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Abstract

During the lockdown of universities and the COVID-Pandemic most students were restricted to their
homes. Novel and instigating teaching methods were required to improve the learning experience and
so recent implementations of the annual PhysioNet/Computing in Cardiology (CinC) Challenges
posed as a reference. For over 20 years, the challenges have proven repeatedly to be of immense
educational value, besides leading to technological advances for specific problems. In this paper, we
report results from the class ‘Artificial Intelligence in Medicine Challenge’, which was implemented as
an online project seminar at Technical University Darmstadt, Germany, and which was heavily
inspired by the PhysioNet/CinC Challenge 2017 ‘AF Classification from a Short Single Lead ECG
Recording’. Atrial fibrillation is a common cardiac disease and often remains undetected. Therefore,
we selected the two most promising models of the course and give an insight into the Transformer-
based DualNet architecture as well as into the CNN-LSTM-based model and finally a detailed analysis
for both. In particular, we show the model performance results of our internal scoring process for all
submitted models and the near state-of-the-art model performance for the two named models on the
official 2017 challenge test set. Several teams were able to achieve F; scores above/close to 90% on a
hidden test-set of Holter recordings. We highlight themes commonly observed among participants,
and report the results from the self-assessed student evaluation. Finally, the self-assessment of the
students reported a notable increase in machine learning knowledge.

1. Introduction

Asaresult of the COVID-Pandemic and the lockdown of universities, novel teaching concepts combining
online teaching, experimenting, and self-learning with a stimulating environment are needed. Challenge-based
gamification aspects such as clear tasks, leaderboards, instant feedback, and a scoring system showed promising
results in improving statistics and engineering education in recent studies (Legaki et al 2020, Colombari et al
2021). In particular, leaderboards offer a system of self-feedback and goal-setting to students (Nah et al 2014). It
comes to no surprise that the annual PhysioNet/Computing in Cardiology (CinC) Challenges not onlylead to
technological advances for specific problems, they also repeatedly proved to be of immense educational value for
participants. Inspired by the PhysioNet/CinC Challenge of 2017 ‘AF Classification from a Short Single Lead
ECG Recording’ (Clifford et al 2017), we developed the project seminar ‘Artificial Intelligence in Medicine
Challenge’ as part of the electrical /biomedical engineering curriculum at TU Darmstadt with the goal to detect
atrial fibrillation in one-lead electrocardiograms (ECGs). Atrial fibrillation (AFib) is the most common
sustained cardiac arrhythmia (Lip et al 2016) and therefore of major interest for regular screening. We set up our
own system for running models for AFib detection developed by the participants, inferring predictions and
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Table 1. Relevant labeled recordings for

each tasks.

Label Main task Secondary task
NSR v v

AFib v v

Other v

Noisy v

scoring these predictions respectively. Since research (Toda et al 2017) has shown that gamification alone may
not be the ‘holy grail of education’, we tried to counteract potential negative effects. These negative effects
include demotivation due to excessive competition and a focus shift from creative development to the
gamification mechanics. In particular, we offered weekly sessions to discuss ideas, checked problems with the
teams, and had a voluntary mid-semester presentation about intermediate results. Consequentially, we made
clear from the start that the originality of approaches and a good analysis were crucial to us and that a good score
and ranking was neither required nor sufficient for a good grade. Hence, the award for the winning team
consisted of a certificate and a small price but was not tied to the grade. The aim of this paper is thus to present an
innovative course design for machine learning education and to show that novel deep learning models
developed in the course of the project are competitive in AFib detection. In order to show detailed analysis of the
performance and novelty of these models, we evaluated them on the original PhysioNet 2017 challenge test set
and compared them to the winning models of the challenge of 2017 (Datta et al 2017, Zabihi et al 2017, Teijeiro
etal2018).

Compared to our conference paper (Rohr et al 2021), we made significant changes and added the following
unreported results. We show that models designed by the participants achieve near state-of-the-art performance
in atrial fibrillation classification. This includes results for the multilabel classification on the unseen dataset of
the PhysioNet Challenge and deeper insights into the models. Moreover, we show that using gamification
concepts in machine learning education additionally motivates participants which results in competitive
models. At the point of writing this paper the course is already in its second iteration and we cover the
implementation of some of the changes inspired by the evaluation and share code and documentation of our
evaluation system.

2. Methods

We provided recordings of the ECG from multiple data sources and measurement devices to the participants of
the course, splitinto subsets. While the ECG recordings were classified into the four categories normal sinus
rhythm (‘NSR’), atrial fibrillation (‘AFib’), other rhythm (‘Other’) and noisy recording (‘Noisy’) in the
original challenge, the main task for our class was only to distinguish ‘AFib’ from ‘NSR’. The secondary goal was
to correctly classify all four classes (table 1). We deployed a system consisting of a validation phase where each
team was allowed 5 successful entries and a final test of the models such that no information about the test data
might leak into the model design process. We analyzed the model architecture and signal processing choices of
all teams quantitatively. Finally we selected two high performing models with novel architectures (section 2.3)
and optimized them for the four class task and evaluated them on the original PyhsioNet/CinC Challenge 2017
test set.

2.1. Datasets

In order to achieve meaningful evaluation results and teach clean data management, we split the data we
acquired into training, validation, and test sets (figure 1). Additionally, to render things more realistic and hence
more ‘interesting’, the datasets were not drawn from the same distribution but were recorded with different
measurement systems. In the following description of the datasets, we also included the official PyhsioNet/CinC
Challenge 2017 test set (Clifford et al 2017), which was used externally to verify and compare the performance of
the two best participant models to the state of the art.

A (training) From the official CinC 2017 training set (Clifford et al 2017), 6000 randomly selected samples
were handed out as training set. The recordings are short single-channel ECGs from the AliveCor device.
Four classes ['NSR’, ‘AFib’, ‘Other’, ‘Noisy’] are available.

B (validation) 2528 remaining samples held back from the official CinC 2017 training set. Four classes [ 'NSR’,
‘AFib’, ‘Other’, ‘Noisy’] are available.
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Physionet Challenge Dataset Hidden Validation Dataset Holter Recordings Dataset

(A) Training: 6000 Samples

(B) Validation: 2528 Samples

(E) Official Testing: 3658 Samples (C) Validation: 3652 Samples

(D) Testing: 1000 Samples

Figure 1. We split the data we acquired into three types of datasets. The color for each dataset codes the phase in which the data is used.

C (validation) A ‘quasi hidden’ validation set was sampled from an openly-available ECG-database containing
3652 examples. Three classes [ NSR’, ‘AFib’, ‘Other’] are available.

D (testing) A ‘true hidden’ set was provided by Medical Data Transfer, s.r.o. Brno, Czechia, containing 1000
Holter recordings during patients daily activities with two classes [ NSR’, ‘AFib’].

E (testing external) 3658 samples of the official CinC 2017 test set. Four classes ['NSR’, ‘AFib’, ‘Other’,
‘Noisy’] are available.

Besides these, we also used the Icential 1k dataset (Tan et al 2019) and the MIT-BIH Arrhythmia Database
(Moody and Mark 2001) during training and validation of the proposed novel models.

2.2. Set-up of the course

The participants were instructed about the problem in a kick-off video meeting. A simple example code
(‘KIS*MED Model’) was provided to the participants in the form of a jupyter-notebook’. The model was meant
as a baseline and an easy starting point to explore more sophisticated methods. It exploits that AFib is often
characterized by irregular beat-to-beat intervals (BBIs) (Couceiro et al 2008) and simply computes the BBIs from
detected QRS-complexes and classifies the training data based on a threshold on the standard deviation of BBIs.
The KIS*MED Model was also provided as a reference implementation” for the interface to our scoring system
and provided example python-files for training and inference from the model, as well as standard functionality
to compute the score, load in the data, and save predictions. Figure 2 shows the more general flow of the course,
with kickoff, a 3 month modelling and validation phase, and the final evaluation of the models. The participants
were asked to form groups of 2-3 members or alternatively were grouped by us. We offered a weekly video-
meeting during the validation phase, where teams could discuss their main problems and ask questions. After
roughly 2 months, all teams presented their general ideas and the difficulties they were facing. ‘Tricks’ used for
achieving good scores were mostly kept secret at that time.

During the validation phase, each team was allowed 5 model submissions, only counting successful runs.
Model code was provided via git repositories and processed semi-automatically in order to check if the
information given was consistent. Evaluation was performed in python environments® by running the inference
code for each team. A SQL database was used to store the evaluation metrics, team information, dataset
information, and all information about the validation runs such as run time, console outputs, confusion
matrices. After each evaluation, the instantaneous ranking was updated based on this data. Only the models of
the final submissions were also trained on our system to check if the performance is plausible.

The participants were encouraged to use their own PCs or other free GPU computing resources such as
Google Colab and were given access to the TU Darmstadt Lichtenberg high performance computer (HPC), which
provides high performance parallel computing capabilities. A short introduction to the usage of the HPC and
parallel computing on a batch system was given, but to the best of our knowledge, only one team made
significant use of the HPC.

6 Google Colab: https://colab.research.google.com/drive/1AoloKP-ZfZ7rRJu6-aqlcG1PkJHS7K]JS (in German).
7 KIS*MED on GitHub: https://github.com/KISMED-TUDa/18-ha-2010-pj.

8 All performed in-house on a Ubuntu Linux based system with two NVIDIA Quadro RTX5000 GPUs and two Intel Xeon @ 3.8 GHzand
256 GBRAM.
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Kickoff Phase Modelling and Validation Evaluation and
Phase Presentation

Task Introduction 5 Validation Attempts per Team Training of all models on set (A)
Team-Forming Midterm Presentation and Evaluation on set (D)

Team sends
E-Mail
. Manual input
Upda‘qng of submission
Ranking data

X Fully automated /

Tracking in Validation on
DEIE] LN all datasets
e,

Figure 2. The flow of the project seminar is on the top, below the validation phase is detailed. In the beginning students form teams of
up to 3 people and work iteratively on their models with validation steps. The test set is only used in the final evaluation.

(B) Validation: 2528 Samples

(C) Validation: 3652 Samples

2.3.Deep learning models

Recent work on detecting cardiac abnormalities in ECG signals with deep neural networks focused on using
either input data in the time or the frequency-domain (Zihlmann et al 2017, Mashrur et al 2019, Khriji et al
2020). We present two different deep neural network models, ECG-RCLSTM-Net and ECG-DualNet, which
both make use of a convolutional neural network (CNN), residual network (ResNet)(He et al 2016) and long
short term memory (LSTM)(Hochreiter and Schmidhuber 1997). ECG-RCLSTM-Net consists of two main
building blocks: a ResNet which takes the whole signal as an input and is designed to analyse global features and a
CNN-LSTM architecture (CLSTM) (Shi etal 2015, He et al 2016, Hong et al 2020, Xiaolin et al 2020) which
analyses local features by focusing on segmented beats as shown in figure 4. Inspired by the ECGNET (Mousavi
etal2019) and recent advances in deep learning, we present ECG-DualNet, a novel neural network architecture
for single-lead ECG classification that utilises input data in both the time and frequency-domain. This enables
ECG-DualNet to learn features from the time and frequency-domain, redressing the need for engineered input
features (Linschmann et al 2021). Based on the same global architecture as ECG-DualNet we also present ECG-
DualNet++- (figure 3). For ECG-DualNet++, we substitute CNN and LSTM blocks with recent state-of-the-art
deep learning building blocks, such as Transformers (Vaswani et al 2017) and Axial-Attentions (Wang et al
2020).

2.3.1. Network architectures

In ECG-RCLSTM-Net same-length ECG recordings are put into the ResNet block. Beat-segments are first fed
into a 1D-CNN to obtain a feature representation and then fed into an LSTM. Finally, the outputs of the two
networks are concatenated and fed into a fully connected classification layer.

The global network architecture of the ECG-DualNet(++), as presented in figure 3, comprises a signal
encoder and a spectrogram encoder. The time-domain ECG signal, cropped into short sequences, builds the
input to the signal encoder. Based on this input a latent vector is predicted. The spectrogram of the ECG signal is
fed into the spectrogram encoder. Similar to image encoders (He et al 2016, Huang et al 2017, Reich et al 2021),
which reduce the spatial resolution of image features, the spectrogram encoder reduces the dimension of the
frequency-domain features in each block. Conditional batch normalization (de Vries eral 2017) (CBN), used in
each spectrogram encoder block, integrates the latent vector of the signal encoder to the frequency-domain
features. The ECG-DualNet employs a standard LSTM as the signal encoder and five ResNet blocks with CBN
for the spectrogram encoder. The ECG-DualNet++- utilises a Transformer encoder as the signal encoder. Two
ResNet blocks followed by three Axial-Attention blocks, all with CBN, build the spectrogram encoder.
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Figure 3. ECG-DualNet++ architecture with spectrogram and ECG signal as inputs. The ECG signal sequence gets encoded by a
Transformer encoder (inyellow ) toasingle latent vector. The spectrogram is encoded by the spectrogram encoder (in green | )
composed of two ResNet (He et al 2016) blocks and three Axial-Attention (Wang et al 2020) blocks. All spectrogram encoder blocks
incorporate the latent vector with Conditional Batch Normalization (de Vries et al 2017). The classification prediction is obtained by a
final fully connected layer with softmax activation (in violet [i]). Transformer encoder (Vaswani et al 2017) architecture shown in the
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Figure 4. The ECG-RCLSTM architecture with a ResNet on the left and a CLSTM on the right. The signal is zero-padded and fed as a
whole into the ResNet. For the CLSTM we split the signal into two second long beats around the R-Peaks. The results of both
architectures are then concatenated into a fully connected linear layer to produce a classification.

2.3.2. Preprocessing

In order to counteract imbalances in the training data, we oversample the datasets by copying individual
recordings from the minority class and adding them to the training dataset until the classes are balanced.
Fundamentally, the preprocessing is composed of four steps: data augmentation, filtering/transformation,
standardization, padding.

The data augmentation pipeline applies a variety of data augmentations to the ECG signal randomly. This
improves the generalization of the trained network and prevents overfitting (Perezand Wang 2017, Hatamian
et al 2020, Nonaka and Seita 2020). The following augmentations are used: dropping, cut-out, resampling, random
resampling, scaling, shifting, sine addition, artificial noise, window warping and bandpass filtering. The dropping
augmentation sets random samples of the ECG signal to zero, the cut-out augmentation sets a random sequence
to zero. In the resampling augmentation, the whole signal is resampled to emulate a different heart rate.
Random resampling is inspired by the random elastic deformation (Simard et al 2003, Ronneberger et al 2015,
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Prangemeier et al 2020) used for image augmentation. The ECG signal is resampled by applying smooth random
offsets, resulting in a changing heart rate. In the scaling augmentation, the signal gets scaled by a random factor.
The sine addition augmentation adds a sinusoidal signal with a random magnitude and phase to the ECG signal.
The shift augmentation shifts the ECG signal by a random length. The artificial noise augmentation adds
Gaussian noise to the original recordings. Window warping means that we randomly adjust the sampling
frequency of randomly selected windows. Finally, in the band pass filter augmentation, the ECG signal is filtered
by aband-pass.

For ECG-RCLSTM-Net we confine augmentation to artificial noise, resampling and window warping. After
augmentation, the data is filtered using a finite impulse response (FIR) bandpass filter, to remove noise from the
training data. Finally, each lead is normalized using its mean and standard deviation. To obtain isolated heart
beats, we are using the hamilton segmenter (Hamilton 2002). In order to retain the information about the
distances of the individual R-Peaks, we include one second before and after each R-Peak. Finally, the input signal
of the ResNet is zero padded.

Conversely for ECG-DualNet, the augmented ECG signal is directly standardized to zero mean and unit
variance. In the third step, the log spectrogram of the ECG signal is computed with a window length of 64, a hop
size of 32, and 64 bins. Recent work showed, using the logarithmic spectrogram improves the classification
accuracy of CNN’s (Zihlmann et al 2017). Finally, both the ECG signal and the spectrogram are zero-padded to a
fixed length.

2.3.3. Training approach and datasets
We train both models in an end-to-end manner on a weighted version of the cross-entropy loss (Goodfellow et al
2016)

| N.C
L= _NZZ Qi Vs log(fji)’ Y]

j=1i=1

where Cis the number of classes, y; € RC is the ground truth one-hot label, y; € RC the network softmax
prediction, and o € RC the class weighting to encounter a class imbalance. The cross-entropy loss is averaged
over a mini-batch of the size N. The loss function (equation (1)) is minimized by using the RAdam optimizer
(Liuetal 2020).

For training of ECG-DualNet(++) , we utilize the Icential 1k dataset and the combined samples of datasets
A U B (PhysioNet/CinC 2017). We pre-train ECG-DualNet for 20 epochs on the Icential 1k dataset. The pre-
trained model is then fine-tuned on the PhysioNet/CinC 2017 dataset for 100 epochs. Dependent on the task
(two or four-class classification), we utilize the PhysioNet/CinC 2017 dataset with two ['NSR’,‘AFib’] or four
classes [ NSR’,‘AFib’,‘Other’,'Noisy’].

For training of ECG-RCLSTM-Net, we mostly used the Icential 1k dataset, from which we extracted 35 000
about sixty seconds long recordings for each label. These were then split into pretrain and test subsets with
disjoint patients. The ResNet is pretrained on the pretrain subset of the Icential 1k dataset using a 20% validation
split for model selection and fine-tuned on the PhysioNet dataset (A U B). The CLSTM is trained in two stages.
First, the CNN is pretrained on the MIT-BIH Arrhythmia Database to learn a feature representation. Then the
complete CLSTM is trained on the PhysioNet dataset. Finally, ECG-RCLSTM-Net is trained using the fully
trained ResNet and CLSTM and only tuning the fully connected classification layers. Here, we also use the full
PhysioNet dataset and train for a single epoch.

2.3.4. Implementation details

We implemented both networks using PyTorch (Paszke et al 2019). For implementing the preprocessing,
including the data augmentation pipeline, SciPy (Virtanen et al 2020), NumPy (Harris et a/ 2020), and
Torchaudio” is used, in addition. ECG-DualNet (XL) is pre-trained on the Icential 1k dataset for 20 epochs with
abatch size of 100. Pre-training on a single Nvidia Tesla V100 (32 GB) took approximately one day. Fine-tuning
on the PhysioNet/CinC 2017 dataset for 100 epochs with a batch size of 24 took three hours on a single Nvidia
2080 Ti. The initial learning rate of the RAdam optimiser was 10 for both the pre-training and the fine-tuning.
The learning rate was decreased after 25%, 50%, and 75% of the training (pre-training and fine-tuning) by 0.1.
The first and second-order momentum factors were set to 0.9 and 0.999, respectively. Each augmentation was
applied with a probability of 0.2.

? https://github.com/pytorch/audio.
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Table 2. Final ranking of the Al in Med. Challenge sorted by F; Set D which is also the final score.

Pos. Model name F, SetB F, SetC F, SetD Fi macro Set B Fi macro SetC
1 ECG-RCLSTM-Net 0.986 0.977 0911 0.887 0.576
2 ECG-DualNet++ 0.939 0.963 0.906 0.831 0.566
3 (Unnamed) 1.000 0.949 0.881 1.000 0.459
4 (Unnamed) 0.935 0.914 0.867 0.878 0.598
5 (Unnamed) 0.779 0.938 0.803 0.330 0.465
6 (Unnamed) 0.894 0.989 0.725 0.896 0.393
7 (Unnamed) 0.993 0.935 0.554 0.367 0.464
Mean 0.932 0.952 0.806 0.741 0.503
Std 0.072 0.024 0.119 0.253 0.071

2.4. Scoring metrics
For the evaluation, similar metrics as in the 2017 CinC challenge were used. Specifically, we used two metrics to
score the submissions of the participants and our final models. Both scores were provided and visualized in a
table to generate ongoing insights about the performance of each team during the 3 months period. The ranking
based on F; was visible to participants only
F=— , @
TP + ~(FP + FN)

where TP is the number of recordings correctly labeled ‘AFib’, FP is the number of recordings that are labeled as
‘AFib’ for which the ground truth is ‘NSR’, FN is the number of recordings labeled as ‘NSR’ whereby ground
truth is ‘AFib’. In addition, we compute the multilabel score

1 & TP;
Fl,macro = Z . Z 1 : 5
i—1 TP + Z(FP; 4 FN;)

3

where TP; is the number of correctly labeled recordings of class 7, FP; is the number of all recordings that are
incorrectly labeled as class 7, FN; the number of all members of class i that were not labeled as i.

All'unlabeled recordings were scored as if they were labeled as ‘NSR’. For F}, only recordings with ground-
truth ‘NSR’ and ‘AFib’ were evaluated and predicted labels [‘Other’, ‘Noisy’] were relabeled as ‘NSR’. Besides the
ranking, each team was notified about code execution and raised warnings were shared.

The final score of the the Physionet Challenge 2017 used as external validation was given as

Finsr + Fioarib + Fiother
b
3

where F) s is the F1 from equation (2), but with ‘NSR’ as the positive class and so on.

(C))

Fi cinc =

3. Results

We show the validation procedure for our models, results for the internal ranking based on F; and F 1,0 SCOTES
as well as external evaluation on the hidden PhysioNet/CinC 2017 challenge test set. We compute the F c,c for
the PhysioNet/CinC 2017 challenge setting to compare ECG-DualNet++ and ECG-RCLSTM-Net with recent
deep learning approaches.

3.1. Preliminary deep learning results

To compare the model sub-architectures of ECG-RCLSTM-Net we performed a four fold cross validation on
the Physionet dataset. The ResNet alone achieves a mean F; of 0.947, which outperforms the CLSTM with a
score 0f 0.929. This leads to the conclusion that the ResNet is superior to the CLSTM with regards to
performance. In contrast, the ResNet is with about 30 million parameters a significantly larger model than the
CLSTM with about 500 000 parameters. The combined model yields the same performance on the Physionet
dataset as the ResNet alone, but shows better results on the Incential 1k validation set, which hints to a better
generalization capability of the overall model.

Preliminary experiments were performed to analyse the effect of the architecture choice (ECG-DualNet
versus ECG-DualNet++-) and the network size on the classification accuracy. In particular, we varied the width
and the depth of the signal encoder. For the spectrogram encoder, we diversified the width. For ECG-DualNet
we utilized four different sizes (S, M, L, and XL). The ECG-DualNet++ architecture was employed in five
different sizes (S, M, L, XL, and 130 M). The preliminary results concluded that the ECG-DualNet architecture

7
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Table 3. Binary classification results on the hidden PhysioNet/CinC 2017 challenge test dataset

(Clifford etal 2017) (E).

Method Ficinc(T) AUROC( 1) AUPRC( 1) Accuracy (1)
ECG-RCLSTM-Net 0.9127 0.9939 0.9623 0.9805
ECG-DualNet 0.9072 0.9901 0.9393 0.9794

Table 4. Numerical results on the hidden PhysioNet/CinC 2017 challenge test dataset (Clifford et al 2017). Macro AUROC, macro AUPR
and accuracy are computed with regard to all 4 classes using the sklearn implementations. We compare our models to the best models of the
challenge and the mean and standard deviation (std) of the best 15 models (of a total of 67 scored models) of the challenge, as well as recent
results of deep learning models summarized in Hong et al (2019) (— not known).

Method Ficinc(T) AUROC macro( 1) AUPRC macro( 1) Accuracy (1)
Teijeiro et al (2018) 0.831 — — —
Dattaetal (2017) 0.829 — — —
Zabihietal (2017) 0.826 — — —
Honget al (2017) 0.825 — — —
ECG-RCLSTM-Net (ours) 0.8240 0.9453 0.8257 0.8554
ECG-DualNet (ours) 0.8003 0.9508 0.8322 0.8308
Top 15 mean (Challenge) 0.8180 — — —
Top 15 std (Challenge) 0.0086 — — —
Top 15 mean (Deep Learning) (Hong et al 2019) 0.8006 — — —
Top 15 std (Deep Learning) (Hong et al 2019) 0.0370 — — —

performs on par or slightly better than the advanced ECG-DualNet++- architecture in classification accuracy
(F1 score). This performance gap between the ECG-DualNet and attention-based (Transformer and Axial-
Attention) ECG-DualNet++ may be caused by the limited available data in dataset (A U B). In terms of
networks size, ECG-DualNet XL outperformed all smaller counterparts. Thus, ECG-DualNet XL is further
considered. All preliminary results, trained models and an overview of all hyperparameters can be found at
https://github.com/ChristophReich1996 /ECG_Classification.

3.2.Internal ranking

All teams achieved competitive results in the binary classification setting for almost all datasets (table 2). This is
especially true for test set D which is both out of distribution from the training set and unknown to participants
and models. The superb results for validation set B for some teams stem from overfitting to the set, which is
publicly available.

The F1-Scores for the validation set C were very good on average with low standard deviation between teams,
which can be explained by set C being less noisy. Teams that overfit on validation set B, teams that used
pretraining on different openly available data, and those that only used the training data provided by us
performed well on dataset C, which is an indicator for relatively good generalization of most models. All but two
teams tried to optimize the multilabel score but did not put the same effort to the task, as can be seen when
looking at the difference between teams that have good scores on F ,,c.0 Set B as opposed to Fy acr0 Set C.

ECG-RCLSTM-Net and ECG-DualNet-++ were also tested on the external PhysioNet/CinC 2017 challenge
test dataset E to verify the results we received from our course set-up. Besides F; we included AUROC, AUPRC,
Accuracy using sklearn'’ for computation. In table 3 both approaches show similar results to the ranking.

3.3. Comparison to PhysioNet challenge 2017

After fine-tuning ECG-RCLSTM-Net and ECG-DualNet to the 4 class problem we submitted both to the official
PhysioNet/CinC 2017 challenge test set (dataset E) to obtain the official PhysioNet Challenge Score F; cjnc. Both
models performed competitively in the 4 class setting of the 2017 challenge'" as can be seen from table 4 and the
comparison of recent deep learning models summarized in Hong et al (2019). Teijeiro et al (2018) ranked first in
the official phase of the 2017 challenge.

10 https://scikit-learn.org/stable/index.html.
1 Official Phase Scores https://physionet.org/content/challenge-2017/1.0.0 /results all F1 scores for each classification type.csv.
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Figure 5. Submissions per Team plotted from kick-off to final submission. Vertical lines indicate weeks. The encircled submissions
are first attempted submissions, that not necessarily ran successfully on our server, but indicate the first try of each team.

4. Discussion

The in tables 3 and 4 presented results for the selected deep learning models are close to/well above the average
top scoring deep learning approaches published after the official phase of the PhysioNet/CinC challenge 2017
and the follow-up. Better performing models based on F; ci,c rely on similar deep learning methods such as
convolutional neural networks (Plesinger et al 2018) and LSTMs (Teijeiro et al 2018). Most importantly, they use
extensive medical background knowledge about the physiological aspects of the ECG and hand-crafted features
that reflect this, as well as relabeling of the training data by experts. Pure deep learning approaches (Zihlmann
etal 2017, Warrick and Homsi 2018) report similar results as ours for the challenge dataset. Both presented
model architectures and training procedures result in competitive performance across a wide range of datasets
(C, D, E) from different ECG sources.

Furthermore, we observed that the pretraining accelerates the training time and the performance on the
internal Icential 1k validation set but does not lead to a major difference in performance on our PhysioNet
validation set.

4.1. Common themes in participants’ approaches

Most teams used some form of pre-training as a technique to train large scale models. Often, the freely available
Icential 1k dataset (Tan et al 2019) was used. Also, the design of end-to-end deep learning models from scratch
and the extensive use of preprocessing and data augmentation were common themes. Only four teams used
either dual models with hand-crafted features (2/7) or models purely relying on hand-crafted features (2/7). The
use of at least one separate validation set (7/7) generated from their data was employed by all teams, even though
one team used all data at hand to train their final submission. To compare their models or check for overfitting,
three teams used some kind of cross-validation (3/7). CNNswere used by almost all teams for some part of their
models and four teams used ResNet (4/7) architectures. Ensemble methods (4/7) were used by four teams. They
either trained two different models and performed averaging/voting (3/7) of the end results, or partly trained
different models together (1/7). A spectrogram (3/7) of the ECG was used as input for the classifiers of three teams.
Data augmentation methods (4/7) were used by four teams and all found that this improved the performance of
their respective models significantly. Interestingly, some teams saw improvements from using ensemble models
while others did not. Four teams tried additional datasets (4/7) for pretraining. However, they saw no
improvements in F; when training and validating on the CinC 2017 dataset.

Another interesting yet expected outcome can be seen in figure 5: as with the original challenge, submissions
clustered at the end of the validation period, which lead us to implement improvements for the course. In
particular, we imposed a mandatory midterm presentation and introduced fixed, overlapping time windows for
each of the 5 possible submissions. Both measures were taken in order to distribute the workload more evenly
over the whole semester and thus lessen the pressure for the final week and improving the overall (median)
performance of all teams, recognizing that top teams might not be affected. Having deadlines for all 5
submissions showed no improvement in student engagement, while also having no benefits regarding
submission clustering towards the end of the course compared to a single mandatory and early first submission.

4.2. Participant self-assessment
We designed a short survey which was taken anonymously after the final grade was assigned (n = 11). It
contained questions about the perceived impact of the course on the methodological knowledge of the
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Figure 6. The plot shows the self-assessed knowledge in machine learning and ECG-Analysis of the students before and after the
course as well as the perceived required knowledge for participating and the impact of the course on knowledge-gain.
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Figure 7. ‘The leaderboard of the challenge motivated students to focus on...”

participants. In addition, we asked about the impact of the leaderboard on specific motivation. Figure 6 shows
that the most common answer in terms of knowledge before and after the course changed from ‘rather low’ to
‘rather high’. Interestingly, the majority of the participants rated both the requirements on prior knowledge for
the course and the impact of the course on knowledge gain as ‘average’ and ‘rather high’. The leaderboard
probably motivated the participants far more to try new methods than it did to perform parameter tuning as
shown by figure 7, which we believe is an encouraging result. Nine participants selected interest in Al and
Machine Learning as the main reason for participating in our class while a good time/credit point ratio and
interest in teamwork were selected once each. On the other hand, interest in medicine seems to be only a minor
reason. Thus, both prior knowledge in medicine and machine learning of the participants were rather low in the
beginning of the Challenge. We learned from the free-text responses that participants particularly liked the fact
that there were only few restrictions regarding code requirements. They also appreciated that working on the
same task led to seeing multiple solutions. We found it somewhat surprising that students actually suggested to
impose more restrictions by introducing mandatory submissions during the course and a mandatory halftime
presentation (which we did in the next iteration of the class). Finally, the students also addressed environmental
aspects of machine learning by proposing limits on computation-time and dataset-size.

4.3. Peculiarities of our challenge

We set up our own evaluation system for this course which will be shared as an easy-to-use set of scripts'*. Asa
matter of fact, multiple systems exist that support evaluation and set up of competitions. The main drawbacks of
using externally hosted competitions are privacy concerns and the compulsion to share datasets with the hosts.

12 Evaluation system: https://github.com/KISMED-TUDa/ai_med_evaluation.
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Codalab'” provides a well-documented, flexible system, that is open source and thus can be hosted on own
servers and might be a good alternative to using our evaluation system, while only adding some complexity. Also,
the semi-automatic analysis method which was intended to lower the threshold for beginners compared to a
fully automated system tends to result in a significant overhead even for this small cohort. The main reason for
that is not the evaluation system itself but the lack of direct and automatic feedback about successful runs.
Therefore, we plan to switch to a Jupyter-Notebook-based evaluation system, which reduces overhead on both
participants and supervisor and benefits the participants additionally by creating a separate learning
environment.

5. Conclusion

The two best models of the course were validated against the PhysioNet/CinC Challenge 2017 test set for both F;
and official challenge score and achieved near state-of-the-art results. Although these results were close in
performance to the top scoring models, it must be emphasized that the existing difference is ultimately relevant
for the application in patient monitoring. Additionally, we showed that the PhysioNet/CinC Challenge of 2017
provides a suitable platform for educating master level engineering students in machine learning for biomedical
tasks. While originality and good analysis of the models were most relevant for grading and emphasized
regularly, the competitive nature of the course lead to objectively competitive models. The high scores as shown
in the ranking and individual statements by participants on the voluntary but high workload demonstrate
known aspects of gamification. All teams employed well known and recent methods based on hand-crafted
features and/or deep learning to engineer competitive models. In the following semester, we added mandatory
mid-term submissions which mimic the unofficial /official phase of the CinC challenge and increased emphasis
on the mid-term presentation based on student suggestions. First results imply a decrease in the early model
scores with a faster increase between submissions compared to the first iteration of the course. We provide links
and documentation to our example code and evaluation system.
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