The Influences of Valence and Arousal on Judgments of Learning and on Recall ## Kathleen L. Hourihan Memorial University of Newfoundland Scott H. Fraundorf University of Pittsburgh Aaron S. Benjamin University of Illinois at Urbana-Champaign ## **Author Note** Kathleen L. Hourihan, Department of Psychology, Memorial University of Newfoundland; Scott H. Fraundorf, Learning Research and Development Center and Department of Psychology, University of Pittsburgh; Aaron S. Benjamin, Department of Psychology, University of Illinois at Urbana-Champaign. This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to Kathleen Hourihan and by National Institutes of Health grant R01AG026263 to Aaron Benjamin. We are grateful to Landon Churchill, Olivia Cleary, Kayla Hickey, and Sarah Hogan for their assistance with data collection and coding. Correspondence concerning this article should be addressed to Kathleen L. Hourihan, Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, CANADA. Phone: (709) 864-8771. Email: khourihan@mun.ca VALENCE AND AROUSAL EFFECTS ON JOLS AND RECALL Abstract Much is known about how the emotional content of words affects memory for those words, but only recently have researchers begun to investigate whether emotional content influences metamemory—that is, learners' assessments of what is or is not memorable. The present study replicated recent work demonstrating that judgments of learning (JOLs) do indeed reflect the superior memorability of words with emotional content. We further contrast two hypotheses for this effect: a physiological account in which emotional words are judging more memorable because of their arousing properties versus a cognitive account in which emotional words are judged more memorable because of their cognitive distinctiveness. Two results supported the latter account. First, both normed arousal (Experiment 1) and normed valence (Experiment 2) independently influenced JOLs, even though only an effect of arousal would be expected under a physiological account. Second, emotional content no longer influenced JOLs in a design (Experiment 3) that reduced the primary distinctiveness of emotional words by using a single list of words in which normed valence and arousal were varied continuously. These results suggest that the metamnemonic benefit of emotional words likely stems from cognitive factors. Keywords: emotion, metamemory, recall The Influences of Valence and Arousal on Judgments of Learning and on Recall Emotion is a fundamental aspect of the human experience, and understanding how emotion influences our cognitive processes is an essential component of understanding cognition in general (Mandler, 1975). Emotional effects on memory could include memory for an emotional event, memory for neutral stimuli encountered while in an emotional state, and memory for emotional content encountered in a neutral state. Here, we consider the lattermost of these scenarios: how the emotional content of material encountered in an otherwise neutral state influences subsequent memory and metamemory. We frequently encounter situations in which we learn and remember emotional information, such as when we read a news article recounting a natural disaster or celebration, or when we encounter emotionally evocative literature. Generally, emotional information is remembered better than neutral information (see Kensinger, 2009; Levine & Edelstein, 2009, for reviews); this has been observed with both pictures (e.g., Bradley, Greenwald, Petry, & Lang, 1992) and words (e.g., Kensinger & Corkin, 2003). The current study examines whether and how emotion influences our *predictions* of future recall, and what these findings imply about the processes by which emotion influences memory and metamemory. ## **Metamemory for Emotional Information** Despite the vast amount of research examining memory for emotional information, there is relatively little research on how *metamemory* (i.e., the monitoring and control of memory) is influenced by emotion. Some general evidence (Tauber & Dunlosky, 2012; Zimmerman & 4 Kelley, 2010), detailed below, suggests that learners' predictions of recall can be sensitive to the emotional content of the information, but the origin of this relationship is not clear. Some plausible hypotheses are suggested by the more general literature on metamemory. Extensive research in metamemory has examined judgments of learning (JOLs; Arbuckle & Cuddy, 1969): predictions of future memory performance elicited sometime after study but prior to test. Koriat's cue-utilization theory (1997) describes three types of cues that may be accounted for in making JOLs. *Intrinsic* cues are inherent to the study item itself, such as whether a word is concrete or abstract. Extrinsic cues are aspects of the study context not directly associated with the target items, such as repetition during presentation. JOLs made on these bases would reflect conscious, theory-based reasoning. By contrast, *mnemonic* cues are internal, subjective feelings about how well an item has been learned; they are less consciously identifiable, and rely more on a feeling of fluency (e.g., Begg, Duft, Lalonde, Melnick, & Sanvito, 1989; Benjamin & Bjork, 1996). JOLs are generally quite sensitive to intrinsic cues, such as word frequency (Benjamin, 2003) and imageability (Begg et al., 1989), whereas they often fail to account for extrinsic cues (e.g., Koriat, 1997; Koriat, Bjork, Sheffer, & Bar, 2004). JOLs for emotional words may therefore be influenced by both conscious, theory-based (intrinsic) and unconscious, experiencebased (mnemonic) contributions. This literature suggests several different *potential* mechanisms by which emotion could influence JOLs. First, because the emotional content of a word is intrinsic rather than extrinsic, it would be likely to influence JOLs. Participants might explicitly believe that emotional information will be remembered better than neutral information, and when they encounter items that are obviously emotional (especially in the context of other items that are neutral), they purposefully assign higher JOLs to emotional items than to neutral items. That is, the effect of emotion on JOLs may reflect a conscious strategy that incorporates a salient intrinsic cue. We note that this possibility closely resembles a theory-based influence of emotion on JOLs (Koriat, 1997), although we here term this the *cognitive* account of emotion on JOLs to distinguish this hypothesis (about emotion effects on metamemory) from more general claims about potential influences on JOLs. But, the above literature also implies that a second route by which emotion may influence metamemory is an unconscious, feeling-of-fluency effect (e.g., Benjamin & Bjork, 1996; Benjamin, Bjork, & Schwartz, 1998; Koriat, 1997). The physiological response associated with reading an emotional word may be perceived as fluency of processing and lead to predictions of greater recall (paralleling claims about emotion influences on *actual* recall; Scherer, 2005). We term this the *physiological* account¹ when applied to emotion influences on metacognition, but note that is analogous to the more general experience-based influences on JOLs described by Koriat (1997). Supporting the physiological account, there is some general evidence that emotional words elicit physiological responses that would be relevant to mnemonic and metamnemonic processes: Encoding of emotional words is associated with greater activation in the amygdala than encoding of neutral words (e.g., Kensinger & Corkin, 2004), and emotional arousal enhances memory consolidation (e.g., Cahill & McGaugh, 1998). And in recognition ¹ The term *physiological* is used here in reference to prior work substantiating the claim that high-arousal words lead to a different physiological response; we do not directly measure physiological responses in the present study. memory, high arousal stimuli lead to increased reports of recollection, compared to low arousal stimuli (e.g., Ochsner, 2000). Thus, it is plausible that learners may make metamnemonic judgments about emotional information either on a conscious basis (a cognitive account) or an unconscious basis (a physiological account)—or both. In the present study, we sought to distinguish these possibilities. ## **Prior Investigations of Emotion and Metamemory** Although the specific mechanisms by which emotion influences metamemory are unclear, the evidence to date is broadly consistent with the claim that JOLs are sensitive to emotional content. Zimmerman and Kelley (2010) compared negative and positive emotional words to neutral words. JOLs were consistently higher for both negative and positive words relative to neutral words. However, this pattern of JOLs was not entirely predictive of actual recall: Only on free recall tests were emotional words were consistently recalled better than neutral words; in cued recall, only positive words (not negative words) elicited higher recall than neutral words. Zimmerman and Kelley concluded that emotional content (regardless of whether it is positive or negative) is judged to make words more memorable; this strategy is often helpful but fails to account for other aspects of the encoding episode, such as the test format or the relatedness of word pairs, which may be more influential. Zimmerman and Kelley's (2010) free recall findings were subsequently replicated by Tauber and Dunlosky (2012), who also included older adult participants in their study. Older adults' predictions about recall of emotional words are particularly interesting because older adults are more likely than young adults to show a memory benefit for positive emotional information over negative emotional information (e.g., Tomaszczyk, Fernandes, & MacLeod, 2008). However, Tauber and Dunlosky (2012) found that although both groups
recalled negative and positive words better than neutral words, older adults' JOLs did not show any particular bias for positive over negative words: Both young and older adults gave higher JOLs to negative words than to neutral words, but only young adults gave higher JOLs to positive words than neutral words. (We revisit these discrepancies between JOLs and actual recall in the General Discussion.) Although these two studies stand as the first demonstrations that emotional content influences JOLs, they provide limited guidance on exactly *why* emotional content influences JOLs. Participants appeared to be using a heuristic to assign higher JOLs to emotional words than to neutral words, but that heuristic may be based on an explicit belief, on an interpretation of a physiological response, or on some combination of belief and feeling. Our goal in the present study was to adjudicate among these possibilities. ## **Dimensions of Emotionality** How can we distinguish cognitive (conscious) and physiological (unconscious) influences of emotion on metamemory? One strategy is to use more finely tuned manipulations of emotional content. Emotional stimuli differ from neutral ones on several dimensions, including both valence and arousal². *Valence* indicates how pleasant a word is (with low ² The Affective Norms for English Words (ANEW) database (Bradley & Lang, 2010) contains an additional dimension, *dominance*, which refers to being controlled vs. being in control. In the ANEW database, dominance 8 numbers indicating negativity and high numbers indicating positivity; neutral items fall in between) and *arousal* indicates the energy level associated with a word. These two factors are the primary factors used by researchers to characterize emotional words and to differentiate lists of emotional words from lists of neutral words. However, with notable exceptions in the work of Kensinger and colleagues (e.g., Kensinger & Corkin 2003; 2004), they have frequently been confounded in memory and metamemory research: Emotional words in many studies differ from neutral words in having both more extreme valence (i.e., more negative or more positive) *and* higher arousal (e.g., Siddiqui & Unsworth, 2011; Talmi & Moscovitch, 2004), including in the metamemory studies by Zimmerman and Kelley (2010) and Tauber and Dunlosky (2012). The confounding of arousal and valence means that it is unclear which factor primarily drives the effects of emotion on metamemory. However, the two hypotheses we reviewed above make competing predictions about which factor (arousal or valence) drives effects of emotion on metamemory. If the influence of emotion on metamemory occurs mainly via physiological arousal, then it is primarily arousal, not valence, that should influence metamemory. By contrast, if emotional influences on metamemory reflect the explicit application of naïve theory-driven strategies (i.e., responding to the relative salience of a class of emotional words), then *both* valence and arousal could influence metamnemonic judgments as long as they are sufficient to distinguish a relatively salient class of emotional words against a background of comparatively neutral words. ratings correlate highly with valence ratings (r = .83; i.e., being controlled is negative whereas being in control is positive). Most researchers do not address this factor; we also do not consider dominance in the current study. ## **List Composition and Distinctiveness** A second way to test the mechanisms by which emotional content influences metamemory is by manipulating the list structure. As noted above, one reason that emotional words might receive higher JOLs is that subjects apply a strategy of assigning higher JOLs to words that are noticed to be intrinsically emotional, based on a belief that emotional information should be remembered better than neutral information. But for subjects to be able to apply a naïve theory of the effects of emotional content of memory, the memoranda must reveal to the subjects their membership or nonmembership in a category of "emotional" items. Thus, list composition should be an important variable in determining the effects of emotional content on metamemory. This possibility for *metamemory* is suggested by prior results from *memory*: The memory benefit for emotional items occurs primarily in mixed-list designs, in which a single list contains discrete categories both of emotional and of neutral items, and not in pure-list designs (e.g., Dewhurst & Parry, 2000). Similarly, the apparent benefit in memory for emotional information is eliminated if emotionally neutral words that are semantically related to one another are used as comparison stimuli (e.g., Talmi & Moscovitch, 2004). These results suggest that emotional words require the background of neutral words to be present during learning in order to stand out as distinctive and show differences in memory. (This primary distinctiveness based on context can be contrasted with secondary distinctiveness, in which items stand out regardless of context due to their inherent unusualness; Schmidt, 1991). If the same is true for emotional influences on *metamemory*, emotion should not affect JOLs when the study context does not make emotional words comparatively distinct. By contrast, if it is the physiological process of encountering emotional information itself that influences metamnemonic judgments, there is no reason to think that list composition should influence whether we observe emotion effects on metamemory. In all cases, learners are encountering and processing emotional information, and the physiological response should be similar or the same. Thus, JOLs for emotional words would be higher than for neutral words, regardless of whether the list composition provides a distinctive context. These competing predictions have not been directly tested. The few studies on metamemory for emotional words (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010) have all used mixed-list designs in which the lists were composed of discrete categories of emotional and neutral words, which may have highlighted the emotional words by contrast to the neutral words. One set of studies—those by Tauber and Dunlosky (2012)—did vary the number of categories across experiments (positive, neutral, and negative versus only positive and neutral or only negative and neutral) and found no effect of this variable on JOLs. However, those studies only varied the *number* of discrete categories and not *whether* such discrete categories existed within the list at all. ## **Present Experiments** The physiological and cognitive accounts make distinct predictions. According to a physiological account, emotion should influence JOLs primarily via arousal, rather than valence. Furthermore, list composition should have little influence on the emotional JOL effect because the effect directly results from the physiological experience associated with reading a given word. By contrast, under a cognitive account, JOLs may be influenced by emotion much more consciously. This account relies on two components: (a) participants have an explicit belief that 11 emotional information is more memorable than neutral information, and (b) emotional content must be sufficiently salient at encoding, such that participants could explicitly categorize words as *emotional* versus *neutral*. According to this account, JOLs may be influenced by either valence or arousal, so long as there is a distinct set of emotional items that is saliently different from a set of neutral items studied in the same context. This account would also predict that a study context that eliminates the distinctiveness of emotional items would therefore reduce or eliminate the salience of emotion, eliminating any influence of emotion on JOLs. In the present study, we test these competing predictions in two ways. First, in Experiments 1 and 2, we separately examine how JOLs are affected by arousal and by valence while holding the other property constant. Second, we examine these relations in two different types of mixed lists. In what we term a discrete-levels design (Experiments 1 and 2), each stimulus belongs to one of two distinct categories that together comprise the mixed list (e.g., a list that consists half of high-arousal items and half of low-arousal items). The sharp distinction between the emotional and non-emotional categories in these lists should make the emotional nature of stimuli relatively salient and encourage the use of an explicit belief about the memorability of emotional stimuli. By contrast, in what we term a *continuous-levels* design (Experiment 3), the items within the mixed list represent the full range of variance (e.g., some items very high in arousal, some moderately high in arousal, some neutral in arousal, some moderately low, and some very low), with no categorical distinction between emotional and nonemotional items. These lists should make the emotionality of the stimuli less salient and consequently provide less or no support for the application of any explicit beliefs about the memorability of emotional stimuli. ## **Experiment 1** The goal of the first experiment was to investigate whether the emotional effect on JOLs is caused by an implicit, heuristic interpretation of the feeling that is experienced when reading a high arousal, emotional word. Although past research has consistently shown that higher arousal words receive higher JOLs (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010), those studies used high arousal words that also differed in valence (whether positive or negative) from the low arousal, neutral valence comparison words. Thus, it is not clear whether arousal per se is responsible for the higher JOLs assigned to emotional words. In Experiment 1, we used a discrete-levels manipulation of arousal while holding valence constant. Participants studied a list of neutral valence words, half of which were low
arousal and half of which were high arousal. Participants were asked to provide immediate JOLs for each word. If the influence of emotion on JOLs is driven by the emotional arousal of reading an emotional word, as in the physiological account, high-arousal words should receive higher JOLs than low-arousal words. (Note that such a result would also not necessarily be incompatible with the cognitive account because participants might identify the high-arousal words as a distinctive category.) Alternatively, high arousal words may not receive higher JOLs than low arousal words once they are equated in valence; such a result would provide strong evidence against the physiological account. ### Method **Participants.** Forty undergraduate students at the University of Illinois at Urbana-Champaign participated for course credit. **Materials**. Two lists of 20 words were selected from the ANEW database (Bradley & Lang, 2010; see Appendix A for word lists). The top half of Table 1 displays mean valence and arousal ratings and word frequency for the two Experiment 1 lists. The lists differed significantly on arousal (t(38) = 33.48, p < .001) but not on valence (t(38) = 0.18, p = .860). As a measure of word frequency, we used SUBTLEXus log word frequency, the frequency measure that best predicts human behaviour in a variety of common psycholinguistic tasks (Brysbaert & New, 2009). The two lists did not differ significantly on log word frequency (t(38) = 1.717, p = .094), and the direction in which they did differ runs counter to the expected benefit for high-arousal words (which were, on average, less frequent). Table 1 Characteristics of Word Lists in Experiments 1 and 2 | | Valence (1 – 9) | | Arousal (1 – 9) | | Word Frequency
(number per million) | | |-------------------------|------------------------|--------|-----------------|--------|--|--------| | | | | | | | | | | Range | Mean | Range | Mean | Range | Mean | | Experiment 1 | | | | | | | | High Arousal | [4.02, | 4.96 | [6.25, | 6.63 | [1.28, | 2.47 | | | 5.93] | (0.57) | 7.93] | (0.42) | 3.78] | (0.69) | | Low Arousal | [4.10, | 4.93 | [2.65, | 3.10 | [1.99, | 2.80 | | | 5.58] | (0.39) | 3.36] | (0.21) | 4.14] | (0.54) | | Experiment 2 | | | | | | | | Negative Valence | [2.06, | 2.67 | [4.53, | 5.07 | [1.42, | 2.37 | | | 2.98] | (0.24) | 5.42] | (0.26) | 3.56] | (0.60 | | Neutral Valence | [4.50, | 4.92 | [2.90, | 4.89 | [0.60, | 2.36 | | | 5.43] | (0.24) | 7.36] | (0.80) | 3.48] | (0.79) | *Note.* Standard deviations are displayed in parentheses below their respective means. Procedure. The experiment consisted of a study phase, distractor phase, and test phase. In the study phase, participants were informed they would be shown a list of words to study, presented one at a time, and would later be asked to recall as many of the words as they could. All 40 words were presented, one at a time, in random order. Each trial began with a 500ms blank screen. The word then appeared at the center of the screen in 18pt. Arial font (black on a white background) for 2000ms. After another 500ms blank screen, participants were asked to make a prediction of how likely they thought they would be to recall the word (i.e., a JOL). They provided a response from 1 ("sure I will NOT remember") to 6 ("sure I WILL remember") by pressing the appropriate key on the keyboard; this scale (with labels) was presented on the bottom of the screen. JOLs were self-paced. An additional 500ms blank screen preceded the next trial. After the final study trial, participants completed a distractor task that consisted of labelling state map outlines for five minutes. (Piloting showed that participants were unlikely to complete all 50 states in this time; if participants did complete all 50, the state maps were represented in a new random order.) They were then given instructions for the test phase. Participants were asked to recall as many of the words from the study phase of the experiment that they could remember. They were instructed to type the words one at a time and press ENTER to submit each word. There was no time limit, and participants were instructed to guess when uncertain. #### **Results and Discussion** The top half of Table 2 displays mean JOLs and proportion recall in Experiment 1. Participants predicted better recall of high arousal words than of low arousal words, t(39) = 5.23, p < .001, d = .67, 95% CI of difference [0.24, 0.55]. However, this prediction was inaccurate, as recall did not significantly differ as a function of arousal, t(39) = 0.21, p = .836, d = .03, 95% CI of difference [-.04, .05]. The number of intrusions was low and thus not further analyzed (M = 0.88, SD = 1.42). Metamnemonic resolution (i.e., the degree to which an individual can predict which particular items are more or less likely to be recalled) was computed using the signal-detection based d_a measure (Benjamin & Diaz, 2008; Green & Swets, 1966; Masson & Rotello, 2009), and is displayed in Table 2. When applied to metamnemonic accuracy, d_a is essentially a measure of the degree to which participants can discriminate, at the time of the JOL, between items that will later be remembered and items that will later be forgotten. The accuracy of JOLs in predicting recall did not significantly differ between high and low arousal words, t(39) = 1.40, p = .169, d = .24, 95% CI of difference [-0.38, 0.07]. That is, arousal had no significant influence on *relative* metamnemonic accuracy; higher arousal does not appear to convey better information about which individual items are more or less likely to be recalled. *Table 2.* Mean Memory and Metamemory Performance in Experiments 1 and 2. | | JOL (1-6) | Recall (proportion) | Resolution (da) | | | |-------------------------|------------------|---------------------|-----------------|--|--| | Experiment 1 | | | | | | | High Arousal | 3.59 | .30 | 0.62 | | | | | (0.10) | (.02) | (0.10) | | | | Low Arousal | 3.19 | .31 | 0.47 | | | | | (0.08) | (.03) | (0.10) | | | | Experiment 2 | | | | | | | Negative Valence | 3.73 | .29 | 0.53 | | | | | (0.10) | (.02) | (0.06) | | | | Neutral Valence | 3.20 | .22 | 0.39 | | | | | (0.12) | (.02) | (0.10) | | | *Note.* Standard error of the mean is displayed in parentheses below its respective mean To summarize, even though arousal did not affect actual recall, participants predicted that high- arousal words would be more likely to be recalled. Further, this pattern of higher JOLs to high-arousal words than low-arousal words emerged even though valence was held constant. This result could provide some support for a physiological account of the effects of emotion on JOLs: The high arousal words may have evoked a different physiological response when read (Hamann, 2001; Kensinger & Corkin, 2004), and this response was interpreted as indicative of increased future recall, similar to the mechanism by which people believe highly emotional events will be better remembered (even though they are not; Talarico & Rubin, 2003). However, these results do not rule out a cognitive account; it is also possible that participants consciously interpreted the high arousal words as more "emotional" and explicitly assigned higher JOLs to emotional words. Further, the word lists in Experiment 1 may in some senses not have been fully equated in valence. Although mean valence did not differ across lists, the standard deviation of the valence ratings was somewhat higher for high-arousal words than low-arousal words. That is, the high-arousal word list may have included more words of "ambivalent" valence rather than truly neutral valence (e.g., *pregnant*, which may be perceived as positive by some individuals, but negative by others). A more stringent test of the two accounts of the effects of emotion on metamemory, and one independent of the "ambivalent" valence concern, is the converse question: Does valence affects JOLs in the absence of differences in arousal? A strong prediction of the physiological-arousal account is that emotional words should be judged no differently than neutral words when arousal is held constant. Thus, in our second experiment, we examine whether negative emotional words still receive higher JOLs than neutral words when there are no differences in arousal. ### **Experiment 2** In Experiment 2, we used a discrete-levels manipulation of valence, in which participants studied a list that included both negative valence and neutral valence words. The word lists were selected to differ only in valence; arousal was held constant at approximately the midpoint of the scale so that words were neither particularly low nor high in arousal. Recall has been shown to be affected by valence independently of arousal (Kensinger & Corkin, 2003). Given that the two word types were presented in a mixed-list design, which should make the negative words distinctive relative to the neutral words (Talmi, 2013), we predicted that the negative valence words would be recalled better than the neutral words. Our primary interest, however, was metamemory. The cognitive and physiological accounts described above make competing predictions about whether valence influences JOLs in the absence of differences in arousal. If emotion influences JOLs only through physiological arousal, then we should not see higher JOLs for our negative valence words because they are equal in arousal to our neutral valence words. By contrast, if emotion influences JOLs through participants' cognitive assessment of the intrinsic word properties, then JOLs should be higher for negative valence words than for neutral valence words: Valence is a relatively salient intrinsic cue that will likely lead to higher JOLs for negative valence words when they appear in a study context that includes a separate, distinct category of neutral valence words. ## Method **Participants.** Forty
undergraduate students at the University of Illinois at Urbana-Champaign participated for course credit. None had participated in Experiment 1. **Materials.** Two lists of 20 words (see Appendix B) were selected from the ANEW database. The bottom half of Table 1 presents mean valence and arousal ratings for the two Experiment 2 word lists³. The two lists differed significantly on valence (t(38) = 28.98, p < .001) ³ The range of arousal values for the neutral valence word list appears high due to the inclusion of a single word with a high arousal rating ("hysterical"). We also analyzed the results of Experiment 2 excluding this item from the data, and the results did not change from what is presented here. Therefore, we report the full results, including all items from both word lists. but not arousal (t(38) = 0.92, p = .365). Table 1 show mean word frequency (occurrences per million) for the two lists; log word frequency was also not significantly different between the two lists, t(38) = 0.045, p = .964. **Procedure**. The procedure was identical to Experiment 1. #### **Results and Discussion** The bottom half of Table 2 displays mean JOLs and proportion recall in Experiment 2. Participants predicted better recall of negative valence words than of neutral valence words, t(39) = 6.27, p < .001, d = .74, 95% CI of difference [0.36, 0.70]. This prediction was accurate: Recall was also significantly higher for negative words than for neutral words, t(39) = 3.89, p < .001, d = .58, 95% CI of difference [.03, .11]. The number of intrusions was again low (M = 1.00, SD = 1.43) and not analyzed any further. Metamnemonic resolution (d_a) is displayed in Table 1. JOLs predicted free recall equivalently for negative and neutral words, t(39) = 1.24, p = .222, d = .27, 95% CI of difference [-0.37, 0.09]. Replicating Kensinger and Corkin (2003), negative valence words are more likely to be recalled than neutral valence words, even when the words are equivalent in terms of arousal. The novel finding in this experiment is the metamnemonic one: JOLs, like recall, were also sensitive to differences in valence; specifically, negative words were (accurately) predicted to be more likely to be recalled than neutral valence words. Because this difference emerged in spite of the words being equated on arousal, this result provides evidence against the claim that emotional influences on memory and metamemory reflect the physiological arousal experienced by learners. Rather, participants' sensitivity to the influence on valence on subsequent recall is more consistent with the idea that the effects of emotional content on metamemory are mediated at least partly through a cognitive evaluation of the intrinsic properties of the stimuli. The negative valence words may have been explicitly noticed as being emotional when compared to the background of neutral valence words in the same list; as a result, participants could consciously assigned higher JOLs to the negative words based on a belief that emotional information should benefit recall. (This difference in valence, however, had no influence on the relative ability to predict which individual words would be recalled and which would not.) By comparison, Experiment 1 showed that arousal also affected JOLs even when valence was held constant. That effect was seemingly consistent with a physiological account in which learners implicitly interpret feelings of arousal as being predictive of future recall. How can the results of these two experiments be reconciled? One interpretation is that both cognitive and physiological factors influence JOLs for emotional words, with the effects in Experiment 1 reflecting physiological arousal and those in Experiment 2 reflecting cognitive factors. However, another, more parsimonious account is that the effects in both experiments reflect cognitive mechanisms alone. The results of Experiment 2 strongly suggest that the source of emotion effects on JOLs is at least partially cognitive because (contrary to a physiological account) participants provided higher JOLs to negative words even though there was no difference in arousal. And, it is possible that cognitive mechanisms could explain the results of Experiment 1 if the high arousal words in Experiment 1 were consciously interpreted as being more emotional than the low arousal words. Note, however, that the results of these two experiments do not necessarily mean that arousal can never influence JOLs through implicit interpretation of a physiological response. For instance, it is possible that cognitive and physiological factors have an interactive influence, such that implicit arousal effects combine with explicit valence effects to produce higher JOLs for emotional words (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010). To more clearly determine whether physiological or cognitive factors primarily influence JOLs for emotional words, in Experiment 3 we used list structure to reduce or eliminate the influence that cognitive factors could potentially exert on recall prediction. Experiment 3 also addressed the limitation that, to this point, we have considered only certain ranges and combinations of arousal and valence. That is, in Experiment 1, we considered only high arousal compared to low arousal, while valence was held constant at a neutral level. We did not consider low and high arousal words of negative or positive valence, nor any moderate arousal words at any of these levels of valence; our results may not generalize outside of the ranges examined. The same logic applies to Experiment 2: We compared negative and natural valence words of moderate arousal, but not positive valence words, nor did we compare neutral to negative valence words when the words were all high in arousal or all low in arousal (or include positive valence at high or low arousal levels). Thus, in addition to examining the role of list structure, we also sought in Experiment 3 to test whether the two emotional factors—valence and arousal—influence JOLs (and recall) independently and/or interactively. # **Experiment 3** The cognitive account makes a key prediction about how list structure influences JOLs for emotional words. If emotional words typically receive higher JOLs because they are distinctive, the effect of emotion on JOLs should be eliminated if that emotion information is no longer distinctive (as appears to be the case for emotion effects on recall itself; Talmi, 2013). That is, emotional words may normally stand out as distinctive in comparison to a weaker background of neutral words, and therefore lead to higher JOLs (and recall) due to primary distinctiveness (Schmidt, 1991), but not if there is not a clear background of other word types. To test this prediction, instead of defining discrete "emotional" or "neutral" categories, we created a larger pool of words selected from the full ranges of both arousal and valence and used a continuous-levels design. That is, we selected items from a range of arousal values, ranging from low to high, and also from a range of valence values, ranging from low to high, for inclusion in the experiment. (See Appendix C for the full word pool.) Each participant studied a series of lists that were composed of a random selection of words from the pool; because these words varied continuously across the full range of arousal and valence values, emotional words no longer formed a distinct class of words, eliminating the primary distinctiveness present in the first two experiments. As in the earlier experiments, participants provided an immediate JOL for each word during study. Using the valence and arousal values from the ANEW norms for each word, we then used linear mixed effects regression to determine how valence and arousal contributed to the predicted and actual recall of emotional words. The physiological account predicts that arousal should influence JOLs even in this continuous-levels design. Reading words with higher arousal levels should lead to the interpretation that the words should be memorable, and arousal should thus increase JOLs. The predictions of the physiological account for the effects of valence are less clear. Valence may not have an independent influence on JOLs given that differences in valence may not produce different physiological responses when changes in arousal are absent. However, other researchers have demonstrated that high arousal and negative valence *together* had a superadditive effect on recall (compared to neutral valence, low arousal words; Kensinger & Corkin, 2003). Arousal may therefore *interact* with valence to influence recall such that low valence (negative) and high valence (positive) increases recall, but only when arousal is also high. It is possible that a similar interaction might be observed in JOLs. By contrast, a cognitive account of the effects of emotion on metamemory would predict that neither valence nor arousal should influence JOLs in Experiment 3. Under this account, participants must explicitly notice there are discrete classes of items—emotional and neutral—present in the study context and assign JOLs in accordance with their conscious beliefs about the influence of emotion on memory. Although emotional items can benefit from primary distinctiveness when presented against a background of neutral words, the continuous-levels design used in Experiment 3 should drastically reduce (or eliminate) the salience of the words' emotional content. Thus, without a clear contrast between item classes, participants would be unlikely to apply any belief that emotional items will be more memorable than neutral items when providing JOLs. ## Method **Participants.** Eighty undergraduate students from Memorial University of Newfoundland participated in exchange for either course credit or payment. **Materials**. Eighty words⁴ were selected from the ANEW database. (See Appendix C for word list.) Words were selected to obtain
approximately equal number of words from the bottom third, middle third, and top third of valence ratings and arousal ratings. Overall, valence ranged ⁴ For one word, *tatter*, we discovered no SUBTLEXus word frequency was available, so we excluded this item from analysis. from 1.55 to 8.72 (M = 5.22, SD = 2.06) and arousal ranged from 2.50 to 8.17 (M = 5.12, SD = 1.46). Log word frequency ranged from 0.29 to 590.69 (M = 38.63, SD = 80.12), representing 1.20 to 4.48 occurrences per million words (M = 2.77, SD = 0.71). **Procedure.** Experiment 3 was similar to the first two experiments, but contained four study-test cycles. This procedural change was introduced to avoid floor effects in free recall due to the increased number of words. Participants were informed that they would be asked to study and recall several different lists of words. Each study cycle presented 20 words randomly selected from the pool of 80, with the constraint that no word was used in more than one cycle; thus, all participants eventually studied the same 80 words, but encountered different random list compositions. All study trial timings were identical to the first two experiments. The distractor intervening between study and test was now a mental rotation task, in which participants selected which of two shapes was a rotated version of a target shape, and the distractor task duration was reduced to three minutes. The test procedure was identical to the first two experiments. After participants indicated they had recalled as many words as they could, they completed simple arithmetic problems for one minute prior to the next study phase. Analytic Strategy. Several aspects of Experiment 3 called for a different analytic approach. First, the predictors of interest varied continuously across the full range of arousal and valence rather than being presented in discrete categories. Although it would be possible to collapse such variability into a smaller number of categories (e.g., with a median split) for a factorial ANOVA, such techniques greatly reduce statistical power (Cohen, 1983). Second, we now had multiple predictors of interest (arousal, variance, and word frequency) and were interested in assessing the effect of each while holding the others constant. Both of these problems can be solved by linear mixed-effects regression (Baayen, Davidson, & Bates, 2008; Jaeger, 2008; for applications to memory and metamemory, see Fraundorf, Watson, & Benjamin, 2010; Fraundorf, Benjamin, & Watson, 2013; Freeman, Heathcote, Chalmers, & Hockley, 2010; Hourihan, Fraundorf, & Benjamin, 2013; Murayama, Sakaki, Yan, & Smith, 2014). Like all multiple regression models, these models can incorporate multiple predictors of interest (termed *fixed effects* in the mixed-effects regression context), including continuously varying quantities, such as valence. Linear mixed-effects regression can also control for variability across multiple *random effects*, effects for which the observed categories are sampled out of a larger population; in the present context, this included both subjects (sampled out of a population of possible subjects) and items (sampled out of a pool of possible words). We fit three models corresponding to the same aspects of behaviour we had analyzed in the first two experiments. In the first, most crucial model, we examined metamemory by analyzing participants' JOLs as a function of word frequency, arousal, valence, and the arousal x valence interaction. We considered two ways valence might affect JOLs. JOLs might reflect a word's degree of positivity, with negative words being given the lowest JOL, neutral words being given moderate JOLs, and positive words the highest JOLs. This specific possibility seems less likely given that our second experiment and past research showed that negative words are given higher JOLs than neutral words (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010). A more likely alternative is that JOLs reflect the strength of a word's valence, with both negative and positive words both receiving higher JOLs than neutral words. To test both possibilities, we included both a linear polynomial contrast for valence (capturing the former possibility) and a quadratic polynomial contrast (capturing the latter). All predictors were mean-centered; centering variables produces estimates corresponding to ANOVA main effects (Cohen, Cohen, West, & Aiken, 2002). The second model was a mixed-effects logit model (Jaeger, 2008) that modeled actual recall (specifically, the log odds of correctly recalling each item) as a function of the same word properties as above. Finally, we examined the relative accuracy of participants' metamnemonic predictions with another mixed effects logit model that tested whether the JOL assigned to each item was associated with higher odds of recall (Murayama et al., 2014): A significant positive relationship between JOL and the odds of recall would mean that participants accurately assigned higher JOLs to words they were more likely to recall whereas a null relationship would indicate the JOLs were unrelated to the odds of recall. In all mixed-effects regression models, variance in an effect across subjects or items (e.g., variance across subjects in how sensitive they are to word frequency) can be captured by random slope parameters. Following Barr, Levy, Scheepers, and Tily (2013), we included a conservative near-maximal random effects structure that omitted only the correlations between random effects. All models were fit in the R environment for statistical computing using the *lme4* package (Bates, Maechler, Bolker, & Walker, 2015). To measure effect size in the mixed-effect regressions, we use the standardized regression coefficient, which measures the effect of a 1-standard deviation change in an independent variable in terms of standard deviations of change in the dependent variable. #### Results We excluded eight JOL trials on which participants pressed a key that was not a valid response, affecting less than 1% of the data. **Metamemory.** We first examine which variables influenced participants' JOLs. Table 3 displays the parameter estimates from this model. Word frequency significantly predicted JOLs, with each 1-unit increase in log word frequency increasing the average JOL by 0.27 (95% CI: [.17, .37]), t = 5.63, p < .001. However, neither arousal nor valence nor their interaction significantly influenced JOLs. Table 3 Fixed Effect Estimates for Linear Mixed Effects Model of JOLs in Experiment 3. | | | | | | | Standardized | |-----------------------------|-------------|------|----------------|-------|--------|--------------| | Fixed effect | \hat{eta} | SE | 95% CI | t | p | coefficient | | Intercept (mean rating) | 3.56 | 0.08 | [3.40, 3.72] | 45.77 | < .001 | 0.01 | | Arousal | -0.02 | 0.02 | [-0.06, 0.02] | -1.09 | .28 | -0.02 | | Word frequency | 0.27 | 0.05 | [0.22, 0.32] | 5.63 | < .001 | 0.14 | | Valence: linear effect | 4.91 | 2.86 | [-0.70, 10.52] | 1.72 | .09 | 3.43 | | Valence: quadratic effect | 3.88 | 2.49 | [-1.00, 8.76] | 1.56 | .12 | 2.71 | | Arousal x linear valence | -0.68 | 1.59 | [-3.80, 2.43] | -0.43 | .67 | -0.69 | | Arousal x quadratic valence | -0.66 | 1.57 | [-3.74, 2.42] | -0.42 | .67 | -0.67 | *Note*. SE = standard error. **Memory.** Next, we turned to which variables influenced free recall. Table 4 displays the parameter estimates⁵ from the mixed-effects model of actual recall. Analogous to participants' predictions, only word frequency significantly influenced recall: Each 1-unit increase in log ⁵ The raw parameter estimates for the logit models refer to the log odds of correct recall. To facilitate interpretation, the main text presents estimates that have been transformed to effects on the odds. word frequency increased the odds of recall by 1.25 times (95% CI: [1.04, 1.50]), z = 2.32, p < .05. Table 4 Fixed Effect Estimates for Linear Mixed Effects Model of Recall in Experiment 3. | Fixed effect | \hat{eta} | SE | 95% CI | Wald z | p | Standardized coefficient | |-----------------------------|-------------|------|----------------|--------|--------|--------------------------| | Intercept (mean log odds of | -0.46 | 0.10 | [-0.26, -0.66] | -4.40 | < .001 | -0.46 | | recall) | | | | | | | | Arousal | -0.06 | 0.05 | [-0.16, 0.04] | -1.42 | .16 | -0.10 | | Word frequency | 0.22 | 0.09 | [0.04, 0.40] | 2.34 | < .05 | 0.16 | | Valence: linear effect | -0.80 | 5.08 | [-10.76, 9.16] | -0.16 | .88 | -0.80 | | Valence: quadratic effect | 0.36 | 5.24 | [-9.91, 10.63] | 0.07 | .94 | 0.36 | | Arousal x linear valence | -0.97 | 3.49 | [-7.81, 5.87] | -0.28 | .78 | -1.13 | | Arousal x quadratic valence | -5.40 | 3.45 | [-12.16, 1.36] | -1.57 | .12 | -7.89 | *Note*. SE = standard error. The mean number of intruded words in free recall was relatively low across the four study-test cycles (M = 0.79, SD = 0.98; M = 0.72, SD = 0.86; M = 0.80, SD = 1.10; M = 1.16, SD = 1.55). A repeated measures ANOVA indicated that intrusions significantly increased on the fourth test relative to the first three (all $ps \le .05$); no other differences were significant. **Metamnemonic resolution.** Finally, we examined whether the JOL assigned to each item actually predicted the odds it would later be recalled. The results from this model, in Table 5, confirmed that participants' JOLs indeed identified which items were relatively more likely to be recalled: For each 1-unit increase on the JOL scale (which ranged from 1 to 6), the odds of subsequent recall increased by 1.47 times (95% CI: [1.38, 1.57]), z = 11.34, p < .001. Table 5 Fixed Effect Estimates for Linear Mixed Effects Model of Metamnemonic Accuracy in Experiment 3. | Fixed effect | \hat{eta} | SE | 95% CI | Wald z | p | Standardized coefficient | |-----------------------------|-------------|------|----------------|--------|--------|--------------------------| | Intercept (mean log odds of | -0.50 | 0.10 | [-0.30, -0.70] |
-5.07 | < .001 | -0.50 | | recall) | | | | | | | | JOL | 0.39 | 0.03 | [0.33, 0.45] | 11.34 | < .001 | 0.55 | *Note*. SE = standard error. #### **Discussion** Neither valence nor arousal had any significant influence on JOLs in Experiment 3. This result contrasts with those obtained in mixed-list designs with discrete *emotional* versus *neutral* categories within the lists (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010, as well as our first two experiments); in those designs, emotional words received higher JOLs than neutral words, even when memory was not actually influenced by emotion the way that participants predicted. One possible explanation for these prior findings was that participants used the physiological experience associated with reading an emotional word as a cue to predict higher recall than for words that do not produce a similar response (Tauber & Dunlosky, 2012). This physiological explanation cannot provide a persuasive account of the current results. Participants in Experiment 3 certainly encountered words that were high arousal and were positively or negatively valenced. If JOLs were directly based on the physiological response, these emotional words should have received higher JOLs, yet neither valence nor arousal (nor their interaction) systematically influenced JOLs. The results are instead more consistent with the idea that cognitive factors best explain why emotional words receive higher JOLs. The composition of the Experiment 3 word lists did not clearly contrast emotional words with neutral words, removing the cognitive influence of primary distinctiveness from both recall and JOLs and apparently eliminating the emotion effect on JOLs. Thus, the fact that JOLs have previously been shown to be higher for emotional words compared to neutral words is likely to have arisen because participants explicitly notice emotional words by their contrast to neutral words in a mixed study list; only in those cases do participants consciously assign higher JOLs to emotional words, presumably based on the belief that emotional information should be more memorable than neutral information (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010). A similar method and similar conclusions have been reported to explain why emotional words are often recalled better than neutral words (Talmi, 2013). Although emotional words (typically selected to vary in both valence and arousal, e.g., Siddiqui & Unsworth, 2011; Talmi & Moscovitch, 2004; Zimmerman & Kelley, 2010, but see Kensinger & Corkin, 2003; 2004) are often recalled better than neutral words, such findings are usually observed with discrete-level versions of the mixed-list design, in which a study list contains only two or three types of items, and emotional words have the opportunity to stand out from the neutral words (Talmi, 2013). When the influences of distinctiveness and organization are controlled at study by presenting pure lists of emotional and neutral words (rather than mixed lists) and/or when the neutral comparison words are semantically related and thus themselves categorically related, the recall benefit for emotional words is eliminated (Dewhurst & Parry, 2000; Talmi & Moscovitch, 2004). The results of our Experiment 3 provide further evidence that superior recall of emotional information may reflect cognitive mechanisms, such as distinctiveness or relatedness, rather than the physiological effects of emotion per se (see also Talmi, 2013). One possible counter-explanation is that the differences between Experiment 3 and the prior experiments are driven not by list composition per se, but rather the fact that Experiment 3 (unlike Experiment 2) contains positively valenced words in addition to negatively valenced words. Perhaps qualitatively different mechanisms underlie metamnemonic judgments for positive items than for negative items. But, there is evidence against this explanation. The linear effect of valence included in the statistical model specifically tested for an effect of positive valence as compared to negative valence; however, no such effect was observed. Rather, Experiment 3 revealed no effect of valence at all, whether positive or negative. Moreover, previous studies that included both positive and negative emotional words in a discrete-levels design found that both valence categories led to similarly increased JOLs (compared to neutral valence words), suggesting that both positive and negative valence items can lead to higher JOLs given a distinctive list composition (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010). Note that, although we found that neither valence nor arousal significantly influenced JOLs, inspection of the regression results revealed that there were at least some numerical trends in for an effect of valence on JOLs and for an arousal x valence interaction in recall. However, we are reluctant to over-interpret these patterns given that they did not attain conventional levels of significance despite our comparatively large sample size. Further, the reliable effects of word frequency on both JOLs and recall indicate that the linear mixed-effects regression was not simply insensitive to all influences on memory and metamemory; thus, the null effects of arousal and valence cannot simply be attributed to an insensitive statistical method. Indeed, in the absence of emotion effects, word frequency was the only significant predictor of word recall and of JOLs in Experiment 3. An effect of word frequency is expected because it is well known that high frequency words are recalled better than low frequency words (e.g., Hall, 1954). #### **General Discussion** We conducted three experiments to examine how and why emotional content influences predictions of future memory. The first two experiments separately examined the influences of two different aspects of emotion—arousal and valence—on judgments of learning (JOLs). Participants provided higher JOLs to words with emotional content. Crucially, emotional words received higher JOLs even if they differed from neutral words only in valence and not in arousal, suggesting that these metamemory effects do not solely reflect physiological emotional arousal. Our third experiment presented participants with word lists with continuously varying levels of arousal and valence, which minimizes the primary distinctiveness associated with these variables. In this design, neither recall nor JOLs were reliably influenced by valence and/or arousal, further suggesting that emotion effects on metamemory and memory do not directly reflect physiological factors associated with emotion, but rather cognitive factors at encoding, such as the relative distinctiveness of items in a study list. #### The Mechanisms Underlying Emotion Effects on Metacognition What accounts for the influence of emotion on metamemory? One possibility is that participants interpret their physiological emotional arousal as a feeling of fluency of processing and thus rate emotional words as more memorable. After all, such unconscious, mnemonic cues often have a strong influence on metamemory (Koriat, 1997). Experiment 1 did show that participants gave higher JOLs to high arousal words than to low arousal words even when all words were neutral in valence. However, given the results of our other two experiments and the fact that arousal did not actually influence recall, it seems unlikely that these JOL differences reflect an implicit interpretation of the physiological effects of arousal. Rather, a cognitive explanation is more likely: Higher JOLs for high-arousal words were driven by the contrast to the low-arousal words in the mixed-list design, coupled with participants' belief that these high-arousal experiences would be more memorable than lower-arousal experiences (Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010). Indeed, Experiment 2 provided strong evidence against an explanation based purely on physiological arousal: Participants gave higher JOLs to negative valence words than neutral valence words, even though both word types had equivalent, moderate levels of arousal. This result rules out a direct effect of physiological arousal and suggests that, instead, participants were likely consciously responding to valence based on its distinctiveness in the discrete-levels, mixed-list context. That is, the negative words may have received higher JOLs than the neutral words because they stood out in contrast to the neutral words present in the same list (Talmi, 2013). This explanation suggests that if the negative and neutral words did not form such distinct categories, JOLs would no longer differ between negative and neutral words because there would no longer be differences in distinctiveness (Dewhurst & Parry, 2000). We tested this prediction in Experiment 3: Participants studied words that were high or low in arousal and also high or low in valence, but the words were studied in lists that did not enhance their distinctiveness by including a clear background of lower arousal, neutral valence words. Consistent with the predictions of the cognitive account, we no longer observed any effects of emotional content on either JOLs or actual recall. These results further bolster the idea that JOLs for emotional words in fact reflect list composition rather than emotional factors per se. Had participants made JOLs to emotional words based on an interpretation of the subjective physiological response associated with reading an emotional word, then we should have seen higher JOLs for emotional words than neutral words even in the randomly composed lists used in Experiment 3. We did not. Instead, it seems likely that the higher JOLs observed for emotional stimuli in other experiments arises because the typical list structure used more clearly contrasts emotional items with neutral items (as in Experiments 1 and 2, and in Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010), increasing the saliency of the emotional
content of the words and leading participants to apply an explicit belief about the memorability of emotional words (and often to recall them better as well; Talmi, 2013). However, as described above in the discussion of Experiment 2, our results do not necessarily mean that arousal can *never* influence JOLs through implicit interpretation of a physiological response. We have demonstrated that arousal alone has a negligible influence on JOLs in the absence of a distinctive list structure that encourages theory-based use of arousal as a cue for predicting recall. But, especially in discrete-levels experimental designs, it is possible that both cognitive and physiological factors could operate interactively in leading participants to assign higher JOLs to emotional words. For example, considering our Experiment 1, studying words with differences in arousal may have led participants to consciously focus on the fact that the study list consisted of two different types of words; the requirement to provide JOLs for each word may have then led participants to consciously rely on this experience in providing JOLs (see Mueller, Dunlosky, Tauber, & Rhodes, 2014). Thus, fluency (or experience) may potentially be incorporated in a primarily cognitive (or theory-based) strategy. Indeed, future work could assess this possibility by explicitly querying participants (e.g., in a post-test survey) about whether they noticed the list composition. Another relevant method may be to vary emotional factors only between subjects or between lists in a pure-list design; our cognitive account predicts that emotion effect on JOLs should be absent in these cases because the emotion words would not have a background of neutral words to contrast with. But, not all influences on metamemory need to be distinctive in order to have an effect. In Experiment 3, participants correctly predicted that higher frequency words were more likely to be recalled than lower frequency words even though the lists were not designed to clearly contrast low frequency and high frequency words. That is, unlike arousal and valence, it does not appear to be necessary for word frequency to be distinctive in order for participants to account for it when making JOLs. Word frequency might influence JOLs because, in the absence of distinctive categories of words on which to base JOLs at encoding, participants seem to rely on familiarity (e.g., Begg et al., 1989; Benjamin, 2003). In the case of free recall testing (and especially in our Experiment 3), it is quite sensible to expect superior recall of higher frequency (and thus more familiar) words relative to lower frequency words. An additional factor that may have influenced JOLs and recall is concreteness (e.g., Hertzog, Dunlosky, Robinson, & Kidder, 2003). However, the ANEW database (Bradley & Lang, 2010) only includes norms of emotional factors, and we were only able to obtain a measure of concreteness for about half of our emotional word stimuli (Coltheart, 1981). Although our lists did not significantly differ in concreteness given the available norms, we cannot fully rule out the possibility that our lists were not equated on concreteness and that this may have influenced JOLs, recall, or both. Future studies should attempt to replicate our findings while controlling for the concreteness of the emotional word stimuli. ## **Metacognitive Illusions** Although our primary interest was participants' metamemory (i.e., JOLs), we also assessed participants' actual recall. The conditions to which participants assigned higher JOLs were often those that actually produced superior recall (i.e., in Experiments 2 and 3), but not always. Specifically, participants in Experiment 1 gave higher JOLs to high arousal (but neutrally valenced) words than neutral words, even though arousal had no influence on actual recall (see also Kensinger & Corkin, 2004, for a similar effect in recognition). Interestingly, if the recall test had taken place after a more substantial delay (i.e., long enough to allow for memory consolidation), JOLs may have more accurately reflected the pattern of recall, as arousal has been shown to increase memory consolidation (e.g., Cahill & McGaugh, 1998; see also Mather & Sutherland, 2011). However, this would likely be a coincidental increase in JOL accuracy, as participants have been shown to be poor at predicting the effects of retention intervals on memory (e.g., Koriat et al., 2004). At least for neutral valence words, it would appear that high arousal can be added to the list of word qualities or encoding tasks that participants falsely believe will influence recall, such as large font size (Rhodes & Castel, 2008), loudness (Rhodes & Castel, 2009) and repeated vocal response (Castel, Rhodes, & Friedman, 2012). This pattern, in combination with the apparent cognitive locus of emotion effects on JOLs, implies that some of the metacognitive illusions mentioned above may rely not only on differences in perceived fluency between conditions, but in the use of a distinctive list composition that makes increases the salience of those fluency differences. Considering the font size example, Rhodes and Castel (2008) argued that participants process words in large font more fluently than words in small font, leading to increased JOLs but not to increased recall. The JOL effect persisted even when participants had experience with a recall test in which they did not recall large-font words any better than small-font words and even when participants were explicitly told that font size does not affect recall. The effect was only eliminated when all words (regardless of font size) were made difficult to process by using alternating letter case, leading Rhodes and Castel to conclude that the effect is driven by fluency of processing. However, more recently, Mueller et al. (2014) provided convincing evidence that the font size effect is caused more by an explicit belief about how font size will influence memory, rather than an actual difference in fluency. Specifically, they showed that font size has no measurable behavioral effects on perceptual fluency, and that the font size effect arises in pre-study JOLs, for which processing fluency cannot possibly influence judgments (because the items have not yet been processed). Importantly, all of experiments conducted by Rhodes and Castel (2008) and by Mueller et al. (2014) used a within-subjects manipulation of font size, which therefore directly contrasted the large font words with the small font words. Susser, Mulligan, and Besken (2013) demonstrated that a between-subjects manipulation eliminated the font size effect in JOLs (see Yue, Castel, & Bjork, 2013, for a similar finding with word clarity). We would predict that any similar metacognitive illusion will also be eliminated in a study context that fails to directly contrast the two encoding tasks or conditions. ## **Conclusion** Emotional information is generally remembered differently than neutral information (e.g., Kensinger & Corkin, 2004). Although participants tend to provide higher JOLs for emotional information than for neutral information (Hourihan & Bursey, in press; Nomi, Rhodes, & Cleary, 2013; Tauber & Dunlosky, 2012; Zimmerman & Kelley, 2010), these JOLs may be made more on the basis of list-composition factors that make emotional content distinctive, rather than on the basis of a physiological response associated with encountering an emotional stimulus (e.g., Hamann, 2001). While emotional events are clearly remembered differently than neutral events (Levine & Edelstein, 2009), it is less clear that lists of emotional words are truly recalled all that differently than lists of neutral words on the basis of emotional content alone (Talmi, 2013). Research into practical applications, such as eyewitness memory for emotional events, should also examine metamnemonic judgments; predictions of future memory for emotional information may not be as accurate as we might think. ## References - Arbuckle, T. Y., & Cuddy, L. L. (1969). Discrimination of item strength at time of presentation. *Journal of Experimental Psychology, 81, 126-131. - Baayen, R.H., Davidson, D.J., & Bates, D.M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, *59*, 390-412. doi:10.1016/j.jml.2007.12.005 - Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. *Journal of Memory and Language*, 68, 255-278. doi:10.1016/j.jml.2012.11.001 - Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lmer4: linear mixed-effects models using Eigen and S4. R package version 1.1-8. http://CRAN.R-project.org/package=lme4. - Begg, I., Duft, S., Lalonde, P., Melnick, R., & Sanvito, J. (1989). Memory predictions are based on ease of processing. *Journal of Memory and Language*, 28, 610-632. - Benjamin, A. S. (2003). Predicting and postdicting the effects of word frequency on memory. *Memory & Cognition*, 31, 297-305. doi: 10.3758/bf03194388 - Benjamin, A. S. & Bjork, R. A. (1996). Retrieval fluency as a metacognitive index. In L. Reder (Ed.), *Implicit Memory and Metacognition*. Mahwah, NJ: Erlbaum. - Benjamin, A. S., Bjork, R. A., & Schwartz, B. L. (1998). The mismeasure of memory: When retrieval fluency is misleading as a metamnemonic index. *Journal of Experimental Psychology: General*, 127(1), 55-68. - Benjamin, A. S., & Diaz, M. (2008). Measurement of relative metamnemonic accuracy. In J.Dunlosky & R. A. Bjork (Eds.), *Handbook of Memory and Metamemory* (pp. 73-94).New York, NY: Psychology Press. - Bradley, M. M., & Lang, P. J. (2010). Affective norms for English words (ANEW): Stimuli, instruction manual and affective ratings. Technical Report C-2. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida. - Bradley, M. M., Greenwald, M. K., Petry, M. C., & Lang, P. J. (1992).
Remembering pictures: pleasure and arousal in memory. *Journal of Experimental Psychology: Learning,*Memory, and Cognition, 18, 379-390. - Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. *Behavior Research Methods*, *41*, 977-990. doi: 10.3758/BRM.41.4.977 - Cahill, L., & McGaugh, J. L. (1998). Mechanisms of emotional arousal and lasing declarative memory. *Trends in Neurosciences*, *21*, 294-299. - Castel, A. D., Rhodes, M. G., & Friedman, M. C. (2013). Predicting memory benefits in the production effect: the use and misuse of self-generated distinctive cues when making judgments of learning. *Memory & Cognition*, 41, 28-35. doi: 10.3758/s13421-012-0249- - Cohen, J. (1983). The cost of dichotomization. *Applied Psychological Measurement*, 7, 249-253. doi: 10.1177/01466216830070030 - Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2002). Categorical or nominal independent variables. In *Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences* (3rd ed., pp. 302-353). Mahwah, NJ: Lawrence Erlbaum Associates. - Coltheart, M. (1981). The MRC Psycholinguistic Database. *Quarterly Journal of Experimental*Psychology, 33A, 497-505 - Dewhurst, S. A., & Parry, L. A. (2000). Emotionality, distinctiveness, and recollective experience. *European Journal of Cognitive Psychology*, *12*, 541-551. - Fraundorf, S. H., Benjamin, A. S., & Watson, D. G. (2013). What happened (and what did not): Discourse constraints on encoding of plausible alternatives. *Journal of Memory and Language*, 69, 196-227. doi: 10.1016/j.jml.2013.06.003 - Fraundorf, S. H., Watson, D. G., & Benjamin, A. S. (2010). Recognition memory reveals just how CONTRASTIVE contrastive accenting really is. *Journal of Memory and Language*, 63, 367-386. doi: 10.1016/j.jml.2010.06.004 - Freeman, E., Heathcote, A., Chalmers, K., & Hockley, W. (2010). Item effects in recognition memory for words. *Journal of Memory and Language*, 62, 1-18. doi: 10.1016/j.jml.2009.09.004 - Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York, NY: Wiley. - Hall, J.F. (1954). Learning as a function of word frequency. American Journal of Psychology, 67, 138-140. - Hamann, S. (2001). Cognitive and neural mechanisms of emotional memory. *TRENDS in Cognitive Science*, *5*, 394-400. - Hertzog, C., Dunlosky, J., Robinson, A.E., & Kidder, D. P. (2003). Encoding fluency is a cue used for judgments about learning. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 29(1), 22-34. - Hourihan, K.L., & Bursey, E. (in press). A misleading feeling of happiness: Metamemory for positive emotional and neutral pictures. *Memory*. - Hourihan, K.L., Fraundorf, S.H., & Benjamin, A.S. (2013). Same faces, different labels: The cross-race effect in face memory with social category information. *Memory & Cognition*, 41, 1021-1031. doi: 10.3758/s13421-013-0316-7 - Hourihan, K. L., & Tullis, J. G. (2015). When will bigger be (recalled) better? The influence of category size on JOLs depends on test format. *Memory & Cognition*, *43*, 910-921. doi: 10.3758/s13421-015-0516-4 - Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformations or not) and towards logit mixed models. *Journal of Memory and Language*, *59*, 434-446. doi:10.1016/j.jml.2007.11.007 - Kensinger, E. A. (2009). Remembering the Details: Effects of Emotion. *Emotion Review*, 1, 99-113. doi: 10.1177/1754073908100432 - Kensinger, E. A., & Corkin, S. (2003). Memory enhancement for emotional words: Are emotional words more vividly remembered than neutral words? *Memory & Cognition*, 31, 1169-1180. - Kensinger, E. A., & Corkin, S. (2004). Two routes to emotional memory: distinct neural processes for valence and arousal. *Proceedings of the National Academy of Sciences*, *USA*, *101*, 3310-3315. doi: 10.1073/pnas.0306408101 - Koriat, A. (1997). Monitoring one's own knowledge during study: A cue-utilization approach to judgments of learning. *Journal of Experimental Psychology: General, 126*, 349-370. - Koriat, A., Bjork, R.A., Sheffer, L., & Bar, S.K. (2004). Predicting one's own forgetting: The role of experience-based and theory-based processes. *Journal of Experimental Psychology: General*, *133*, 643-656. doi: 10.1037/0096-3445.133.4.643 - Levine, L. J., & Edelstein, R. S. (2009). Emotion and memory narrowing: A review and goal-relevance approach. *Cognition & Emotion*, 23, 833-875. doi: 10.1080/02699930902738863 - Mandler, G. (1975). Mind and Emotion, New York, NY: John Wiley & Sons, Inc. - Masson, M. E., & Rotello, C. M. (2009). Sources of bias in the Goodman-Kruskal gamma coefficient measure of association: implications for studies of metacognitive processes. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 509-527. doi: 10.1037/a0014876 - Mather, M., & Sutherland, M.R. (2011). Arousal-biased competition in perception and memory. *Perspectives on Psychological Science, 6, 114-133. doi: 10.1177/1745691611400234 - Matvey, G., Dunlosky, J., & Schwartz, B. L. (2006). The effects of categorical relatedness on judgements of learning (JOLs). *Memory*, *14*, 253-261. doi: 10.1080/09658210500216844 - Mueller, M.L., Dunlosky, J., Tauber, S.K., & Rhodes, M.G. (2014). The font-size effect on judgments of learning: Does it exemplify fluency effects or reflect people's beliefs about memory? *Journal of Memory and Language*, 70, 1-12. - Murayama, K., Sakaki, M., Yan, V.X., & Smith, G. M. (2014). Type I error inflation in the traditional by-participant analysis to metamemory accuracy: A generalized mixed-effects model perspective. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 40, 1287-1306. doi: 10.1037/a0036914 - Nomi, J. S., Rhodes, M. G., & Cleary, A. M. (2013). Emotional facial expressions differentially influence predictions and performance for face recognition. *Cognition and Emotion*, 27, 141-149. doi: 10.1080/02699931.2012.679917 - Ochsner, K.N. (2000). Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past. *Journal of Experiment Psychology: General*, 129, 242-261. doi: 10.1037//0096-3445.129.2.242 - Rhodes, M. G., & Castel, A. D. (2008). Memory predictions are influenced by perceptual information: evidence for metacognitive illusions. *Journal of Experimental Psychology:*General, 137, 615-625. doi: 10.1037/a0013684 - Rhodes, M. G., & Castel, A. D. (2009). Metacognitive illusions for auditory information: effects on monitoring and control. *Psychonomic Bulletin & Review*, *16*, 550-554. doi: 10.3758/PBR.16.3.550 - Scherer, K. R. (2005). What are emotions? And how can they be measured? *Social Science Information*, 44(4), 695-729. doi: 10.1177/0539018405058216 - Schmidt, S. R. (1991). Can we have a distinctive theory of memory? *Memory & Cognition*, 19(6), 523-542. - Siddiqui, A. P., & Unsworth, N. (2011). Investigating the role of emotion during the search process in free recall. *Memory & Cognition*, 39, 1387-1400. doi: 10.3758/s13421-011-0125-9 - Susser, J.A., Mulligan, N.W., & Besken, M. (2013). The effects of list composition and perceptual fluency on judgments of learning (JOLs). *Memory & Cognition*, 41, 1000-1011. doi: 10.3758/s13421-013-0323-8 - Talarico, J.M., & Rubin, D.C. (2003). Confidence, not consistency, characterizes flashbulb memories. *Psychological Science*, *14*, 455-461. - Talmi, D. (2013). Enhanced Emotional Memory: Cognitive and Neural Mechanisms. *Current Directions in Psychological Science*, 22, 430-436. doi: 10.1177/0963721413498893 - Talmi, D., & McGarry, L. M. (2012). Accounting for immediate emotional memory enhancement. *Journal of Memory and Language*, 66, 93-108. doi: 10.1016/j.jml.2011.07.009 - Talmi, D., & Moscovitch, M. (2004). Can semantic relatedness explain the enhancement of memory for emotional words? *Memory & Cognition*, 32, 742-751. - Talmi, D., Luk, B. T. C., McGarry, L. M., & Moscovitch, M. (2007). The contribution of relatedness and distinctiveness to emotionally-enhanced memory. *Journal of Memory* and Language, 56, 555-574. doi: 10.1016/j.jml.2007.01.002 - Talmi, D., Schimmack, U., Paterson, T., & Moscovitch, M. (2007). The role of attention and relatedness in emotionally enhanced memory. *Emotion*, 7, 89-102. doi: 10.1037/1528-3542.7.1.89 - Tauber, S. K., & Dunlosky, J. (2012). Can older adults accurately judge their learning of emotional information? *Psychology & Aging*, 27, 924-933. doi: 10.1037/a0028447 - Tomaszczyk, J. C., Fernandes, M. A., & Macleod, C. M. (2008). Personal relevance modulates the positivity bias in recall of emotional pictures in older adults. *Psychonomic Bulletin & Review*, *15*, 191-196. - Yue, C. L., Castel, A. D., & Bjork, R. A. (2013). When disfluency is--and is not--a desirable difficulty: the influence of typeface clarity on metacognitive judgments and memory. *Memory & Cognition, 41, 229-241. doi: 10.3758/s13421-012-0255-8 - Zimmerman, C. A., & Kelley, C. M. (2010). "I'll remember this!" Effects of emotionality on memory predictions versus memory performance. *Journal of Memory and Language*, 62, 240-253. doi: 10.1016/j.jml.2009.11.004 Appendix A: Word Lists used in Experiment 1 | _ | Number | Word | Valence | Arousal | Frequency | |--------------|--------|-------------|---------|---------|-----------| | Low Arousal | 843 | lazy | 4.38 | 2.65 | 2.77 | | | 2186 | sigh | 4.15 | 2.78 | 2.24 | | | 339 | quiet | 5.58 | 2.82 | 3.78 | | | 1761 | knitting | 4.94 | 2.88 | 2.06 | | | 416 | subdued | 4.67 | 2.90 | 1.52 | | | 909 | nun | 4.93 | 2.93 | 2.55 | | | 380 | seat | 4.95 | 2.95 | 3.60 | | | 309 | pencil | 5.22 | 3.14 | 2.70 | | | 66 | chair | 5.08 | 3.15 | 3.40 | | | 57 | butter | 5.33 | 3.17 | 3.02 | | | 810 | indifferent | 4.61 | 3.18 | 1.77 | | | 832 | kettle | 5.22 | 3.22 | 2.16 | | | 1218 | broom | 4.83 | 3.23 |
2.39 | | | 825 | item | 5.26 | 3.24 | 2.80 | | | 776 | hairpin | 5.26 | 3.27 | 1.28 | | | 864 | mantel | 4.93 | 3.27 | 1.59 | | | 353 | reserved | 4.88 | 3.27 | 2.41 | | | 658 | bland | 4.10 | 3.29 | 1.75 | | | 685 | chin | 5.29 | 3.31 | 2.81 | | | 651 | barrel | 5.05 | 3.36 | 2.73 | | High Arousal | 553 | cliff | 4.67 | 6.25 | 3.04 | | O | 2257 | squeal | 4.67 | 6.26 | 2.14 | | | 979 | shotgun | 4.37 | 6.27 | 2.71 | | | 1365 | crazy | 5.93 | 6.28 | 4.14 | | | 1885 | nerves | 4.28 | 6.31 | 2.75 | | | 603 | rifle | 4.02 | 6.35 | 2.87 | | | 2013 | pregnant | 4.30 | 6.37 | 3.42 | | | 904 | noisy | 5.02 | 6.38 | 2.41 | | | 915 | obsession | 4.52 | 6.41 | 2.46 | | | 1273 | chase | 5.07 | 6.50 | 3.22 | | | 1337 | conquest | 5.85 | 6.50 | 1.99 | | | 1391 | dare | 5.76 | 6.57 | 3.45 | | | 1200 | boom | 5.10 | 6.67 | 3.05 | | | 1379 | crush | 5.90 | 6.70 | 2.93 | | | 2463 | wolf | 5.00 | 6.70 | 3.01 | | | 1589 | frenzy | 4.97 | 6.86 | 2.02 | | | 21 | anxious | 4.81 | 6.92 | 2.86 | | | 410 | startled | 4.50 | 6.93 | 2.10 | | | 1708 | hysterical | 5.29 | 7.36 | 2.56 | | | 1524 | explosion | 5.18 | 7.93 | 2.93 | Note: Number refers to the entry number in the ANEW database (Bradley & Lang, 2010) **Appendix B: Word Lists used in Experiment 2** | | Appendix B: Word Lists used in Experiment 2 | | | | | |------------------|---|------------|---------|---------|-----------| | | Number | Word | Valence | Arousal | Frequency | | Neutral Valence | 1992 | policy | 4.50 | 4.30 | 3.14 | | | 2091 | revert | 4.53 | 4.73 | 1.56 | | | 416 | subdued | 4.67 | 2.90 | 1.52 | | | 1351 | counselor | 4.68 | 4.54 | 2.71 | | | 1112 | assume | 4.69 | 4.97 | 3.23 | | | 1305 | clinic | 4.72 | 4.81 | 2.85 | | | 1759 | kidney | 4.86 | 4.48 | 2.69 | | | 1498 | enzyme | 4.90 | 4.34 | 1.74 | | | 2331 | tendon | 4.90 | 4.90 | 1.48 | | | 1056 | admit | 4.93 | 4.97 | 3.48 | | | 1893 | noise | 4.93 | 4.86 | 3.25 | | | 2079 | repent | 4.93 | 5.11 | 2.09 | | | 2410 | usage | 4.93 | 4.90 | 1.43 | | | 1372 | crocodile | 5.00 | 6.03 | 2.06 | | | 346 | rattle | 5.03 | 4.36 | 2.24 | | | 1264 | cavort | 5.10 | 4.86 | 0.60 | | | 613 | tank | 5.16 | 4.88 | 3.12 | | | 1796 | lizard | 5.23 | 5.13 | 2.39 | | | 1708 | hysterical | 5.29 | 7.36 | 2.56 | | | 1543 | fate | 5.43 | 5.36 | 3.14 | | Negative Valence | 269 | maggot | 2.06 | 5.28 | 1.91 | | | 365 | rotten | 2.26 | 4.53 | 2.95 | | | 124 | disgusted | 2.45 | 5.42 | 1.96 | | | 782 | hardship | 2.45 | 4.76 | 1.89 | | | 1290 | cigarette | 2.46 | 5.35 | 3.13 | | | 1909 | odor | 2.52 | 5.13 | 2.08 | | | 76 | coffin | 2.56 | 5.03 | 2.66 | | | 400 | slime | 2.61 | 4.57 | 1.79 | | | 65 | cemetery | 2.63 | 4.82 | 2.65 | | | 2165 | sewage | 2.68 | 5.36 | 2.15 | | | 272 | measles | 2.74 | 5.06 | 2.03 | | | 885 | mosquito | 2.80 | 4.78 | 1.97 | | | 169 | foul | 2.81 | 4.93 | 2.87 | | | 2007 | pout | 2.83 | 5.07 | 1.75 | | | 1747 | jerk | 2.86 | 5.21 | 3.23 | | | 284 | morbid | 2.87 | 5.06 | 2.12 | | | 704 | crime | 2.89 | 5.41 | 3.56 | | | 1363 | cranky | 2.90 | 5.36 | 2.24 | | | 1087 | annoyance | 2.97 | 5.18 | 1.42 | | | 182 | garbage | 2.98 | 5.04 | 3.12 | Note: Number refers to the entry number in the ANEW database (Bradley & Lang, 2010) **Appendix C: Word Pool used in Experiment 3** | Number | Word | Valence | Arousal | Frequency | |--------|-------------|---------|---------|-----------| | 726 | discomfort | 2.19 | 4.17 | 1.91 | | 731 | dreary | 3.05 | 2.98 | 1.97 | | 162 | fatigued | 3.28 | 2.64 | 1.4 | | 779 | handicap | 3.29 | 3.81 | 2.15 | | 1789 | limp | 3.71 | 4.29 | 2.27 | | 277 | mildew | 3.17 | 4.08 | 1.36 | | 367 | rusty | 3.86 | 3.77 | 2.82 | | 368 | sad | 1.61 | 4.13 | 3.51 | | 2357 | tired | 3.28 | 2.64 | 3.76 | | 1164 | beg | 2.75 | 5.00 | 3.42 | | 1400 | defeat | 2.97 | 5.63 | 2.76 | | 1412 | dent | 2.93 | 5.69 | 2.26 | | 1579 | foolish | 3.54 | 4.46 | 2.95 | | 842 | lawsuit | 3.37 | 4.93 | 2.49 | | 1852 | miserable | 1.55 | 5.00 | 3.04 | | 284 | morbid | 2.87 | 5.06 | 2.12 | | 1962 | pessimism | 3.10 | 4.74 | 1.2 | | 365 | rotten | 2.26 | 4.53 | 2.95 | | 18 | angry | 2.85 | 7.17 | 3.48 | | 37 | betray | 1.68 | 7.24 | 2.67 | | 85 | controlling | 3.80 | 6.10 | 2.36 | | 1600 | furious | 1.96 | 7.64 | 2.49 | | 222 | hurt | 1.90 | 5.85 | 4.1 | | 237 | jealousy | 2.51 | 6.36 | 2.47 | | 1906 | obsessed | 3.60 | 6.24 | 2.72 | | 342 | rage | 2.41 | 8.17 | 2.76 | | 970 | scalding | 2.82 | 5.95 | 1.32 | | 57 | butter | 5.33 | 3.17 | 3.02 | | 1761 | knitting | 4.94 | 2.88 | 2.06 | | 1803 | lounge | 6.60 | 3.97 | 2.6 | | 303 | paper | 5.20 | 2.50 | 3.72 | | 2220 | snail | 4.31 | 3.86 | 1.96 | | 2235 | sofa | 6.53 | 3.10 | 2.48 | | 408 | square | 4.74 | 3.18 | 3.21 | | 426 | table | 5.22 | 2.92 | 3.73 | | 2318 | tatter | 4.53 | 3.90 | N/A | | 4 | activate | 5.46 | 4.86 | 2.38 | | 1276 | cheerleader | 6.48 | 5.67 | 2.52 | |------|-------------|------|------|------| | 1358 | coyote | 4.86 | 5.19 | 2.27 | | 1392 | daughter | 6.36 | 5.11 | 3.94 | | 198 | hammer | 4.88 | 4.58 | 2.8 | | 1759 | kidney | 4.86 | 4.48 | 2.69 | | 2184 | shut | 4.53 | 4.87 | 4.13 | | 2247 | spice | 6.21 | 5.62 | 2.43 | | 1200 | boom | 5.10 | 6.67 | 3.05 | | 1524 | explosion | 5.18 | 7.93 | 2.93 | | 1589 | frenzy | 4.97 | 6.86 | 2.02 | | 539 | plane | 6.43 | 6.14 | 3.69 | | 949 | python | 4.05 | 6.18 | 1.9 | | 2173 | shock | 4.03 | 7.45 | 3.17 | | 2252 | sports | 6.45 | 6.23 | 3.15 | | 410 | startled | 4.50 | 6.93 | 2.1 | | 2371 | touch | 6.31 | 6.19 | 3.88 | | 38 | bird | 7.27 | 3.17 | 3.37 | | 1185 | blanket | 6.94 | 3.41 | 2.82 | | 42 | bless | 7.19 | 4.05 | 3.25 | | 246 | kindness | 7.82 | 4.30 | 2.66 | | 308 | peace | 7.72 | 2.95 | 3.55 | | 315 | pillow | 7.92 | 2.97 | 2.76 | | 320 | politeness | 7.18 | 3.74 | 1.48 | | 333 | protected | 7.29 | 4.09 | 2.74 | | 404 | snuggle | 7.92 | 4.16 | 1.83 | | 629 | advantage | 6.95 | 4.76 | 3.05 | | 105 | delight | 8.26 | 5.44 | 2.46 | | 245 | kind | 7.59 | 4.46 | 4.48 | | 1808 | lunch | 7.21 | 5.43 | 3.73 | | 1831 | mastery | 6.69 | 5.62 | 1.48 | | 888 | muffin | 6.57 | 4.76 | 2.47 | | 304 | paradise | 8.72 | 5.12 | 2.83 | | 1007 | taste | 6.66 | 5.22 | 3.42 | | 468 | vacation | 8.16 | 5.64 | 3.22 | | 503 | cash | 8.37 | 7.37 | 3.57 | | 69 | cheer | 8.10 | 6.12 | 2.98 | | 1513 | excite | 7.60 | 7.16 | 2.04 | | 279 | miracle | 8.60 | 7.65 | 3.13 | | 1917 | opportunity | 7.41 | 6.47 | 3.32 | | 2018 | prince | 7.03 | 6.07 | 3.36 | |------|--------|------|------|------| | 427 | talent | 7.56 | 6.27 | 3.12 | | 438 | thrill | 8.05 | 8.02 | 2.63 | | 2354 | tickle | 6.86 | 6.70 | 2.39 | Note: Number refers to the entry number in the ANEW database (Bradley & Lang, 2010)