanceIntervalInMills=30000
 # session expire time about client
 eventMesh.server.session.expiredInMills=60000
 # flow control, include the global level and session level
 eventMesh.server.tcp.msgReqnumPerSecond=15000
 eventMesh.server.session.upstreamBufferSize=20

...

 #metrics
 eventMesh.server.metrics.enabled=true
 eventMesh.metrics.prometheus.port=19090
 eventMesh.metrics.plugin=prometheus

...

115

Code 5-13. Apache EventMesh server deployment file.

Finally, the third element is a Service that allows the workflow applications to access

the EventMesh runtime server through its name inside the cluster, as shown below.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: eventmesh-server
spec:
 replicas: 1
 selector:
 matchLabels:
 app: eventmesh-server
 template:
 metadata:
 labels:
 app: eventmesh-server
 spec:
 containers:
 - name: eventmesh-server
 image: framctrdh/apache-eventmesh:1.4.0-alpine
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 10000
 name: tcp
 - containerPort: 10105
 name: http
 - containerPort: 10205
 name: grpc
 - containerPort: 19090
 name: metrics
 volumeMounts:
 - mountPath: /data/app/eventmesh/conf/eventmesh.properties
 subPath: eventmesh.properties
 name: eventmesh-config
 - mountPath: /data/app/eventmesh/conf/rocketmq-client.properties
 subPath: rocketmq-client.properties
 name: rocketmq-client-config
 volumes:
 - name: eventmesh-config
 configMap:
 name: eventmesh-config
 - name: rocketmq-client-config
 configMap:
 name: rocketmq-client-config

116

Code 5-14. Apache EventMesh service useful for applications to access the event mesh through the

service name.

5.5 WORKFLOW APPLICATION

At this point we want to move from the explaination of work done for the

infrastructural components to the applicative part of the project and, more specifically,

to the workflow that consists of a series of echo applications.

The workflow application is formed by a set of elements each of those can be one of

the following types:

• Trigger which starts the communication and sends messages that will be

exchanged along the application chain.

• Action which executes an echo to the previous component and at the same time

forwards the message to the next component.

• Conclusion which is the last component to receive messages.

While there must be only one trigger element and one conclusion, the number of action

elements can vary. The configuration of each element is illustrated in a file describing

the behavior of each component, as we will see in more detail in the next chapter: it

contains the role, the name associated to the component in the cluster (rootname), the

number of send/receive operations it can do each second, and the communication

properties.

apiVersion: v1
kind: Service
metadata:
 name: eventmesh-service
 labels:
 app: eventmesh-service
spec:
 selector:
 app: eventmesh-server
 ports:
 - port: 10000
 name: tcp
 - port: 10105
 name: http
 - port: 10205
 name: grpc
 - port: 19090
 name: metrics

117

Code 5-15. Example of trigger element configuration.

The applicative part is divided into two different applications, one for the synchronous

and the other for the asynchronous communication. To keep uniformity between those

two implementations, we wrote both applications in Java, since Apache EventMesh

SDK supports only this programming language; furthermore, we decided to adopt TCP

as the communication protocol for both applications.

Figure 5-4. Schema of the workflow application used during tests. Each container comprises a workflow

application and a web server for statistics, that are accessible through a Service.

5.5.1 SYNCHRONOUS APPLICATION

Starting with the synchronous application we used for testing the service meshes, we

will describe the codebase first and then continue with containerization and

deployment.

5.5.1.1 CODEBASE

The codebase is organized into two parts: on one hand, the main which reads

configuration from environment variables, prepares and starts the communication; on

[trigger]
rootname=trigger
operation.ops.start=10
operation.ops.end=100
communication.hostname.to=action01
communication.port.to=10091
communication.port.from=10090

118

the other hand, the communication objects, shown below, which make up the server

and the client.

The TCP echo client creates a Socket and then sends a message, waiting for the latter

to be echoed. It must be noted that, during the deployment, each workflow entity can

be scheduled at a different time and so it can happen that a client component starts

before the server, resulting in a connection failure. For this reason, the client attempts

multiple times to connect to the server.

Code 5-16. TCP client init connection.

Code 5-17. TCP client echo.

On the other side, the server waits for connections and then, when the message is

received, it echoes it to the client.

Code 5-18. TCP server waiting for connections.

while(!clientSocket.isConnected() && attempts > 0) {
 try {

 clientSocket = new Socket(host, port);

 reader = new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));
 writer = new BufferedWriter(new
OutputStreamWriter(clientSocket.getOutputStream()));
 ...
 attempts--;
}

writer.write(message + "\n");
writer.flush();

String ret = "";
if((ret = reader.readLine()) != null) {

 logger.info("Received message: " + ret);
}

serverSocket = new ServerSocket(port);
...
socket = serverSocket.accept();

reader = new BufferedReader(new InputStreamReader(socket.getInputStream()));
writer = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream()));

119

Code 5-19. TCP server echo.

The forwarding of messages from one workflow entity to another is accomplished by

combining a server and a client: the former receives a message which is then passed

to the client which sends it to the next component.

To support constant as well as variable amount of requests per second, each workflow

entity creates a DurationCalculator object which evaluates the time between one

operation and another.

Code 5-20. Evaluation of the thread sleeping time between one operation and the other. The variable

time is calculated with a linear interpolation.

5.5.1.2 CONTAINER IMAGE

The building of the container image requires to package the project in JAR file which

is then copied inside the container image together with the shell script used for the

application launch.

StringBuilder message = new StringBuilder();

String line = "";
while((line = reader.readLine()) != null) {

 writer.write(message + "\n");
 writer.flush();

 message.append(line);
}

socket.close();

this.duration = totalDuration;

this.start_wait = 1000 / start_ops;
this.end_wait = 1000 / end_ops;

this.start = System.currentTimeMillis();
...
if(start_wait == 0 || start_wait == end_wait) {

 return start_wait;
}
// check for elapsed time > duration
long elapsed = System.currentTimeMillis() - start;
double t = elapsed < duration ? elapsed / (double)duration : 1.0;
return Math.round((1.0 - t) * start_wait + t * end_wait);

120

Code 5-21. Shell script that builds the project and the Dockerfile.

Code 5-22. Dockerfile of the workflow application. We used a custom image containing the HTTP server

for the statistics.

Code 5-23. Launcher of the application. After the applications exits, it starts an HTTP server for

statistics.

5.5.1.3 DEPLOYMENT

The deployment of the workflow application is the same for both the single and multi-

cluster environments with the only difference, in the second case, that the conclusion

component is deployed on a different cluster.

The Deployment and the Service resources which are used for the application

workflow, have custom variables that are expanded with the values taken from the

configuration files already mentioned (cf. Code 5-15).

./mvnw package

docker build -f Dockerfile -t framctrdh/servicemesh-workflow:latest . && \
docker push framctrdh/servicemesh-workflow:latest

FROM framctrdh/stats-base:latest

COPY tmp /opt/workflow
COPY bin/start.sh /opt

#!/bin/sh

java -cp workflow:. -jar workflow/*.jar it.workflow.Workflow && \
./start-stats.sh

121

Code 5-24. Deployment of the workflow application. It sets the environment variables, starts the

application executing the custom script, and opens one port for the workflow and the others for exposing

metrics.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: workflow-< NAME >
spec:
 replicas: 1
 selector:
 matchLabels:
 app: workflow
 role: < ROLE >
 name: < NAME >
 template:
 metadata:
 labels:
 app: workflow
 role: < ROLE >
 name: < NAME >
 spec:
 containers:
 - name: workflow-< NAME >
 imagePullPolicy: Always
 env:
 - name: DURATION
 value: "< DURATION >"
 - name: ROOTNAME
 value: "< NAME >"
 - name: ROLE
 value: "< ROLE >"
 - name: OPS_START
 value: "< OPS_START >"
 - name: OPS_END
 value: "< OPS_END >"
 - name: HOST_TO
 value: "< HOST_TO >"
 - name: PORT_FROM
 value: "< PORT_FROM >"
 - name: PORT_TO
 value: "< PORT_TO >"
 - name: STATS_FILENAME
 value: "stats.log"
 image: framctrdh/servicemesh-workflow:latest
 command: ["sh", "start.sh"]
 ports:
 - containerPort: < PORT_FROM >
 name: tcp-server
 - containerPort: 8080
 name: app-stats
 - containerPort: 15020
 name: istio-metrics

122

Code 5-25. Service of the workflow application. It is used by clients to communicate with servers and

by the metrics server to gather metrics.

5.5.2 ASYNCHRONOUS COMMUNICATION

Passing now to the asynchronous application designed to be used with Apache

EventMesh, it must be noticed that this, although constructed similarly to the previous

one, has some differences, some of which are more significant, that we will describe

in the following.

5.5.2.1 CODEBASE

Regarding the codebase, the difference with the previous case is due obviously to the

different way of communication.

This project requires the Apache EventMesh Common and Java SDK libraries which

expose APIs to connect to the EventMesh runtime server. Both producer and

consumer, defined in our application codebase, require an instance of

EventMeshTCPClientConfig class that specifies the configuration of EventMesh TCP

client. The host and port fields must match those of the EventMesh server.

apiVersion: v1
kind: Service
metadata:
 name: < SERVICE_NAME >
spec:
 selector:
 app: workflow
 role: < ROLE >
 name: < NAME >
 ports:
 - port: < PORT_FROM >
 name: tcp-server
 - port: 8080
 name: app-stats
 - port: 15020
 name: istio-metrics

123

Figure 5-5. Initialization of the EventMesh TCP publisher in the workflow application. The procedure

is the same for the TCP consumer.

The publisher client has an asyncPublish method which wraps the publish method

implemented by the EventMeshTCPClient class, which accepts the message to be

published and a timeout value, adding some properties to the message, such as the

topic.

Code 5-26. Publish method of the workflow TCP client.

On the other hand, the TCP consumer implements the ReceiveMsgHook class with its

handle method, called by Apache EventMesh when a new message for a certain topic

is ready to be consumed. The subscription happens through the subscribe method

which accepts: the topic, a SubscriptionMode (CLUSTERING or BROADCASTING), and the

public class PublisherTCP {
 public PublisherTCP(UserAgent userAgent) {

 UserAgent clientUserAgent = MessageUtils.generatePubClient(userAgent);

 EventMeshTCPClientConfig clientConfig = EventMeshTCPClientConfig.builder()
 .host(eventMeshIP)
 .port(eventMeshTCPPort)
 .userAgent(clientUserAgent)
 .build();

 client = EventMeshTCPClientFactory.createEventMeshTCPClient(clientConfig,
EventMeshMessage.class);
 client.init();
}

public void asyncPublish(String message, String topic, Map<String, String>
properties) {

 EventMeshMessage eventMeshMessage = new EventMeshMessage();

 if(properties != null) {
 for(Map.Entry<String, String> property : properties.entrySet()) {

 eventMeshMessage.getProperties().put(property.getKey(),
property.getValue());
 }
 }

 eventMeshMessage.setTopic(topic);
 eventMeshMessage.setBody(message);

 client.publish(eventMeshMessage, client_timeout);
}

124

SubscritptionType which indicates if the subscription should be asynchronous or

synchronous.

Code 5-27. Subscribe method of the workflow TCP client. The handler requires an actor which

implements the echo action.

Code 5-28. Handler method of the TCP client. It retrieves the message and passes it to the echo function,

implemented as an actor action.

5.5.2.2 DEPLOYMENT

The containerization and the deployment are really similar to the synchronous case,

however the communication between the workflow components requires to add topics

to the broker cluster. For this reason, the deploy.sh script has a phase in which it adds

them through the Apache RocketMQ console application.

Code 5-29. Execution of the topic addition to the Apache RocketMQ default cluster.

5.6 METRICS

After the description of the applicative part, let’s now face the last part of our project

which is the one related to the metrics. As we already know from the previous chapter,

all the data related to the tests are collected by a custom application, compatible with

the Prometheus format.

public void asyncSubscribe(String topic, IWorkflowActor actor) {

 this.actor = actor;
 handler.setActor(actor);

 client.subscribe(topic, SubscriptionMode.CLUSTERING, SubscriptionType.ASYNC);
 client.registerSubBusiHandler(handler);
 client.listen();
}

@Override
public Optional<EventMeshMessage> handle(EventMeshMessage msg) {
 actor.action(msg.getBody());
 return Optional.empty();
}

 kubectl -n $NAMESPACE exec $rocketmq_console -- \
 sh mqadmin updateTopic -c DefaultCluster -t $topic \
 -n rocketmq-name-service:9876

125

The metrics are gathered by a client application running locally on our computers,

which obtains data from various sources, such as the Kubernetes API or our own

metrics server application, then storing them in files which are finally aggregated into

a single table for graphs generation.

The metrics client can monitor multiple Kubernetes clusters by creating for each of

them an object that keeps all the data related to the cluster resources. These data are

collected periodically, usually every few seconds, and stored by a single Persistence

object.

Code 5-30. Loop function that periodically gathers metrics for each cluster. For every execution the

Persistence object sets a collection (snapshot) labeled with the date it was taken.

5.6.1.1 KUBERNETES METRICS CLIENT

The metrics client uses the official Kubernetes client library for Python. It loads the

configuration for a certain cluster from the default file in the system23, which

corresponds to executing kubectl --context=. Then, it loads APIs needed to gather

information from the Kubernetes API Server and, more specifically, from the

Kubernetes metrics addon.

23 It is possible to display in the shell all the clusters executing: kubectl config get-contexts.

while not stop:
 for cluster in clients.keys():
 now = datetime.datetime.now()
 persist.set_collection(cluster=cluster, coll=now)

 client.detect_worflow_apps(namespace)

 client = clients[cluster]
 # CPU and memory
 client.get_nodes_resource_usage()
 client.get_containers_resource_usage(ns=namespace)

 # Storage
 client.list_persistent_volume_claims(ns=namespace)

 client.request_metrics()
 client.request_stats()

 time.sleep(scrape_interval)

126

Code 5-31. Initialization of the metrics client for a certain cluster.

At first, the KubeMetricsClient class, by accessing the data provided by the

Kubernetes metrics addon, gathers the resources usage of each node in the cluster,

formatting it according to the Prometheus format by using a custom object.

Code 5-32. Collection and formatting of the node resource usage.

The metrics client gathers data also for each container in the target namespace of the

cluster. In this way, in the case of service meshes, we are able to differentiate workflow

application metrics from their associated sidecar proxies. The code, similar to the

previous, is shown below.

class KubeMetricsClient:
 def __init__(self, cluster = "default"):
 api_client = config.new_client_from_config()

 if cluster != "default":
 api_client = config.new_client_from_config(context=cluster)

 self.core_v1_api = client.CoreV1Api(api_client)
 self.custom_objects_api = client.CustomObjectsApi(api_client)

def get_nodes_resource_usage(self, human_readable = False):
 api = self.custom_objects_api

 try:
 resource = api.list_cluster_custom_object(group="metrics.k8s.io",
version="v1beta1", plural="nodes")

 f = formatter.PrometheusFormatter()
 for node in resource["items"]:
 node_name = node["metadata"]["name"]
 node_cpu = utils.parse_cpu(node["usage"]["cpu"])
 node_mem = utils.parse_mem(node["usage"]["memory"])

 f.insert_elem(("node", "cpu", "usage"))
 f.insert_label("node", node_name)
 f.insert_value(utils.raw_unit(node_cpu))

 f.insert_elem(("node", "memory", "usage"))
 f.insert_label("node", node_name)
 f.insert_value(utils.raw_unit(node_mem))

 logging.debug("Node res usage\n" + str(node_name) + ":\n - cpu: " +
utils.readable_unit(node_cpu) + "\n - memory: " + utils.readable_unit(node_mem))

 self.persistence.store(cluster=self.cluster, name="nodes",
content=f.format())
...

127

Code 5-33. Collection and formatting of the containers resource usage.

Subsequently, the metrics client collects data from each application in the cluster.

These data that are divided into metrics (already in Prometheus format) and stats (not

in Prometheus format).

Code 5-34. Initialization of the registries for the application metrics and stats, and retrieval of the

metrics server public IP.

def get_containers_resource_usage(self, ns = "default", human_readable = False):
 api = self.custom_objects_api

 try:
 resource = api.list_namespaced_custom_object(group="metrics.k8s.io",
version="v1beta1", namespace=ns, plural="pods")

 f = formatter.PrometheusFormatter()
 for pods in resource["items"]:
 pod_name = pods["metadata"]["name"]

 for container in pods["containers"]:
 container_name = container["name"]
 container_cpu = utils.parse_cpu(container["usage"]["cpu"])
 container_mem = utils.parse_mem(container["usage"]["memory"])

 f.insert_elem(("container", "cpu", "usage"))
 f.insert_label("pod", pod_name)
 f.insert_label("namespace", ns)
 f.insert_label("container", container_name)
 f.insert_value(utils.raw_unit(container_cpu))

 f.insert_elem(("container", "memory", "usage"))
 f.insert_label("pod", pod_name)
 f.insert_label("namespace", ns)
 f.insert_label("container", container_name)
 f.insert_value(utils.raw_unit(container_mem))

 self.persistence.store(cluster=self.cluster, name="containers",
content=f.format())
 ...

def init_metrics_server(self, ns = "default", server_name = "simple-metrics-server",
server_path = "/metrics"):
 services = self.core_v1_api.list_namespaced_service(ns)

 # retrieve metrics server IP in the cluster

 self.metrics_server_url = "http://" + server_ip + ":" + str(server_port) +
server_path
 logging.info("Metrics server address is " + self.metrics_server_url)

 self.in_cluster_metrics = dict()
 self.in_cluster_stats = dict()

128

The metrics client keeps, for each of these data categories, a registry (in the form of a

Python dictionary), containing the URL of each component that is present in the

cluster, as shown by the code below for the Apache EventMesh case.

Code 5-35. Registry containing the endpoint URLs for Apache EventMesh and Apache RocketMQ.

Finally, the metrics client gathers the data from each component in the registry and

stores the result, formatting them according to Prometheus format in the case of stats:

Code 5-36. Gathering of metrics.

Code 5-37. Gathering and formatting of stats.

5.6.1.2 KUBERNETES SERVER

As already mentioned, the metrics client uses a metrics server, deployed in a dedicated

namespace (termed monitoring) in each Kubernetes cluster, to gather metrics and stats

related to each microservice. The metrics server is a simple web server build upon

def init_eventmesh_registry(self, em_ns = "eventmesh"):
 self.in_cluster_metrics['rocketmq'] = {'hostname': ''.join(('rocketmq-
exporter.', em_ns, '.svc.cluster.local')), 'port': '5557', 'path': '/metrics'}
 self.in_cluster_metrics['eventmesh'] = {'hostname': ''.join(('eventmesh-
service.', em_ns, '.svc.cluster.local')), 'port': '19090', 'path': ''}

for endpoint in self.in_cluster_metrics:
 addr = self.in_cluster_metrics[endpoint]
 metrics = requests.get(url=self.metrics_server_url, params=addr,
timeout=REQUEST_TIMEOUT)

 if metrics.text == 'Error':
 logging.warning("Cannot reach " + endpoint + " in the cluster.")
 else:
 self.persistence.store(cluster=self.cluster, name=endpoint,
content=metrics.text)

f = formatter.WorkflowFormatter()
for app in self.in_cluster_stats:
 addr = self.in_cluster_stats[app]
 stats = requests.get(url=self.metrics_server_url, params=addr,
timeout=REQUEST_TIMEOUT)

 if stats.text != 'Error':
 f.parse(name=addr['hostname'], text=stats.text)

for actor in f.format():
 self.persistence.store(cluster=self.cluster, name=actor['name'],
content=actor['content'])

129

Flask24. It receives requests from the metrics client, which inserts inside the HTTP

request the URL parameters of the target application. These data are assembled by the

metrics server and used to scrape the remote application in the cluster. The result is

returned to the client.

Code 5-38. Metrics server core method.

For security reasons we decided to avoid running the application as a root user, as we

did for the case of Apache RocketMQ Docker image.

5.6.1.3 PERSISTENCE

Regarding the persistensce of the data, it is important to point out that Prometheus

stores data as a time series: streams of timestamped values belonging to the same

metric and the same set of labeled dimensions. For simplicity, we decided to store all

the metrics as files and, to keep the data ordered, we organized them according to a

precise structure.

Each test run defines a root folder named with the date the test was started. This

directory contains all the clusters involved in the test as folders: each folder contains

the snapshots, also named collections, of the timeseries as directories. Finally, each of

these directories contains the files related to each metric gathered.

24 Flask is a lightweight web application framework for Python.

@app.route("/metrics")
def server_metrics():
 address="http://" + request.args.get('hostname') + ":" +
request.args.get('port') + request.args.get('path')

 result = 'Error'
 try:
 r = requests.get(url=address, timeout=REQUEST_TIMEOUT)
 if r.status_code == 200:
 result = r.text
 else:
 logging.warning("Request failed with status: " + r.status_code)
 except:
 logging.warning("Request failed.")

 return result

130

Code 5-39. Folder structure of the metrics gathering.

5.6.1.4 METRICS GATHERING

To simplify the gathering of the metrics, we collect data in Prometheus format when

possible. In particular, sidecar proxies and the Apache EventMesh runtime server

expose data in this way without the need to add any element to the cluster. Instead,

Apache RocketMQ requires an exporter component, which returns rich metrics about

the RocketMQ deployment in Prometheus format. Finally, each workflow application

logs every send/receive operation in a file. When the test finishes or the duration timer

runs out, an HTTP server built using SpringBoot starts, allowing the metrics server to

retrieve all the operation data for each workflow component.

131

Figure 5-6. The metrics server and the workflow applications.

132

6 EXPERIMENTAL RESULTS

In this chapter we want to focus on the results of our experimentation, starting from

the illustration of how we configured the tests to then continue with their analysis.

The tests we carried out were aimed at evaluating the performance of the various

infrastructural components, which are Istio, Linkerd, and Apache EventMesh (together

with Apache RocketMQ), when they are used for the operation of workflow

applications in cloud environments. In particular, monitoring consumption of

resources of each component under a load of first constant and subsequently

incremental requests, we evaluated with these tests the functioning of more mature

technologies, such as service meshes, and newer ones, such as event mesh, both in a

single cluster and in a multi-cluster environment.

6.1 TEST CONFIGURATIONS

As already mentioned in the previous chapter, the configuration of each test is

illustrated in a file, whose syntax derives from the one Java uses for the Properties

[107], [108].

Inside each configuration file, it must be specified, first, the total duration of the test,

then the workflow components, each of which starts with its role followed by the

configuration attributes for the same component. The duration attribute can be written

in human readable syntax since the script, which will deploy all the components

according to the specified configuration, will evaluate it using a Python script to

convert the timing to milliseconds, as Java uses to.

133

Code 6-1. Python script to convert from human readable time unit to milliseconds using the Pint

package25.

We decided to test our project in two different ways: in the first, a constant load with

ten requests per second for two minutes; in the second, an incremental load from one

to one thousand messages per second for five minutes. Since the load is generated by

the Trigger component, the latter is the only one affected by this configuration, as can

be read from the code below.

25 The conversion requires Pint, a Python package to define, operate, and manipulate physical quantities,

used also by the metrics client to correctly interpret metric values.

import pint

duration = sys.argv[1]
ureg = pint.UnitRegistry()
t = ureg.Quantity(duration)
print('{0.magnitude:.0f}'.format(t.to('millisecond')))

duration=2minutes

[trigger]
rootname=trigger
operation.ops.start=10
operation.ops.end=10
communication.hostname.to=action01
communication.port.to=10091
communication.port.from=10090

[action]
rootname=action01
operation.ops.start=100
operation.ops.end=100
communication.hostname.to=action02
communication.port.to=10091
communication.port.from=10091

[action]
rootname=action02
operation.ops.start=100
operation.ops.end=100
communication.hostname.to=conclusion
communication.port.to=10091
communication.port.from=10091

134

Code 6-2. Configuration for the test of constant load used for service meshes.

Code 6-3. Configuration for the test of incremental load used for service meshes.

The tests for the asynchronous workflow application are the same, except for the

configuration of each workflow component.

[conclusion]
rootname=conclusion
operation.ops.start=100
operation.ops.end=100
communication.port.to=10091
communication.port.from=10091

duration=5minutes

[trigger]
rootname=trigger
operation.ops.start=1
operation.ops.end=1000
communication.hostname.to=action01
communication.port.to=10091
communication.port.from=10090

[action]
rootname=action01
operation.ops.start=1000
operation.ops.end=1000
communication.hostname.to=action02
communication.port.to=10091
communication.port.from=10091

[action]
rootname=action02
operation.ops.start=1000
operation.ops.end=1000
communication.hostname.to=conclusion
communication.port.to=10091
communication.port.from=10091

[conclusion]
rootname=conclusion
operation.ops.start=1000
operation.ops.end=1000
communication.port.to=10091
communication.port.from=10091

135

Code 6-4. Differences of the configurations used for event mesh. In the communication attributes are

indicated the topics.

6.2 SINGLE CLUSTER TESTS

For the execution of the tests for the single cluster case, it was created a Google

Kubernetes Engine (GKE) cluster with the following characteristics:

• Kubernetes version: 1.21.11-gke.900.

• Zone: europe-west8-a (Milan, Italy).

• Total cores: 8 vCPUs.

• Total memory: 32 GB.

Regarding the nodes, we created a pool of 4 nodes, each of which with the following

properties:

• Node container image: container-optimized OS (cos_containerd).

• Node type: n2d-standard-2.

• Node resources: 2 vCPUs (AMD EPYC) and 8GB of memory.

As mentioned above, we executed two different tests, one with constant and the other

with incremental load, indicating both the metrics of each single component, as well

as their mean.

...
[trigger]
...
communication.to=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION1

[action]
...
communication.from=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION1
communication.to=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION2

[action]
...
communication.from=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION2
communication.to=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION3

[conclusion]
...
communication.from=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION3

136

6.2.1 RESULTS OF TESTS WITH CONSTANT LOAD

Starting from the constant load, first we will proceed with the analysis of the use of

the resources of the workflow application and of the infrastructural components, to

then move on to the latency of each single message as the number of messages sent

per second varies.

6.2.1.1 WORKFLOW APPLICATION

As can be seen in the Figure 6-1 and Figure 6-2, the workflow application designed to

work with the event mesh consumes in general few more CPU than the synchronous

application, with a peak at the beginning. However, from the analysis of the memory

usage illustrated in Figure 6-3 and Figure 6-4, it is evident that the event mesh

workflow application consumes about four times the memory than the synchronous

case. This is probably due to the Apache EventMesh Java SDK. The final peaks in all

the graphs are due to the boot of the Spring based web server which exposes stats to

our metrics system.

Figure 6-1. In the graph it is represented the trend of the CPU consumption for each workflow

component for synchronous and asynchronous communication.

0

5

10

15

20

25

vC
P

U
 (

%
)

Sampling time (mm:ss)

Workflow application CPU usage

Trigger istio Action1 istio Action2 istio
Conclusion istio Trigger linkerd Action1 linkerd
Action2 linkerd Conclusion linkerd Trigger event mesh
Action1 event mesh Action2 event mesh Conclusion event mesh

137

Figure 6-2. The graph represents the mean of the CPU usage of each workflow component for

synchronous and asynchronous communication.

Figure 6-3. In the graph is represented the memory usage for each workflow component.

0

2

4

6

8

10

12

14
vC

P
U

 (
%

)

Sampling time (mm:ss)

Workflow application mean CPU usage

Mean istio Mean linkerd Mean event mesh

0

50

100

150

200

250

300

350

400

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Workflow application memory usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd

Action2 linkerd Conclusion linkerd Trigger event mesh

Action1 event mesh Action2 event mesh Conclusion event mesh

138

Figure 6-4. In the graph is shown the mean of the memory consuption for synchronous and

asynchronous workflow application.

6.2.1.2 INFRASTRUCTURAL COMPONENTS

We now report the graphs relating to the results obtained for the infrastructural part of

our project.

Figure 6-5. The graph represents the CPU usage for each mesh component.

0

50

100

150

200

250

300

350

400
M

em
o

ry
 (

M
B

)

Sampling time (mm:ss)

Workflow application mean memory usage

Mean istio Mean linkerd Mean event mesh

0

5

10

15

20

25

vC
P

U
 (

%
)

Sampling time (mm:ss)

Infrastructural components CPU usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd

Action2 linkerd Conclusion linkerd RocketMQ name server

RocketMQ broker EventMesh server

139

Figure 6-6. In the graph is represented the mean CPU consumption of the service and event mesh

components.

Figure 6-7. The graph represents the memory usage of each mesh component.

0

2

4

6

8

10

12

14
vC

P
U

 (
%

)

Sampling time (mm:ss)

Infrastructural components mean CPU usage

Mean istio Mean linkerd Mean event mesh

0

500

1000

1500

2000

2500

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Infrastructural components memory usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd

Action2 linkerd Conclusion linkerd RocketMQ name server

RocketMQ broker EventMesh server

140

Figure 6-8. The graph represents the mean memory usage of the service and event mesh deployments.

As it is evident in Figure 6-5 and Figure 6-6, Apache EventMesh server is the

component which uses the greatest amount of CPU, followed by Apache RocketMQ

broker, while the service mesh proxies consume just a few amount of CPU, negligible

with respect to the event mesh deployment. Regarding the memory consumption

showed in Figure 6-7 and Figure 6-8, the Apache RocketMQ broker is the component

which uses the largest amount, requiring more than 2GB. Trying to reduce the

requested memory range of the JVM and setting limits below 2GB in the Kubernetes

Deployment resource results in an Out-of-Memory error, as shown below.

Code 6-5. Apache RocketMQ broker failure when the maximum memory is under 2GB.

On the other hand, it is interesting to focus specifically on service meshes, which

cannot clearly be seen in the previous graphs because they use far less memory than

the Apache RocketMQ broker. It is noticeable from Figure 6-9 and Figure 6-10, that

0

100

200

300

400

500

600

700

800

900

1000
M

em
o

ry
 (

M
B

)

Sampling time (mm:ss)

Infrastructural components mean memory usage

Mean istio Mean linkerd Mean event mesh

$ kubectl -n eventmesh get pods
NAME READY STATUS RESTARTS AGE
eventmesh-server-694b54f9c9-59b6k 1/1 Running 0 100s
rocketmq-broker-master-78b68fb4b9-grhnf 0/1 OOMKilled 4 102s
rocketmq-console-admin-79546b9cdc-6dh7t 1/1 Running 0 102s
rocketmq-name-service-7bfc679884-n2nnf 1/1 Running 0 104s

141

the Envoy proxy used by istio requires more memory (about 40MB) with respect to

linkerd2-proxy (less than 5MB). This result confirms what was stated by the Linkerd

developers about the better resource consumption of their proxy with respect to Envoy

[109].

Figure 6-9. The graph shows the memory usage difference between istio and Linkerd.

Figure 6-10. The graph summarizes the difference between the two proxy implementation showing the

mean memory consumption.

0

5

10

15

20

25

30

35

40

45

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Proxy memory usage

Trigger istio Action1 istio Action2 istio Conclusion istio

Trigger linkerd Action1 linkerd Action2 linkerd Conclusion linkerd

0

5

10

15

20

25

30

35

40

45

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Proxy mean memory usage

Mean istio Mean linkerd

142

6.2.1.3 MESSAGE LATENCIES

Before proceeding with the incremental load tests, we want to show now the latencies

of messages measured at the ends of the workflow application.

As it is possible to notice in the Figure 6-11, there is a significant message latency for

the first 200 messages with a serrated trend in the case of event mesh. Identifying the

exact cause of this trend is difficult, however we can hypothesize that the Apache

RocketMQ broker keeps the messages in a cache, sending them together subsequently

to consumers, gradually adapting the cache to the number of requests per second.

Figure 6-11. The graph shows the message latencies for each mesh.

Looking instead just at the service mesh proxies in Figure 6-12, it is possible to notice

that the delay in which the messages incur, although always contained (less than half

a second), is greater for istio Envoy (about 320 milliseconds) with respect to linkerd2-

proxy (between 5 and 15 milliseconds).

00,000

04,320

08,640

12,960

17,280

21,600

25,920

1

4
1

8
1

1
2

1

1
6

1

2
0

1

2
4

1

2
8

1

3
2

1

3
6

1

4
0

1

4
4

1

4
8

1

5
2

1

5
6

1

6
0

1

6
4

1

6
8

1

7
2

1

7
6

1

8
0

1

8
4

1

8
8

1

9
2

1

9
6

1

1
0

0
1

1
0

4
1

1
0

8
1

1
1

2
1

1
1

6
1

La
te

n
ci

y
(s

s,
m

s)

Message no.

Trigger-conclusion message latencies

Istio Linkerd Event mesh

143

Figure 6-12. The graph compares the message latencies only between the two service mesh

implementations used in our project.

6.2.2 RESULTS OF TESTS WITH INCREMENTAL LOAD

We will now illustrate the tests carried out with incremental load following the same

order used for the description of the tests with constant load.

6.2.2.1 WORKFLOW APPLICATION

The tests for the workflow application confirm what we already saw in the constant

load case. In particular, it is possible to observe in Figure 6-13 and Figure 6-14 that

the CPU consumption is in general low while the Figure 6-15 and Figure 6-16 show

the greater the memory usage of the event mesh deployment with respect to the one

required by the components used to test the service meshes. However, it is possible to

notice that the synchronous applications increment their memory consumption as the

number of requests per second increases, while the event mesh applications, which

rely on the Apache EventMesh SDK, require almost the same amount of memory. The

final peaks are due to the boot of the Java Spring application used to gather metric

information of each workflow application.

00,000

00,086

00,173

00,259

00,346

00,432

00,518

1

4
1

8
1

1
2

1

1
6

1

2
0

1

2
4

1

2
8

1

3
2

1

3
6

1

4
0

1

4
4

1

4
8

1

5
2

1

5
6

1

6
0

1

6
4

1

6
8

1

7
2

1

7
6

1

8
0

1

8
4

1

8
8

1

9
2

1

9
6

1

1
0

0
1

1
0

4
1

1
0

8
1

1
1

2
1

1
1

6
1

La
te

n
cy

 (
ss

,m
s)

Message no.

Trigger-conclusion message latencies

Istio Linkerd

144

Figure 6-13. The graph represents the CPU usage of each workflow component.

Figure 6-14. In the graph is represented the mean of the CPU usage of synchronous and asynchronous

workflow application.

0

5

10

15

20

25

30

35

40
vC

P
U

 (
%

)

Sampling time (mm:ss)

Workflow application CPU usage

Trigger istio Action1 istio Action2 istio
Conclusion istio Trigger linkerd Action1 linkerd
Action2 linkerd Conclusion linkerd Trigger event mesh
Action1 event mesh Action2 event mesh Conclusion event mesh

0

5

10

15

20

25

vC
P

U
 (

%
)

Sampling time (mm:ss)

Workflow application mean CPU usage

Mean istio Mean linkerd Mean event mesh

145

Figure 6-15. The graph represents the memory usage of each workflow application.

Figure 6-16. The graph shows the trend of the memory usage of the different meshes.

6.2.2.2 INFRASTRUCTURAL COMPONENTS

In the case of the infrastructural components, it is possible to notice that it is really

similar to the constant load case: the Figure 6-17 and Figure 6-18 show that the CPU

0

50

100

150

200

250

300

350

400

0
0

:0
0

0
0

:1
5

0
0

:3
6

0
0

:5
3

0
1

:0
9

0
1

:2
5

0
1

:4
2

0
1

:5
8

0
2

:1
4

0
2

:3
0

0
2

:4
6

0
3

:0
2

0
3

:1
8

0
3

:3
4

0
3

:5
1

0
4

:0
8

0
4

:2
4

0
4

:4
0

0
4

:5
6

0
5

:1
2

0
5

:2
8

0
5

:4
6

0
6

:0
4

0
6

:2
1

0
6

:3
9

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Workflow application memory usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd
Action2 linkerd Conclusion linkerd Trigger event mesh

Action1 event mesh Action2 event mesh Conclusion event mesh

0

50

100

150

200

250

300

350

400

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Workflow application mean memory usage

Mean istio Mean linkerd Mean event mesh

146

consumption is almost below 5%, with the highest usage from the Apache EventMesh

server, followed by the Apache RocketMQ broker, while the service mesh proxies

consume a very low percentage. The Figure 6-19 and Figure 6-20 show that the

memory consumption of the Apache RocketMQ broker is significantly higher (more

than 2GB) than the service mesh proxies (from 5 to 40 MB) and the one required by

Apache EventMesh (from about 235 to 359 MB).

Figure 6-17. In the graph is illustrated the CPU usage for each different mesh component.

0

2

4

6

8

10

12

14

16

18

20

vC
P

U
 (

%
)

Sampling time (mm:ss)

Infrastructural components CPU usage

Trigger istio Action1 istio Action2 istio
Conclusion istio Trigger linkerd Action1 linkerd
Action2 linkerd Conclusion linkerd RocketMQ name server
RocketMQ broker EventMesh server

147

Figure 6-18. The graph illustrates the mean CPU usage of the mesh components.

Figure 6-19. The graph shows the memory usage for each mesh component.

0

2

4

6

8

10

12
vC

P
U

 (
%

)

Sampling time (mm:ss)

Infrastructural components mean CPU usage

Mean istio Mean linkerd Mean event mesh

0

500

1000

1500

2000

2500

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Infrastructural components memory usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd

Action2 linkerd Conclusion linkerd RocketMQ name server

RocketMQ broker EventMesh server

148

Figure 6-20. In the graph is represented the mean memory usage for the service and event mesh.

6.2.2.3 MESSAGE LATENCIES

The message latencies of the increasing load test in the Figure 6-21 show that the

Apache EventMesh broker reduces the latency from a maximum of about 19 seconds

to under one second in just 20 messages (ten times less than the constant load case).

Figure 6-21. The graph represents the latencies for service and event meshes.

0

100

200

300

400

500

600

700

800

900

1000
M

em
o

ry
 (

M
B

)

Sampling time (mm:ss)

Infrastructural components mean memory usage

Mean istio Mean linkerd Mean event mesh

00,000

04,320

08,640

12,960

17,280

21,600

1
5

1
1

0
1

1
5

1
2

0
1

2
5

1
3

0
1

3
5

1
4

0
1

4
5

1
5

0
1

5
5

1
6

0
1

6
5

1
7

0
1

7
5

1
8

0
1

8
5

1
9

0
1

9
5

1
1

0
01

1
0

51
1

1
01

1
1

51
1

2
01

1
2

51
1

3
01

1
3

51
1

4
01

1
4

51
1

5
01

1
5

51
1

6
01

1
6

51
1

7
01

La
te

n
cy

 (
ss

,m
s)

Message no.

Trigger-conclusion message latencies

istio Linkerd event mesh

149

6.3 MULTI-CLUSTER TESTS

After the report of the tests conducted in a single cluster, we want to describe now a

more advanced scenario, which consists of two GKE clusters, each of which has the

same configuration of the single cluster case (16 vCPUs and 64GB in total).

Like for the single cluster, we repeated also in this case the two different tests, one

with constant and the other with incremental load, leaving the Trigger and the Action

components in the first cluster and moving the Conclusion to the second cluster. For

the setup of the infrastructural components, we used the same configuration as it was

described in the previous chapter.

6.3.1 RESULTS OF TESTS WITH CONSTANT LOAD

Starting from the constant load, we will proceed, as in the single cluster case, with the

analysis of the use of the resources of the workflow application and of the

infrastructural components, to then move on to the examination of the latency of each

single message as the number of messages sent per second varies.

6.3.1.1 WORKFLOW APPLICATION

The workflow application follows about the same trend as in the single cluster case

with more memory usage in the case of the event mesh workflow application. In

particular, it is possible to observe in Figure 6-22 and Figure 6-23 that the workflow

application designed to work with the event mesh consumes about the same CPU than

the synchronous application, except for the peaks at the start and the end of the graphs.

However, the analysis of the memory consumption in Figure 6-24 and Figure 6-25

shows that the memory required by the asynchronous applications is significantly

higher (more than 200MB) than the one required by the synchronous application

(around 50MB). The final peaks are related to the boot of the Java Spring application

used to expose test results of each component to our metrics system.

150

Figure 6-22. The graph represents the CPU usage for each workflow component.

Figure 6-23. The graph represents the mean CPU usage of the mesh components.

0

5

10

15

20

25

30

35
vC

P
U

 (
%

)

Sampling time (mm:ss)

Workflow application CPU usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd

Action2 linkerd Conclusion linkerd Trigger event mesh

Action1 event mesh Action2 event mesh Conclusion event mesh

0

2

4

6

8

10

12

14

16

18

vC
P

U
 (

%
)

Sampling time (mm:ss)

Workflow application mean CPU usage

Mean istio Mean linkerd Mean event mesh

151

Figure 6-24. In the graph is represented the memory usage for each workflow component.

Figure 6-25. Graph representing the mean memory usage for service and event mesh deployments.

6.3.1.2 INFRASTRUCTURAL COMPONENTS

From the analysis of the Figure 6-26 and Figure 6-27, regarding the infrastructural

components, it is possible to notice that, in the event mesh case, the CPU usage is

0

50

100

150

200

250

300

350

400
M

em
o

ry
 (

M
B

)

Sampling time (mm:ss)

Workflow application memory usage

Trigger istio Action1 istio Action2 istio
Conclusion istio Trigger linkerd Action1 linkerd
Action2 linkerd Conclusion linkerd Trigger event mesh
Action1 event mesh Action2 event mesh Conclusion event mesh

0

50

100

150

200

250

300

350

400

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Workflow application mean memory usage

Mean istio Mean linkerd Mean event mesh

152

slightly higher in the first cluster, since there are three workflow components relying

on the EventMesh server. On the other hand, the CPU required by the service mesh

proxies is always significantly lower than the event mesh deployment. Instead, the

Figure 6-28 and Figure 6-29 show that the memory usage of the event mesh

components is very high and it is almost the same for both clusters, with the first being

just a little higher than in the second one.

Figure 6-26. The graph represents the CPU usage of each mesh component.

0

5

10

15

20

25

vC
P

U
 (

%
)

Sampling time (mm:ss)

Infrastructural components CPU usage

Trigger istio proxy Action1 istio proxy Action2 istio proxy

Conclusion istio proxy Trigger linkerd proxy Action1 linkerd proxy

Action2 linkerd proxy Conclusion linkerd proxy RocketMQ name server cluster1

RocketMQ broker cluster1 EventMesh server cluster1 RocketMQ name server cluster2

RocketMQ broker cluster2 EventMesh server cluster2

153

Figure 6-27. In the graph is represented the mean CPU usage of the service and event mesh components.

Figure 6-28. Graph representing the memory usage of the mesh components for each cluster.

0

2

4

6

8

10

12
vC

P
U

 (
%

)

Sampling time (mm:ss)

Infrastructural components mean CPU usage

Istio proxy cluster1 Istio proxy cluster2 Linkerd proxy cluster1

Linkerd proxy cluster2 Event mesh cluster1 Event mesh cluster2

0

500

1000

1500

2000

2500

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Infrastructural components memory usage

Trigger istio proxy Action1 istio proxy Action2 istio proxy

Conclusion istio proxy Trigger linkerd proxy Action1 linkerd proxy

Action2 linkerd proxy Conclusion linkerd proxy RocketMQ name server cluster1

RocketMQ broker cluster1 EventMesh server cluster1 RocketMQ name server cluster2

RocketMQ broker cluster2 EventMesh server cluster2

154

Figure 6-29. The graph shows the mean memory usage of the mesh components for each cluster.

Regarding the service mesh deployments, it is possible to notice their low memory

usage when compared to the one consumed by the event mesh deployment. Focusing

only on service mesh proxies, the Figure 6-30 confirms that each Envoy proxy uses

much more memory (more then 40MB) with respect to linkerd2-proxy (about 3MB),

as we already showed in the single cluster tests.

Figure 6-30. The graph shows a comparison of the memory usage between istio and linkerd proxies.

0

100

200

300

400

500

600

700

800

900

1000
M

em
o

ry
 (

M
B

)

Sampling time (mm:ss)

Infrastructural components mean memory usage

Mean istio proxy cluster1 Mean istio proxy cluster2 Mean linkerd proxy cluster1

Mean linkerd proxy cluster2 Mean event mesh cluster1 Mean event mesh cluster2

0

5

10

15

20

25

30

35

40

45

50

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Infrastructural components mean memory usage

Mean istio proxy cluster1 Mean istio proxy cluster2

Mean linkerd proxy cluster1 Mean linkerd proxy cluster2

155

6.3.1.3 MESSAGE LATENCIES

When looking at the the latency for each message exchanged along the chain between

the Trigger and the Conclusion, while istio keeps latency less than about 200

milliseconds and Linkerd around 10 milliseconds, as illustrated in Figure 6-32, Apache

EventMesh is not capable of forwarding all the messages through the workflow

application chain, and in general the latencies are really high, from about 2 seconds to

more than 25 seconds, as shown in Figure 6-31. Like in the single cluster case, it is

possible to recognize a segmented pattern for the latencies in the event mesh case.

Figure 6-31. The graph represents the message latencies for the service and the event mesh

deployments.

00,000

04,320

08,640

12,960

17,280

21,600

25,920

30,240

34,560

1
3

5
6

9
1

0
3

1
3

7
1

7
1

2
0

5
2

3
9

2
7

3
3

0
7

3
4

1
3

7
5

4
0

9
4

4
3

4
7

7
5

1
1

5
4

5
5

7
9

6
1

3
6

4
7

6
8

1
7

1
5

7
4

9
7

8
3

8
1

7
8

5
1

8
8

5
9

1
9

9
5

3
9

8
7

1
0

21
1

0
55

1
0

89
1

1
23

1
1

57

La
te

n
cy

 (
ss

,m
s)

Message no.

Trigger-conclusion message latencies

istio linkerd event mesh

156

Figure 6-32. In the graph is represented the message latencies for service meshes.

6.3.2 RESULTS OF TESTS WITH INCREMENTAL LOAD

We will now analyze the tests carried out with incremental load still using the same

order utilized for the description of the tests with constant load.

6.3.2.1 WORKFLOW APPLICATION

Looking at the Figure 6-33 and Figure 6-34, it is possible to notice, with respect to all

the previous cases analyzed, that the asynchronous applications use less CPU. As we

will see in the next analysis, it is due to the fact that only few messages reached the

Conclusion component. Instead, it is possible to observe in the Figure 6-35 and Figure

6-36 that the memory usage remain higher for the event mesh case with respect to the

synchronous applications, which require from about 17 to 55 MB.

00,000

00,043

00,086

00,130

00,173

00,216

1
3

5
6

9
1

0
3

1
3

7
1

7
1

2
0

5
2

3
9

2
7

3
3

0
7

3
4

1
3

7
5

4
0

9
4

4
3

4
7

7
5

1
1

5
4

5
5

7
9

6
1

3
6

4
7

6
8

1
7

1
5

7
4

9
7

8
3

8
1

7
8

5
1

8
8

5
9

1
9

9
5

3
9

8
7

1
0

21
1

0
55

1
0

89
1

1
23

1
1

57

La
te

n
ci

es
 (

ss
,m

s)

Message no.

Trigger-conclusion message latencies

istio linkerd

157

Figure 6-33. The graph represents the CPU usage of each workflow component.

Figure 6-34. In the graph is represented the mean CPU usage for the synchronous and asynchronous

workflow applications.

0

5

10

15

20

25

30

35

40

45

50

0
0

:0
0

0
0

:1
2

0
0

:2
3

0
0

:3
4

0
0

:4
4

0
1

:0
0

0
1

:1
1

0
1

:2
2

0
1

:3
3

0
1

:4
4

0
1

:5
5

0
2

:0
6

0
2

:1
7

0
2

:2
8

0
2

:3
9

0
2

:5
1

0
3

:0
1

0
3

:1
2

0
3

:2
3

0
3

:3
5

0
3

:4
6

0
3

:5
7

0
4

:1
0

0
4

:2
1

0
4

:3
2

0
4

:4
3

0
4

:5
4

0
5

:0
5

0
5

:1
6

0
5

:2
7

0
5

:3
8

0
5

:4
9

0
6

:0
1

0
6

:1
3

0
6

:2
5

vC
P

U
 (

%
)

Sampling time (mm:ss)

Workflow application CPU usage

Trigger istio Action1 istio Action2 istio
Conclusion istio Trigger linkerd Action1 linkerd
Action2 linkerd Conclusion linkerd Trigger event mesh
Action1 event mesh Action2 event mesh Conclusion event mesh

0

5

10

15

20

25

0
0

:0
0

0
0

:1
2

0
0

:2
3

0
0

:3
4

0
0

:4
4

0
1

:0
0

0
1

:1
1

0
1

:2
2

0
1

:3
3

0
1

:4
4

0
1

:5
5

0
2

:0
6

0
2

:1
7

0
2

:2
8

0
2

:3
9

0
2

:5
1

0
3

:0
1

0
3

:1
2

0
3

:2
3

0
3

:3
5

0
3

:4
6

0
3

:5
7

0
4

:1
0

0
4

:2
1

0
4

:3
2

0
4

:4
3

0
4

:5
4

0
5

:0
5

0
5

:1
6

0
5

:2
7

0
5

:3
8

0
5

:4
9

0
6

:0
1

0
6

:1
3

0
6

:2
5

vC
P

U
 (

%
)

Sampling time (mm:ss)

Workflow application mean CPU usage

Mean istio Mean linkerd Mean event mesh

158

Figure 6-35. The graph represents the memory consumption of the workflow components.

Figure 6-36. The graph shows the mean memory usage for the synchronous and asynchronous workflow

applications.

0

50

100

150

200

250

300

350

400

0
0

:0
0

0
0

:1
2

0
0

:2
3

0
0

:3
4

0
0

:4
4

0
1

:0
0

0
1

:1
1

0
1

:2
2

0
1

:3
3

0
1

:4
4

0
1

:5
5

0
2

:0
6

0
2

:1
7

0
2

:2
8

0
2

:3
9

0
2

:5
1

0
3

:0
1

0
3

:1
2

0
3

:2
3

0
3

:3
5

0
3

:4
6

0
3

:5
7

0
4

:1
0

0
4

:2
1

0
4

:3
2

0
4

:4
3

0
4

:5
4

0
5

:0
5

0
5

:1
6

0
5

:2
7

0
5

:3
8

0
5

:4
9

0
6

:0
1

0
6

:1
3

0
6

:2
5

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Workflow application memory usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd

Action2 linkerd Conclusion linkerd Trigger event mesh

Action1 event mesh Action2 event mesh Conclusion event mesh

0

50

100

150

200

250

300

350

0
0

:0
0

0
0

:1
2

0
0

:2
3

0
0

:3
4

0
0

:4
4

0
1

:0
0

0
1

:1
1

0
1

:2
2

0
1

:3
3

0
1

:4
4

0
1

:5
5

0
2

:0
6

0
2

:1
7

0
2

:2
8

0
2

:3
9

0
2

:5
1

0
3

:0
1

0
3

:1
2

0
3

:2
3

0
3

:3
5

0
3

:4
6

0
3

:5
7

0
4

:1
0

0
4

:2
1

0
4

:3
2

0
4

:4
3

0
4

:5
4

0
5

:0
5

0
5

:1
6

0
5

:2
7

0
5

:3
8

0
5

:4
9

0
6

:0
1

0
6

:1
3

0
6

:2
5

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Workflow application mean memory usage

Mean istio Mean linkerd Mean event mesh

159

6.3.2.2 INFRASTRUCTURAL COMPONENTS

The visualizations provided by the infrastructural components resource usage confirm

what we observed above: in Figure 6-37 and Figure 6-38 it is possible to notice that

the event mesh deployment consumes less CPU than all the previous tests, while in the

Figure 6-39 and Figure 6-40 the memory usage of the Apache RocketMQ brokers is

always very high with respect to the service mesh proxies.

Figure 6-37. The graph shows the CPU usage of each mesh component.

0

5

10

15

20

25

0
0

:0
0

0
0

:1
2

0
0

:2
3

0
0

:3
4

0
0

:4
4

0
1

:0
0

0
1

:1
1

0
1

:2
2

0
1

:3
3

0
1

:4
4

0
1

:5
5

0
2

:0
6

0
2

:1
7

0
2

:2
8

0
2

:3
9

0
2

:5
1

0
3

:0
1

0
3

:1
2

0
3

:2
3

0
3

:3
5

0
3

:4
6

0
3

:5
7

0
4

:1
0

0
4

:2
1

0
4

:3
2

0
4

:4
3

0
4

:5
4

0
5

:0
5

0
5

:1
6

0
5

:2
7

0
5

:3
8

0
5

:4
9

0
6

:0
1

0
6

:1
3

0
6

:2
5

vC
P

U
 (

%
)

Sampling time (mm:ss)

Infrastructural components CPU usage

Trigger istio proxy Action1 istio proxy Action2 istio proxy

Conclusion istio proxy Trigger linkerd proxy Action1 linkerd proxy

Action2 linkerd proxy Conclusion linkerd proxy RocketMQ name server cluster1

RocketMQ broker cluster1 EventMesh server cluster1 RocketMQ name server cluster2

RocketMQ broker cluster2 EventMesh server cluster2

160

Figure 6-38. The graph represents the mean CPU usage of mesh components for each cluster.

Figure 6-39. The graph represents the memory usage of each mesh component.

0

2

4

6

8

10

12

0
0

:0
0

0
0

:1
2

0
0

:2
3

0
0

:3
4

0
0

:4
4

0
1

:0
0

0
1

:1
1

0
1

:2
2

0
1

:3
3

0
1

:4
4

0
1

:5
5

0
2

:0
6

0
2

:1
7

0
2

:2
8

0
2

:3
9

0
2

:5
1

0
3

:0
1

0
3

:1
2

0
3

:2
3

0
3

:3
5

0
3

:4
6

0
3

:5
7

0
4

:1
0

0
4

:2
1

0
4

:3
2

0
4

:4
3

0
4

:5
4

0
5

:0
5

0
5

:1
6

0
5

:2
7

0
5

:3
8

0
5

:4
9

0
6

:0
1

0
6

:1
3

0
6

:2
5

vC
P

U
 (

%
)

Sampling time (mm:ss)

Infrastructural components mean CPU usage

Mean istio proxy cluster1 Mean istio proxy cluster2 Mean linkerd proxy cluster1

Mean linkerd proxy cluster2 Mean event mesh cluster1 Mean event mesh cluster2

0

500

1000

1500

2000

2500

0
0

:0
0

0
0

:1
8

0
0

:3
4

0
0

:4
9

0
1

:1
1

0
1

:2
7

0
1

:4
4

0
2

:0
0

0
2

:1
7

0
2

:3
4

0
2

:5
1

0
3

:0
7

0
3

:2
3

0
3

:4
0

0
3

:5
7

0
4

:1
5

0
4

:3
2

0
4

:4
8

0
5

:0
5

0
5

:2
1

0
5

:3
8

0
5

:5
5

0
6

:1
3

0
6

:3
1

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Infrastructural components memory usage

Trigger istio proxy Action1 istio proxy
Action2 istio proxy Conclusion istio proxy
Trigger linkerd proxy Action1 linkerd proxy
Action2 linkerd proxy Conclusion linkerd proxy
RocketMQ name server cluster1 RocketMQ broker cluster1
EventMesh server cluster1 RocketMQ name server cluster2

161

Figure 6-40. The graph represents the mean memory usage of each mesh component for each cluster.

6.3.2.3 MESSAGE LATENCIES

The analysis of the latency for each message in Figure 6-41 shows clearly the

malfunctioning of the event mesh technology, comprising both Apache EventMesh

and Apache RocketMQ, with only a few messages reaching their destination and with

the highest latencies we observed in all the tests.

0

100

200

300

400

500

600

700

800

900

1000

0
0

:0
0

0
0

:1
2

0
0

:2
3

0
0

:3
4

0
0

:4
4

0
1

:0
0

0
1

:1
1

0
1

:2
2

0
1

:3
3

0
1

:4
4

0
1

:5
5

0
2

:0
6

0
2

:1
7

0
2

:2
8

0
2

:3
9

0
2

:5
1

0
3

:0
1

0
3

:1
2

0
3

:2
3

0
3

:3
5

0
3

:4
6

0
3

:5
7

0
4

:1
0

0
4

:2
1

0
4

:3
2

0
4

:4
3

0
4

:5
4

0
5

:0
5

0
5

:1
6

0
5

:2
7

0
5

:3
8

0
5

:4
9

0
6

:0
1

0
6

:1
3

0
6

:2
5

M
em

o
ry

 (
M

B
)

Sampling time (mm:ss)

Infrastructural components mean memory usage

Mean istio proxy cluster1 Mean istio proxy cluster2 Mean linkerd proxy cluster1

Mean linkerd proxy cluster2 Mean event mesh cluster1 Mean event mesh cluster2

162

Figure 6-41. The graph shows the message latencies for each mesh.

Finally, in Figure 6-42, which is focused only on service meshes, istio shows an

interesting trend as the number of messages per second increases: it starts with high

latencies, more than 2 seconds, slowly optimizing its performance. On the other hand,

Linkerd performs impeccably, with no messages lost and with latencies in the range

of about 10 to 20 milliseconds.

Figure 6-42. The graph represents the message latencies for service meshes.

00:00,000

00:43,200

01:26,400

02:09,600

02:52,800

03:36,000

1

6
0

1
1

9

1
7

8

2
3

7

2
9

6

3
5

5

4
1

4

4
7

3

5
3

2

5
9

1

6
5

0

7
0

9

7
6

8

8
2

7

8
8

6

9
4

5

1
0

0
4

1
0

6
3

1
1

2
2

1
1

8
1

1
2

4
0

1
2

9
9

1
3

5
8

1
4

1
7

1
4

7
6

1
5

3
5

1
5

9
4

1
6

5
3

La
te

n
ci

es
 (

m
m

:s
s,

m
s)

Message no.

Trigger-Conclusion message latencies

istio linkerd event mesh

00,000

00,432

00,864

01,296

01,728

02,160

02,592

1

5
8

1
1

5

1
7

2

2
2

9

2
8

6

3
4

3

4
0

0

4
5

7

5
1

4

5
7

1

6
2

8

6
8

5

7
4

2

7
9

9

8
5

6

9
1

3

9
7

0

1
0

2
7

1
0

8
4

1
1

4
1

1
1

9
8

1
2

5
5

1
3

1
2

1
3

6
9

1
4

2
6

1
4

8
3

1
5

4
0

1
5

9
7

1
6

5
4

La
te

n
ci

es
 (

ss
,m

s)

Message no.

Trigger-conclusion message latencies

istio linkerd

163

6.4 FINAL CONSIDERATIONS

In conclusion, the experiments carried out showed the maturity of the service mesh,

highlighting, on the contrary, the strong limitations of Apache EventMesh.

Istio and Linkerd make it possible to create a stable and efficient system to support

synchronous communication. In particular, Linkerd has demonstrated that it requires

much less memory than istio, which allows it to better exploit the resources of a cluster.

In addition, in all the tests, Linkerd never lost a message, even in the multi-cluster

scenario, in which it showed, when tested with increasing messages per second, its

high performace, keeping latencies to the minimum. However, beyond the

performance considerations, Linkerd showed a minor issue consisting in not allowing

Kubernetes to capture logging output from each pod. In other words, the command

kubectl logs did not output anything, with respect to the other meshes.

On the other hand, it became clear that Apache EventMesh is still an immature project,

despite being based on Apache RocketMQ, which has existed in a stable form for some

years. The latter, in particular, required much more resources than the single proxies

of the service mesh: in fact, we noticed the large use of memory by the broker, which

in a real business application would require huge resources, with a possible consequent

increase in costs26. Furthermore, we have noticed in the multi-cluster case a significant

decrease in performance together with the loss of many messages along the chain of

workflow applications.

It must finally be considered that Apache EventMesh does not officially offer any tool

to help automate the installation of the event mesh, as both istio and Linkerd do, but it

is necessary to manually implement the entire mesh deployment process, adapting it

to each specific environment. And this also applies to Apache RocketMQ.

26 It should be noted that, although it uses more resources, the event mesh deployment is shared by

multiple microservices, while in the case of service meshes, each microservice has associated a sidcear

proxy. For this reason, only from the point of view of the resource usage, the deployment of event mesh

could become convenient only if there are dozens of microservices in the system.

164

7 CONCLUSIONS

In the last few years, IT systems have been characterized by significant innovations,

mostly driven by the growing cloud infrastructure and microservices adoption, which

allow organizations to deliver new capabilities for their respective business. Modern

application development on cloud infrastructure requires engineering people to solve

old problems, such as latency, security, and network reliability, which can become

very difficult to manage for fast growing business when there are many different

services which can be autoscaled or can fail unexpectedly. In this scenario, mesh

technologies emerged to support business application development providing

connectivity, reliability, security, and observability at infrastructure level.

In particular, service mesh technologies are becoming more and more popular, and

have gone through significant innovations and several new architecture trends,

technology capabilities, and new projects have emerged in the ever evolving mesh

space. On the other hand, event meshes are more recent, offering fewer options than

service meshes, but are part of modern event processing which is fast becoming a

foundation of today information society. Modern event processing emerged in the late

1990s, but it has been for many decades the foundation, just to name a few areas, for

discrete event simulation, weather simulation and forecasting, networks and the

internet, and all the manner of information gathering and communications. Since then,

many companies have been developing and marketing event processing products, so

that complex event processing has become an established market area for commercial

applications.

Due to the importance of these technologies for enterprises, the work covered by the

thesis had the aim of creating a microservices system to test workflow applications

supported by some of these modern technologies. Our analysis first concerned the

theoretical study of service, event, and data meshes, subsequently focusing on the

examination of specific implementations. Finally, for the realization of our project we

selected some technologies with particular characteristics and we compared them

focusing mainly on the performance side, evaluating their functioning in a public cloud

165

environment within both a single Kubernetes cluster and in a multi-cluster scenario. In

particular, in the field of service meshes, we used istio and Linkerd, given their open-

source nature and given that these two technologies offer different data plane proxy

implementations. Regarding event meshes, we used a recently developed project

termed Apache EventMesh, which depends on Apache RocketMQ.

In our results, istio and Linkerd confirmed what we analyzed in the theory: they are

performant and reliable mesh solutions. In a real business case with strict requirements

of speed, reliability, and security, both service meshes demonstrate to be the right

solution, with Linkerd that showed the best results in our tests, and which, in

confirmation of our consideration, a recent report showed with a general positive trend

of adoption, surpassing even istio in Europe and North America [110]. On the contrary,

Apache EventMesh appears as a not yet mature technology, due to many problems in

operation and significant difficulties during the installation process.

However, the study of meshes is not only important from the point of view of the use

that can currently be made of these technologies, but also from the perspective of their

possible future developments which appear ever more numerous. For example, in

recent years, the cloud adoption by different organizations has transformed from single

cloud solution to multi-cloud, and supporting diverse workloads (transactional, batch,

and streaming) is becoming critical to realize a unified cloud architecture. Some

service mesh solutions, such as istio, are moving in this direction, supporting

heterogeneous infrastructures (bare metal, virtual machines, Kubernetes).

It must be considered also that other mesh vendors are focusing on the development

of new offerings for their service mesh implementations, such as “service mesh as a

service”. For example, Buoyant announced the release of a SaaS application called

Buoyant Cloud that allows the customer organizations to take adantage of managed

service mesh with the on-demand support features for the Linkerd service mesh.

But further considerations must also be made with regard to another topic which is that

of data management. In fact, data is becoming larger and more ubiquitous and it is no

more feasible for enterprises to rely on one large data store, shared among the different

166

organization areas. During the years, some enterprises have decentralized their data,

pushing data storage, models, and management into different business units. However,

data analythics has remained a more centralized activity. In this field, a robust and

well-defined data communication layer can help organizations on facing data

complexity, focusing on business functionality, instead of querying needs of other

bounded contexts, and therefore the event meshes, which are a natural evolution of

event-driven architectures to handle these large and diverse data sets, will gain great

importance. And indeed, in the future there could be a convergence between event and

data meshes, which was named event-driven data mesh. Some of the capabilities that

are emerging in this field were pioneered in the synchronous data world and could be

replicated in the asynchronous context: event-driven data should be easely

discoverable and easy to catalog in a self-service manner; analytical data should be

traceable from origin to consumption.

It must also be noted that there is interest also in applying service meshes to this field,

with discussions about emerging architectural patterns for implementing event-driven

messaging support within a service mesh. In this last context, the work toward

supporting Apache Kafka within Envoy proxy attracted a fair amount of attention.

In conclusion, we believe that meshes will gain more and more importance in a context

in which companies, as part of their digital transformations, are building new

applications, and modernizing legacy ones, to leverage cloud native technologies that

enable consistent and reliable development, deployment, management, and

performance across cloud environments and across cloud vendors, including on-

premises infrastructure. For this reason, the analysis of these technologies and in

particular the evaluation of their performance will be increasingly important, allowing

to identify their advantages and possibly their limits and therefore for companies to

choose the technology that best suits their business needs.

167

168

BIBLIOGRAPHY

[1] T. Erl, R. Puttini, and Z. Mahmood, Cloud computing: concepts, technology, &

architecture. Upper Saddle River, NJ: Prentice Hall, 2013.

[2] J. Arundel and J. Domingus, Cloud native DevOps with Kubernetes: building,

deploying, and scaling modern applications in the Cloud, First Edition.

Beijing ; Boston: O’Reilly, 2019.

[3] D. Comer, The cloud computing book: the future of computing explained, First

edition. Boca Raton: CRC Press, 2021.

[4] P. M. Mell and T. Grance, ‘The NIST definition of cloud computing’, National

Institute of Standards and Technology, Gaithersburg, MD, NIST SP 800-145,

2011. doi: 10.6028/NIST.SP.800-145.

[5] B. Gregg, Systems performance: enterprise and the cloud, Second. Boston:

Addison-Wesley, 2020.

[6] M. Armbrust et al., ‘A view of cloud computing’, Commun. ACM, vol. 53, no.

4, pp. 50–58, Apr. 2010, doi: 10.1145/1721654.1721672.

[7] K. K. Hiran, R. Doshi, T. Fagbola, and M. Mahrishi, Cloud computing master

the concepts, architecture and applications with real-world examples and case

studies. BPB Publications, 2019.

[8] ‘Definition of Community Cloud - Gartner Information Technology Glossary’,

Gartner.

https://www.gartner.com/en/information-technology/glossary/community-

cloud

[9] J. Mulder, Multi-Cloud Architecture and Governance: Leverage Azure, AWS,

GCP, and VMware vSphere to build effective multi-cloud solutions.

Birmingham: Packt Publishing Limited, 2020.

[10] F. Klaffenbach, M. Klein, and S. Sundaresan, Multi-Cloud for Architects:

Grow your IT business by means of a multi-cloud strategy. Birmingham

Mumbai: Packt Publishing Limited, 2019.

[11] P. Zikopoulos and C. Bienko, Cloud Without Compromise: Hybrid Cloud for

the Enterprise. Sebastopol, CA: O’Reilly Media, Incorporated, 2021.

[12] K. Hwang, G. C. Fox, and J. J. Dongarra, Distributed and cloud computing:

from parallel processing to the Internet of things. Amsterdam ; Boston:

Morgan Kaufmann, 2012.

169

[13] B. Familiar, Microservices, IoT, and Azure: Leveraging DevOps and

Microservice Architecture to Deliver SaaS Solutions. Berkeley, CA: Apress,

2015.

[14] G. Agarwal, Modern devops tips, tricks, and techniques manage, secure, and

enhance software development in the public cloud with cutting-edge tools and

solutions. Packt Publishing, 2021.

[15] J. Rossberg, Agile project management with Azure DevOps: concepts,

templates, and metrics. New York, NY: Apress, 2019.

[16] J. Davis and K. Daniels, Effective devOps: building a culture of collaboration,

affinity, and tooling at scale, First edition. Beijing ; Boston: O’Reilly, 2016.

[17] S. Newman, Monolith to microservices: evolutionary patterns to transform

your monolith, First edition. Beijing [China] ; Sebastopol, CA: O’Reilly Media,

Inc, 2019.

[18] R. Mitra and I. Nadareishvili, Microservices: up and running: a step-by-step

guide to building a microservices architecture. O’Reilly Media, 2021.

[19] A. Davis, Bootstrapping microservices with Docker, Kubernetes, and

Terraform: a project-based guide. Shelter Island, NY: Manning, 2021.

[20] C. Carneiro and T. Schmelmer, Microservices From Day One: Build robust

and scalable software from the start. Berkeley, CA: Apress, 2016. doi:

10.1007/978-1-4842-1937-9.

[21] J. Bugwadia, ‘Microservices: Five Architectural Constraints | nirmata’,

nirmata.com, Feb. 02, 2015.

https://nirmata.com/2015/02/02/microservices-five-architectural-constraints/

[22] S. Newman, Building microservices: designing fine-grained systems, Second

edition. Beijing Boston Farnham Sebastopol Tokyo: O’Reilly, 2021.

[23] M. Fowler, ‘Microservice Trade-Offs’, martinfowler.com, Jul. 01, 2015.

https://martinfowler.com/articles/microservice-trade-offs.html

[24] K. Indrasiri and S. Suhothayan, Design patterns for cloud native applications:

patterns in practice using APIs, data, events, and streams, 1. Auflage. Beijing

Boston Farnham Sebastopol Tokyo: O’Reilly, 2021.

[25] T. Ziadé, Python microservices development: build, test, deploy, and scale

microservices in Python, First published. Birmingham Mumbai: Packt

Publishing, 2017.

[26] ‘What’s a Linux container?’, May 11, 2022.

https://www.redhat.com/en/topics/containers/whats-a-linux-container

170

[27] ‘Understanding containers’, Dec. 10, 2019.

https://www.redhat.com/en/topics/containers

[28] S. P. Kane and K. Matthias, Docker: up and running: shipping reliable

containers in production, Second edition. Sebastopol, CA: O’Reilly Media,

Inc, 2018.

[29] A. T. Velte, T. J. Velte, and R. C. Elsenpeter, Cloud computing: a practical

approach. New York: McGraw-Hill, 2010.

[30] Canonical, ‘For CTO’s: the no-nonsense way to accelerate your business with

containers’. Canonical, 2017.

[31] T. Erl, Service-oriented architecture: concepts, technology, and design. Upper

Saddle River, NJ: Prentice Hall Professional Technical Reference, 2005.

[32] N. Poulton and P. Joglekar, The Kubernetes Book, 2021 Edition. Self-

published, 2021.

[33] S. R. Goniwada, Cloud native architecture and design: a handbook for modern

day architecture and design with enterprise-grade examples. s.l.: APress, 2022.

doi: 10.1007/978-1-4842-7226-8.

[34] M. Lukša, Kubernetes in action. Shelter Island, NY: Manning Publications Co,

2018.

[35] B. Burns, J. Beda, and K. Hightower, Kubernetes: up and running: dive into

the future of infrastructure, Second edition. Beijing: O’Reilly, 2019.

[36] G. Sayfan, Mastering Kubernetes - Third Edition. Packt Publishing, 2020.

[37] S. Trewin, The DataOps Revolution: Delivering the Data-Driven Enterprise,

1st ed. Boca Raton: Auerbach Publications, 2021. doi:

10.1201/9781003219798.

[38] M. Schwartz, ‘The data-driven enterprise’, AWS Executive Insights, p. 18.

[39] E. Strod, ‘What is a Data Mesh?’, DataKitchen.io, Aug. 03, 2021.

https://datakitchen.io/what-is-a-data-mesh/

[40] ‘What is a data lake?’, RedHat, Sep. 16, 2019.

https://www.redhat.com/en/topics/data-storage/what-is-a-data-lake

[41] Z. Dehghani, ‘How to Move Beyond a Monolithic Data Lake to a Distributed

Data Mesh’, martinfowler.com, May 20, 2019.

https://martinfowler.com/articles/data-monolith-to-mesh.html

171

[42] Z. Dehghani, Data mesh: delivering data-driven value at Scale. Sebastopol,

CA: O’Reilly Media, 2022.

[43] Z. Dehghani, ‘Data Mesh Principles and Logical Architecture’,

martinfowler.com, Dec. 03, 2020.

https://martinfowler.com/articles/data-mesh-principles.html

[44] B. Schmeling and M. Dargatz, Kubernetes Native Development: Develop,

Build, Deploy, and Run Applications on Kubernetes. Berkeley, CA: Apress,

2022. doi: 10.1007/978-1-4842-7942-7.

[45] B. Burns and C. Tracey, Managing Kubernetes: operating Kubernetes clusters

in the real world, First edition. Sebastopol, CA: O’Reilly Media, 2018.

[46] L. Sun and D. Berg, Istio Explained: Getting Started with Service Mesh.

Sebastopol, CA: O’Reilly Media, 2020.

[47] H. Adkins, B. Beyer, P. Blankinship, P. Lewandowski, A. Oprea, and A.

Stubblefield, Building secure and reliable systems: best practices for

designing, implementing, and maintaining systems, First edition. Beijing

[China] ; Boston [MA]: O’Reilly, 2020.

[48] L. Calcote and Z. Butcher, Istio: up and running: using a service mesh to

connect, secure, control, and observe, First edition. Sebastopol, CA: O’Reilly

Media, Inc, 2019.

[49] M. Klein, ‘Service mesh data plane vs. control plane’, Medium, Oct. 10, 2017.

https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-

2774e720f7fc

[50] L. Calcote, The Enterprise Path to Service Mesh Architectures: Decoupling at

Layer 5, Second Edition. Sebastopol, CA: O’Reilly Media, 2020.

[51] J. Song, ‘Why Do You Need Istio When You Already Have Kubernetes?’, The

New Stack, Mar. 18, 2021.

https://thenewstack.io/why-do-you-need-istio-when-you-already-have-

kubernetes/

[52] Z. Jory, ‘Why Service Meshes, Orchestrators Are Do or Die for Cloud Native

Deployments’, The New Stack, Feb. 22, 2019. https://thenewstack.io/why-

service-meshes-orchestrators-are-do-or-die-for-cloud-native-deployments/

[53] O. Etzion and P. Niblett, Event processing in action. Greenwich, 74° w. long:

Manning, 2011.

[54] A. Bellemare, Building event-driven microservices: leveraging organizational

data at scale, First edition. Beijing Boston Farnham: O’Reilly, 2020.

172

[55] J. Schabowsky, ‘Event-Driven Microservices’. Solace white papers. [Online].

Available:

https://solace.com/resources/white-papers/wp-download-event-driven-

microservices-lp

[56] ‘What is an event mesh?’, Aug. 19, 2021.

https://www.redhat.com/en/topics/integration/what-is-an-event-mesh

[57] ‘What is an Event Mesh?’, Solace.

https://solace.com/what-is-an-event-mesh/

[58] ‘The Event Mesh: A Primer’. Red Hat, 2021.

[59] H. Shaffner, ‘Comparing and Contrasting Service Mesh and Event Mesh’.

Solace white papers.

[60] W. Morgan, ‘The Service Mesh: What Every Engineer Needs to Know about

the World’s Most Over-Hyped Technology’, Buoyant blog.

https://buoyant.io/service-mesh-manifesto/

[61] A. Murphy, ‘The Hidden Costs of Service Meshes’, The New Stack, Nov. 04,

2021.

https://thenewstack.io/the-hidden-costs-of-service-meshes/

[62] ‘Announcing Istio 1.5’, Istio Official Blog, Mar. 05, 2020.

https://istio.io/latest/news/releases/1.5.x/announcing-1.5/

[63] Z. Varga, ‘Istio telemetry V2 (Mixerless) deep dive’, Banzai cloud blog, Apr.

12, 2020. https://banzaicloud.com/blog/istio-mixerless-telemetry/

[64] N. C. Mendonca, C. Box, C. Manolache, and L. Ryan, ‘The Monolith Strikes

Back: Why Istio Migrated From Microservices to a Monolithic Architecture’,

IEEE Softw., vol. 38, no. 5, pp. 17–22, Sep. 2021, doi:

10.1109/MS.2021.3080335.

[65] S. Dake, ‘Istio 1.5 introduces simpler architecture, improving operational

experience’, IBM Developer, Mar. 04, 2020.

https://developer.ibm.com/blogs/istio-15-release/

[66] C. Box, ‘Introducing istiod: simplifying the control plane’, Istio Official Blog,

Mar. 19, 2020.

https://istio.io/latest/blog/2020/istiod/

[67] C. Posta, ‘Istio as an Example of When Not to Do Microservices’, Software

Blog, Jan. 08, 2020.

https://blog.christianposta.com/microservices/istio-as-an-example-of-when-

not-to-do-microservices/

173

[68] B. Sutter and C. Posta, Introducing Istio Service Mesh for Microservices.

Sebastopol, CA: O’Reilly Media, 2019. [Online]. Available:

https://developers.redhat.com/books/introducing-istio-service-mesh-

microservices

[69] V. Noronha, ‘How to Write Envoy Filters Like a Ninja! — Part 1’, Medium,

May 28, 2019.

https://blog.envoyproxy.io/how-to-write-envoy-filters-like-a-ninja-part-1-

d166e5abec09

[70] ‘xDS configuration API overview — envoy 1.20.0-dev-46ab91

documentation’, Envoy documentation.

https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/operations/d

ynamic_configuration

[71] ‘xDS REST and gRPC protocol — envoy 1.20.0-dev-755e28 documentation’,

Envoy documentation.

https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol

[72] W. Morgan, ‘Introducing Conduit’, Linkerd Official Website, Dec. 05, 2017.

https://linkerd.io/2017/12/05/introducing-conduit/

[73] ‘Architecture’, Linkerd documentation.

https://linkerd.io/2.10/reference/architecture/

[74] E. Weisman, ‘Under the hood of Linkerd’s state-of-the-art Rust proxy,

Linkerd2-proxy’, Linkerd official blog, Jul. 23, 2020.

https://linkerd.io/2020/07/23/under-the-hood-of-linkerds-state-of-the-art-rust-

proxy-linkerd2-proxy/

[75] A. Khatri and V. Khatri, Mastering service mesh: enhance, secure, and observe

cloud-native applications with Istio, Linkerd, and Consul. Birmingham: Packt

Publishing, 2020.

[76] ‘Consul by HashiCorp - Agent’, Consul Documentation.

https://www.consul.io/docs/agent

[77] ‘Consul Reference Architecture | Consul’, HashiCorp Learn.

https://learn.hashicorp.com/tutorials/consul/reference-

architecture?utm_source=consul.io&utm_medium=docs

[78] ‘Consul by HashiCorp - C vs Envoy’, Consul Documentation.

https://www.consul.io/docs/intro/vs/proxies

[79] ‘Consul by HashiCorp - Envoy Integration’, Consul Documentation.

https://www.consul.io/docs/connect/proxies/envoy

174

[80] ‘Consul by HashiCorp - Telemetry’, Consul Documentation.

https://www.consul.io/docs/agent/telemetry

[81] ‘Ingress Gateways on Kubernetes’, Consul Documentation.

https://www.consul.io/docs/k8s/connect/ingress-gateways

[82] ‘Consul by HashiCorp - Sync Kubernetes & Consul’, Consul Documentation.

https://www.consul.io/docs/k8s/service-sync

[83] A. Rawdat, ‘Introducing NGINX Service Mesh’, NGINX, Oct. 12, 2020.

https://www.nginx.com/blog/introducing-nginx-service-mesh/

[84] ‘Architecture | NGINX Service Mesh Docs’, NGINX Docs.

https://docs.nginx.com/nginx-service-mesh/about/architecture/

[85] J. Urquhart, Flow architectures: the future of streaming and event-driven

integration, First edition. Beijing Boston Farnham Sebastopol Tokyo:

O’Reilly, 2021.

[86] ‘NATS - Request-Reply’, NATS Docs.

https://docs.nats.io/nats-concepts/reqreply

[87] ‘OSM Docs’, Open Service Mesh Documentation.

https://docs.openservicemesh.io/

[88] H. Thorsten, ‘Getting Started With Microsoft Open Service Mesh’, OSM Docs,

Aug. 28, 2020.

https://thorsten-hans.com/getting-started-with-microsoft-open-service-mesh/

[89] ‘Ingress’, Linkerd documentation.

https://linkerd.io/2.10/features/ingress/

[90] T. Rampelberg, ‘Architecting for Multicluster Kubernetes’, Linkerd official

blog, Feb. 17, 2020.

https://linkerd.io/2020/02/17/architecting-for-multicluster-kubernetes/

[91] P. Pradeep, ‘Born at China’s WeBank, now incubating in the ASF -

Introducing Apache EventMesh’, The Stack, Jun. 29, 2021.

https://thestack.technology/apache-event-mesh/

[92] ‘EventMesh Workflow | Apache EventMesh’, Apache EventMesh Docs.

https://eventmesh.apache.org/docs/design-document/workflow/

[93] ‘EventMesh Runtime Protocol | Apache EventMesh’, Apache EventMesh Docs.

https://eventmesh.apache.org/docs/design-document/runtime-protocol/

[94] ‘Service Provider Interface | Apache EventMesh’, Apache EventMesh Docs.

https://eventmesh.apache.org/docs/design-document/spi/

175

[95] ‘RocketMQ Architecture’, Apache RocketMQ Docs, May 12, 2022.

https://rocketmq.apache.org/docs/rmq-arc/

[96] ‘Core Concept’, Apache RocketMQ Docs, May 12, 2022.

https://rocketmq.apache.org/docs/core-concept/

[97] ‘Best Practice For NameServer’, Apache RocketMQ Docs, May 12, 2022.

https://rocketmq.apache.org/docs/best-practice-namesvr/

[98] ‘Best Practice For Broker’, Apache RocketMQ Docs, May 12, 2022.

https://rocketmq.apache.org/docs/best-practice-broker/

[99] F. P. Brooks, ‘No Silver Bullet Essence and Accidents of Software

Engineering’, Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987, doi:

10.1109/MC.1987.1663532.

[100] T. Gupta, ‘Analyzing Polyglot Microservices’, Capital One Tech, Dec. 19,

2018.

https://medium.com/capital-one-tech/analyzing-polyglot-microservices-

f6f159a1a3e7

[101] C. McKenzie, ‘What is polyglot programming?’, TechTarget Network, Sep.

2015.

https://www.techtarget.com/searchsoftwarequality/definition/polyglot-

programming

[102] R. Kalman, ‘On the general theory of control systems’, IRE Trans. Automat.

Contr., vol. 4, no. 3, pp. 110–110, Dec. 1959, doi:

10.1109/TAC.1959.1104873.

[103] R. Maloku and C. Posta, Istio in action. Shelter Island: Manning Publications,

2022.

[104] F. Budinsky and M. Ostrowski, ‘Introducing the Istio Operator’, Istio Blog,

Sep. 14, 2019.

https://istio.io/latest/blog/2019/introducing-istio-operator/

[105] ‘Installation Configuration Profiles’, Istio Documentation.

https://istio.io/latest/docs/setup/additional-setup/config-profiles/

[106] ‘JVM options’, Oracle Docs.

https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/java.html

[107] ‘Java Properties File Format’, Oracle Docs.

https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204

propertiesfileformat01.html

176

[108] ‘Java Properties file syntax’, IBM Docs, Mar. 21, 2022.

https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-

0000.us-

south.containers.appdomain.cloud/docs/en/was/8.5.5?topic=SSEQTP_8.5.5/co

m.ibm.websphere.nd.multiplatform.doc/ae/rxml_prop_file_syntax.html

[109] W. Morgan, ‘Why Linkerd doesn’t use Envoy’, Linkerd official blog, Dec. 03,

2020.

https://linkerd.io/2020/12/03/why-linkerd-doesnt-use-envoy/

[110] W. Morgan, ‘Linkerd surpasses Istio adoption in Europe and North America

with 118% growth in 2021’, Linkerd official blog, Feb. 16, 2022.

https://linkerd.io/2022/02/16/linkerd-istio-adoption/

	Introduction
	1 Cloud computing
	1.1 Advent of cloud
	1.1.1 Virtualization

	1.2 Models
	1.2.1 Cloud deployment models
	1.2.1.1 Public cloud
	1.2.1.2 Community cloud
	1.2.1.3 Private cloud
	1.2.1.4 Hybrid, multi and distributed cloud
	1.2.1.5 Cloud deployment model comparison
	1.2.1.6 Cloud delivery models

	1.3 DevOps
	1.4 Microservices
	1.4.1 Properties
	1.4.2 Benefits and challenges
	1.4.2.1 Benefits
	1.4.2.2 challenges

	1.5 Containerization
	1.5.1 Differences between virtual machines and containers

	1.6 Orchestration
	1.6.1 Kubernetes

	2 mesh technologies and paradigms
	2.1 From traditional data platforms to data mesh
	2.1.1 Limits of traditional data platform architectures
	2.1.2 The great divide of data
	2.1.3 Data mesh
	2.1.4 Conclusion

	2.2 Microservices management using service mesh
	2.2.1 Challenges with microservices
	2.2.2 Service mesh
	2.2.3 General architecture
	2.2.3.1 Data plane
	2.2.3.2 Control plane

	2.2.4 Orchestrators versus service meshes

	2.3 Entering the world of event-based architectures
	2.3.1 Event-driven communication structures
	2.3.2 Event-driven microservices
	2.3.3 Event mesh
	2.3.4 Comparison between service and event mesh

	3 Service and event mesh implementations
	3.1 Istio
	3.1.1 Architecture
	3.1.2 Control plane
	3.1.2.1 Pilot
	3.1.2.2 Mixer
	3.1.2.3 Istio new telemetry system
	3.1.2.4 Galley
	3.1.2.5 Injector and Citadel
	3.1.2.6 Control plane unification

	3.1.3 Data plane
	3.1.3.1 Envoy architecture
	3.1.3.2 Sidecar injection process

	3.1.4 Control plane and Data plane communication
	3.1.5 Advanced features

	3.2 Linkerd 2
	3.2.1 Architecture
	3.2.2 Control plane
	3.2.3 Data plane

	3.3 Consul Connect
	3.3.1 Architecture overview
	3.3.2 Data and control planes
	3.3.2.1 Telemetry

	3.3.3 Ingress-egress
	3.3.4 Orchestrators and Consul

	3.4 NGINX Service Mesh
	3.4.1 Architecture overview
	3.4.2 Control plane
	3.4.3 Data plane

	3.5 Open Service Mesh
	3.5.1 Architecture overview
	3.5.2 Control plane and data plane
	3.5.2.1 Telemetry

	3.6 Comparison of service meshes
	3.7 Apache EventMesh
	3.7.1 Architecture
	3.7.2 Apache RocketMQ
	3.7.3 Conclusion

	4 Project overview
	4.1 Objectives
	4.2 Technologies chosen
	4.3 Evolution of the project structure

	5 Project implementation
	5.1 Istio
	5.1.1 Single cluster installation
	5.1.1.1 Configuration options

	5.1.2 Multi-cluster installation
	5.1.2.1 Istio multi-cluster deployment models

	5.1.3 Sidecar injection

	5.2 Linkerd
	5.2.1 Single cluster installation
	5.2.2 Multi-cluster installation

	5.3 Apache RocketMQ
	5.3.1 Container image
	5.3.2 Single cluster deployment
	5.3.2.1 Name server
	5.3.2.2 Broker
	5.3.2.3 Console

	5.3.3 Multi-cluster deployment

	5.4 Apache EventMesh
	5.4.1 Container image
	5.4.2 Kubernetes deployment

	5.5 Workflow application
	5.5.1 Synchronous application
	5.5.1.1 Codebase
	5.5.1.2 Container image
	5.5.1.3 Deployment

	5.5.2 Asynchronous communication
	5.5.2.1 Codebase
	5.5.2.2 Deployment

	5.6 Metrics
	5.6.1.1 Kubernetes metrics client
	5.6.1.2 Kubernetes server
	5.6.1.3 Persistence
	5.6.1.4 Metrics gathering

	6 Experimental results
	6.1 Test configurations
	6.2 Single cluster tests
	6.2.1 Results of tests with constant load
	6.2.1.1 Workflow application
	6.2.1.2 Infrastructural components
	6.2.1.3 Message latencies

	6.2.2 Results of tests with incremental load
	6.2.2.1 Workflow application
	6.2.2.2 Infrastructural components
	6.2.2.3 Message latencies

	6.3 Multi-cluster tests
	6.3.1 Results of tests with constant load
	6.3.1.1 Workflow application
	6.3.1.2 Infrastructural components
	6.3.1.3 Message latencies

	6.3.2 Results of tests with incremental load
	6.3.2.1 Workflow application
	6.3.2.2 Infrastructural components
	6.3.2.3 Message latencies

	6.4 Final considerations

	7 Conclusions
	Bibliography

