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ABSTRACT 

Nell'ambito della loro trasformazione digitale, molte organizzazioni stanno adottando 

nuove tecnologie per supportare lo sviluppo, l'implementazione e la gestione delle 

proprie architetture basate su microservizi negli ambienti cloud e tra i fornitori di 

cloud. In questo scenario, le service ed event mesh stanno emergendo come livelli 

infrastrutturali dinamici e configurabili che facilitano interazioni complesse e la 

gestione di applicazioni basate su microservizi e servizi cloud. L’obiettivo di questo 

lavoro è quello di analizzare soluzioni mesh open-source (istio, Linkerd, Apache 

EventMesh) dal punto di vista delle prestazioni, quando usate per gestire la 

comunicazione tra applicazioni a workflow basate su microservizi all’interno 

dell’ambiente cloud. A questo scopo è stato realizzato un sistema per eseguire il 

dislocamento di ognuno dei componenti all’interno di un cluster singolo e in un 

ambiente multi-cluster. La raccolta delle metriche e la loro sintesi è stata realizzata con 

un sistema personalizzato, compatibile con il formato dei dati di Prometheus. I test ci 

hanno permesso di valutare le prestazioni di ogni componente insieme alla sua 

efficacia. In generale, mentre si è potuta accertare la maturità delle implementazioni 

di service mesh testate, la soluzione di event mesh da noi usata è apparsa come una 

tecnologia ancora non matura, a causa di numerosi problemi di funzionamento. 

 

As part of their digital transformation, many organizations are adopting new 

technologies to support the development, deployment, and management of their 

microservice-based architectures across cloud environments and across cloud 

providers. In this scenario, service and event meshes are emerging as dynamic and 

configurable infrastructure layers that facilitate complex interactions and the 

management of microservice-based applications and cloud services. The aim of this 

work is to analyze open-source mesh solutions (istio, Linkerd, Apache EventMesh) 

from the performance point of view, when used to manage the communication of 

microservice-based workflow applications in the cloud environment. For this purpose, 

a system was created to perform the deployment of each component within a single 
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cluster and in a multi-cluster scenario. The collection of metrics and their synthesis 

was carried out with a customized system, compatible with the Prometheus data 

format. The tests allowed us to evaluate the performance of each component along 

with its effectiveness. In general, while it was possible to ascertain the maturity of the 

tested service mesh implementations, the event mesh solution we used appeared to be 

a not yet mature technology, due to numerous operational problems. 
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INTRODUCTION 

In recent years, many organizations realized that keeping private infrastructures is a 

major expense and they started to outsource their infrastructure, leaving other players 

to take charge of the hardware maintainance. With the advent of cloud, the evolution 

of distributed architectures took a step further with companies providing elastic, pay-

per-use services accessible from remote locations, but with the appearance of being 

internal to the enterprises. The evolution of architectures came together with the one 

of software applications that were designed first as big monoliths, running either as a 

single process or as a small number of processes spread across a handful of servers. 

These monoliths, characterized by slow release cycles, were updated relatively 

infrequently: at the end of every release cycle, developers packaged up the whole 

system and handed it over to the operations team, who then deployed and monitored 

it. In case of hardware failures, the operations team manually migrated it to the 

remaining healthy servers. Today, these big monolithic legacy applications are being 

broken down into smaller, independently running components, termed microservices. 

Since microservices are decoupled from each other, they can be developed, deployed, 

updated, and scaled individually, making possible to change components quickly and 

as often as necessary to keep up with today rapidly changing business requirements. 

In this scenario, where many technologies arise to support the development of 

microservices and more specifically, the advent of containers has led to the 

development of technologies able to manage the entire lifecycle of business 

applications, in particular, Docker and Kubernetes: the first provided a way to package 

an application, together with the libraries it needs, by defining a boundary with the 

machine on which it runs; Kubernetes made it possible to create services with 

automation to help with autoscaling and management. 

However, there are still many challenges involved in developing, deploying, and 

managing microservices-based applications and even though an orchestrator like 

Kubernetes does the heavy lifting, the growth in complexity of business applications 

made service and event meshes emerge. At the same time, with the explosion of big 
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data, many enterprises are investing in their next generation data infrastructures, based 

on a paradigm that draws from modern distributed architectures called data mesh. 

Service mesh is a term used to describe a decentralized application networking 

infrastructure that allows applications to be secure, resilient, observable, and 

controllable. It defines an architecture made up of a data plane that uses application-

layer proxies to manage networking traffic on behalf of an application and a control 

plane to manage proxies. This architecture allows to build important application-

networking capabilities outside of the application without relying on a particular 

programming language or framework. 

Event mesh is an architectural layer that dynamically routes events from one 

microservice to another irrespective of deployment location. The dissemination of 

massive amounts of data across a highly distributed infrastructure challenges 

enterprises on how to move this data, in an efficient, scalable, and economical way, 

across infrastructure that is not just geographically dispersed, but also exists in separate 

and heterogeneous clusters. The event mesh solves this problem by using a set of 

brokers in charge of distributing events across any environment. In fact, this 

technology does not necessarily require Kubernetes, but it can work seamlessly with 

it, enabling event-driven microservices to scale. 

Data mesh, finally, is a new approach to thinking about data based on a distributed 

architecture for data management: the idea is to make data more accessible and 

available to business users by directly connecting data owners, data producers, and 

data consumers. Data mesh aims to improve business outcomes of data-centric 

solutions as well as drive adoption of modern data architectures. This approach to data 

allows companies to improve decision-making, help detect fraud or alert the business 

to changes in supply chain conditions. To create high-value data products, companies 

must address culture and mindset shifts and commit to a more cross-functional 

approach to business domain modeling. 

Given, then, the importance and the recent rise of meshes, with this work we want to 

carry out a theoretical study of meshes, to then proceed to experiments that involve 
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service and event mesh technologies, selected for being open-source (isio, Linkerd, 

and Apache EventMesh), in order to test their performance when used to manage the 

communication of microservice-based workflow applications in the cloud 

environment, considering both the case of single cluster and multi-cluster. 

Below is an overview of the thesis structure. 

Chapter 1 discusses about concepts regarding cloud computing, which is the basis of 

our work, and some of the main topics covered in this dissertation. From Chapter 2 the 

meshes are discussed with first dealing with the data mesh, and then continuing with 

service and event mesh. In Chapter 3 different implementations of mesh technologies 

are analyzed, explaining the architecture and main characteristics of each. In Chapter 

4 an overview of the project carried out for the thesis work is presented. Chapter 5 

illustrates the implementation of each element of our design used to carry out the tests. 

Finally, Chapter 6 illustrates the experimental results obtained. 
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1 CLOUD COMPUTING 

During the last few decades, the concept of outsourcing resources and services and the 

notion of utility computing merged in preparing a unique technological environment 

termed cloud computing that impacts organizations of any size, creating new 

opportunities by inspiring businesses not only to fulfill existing goals, but also to set 

new objectives based on the extent to which cloud-driven innovation can further help 

optimize business operations [1]. The wide adoption of the cloud has led to the 

development of new technologies and paradigms, such as microservices, orchestrator, 

and meshes, to cope with a growing system complexity. As mentioned in the 

introduction, the analysis of these technologies is the specific object of this work. Since 

we will focus on their application on cloud, we want to start from the analysis of the 

fundamental concepts of cloud computing. 

1.1 ADVENT OF CLOUD 

From the early days of computing, there has been the need, in many situations, for a 

great computational power. Distributed systems allowed developers to get results from 

computational demanding jobs and many companies adopted their own hardware, 

sometimes dividing it across different departments, to enhance business processes. 

Then the growth of the Web expanded many businesses, requiring more demand in 

hardware and technological competences [2], [3]. 

With time passing, the cost of keeping the infrastructure private became a major 

expense and new solutions were adopted. Third-party entities started providing ways 

to outsource the infrastructure, taking charge of the hardware maintenance. This 

organization also allowed companies to concentrate server equipment in a single 

physical location, a Data Center. 

From this situation, the industry gradually moved to a more organized model which 

provides elastic and pay-per-use services from a remote location, but with the 

appearance of being internal to the company. This new approach has been called cloud 

computing. 
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It is possible to identify a set of characteristics common to the majority of cloud 

environments that enable the remote provisioning of scalable and measured IT 

resources in an effective manner [4]: 

• On-demand resource usage: a cloud consumer can use cloud resources on-

demand usually with a pay-per-use subscription model. Generally, cloud 

consumers do not know the exact location of the provided resources, but they 

may be able to specify the region or zone like country, state, or even Data 

Center. 

• Ubiquitous access: cloud platforms are widely available, sometimes with 

world-wide coverage, allowing customers to access them from remote through 

a web interface. 

• Multitenancy: a cloud provider can serve different consumers (tenants) 

whereby each is isolated from the other. 

• Elasticity: cloud services can transparently scale by provisioning and releasing 

resources, as required in response to changing runtime conditions. In many 

cases, the demand for resources changes throughout the year, month or even 

the day. Elasticity allows customers to change the allocation of resources 

dynamically, adding facilities to deal with service peak times and removing 

them when they are no more needed, paying just for the facilities they use. 

• Measured usage: this characteristic represents the ability of a cloud platform 

to keep track of the usage of the IT resources. This allows the cloud provider 

to charge consumers depending on how many resources were used for a 

specific timeframe. In that sense, measured usage is closely related to the on-

demand characteristic. From the consumer point of view, measured usage 

encompasses monitoring of the cloud resources allowing for comprehensive 

usage reports. 

• Resiliency: cloud services provide robust systems through the distribution of 

reduntant copies of the resources across physical locations. In case of one 

resource becoming deficient, another redundant copy can take it over. Thanks 
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to the resiliency of cloud-based IT resources, cloud consumers can increase 

both reliability and availability of their applications. 

• Flexibility: to accommodate an incremental business growth a startup can 

begin by leasing minimal computing, storage, and communication facilities. 

Then, it can adapt the requirements by adding more resources. 

1.1.1 VIRTUALIZATION 

The flexibility of cloud in the allocation of resources has been made possible thanks 

to virtualization. A cloud provider does not need to allocate groups of physical servers, 

but it can just create a set of software-defined virtualized servers [5]. 

This allowed for a rapid creation and removal of new virtualized istances at any time, 

without changing or rebooting physical machines. Furthemore, many virtualized 

resources can be consolidated in a few physical servers, running concurrently, each 

one completely isolated from others not only on the computational side, but also on 

the data one. For that reason, the cloud provider can choose where to create new virtual 

machines to get the best benefit in terms of resource usage and business cost. This 

guarantees also to avoid placing too many virtualized servers on the same physical 

machine balancing the load across all physical servers in the Data Center.

 

Figure 1-1. Differences between a traditional architecture (left) and a virtual architecture (right). 

From a customer point of view, a virtualized server appears like a physical one, 

running applications that communicate through the internet. Cloud providers offer 
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options to easly deploy applications in a cloud environment, including the possibility 

to handle increasing flows of requests arriving from the internet by creating more 

application copies quickly. But they also provide the possibility to create test 

environments in which developers can create new software before staging it in 

production systems. 

Virtualization gives also more security and replication defines generally more robust 

systems that, by tolerating faults and surviving to crashes, can always give an answer 

to the customer. 

1.2 MODELS 

Before the cloud computing emerged, private clusters and grid computing made use of 

many parallel machines to solve high demanding jobs, while utility computing and 

Software as a Service (SaaS) provided services managed and delivered from remote 

by one or more providers through a pay-per-use subscription model [6]. 

The concept of cloud computing has gradually evolved from these models and the way 

resources are owned and organized defines two different kinds of models in which 

cloud offerings can be divided. 

1.2.1 CLOUD DEPLOYMENT MODELS 

A cloud deployment model represents a specific type of environment, primarly 

distinguished by ownership, size, and access [1], [7]. 

1.2.1.1 PUBLIC CLOUD 

From the early 2000s, when Amazon started its own cloud service, many different 

companies arose in the cloud industry. Those companies have been offering a public 

cloud accessible through a pay-per-use or a subscription model. 

The cloud provider oversees managing the cloud infrastructure and all the IT resources 

and it makes the service accessible from the internet by any user who paid for it. Many 

providers offer a worldwide presence of their services. 
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1.2.1.2 COMMUNITY CLOUD 

Similar to the public, a community cloud limits its access to a specific community of 

consumers. It may be owned by the community itself or by a third-party vendor that 

provisions a public cloud with limited access. Members of the community generally 

share similar security, privacy, performance and compliance requirements [8]. 

1.2.1.3 PRIVATE CLOUD 

A company can also decide not to use a public cloud solution, but to use that 

technology to build a private cloud within the domain of an intranet owned by the 

organization. The company must maintain the infrastructure and limit the access to 

owning clients and their partners. By giving local users a flexible and agile private 

infrastructure to run service workloads within their administrative domains, a private 

cloud is supposed to deliver more efficient and convenient cloud services, but it may 

impact the cloud standardization, while retaining greater customization and 

organizational control. 

1.2.1.4 HYBRID, MULTI AND DISTRIBUTED CLOUD 

Many companies are adopting a hybrid solution in which multiple cloud models are 

taken into consideration. It provides orchestration, management, and application 

portability across different platforms, resulting in a single, unified, and flexible 

environment. For example, private clouds can implement a local infrastructure with 

computing capacity from an external public cloud: the organization can keep 

production applications on-site while conducting all its testing in the cloud or enabling 

on-demand scaling as needed. 

The rapid growth of the hybrid cloud led to new challenges on how to take full 

advantage of the public cloud capabilities without the need to actually deploy 

applications on public cloud, on how to introduce those capabilities on-premises and 

on the edge, or how to use all these technologies on other public cloud services. 

Some of these challenges were addressed by the multi-cloud, an approach that enables 

cloud solutions to not belong to just one stack, such as the Azure public cloud with 

Azure Stack on-premises, but applications, data, and cloud services can be used from 
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different cloud vendors, such as Microsoft Azure and Google Cloud Platform [9]. The 

multi-cloud allows companies to reach great flexibility when building business 

services, preventing performance problems, limited options, or unnecessary costs 

resulting from the dependence from a single provider. Usually, this kind of solutions 

rely on open-source, cloud-native technologies because in many cases, they are 

supported by the majority of the public cloud providers. 

There are different reasons why an organization would choose a multi-cloud solution 

[9], [10]: 

• Redundancy: it is possible to rely on multiple cloud providers to keep the 

business running in case of a failure or to take advantage of the right technology 

for the specific business requirements. 

• Latency minimization: applications highly sensitive to latency benefit from 

local cloud providers that are near to the organization. In some situations, 

business processes can be accelerated thanks to the combination of edge and 

public cloud computing. 

• Enhanced scalability: applications can take full advantage of the cloud power 

by quickly scaling on multiple cloud provider solutions. 

• Legality and governance: in some cases, there is the need to use different cloud 

providers to comply with local data regulations, which require certain types of 

data to reside in specific geographies.  

In most of the cases, the management of a multi-cloud solution can be very difficult. 

For example, changing access roles or security constraints can require accessing each 

individual operations dashboard of the various cloud providers. The distributed cloud 

solution solves operational and management inconsistencies through a central control 

plane and it can also help by replicating the capabilities of a cloud service provider on 

infrastructures located outside of the public offering. In that way, it allows to extend 

the public cloud to on-premises, private cloud, or even edge environments. Many 

providers are offering that service and some major names are: IBM Cloud Satellite, 

AWS Outposts, Google Anthos, and Microsoft Azure Stack; each of these has its own 
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strength points, but all of them are sharing the same idea of extending the public cloud 

capabilities to customer environments while having a single control pane [11].  

1.2.1.5 CLOUD DEPLOYMENT MODEL COMPARISON 

Private clouds leverage existing IT infrastructure and personnel within the company, 

balancing workloads more efficiently within the same intranet. A private cloud can 

provide high customization and enforce data privacy and security policies more 

effectively. 

On the other hand, public cloud solutions promote standardization, offer application 

flexibility, and preserve capital investments by avoiding expenses due to the 

mantainance of IT hardware, software, and personnel [12]. 

Hybrid clouds operate in the middle, offering the benefits of both public and private 

cloud and taking advantage of existing architecture in a Data Center. The hybrid 

approach allows applications and components to interoperate across boundaries, 

between cloud instances, and even between architectures driving cost savings and 

supporting fast-moving digital business transformation. 

 

Figure 1-2. Cloud computing deployment models. 
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1.2.1.6 CLOUD DELIVERY MODELS 

While some organizations started virtualizing their own computing machines to lower 

the IT costs, companies engaged in the public cloud industry started delivering 

different levels of virtual environments: infrastructure, platform, and software as 

services [12]. These cloud delivery models represent a specific, pre-packaged 

combination of resources that allow public cloud customers to upgrade their IT 

efficiency significantly. These models are available in a pay-as-you-go subscription 

and they are often offered based on Service Level Agreements (SLA)1, addressed in 

terms of service availability, performance, data protection, and security. 

Three common cloud delivery models have become widely established and 

formalized: 

• Infrastructure as a Service (IaaS): the cloud provider offers the network, the 

storage, and the virtual machines on demand. In that case, customers are 

responsible for all the layers on top of the virtual machine together with the 

configuration of the operating system and its updates. The purpose of that 

solution is to give to the customers the highest control and responsibility level 

over the configuration and the usage of the virtualized resources. 

• Platform as a Service (PaaS): this model represents a pre-defined environment 

usually comprised of already deployed and configured IT resources. The cloud 

provider oversees mantaining the operating system and provides the 

middleware solution like database, enterprise messaging, and runtime 

containers. In that model, the customers are focused on the application features 

and on the automation of their distribution. 

• Software as a Service (SaaS): in this model the cloud provider manages the 

hardware and the software offering it as a final product or a generic utility. It 

is used to make a reusable cloud service widely available commercially to a 

range of cloud customers. 

 
1 An SLA is a documented agreement between a service provider and a customer that identifies both 

the services required and the expected level of service. 
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Figure 1-3. Cloud delivery models. 

These models are the basis on top of which companies can deploy their own business 

processes. The adoption of an automatable, scalable, elastic and highly resilient cloud 

platform makes possible to innovate the way applications are provided by supporting 

a higher velocity product lifecycle that moves a software product through a 

development, test, stage and production environment without making huge 

investments in on-premises infrastructures [13]. 

1.3 DEVOPS 

In the context previously mentioned, it is important to talk about DevOps that is a set 

of principles and practises that encourage the participation of both the development 

and operations teams in the entire software development lifecycle, software 

maintenance, and operations [14]. 

In the past, the development phase was separated from the one responsible for 

operating the software. Developers were focused on developing new features then 

passing the software to the operating staff, who ran and maintained it in production. 
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There was a little overlap between the two figures because the two departments had 

quite different goals [2], [15]. With the advent of cloud, the DevOps movement took 

its origin because it was more evident that things traditionally separated are now 

interconnected and interdependent [14]. The team responsible for the development 

must understand how their software relates to the rest of the system, and people 

responsible for the operations have to understand how the software works or fails. 

The DevOps movement brings the two teams to collaborate, to share understanding 

and responsibility for systems reliability and software correctness, and to improve the 

scalability [16]. The companies that want to embrace this new approach can use several 

processes and tools to help automating the software delivery, improving speed and 

agility, reducing release times through continuous integration and delivery (CI/CD) 

pipelines, and monitoring the applications running in production. 

The adoption of this new perspective in the organization requires a deep cultural 

transformation for businesses, but companies engaging it are more agile in the 

marketplace, while improving the quality of their products. 

1.4 MICROSERVICES 

The development of an application often involves best practices and architecture 

patterns to take full advantage of a specific platform. In the case of cloud computing, 

the application development moved in many cases from the classic monolithic 

approach in which all the features are integrated in a single package, to a new one in 

which the application is divided into different microservices, loosely coupled between 

them, simplifying the development and the testing phases and enhancing the 

modularity, fault tolerance and more generally, the quality [17], [18]. 
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Figure 1-4. Differences between a typical monolithic and a microservice-based applications with 

different deployments. 

Micro is not intended in the sense of the size of the application, but in its purpose. 

Every microservice implements a single feature of the whole business application with 

the greatest quality through well defined contracts [19]. This simple concept is the 

basis for the properties and the design of the microservice architecture. 

1.4.1 PROPERTIES 

Within the context of implementing a funcionaltity with quality, microservices exhibit 

some other properties and behaviors that characterize themselves from previous 

incarnations of service-oriented approaches [13], [20]: 

• Autonomous and isolated. 

• Elastic, resilient and reactive. 

• Message-oriented and programmable. 

• Configurable. 

• Automatable. 

More in detail, microservices are capable of existing autonomously with loosely 

coupled dependencies on other services. Each one can respond, react, or develop 
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independently of the whole and each of the microservices is designed, developed, 

tested, and released according to that. 

They can be reused into different scenarios providing scalability, fault tolerance, and 

high availability. For that reason, they should be able to scale independently from the 

other microservices according to the required usage; the failure due to a single service 

should not extend to other services and it must guarantee a recovery in short times; at 

the end, they must guarantee the right performance for their usage scenario [21]. 

Microservices are also message-oriented and programmable because they must define 

clearly and completely the way through which they communicate to reach their 

common goal. For that reason, API interfaces are defined and they realize a set of 

endpoint visible on the network, and contracts over the data that define the structure 

of the exchanged messages. 

Furthermore, microservices must be reusable and must be able to address the needs of 

each system. This is the reason why each one must provide a means by which it can 

be appropriately molded to the usage scenario. 

Finally, complex projects could cause the proliferation of independent microservices. 

This situation requires a fully automated control over the software development cycle. 

1.4.2 BENEFITS AND CHALLENGES 

Microservices are providing great benefits to application development, but when 

systems become complex, they can be difficult to manage. Before adopting a 

microservices-based architecture is important to be able to compare benefits and 

challenges. 

1.4.2.1 BENEFITS 

By combining the concepts of information hiding and domain-driven design with the 

power of distributed systems, microservices can help deliver significant gains over 

other forms of distributed architectures [20], [22]: 
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• Clear module boundaries: each service responds to the principle of “single 

responsibility” and it has simple and well-defined interfaces, thus reinforcing 

the modular structure and making the software more robust in time. 

• Independent distribution: it becomes possible to modify and update a single 

service without involving the entire application. This allows to distribute bug 

fixes and new features faster, while remaining competitive in the market. 

• Independent development: developers have a better awareness of 

responsibilities and control, and this leads to greater innovation, with a 

consequent improvement in release rates. 

• Error isolation: each malfunction remains confined within the area of a single 

service, without involving the entire application. However, resilience must be 

ensured by developers through adequate precautions. 

• Granular scaling: services can scale as needed independently. Furthermore, 

the higher density of components, which can be instantiated on each machine, 

allows to take advantage of the most of available resources. 

• Heterogeneity of technologies: it becomes possible not only to use the 

technology suitable for a specific problem, but also to experiment and 

introduce technically heterogeneous software easier. Furthermore, the 

managing libraries and dependencies becomes much easier. 

1.4.2.2 CHALLENGES 

Introducing microservices in an enterprise system can bring a host of complexity. 

Some of the most important points are [20], [23]: 

• Complexity and skills: the design of a microservices application, seen in its 

entirety, is more complex than other solutions. It is therefore necessary to have 

coordinated and particularly skilled development teams to be able to develop 

and administer it. 

• Lack of governance: the decentralized approach to application development, 

combined with the great freedom in the use of technologies, can lead to 

excessive fragmentation of languages, libraries and frameworks used, making 

the entire project difficult to manage. 



23 

 

• Development and testing: in addition to the tests that are traditionally carried 

out on an application, it is necessary to specifically test microservices and their 

interactions. This can be complex especially when development is very fast. 

• Network congestion and latency: building a distributed project with an 

excessive number of services can lead to an increase in network 

communications. This problem, if not properly managed, causes a problematic 

increase in latencies. 

• Data integrity: given that persistence is managed directly by each 

microservice, it is necessary to maintain consistency between different 

components. 

1.5 CONTAINERIZATION 

With the industry adoption of microservices, some new technologies were created to 

deal with the growing complexity of applications. One of the most important is the 

containerization of microservices that is a technology that allows to run an application 

in isolation from the rest of the system, including all the necessary resources: code, 

runtime, system tools and libraries, and configuration files [24]. Assuming the need to 

create an application, each developer uses his own machine to deal with a portion of 

code. Often the developed application makes use of libraries and configuration files 

that may vary slightly from one development environment to another. Furthermore, in 

order to maintain a certain uniformity in the project, there is the need to emulate the 

company test and production environments, including the related software (e.g., 

database) [25] which is not always easy to install and configure, with a consequent 

waste of time and resources. 

Containers are used in this context, making an application easily portable from one 

environment to another, without having to change the source code or correct errors in 

the configuration as the software moves from one phase of production to another [26]. 
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Figure 1-5. Differences between a native application (left) and a containerized one (right). 

Containers fit into the DevOps development cycle, helping to reduce conflicts and 

clearly separating areas of responsibility: developers can focus on the source code of 

applications, while information technology (IT) people can focus on infrastructure 

[27]. It is a very flexible technology, applicable in many contexts in which portability, 

configurability, and isolation are necessary, without however depending on the 

infrastructure used. Containers can thus be deployed on-premises, in the cloud or, 

where necessary, in a hybrid solution. 

1.5.1 DIFFERENCES BETWEEN VIRTUAL MACHINES AND CONTAINERS 

Before containers were born, technologies were already available on the market that 

allowed the creation of virtual machines [3]. Today the containers are widely used 

[28]; however, the two techniques coexist, each with their own advantages. 

Traditional virtualization allows to run a complete operating system inside a virtual 

machine. This allows to have multiple instances of systems, even different from each 

other, operating at the same time on the same physical machine. This is made possible 

by a hypervisor that provides optimal isolation between physical and virtual machines 

[29]. 
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Figure 1-6. Comparison between containers (left) and virtual machines Type-2 (right). 

Virtual machines, although technologically complete, present some problems. First, 

booting a full operating system usually takes a long time. Second, each virtual machine 

requires a fixed amount of memory to work and has a significant overhead in CPU 

usage. Furthermore, I/O communications are inefficient: in the case of a Type-2 

virtualization, an application makes calls to the guest kernel which in turn calls what 

it believes to be the hardware; however, this call is intercepted by the hypervisor, 

passed to the host kernel and finally to the hardware. The answer will necessarily have 

to retrace the same route in the opposite direction. Although Type-1 virtualization 

technologies exist, which allow the hypervisor to rely directly on the hardware, it is 

always necessary to traverse the entire stack, resulting in performance degradation in 

terms of both overhead and latency. Furthermore, the resources are not allocated in a 

granular way as the inactive ones remain associated with a single virtual machine and 

cannot be reused. Finally, maintaining virtual machines is difficult: since the size of 

the software to be managed is considerable, it becomes more complex to keep the 

system updated, also considering the downtime necessary for the update. Otherwise, 

containers allow to reduce overhead to a minimum as a single kernel manages logically 

separate instances of applications (process containers) or operating systems (machine 

containers) [30]. The I/O communications go directly through the host kernel and the 
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performance is very similar to that of native applications. The isolation is weaker than 

virtual machines, but still present: containers can, in fact, share some resources. 

Additionally, container startup times are much faster as there is no need to boot the 

operating system. Finally, resource allocation is very flexible because it is managed 

by the host kernel. 

1.6 ORCHESTRATION 

With the increase in complexity of their systems, organizations needed to automate the 

configuration, coordination, and management of computer systems and software [31]. 

In this scenario, an orchestrator is a system that can deploy and manage applications, 

dinamically responding to changes, such as adapting to the current business demand 

[32]. 

In the cloud field, when running very complex microservices-based applications 

(hundreds or even thousands of entities) in a cluster environment, the container 

orchestration is a system that automates the deployment, management, scaling, and 

netwoking of containers. Orchestrators can be used in any environment like private or 

public clouds, making easier to manage complex business situations [33]. 

More in detail, one of the first problems this kind of software addresses is resource 

scheduling. In fact, it is possible that the services require to be performed on machines 

that meet particular requirements, but not all of them are adequate [34]. Moreover, 

very often, it is necessary to carry out load balancing which consists in making the 

most of the cluster resources, without having containers that work too much and others 

that are inactive. Applications must be able to scale as needed. It is therefore necessary 

to launch new containers in the case of intense traffic, in order to serve all requests; 

when they are no longer needed, they must be eliminated automatically. It is very 

important to be able to handle peak customer demands. Finally, it should be possible 

to easily monitor and control in a simple way all the containers. 

Generally, container orchestration tools are configured through user-defined 

guidelines, labels, or metadata. Once the host is assigned, the orchestration tool 
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automates and manages the services throughout the lifecycle based on the rules 

defined. 

In general, orchestrator tools provide the following services: 

• Containers configuration and scheduling. 

• Containers provisioning and deployment. 

• Resource allocation. 

• Scaling of containers to balance requests. 

• Service discovery. 

• Containers monitoring. 

• Traffic routing. 

 

Figure 1-7. A basic overview of an orchestrator architecture and an application running on top of it. 

Due to their importance in managing microservice-based applications, many different 

orchestrator tools were implemented. One of the most famous is Kubernetes [32]. 

1.6.1 KUBERNETES 

Originally developed by Google, Kubernetes is an open-source orchestrator that allows 

to coordinate containerized applications across clusters of machines. It is a platform 
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designed to manage the entire lifecycle of containerized applications and services 

through methods that provide reliability, scalability and high availability [35], [36]. 

The core concepts on which Kubernetes has been based are: 

• Immutability. 

• Declarative configuration. 

• Online self-healing systems. 

Containerization tools like Docker2 and orchestration tools like Kubernetes are based 

on the concept of infrastructure immutability. The current state of a system is not 

represented by a set of updates and changes applied incrementally, but by a single and 

unchangeable entity. In this way, any updates or changes are made through new 

container images that replace the previous ones. 

For the configuration of an immutable system, it is not convenient to use the traditional 

imperative approach, which envisages exercising control over the system through the 

direct execution of a series of instructions, but it is encouraged instead the use of 

descriptions of the present objects called declarative configuration objects. These 

define the state of the system and have some advantages: being in written form, 

versioning and code revision can be applied; the effects of the declarative 

configuration can be understood before being executed, drastically reducing the 

number of possible errors in the system configuration; finally, it is possible to rollback 

easily by restarting the system previously stated. 

The configuration mentioned above does not only describe the initial state, but it is 

also used to keep the current system state consistent with the provided configuration. 

This requires an orchestration system, such as Kubernetes, to monitor the state of the 

entire cluster so that it can react to failures or problems that could destabilize the 

system (online self-healing). 

Orchestrators, such as Kubernetes, led to many benefits in terms of velocity, scaling, 

efficiency, and infrastructure abstraction, but they focus largely on scheduling, 

 
2 Docker is a popular platform used to create and manage containerized applications. 
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discovery, and health, primarly at a low infrastructure level, usually leaving 

microservices with unmet service-level needs. For this reason, new specialized 

technologies and paradigms were defined, sometimes relying on container 

orchestrators, to deal with service-to-service communications and big data growth. 
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2 MESH TECHNOLOGIES AND PARADIGMS 

In this chapter we want to focus on the mesh that is a recent concept about distributed 

architectures that regulates complex topologies based on connections and constraints 

among all nodes and components of business applications. Recent solutions that 

started from this concept are technologies and paradigms that are modernizing the 

development and management of business applications and they are termed as service, 

event, and data mesh. 

Service and event mesh are configurable infrastructure layers that facilitate complex 

interactions and management of microservices-based applications and cloud services. 

More specifically, the first is focused on synchronous interactions, while the second is 

dedicated to the distribution of events. On the other hand, a data mesh, from whose 

analysis we will start, is a paradigm that evolved from traditional data platforms, 

introducing organizational and process changes that companies need to manage data 

as a tangible capital asset of the business. 

2.1 FROM TRADITIONAL DATA PLATFORMS TO DATA MESH 

Capturing and analyzing the right information is crucial and companies are also using 

data as an asset both to improve customer interactions and to increase efficiency. Data 

can be, for example, the basis for personalization, dynamic pricing, market expansion, 

product innovation, or supply chain optimization [37], [38]. 

2.1.1 LIMITS OF TRADITIONAL DATA PLATFORM ARCHITECTURES 

The goal of becoming a data-driven organization has many challenges and traditional 

architectural paradigms are no more efficient in many contexts. To cope with 

information complexity and business needs, there were three different generations of 

data platform architectures before data mesh was defined [39]: 
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• The first generation was composed mainly by proprietary enterprise data 

warehouse3 and business intelligence (BI)4 platforms mantained by a 

specialized team. Those systems were expensive and they left companies with 

large amounts of technical debt in terms of numerous of unmaintainable ETL 

(Extract, Transform, Load) jobs, tables, and reports. 

• The second generation shifted to the concept of Data Lake, a complex 

enterprise data platform architecture chatacterized by being flat, centralized, 

monolithic, and domain agnostic. This means that it stores in a central position 

large and varied sets of unstructured, semi-structured, or structured data 

collected from different sources across the organization [40]. 

• The third generation is similar to the previous one with the addition of 

streaming data, cloud, machine learning, and other technologies. 

Usually, a Data Lake sits in what is called an analythical data plane which is a 

temporal and aggregated view of the facts of the business over time. It depends on the 

operational data, organized in a different plane, that sits in databases behind business 

capabilities served with microservices, has a transactional nature, keeps the current 

state and serves the needs of the applications running the business. In this scenario, the 

two planes are different but yet integrated through Extract, Transform, Load (ETL) 

jobs producing many difficulties in connecting those two planes with an ever-growing 

complexity of the data pipelines. 

 
3 A data warehouse is a system designed for data analytics, which involves reading large amounts of 

data to understand relationships and trends across the data. 
4 Business Intelligence refers to a set of technologies that enable data preparation, data mining, data 

management, and data visualization. Business intelligence tools and processes allow end users to 

identify actionable information from raw data, facilitating data-driven decision-making within 

organizations across various industries. 
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Figure 2-1. Schema of the division between the operational and the analytical data planes connected 

by complex ETL pipelines. 

2.1.2 THE GREAT DIVIDE OF DATA 

The separation between the analytical and the operational data planes on one side and 

the ETL pipeline organization on the other are not the only problem originated from 

the systems previously mentioned. In fact, it must be considered that they also have 

other limitations: 

• Centralized and monolithic architecture: the data platform contains all the 

information that logically belong to different domains. This organization may 

work for small organizations, but it is not suitable for enterprises with large 

numbers of data sources and diverse data consumers. 

• Siloed and hyper-specialized ownership: the organizational units who build 

and own the data platform consist of hyper-specialized data engineers 

separated from the teams providing source data and the consumer units 

retrieving the processed data. While the latter groups are domain-oriented, the 

former team must be domain-agnostic. 
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In order to address the previous limitations of information platforms, a change in 

thinking about data, its locality, and ownership is required to successfully implement 

a data mesh architecture. 

2.1.3 DATA MESH 

The data mesh is a new approach in sourcing, managing, and accessing data for 

analytical purposes at scale, involving both teams and technical architectures 

organization [41]. It breaks the traditional monolithic Data Lake paradigm into several 

independent subsystems or domains, each of those managed by a dedicated team. This 

allows to move from a centralized ownership of data, collected into monolithic data 

platforms, to a decentralized model of data products whose ownership is near the 

business domains where data is produced. In addition, a data mesh removes the gap 

between where the data originates and where it gets used in its analytical form, deleting 

all the pipelines between the operational and the analytical data planes. At the same 

time, it attempts to connect the two planes through an inverted model and topology 

based on domains and not technology stack, with a focus on the analythical plane [42]. 

In other words, it shifts from technology solutions that treated data as a bybroduct of 

pipelines, governed in a centralized operational model, to solutions in which data and 

the code that mantains it, are treated as an autonomous unit, inside a federated 

organizational model with computational policies embedded in the nodes on the mesh. 
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Figure 2-2. Comparison between a centralized data ownership on the left in which the responsibility 

for data becomes the domain of the data warehouse (DWH) team and a decentralized one on the right 

in which ownership of a data asset is given to the “local” team that is most familiar with it. 

A Data mesh is based on four principles [43]: 

• Decentralized architecture and ownership organized into domains. 

• Data as products. 

• Self-serve data infrastructure as a platform. 

• Federated management of computing resources. 

The data mesh has a decentralized architecture in which each domain is an 

independently deployable cluster of related microservices which communicate with 

users or other domains through modular interfaces. To promote the decomposition of 

the data ecosystem and the ownership of each component, there is the need to model 

an architecture that organizes the analytical data by domains. In this architecture, the 

domain interface to the rest of the organization not only includes the operational 

capabilities, but also access to the analytical data that the domain serves. The 

decomposition follows the separation between different business domains that 

organizations already provide and it makes possible to localize the impact of 

continuous change and evolution to the domain bounded context. 
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The data is treated as a product like any other, complete with a data product owner, 

consumer consultations, release cycles, and quality and service-level agreements. 

From an architectural point of view, the data mesh introduces the concept of data 

product as its architectural quantum which is the smallest unit of the architecture that 

can be indeplendently deployed with high functional cohesion, including all the 

structural elements for its own functioning. These elements are mainly three: 

• Code: for data pipelines responsible for consuming, transforming and serving 

upstream data; for APIs that provide access to data; to enforce traits such as 

access control policies, compliance, provenance, etc. 

• Data and metadata: depending on the nature of the domain data and its 

consumption models can be served as events, batch files, relational tables, 

graphs, etc., while maintaining the same semantic. Usually, data comes 

associated to metadata. 

• Infrastructure: it enables building, deploying, and running the data product 

code, as well as storage and access to big data and metadata. 

A key point of data mesh is a self-serve data infrastructure as a platform that 

empowers consumers to independently search, discover, and consume data products. 

Data product owners are provided standardized tools for populating and publishing 

their data product. A self-serve data platform supports the provisioning of the 

underlying infrastructure required to run the components of a data product and the 

mesh of products. It should provide an interface that abstracts the provisioning 

complexities to support data product developers workflow. 

The last principle on which a data mesh is based is federated management. It is 

embodied by a cross-organization team that provides global standards for the formats, 

modes, and requirements of publishing and using data products. This team must 

maintain the delicate balance between centralized standards for compatibility and 

decentralized autonomy for true domain ownership. 

The four principles described above are collectively necessary and sufficient. Each of 

them complements the others, addressing challenges that may arise from each principle 
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took alone. For example, decentralized domain-oriented ownership of data can result 

in data siloing within domains, and this can be addressed by the data as a product 

principle that demands domains have an organizational responsibility to share their 

data with product-like qualities inside and outside of their domain [42]. 

 

Figure 2-3. Representation of the interplay of the four data mesh principles. Each arrow starts from the 

principle that may present a challenge and it reaches the principle that addresses it. 

2.1.4 CONCLUSION 

Traditional data architectures are becoming difficult to manage and use with the 

increase of big data. Companies can rely on monolithic architectures, keeping all the 

data just in a single place, but to stay competitive they need to create new products, 

services, and solutions, or enhance existing ones, for their customers. This requires a 

human and technical organization that lets an enterprise to spend time looking for 

business opportunities, rather than for data in the Data Lake, analyzing the market and 

chasing new customers. On the other side, a data mesh can be an effective way of 

building enterprise data platforms as distributed architectures that make data 

accessible and available to business users by directly connecting data owners, 

producers, and consumers. Approaching data mesh can be a huge undertaking for 

companies, but it means building a solid foundation that supports the evolution of the 

data-driven business. 
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2.2 MICROSERVICES MANAGEMENT USING SERVICE MESH 

Turning now to the analysis of the service mesh, in order to better define it, it is 

necessary to observe that with the advent of microservices, many of the problems for 

developing agile applications in a distributed environment were addressed by splitting 

the business logic of applicatives into different entities. Although this approach 

allowed organizations to embrace agile principles, enhancing their production 

velocity, efficiency, and by decoupling the different parts of their applications, 

achieving better quality of service, it became important to document and control how 

different parts of an application share data. 

2.2.1 CHALLENGES WITH MICROSERVICES 

Microservices communicate significantly over the network to achieve the business 

logic of the application they realize. This dependency adds many potential hazards that 

grow with the number of connections microservices business applications depends on. 

The fast development cycles lead to new challenges in managing an increasing 

deployment complexity [44], [45]: 

• Observing interactions between services in a large and distributed 

environment with many loosely coupled components can be difficult. 

• Traffic management at each service endpoint becomes more important to 

enable specialized routing such as for A/B testing5 or canary deployments6 

without impacting clients within the system. 

• Securing communications by encrypting the data flows between decoupled 

services with different binary processes and written in different languages is 

more complicated. 

• Network unreliability can be experienced in a complex scenario where dealing 

with timeouts, high-latency routes, and communication malfunctions can lead 

to cascading failures that are difficult to correctly address. 

 
5 A/B testing refers to a randomized experimentation process wherein two or more versions of a variable 

(web page, page element, etc.) are shown to different segments of website visitors at the same time to 

determine which version leaves the maximum impact and drives business metrics. 
6 A canary deployment is a strategy that reduces the risk of releasing new software that could impact 

the workload by allowing to release the software gradually to a small subset of users. 
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Many companies in the web market tried to resolve the problems mentioned above 

directly in the services code, developing specialized frameworks and libraries. This 

approach was not ideal, because it required an agreement on the same solution 

approach between all the microservices involved in a communication to assure 

consistency. These frameworks that companies created were very language and 

platform specific and in some cases, made it difficult to bring in new application 

services written in programming languages that did not have support from these 

resilience frameworks. Whenever these frameworks were updated, the applications 

also needed to be updated to stay in lock step. Finally, adding extraneous logic to the 

application code to provide a solution to the problems mentioned above is extremely 

error prone. 

2.2.2 SERVICE MESH 

A service mesh is a different approach to address challenges in a complex business 

scenario. It is a programmable infrastructural layer that provides a uniform way to 

connect, secure, manage, and monitor microservices. It does not establish connectivity 

between microservices, but instead it has policies and controls that are applied on top 

of an existing network to govern interactions between microservices. Service meshes 

are language agnostic and can be used in existing environments usually without 

applications code changes [46], [47]. 
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Figure 2-4. Comparison between a traditional microservices-based architecture (left) and a service 

mesh (right). Interactions between components are mediated by proxies specifically configured. 

A service mesh enhances a microservices-based infrastructure by providing the 

following chatacteristics [48]: 

• Observability: service meshes are deployed in a transparent way, giving 

visibility into and control over the traffic without requiring changes to the 

application code. 

• Traffic control: service meshes provide granular, declarative control over 

network traffic. That enables advanced features that enhance overall resiliency 

such as circuit-breaking7, latency-aware load balancing, eventually consistent 

service discovery, retries, timeouts, and deadlines. 

• Security: service meshes enforce security, policy, and compliance 

requirements. Most solutions provide a certificate authority (CA) to secure 

service-to-service communication. 

The value service meshes provide is independent from the number of services running 

and many organizations are adopting this technology in their business environments. 

 
7 The circuit breaking is a pattern that provides stability while the system recovers from a failure and 

minimizes the impact on performance. 
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Many of these companies use service meshes to modernize their business keeping their 

existing applications (monoliths or microservices) in the actual environment. To serve 

that purpose some service mesh implementations work in diverse enviroments, from 

containers to virtual machines and bare-metal hosts. In any case, all the systems share 

a common architectural composition. 

2.2.3 GENERAL ARCHITECTURE 

Although there are a few variants, each service mesh architecture is composed of two 

structural components [49]: 

• The data plane manages the real communication between services. 

• The control plane manages the configuration and policies of the data plane 

communications. 

 

Figure 2-5. General architecture scheme of a service mesh. 

2.2.3.1 DATA PLANE 

The data plane (sometimes called proxying layer) is composed by a set of proxies that 

are responsible to mediate and control the communication between services. When 

used with containers and orchestrators, the proxy is inserted in the container as a 

sidecar, acting transparently, so that applications, while communicating, are unaware 
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of the data plane existence. The proxy intercepts every packet in the request coming 

from or arriving to the application. By having communication routed between proxies, 

each of those serve as a key control point to perform complicated tasks. Each proxy is 

responsible for routing, health checking, load balancing, authentication, authorization, 

and generation of observable signals. The proxies used in many service mesh 

implementations can understand a variety of communication protocols, including 

application-level data. 

The data plane is not only responsible for intra-service communication, but also for 

inbound (ingress) and outbound (egress) service mesh traffic. Wether the traffic is 

entering the mesh (ingress) or leaving it (egress), the application service traffic is 

directed first to the proxy for handling prior to sending, or not sending, along to the 

application [50]. Since all the communication complexity is handled by proxy sidecars, 

applications are freed from the network logic. In a real business scenario with high 

complexity and many components running, the management of proxies can be 

difficult. In that situation a control plane acts as a single point of visibility and control 

over the data plane. 

2.2.3.2 CONTROL PLANE 

In general, control planes provide policy and configuration for service meshes, turning 

isolated and stateless proxies in a complete service mesh. The role of a control plane 

is to operate out-of-band, without touching any network packet. It is responsible for 

injecting proxy sidecars before new applications start, informing proxies of the 

presence of services, updating the mesh topology, enforcing traffic and authorization 

policies, and gathering metrics. It must be noted that generally proxies cache the state 

of the mesh, but they are considered stateless. 

2.2.4 ORCHESTRATORS VERSUS SERVICE MESHES 

As already mentioned, an orchestrator allows microservices-based applications to be 

executed and distributed on a large scale. On the other hand, service meshes are 

demanded to service-to-service communication management. 
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Container orchestrators like Kubernetes have different mechanisms for dealing with 

network management. In a Kubernetes native cluster, a kube-proxy component is 

deployed on each node and it mediates the communication between the different pods. 

It also communicates with the Kubernetes API Server and gets information about the 

services in the cluster. Because each node in a Kubernetes cluster runs many pods, 

adding a sidecar on a per-pod basis can increase the response latency than a single 

kube-proxy, due to more hops when the sidecar intercepts the traffic. Each kube-proxy 

has global settings and for this reason, they cannot control each service at a granular 

level [50], [51]. Kube-proxy does not offer advanced features to control network 

traffic. It implements load balancing across multiple pod instances of a service, but it 

does not provide, for example, traffic division by percantage to different applications 

or applying canary and blue-green releases. 

On the other hand, in a service mesh, sidecar proxies allow for a more fine-grained 

traffic management because they work on a per-pod basis. 

 

Figure 2-6. Kubernetes general architecture versus a service mesh deployment. 

Many service mesh solutions run seamlessly with orchestrators like Kubernetes giving 

the advanced tools to build, deploy, and manage, microservices-based architectures. 

In particular, service meshes are able to monitor what services are communicating with 
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each other, if those communications are secure, and they can control the service-to-

service communication in Kubernetes clusters so that applications can run securely 

and resiliently [52]. 

2.3 ENTERING THE WORLD OF EVENT-BASED ARCHITECTURES 

The growth of many companies set new challenges for maintaining and scaling 

enterprise systems. In many cases, as data, connection count, and performance 

requirements increase, these problems do not involve only technical topics, but also 

teams organization. Particularly, the dissemination of massive amount of data across 

a highly distributed infrastructure becomes difficult to manage for a large enterprise. 

Accessing data on another teams domain is always more difficult than accessing it 

locally, because this requires crossing both implementation and business 

communication boundaries. Often, this situation can create a strict technical 

dependency between teams, requiring them to work in synchronicity whenever a 

change is made. 

In many real situations, data is copied across the enterprise system and the inability to 

correctly disseminate data throughout a company is very problematic. The larger the 

data set and the more complex its sourcing, the more likely a copy will be out of sync 

with the original. Often, systems expect each other to have perfect, up-to-date copies, 

particularly when interacting about the same data. 

A weak or non-existent data communication structure can have a severe consequence 

for the company service quality and for that reason, new architectural solutions, such 

as those based on events, were defined. 

2.3.1 EVENT-DRIVEN COMMUNICATION STRUCTURES 

An event-driven architecture is a software paradigm that offers an alternative to the 

traditional communication structures: it serves dynamic business needs decoupling the 

production and ownership of data from access to it. In particular, this kind of 

architectures can be useful when there is the need for handling big data sets at scale 

and with real time constraints. Event-based communications do not replace request-
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response ones, but instead they define a completely different way of interacting based 

on events. 

An event is used to share information and it can be defined as a change, action, or 

observation in a system or domain that produces a notification. In most cases, the 

application generating the event notification does not expect any response, and it lets 

the consuming application decide what to do with that information. Even if the 

applications generating the event notification expect a response, they expect it only 

indirectly [24], [53]. 

In an event-based system, all shareable data is published to a set of event streams that 

continuously describe what has happened in the organization, from simple occurrences 

to complex, stateful records. It is important to notice that events are not just signals 

indicating some information, such as the readiness of a certain element in the system, 

but they are the data: events act both as data storage and as a means of asynchronous 

communication between services [54]. 

2.3.2 EVENT-DRIVEN MICROSERVICES 

Many organizations are migrating from the monolithic approach to microservice-based 

architectures to reach better agility, scalability, and reusability. In a real-world scenario 

this means overcoming challenges associated with distributed processing, ecosystem 

integration and service harmony. 

Joining the two approaches, the event-driven and the microservice-based, gives the 

best of the two worlds, sharing many of the same microservice architecture principles, 

while the interaction between services is focused on events [55]. Unlike in 

synchronous communication patterns, event-driven architectures define indirect 

communication, i.e., it is not possible to directly send messages to consumers and get 

an acknowledgment about successful consumption. In most cases, there is an 

intermediate system, such a message broker, able to consume, store, and deliver events 

to consumers in a reliable way. 
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Figure 2-7. Scheme of an event-based microservice architecture. 

The adoption of asynchronous event-driven microservice architectures can give many 

benefits [54]: 

• Granularity: services map neatly to bounded contexts and can be easily 

rewritten when business requirements change. 

• Scalability: individual services can be scaled up and down as needed. 

• Technological flexibility: services use the most appropriate languages and 

technologies. This also allows for easy prototyping using pioneering 

technology. 

• Business requirement flexibility: ownership of granular microservices is easy 

to reorganize. There are fewer cross-team dependencies compared to large 

services, and the organization can react more quickly to changes in business 

requirements that would otherwise be impeded by barriers to data access. 

• Loosely coupling: event-driven microservices are coupled on domain data and 

not on a specific implementation API. Data schemas can be used to greatly 

improve how data changes are managed. 

• Continuous delivery support: it is easy to ship a small, modular microservice, 

and roll it back if needed. 
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• High testability: microservices tend to have fewer dependencies than large 

monoliths, making it easier to mock out the required testing endpoints and 

ensure proper code coverage. 

2.3.3 EVENT MESH 

The event mesh was born from event-driven architectures and it is a dynamic 

infrastructure layer for delivering events among decoupled applications, supporting 

complex and widely distributed topologies, from on-premises to multi-cloud 

deployments. An event mesh intelligently handles information routing between 

brokers allowing the cluster of brokers to appear as a single virtual entity, decoupling 

producers and consumers from a logical, geografic, and administrative or platform 

domain point-of-view. 

The usage of traditional event-based microservice architectures can have its own 

challenges because it focuses mainly on an application level. In contrast, an event mesh 

works at the infrastructure level, allowing event-based network communication 

between applications, cloud services and devices [56], [57]. Event meshes are 

characterized by being environment-agnostic: they are designed to deliver events 

across disparate platforms, from cloud to IoT devices, no matter where applications 

are deployed and without the need for configuration of event routing. 

Parts of the event-based systems, such as brokers, are integrated in the architecture 

and managed independently from the applications. This allows services written in 

different languages to produce and consume events independently of the specific 

event-based system implementation. The architectural organization makes an event 

mesh support a loosely coupled integration between legacy applications, databases and 

devices, and the latest microservice-based and cloud-native applications. 

An event mesh is usually characterized by the following capabilities [56], [58]: 

• Support for various messaging services. 

• Fault tolerance for reliable message delivery, including automated recovery 

from network failures and fallback destinations for undeliverable messages. 
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• Support for multi-protocol bridges between disparate events, applications, and 

messaging platforms. 

• Support for both on-premises and multi-cloud deployment. 

• Support for multicast (all subscribers receive a copy of each message) or 

anycast (one subscriber receives a copy of each produced message) addresses. 

• Secure connections and transmission of event messages. 

In summary, an event mesh gives application developers and architects a foundation 

on which to build and deploy distributed event-driven applications, wherever they need 

to be built and deployed, dinamically and all in real-time. 

2.3.4 COMPARISON BETWEEN SERVICE AND EVENT MESH 

Both meshes implement at the infrastructure level advanced features to handle 

application components communications. The two solutions are complementary, 

providing different communication options. 

 

Figure 2-8. Comparison between service mesh and event mesh architectures. 

Service meshes connect components in a synchronous way, supporting sometimes 

multiple cloud environments and legacy applications. They are subjected to some 

important restrictions [59]: 

       

                      

          

            

             

      

             

             

             



48 

 

• No support for asynchronous event or streaming processing. 

• Most traffic shaping and network services only apply to synchronous request-

reply message exchange patterns and HTTP transport. 

• Limited to connection-oriented routing and the targeting of transport 

connections, not the routing of actual data. 

• Service mesh is currently mostly available on Kubernetes clusters. 

Many microservice deployments can work well within the constraints of a service 

mesh, but companies are shifting to a more modern approach that requires also to 

introduce event-driven applications to achieve better performance, decoupling, and 

real-time response beyond the single Kubernetes cluster. In that context, an event mesh 

can help by connecting different type of applications, wherever they have been 

deployed, through asynchronous and event-based messaging. 

Service meshes and event mesh can cohexist, providing developers the flexibility to 

choose which option best fits the application they are designing. From an infrastructure 

point of view, both can operate in the cloud and with the support of Kubernetes, but 

the event mesh can also connect nodes that are cloud-native without Kubernetes, on-

premises, and even bare-metal. This expands the deployment options, giving 

enterprises the possibility to embrace hybrid solutions. 

However, adding a new tool can often increase complexity and costs. For example, 

service meshes require injecting a sidecar alongside each component and this requires 

an additional number of resources while an event mesh requires a set of replicated 

brokers that need to keep messages even when a failure happen. For this reason, while 

for a small number of microservices, without explicit security requirements, or 

complex deployments, adding meshes can make a company incur in some exceeding 

costs and management complexity, in the case of enterprises, that have highly 

distributed modern applications, often with high scaling requirements, benefits 

outweigh the costs of operating microservices. This explains why many 

implementations of these technologies were born from enterprises who were publicly 

using microservices in production for many years, such as Google and Twitter [60], 

[61]. 
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Figure 2-9. This graph represents a real complex microservice-based application from Monzo as of 

2019 comprising 1500 components. Black points are microservices, blue lines are enforced network 

rules allowing traffic. 

In the next chapter we will analyze some of these implementations, starting from 

service mesh and then concluding with event mesh. 
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3 SERVICE AND EVENT MESH IMPLEMENTATIONS 

During the past few years, the service mesh ecosystem grew with many different 

implementations, some proprietary and other open source. The fact that there are 

several options on the market validates the interest on service mesh and it shows that 

the community has not already selected a de facto standard. While most of the 

solutions share the same reference architecture mentioned in the previous chapter, 

there are variations in approach and project structure that need to be taken into 

consideration when selecting a service mesh for a specific situation. 

The implementations that we will analyze are Istio, Linkerd, Consul, NGINX Service 

Mesh, and Open Service Mesh. These were chosen because they appear as the most 

interesting for our work: either because they are particularly popular, or because they 

are open-source, or because they have an interesting architectural feature such as an 

alternative interaction system.  

Later, we will take into consideration an event mesh implementation from the Apache 

Incubator project that actually is the only completely open-source in that scenario. 

3.1 ISTIO 

Originally founded by Google, IBM, and Lyft, Istio is a completly open-source service 

mesh implementation, licensed under the Apache License 2.0, and part of the CNCF 

Cloud Native Landscape. 

Istio has grown to include contributions from companies beyond the original founders, 

such as VMware and Cisco and it is used by many organizations to design their 

commercial products to protect, connect and monitor large distributed applications that 

are deployed in hybrid or multi-cloud environments. For all these reasons it is one of 

the most important players in the service mesh scenario [46]. 

Istio itself has been built on top of other open-source projects, such as Envoy, 

Kubernetes, Jaeger, and Prometheus. 
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3.1.1 ARCHITECTURE 

Istio logically subdivides into a control plane and a data plane: 

• the control plane manages and configures proxies to route traffic, it applies 

policies, and it acquires telemetry data too. Up to Istio 1.4 it was divided into 

five independently deployable microservices, but from version 1.5 the control 

plane has been unified into a single entity called istiod [62]. 

• the data plane is composed of a set of intelligent proxies deployed as sidecars. 

These proxies mediate and control all network communication between 

microservices and they also collect and report telemetry on all mesh traffic. 

 

Figure 3-1. Scheme of istio architecture. 

3.1.2 CONTROL PLANE 

As already mentioned, istiod packages all the control plane components in a single 

binary and it is built on the same code and API contracts as the separate components, 

keeping the same features: service discovery, configuration and certificate 

management. Because of that, looking at the separate components can help in 

understanding the different areas covered by the control plane. 
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3.1.2.1 PILOT 

Pilot is used to manage traffic and control inter-service traffic flows and API calls. It 

acts as a central controller of the service mesh and it is in charge of communicating 

with the sidecars by using the Envoy APIs. All the high-level routing rules that control 

traffic behaviour are converted into Envoy-specific configurations and propagated to 

the sidecars at runtime. Pilot is also responsible for resiliency features such as circuit 

breakers and retry logic. 

Pilot abstracts the service discovery mechanisms into a canonical representation 

(standard format) independent of the underlying platform and it generates a specific 

configuration based on the canonical representation that all the sidecars conformant to 

the Envoy API can consume. 

Platform-specific adapters in Pilot are responsible for populating this canonical model 

appropriately. For example, the Kubernetes adapter implements the necessary 

controllers to watch the Kubernetes API server for changes to the pod registration 

information, ingress resources, and third-party resources that store traffic management 

rules. 

 

Figure 3-2. Pilot architectural scheme with platform-specific adapters. 
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3.1.2.2 MIXER 

Mixer was a central component in istio architecture, mainly responsible for collecting 

telemetry data from the sidecar proxies as-well-as other control plane services. 

 

Figure 3-3. Scheme of istio with the Mixer component. 

In the architecture shown in Figure 3-3, each Envoy sidecar calls Mixer after each 

request to report telemetry information. The proxies are sending data about the source 

and destination side of the request and most importantly the unique ID of the source 

and destination workloads used essentially as a unique Pod ID in a Kubernetes 

environment. After that operation, it is a Mixer responsibility to enrich the reported 

traffic information with metadata from Kubernetes and to expose the metrics on a 

specific endpoint for Prometheus to scrape [63]. 

Although the Envoy sidecars buffer the outgoing telemetry requests, that architecture 

generated significant resource consumptions in larger environments because an active 

connection was necessary between every proxy and Mixer. That obviously caused 

higher CPU and memory consumption in the proxies, and subsequently caused higher 
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latencies as well. To reduce the resource consumption, the telemetry feature was re-

factored with a focus on the data plane. 

3.1.2.3 ISTIO NEW TELEMETRY SYSTEM 

The second version of istio telemetry system (Telemetry V2), thanks to an 

implementation of an Envoy extension, removed the Mixer central component, 

requiring the proxies themselves to directly access the Kubernetes metadata to enrich 

metric information. 

 

Figure 3-4. Scheme of istio without the istio component. 

This was hard to do in older versions because developing an extension for Envoy 

required a monolithic development process: the binary needed to be deployed, needed 

rolling updates, etc. and the overall process was difficult to manage8. 

To enhance the development process, istio implemented on Google V8 engine a 

WebAssembly (WASM) runtime for Envoy through which developers can write their 

custom code, compile it to WebAssembly plugins, and configure Envoy to execute it. 

These plugins can hold arbitrary logic, so they are useful for all kinds of message 

integrations and mutations. 

 
8 In addition, the extensions needed to be written in C++. 
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In-proxy service-level metrics in Telemetry V2 are provided by two custom plugins: 

• metadata-exchange: how to make client/server metadata about the two sides 

of a connection available in the proxies. 

• stats: it records incoming and outgoing traffic metrics into the Envoy statistics 

subsystem and makes them available to monitoring systems. 

Envoy proxies collect metrics automatically from the traffic they handle: the 

WebAssembly-based plugin system allows Envoy to process traffic data that flows 

through the proxy and then it can prepare metrics in Prometheus format to be emitted. 

Then Prometheus, that is a software that can be used to monitor the service mesh 

deployment, uses Kubernetes built-in service discovery to directly scrape the Envoy 

proxies and collect the results. Finally, the metrics can be visualized by using tools 

such as Grafana and Kiali. 

3.1.2.4 GALLEY 

Another component in the istio control plane architecture is Galley. It is used to 

validate and process the istio API configurations made by users. It insulates the other 

istio components from the details of obtaining data from the underlying platform, such 

as Kubernetes. 

3.1.2.5 INJECTOR AND CITADEL 

The last relevant istio control plane elements are Injector and Citadel. 

The first was responsible for auto-injecting the data plane proxies in the application 

containers and setting up bootstrap, while the second was used to enforce strong 

service-to-service and end-user authentication with built-in identity and credential 

management. 

3.1.2.6 CONTROL PLANE UNIFICATION 

From its beginning, the entire istio project was developed following the microservices 

design approach. As already shown, the control plane was divided into different 

services, like a modern cloud-native application. 
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As istio adoption increased, the development team decided to shift to a monolithic 

approach. By receiving customers feedback, they noticed that in most istio 

installations, all the control plane components were delivered and managed as a single 

entity, mainly because operated by a single team or individual. The istio operators were 

paying for the greater operational complexity without gaining much of the benefits 

typically associated with microservices: independent rollout, scale, and security 

isolation. 

The solution to this problem was to consolidate the control plane into a monolith called 

istiod, comprising Pilot, Citadel, Galley, and Injector. As already mentioned, the Mixer 

component was removed in a concurrent project aimed in which the Envoy proxies 

became directly responsible of the telemetry reporting to the monitoring back end. This 

change was due to similar reason to that of istiod in that a design pattern, identified as 

necessary at massive operational scale, was not justified against the maintenance and 

performance overheads for typical users [64], [65]. 

 

Figure 3-5. The architectural evolution of istio control plane: (a) microservices-based and (b) monolith. 

Compared with the microservices-based approach, this new monolithic control plane 

offers several benefits [66], [67]: 
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• Simplified installation: it is simpler to deploy a single binary than multiple 

components with their associated configurations. 

• Easier configuration: many of the configuration options that istio had before 

were related to the orchestration of the components. 

• Simple debugging: having fewer services means less cross-service 

environmental debugging. 

• More scalable: the control plane monolith becomes relatively easy to scale 

because it is made of just one component. 

• Easier version management: the time to start, upgrade, and remove are 

reduced because the monolith does not require to deal with dependencies and 

start-up orders. 

The costs of istio control plane are mainly dominated by serving the Envoy dynamic 

resource discovery (xDS) APIs, which we will describe later, that program the data 

plane [66]. Every other feature has a marginal cost. This means there is very little value 

to having those features in separately scalable microservices. 

It should be noted that internally istio still maintains the logical separation between 

some of its original control plane components and that each capability is exposed as a 

discrete API. This is required when there is the need to be retrocompatible, but also it 

can be particularly useful when making complex deployments, such as multicluster 

ones, where istiod can be deployed as a single-purpose service such as “injection”, 

“certification provider”, or “validation”. 

3.1.3 DATA PLANE 

The second element of the istio architecture, the data plane, has Envoy as the main 

component. Envoy is a proxy for the container it comes up beside and because it is 

injected as a sidecar, there is no need to redesign the microservices-based application 

running on Kubernetes [68]. Developers can write the code the way they used to, 

without having to worry about the operational and security aspects. 

Istio also uses Envoy to run gateways [46] and this allows to manage inbound and 

outbound traffic from a mesh by defining a specific proxy at the edge of the mesh 
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capable of managing HTTP/TCP connections. Each gateway communicates with the 

control plane like any other proxy in the data plane does. 

3.1.3.1 ENVOY ARCHITECTURE 

The Envoy architecture is made of a Listener followed by a filter chain. The first 

component allows Envoy to listen to network traffic at a configured address, so that it 

is possible to enable a flow of traffic through the proxy. Each Listener defines a filter 

chain: built-in or custom filters can be composed and arranged in such a way to 

configure Envoy to compute different operations like translating protocol messages or 

generating statistics [69]. 

 

Figure 3-6. General overview of the Envoy filter chain architecture. 

Envoy provides three types of filters that form a hierarchical filter chain: 

• Listener Filters access raw data and manipulate metadata of L4 connections 

during the initial (pre)connection phase. For example, the TLS Inspector Filter 

identifies if a connection is TLS encrypted and parses the TLS metadata 

associated with the connection. 

• Network Filters access and manipulate raw data on L4 connections i.e., TCP 

packets. For example, the TCP Proxy Filter routes client connection data to 

upstream hosts and it also generates connection statistics. 

• HTTP Filters operate at L7 and are optionally created by a final Network filter 

i.e., the HTTP Connection Manager. These filters access and manipulate HTTP 

requests and responses. For example, the gRPC-JSON Transcoder Filter 

exposes a REST API for a gRPC backend and translates requests and responses 

into corresponding formats. 
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Once a routing decision has been made by a filter stage (L3/L4 connection or a new 

HTTP stream), these filters ask the cluster manager for connection to an upstream 

service. This component handles all the complexity of knowing which hosts are 

available and healthy. 

3.1.3.2 SIDECAR INJECTION PROCESS 

One important feature introduced firstly by istio was the ability to automatically inject 

a sidecar proxy. 

Before the initialization of a container, istio prepares the environment for sending the 

traffic to the proxy. For this specific task an init container called istio-init is used to 

setup the iptables rules of the container. In that way all the inbound and outbound 

traffic goes through the sidecar proxy. 

An init container is different than an app container in the following ways: 

• It runs before an app container is started and it always runs to completion. 

• If there are many init containers, each should complete with success before the 

next container is started. 

3.1.4 CONTROL PLANE AND DATA PLANE COMMUNICATION 

After having described the two planes of the istio architecture, we want to delve into 

the communication between those. 

Envoy is architected such that it is possible to make static and dynamic proxy 

configurations. The first case can be useful in simple scenarios with a limited number 

of entities in the service mesh. But the more the complexity, the less static 

configuration helps: configurations must be provided by hand and proxies must be 

restarted to accept them. In the second case, each Envoy proxy discovers dynamic 

resources at runtime, without the need to restart, by watching a path in the local 

filesystem or by querying one or more management servers. These discovery services 

and their corresponding APIs are known as x Discovery Service (xDS) [70], [71].  
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The resources can be requested by proxies through three different kind of 

subscriptions: 

• filesystem watching: it monitors files in a specific path. 

• gRPC streaming subscription: each xDS API can be individually configured 

to point to the cluster of the corresponding upstream management server. 

• REST-JSON polling subscription: a single xDS API can perform synchronous 

polling of REST endpoints. 

 

Figure 3-7. General overview of a service mesh. Black lines indicate the xDS communication. 

Istiod acts as a central xDS management server and it uses gRPC streaming 

subscriptions to configure the data plane. Inside each pod resides a component that is 

called istio-agent or pilot-agent. It is still part of the control plane, but it runs on a per-

Pod basis and it helps istiod to discover endpoints, TLS secrets and other cluster 

information. 

3.1.5 ADVANCED FEATURES 

Istio is often used toghether with Kubernetes, on which it relies to realize some 

features. For example, it does not provide any service discovery, but it keeps an 

internal service registry containing the set of service endpoints running in the mesh. 
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Pilot adapters automatically add to the registry the services discovered from 

underlying platforms, such as Kubernetes, through its APIs. 

Although one of the main scenarios in which istio is usually deployed is in a single 

Kubernetes cluster, it can work also in different and more advanced situations: 

• It supports not only containers, but virtual machines too. 

• The mesh can be confined in a single cluster or distributed across multiple 

clusters. 

• The services can be located in a single fully connected network or they can be 

deployed across multiple networks by using gateways. 

• To ensure high availability it is possible to use multiple control planes instead 

of a single one. 

• The clusters can be connected in a single multi-cluster service mesh or they 

can be federated into a multi-mesh deployment. 

• The service mesh can also support multi and hybrid cloud deployments. 

• Locality allows to deploy istio to create in multi-zonal services. 

3.2 LINKERD 2 

Linkerd is an open-source service mesh solution specifically designed for Kubernetes 

with a focus on providing a lightweight implementation with a minimalist design [46]. 

It is licensed under the Apache License 2.0 and it is hosted by the CNCF, with major 

contributions from Buoyant, which founded the project. 

First based on Twitter Finagle, Linkerd was written in Scala and designed to be 

deployed on a per-host basis, but criticisms of its comparatively large memory 

footprint led to the development of Conduit [72], a lightweight service mesh 

specifically designed for Kubernetes, written in Rust and Go. This project was since 

folded into Linkerd, which relaunched as Linkerd 2.0 [50]. 

The previous 1.x version is still accessible, but it is in maintainance and no new 

features will be added. For this reason, when Linkerd will be mentioned during the 

dissertation, we will implicitly refer to version 2.0. 
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3.2.1 ARCHITECTURE 

Like many other service meshes, the Linkerd architecture is logically divided in a 

control plane and in a data plane [73]: 

• the control plane aggregates telemetry data, provides user-facing APIs, 

manages and configures proxies. It is composed by a set of services that run in 

a dedicated Kubernetes namespace (linkerd by default). 

• the data plane consists of transparent proxies deployed as sidecars that mediate 

and control all network communication between microservices and that send 

also telemetry data to the control plane. 

 

 

Figure 3-8. Linkerd general architecture. 

3.2.2 CONTROL PLANE 

Linkerd control plane is not made of a single entity, but it is splitted into a multiplicity 

of operational components based on their functional boundaries (destination, api, web, 

etc.). These components run on the same data plane as the application does, allowing 

to use the same tooling to inspect the behavior. 
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The first component is the command-line interface (CLI) that typically runs outside of 

the cluster, helping users accomplish various tasks by interacting directly with the 

control plane. 

Other notable components are the following: 

• The Controller oversees mediating the communication between CLI and the 

Linkerd internal controller components by exposing an API interface. 

• The Destination is mainly responsible for service discovery and it mediates the 

communication between the data plane and the information Kubernetes 

provides. Linkerd Destination looks up the IP address in the Kubernetes API 

and then, if the IP corresponds to a Service, Linkerd will load balance across 

the endpoints of that Service and will apply any policy from that Service 

Profile. Otherwise, if the IP address corresponds to a Pod, Linkerd will not 

perform any load balancing or apply any Service Profiles. 

• The Proxy Injector relies on a Kubernetes admission webhook and it is 

responsible, if enabled, to automatically add the data plane proxy to pods. 

• The Identity component acts as a TLS Certificate Authority that accepts CSRs 

from proxies and returns signed certificates. 

• The Service Profile Validator validates new service profiles before they are 

saved. 

In addition to the built-in components, Linkerd provides some other features as 

extensions. One of those is viz that includes by default a full on-cluster metrics stack, 

comprising CLI tools, a web dashboard, a Prometheus instance, and a pre-configured 

Grafana dashboard. The metrics stack may require significant cluster resources. 

Prometheus, in particular, consumes resources as a function of traffic volume within 

the cluster. 

3.2.3 DATA PLANE 

The proxy on which the data plane relies, Linkerd2-proxy, is specifically designed for 

the second version of the Linkerd service mesh and because it is tightly coupled with 

the control plane, it cannot be used by other projects [74]. 
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With respect to other proxies, such as Envoy, NGINX Plus and other solutions that are 

flexible enough to provide many different features (ingress, egress, proxy sidecar, API 

gateway etc.), Linkerd proxy is designed just for service meshes and for that reason it 

has a simpler architecture. Less complexity means not only a more maintainable code, 

but also it allows to optimize resource consumption: the aggregate CPU and memory 

consumed by the data plane by many proxies in a production system is a critical cost 

of a service mesh; so simplyfing the proxy architecture means better resource usage. 

Moreover, keeping the complexity at the minimum allows to define a smaller attack 

surface, so better security overall. 

Linkerd2-proxy is designed also to work with zero-config [75]. That means that there 

is no user-facing YAML because it is configured automatically through environment 

variables set at injection time and then modified when needed by the Linkerd control 

plane at runtime. This simplifies a lot the service mesh setup, requiring no tuning nor 

tweaking thanks also to features like protocol detection and Kubernetes native service 

discovery. 

It is important to highlight that Linkerd2-proxy is written in Rust to achieve high 

performance and memory safety, but, unlike Envoy, it is not possible to develop 

extensions for that proxy. However, by installing, for example, the viz control plane 

extension, it is possible to access a wide variety of features for metrics analysis: so 

each proxy is capable to gather metrics automatically from the traffic they handle and 

subsequently, the Prometheus instance will collect and will store all Linkerd metrics 

by scraping proxy /metrics endpoint. 

Finally, Linkerd shares with istio the same out-of-process architecture design: the 

proxy is language agnostic and it runs alongside the application requiring to be injected 

at the container creation. For this reason, the data plane comprises also the linkerd-init 

container that, similarly to the istio-init container, is added to each meshed pod before 

any other container starts using iptables to route all the inbound and outbound TCP 

traffic through the pod. 
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3.3 CONSUL CONNECT 

Consul Connect is an open-source, distributed and highly available system with a 

unique architecture that allows to use each feature individually, such as the service 

discovery, or together to build a complete service mesh solution [46]. 

The project was founded by HashiCorp and it is licensed under the Mozilla Public 

License 2.0. HashiCorp provides also a commercial version called Consul Enterprise. 

3.3.1 ARCHITECTURE OVERVIEW 

A distinctive feature of Consul Connect is that it works per-node instead of per-pod. 

Each node in the service mesh need to run an agent that is responsible for health 

checking the services on the node as well as the node itself [76]. The agent is not 

required for discovering other services or to store data because this information is kept 

by servers which are responsible for storing and replicating data. The servers maintain 

a catalog, which, formed by aggregating information submitted by the agents, 

maintains the high-level view of the cluster, including which services are available, 

which nodes run those services, health information and more. 

Consul has been developed to support complex deployment scenarios and for this 

reason it is organized into Data Centers, each running a cluster of Consul servers. 

When a cross-data center service discovery or configuration request is made, the local 

Consul servers forward the request to the remote Data Center and return the result [77]. 
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Figure 3-9. Consul Connect general architecture showing multiple data centers involved in the service 

mesh. 

Consul Connect has a different architecture than istio and Linkerd, but it is possible to 

recognize the control and data planes: 

• the control plane provides mainly four features: service discovery, secure 

communication, resource configuration and network segmentation. It is 

composed by agents which can act as clients or servers. 

• the data plane uses proxies to control the communication that happens between 

services. 

3.3.2 DATA AND CONTROL PLANES 

With respect to the data plane, while Consul ships with a simple built-in proxy, it 

cannot be used for production deployments because it does not support many Consul 

Connect features and it is not in active development. Instead, Consul data plane relies 

mainly on the same third-party proxy istio uses which is Envoy [78], [79]. Since Consul 
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uses this component in the same way that other service mesh implementations use it, 

and having already covered it previously, we continue our discussion by addressing 

Consul control plane analysis. 

At its core Consul control plane is composed by agents that, deployed on each node of 

the cluster, maintain membership configuration, register services, run checks etc. 

Each agent can run in two modes: 

• client node makes up the majority of the cluster, and it is very lightweight as it 

interfaces with the server node for most operations and maintains very little 

state of its own; 

• server node has the extra burden of participating in the consensus quorum9, 

storing cluster state, and handling queries. 

The control plane is therefore made up of a single binary, without multiple components 

that need to be deployed and configured. Each client keeps a local cache that is 

constantly updated by the server. This reduces the need for any external 

communication and allows for quick and effective changes to be made at the edge. 

Moreover, because there are no centralized planes that could cause bottlenecks and 

adversely affect performance, APIs respond quicker. 

To better understand the control plane architecture, it is appropriate to take a look at 

the agents lifecycle. 

When an agent is first started, it has no information about others and it must discover 

its peers by joining the cluster. After the node joins, this event is gossiped to the entire 

cluster. If the agent is a server, existing servers will begin replicating to the new node. 

In the case of a network failure, some nodes may become unreachable and for that 

reason they are marked as failed and the catalog is updated accordingly. Because it is 

impossible to distinguish between a network failure or a node crash, both cases are 

 
9 The higher burden on the server nodes means that usually they should be run on dedicated instances. 

So, they are more resource intensive than a client node. 
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treated in the same way. Once the network recovers or a crashed agent restarts the 

cluster will repair itself and unmark a node as failed. 

When a node wants to leave, it must specify its intention and the cluster marks that 

node as having left. Unlike the failed case, all the services provided by a node are 

immediately deregistered. If the agent was a server, replication to it will stop. 

To prevent an accumulation of dead nodes, the ones in either failed or left states, 

Consul automatically removes them out of the catalog with a process termed reaping. 

The balance between the number of clients and servers is not static, but it can change 

over time to keep balance between availability and performance, as consensus gets 

progressively slower as more machines are added. To be noted that there is no limit to 

the number of clients and they can easly scale. 

3.3.2.1 TELEMETRY 

The Consul agent collects and periodically aggregates various runtime metrics about 

the performance of different libraries and subsystems. These data, if properly 

configured, are streamed to a statsite or statsd server which is responsible for 

collecting all telemetry information, then flushing it to Graphite or any other metric 

store [80]. 

3.3.3 INGRESS-EGRESS 

Consul uses gateways to provide connectivity into, out of and between service meshes. 

Different modes are provided by different kind of gateways [81]: 

• mesh gateways enable service-to-service traffic between Consul data centers. 

Those data centers can reside in different clouds or runtime environments 

where general interconnectivity between all services in all datacenters is not 

feasible. 

• ingress gateways accept potentially unauthenticated traffic from outside to 

services in the mesh. 

• terminating gateways route traffic from services in the Consul service mesh to 

external services that do not have sidecar proxies or are not integrated natively. 
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These may be services running on legacy infrastructure or managed cloud 

services running on infrastructure not in direct control. Terminating gateways 

effectively act as egress proxies that can represent one or more services, 

terminating mTLS connections, enforcing Consul intentions, and forwarding 

requests to the appropriate destination. 

3.3.4 ORCHESTRATORS AND CONSUL 

With regards to orchestrators, Consul Connect is well integrated with HashiCorp 

Nomad10, providing features like secure service-to-service communication between 

Nomad jobs and task groups, while taking advantage of some Nomad characteristics 

such as the ability to use the dynamic port feature. Consul can, however, also run 

directly on Kubernetes providing a way to automate, secure, and observe the 

connections between pods and clusters, at the same time enhancing the scalability and 

resiliency of the microservices platform. 

One of the most important features Consul provides is consistency when securely 

connecting nodes within Kubernetes clusters with external services. This is possible 

as long as they can communicate to the Consul server nodes via the network, 

responsible for the cross-data center communication, as already explained. Within the 

Kubernetes environment, Consul clients can run as pods on every node and expose the 

Consul API to running pods, enabling many Consul tools to work on Kubernetes since 

a local agent is available. This will also register each Kubernetes node with the Consul 

catalog for full visibility into the infrastructure. 

The Consul catalog can be synchronized with the Kubernetes service registry so that, 

on one hand, pods inside a Kubernetes cluster can connect to external services using 

the native Kubernetes service discovery, on the other hand, external services can 

connect to registered Kubernetes services using the Consul service discovery.  

 
10 Nomad is a flexible scheduler and workload orchestrator that enables an organization to easily deploy 

and manage any containerized or legacy application using a single, unified workflow. Nomad can run 

a diverse workload of Docker, non-containerized, microservice, and batch applications. 
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The synchronization between Consul and Kubernetes can occur in three ways [82]: 

• Bidirectional sync allows Kubernetes services to be available to Consul agents 

and services registered in Consul, but external to the Kubernetes cluster, can 

be available as first-class Kubernetes services. 

• Kubernetes services synced to the Consul catalog enables the first to be 

accessed by any node that is part of the Consul cluster, including other distinct 

Kubernetes clusters. 

• Syncing Consul services to Kubernetes service enables non-Kubernetes 

services, external to the cluster, to be accessed in a native Kubernetes way, 

through kube-dns or environment variables. This makes it very easy to 

automate external service discovery, including hosted services like databases. 

3.4 NGINX SERVICE MESH 

NGINX Service Mesh (NSM) is a complete service mesh solution for QoS and 

resilience in general, thanks to the highly proven technologies on which it builds. The 

project is owned and developed by F5 and it is not open source, but some of the 

technologies it uses are, such as the Kubernetes Ingress Controller and NATS. 

3.4.1 ARCHITECTURE OVERVIEW 

Like the other service mesh solutions that we have already analyzed, NGINX Service 

Mesh is divided in two layers [83]: 

• The control plane is responsible to enforce a desired state across managed 

applications. 

• The data plane follows the sidecar pattern so that it replicates with the 

applications workload. 

The service mesh can be controlled using the NSM CLI, an utility that communicates 

with the control plane through the Kubernetes API server. 



71 

 

 

Figure 3-10. NGINX Service Mesh general architecture. 

3.4.2 CONTROL PLANE 

The NSM control plane is composed by the following elements [84]: 

• NSM Controller; 

• NATS; 

• NSM metrics server. 

NSM Controllers, the core of the control plane, oversee setting the desired service 

mesh configuration. They watch a set of native Kubernetes resources (Services, 

Endpoints and Pods), a collection of custom resources defined by the Service Mesh 

Interface (SMI) specification, and individual resources specific to NGINX Service 

Mesh. When a new event occurs in Kubernetes that NSM Controllers are looking for 

(e.g., a new application or traffic policy has been created), then the control plane builds 

an internal configuration based on this data and it sends it to the sidecars. The 

communication between the control plane and the data plane is transparently managed 

by NATS, an advanced technology for messaging in large, cloud-native, distributed 

systems. 
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Figure 3-11. NATS publish subscribe model. 

NATS follows the publish-subscribe model, and it manages addressing and discovery 

not based on hostnames and ports, but on subjects, sometimes called topics, that are 

categories for messages [85], [86]. In this way, the communication does not depend 

on network location and this provides an abstraction layer between the application or 

service and the underlying physical network. Differently from the other service mesh 

solutions, in which the control plane communicates through 1:1 API calls, NATS 

allows NSM to perform M:N communications, reducing the control plane 

development complexity and the consumption of resources at runtime, enhancing the 

scalability of the whole system. Other advantages of using NATS are that it is language 

agnostic and it can run on multiple platforms, such as inside Kubernetes clusters, 

virtual machines, or bare metal, enabling hybrid deployments. 

The NSM control plane comprises also the metrics server that provides quick access 

to the metrics data in a standard format by extending the Kubernetes APIs. NGINX 

Service Mesh automatically deploys a Prometheus instance that directly scrapes data 

plane sidecars and the control plane metrics server to collect all information about the 

service mesh cluster11. 

 
11 Metrics can be accessed by directly querying Prometheus, the NSM metrics server, or viewing the 

built-in Grafana dashboard. 
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3.4.3 DATA PLANE 

NGINX data plane follows the sidecar pattern like other service mesh solutions, but it 

consists of two components12: an agent and a NGINX Plus instance. 

The agent accepts the NGINX Service Mesh control plane configuration via NATS 

and uses this data to configure the NGINX Plus instance. 

NGINX Plus is a commercial version of the famous NGINX web server. Here it is used 

mainly with the purpose of being a proxy, managing the communications between 

services, but it can be used also in other ways, such as a load balancer and API 

gateway. In particular, it is possible to deploy NGINX Plus as an Ingress or Egress 

Controller to provide production-grade control over north-south traffic13 with a single 

configuration. Because of its integration within the NSM solution, the Ingress 

Controller can communicate without a sidecar injected with the workloads, reducing 

latency and complexity to the Kubernetes environment. 

3.5 OPEN SERVICE MESH 

Open Service Mesh (OSM) is an open source, lightweight, and extensible cloud native 

service mesh, initially developed by Microsoft. It leverages out-of-the-box 

observability features for highly dynamic microservice environments and it configures 

through SMI open standard specification [87], [88]. 

3.5.1 ARCHITECTURE OVERVIEW 

Open Service Mesh relies on Kubernetes and, like the projects we already analyzed, it 

is divided in two parts: 

• The control plane manages and configures proxies to route traffic. 

• The data plane is responsible for mediating the communication between 

services. 

 
12 NSM uses init containers to inject sidecars and they work in the same way as the projects we already 

described. 
13 North-South is the traffic that goes in and out of the cluster, while East-West resides in it. 
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Figure 3-12. Open Service Mesh general architecture with the main components and their interactions. 

3.5.2 CONTROL PLANE AND DATA PLANE 

The OSM data plane uses by default Envoy for proxy sidecars, but it accepts also other 

reverse-proxy solutions with service mesh capabilities. The data plane receives 

configuration updates, through mTLS gRPC calls, from the control plane, which 

implements the Envoy xDS API. 

The OSM control plane is made of the following components: 

• Proxy Control Plane; 

• Endpoints Providers; 

• Certificate Manager; 

• Mesh Specification; 

• Mesh catalog. 

The Proxy Control Plane is responsible for the communication with the proxies in the 

data plane. It oversees enforcing the configuration updates and it implements the 

interfaces required by the specific reverse proxy chosen. Because the Proxy Control 

Plane has a central role in the service mesh when it comes to traffic policy enforcement 

and connectivity management between services, it is designed to be stateless and 

highly available. 
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The Endpoints Providers abstract the controller workings from the underlying 

compute platforms (Kubernetes clusters, on-premises machines, or cloud-providers 

VMs) participating in the service mesh. 

The Mesh catalog collects inputs from all other components and dispatches 

configuration to the proxy control plane. It combines the outputs of all other 

components into a structure, which can then be transformed into proxy configuration 

and dispatched to all listening proxies via the Proxy Control Plane. 

The Certificate Manager provides each service participating in the service mesh a TLS 

certificate that is used to establish and encrypt connections between services using 

mTLS. 

The Mesh Specification is a wrapper around the existing SMI Spec components. It 

provides simple methods to retrieve SMI Spec resources, abstracting away cluster and 

storage specifications. 

 

Figure 3-13. OSM control plane architecture with the scheme of its interaction with the data plane. 

The Figure 3-13 shows not only the OSM architecture, but also how the control plane 

components interact to communicate with the data plane: 
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1. The Mesh Catalog communicates with the mesh specification module (4) to 

detect when a Kubernetes service is created, changed, or deleted via SMI 

Specification. 

2. Then it reaches out to the Certificate Manager and requests a new TLS 

certificate for the newly discovered service. 

3. It retrieves the IP addresses of the mesh workloads by observing the compute 

platforms via the Endpoints Providers. 

4. Combines the outputs of points 1, 2, and 3 above into a data structure, which 

is then passed to the Proxy Control Plane (1), serialized and sent to all relevant 

connected proxies. 

3.5.2.1 TELEMETRY 

Open Service Mesh comes with the observability stack by default, including 

Prometheus for metrics collection, Grafana for metrics visualization, Jaeger for 

tracing, and Fluent Bit for log forwarding to a user-defined endpoints. 

Each sidecar proxy collects information for incoming and outgoing traffic, errors, and 

response timing for requests. Periodically, Prometheus directly gathers and stores 

consistent traffic metrics and statistics for all applications running in the mesh by 

scraping over the proxies. Then, the collected metrics can be viewed with Grafana, 

which uses Prometheus as backend timeseries database. 

3.6 COMPARISON OF SERVICE MESHES 

Finished the analysis of the single service meshes, we want now to summarize in a 

table the characteristics of each of the implementations, in order to offer an overall 

picture that can immediately show the differences and similarities between the 

different technologies.  
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 Istio Linkerd Consul NGINX OSM 

Legal 

Founder(s) Google, IBM, 

Lyft 

Buoyant HashiCorp F5 Microsoft 

Open source ✔ ✔ ✔ - 

Community 

version only 

✖ ✔ 

License Apache 

License 2.0 

Apache 

License 2.0 

Mozilla 

Public 

License 2.0 

Proprietary Apache 

License 2.0 

Hosted by OUC CNCF HashiCorp F5 CNCF 

Architecture 

Control Plane Monolithic - 

Single binary 

Multiple 

components 

Agent - 

Single binary 

Multiple 

components 

Multiple 

components 

Data Plane Custom 

Envoy proxy 

Ad-hoc 

micro-proxy 

Envoy Agent + 

NGINX Plus 

Envoy 

Deployment Per-pod Per-pod Per-node Per-pod Per-pod 

DP 

extensibility 
✔ - multiple 

languages, but 

WASM 

compatible 

✖ ✖ ✔ ✔ - multiple 

languages, 

but WASM 

compatible 

Ingress-egress ✔ - like any 

other proxy, 

HTTP/TCP 

✖ ✔ ✔ ✔ - Third-

party 

Service 

discovery 

Third-party 

(default 

Kubernetes) 

Third-party 

(default 

Kubernetes) 

✔ ✔ - by NATS Third-party 

(default 

Kubernetes) 

Service 

catalog 

Kept internal, 

platform-

agnostic 

NA ✔ ✔ Kept 

internal, 

platform-

agnostic 

CP main 

language 

Go Go Go NA Go 

DP main 

language 

C++ Rust C++ NA C++ 

Control plane – data plane communication 

Static 

configuration 
✔ ✔ - automatic ✔ ✔ ✔ 

Dynamic 

configuration 
✔ ✔ - automatic 〰 ✔ ✔ 

Interaction 

system 

xDS API 

through gRPC 

protocol, 

central istiod 

calls proxies 

NA xDS API 

through gRPC 

protocol 

pub-sub 

through 

NATS 

xDS API 

through gRPC 

protocol, CP 

Proxy calls 

proxies 
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 Istio Linkerd Consul NGINX OSM 

Observability 

Prometheus 

compatible 
✔ ✔ ✔ ✔ ✔ 

Works with 

Grafana 
✔ ✔ ✔ ✔ ✔ 

Works with 

Kiali 
✔ ✔ - through 

SMI 

✖ NA ✖ 

Works with 

Jaeger 
✔ ✔ ✖ ✔ ✔ 

Monitoring Envoy 

prepares data, 

Prometheus 

directly 

scrapes 

proxies 

Linkerd2-

proxy 

prepares data, 

Prometheus 

directly 

scrapes 

proxies 

Client 

aggregate 

data, then it 

streams to the 

metrics server 

NGINX Plus 

prepares 

data, 

Prometheus 

directly 

scrapes 

proxies 

Envoy 

prepares 

data, 

Prometheus 

directly 

scrapes 

proxies 

Supported protocols 

TCP ✔ ✔ ✔ ✔ ✔ 

UDP ✔ ✖ ✖ ✔ ✖ 

HTTP/1 ✔ ✔ ✔ ✔ ✔ 

HTTP/2 ✔ ✔ ✔ ✔ ✔ 

HTTP/3 ✖ - but 

experimental 

in Envoy 

✖ ✖ - but 

experimental 

in Envoy 

✖ ✖ 

gRPC ✔ ✔ ✔ ✔ ✔ 

QUIC ✖ - but 

experimental 

in Envoy 

✖ ✖ - but 

experimental 

in Envoy 

✖ ✖ 

Traffic management 

Blue/Green 

Deployments 
✔ ✔ ✔ ✔ ✔ 

Circuit 

Breaking 
✔ ✖ 〰14 ✔ ✔ 

Fault 

Injection 
✔ ✔ ✔ ✔ ✔ 

Rate Limiting ✔ ✖ ✔ ✔ NA 

Complex scenario deployment 

Multi-cluster 

support 
✔ ✔ ✔ NA ✖ 

Multiple 

network 

support 

✔ ✔ ✔ NA NA 

 
14 Circuit-breaker for Envoy is currently supported, but only Consul 1.10 (currently in beta) supports 

custom configurations beyond the default one. 
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 Istio Linkerd Consul NGINX OSM 

Multiple 

control planes 
✔ ✔ ✔ NA ✖ 

Multiple mesh 

support 
✔ ✖ ✔ NA ✖ 

Multiple cloud 

support 
✔ ✖ ✔ ✔ NA 

Hybrid cloud 

support 
✔ ✔ ✔ ✔ NA 

Multiple zone 

support 
✔ ✔ ✔ ✔ NA 

External CP 

deployment 
✔ ✖ ✔ ✖ ✖ 

Supported 

workloads 

Kubernetes & 

VM 

Kubernetes 

only 

Kubernetes, 

VM, bare-

metal 

Kubernetes, 

VM, bare-

metal 

Kubernetes 

Supported Hardware architectures 

x86 ✔ ✔ ✔ ✔ ✔ 

amd64 ✔ ✔ ✔ ✔ ✔ 

arm ⚠ ✔ ✔ NA ✖ 

arm64 ⚠ ✔ ✔ NA ✖ 

power NA ✖ ✖ ✖ ✖ 

Security 

Traffic 

encryption 

mTLS mTLS mTLS mTLS mTLS 

Certificate 

Management 
✔ ✔ ✔ ✔ ✔ 

Installation 

Deployment via istioctl, 

Operator and 

Helm 

via Helm and 
linkerd 

command 

via Helm via Helm or 
nginx-
meshctl 

via Helm or 

OSM CLI 

Namespace(s) Multiple Single Multiple Multiple Multiple 

Observability 

plane installed 

by default 

✖ ✖ ✔ ✔ ✔ 

Table 3-1. Qualitative summary of service meshes. ✔: present; ✖: missing; ⚠: experimental; 〰: partial; 

NA: data not available. 

As it is evident, istio, that is widely adopted, is an open source, mature, and feature-

rich service mesh implementation, capable of offering many features for the more 

advanced business scenarios. In fact, it has support for all the major communication 

protocols, for all the traffic management options, and it supports complex 

deployments, such as multi-cluster or multi-cloud. 
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Linkerd has as its main strength a simple architecture which certainly has important 

advantages in terms of speed, safety, and simpler configuration, but which can reveal 

at the same time to be a limit itself. In fact, it does not allow extensions to the data 

plane, but only at the control plane level; furthermore, as stated in the documentation 

[89], for simplicity reasons Linkerd does not provide an ingress controller, but it can 

use third-party solutions such as Ambassador, Kong, or NGINX. Finally, it must be 

considered that having been recently refactored, some advanced features are missing. 

In fact, actually its proxy implementation does not support the UDP protocol and some 

traffic management options, such as circuit breaking and rate limiting, while it 

supports, as a control plane extension, only a multi-cluster option which unlocks also 

the hybrid-cloud possibility [90]. 

The Consul service mesh solution makes no assumptions about the underlying network 

and uses a pure software approach with a focus on simplicity and broad compatibility. 

It works in many different complex scenarios, such as multi-cluster or multi-cloud, 

with a different architecture approach with respect to the ones previously analyzed, 

that deploys agents per-node instead of per-pod, and it is organized into Data Centers 

allowing services inside a Kubernetes cluster to communicate with services located 

outside, on virtual machines or bare-metal. 

NGINX Service Mesh is the only completely proprietary solution analyzed, based on 

NGINX Plus as an alternative to Envoy proxy, with an interesting feature related to 

the service discovery that is built using NATS, allowing a publish-subscribe 

interaction between the control and the data planes. 

Finally, Open Service Mesh, that we have chosen to analyze because it is the latest 

technology in the service mesh panorama, is also the most limited. In fact, while it 

supports many of the key features, it still does not support many of the more advanced 

business scenarios, such as multi-cloud. 

3.7 APACHE EVENTMESH 

Turning now to the analysis of an event mesh solution, as we have already written in 

the introduction of this chapter, we will examine the Apache EventMesh project which 
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is an open-source implementation of a dynamic event-driven application runtime that 

distributes events across different environments, decoupling the application and the 

back-end middleware layer. Born at WeBank, a private chinese  neobank, with help 

from Oppo, Huawei, and the OpenMessaging community, the objective of this project 

is to build an infrastructure layer that can support a wide range of use cases, from 

complex multi-cloud deployments to on-premises, using diverse technology stacks 

[91].  

The nature of Apache EventMesh allows to implement the data mesh paradigm 

offering the possibility to build a completely decentralized architecture, with multiple 

clusters available on different environments, and allowing customers to independently 

consume data as events, that can be described in a standard format, such as 

CloudEvent, simplifying the consumption of messages. To help in separating the 

organization domains, events are organized into topics that are managed by the 

underlying back-end messaging engines, such as Apache RocketMQ, with guarantees 

of delivery. 

Apache EventMesh is an open-source project, licensed under the Apache License 2.0, 

with an active community of developers. Actually, it is in early stages, with many 

features that need to be implemented yet, but the central components are completed 

and they can be sufficient to build an event mesh, locally or in the cloud. We want now 

to take a look to its architecture and to the messaging engine it actually relies on. 

3.7.1 ARCHITECTURE 

Apache EventMesh has a simple architecture made of the following primary 

components [92]: 

• Runtime; 

• Connector API; 

• SDK. 
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Figure 3-14. Apache EventMesh general architecture. 

At the core of Apache EventMesh there is the Runtime component which is the 

middleware that manages the communication between producers and consumers 

through the use of a messaging engine, such as Apache RocketMQ. This component 

operates as a standalone entity and it can be deployed as a microservice in the cloud 

or it can run on a local machine. The Runtime server receives messages that the 

applications prepare by using the SDK component and then it initiates the 

communication that, depending on the protocol, can generally be asynchronous, 

broadcast, or even synchronous [93]. 
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Figure 3-15. Interaction schemes for TCP protocol: synchronous message (a), asynchronous message 

(b), broadcast to multiple subscribers (c). Publishers and subscrbers communicate, through the SDK, 

with the Runtime server which forwards and receives messages to and from the EventStore (Apache 

RocketMQ). 

Applications that want to participate in the communication must create a client through 

the SDK that allows to prepare messages and to forward them to the Runtime server, 

which can be located on the same machine or it can be in a different node. The SDK 

supports TCP, HTTP, and gRPC protocols and it can handle both native EventMesh 

messages or CloudEvents. This last option is a specification for describing event data 

in a standard format, providing interoperability across services, platforms, and 

systems. 

One of the strong points of Apache EventMesh is that it implements just the event 

mesh logic, leaving the event storing and exchanging details to the underlying 

platforms that are pluggable through the connector API, an api layer based on the 

Service Provider Interface (SPI) mechanism, which allows to automatically find and 

load concrete implementation classes of the extended interfaces at runtime [94]. This 

allows Apache EventMesh to maintain a simple architecture, adding new and advanced 

features through plugins. Actually, the only back-end messaging engine supported is 

Apache RocketMQ that we now want to analyze. 
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3.7.2 APACHE ROCKETMQ 

Apache RocketMQ is a distributed messaging and streaming platform, which the 

developers claim guarantees low latency and reliability. It has been used in production 

for many years and it has been chosen by EventMesh to be the default back-end 

messaging engine. 

Apache RocketMQ consists of the following components [95]: 

• Name server; 

• Broker; 

• Producer; 

• Consumer. 

 

 

Figure 3-16. Apache RocketMQ general architecture with each component replicated. 

Producers and consumers are the actors sending and receiving event messages that 

RocketMQ organizes into topics [96]. The latter have very loose relationship with 

producers and consumers: a topic can have zero, one, or multiple producers that send 

messages and it may also be subscribed by zero, one, or multiple consumer groups. 
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The name server is the routing information provider that allows lightweight service 

discovery inside the RocketMQ cluster, coordinating each component (producers, 

consumers, and brokers) of the distributed system. It manages brokers, accepting their 

registration when new brokers are introduced, removing them when they are crashed 

or deleted, and syncing routing information between them. In addition, the name server 

indicates to producers and consumers which broker they can communicate with in 

order to allow publishing and consuming events [97]. 

Brokers are servers mainly responsible for message storing and delivery and for these 

reasons it is very important to achieve high availability and strong fault tolerance 

guarantees. With respect to the first need, brokers can be organized into master-slave 

groups, in which the slave is a read-only server that does not accept messages from 

the publishers. Each group can be replicated to enhance high availability. With respect 

to fault tolerance, each broker can be configured to save event data on the disk, 

reducing the performance by a little. Otherwise, to maximize brokers performance, 

they can be configured to avoid storing events on disk, but in case of failure messages 

are lost [98]. 

Each broker server is composed of several sub-modules: 

• Remoting module is the entry of the broker and it handles the requests from 

clients. 

• Client manager, as the name suggests, manages the producers and consumers, 

maintaining, for example, topic subscription of consumers. 

• Store service provides simple API to store or query message in physical disk. 

• High Availability service provides data sync feature between the master and 

the slave brokers. 

• Index service builds an index for messages by specified key and provides quick 

message delivery. 
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Figure 3-17. Inner working of an Apache RocketMQ broker server. 

3.7.3 CONCLUSION 

In conclusion, we can say that, in the event mesh panorama, that is recently emerging15, 

Apache EventMesh is the only open source modern solution that supports standard 

messages through CloudEvent format, a pluggable messaging engine, with Apache 

RocketMQ as the default back-end [91]. This last feature allows EventMesh to keep 

its own architecture simple, concentrating on realizing the mesh logic. Finally, Apache 

EventMesh, although in early development stages, it can be already used in different 

scenarios such as inside a Kubernetes cluster as we will do in our project and describe 

in subsequent chapters. 

 
15 Actually, the main competitor is Solace PubSub+ that can create an event mesh. However, it is not 

open source and it has limited access. 
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4 PROJECT OVERVIEW 

The project that has been decided to carry out has the purpose of testing the 

performance of a workflow microservices-based application in a cloud environment 

through the use of different mesh technologies. 

The project focuses, as we will explain in detail in this and in the next chapters, on the 

infrastructure layer, looking at the differences between diverse service meshes and 

how they compare in performance with an event mesh implementation. The applicative 

part consists of a series of echo applications that simulate a generic workflow system. 

4.1 OBJECTIVES 

Microservices based architectures, as we already discussed about, offer many benefits 

with respect to traditional monolithic application development, because they allow to 

achieve a huge degree of flexibility in choosing technology, handling robustness and 

scaling, organizing teams, and more. Precisely this flexibility is, in part, why many 

organizations, especially larger ones, are adopting microservices, thus demonstrating 

how these can be effective [22]. 

However, microservices bring with them a significant degree of complexity that needs 

to be correctly managed. In fact, implementing a large system as a collection of many 

microservices, can simplify the development of the whole application, but the 

operations can be more complicated: orchestrating a large number of entities into a 

coherent and complex system cannot be expected to be an easy task. 

Think for example of an online store application divided into a store front-end, an order 

management service, a payment processing service, and a shipment management 

service, in which these parts are made of multiple microservices; these must be highly 

available and must handle high workloads, scaling up when necessary and finally must 

communicate reliably and efficently, sometimes across different environments: from 

on-premises to cloud. 
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Figure 4-1. An example of a store application with the different services. 

So even for microservices seems to be valid what Frederick P. Brooks wrote in the 

article “No Silver Bullet” [99]: 

There is no single development, in either technology or management 

technique, which by itself promises even one order of magnitude 

improvement in productivity, in reliability, in simplicity. 

According to Brooks, the reason for this phenomenon is the presence of essential 

complexity in software systems. In fact, he points out that, while in any codebase there 

is always some accidental complexity, the one related to our own implementation 

choices, most of the complexity in designing and implementing software systems is 

not accidental, but, instead, it is related to the very essence of the complexity of 

modeling the problem domain itself so that if we try to simplify a system beyond its 

essential complexity, we would take away from its core model, and it would no longer 

be the same system. 

Regarding the large distributed systems, such as microservices-based architectures, we 

can therefore affirm that it is impossible to eliminate the essential complexity. 

However, it must be considered that it is possible to shift the complexity from one area 
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of the system to another and this can be particularly beneficial when it is possible to 

automate the part that we are making “harder”. 

In other words, we can simplify the code by breaking it up into multiple microservices, 

but it might seem like we have not gained so much as we complicate the operational 

part. In reality, the increased complexity of operations matters much less if they can 

be automated: shifting complexity from the area we cannot, yet, automate, design and 

code, into the area we have the possibility to automate, the operations, constitutes a 

substantial advantage. For this reason, it was pointed out that a microservices 

architecture can be materially simpler than its alternatives when implementing 

complex systems [18]. 

In this scenario, many technologies emerged in the past years to deal with the 

complexity of operations, such as Docker and Kubernetes, but also service and event 

mesh. In our work we decided, precisely because of their relevance also in the 

perspective we have talked about, to focus mainly on the infrastructural components, 

in particular, testing service and event meshes, to see how the different system parts 

interact when using synchronous and asynchronous communications and with which 

performance. 

4.2 TECHNOLOGIES CHOSEN 

Passing now to the analysis of the technologies used in our project, it must first be 

noted that a complex microservices-based system can in principle profit greatly from 

using common protocols and data formats, or from choosing in general a certain 

homogeneity in the technologies. However, as pointed out by Carneiro and Schmelmer 

in “Microservices From Day One” about polyglot services16, “the majority of services 

in a microservice environment expose many areas that together make up a 

multidimensional vector for potential improvements” [20]; therefore, apply the 

uniformity of programming languages, data stores, or other technology components 

 
16 Polyglot services allow developers to select the programming language of their choice in order to 

capture additional functionality and efficiency not available in a single language. Numerous companies 

evolved to support a polyglot microservice architecture, like Google, eBay, Twitter, and Amazon, 

prooving that this approach enhances developer creativity and out-of-the-box problem solving [100], 

[101]. 
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across all the services might not be the best choice. There are many reasons why to 

select a technology with respect to another: different technologies can offer different 

performances, security features, protocol support, deployment options, ease of 

configurability and maintanability, and it is important to study which could be the right 

technology from which we can take advantage for our specific application purpose, 

before we move to it. 

For this reason, we selected, for our technological choices, the following guiding 

principles that we will illustrate in this paragraph: 

• Reproducibility; 

• Cost and license; 

• Resource usage. 

At first, it is necessary to provide the ability to reproduce the software tests, allowing 

anyone, before choosing the technology, to reproduce them in the same environment, 

with the same tools and conditions, to verify the results. It is also important to take 

into account costs and licenses: an open-source tool allows us to carry out tests using 

a technology that is openly available and very often widely adopted in the industry; 

moreover, this type of license generally allows the distribution, visualization, and 

sharing of the source code, also to the advantage of reproducibility. Finally, the 

applications created must work well even on relatively powerful machines and must 

consume the least possible amount of resources, to be cheaper and ensure better 

exploitation of the cluster. Furthermore, in the specific case of containers, whose 

images require to be archived in a registry, it is advantageous that these are of a smaller 

size both because in this way it is easier to upload, download, create and archive them, 

and because the optimization of these factors also leads to a reduction in costs. 

In consideration of these guiding principles, we have decided to use in the range of 

service mesh solutions Istio and Linkerd. The first is a complete, open-source, and 

quite popular implementation; the second is equally open-source, stable and provides 

a different data plane from the one that istio and the other solutions we have analyzed 

in the previous chapters offer. 



91 

 

On the other hand, in the field of event mesh, we have chosen to use Apache 

EventMesh, an open-source technology part of a foundation of great importance such 

as the Apache Foundation, which, being still in incubation, we wanted to test to verify 

its actual potential. 

4.3 EVOLUTION OF THE PROJECT STRUCTURE 

At this point, before moving on to the description of the project that we will carry out 

in the next chapter, we believe it is important to briefly illustrate the most significant 

passages through which the final structure of our work was articulated. 

We want to start from the studies we conducted to learn how service meshes work and 

how to implement a simple testing environment. Being focused on istio and Linkerd, 

we decided at first to run benchmarks to load-test each different technology using 

Fortio17, an open-source tool from the istio community with a simple client-server 

architecture and specifically designed to run benchmarks. This tool packages also a 

report server which allowed us to generate graphs from statistics made persistent by 

the client. 

 
17 Fortio was chosen with respect to other tools, like locust.io, because it has complete protocols support 

(HTTP, HTTP/2, GRPC, and TLS) without requiring complex configurations. Locust has experimental 

GRPC support and statistics are less complete with respect to the ones created by Fortio, but Locust 

could be more suitable in a real scenario in which a business application is deployed. In fact, it allows 

to create ad-hoc tests for a specific application with finer control than Fortio. 
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Figure 4-2. Fortio architecture with browser accessing the reports generated by the relative server and 

the volume used to persist benchmark data. 

The Fortio application was containerized using Docker and its distribution was 

supported by a Kubernetes infrastructure: at first it was sufficient conducting tests on 

minikube to verify the correct functioning and configuration, then we moved to cloud 

solutions to enhance our test environment and proceed with more advanced 

developments. In particular, we were interested in an topic that is increasingly 

important in cloud infrastructures that is the observability18, that refers to a 

characteristic of a system that is measured by the level to which it is possible to 

understand and reason about a system internal state just by looking at its external 

signals and characteristics [103]. In that perspective, the statistics just provided by 

Fortio were no more sufficient and we decided to adopt more advanced solutions that 

could give us the possibility to collect and visualize not only the application statistics, 

but also any information that Kubernetes could expose: Prometheus and Grafana. 

Subsequently, after carrying out the tests for the service meshes in the cloud 

environment, we focused on the study of Apache EventMesh which, as already 

explained above, relies on Apache RocketMQ to realize the underlying event-driven 

architecture. We then configured and deployed RocketMQ first and the Apache 

EventMesh server afterwards. Finally, to verify the correct functioning of the system, 

 
18 This definition is based on the study of control theory first introduced in the 1959 paper from “On the 

General Theory of Control Systems” by Rudolf E. Kalman [102]. 
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we created a workflow application adapted to the event case, an application which was 

then used and extended in subsequent comparative tests. This application was created 

using Java, because it actually19 is the only language supported by Apache EventMesh. 

To keep uniformity through tests we decided to build in Java also the application to be 

used to test service meshes. 

At this point, as a further step, in order to improve our metrics detection tools, with 

particular reference to the need to make data persistent, we decided to replace 

Prometheus and Grafana with our own system, compatible with the Prometheus data 

format. The system we realized is written in Python and it is capable not only of 

collecting data directly from Kubernetes and to directly scrape metrics from 

infrastructural entities deployed in the cluster, such as Apache EventMesh server, 

RocketMQ components, and service mesh proxies, but it is also capable of synthetize 

statistics directly from the workflow application components, transforming, when 

needed, these data in Prometheus format. It must be noted finally that our system can 

work in a multi-cluster environment, that we decided to realize to simulate a real 

business scenario, by deploying in each cluster a server controlled by a client that runs 

in the local environment. 

 
19 The reference is to May 2022; the developers foresee Go and Rust as the next supported languages. 



94 

 

 

Figure 4-3. Overview of our project architecture: on the left the service mesh deployment and on the 

right the event mesh one. The local metrics client gathers data directly from the Kubernetes APIs and 

from each component through a metrics server deployed in each cluster. 

As we already wrote, for the realization of microservices components, we used Java 

and Python and for this reason, according to the guiding principle, stated previously, 

of keeping resource usage low, we analyzed the sizes of the container images for these 

languages. 

Tag Operating System Size (MB) 

openjdk:8-alpine Alpine 3.9 ⁓ 105 

openjdk-8 Debian 11 ⁓ 526 

python:3-alpine Alpine 3.16 ⁓ 47,6 

python:3 Debian 11 ⁓ 920 

centos:7 CentOS 7.9.2009 ⁓ 204 

Table 4-1. Size of the container images available on Docker Hub20. 

As we can see from the Table 4-1, the images using Debian are bigger than the ones 

that use Alpine, so we decided to use this OS not only for the workflow applications 

 
20 Data updated to June 2022. 
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and the metrics server, but also for the components of the event mesh infrastructure, 

whose official images are based on CentOS. 
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5 PROJECT IMPLEMENTATION 

In this chapter is described the realization of the workflow applications as well as of 

the metrics system and the infrastructural components of our project. We will start 

with the latter and then proceed in order with the workflow application and the metrics 

system, analyzing both single and multi-cluster deployments. 

5.1 ISTIO 

Istio, as stated earlier, is supported in multiple environments like Kubernetes and 

Nomad. We will now discuss about our istio setup restricting to Kubernetes. 

5.1.1 SINGLE CLUSTER INSTALLATION 

There are many ways of installing istio and we chose to do it by using istioctl, a 

command-line tool which provides rich customization of the control plane and of the 

sidecars for the data plane. With respect to other solutions, this tool does not only allow 

for controlling the istio installation, but also it has user input validation to help 

preventing installation errors and customization options to override any aspect of the 

configuration. istioctl supports the full IstioOperator API21 via command-line 

options for individual settings or for passing a YAML file containing an IstioOperator 

custom resource (CR) and it can be installed through the following command: 

 

5.1.1.1 CONFIGURATION OPTIONS 

istioctl allows to install istio according to a configuration, expressed as a YAML 

file, that is termed profile. istioctl comes with some predefined profiles that is 

possible to visualize through the following command: 

 
21 Up to Istio 1.4, Helm was used as the primary tool for installing and upgrade istio. Version 1.4 of 

Istio started deprecating it and introduced istioctl with IstioOperator API, a Kubernetes operator, which 

provides a pattern to easly configure planes installation version and shape [104]. 

$ curl -L https://istio.io/downloadIstio | sh - 
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As we can see from the previous output, there are several built-in options available. 

To choose the right one it is needed to look at the internal configuration each of those 

provides by using the sub-command dump. In addition, it is possible to compare two 

different profiles with the sub-command diff: 

 

In the previous code, with the first command it is possible to visualize the YAML file 

with all the configurations for the default profile; with the second command a file 

containing all the differences between the two profiles is generated. 

We want now to describe each built-in profiles more in detail: 

• Default deploys istiod control plane, adds an ingress gateway, and enables 

proxy auto-injection when namespaces or pods are labeled accordingly. Each 

pod in the data plane requires at least 128MiB and 100mcpu and the status is 

exposed on port 15020. As stated in the istio documentation [105], this profile 

is recommended for production deployments and for primary clusters in a 

multi-cluster mesh. In fact, it has the same settings as the remote profile. 

• Demo is designed to test many features istio provides requiring just few 

resources. It enables not only istiod and the ingress gateway, but it also 

provides an egress gateway, disables autoscaling for ingress-egress and proxy 

requires at least 40MiB of memory and 10mcpu. Since it enables high levels 

of tracing and access logging, this profile is not suitable for performance tests. 

• Minimal is designed from the default profile with the only difference of 

deploying just istiod control plane, without the ingress gateway. 

$ istioctl profile list 
Istio configuration profiles: 
    default 
    demo 
    empty 
    external 
    minimal 
    openshift 
    preview 
    remote 

 

$ istioctl profile dump default 
$ istioctl profile diff default demo > compare.yaml 
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• External can be used for configuring a remote cluster that is managed by an 

external control plane or by a control plane in a primary cluster of a multi-

cluster mesh. 

• Empty, as the name suggests, deploys nothing and therefore it is useful as a 

base for custom profile configuration. 

• Preview is used to showcase istio experimental features and for this reason 

stability, security, and performance are not guaranteed. 

• Openshift is an adaptation of the default profile to be used with RedHat 

Openshift. 

Among the options listed above, we have chosen to use the default profile in our 

project because, as already mentioned, it provides the possibility of preparing a 

production-ready configuration for both the single cluster and the multi-cluster case.  

After choosing the profile, it is recommended to save the manifest data that istioctl 

uses to express all the details of the installation; so, it will be possible not only to 

inspect what exactly is being installed, but also to track changes to the manifest over 

time. 

 

Code 5-1. Storing the istio manifest in a file. The ISTIO_PROFILE variable is expanded to default. 

The last step before the installation required to verify that any prerequisites have been 

met in our Kubernetes cluster. Then we proceeded with the istio installation on the 

single cluster followed by the verification of the success of the operation by comparing 

it with the manifest previously generated and by checking if the cluster deployments 

are running: 

 

$ istioctl manifest generate --set profile="$ISTIO_PROFILE" > istio-manifest-
"$ISTIO_PROFILE".yaml 

 

$ istioctl x precheck 
$ istioctl install --set profile="$ISTIO_PROFILE" -y 
$ istioctl verify-install -f istio-manifest-"$ISTIO_PROFILE" 
$ kubectl -n istio-system get deploy 
NAME                   READY   UP-TO-DATE   AVAILABLE   AGE 
istio-ingressgateway   1/1     1            1           90s 
istiod                 1/1     1            1           2m6s 
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5.1.2 MULTI-CLUSTER INSTALLATION 

As we have already anticipated in Chapter 3, istio is not bound to a single cluster, but 

it can span many clusters and provide the same capabilities across all of them. We 

decided to run our tests also in this scenario because many companies choose to adopt 

it [103]. The benefits it provides are: 

• Improved isolation: separated clusters can implement different business 

scopes while cooperating, enhancing isolation between domains. 

• Failure boundaries: errors and faults of configurations and operations for a 

cluster do not affect the others. 

• Regulatory and compliance: services that access sensitive data from other 

parts of the architecture can be restricted. 

• Increased availability and performance: one cluster can take over another in 

case of a failure, regional or not, or it is possible to route traffic to the closest 

cluster to reduce latency. 

• Multi and hybrid cloud: workloads can run in different environments, whether 

different cloud providers or hybrid clouds. 

The multi-cluster implementation connects services across clusters in a way that is 

transparent to the apps, meanwhile maintaining all of the service mesh capabilities: 

fine-grained traffic management, resiliency, observability, and security for cross-

cluster communication. To do that istio requires the following criteria: 

• Cross-cluster workload discovery: the API Server on each cluster must be 

accessible to others because the control plane uses it to discover the workloads 

in the peer clusters in order to configure the service proxies. 

• Cross-cluster workload connectivity: workloads must have connectivity 

between each other. 

• Common trust between clusters: cross-cluster workloads must mutually 

authenticate to enable the security features istio provides. 
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5.1.2.1 ISTIO MULTI-CLUSTER DEPLOYMENT MODELS 

When installing as a multi-cluster, istio distingushes between primary clusters, which 

are the ones containing the istiod control plane, and remote clusters, which allow only 

the deployment of the data plane. The combinations of these two types of clusters 

define the models istio allows: 

• multi-primary: the control plane is installed on each cluster involved in 

forming the mesh. 

• primary-remote: the control plane, installed only on one cluster, observes the 

API Servers on each cluster for endpoints, providing in such way service 

discovery for workloads in each cluster involved in forming the mesh. 

 

Figure 5-1. Difference between multi-primary and primary-remote control plane installations. In the 

first case each control plane observes the API Servers in both clusters for enpoints. In the second case 

the istiod in cluster 1 observes the API Servers in both clusters, while the services in cluster 2 reach the 

control plane in cluster 1 via an ingress gateway for east-west traffic. In this figure, both clusters reside 

on the same network, meaning workloads communicate directly (pod-to-pod) across cluster boundaries. 

These deployment models differ mainly on two aspects: availability and performance. 

The primary-remote option has a single control plane managing the mesh and for this 

reason, it uses less resources on the remote clusters, but an outage in the primary one 

affects the entire mesh, undermining availability. On the other hand, the multi-primary 
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model ensures higher availability by replicating the control plane, but at the same time, 

it requires more resources. 

Choosing a deployment model with respect to the other depends on the business needs, 

but in general it is possible to affirm that nowadays availability can be considered more 

important with respect to the performance criterion. For example, if we think to an 

online store, such as the one cited in the previous chapter, it must be always available 

to customers because every minute of it being down would cost the business a lot. 

Hence, high availability is important and we chose this last option to prepare the multi-

cluster for our tests. 

The profiles used to install istio on two clusters are the following: 

 

Code 5-2. YAML configuration for the first istio cluster. 

 

Code 5-3. YAML configuration for the second istio cluster. 

The previous code was used by istioctl to override some parameters in the default 

profile, before the installation process starts22: 

 
22 It is possible to verify the substitutions by inspecting the generated profiles using the istioctl 

profile dump command as in the single cluster case. 

apiVersion: install.istio.io/v1alpha1 
kind: IstioOperator 
spec: 
  values: 
    global: 
      meshID: mesh1 
      multiCluster: 
        clusterName: cluster1 
      network: network1 
  

 

apiVersion: install.istio.io/v1alpha1 
kind: IstioOperator 
spec: 
  values: 
    global: 
      meshID: mesh1 
      multiCluster: 
        clusterName: cluster2 
      network: network1 
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Once the istio control plane has been installed, it is needed, to permit it, to access to 

the Kubernetes API server of the remote cluster in order to discover cross-cluster 

workloads. To do that we needed to create remote secrets: 

 

Code 5-4. Installation of a remote secret in cluster2 that provides access to API server in cluster1. 

 

Code 5-5. Installation of a remote secret in cluster1 that provides access to API server in cluster2. 

5.1.3 SIDECAR INJECTION 

After the installation, in order to use the service mesh it is necessary to instruct istio to 

insert the sidecars in the data plane and it is possible to do this in two different ways. 

In the first case, labeling a namespace instructs the istiod injector to automatically 

insert a sidecar when a new pod resource is added in the target namespace; in the 

second case it is possible to manually indicate to the control plane to inject the sidecar 

by labeling the deployment when passing the YAML configuration to kubectl. 

In our scripts we can use both methods, but in the final tests we preferred the last 

option; in fact, we created a Python script which can inject the correct metadata for 

both istio and Linkerd, allowing us to keep the deployment code cleaner: 

 

inject.py uses pyYAML to read the deployment file, then adding to it the label 

spec.template.metadata.labels:sidecar.istio.io/inject:true. 

$ istioctl install --context="$CLUSTER1" -f cluster1.yaml 
$ istioctl install --context="$CLUSTER2" -f cluster2.yaml 

 

$ istioctl x create-remote-secret \ 
    --context="${CLUSTER1}" \ 
    --name=cluster1 | \ 
    kubectl apply -f - --context="${CLUSTER2}" 

$ istioctl x create-remote-secret \ 
    --context="${CLUSTER2}" \ 
    --name=cluster2 | \ 
    kubectl apply -f - --context="${CLUSTER1}" 

$ ./inject.py deployment.yaml istio | kubectl -n $NAMESPACE apply -f - 
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5.2 LINKERD 

Passing now to our Linkerd setup, we must preliminarily emphasize that, unlike istio, 

Linkerd is able to work only on Kubernetes, not supporting other platforms. 

5.2.1 SINGLE CLUSTER INSTALLATION 

Regarding the single cluster setup, the first step is necessarily to install the Linkerd 

command line interface, a tool that works similarly to istioctl, allowing the 

connection to the service mesh control plane: 

 

As we saw for istio, it is a good practise to run checks before proceeding with the 

installation of the control plane so to validate if the cluster does not have some 

incompatibilities or incorrect configurations: 

 

After the validation of the Kubernetes cluster, it is possible to proceed with the 

installation of the control plane of Linkerd and then check for deployment readiness 

and health: 

 

The linkerd install command generates a Kubernetes manifest containing all the 

control plane resources to be applied. By default, the Linkerd control plane is installed 

in the linkerd namespace, but if needed it can be changed by passing the argument     

--linkerd-namespace. 

The linkerd check command will verify any mismatch in the Kubernetes version, the 

ability to connect to the API server, and other aspects. It will wait for the Linkerd 

control plane pods to be available and for this reason it may take a long time to 

complete. At any point after the install, it is possible to run linkerd check config to 

$ curl --proto '=https' --tlsv1.2 -sSfL https://run.linkerd.io/install | sh 

$ linkerd check --pre 

$ linkerd install | kubectl apply -f – 
$ linkerd check 
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ensure that all the necessary resources of the control plane are available and correctly 

configured. 

The injection is similar to the one we wrote about istio with the only exception that the 

injection annotation is: 

 

5.2.2 MULTI-CLUSTER INSTALLATION 

Multi-cluster support in Linkerd requires extra installation and configuration on top of 

the single cluster installation decribed above. To keep uniformity along our project, 

we decided to define a multi-primary installation, like we did for the istio setup. 

After the installation of the Linkerd control plane on the first cluster, we need to 

prepare a trust anchor that we use to secure the connection between the two clusters. 

The trust anchor allows the control plane to encrypt the requests that go between 

clusters and verify the identity of those requests. This identity is used to control access 

to clusters, so it is critical that the trust anchor is shared. 

For our testing purposes it was sufficient to create a single trust anchor certificate 

shared between our two clusters with the following code: 

 

At this point, we used the new bundle to upgrade the existing cluster and to install 

Linkerd on the new cluster together with the issuer certificate and key: 

spec.template.metadata.annotations:linkerd.io/inject:enabled 

$ kubectl --context="$CLUSTER1" -n linkerd get cm linkerd-config -
ojsonpath="{.data.values}" | yq e .identityTrustAnchorsPEM - > trustAnchor.crt 
  
$ step certificate create root.linkerd.cluster.local root.crt root.key \ 
    --profile root-ca --no-password --insecure 
$ step certificate create identity.linkerd.cluster.local issuer.crt issuer.key \ 
    --profile intermediate-ca --not-after 8760h --no-password --insecure \ 
    --ca root.crt --ca-key root.key 
  
$ cat trustAnchor.crt root.crt > bundle.crt 
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After this step, it is possible to proceed with the installation of the multi-cluster control 

plane, using the following commands: 

 

After the setup of the resources needed for the multi-cluster control plane, it is 

necessary to link the two clusters. This step consists of installing several resources in 

the source cluster including a secret containing a kubeconfig that allows access to the 

target cluster Kubernetes API, a service mirror control for mirroring services, and a 

Link custom resource for holding configuration. The linking of the two clusters is 

performed using the following code: 

 

Finally, to check if the installation was correctly executed, beyond using the check 

command, we listed the gateways for each cluster to see if each of those could see the 

other: 

 

$ linkerd --context="$CLUSTER1" upgrade --identity-trust-anchors-file=./bundle.crt | 
kubectl --context="$CLUSTER1" apply -f - 
  
$ linkerd --context="$CLUSTER2" install \ 
  --identity-trust-anchors-file bundle.crt \ 
  --identity-issuer-certificate-file issuer.crt \ 
  --identity-issuer-key-file issuer.key | \ 
  kubectl --context="$CLUSTER2" apply -f - 
  
$ linkerd --context="$CLUSTER2" check 

$ linkerd --context="$CLUSTER1" multicluster install | kubectl --context="$CLUSTER1" 
apply -f - 
$ linkerd --context="$CLUSTER2" multicluster install | kubectl --context="$CLUSTER2" 
apply -f - 

linkerd --context="$CLUSTER2" multicluster link --cluster-name "cluster2" | kubectl 
--context="$CLUSTER1" apply -f - 
linkerd --context="$CLUSTER1" multicluster link --cluster-name "cluster1" | kubectl 
--context="$CLUSTER2" apply -f - 

$ linkerd --context="$CLUSTER1" multicluster gateways 
CLUSTER   ALIVE    NUM_SVC  LATENCY_P50  LATENCY_P95  LATENCY_P99 
cluster2  True           0          2ms          3ms          3ms 
 
$ linkerd --context="$CLUSTER2" multicluster gateways 
CLUSTER   ALIVE    NUM_SVC  LATENCY_P50  LATENCY_P95  LATENCY_P99 
cluster1  True           0          1ms          3ms          3ms 
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5.3 APACHE ROCKETMQ 

Proceeding now to the examination of the Apache RocketMQ setup, it must be noted 

that this project does not provide any official installation process in a Kubernetes 

cluster, but there exists a community-driven project, recognized by the Apache 

Foundation, which maintains an Operator to automatically take care of the installation, 

upgrade, and runtime maintenance processes. Although it could be considered useful 

to setup a simple cluster, this tool has many limitations such the fact that it runs only 

in the default namespace or that there are some scalability issues. Since we wanted 

greater control over the installation process, we decided to create our own. 

5.3.1 CONTAINER IMAGE 

The apache/rocketmq:4.9.3 image from DockerHub is based on CentOS and, as we 

already mentioned in the previous chapter, we opted for our own image which is lighter 

and which allowed us to insert customized launch scripts. We describe now the 

Dockerfile we made. 

 

Code 5-6. Beginning of the RocketMQ Dockerfile. 

Since Apache RocketMQ is a central component for the event mesh, we decided to run 

it as a user just named rocketmq, avoiding the use of root. Then we proceeded with 

the installation of this software, verifying if it was correctly done, and finally, adding 

our launch scripts. 

FROM openjdk:8-alpine 
ARG user=rocketmq 
ARG group=rocketmq 
ARG uid=3000 
ARG gid=3000 
  
RUN addgroup -g ${gid} ${group} \ 
 && adduser -u ${uid} -G ${group} -D ${user} 
... 
USER ${user} 
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Code 5-7. Installation of Apache RocketMQ and copying the launch scripts. 

5.3.2 SINGLE CLUSTER DEPLOYMENT 

To distribute the containerized application, we 

proceeded to the creation of a Kubernetes 

infrastructure, initially a vanilla setup, moving then 

to Google Kubernetes Engine (GKE), a more 

advanced system. The deployment consists of the 

following components that share the same 

RocketMQ container image: 

• A master broker deployment with its 

configuration. 

RUN set -eux ; \ 
    apk --no-cache add curl gnupg ; \ 
    curl -L https://archive.apache.org/dist/rocketmq/${ROCKETMQ_VERSION}/rocketmq-
all-${ROCKETMQ_VERSION}-bin-release.zip -o rocketmq.zip ; \ 
    curl -L https://archive.apache.org/dist/rocketmq/${ROCKETMQ_VERSION}/rocketmq-
all-${ROCKETMQ_VERSION}-bin-release.zip.asc -o rocketmq.zip.asc ; \ 
    curl -L https://www.apache.org/dist/rocketmq/KEYS -o KEYS ; \ 
    gpg --import KEYS ; \ 
    gpg --batch --verify rocketmq.zip.asc rocketmq.zip ; \ 
    unzip rocketmq.zip ; \ 
 mv rocketmq*/* . ; \ 
 rmdir rocketmq-*  ; \ 
 rm rocketmq.zip rocketmq.zip.asc KEYS 
  
COPY scripts/ ${ROCKETMQ_HOME}/bin/ 
  
RUN chown ${uid}:${gid} ${ROCKETMQ_HOME} 
  
RUN mv ${ROCKETMQ_HOME}/bin/runserver-customize.sh ${ROCKETMQ_HOME}/bin/runserver.sh 
\ 
 && chmod a+x ${ROCKETMQ_HOME}/bin/runserver.sh \ 
 && chmod a+x ${ROCKETMQ_HOME}/bin/mqnamesrv ; \ 
    mv ${ROCKETMQ_HOME}/bin/runbroker-customize.sh ${ROCKETMQ_HOME}/bin/runbroker.sh 
\ 
 && chmod a+x ${ROCKETMQ_HOME}/bin/runbroker.sh \ 
 && chmod a+x ${ROCKETMQ_HOME}/bin/mqbroker 
  
RUN export JAVA_OPT=" -Duser.home=/opt" ; \ 
    sed -i 
's/${JAVA_HOME}\/jre\/lib\/ext/${JAVA_HOME}\/jre\/lib\/ext:${JAVA_HOME}\/lib\/ext/' 
${ROCKETMQ_HOME}/bin/tools.sh 
  
ENV PATH "$PATH:${ROCKETMQ_HOME}/bin" 
  
WORKDIR ${ROCKETMQ_HOME}/bin 

       

     

      

       

      
         

      

Figure 5-2. Single cluster 

deployment schema. 
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• A name server with an associated Service that allows to access to the name 

server without the explicit need of the IP address. 

• A console application which allows to control the deployment, adding, for 

example, new topics. 

We will now describe each of these Kubernetes objects in more detail. 

5.3.2.1 NAME SERVER 

The name server is the central component in the RocketMQ setup and it comprises a 

Deployment and a Service. The code of the first is shown below. 

 

Code 5-8. Deployment of the RocketMQ name server. 

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: rocketmq-name-service 
  labels: 
    environment: research 
    app: rocketmq 
    role: name-service 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: rocketmq 
      role: name-service 
      ... 
      containers: 
      - name: name-service 
        image: framctrdh/rocketmq:4.9.3 
        command: ["sh", "mqnamesrv"] 
        imagePullPolicy: IfNotPresent 
        resources: 
          requests: 
            cpu: "250m" 
            memory: "512Mi" 
          limits: 
            cpu: "500m" 
            memory: "1Gi" 
        ports: 
        - containerPort: 9876 
          name: main 
          protocol: TCP 
        volumeMounts: 
        - mountPath: /home/rocketmq/logs 
          name: namesrv-log 
          subPath: logs/namesrv 
      volumes: 
      - emptyDir: {} 
        name: namesrv-log 
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As we can see, the deployment is univocally identified through the app and role labels. 

The first indicates the application used, while the second which role it has in the 

cluster. The name server has just one replica and it is launched with the standard 

configuration through the command mqnamesrv and by default the TCP communication 

happens through the port 9876. 

The access to the name service is mediated by a Service resource, as shown below, 

and this allows to communicate with it through its own name instead of the IP address. 

 

Code 5-9. Service definition for the RocketMQ deployment. 

5.3.2.2 BROKER 

The broker requires, with respect to the name server, some configuration which is kept 

in the ConfigMap shown below. 

 

Code 5-10. Configuration of the RocketMQ broker. 

The BROKER_MEM variable is required by the broker to tune the JVM performance 

settings [106]. Specifically, it defines the initial and minimum of the Java heap size (-

Xms) and the maximum size of the memory allocation pool (-Xmx). 

apiVersion: v1 
kind: Service 
metadata: 
  name: rocketmq-name-service 
spec: 
  selector: 
    app: rocketmq 
    role: name-service 
  ports: 
  - port: 9876 
    name: main 

apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: broker-config 
... 
data: 
  BROKER_MEM: " -Xms2g -Xmx2g " 
  broker-common.conf: | 
    namesrvAddr=rocketmq-name-service:9876 
    flushDiskType=ASYNC_FLUSH 
    brokerRole=ASYNC_MASTER 
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In addition, the ConfigMap specifies a file, named broker-common.conf, which 

contains all the data related to the broker specific configuration: the name service 

address with the associated port, the broker role (master or slave), and the flush type 

which defines if the messages need to be stored on disk for high availability 

(SYNC_FLUSH) or kept just in memory to increase performance (ASYNC_FLUSH). 

 

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: rocketmq-broker-master 
  labels: 
    environment: research 
    app: rocketmq 
    role: broker 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: rocketmq 
      role: broker 
    ... 
    spec: 
      containers: 
      - name: broker-master 
        image: framctrdh/rocketmq:4.9.3 
        command: ["sh", "mqbroker", "-c", "/home/rocketmq/broker/conf/broker-
common.conf"] 
        imagePullPolicy: IfNotPresent 
        resources: 
          requests: 
            cpu: "250m" 
            memory: "2Gi" 
          limits: 
            cpu: "500m" 
            memory: "4Gi" 
        env: 
        - name: BROKER_MEM 
          valueFrom: 
            configMapKeyRef: 
              name: broker-config 
              key: BROKER_MEM 
        ports: 
        - containerPort: 10911 
          name: main 
          protocol: TCP 
        volumeMounts: 
        - mountPath: /home/rocketmq-broker/logs 
          name: broker-log 
          subPath: logs/broker-master 
        - mountPath: /home/rocketmq-broker/store 
          name: broker-store 
          subPath: store/broker-master 
        - mountPath: /home/rocketmq/broker/conf/broker-common.conf 
          name: broker-config 
          subPath: broker-common.conf 
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Code 5-11. The broker deployment. 

5.3.2.3 CONSOLE 

The console application allows to take control over the RocketMQ cluster from 

command line and it is defined by a Deployment which creates a pod running 

indefinitely, consuming just few resources. It is possible to connect to the pod through 

the following command: 

 

After the connection, it is possible to execute many operations, such as adding a topic 

to the default RocketMQ cluster, verifying the insertion, as shown below: 

 

5.3.3 MULTI-CLUSTER DEPLOYMENT 

The multi-cluster deployment is similar to the single cluster with the only exception 

for the following changes: 

• Broker and name server deployments have each one 2 replicas, one for each 

cluster. The console does not require to be replicated, but, to simplify the 

scripts responsible for the deployment of the workflow application, the console 

has 2 replicas. 

• The name servers are accessible through public IP because they are deployed 

on different clusters. 

      volumes: 
      - emptyDir: {} 
        name: broker-log 
      - emptyDir: {} 
        name: broker-store 

$ kubectl exec -ti $(kubectl get pod -l app=rocketmq -l role=console-admin -o 
jsonpath="{.items[0].metadata.name}") -- sh 

$ sh mqadmin updateTopic -c DefaultCluster -t TEST-TOPIC-TCP-ASYNC -n rocketmq-name-
service:9876 
$ sh mqadmin topicList -n rocketmq-name-service:9876 
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Figure 5-3. Apache RocketMQ multi-cluster schema. 

More in detail, the name servers have a Deployment and a Service, but with respect 

the the single cluster case, the Service is a LoadBalancer, which publicly exposes an 

IP address to access the name server. Since the broker needs the name servers IP when 

booting, there is the need to wait until the public IP becomes available as presented by 

the code below. 

 

Subsequently, we deployed the brokers, inserting both addresses of the server names 

in each of these. In many YAML files we use custom defined variables (whose name 

is indicated between angular parenthesis), that we then substitute with their values 

before the deployment, using the BASH sed command. An example is given by the 

following code showing the replacement of the < ADDR > variable with the name servers 

public IPs. 

 

 

                  

      

       

      

       

     

      

     

      

while [ -z "$(kubectl -n eventmesh get svc rocketmq-name-service -
o=jsonpath='{.status.loadBalancer.ingress[0].ip}')" ] 
do 
    sleep 2 
done 

cat cluster-2/broker-config-fast.yaml | sed "s/< ADDR >/${NAMESRV}/g" | kubectl -n 
eventmesh apply -f - 
cat cluster-2/broker-fast.yaml | sed "s/< ADDR >/${NAMESRV}/g" | kubectl -n 
eventmesh apply -f - 
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5.4 APACHE EVENTMESH 

After the deployment of Apache RocketMQ, we proceeded with the one of Apache 

EventMesh, creating a custom Docker image and subsequently the deployments for 

single and multi-clusters. 

5.4.1 CONTAINER IMAGE 

The Docker image is based on Alpine and it is built by downloading the official 

Apache EventMesh binaries that contain also the start.sh script that we set as the 

container launcher, after its adaptation to the Alpine shell. 

 

Code 5-12. Apache EventMesh Dockerfile. 

5.4.2 KUBERNETES DEPLOYMENT 

Regarding the deployment of Apache EventMesh, it must be initially noticed that it is 

the same for the single and multi-cluster environments. In fact, the EventMesh server 

uses the same deployment configuration in both cases: the only element that could be 

different is the address of the RocketMQ name server, however Apache EventMesh 

requires just the name server of the cluster it resides in. 

FROM openjdk:8-alpine 
  
ARG em_version 
ENV EVENTMESH_VERSION ${em_version} 
WORKDIR /opt 
  
RUN wget https://github.com/apache/incubator-
eventmesh/releases/download/v${EVENTMESH_VERSION}/apache-eventmesh-
${EVENTMESH_VERSION}-incubating-bin.tar.gz -O - | tar -xz \ 
 && mv apache-eventmesh-${EVENTMESH_VERSION}-incubating eventmesh-
${EVENTMESH_VERSION} \ 
 && chmod +x eventmesh-${EVENTMESH_VERSION}/bin/*.sh \ 
 && rm eventmesh-${EVENTMESH_VERSION}/bin/start.sh 
  
COPY bin/start.sh eventmesh-${EVENTMESH_VERSION}/bin/ 
 
WORKDIR /opt/eventmesh-${EVENTMESH_VERSION}/bin 
  
ENV DOCKER true 
CMD sh start.sh 
  
EXPOSE 10000 
EXPOSE 10105 
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The first element for the deployment of the Apache EventMesh runtime is the 

ConfigMap, shown below, that contains all its configuration properties. We enabled 

the TCP communication, required by the workflow applications, and the metrics, 

exposed in Prometheus format on the port 19090. 

 

Besides this ConfigMap, there is another one containing the file rocket-

client.properties with the RocketMQ name server address. 

The second element is the Apache EventMesh server Deployment object which has one 

replica per cluster, requires the configuration files provided by the ConfigMap, and 

opens ports for communication and metrics. 

apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: eventmesh-config 
data: 
  eventmesh.properties: |- 
    eventMesh.server.idc=DEFAULT 
    eventMesh.server.env=PRD 
    eventMesh.server.cluster=COMMON 
    eventMesh.server.name=EVENTMESH-runtime 
    eventMesh.sysid=0000 
    eventMesh.server.http.port=10105 
    ############ eventMesh tcp configuration 
    eventMesh.server.tcp.enabled=true 
    eventMesh.server.tcp.port=10000 
    eventMesh.server.tcp.readerIdleSeconds=120 
    eventMesh.server.tcp.writerIdleSeconds=120 
    eventMesh.server.tcp.allIdleSeconds=120 
    eventMesh.server.tcp.clientMaxNum=10000 
    # client isolation time if the message send failure 
    eventMesh.server.tcp.pushFailIsolateTimeInMills=30000 
    # rebalance internal 
    eventMesh.server.tcp.RebalanceIntervalInMills=30000 
    # session expire time about client 
    eventMesh.server.session.expiredInMills=60000 
    # flow control, include the global level and session level 
    eventMesh.server.tcp.msgReqnumPerSecond=15000 
    eventMesh.server.session.upstreamBufferSize=20 
  
... 
  
    #metrics 
    eventMesh.server.metrics.enabled=true 
    eventMesh.metrics.prometheus.port=19090 
    eventMesh.metrics.plugin=prometheus 
  
... 
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Code 5-13. Apache EventMesh server deployment file. 

Finally, the third element is a Service that allows the workflow applications to access 

the EventMesh runtime server through its name inside the cluster, as shown below. 

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: eventmesh-server 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: eventmesh-server 
  template: 
    metadata: 
     labels: 
       app: eventmesh-server 
    spec: 
      containers: 
      - name: eventmesh-server 
        image: framctrdh/apache-eventmesh:1.4.0-alpine 
        imagePullPolicy: IfNotPresent 
        ports: 
          - containerPort: 10000 
            name: tcp 
          - containerPort: 10105 
            name: http 
          - containerPort: 10205 
            name: grpc 
          - containerPort: 19090 
            name: metrics 
        volumeMounts: 
          - mountPath: /data/app/eventmesh/conf/eventmesh.properties 
            subPath: eventmesh.properties 
            name: eventmesh-config 
          - mountPath: /data/app/eventmesh/conf/rocketmq-client.properties 
            subPath: rocketmq-client.properties 
            name: rocketmq-client-config 
      volumes: 
      - name: eventmesh-config 
        configMap: 
          name: eventmesh-config 
      - name: rocketmq-client-config 
        configMap: 
          name: rocketmq-client-config 
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Code 5-14. Apache EventMesh service useful for applications to access the event mesh through the 

service name. 

5.5 WORKFLOW APPLICATION 

At this point we want to move from the explaination of work done for the 

infrastructural components to the applicative part of the project and, more specifically, 

to the workflow that consists of a series of echo applications. 

The workflow application is formed by a set of elements each of those can be one of 

the following types: 

• Trigger which starts the communication and sends messages that will be 

exchanged along the application chain. 

• Action which executes an echo to the previous component and at the same time 

forwards the message to the next component. 

• Conclusion which is the last component to receive messages. 

While there must be only one trigger element and one conclusion, the number of action 

elements can vary. The configuration of each element is illustrated in a file describing 

the behavior of each component, as we will see in more detail in the next chapter: it 

contains the role, the name associated to the component in the cluster (rootname), the 

number of send/receive operations it can do each second, and the communication 

properties. 

apiVersion: v1 
kind: Service 
metadata: 
  name: eventmesh-service 
  labels: 
    app: eventmesh-service 
spec: 
  selector: 
    app: eventmesh-server 
  ports: 
    - port: 10000 
      name: tcp 
    - port: 10105 
      name: http 
    - port: 10205 
      name: grpc 
    - port: 19090 
      name: metrics 
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Code 5-15. Example of trigger element configuration. 

The applicative part is divided into two different applications, one for the synchronous 

and the other for the asynchronous communication. To keep uniformity between those 

two implementations, we wrote both applications in Java, since Apache EventMesh 

SDK supports only this programming language; furthermore, we decided to adopt TCP 

as the communication protocol for both applications. 

 

Figure 5-4. Schema of the workflow application used during tests. Each container comprises a workflow 

application and a web server for statistics, that are accessible through a Service. 

5.5.1 SYNCHRONOUS APPLICATION 

Starting with the synchronous application we used for testing the service meshes, we 

will describe the codebase first and then continue with containerization and 

deployment. 

5.5.1.1 CODEBASE 

The codebase is organized into two parts: on one hand, the main which reads 

configuration from environment variables, prepares and starts the communication; on 

                                    

                             

    

    

       

    

       

    

                            

                                           

[trigger] 
rootname=trigger 
operation.ops.start=10 
operation.ops.end=100 
communication.hostname.to=action01 
communication.port.to=10091 
communication.port.from=10090 
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the other hand, the communication objects, shown below, which make up the server 

and the client. 

The TCP echo client creates a Socket and then sends a message, waiting for the latter 

to be echoed. It must be noted that, during the deployment, each workflow entity can 

be scheduled at a different time and so it can happen that a client component starts 

before the server, resulting in a connection failure. For this reason, the client attempts 

multiple times to connect to the server. 

 

Code 5-16. TCP client init connection. 

 

Code 5-17. TCP client echo. 

On the other side, the server waits for connections and then, when the message is 

received, it echoes it to the client. 

 

Code 5-18. TCP server waiting for connections. 

while( !clientSocket.isConnected() && attempts > 0) { 
    try { 
         
        clientSocket = new Socket(host, port); 
         
        reader = new BufferedReader(new 
InputStreamReader(clientSocket.getInputStream())); 
        writer = new BufferedWriter(new 
OutputStreamWriter(clientSocket.getOutputStream())); 
    ... 
    attempts--; 
} 

writer.write(message + "\n"); 
writer.flush(); 
  
String ret = ""; 
if((ret = reader.readLine()) != null) { 
  
    logger.info("Received message: " + ret); 
} 

serverSocket = new ServerSocket(port); 
... 
socket = serverSocket.accept(); 
  
reader = new BufferedReader(new InputStreamReader(socket.getInputStream())); 
writer = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream())); 
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Code 5-19. TCP server echo. 

The forwarding of messages from one workflow entity to another is accomplished by 

combining a server and a client: the former receives a message which is then passed 

to the client which sends it to the next component. 

To support constant as well as variable amount of requests per second, each workflow 

entity creates a DurationCalculator object which evaluates the time between one 

operation and another. 

 

Code 5-20. Evaluation of the thread sleeping time between one operation and the other. The variable 

time is calculated with a linear interpolation. 

5.5.1.2 CONTAINER IMAGE 

The building of the container image requires to package the project in JAR file which 

is then copied inside the container image together with the shell script used for the 

application launch. 

StringBuilder message = new StringBuilder(); 
  
String line = ""; 
while((line = reader.readLine()) != null) { 
  
    writer.write(message + "\n"); 
    writer.flush(); 
  
    message.append(line); 
} 
     
socket.close(); 

this.duration = totalDuration; 
  
this.start_wait = 1000 / start_ops; 
this.end_wait = 1000 / end_ops; 
  
this.start = System.currentTimeMillis(); 
... 
if(start_wait == 0 || start_wait == end_wait) { 
  
    return start_wait; 
} 
// check for elapsed time > duration 
long elapsed = System.currentTimeMillis() - start; 
double t = elapsed < duration ? elapsed / (double)duration : 1.0; 
return Math.round((1.0 - t) * start_wait + t * end_wait); 
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Code 5-21. Shell script that builds the project and the Dockerfile. 

 

Code 5-22. Dockerfile of the workflow application. We used a custom image containing the HTTP server 

for the statistics. 

 

Code 5-23. Launcher of the application. After the applications exits, it starts an HTTP server for 

statistics. 

5.5.1.3 DEPLOYMENT 

The deployment of the workflow application is the same for both the single and multi-

cluster environments with the only difference, in the second case, that the conclusion 

component is deployed on a different cluster. 

The Deployment and the Service resources which are used for the application 

workflow, have custom variables that are expanded with the values taken from the 

configuration files already mentioned (cf. Code 5-15). 

./mvnw package 
  
docker build -f Dockerfile -t framctrdh/servicemesh-workflow:latest . && \ 
docker push framctrdh/servicemesh-workflow:latest 

FROM framctrdh/stats-base:latest 
  
COPY tmp /opt/workflow 
COPY bin/start.sh /opt 

#!/bin/sh 
  
java -cp workflow:. -jar workflow/*.jar it.workflow.Workflow && \ 
./start-stats.sh 
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Code 5-24. Deployment of the workflow application. It sets the environment variables, starts the 

application executing the custom script, and opens one port for the workflow and the others for exposing 

metrics. 

 

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: workflow-< NAME > 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      app: workflow 
      role: < ROLE > 
      name: < NAME > 
  template: 
    metadata: 
     labels: 
       app: workflow 
       role: < ROLE > 
       name: < NAME > 
    spec: 
      containers: 
      - name: workflow-< NAME > 
        imagePullPolicy: Always 
        env: 
        - name: DURATION 
          value: "< DURATION >" 
        - name: ROOTNAME 
          value: "< NAME >" 
        - name: ROLE 
          value: "< ROLE >" 
        - name: OPS_START 
          value: "< OPS_START >" 
        - name: OPS_END 
          value: "< OPS_END >" 
        - name: HOST_TO 
          value: "< HOST_TO >" 
        - name: PORT_FROM 
          value: "< PORT_FROM >" 
        - name: PORT_TO 
          value: "< PORT_TO >" 
        - name: STATS_FILENAME 
          value: "stats.log" 
        image: framctrdh/servicemesh-workflow:latest 
        command: ["sh", "start.sh"] 
        ports: 
          - containerPort: < PORT_FROM > 
            name: tcp-server 
          - containerPort: 8080 
            name: app-stats 
          - containerPort: 15020 
            name: istio-metrics 
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Code 5-25. Service of the workflow application. It is used by clients to communicate with servers and 

by the metrics server to gather metrics. 

5.5.2 ASYNCHRONOUS COMMUNICATION 

Passing now to the asynchronous application designed to be used with Apache 

EventMesh, it must be noticed that this, although constructed similarly to the previous 

one, has some differences, some of which are more significant, that we will describe 

in the following. 

5.5.2.1 CODEBASE 

Regarding the codebase, the difference with the previous case is due obviously to the 

different way of communication. 

This project requires the Apache EventMesh Common and Java SDK libraries which 

expose APIs to connect to the EventMesh runtime server. Both producer and 

consumer, defined in our application codebase, require an instance of 

EventMeshTCPClientConfig class that specifies the configuration of EventMesh TCP 

client. The host and port fields must match those of the EventMesh server. 

apiVersion: v1 
kind: Service 
metadata: 
  name: < SERVICE_NAME > 
spec: 
  selector: 
    app: workflow 
    role: < ROLE > 
    name: < NAME > 
  ports: 
  - port: < PORT_FROM > 
    name: tcp-server 
  - port: 8080 
    name: app-stats 
  - port: 15020 
    name: istio-metrics 
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Figure 5-5. Initialization of the EventMesh TCP publisher in the workflow application. The procedure 

is the same for the TCP consumer. 

The publisher client has an asyncPublish method which wraps the publish method 

implemented by the EventMeshTCPClient class, which accepts the message to be 

published and a timeout value, adding some properties to the message, such as the 

topic. 

 

Code 5-26. Publish method of the workflow TCP client. 

On the other hand, the TCP consumer implements the ReceiveMsgHook class with its 

handle method, called by Apache EventMesh when a new message for a certain topic 

is ready to be consumed. The subscription happens through the subscribe method 

which accepts: the topic, a SubscriptionMode (CLUSTERING or BROADCASTING), and the 

public class PublisherTCP {  
    public PublisherTCP(UserAgent userAgent) { 
  
        UserAgent clientUserAgent = MessageUtils.generatePubClient(userAgent); 
  
        EventMeshTCPClientConfig clientConfig = EventMeshTCPClientConfig.builder() 
                .host(eventMeshIP) 
                .port(eventMeshTCPPort) 
                .userAgent(clientUserAgent) 
                .build();             
  
        client   = EventMeshTCPClientFactory.createEventMeshTCPClient(clientConfig, 
EventMeshMessage.class); 
        client.init(); 
} 

public void asyncPublish(String message, String topic, Map<String, String> 
properties) { 
  
    EventMeshMessage eventMeshMessage = new EventMeshMessage(); 
     
    if(properties != null) { 
        for(Map.Entry<String, String> property : properties.entrySet()) { 
  
            eventMeshMessage.getProperties().put(property.getKey(), 
property.getValue()); 
        } 
    } 
  
    eventMeshMessage.setTopic(topic); 
    eventMeshMessage.setBody(message); 
  
    client.publish(eventMeshMessage, client_timeout); 
} 
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SubscritptionType which indicates if the subscription should be asynchronous or 

synchronous. 

 

Code 5-27. Subscribe method of the workflow TCP client. The handler requires an actor which 

implements the echo action. 

 

Code 5-28. Handler method of the TCP client. It retrieves the message and passes it to the echo function, 

implemented as an actor action. 

5.5.2.2 DEPLOYMENT 

The containerization and the deployment are really similar to the synchronous case, 

however the communication between the workflow components requires to add topics 

to the broker cluster. For this reason, the deploy.sh script has a phase in which it adds 

them through the Apache RocketMQ console application. 

 

Code 5-29. Execution of the topic addition to the Apache RocketMQ default cluster. 

5.6 METRICS 

After the description of the applicative part, let’s now face the last part of our project 

which is the one related to the metrics. As we already know from the previous chapter, 

all the data related to the tests are collected by a custom application, compatible with 

the Prometheus format. 

public void asyncSubscribe(String topic, IWorkflowActor actor) { 
  
    this.actor = actor; 
    handler.setActor(actor); 
     
    client.subscribe(topic, SubscriptionMode.CLUSTERING, SubscriptionType.ASYNC); 
    client.registerSubBusiHandler(handler); 
    client.listen(); 
} 

@Override 
public Optional<EventMeshMessage> handle(EventMeshMessage msg) {  
    actor.action(msg.getBody()); 
    return Optional.empty(); 
} 

    kubectl -n $NAMESPACE exec $rocketmq_console -- \ 
        sh mqadmin updateTopic -c DefaultCluster -t $topic \ 
        -n rocketmq-name-service:9876 
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The metrics are gathered by a client application running locally on our computers, 

which obtains data from various sources, such as the Kubernetes API or our own 

metrics server application, then storing them in files which are finally aggregated into 

a single table for graphs generation. 

The metrics client can monitor multiple Kubernetes clusters by creating for each of 

them an object that keeps all the data related to the cluster resources. These data are 

collected periodically, usually every few seconds, and stored by a single Persistence 

object. 

 

Code 5-30. Loop function that periodically gathers metrics for each cluster. For every execution the 

Persistence object sets a collection (snapshot) labeled with the date it was taken. 

5.6.1.1 KUBERNETES METRICS CLIENT 

The metrics client uses the official Kubernetes client library for Python. It loads the 

configuration for a certain cluster from the default file in the system23, which 

corresponds to executing kubectl --context=. Then, it loads APIs needed to gather 

information from the Kubernetes API Server and, more specifically, from the 

Kubernetes metrics addon. 

 
23 It is possible to display in the shell all the clusters executing: kubectl config get-contexts. 

while not stop: 
    for cluster in clients.keys(): 
        now = datetime.datetime.now() 
        persist.set_collection(cluster=cluster, coll=now) 
         
        client.detect_worflow_apps(namespace) 
  
        client = clients[cluster] 
        # CPU and memory 
        client.get_nodes_resource_usage() 
        client.get_containers_resource_usage(ns=namespace) 
  
        # Storage 
        client.list_persistent_volume_claims(ns=namespace) 
  
        client.request_metrics() 
        client.request_stats() 
  
    time.sleep(scrape_interval) 
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Code 5-31. Initialization of the metrics client for a certain cluster. 

At first, the KubeMetricsClient class, by accessing the data provided by the 

Kubernetes metrics addon, gathers the resources usage of each node in the cluster, 

formatting it according to the Prometheus format by using a custom object. 

 

Code 5-32. Collection and formatting of the node resource usage. 

The metrics client gathers data also for each container in the target namespace of the 

cluster. In this way, in the case of service meshes, we are able to differentiate workflow 

application metrics from their associated sidecar proxies. The code, similar to the 

previous, is shown below. 

class KubeMetricsClient: 
    def __init__(self, cluster = "default"):  
        api_client = config.new_client_from_config() 
  
        if cluster != "default":     
            api_client = config.new_client_from_config(context=cluster) 
  
        self.core_v1_api = client.CoreV1Api(api_client) 
        self.custom_objects_api = client.CustomObjectsApi(api_client) 

def get_nodes_resource_usage(self, human_readable = False): 
    api = self.custom_objects_api 
  
    try: 
        resource = api.list_cluster_custom_object(group="metrics.k8s.io", 
version="v1beta1", plural="nodes") 
  
        f = formatter.PrometheusFormatter() 
        for node in resource["items"]: 
            node_name = node["metadata"]["name"] 
            node_cpu = utils.parse_cpu(node["usage"]["cpu"]) 
            node_mem = utils.parse_mem(node["usage"]["memory"]) 
  
            f.insert_elem(("node", "cpu", "usage")) 
            f.insert_label("node", node_name) 
            f.insert_value(utils.raw_unit(node_cpu)) 
             
            f.insert_elem(("node", "memory", "usage")) 
            f.insert_label("node", node_name) 
            f.insert_value(utils.raw_unit(node_mem)) 
              
            logging.debug("Node res usage\n" + str(node_name) + ":\n - cpu: " + 
utils.readable_unit(node_cpu) + "\n - memory: " + utils.readable_unit(node_mem)) 
         
        self.persistence.store(cluster=self.cluster, name="nodes", 
content=f.format()) 
... 
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Code 5-33. Collection and formatting of the containers resource usage. 

Subsequently, the metrics client collects data from each application in the cluster. 

These data that are divided into metrics (already in Prometheus format) and stats (not 

in Prometheus format). 

 

Code 5-34. Initialization of the registries for the application metrics and stats, and retrieval of the 

metrics server public IP. 

def get_containers_resource_usage(self, ns = "default", human_readable = False): 
    api = self.custom_objects_api 
  
    try: 
        resource = api.list_namespaced_custom_object(group="metrics.k8s.io", 
version="v1beta1", namespace=ns, plural="pods") 
  
        f = formatter.PrometheusFormatter() 
        for pods in resource["items"]: 
            pod_name = pods["metadata"]["name"] 
  
            for container in pods["containers"]: 
                container_name = container["name"] 
                container_cpu = utils.parse_cpu(container["usage"]["cpu"]) 
                container_mem = utils.parse_mem(container["usage"]["memory"]) 
  
                f.insert_elem(("container", "cpu", "usage")) 
                f.insert_label("pod", pod_name) 
                f.insert_label("namespace", ns) 
                f.insert_label("container", container_name) 
                f.insert_value(utils.raw_unit(container_cpu)) 
                 
                f.insert_elem(("container", "memory", "usage")) 
                f.insert_label("pod", pod_name) 
                f.insert_label("namespace", ns) 
                f.insert_label("container", container_name) 
                f.insert_value(utils.raw_unit(container_mem)) 
  
        self.persistence.store(cluster=self.cluster, name="containers", 
content=f.format()) 
    ... 

def init_metrics_server(self, ns = "default", server_name = "simple-metrics-server", 
server_path = "/metrics"): 
    services = self.core_v1_api.list_namespaced_service(ns) 
     
    # retrieve metrics server IP in the cluster 
     
    self.metrics_server_url = "http://" + server_ip + ":" + str(server_port) + 
server_path 
    logging.info("Metrics server address is " + self.metrics_server_url) 
  
    self.in_cluster_metrics = dict() 
    self.in_cluster_stats = dict() 
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The metrics client keeps, for each of these data categories, a registry (in the form of a 

Python dictionary), containing the URL of each component that is present in the 

cluster, as shown by the code below for the Apache EventMesh case. 

 

Code 5-35. Registry containing the endpoint URLs for Apache EventMesh and Apache RocketMQ. 

Finally, the metrics client gathers the data from each component in the registry and 

stores the result, formatting them according to Prometheus format in the case of stats: 

 

Code 5-36. Gathering of metrics. 

 

Code 5-37. Gathering and formatting of stats. 

5.6.1.2 KUBERNETES SERVER 

As already mentioned, the metrics client uses a metrics server, deployed in a dedicated 

namespace (termed monitoring) in each Kubernetes cluster, to gather metrics and stats 

related to each microservice. The metrics server is a simple web server build upon 

def init_eventmesh_registry(self, em_ns = "eventmesh"): 
    self.in_cluster_metrics['rocketmq'] = {'hostname': ''.join(('rocketmq-
exporter.', em_ns, '.svc.cluster.local')), 'port': '5557', 'path': '/metrics'} 
    self.in_cluster_metrics['eventmesh'] = {'hostname': ''.join(('eventmesh-
service.', em_ns, '.svc.cluster.local')), 'port': '19090', 'path': ''} 

for endpoint in self.in_cluster_metrics: 
    addr = self.in_cluster_metrics[endpoint] 
    metrics = requests.get(url=self.metrics_server_url, params=addr, 
timeout=REQUEST_TIMEOUT) 
  
    if metrics.text == 'Error': 
        logging.warning("Cannot reach " + endpoint + " in the cluster.") 
    else: 
        self.persistence.store(cluster=self.cluster, name=endpoint, 
content=metrics.text) 

f = formatter.WorkflowFormatter() 
for app in self.in_cluster_stats: 
    addr = self.in_cluster_stats[app] 
    stats = requests.get(url=self.metrics_server_url, params=addr, 
timeout=REQUEST_TIMEOUT) 
  
    if stats.text != 'Error': 
        f.parse(name=addr['hostname'], text=stats.text) 
  
for actor in f.format(): 
    self.persistence.store(cluster=self.cluster, name=actor['name'], 
content=actor['content']) 
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Flask24. It receives requests from the metrics client, which inserts inside the HTTP 

request the URL parameters of the target application. These data are assembled by the 

metrics server and used to scrape the remote application in the cluster. The result is 

returned to the client. 

 

Code 5-38. Metrics server core method. 

For security reasons we decided to avoid running the application as a root user, as we 

did for the case of Apache RocketMQ Docker image. 

5.6.1.3 PERSISTENCE 

Regarding the persistensce of the data, it is important to point out that Prometheus 

stores data as a time series: streams of timestamped values belonging to the same 

metric and the same set of labeled dimensions. For simplicity, we decided to store all 

the metrics as files and, to keep the data ordered, we organized them according to a 

precise structure. 

Each test run defines a root folder named with the date the test was started. This 

directory contains all the clusters involved in the test as folders: each folder contains 

the snapshots, also named collections, of the timeseries as directories. Finally, each of 

these directories contains the files related to each metric gathered. 

 
24 Flask is a lightweight web application framework for Python. 

@app.route("/metrics") 
def server_metrics(): 
    address="http://" + request.args.get('hostname') + ":" + 
request.args.get('port') + request.args.get('path') 
         
    result = 'Error' 
    try: 
        r = requests.get(url=address, timeout=REQUEST_TIMEOUT) 
        if r.status_code == 200: 
            result = r.text 
        else: 
            logging.warning("Request failed with status: " + r.status_code) 
    except: 
        logging.warning("Request failed.") 
  
    return result 
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Code 5-39. Folder structure of the metrics gathering. 

5.6.1.4 METRICS GATHERING 

To simplify the gathering of the metrics, we collect data in Prometheus format when 

possible. In particular, sidecar proxies and the Apache EventMesh runtime server 

expose data in this way without the need to add any element to the cluster. Instead, 

Apache RocketMQ requires an exporter component, which returns rich metrics about 

the RocketMQ deployment in Prometheus format. Finally, each workflow application 

logs every send/receive operation in a file. When the test finishes or the duration timer 

runs out, an HTTP server built using SpringBoot starts, allowing the metrics server to 

retrieve all the operation data for each workflow component. 
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Figure 5-6. The metrics server and the workflow applications. 
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6 EXPERIMENTAL RESULTS 

In this chapter we want to focus on the results of our experimentation, starting from 

the illustration of how we configured the tests to then continue with their analysis. 

The tests we carried out were aimed at evaluating the performance of the various 

infrastructural components, which are Istio, Linkerd, and Apache EventMesh (together 

with Apache RocketMQ), when they are used for the operation of workflow 

applications in cloud environments. In particular, monitoring consumption of 

resources of each component under a load of first constant and subsequently 

incremental requests, we evaluated with these tests the functioning of more mature 

technologies, such as service meshes, and newer ones, such as event mesh, both in a 

single cluster and in a multi-cluster environment. 

6.1 TEST CONFIGURATIONS 

As already mentioned in the previous chapter, the configuration of each test is 

illustrated in a file, whose syntax derives from the one Java uses for the Properties 

[107], [108].  

Inside each configuration file, it must be specified, first, the total duration of the test, 

then the workflow components, each of which starts with its role followed by the 

configuration attributes for the same component. The duration attribute can be written 

in human readable syntax since the script, which will deploy all the components 

according to the specified configuration, will evaluate it using a Python script to 

convert the timing to milliseconds, as Java uses to. 
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Code 6-1. Python script to convert from human readable time unit to milliseconds using the Pint 

package25. 

We decided to test our project in two different ways: in the first, a constant load with 

ten requests per second for two minutes; in the second, an incremental load from one 

to one thousand messages per second for five minutes. Since the load is generated by 

the Trigger component, the latter is the only one affected by this configuration, as can 

be read from the code below. 

 

 
25 The conversion requires Pint, a Python package to define, operate, and manipulate physical quantities, 

used also by the metrics client to correctly interpret metric values. 

import pint 
 
duration = sys.argv[1] 
ureg = pint.UnitRegistry() 
t = ureg.Quantity(duration)  
print('{0.magnitude:.0f}'.format(t.to('millisecond'))) 

duration=2minutes 
  
[trigger] 
rootname=trigger 
operation.ops.start=10 
operation.ops.end=10 
communication.hostname.to=action01 
communication.port.to=10091 
communication.port.from=10090 
  
[action] 
rootname=action01 
operation.ops.start=100 
operation.ops.end=100 
communication.hostname.to=action02 
communication.port.to=10091 
communication.port.from=10091 
  
[action] 
rootname=action02 
operation.ops.start=100 
operation.ops.end=100 
communication.hostname.to=conclusion 
communication.port.to=10091 
communication.port.from=10091 
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Code 6-2. Configuration for the test of constant load used for service meshes. 

 

Code 6-3. Configuration for the test of incremental load used for service meshes. 

The tests for the asynchronous workflow application are the same, except for the 

configuration of each workflow component. 

[conclusion] 
rootname=conclusion 
operation.ops.start=100 
operation.ops.end=100 
communication.port.to=10091 
communication.port.from=10091 

duration=5minutes 
  
[trigger] 
rootname=trigger 
operation.ops.start=1 
operation.ops.end=1000 
communication.hostname.to=action01 
communication.port.to=10091 
communication.port.from=10090 
  
[action] 
rootname=action01 
operation.ops.start=1000 
operation.ops.end=1000 
communication.hostname.to=action02 
communication.port.to=10091 
communication.port.from=10091 
  
[action] 
rootname=action02 
operation.ops.start=1000 
operation.ops.end=1000 
communication.hostname.to=conclusion 
communication.port.to=10091 
communication.port.from=10091 
  
[conclusion] 
rootname=conclusion 
operation.ops.start=1000 
operation.ops.end=1000 
communication.port.to=10091 
communication.port.from=10091 
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Code 6-4. Differences of the configurations used for event mesh. In the communication attributes are 

indicated the topics. 

6.2 SINGLE CLUSTER TESTS 

For the execution of the tests for the single cluster case, it was created a Google 

Kubernetes Engine (GKE) cluster with the following characteristics: 

• Kubernetes version: 1.21.11-gke.900. 

• Zone: europe-west8-a (Milan, Italy). 

• Total cores: 8 vCPUs. 

• Total memory: 32 GB. 

Regarding the nodes, we created a pool of 4 nodes, each of which with the following 

properties: 

• Node container image: container-optimized OS (cos_containerd). 

• Node type: n2d-standard-2. 

• Node resources: 2 vCPUs (AMD EPYC) and 8GB of memory. 

As mentioned above, we executed two different tests, one with constant and the other 

with incremental load, indicating both the metrics of each single component, as well 

as their mean. 

... 
[trigger] 
... 
communication.to=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION1 
  
[action] 
... 
communication.from=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION1 
communication.to=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION2 
  
[action] 
... 
communication.from=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION2 
communication.to=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION3 
  
[conclusion] 
... 
communication.from=INTERACTION-TRANSACTION-ASYNC-V1_0_0-WORKFLOW-ACTION3 
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6.2.1 RESULTS OF TESTS WITH CONSTANT LOAD 

Starting from the constant load, first we will proceed with the analysis of the use of 

the resources of the workflow application and of the infrastructural components, to 

then move on to the latency of each single message as the number of messages sent 

per second varies. 

6.2.1.1 WORKFLOW APPLICATION 

As can be seen in the Figure 6-1 and Figure 6-2, the workflow application designed to 

work with the event mesh consumes in general few more CPU than the synchronous 

application, with a peak at the beginning. However, from the analysis of the memory 

usage illustrated in Figure 6-3 and Figure 6-4, it is evident that the event mesh 

workflow application consumes about four times the memory than the synchronous 

case. This is probably due to the Apache EventMesh Java SDK. The final peaks in all 

the graphs are due to the boot of the Spring based web server which exposes stats to 

our metrics system. 

 

Figure 6-1. In the graph it is represented the trend of the CPU consumption for each workflow 

component for synchronous and asynchronous communication. 
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Figure 6-2. The graph represents the mean of the CPU usage of each workflow component for 

synchronous and asynchronous communication. 

 

Figure 6-3. In the graph is represented the memory usage for each workflow component. 
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Figure 6-4. In the graph is shown the mean of the memory consuption for synchronous and 

asynchronous workflow application. 

6.2.1.2 INFRASTRUCTURAL COMPONENTS 

We now report the graphs relating to the results obtained for the infrastructural part of 

our project. 

 

Figure 6-5. The graph represents the CPU usage for each mesh component. 
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Figure 6-6. In the graph is represented the mean CPU consumption of the service and event mesh 

components. 

 

Figure 6-7. The graph represents the memory usage of each mesh component. 
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Figure 6-8. The graph represents the mean memory usage of the service and event mesh deployments. 

As it is evident in Figure 6-5 and Figure 6-6, Apache EventMesh server is the 

component which uses the greatest amount of CPU, followed by Apache RocketMQ 

broker, while the service mesh proxies consume just a few amount of CPU, negligible 

with respect to the event mesh deployment. Regarding the memory consumption 

showed in Figure 6-7 and Figure 6-8, the Apache RocketMQ broker is the component 

which uses the largest amount, requiring more than 2GB. Trying to reduce the 

requested memory range of the JVM and setting limits below 2GB in the Kubernetes 

Deployment resource results in an Out-of-Memory error, as shown below. 

 

Code 6-5. Apache RocketMQ broker failure when the maximum memory is under 2GB. 

On the other hand, it is interesting to focus specifically on service meshes, which 

cannot clearly be seen in the previous graphs because they use far less memory than 

the Apache RocketMQ broker. It is noticeable from Figure 6-9 and Figure 6-10, that 
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$ kubectl -n eventmesh get pods 
NAME                                      READY   STATUS      RESTARTS   AGE 
eventmesh-server-694b54f9c9-59b6k         1/1     Running     0          100s 
rocketmq-broker-master-78b68fb4b9-grhnf   0/1     OOMKilled   4          102s 
rocketmq-console-admin-79546b9cdc-6dh7t   1/1     Running     0          102s 
rocketmq-name-service-7bfc679884-n2nnf    1/1     Running     0          104s 
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the Envoy proxy used by istio requires more memory (about 40MB) with respect to 

linkerd2-proxy (less than 5MB). This result confirms what was stated by the Linkerd 

developers about the better resource consumption of their proxy with respect to Envoy 

[109]. 

 

Figure 6-9. The graph shows the memory usage difference between istio and Linkerd. 

 

Figure 6-10. The graph summarizes the difference between the two proxy implementation showing the 

mean memory consumption. 
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6.2.1.3 MESSAGE LATENCIES 

Before proceeding with the incremental load tests, we want to show now the latencies 

of messages measured at the ends of the workflow application. 

As it is possible to notice in the Figure 6-11, there is a significant message latency for 

the first 200 messages with a serrated trend in the case of event mesh. Identifying the 

exact cause of this trend is difficult, however we can hypothesize that the Apache 

RocketMQ broker keeps the messages in a cache, sending them together subsequently 

to consumers, gradually adapting the cache to the number of requests per second. 

 

Figure 6-11. The graph shows the message latencies for each mesh. 

Looking instead just at the service mesh proxies in Figure 6-12, it is possible to notice 

that the delay in which the messages incur, although always contained (less than half 

a second), is greater for istio Envoy (about 320 milliseconds) with respect to linkerd2-

proxy (between 5 and 15 milliseconds). 
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Figure 6-12. The graph compares the message latencies only between the two service mesh 

implementations used in our project. 

6.2.2 RESULTS OF TESTS WITH INCREMENTAL LOAD 

We will now illustrate the tests carried out with incremental load following the same 

order used for the description of the tests with constant load. 

6.2.2.1 WORKFLOW APPLICATION 

The tests for the workflow application confirm what we already saw in the constant 

load case. In particular, it is possible to observe in Figure 6-13 and Figure 6-14 that 

the CPU consumption is in general low while the Figure 6-15 and Figure 6-16 show 

the greater the memory usage of the event mesh deployment with respect to the one 

required by the components used to test the service meshes. However, it is possible to 

notice that the synchronous applications increment their memory consumption as the 

number of requests per second increases, while the event mesh applications, which 

rely on the Apache EventMesh SDK, require almost the same amount of memory. The 

final peaks are due to the boot of the Java Spring application used to gather metric 

information of each workflow application. 
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Figure 6-13. The graph represents the CPU usage of each workflow component. 

 

Figure 6-14. In the graph is represented the mean of the CPU usage of synchronous and asynchronous 

workflow application. 
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Figure 6-15. The graph represents the memory usage of each workflow application. 

 

Figure 6-16. The graph shows the trend of the memory usage of the different meshes. 
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consumption is almost below 5%, with the highest usage from the Apache EventMesh 

server, followed by the Apache RocketMQ broker, while the service mesh proxies 

consume a very low percentage. The Figure 6-19 and Figure 6-20 show that the 

memory consumption of the Apache RocketMQ broker is significantly higher (more 

than 2GB) than the service mesh proxies (from 5 to 40 MB) and the one required by 

Apache EventMesh (from about 235 to 359 MB). 

 

Figure 6-17. In the graph is illustrated the CPU usage for each different mesh component. 
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Figure 6-18. The graph illustrates the mean CPU usage of the mesh components. 

 

Figure 6-19. The graph shows the memory usage for each mesh component. 
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Figure 6-20. In the graph is represented the mean memory usage for the service and event mesh. 

6.2.2.3 MESSAGE LATENCIES 

The message latencies of the increasing load test in the Figure 6-21 show that the 
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Figure 6-21. The graph represents the latencies for service and event meshes. 
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6.3 MULTI-CLUSTER TESTS 

After the report of the tests conducted in a single cluster, we want to describe now a 

more advanced scenario, which consists of two GKE clusters, each of which has the 

same configuration of the single cluster case (16 vCPUs and 64GB in total). 

Like for the single cluster, we repeated also in this case the two different tests, one 

with constant and the other with incremental load, leaving the Trigger and the Action 

components in the first cluster and moving the Conclusion to the second cluster. For 

the setup of the infrastructural components, we used the same configuration as it was 

described in the previous chapter. 

6.3.1 RESULTS OF TESTS WITH CONSTANT LOAD 

Starting from the constant load, we will proceed, as in the single cluster case, with the 

analysis of the use of the resources of the workflow application and of the 

infrastructural components, to then move on to the examination of the latency of each 

single message as the number of messages sent per second varies. 

6.3.1.1 WORKFLOW APPLICATION 

The workflow application follows about the same trend as in the single cluster case 

with more memory usage in the case of the event mesh workflow application. In 

particular, it is possible to observe in Figure 6-22 and Figure 6-23 that the workflow 

application designed to work with the event mesh consumes about the same CPU than 

the synchronous application, except for the peaks at the start and the end of the graphs. 

However, the analysis of the memory consumption in Figure 6-24 and Figure 6-25 

shows that the memory required by the asynchronous applications is significantly 

higher (more than 200MB) than the one required by the synchronous application 

(around 50MB). The final peaks are related to the boot of the Java Spring application 

used to expose test results of each component to our metrics system. 
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Figure 6-22. The graph represents the CPU usage for each workflow component. 

 

Figure 6-23. The graph represents the mean CPU usage of the mesh components. 

0

5

10

15

20

25

30

35
vC

P
U

 (
%

)

Sampling time (mm:ss)

Workflow application CPU usage

Trigger istio Action1 istio Action2 istio

Conclusion istio Trigger linkerd Action1 linkerd

Action2 linkerd Conclusion linkerd Trigger event mesh

Action1 event mesh Action2 event mesh Conclusion event mesh

0

2

4

6

8

10

12

14

16

18

vC
P

U
 (

%
)

Sampling time (mm:ss)

Workflow application mean CPU usage

Mean istio Mean linkerd Mean event mesh



151 

 

 

Figure 6-24. In the graph is represented the memory usage for each workflow component. 

 

Figure 6-25. Graph representing the mean memory usage for service and event mesh deployments. 
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slightly higher in the first cluster, since there are three workflow components relying 

on the EventMesh server. On the other hand, the CPU required by the service mesh 

proxies is always significantly lower than the event mesh deployment. Instead, the 

Figure 6-28 and Figure 6-29 show that the memory usage of the event mesh 

components is very high and it is almost the same for both clusters, with the first being 

just a little higher than in the second one. 

 

Figure 6-26. The graph represents the CPU usage of each mesh component. 

0

5

10

15

20

25

vC
P

U
 (

%
)

Sampling time (mm:ss)

Infrastructural components CPU usage

Trigger istio proxy Action1 istio proxy Action2 istio proxy

Conclusion istio proxy Trigger linkerd proxy Action1 linkerd proxy

Action2 linkerd proxy Conclusion linkerd proxy RocketMQ name server cluster1

RocketMQ broker cluster1 EventMesh server cluster1 RocketMQ name server cluster2

RocketMQ broker cluster2 EventMesh server cluster2



153 

 

 

Figure 6-27. In the graph is represented the mean CPU usage of the service and event mesh components. 

 

Figure 6-28. Graph representing the memory usage of the mesh components for each cluster. 
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Figure 6-29. The graph shows the mean memory usage of the mesh components for each cluster. 

Regarding the service mesh deployments, it is possible to notice their low memory 

usage when compared to the one consumed by the event mesh deployment. Focusing 

only on service mesh proxies, the Figure 6-30 confirms that each Envoy proxy uses 

much more memory (more then 40MB) with respect to linkerd2-proxy (about 3MB), 

as we already showed in the single cluster tests. 

 

Figure 6-30. The graph shows a comparison of the memory usage between istio and linkerd proxies. 
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6.3.1.3 MESSAGE LATENCIES 

When looking at the the latency for each message exchanged along the chain between 

the Trigger and the Conclusion, while istio keeps latency less than about 200 

milliseconds and Linkerd around 10 milliseconds, as illustrated in Figure 6-32, Apache 

EventMesh is not capable of forwarding all the messages through the workflow 

application chain, and in general the latencies are really high, from about 2 seconds to 

more than 25 seconds, as shown in Figure 6-31. Like in the single cluster case, it is 

possible to recognize a segmented pattern for the latencies in the event mesh case. 

 

Figure 6-31. The graph represents the message latencies for the service and the event mesh 

deployments. 
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Figure 6-32. In the graph is represented the message latencies for service meshes. 
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Figure 6-33. The graph represents the CPU usage of each workflow component. 

 

Figure 6-34. In the graph is represented the mean CPU usage for the synchronous and asynchronous 

workflow applications. 
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Figure 6-35. The graph represents the memory consumption of the workflow components. 

 

Figure 6-36. The graph shows the mean memory usage for the synchronous and asynchronous workflow 

applications. 
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6.3.2.2 INFRASTRUCTURAL COMPONENTS 

The visualizations provided by the infrastructural components resource usage confirm 

what we observed above: in Figure 6-37 and Figure 6-38 it is possible to notice that 

the event mesh deployment consumes less CPU than all the previous tests, while in the 

Figure 6-39 and Figure 6-40 the memory usage of the Apache RocketMQ brokers is 

always very high with respect to the service mesh proxies. 

 

Figure 6-37. The graph shows the CPU usage of each mesh component. 
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Figure 6-38. The graph represents the mean CPU usage of mesh components for each cluster. 

 

Figure 6-39. The graph represents the memory usage of each mesh component. 
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Figure 6-40. The graph represents the mean memory usage of each mesh component for each cluster. 

6.3.2.3 MESSAGE LATENCIES 

The analysis of the latency for each message in Figure 6-41 shows clearly the 

malfunctioning of the event mesh technology, comprising both Apache EventMesh 

and Apache RocketMQ, with only a few messages reaching their destination and with 

the highest latencies we observed in all the tests. 
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Figure 6-41. The graph shows the message latencies for each mesh. 

Finally, in Figure 6-42, which is focused only on service meshes, istio shows an 

interesting trend as the number of messages per second increases: it starts with high 

latencies, more than 2 seconds, slowly optimizing its performance. On the other hand, 

Linkerd performs impeccably, with no messages lost and with latencies in the range 

of about 10 to 20 milliseconds. 

 

Figure 6-42. The graph represents the message latencies for service meshes. 
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6.4 FINAL CONSIDERATIONS 

In conclusion, the experiments carried out showed the maturity of the service mesh, 

highlighting, on the contrary, the strong limitations of Apache EventMesh. 

Istio and Linkerd make it possible to create a stable and efficient system to support 

synchronous communication. In particular, Linkerd has demonstrated that it requires 

much less memory than istio, which allows it to better exploit the resources of a cluster. 

In addition, in all the tests, Linkerd never lost a message, even in the multi-cluster 

scenario, in which it showed, when tested with increasing messages per second, its 

high performace, keeping latencies to the minimum. However, beyond the 

performance considerations, Linkerd showed a minor issue consisting in not allowing 

Kubernetes to capture logging output from each pod. In other words, the command 

kubectl logs did not output anything, with respect to the other meshes. 

On the other hand, it became clear that Apache EventMesh is still an immature project, 

despite being based on Apache RocketMQ, which has existed in a stable form for some 

years. The latter, in particular, required much more resources than the single proxies 

of the service mesh: in fact, we noticed the large use of memory by the broker, which 

in a real business application would require huge resources, with a possible consequent 

increase in costs26. Furthermore, we have noticed in the multi-cluster case a significant 

decrease in performance together with the loss of many messages along the chain of 

workflow applications. 

It must finally be considered that Apache EventMesh does not officially offer any tool 

to help automate the installation of the event mesh, as both istio and Linkerd do, but it 

is necessary to manually implement the entire mesh deployment process, adapting it 

to each specific environment. And this also applies to Apache RocketMQ. 

 
26 It should be noted that, although it uses more resources, the event mesh deployment is shared by 

multiple microservices, while in the case of service meshes, each microservice has associated a sidcear 

proxy. For this reason, only from the point of view of the resource usage, the deployment of event mesh 

could become convenient only if there are dozens of microservices in the system. 
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7 CONCLUSIONS 

In the last few years, IT systems have been characterized by significant innovations, 

mostly driven by the growing cloud infrastructure and microservices adoption, which 

allow organizations to deliver new capabilities for their respective business. Modern 

application development on cloud infrastructure requires engineering people to solve 

old problems, such as latency, security, and network reliability, which can become 

very difficult to manage for fast growing business when there are many different 

services which can be autoscaled or can fail unexpectedly. In this scenario, mesh 

technologies emerged to support business application development providing 

connectivity, reliability, security, and observability at infrastructure level. 

In particular, service mesh technologies are becoming more and more popular, and 

have gone through significant innovations and several new architecture trends, 

technology capabilities, and new projects have emerged in the ever evolving mesh 

space. On the other hand, event meshes are more recent, offering fewer options than 

service meshes, but are part of modern event processing which is fast becoming a 

foundation of today information society. Modern event processing emerged in the late 

1990s, but it has been for many decades the foundation, just to name a few areas, for 

discrete event simulation, weather simulation and forecasting, networks and the 

internet, and all the manner of information gathering and communications. Since then, 

many companies have been developing and marketing event processing products, so 

that complex event processing has become an established market area for commercial 

applications. 

Due to the importance of these technologies for enterprises, the work covered by the 

thesis had the aim of creating a microservices system to test workflow applications 

supported by some of these modern technologies. Our analysis first concerned the 

theoretical study of service, event, and data meshes, subsequently focusing on the 

examination of specific implementations. Finally, for the realization of our project we 

selected some technologies with particular characteristics and we compared them 

focusing mainly on the performance side, evaluating their functioning in a public cloud 
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environment within both a single Kubernetes cluster and in a multi-cluster scenario. In 

particular, in the field of service meshes, we used istio and Linkerd, given their open-

source nature and given that these two technologies offer different data plane proxy 

implementations. Regarding event meshes, we used a recently developed project 

termed Apache EventMesh, which depends on Apache RocketMQ. 

In our results, istio and Linkerd confirmed what we analyzed in the theory: they are 

performant and reliable mesh solutions. In a real business case with strict requirements 

of speed, reliability, and security, both service meshes demonstrate to be the right 

solution, with Linkerd that showed the best results in our tests, and which, in 

confirmation of our consideration, a recent report showed with a general positive trend 

of adoption, surpassing even istio in Europe and North America [110]. On the contrary, 

Apache EventMesh appears as a not yet mature technology, due to many problems in 

operation and significant difficulties during the installation process. 

However, the study of meshes is not only important from the point of view of the use 

that can currently be made of these technologies, but also from the perspective of their 

possible future developments which appear ever more numerous. For example, in 

recent years, the cloud adoption by different organizations has transformed from single 

cloud solution to multi-cloud, and supporting diverse workloads (transactional, batch, 

and streaming) is becoming critical to realize a unified cloud architecture. Some 

service mesh solutions, such as istio, are moving in this direction, supporting 

heterogeneous infrastructures (bare metal, virtual machines, Kubernetes). 

It must be considered also that other mesh vendors are focusing on the development 

of new offerings for their service mesh implementations, such as “service mesh as a 

service”. For example, Buoyant announced the release of a SaaS application called 

Buoyant Cloud that allows the customer organizations to take adantage of managed 

service mesh with the on-demand support features for the Linkerd service mesh. 

But further considerations must also be made with regard to another topic which is that 

of data management. In fact, data is becoming larger and more ubiquitous and it is no 

more feasible for enterprises to rely on one large data store, shared among the different 
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organization areas. During the years, some enterprises have decentralized their data, 

pushing data storage, models, and management into different business units. However, 

data analythics has remained a more centralized activity. In this field, a robust and 

well-defined data communication layer can help organizations on facing data 

complexity, focusing on business functionality, instead of querying needs of other 

bounded contexts, and therefore the event meshes, which are a natural evolution of 

event-driven architectures to handle these large and diverse data sets, will gain great 

importance. And indeed, in the future there could be a convergence between event and 

data meshes, which was named event-driven data mesh. Some of the capabilities that 

are emerging in this field were pioneered in the synchronous data world and could be 

replicated in the asynchronous context: event-driven data should be easely 

discoverable and easy to catalog in a self-service manner; analytical data should be 

traceable from origin to consumption. 

It must also be noted that there is interest also in applying service meshes to this field, 

with discussions about emerging architectural patterns for implementing event-driven 

messaging support within a service mesh. In this last context, the work toward 

supporting Apache Kafka within Envoy proxy attracted a fair amount of attention. 

In conclusion, we believe that meshes will gain more and more importance in a context 

in which companies, as part of their digital transformations, are building new 

applications, and modernizing legacy ones, to leverage cloud native technologies that 

enable consistent and reliable development, deployment, management, and 

performance across cloud environments and across cloud vendors, including on-

premises infrastructure. For this reason, the analysis of these technologies and in 

particular the evaluation of their performance will be increasingly important, allowing 

to identify their advantages and possibly their limits and therefore for companies to 

choose the technology that best suits their business needs.  
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