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Abstract
During the lockdown of universities and theCOVID-Pandemicmost students were restricted to their
homes.Novel and instigating teachingmethodswere required to improve the learning experience and
so recent implementations of the annual PhysioNet/Computing inCardiology (CinC)Challenges
posed as a reference. For over 20 years, the challenges have proven repeatedly to be of immense
educational value, besides leading to technological advances for specific problems. In this paper, we
report results from the class ‘Artificial Intelligence inMedicine Challenge’, whichwas implemented as
an online project seminar at Technical University Darmstadt, Germany, andwhichwas heavily
inspired by the PhysioNet/CinCChallenge 2017 ‘AFClassification from a Short Single Lead ECG
Recording’. Atrialfibrillation is a common cardiac disease and often remains undetected. Therefore,
we selected the twomost promisingmodels of the course and give an insight into the Transformer-
basedDualNet architecture as well as into theCNN-LSTM-basedmodel andfinally a detailed analysis
for both. In particular, we show themodel performance results of our internal scoring process for all
submittedmodels and the near state-of-the-artmodel performance for the two namedmodels on the
official 2017 challenge test set. Several teamswere able to achieve F1 scores above/close to 90%on a
hidden test-set ofHolter recordings.We highlight themes commonly observed among participants,
and report the results from the self-assessed student evaluation. Finally, the self-assessment of the
students reported a notable increase inmachine learning knowledge.

1. Introduction

As a result of the COVID-Pandemic and the lockdown of universities, novel teaching concepts combining
online teaching, experimenting, and self-learningwith a stimulating environment are needed. Challenge-based
gamification aspects such as clear tasks, leaderboards, instant feedback, and a scoring system showed promising
results in improving statistics and engineering education in recent studies (Legaki et al 2020, Colombari et al
2021). In particular, leaderboards offer a systemof self-feedback and goal-setting to students (Nah et al 2014). It
comes to no surprise that the annual PhysioNet/Computing inCardiology (CinC)Challenges not only lead to
technological advances for specific problems, they also repeatedly proved to be of immense educational value for
participants. Inspired by the PhysioNet/CinCChallenge of 2017 ‘AFClassification from a Short Single Lead
ECGRecording’ (Clifford et al 2017), we developed the project seminar ‘Artificial Intelligence inMedicine
Challenge’ as part of the electrical/biomedical engineering curriculum at TUDarmstadt with the goal to detect
atrialfibrillation in one-lead electrocardiograms (ECGs). Atrial fibrillation (AFib) is themost common
sustained cardiac arrhythmia (Lip et al 2016) and therefore ofmajor interest for regular screening.We set up our
own system for runningmodels for AFib detection developed by the participants, inferring predictions and
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scoring these predictions respectively. Since research (Toda et al 2017) has shown that gamification alonemay
not be the ‘holy grail of education’, we tried to counteract potential negative effects. These negative effects
include demotivation due to excessive competition and a focus shift from creative development to the
gamificationmechanics. In particular, we offeredweekly sessions to discuss ideas, checked problemswith the
teams, and had a voluntarymid-semester presentation about intermediate results. Consequentially, wemade
clear from the start that the originality of approaches and a good analysis were crucial to us and that a good score
and rankingwas neither required nor sufficient for a good grade.Hence, the award for thewinning team
consisted of a certificate and a small price but was not tied to the grade. The aimof this paper is thus to present an
innovative course design formachine learning education and to show that novel deep learningmodels
developed in the course of the project are competitive in AFib detection. In order to showdetailed analysis of the
performance and novelty of thesemodels, we evaluated themon the original PhysioNet 2017 challenge test set
and compared them to thewinningmodels of the challenge of 2017 (Datta et al 2017, Zabihi et al 2017, Teijeiro
et al 2018).

Compared to our conference paper (Rohr et al 2021), wemade significant changes and added the following
unreported results.We show thatmodels designed by the participants achieve near state-of-the-art performance
in atrialfibrillation classification. This includes results for themultilabel classification on the unseen dataset of
the PhysioNet Challenge and deeper insights into themodels.Moreover, we show that using gamification
concepts inmachine learning education additionallymotivates participants which results in competitive
models. At the point of writing this paper the course is already in its second iteration andwe cover the
implementation of some of the changes inspired by the evaluation and share code and documentation of our
evaluation system.

2.Methods

Weprovided recordings of the ECG frommultiple data sources andmeasurement devices to the participants of
the course, split into subsets.While the ECG recordings were classified into the four categoriesnormal sinus
rhythm (‘NSR’), atrialfibrillation (‘AFib’), other rhythm (‘Other’) andnoisy recording (‘Noisy’) in the
original challenge, themain task for our class was only to distinguish ‘AFib’ from ‘NSR’. The secondary goal was
to correctly classify all four classes (table 1).We deployed a system consisting of a validation phase where each
teamwas allowed 5 successful entries and afinal test of themodels such that no information about the test data
might leak into themodel design process.We analyzed themodel architecture and signal processing choices of
all teams quantitatively. Finally we selected two high performingmodels with novel architectures (section 2.3)
and optimized them for the four class task and evaluated themon the original PyhsioNet/CinCChallenge 2017
test set.

2.1.Datasets
In order to achievemeaningful evaluation results and teach clean datamanagement, we split the data we
acquired into training, validation, and test sets (figure 1). Additionally, to render thingsmore realistic and hence
more ‘interesting’, the datasets were not drawn from the same distribution but were recordedwith different
measurement systems. In the following description of the datasets, we also included the official PyhsioNet/CinC
Challenge 2017 test set (Clifford et al 2017), whichwas used externally to verify and compare the performance of
the two best participantmodels to the state of the art.

A (training) From the official CinC 2017 training set (Clifford et al 2017), 6000 randomly selected samples
were handed out as training set. The recordings are short single-channel ECGs from theAliveCor device.
Four classes [‘NSR’, ‘AFib’, ‘Other’, ‘Noisy’] are available.

B (validation) 2528 remaining samples held back from the official CinC 2017 training set. Four classes [‘NSR’,
‘AFib’, ‘Other’, ‘Noisy’] are available.

Table 1.Relevant labeled recordings for
each tasks.

Label Main task Secondary task

NSR ✓ ✓

AFib ✓ ✓

Other ✓

Noisy ✓

2

Physiol.Meas. 43 (2022) 074001 MRohr et al



C (validation)A ‘quasi hidden’ validation setwas sampled fromanopenly-available ECG-database containing
3652 examples. Three classes [‘NSR’, ‘AFib’, ‘Other’] are available.

D (testing)A ‘true hidden’ set was provided byMedical Data Transfer, s.r.o. Brno, Czechia, containing 1000
Holter recordings during patients daily activities with two classes [‘NSR’, ‘AFib’].

E (testing external) 3658 samples of the official CinC 2017 test set. Four classes [‘NSR’, ‘AFib’, ‘Other’,
‘Noisy’] are available.

Besides these, we also used the Icentia11k dataset (Tan et al 2019) and theMIT-BIHArrhythmiaDatabase
(Moody andMark 2001)during training and validation of the proposed novelmodels.

2.2. Set-up of the course
The participants were instructed about the problem in a kick-off videomeeting. A simple example code
(‘KIS*MEDModel’)was provided to the participants in the formof a jupyter-notebook6. Themodel wasmeant
as a baseline and an easy starting point to exploremore sophisticatedmethods. It exploits that AFib is often
characterized by irregular beat-to-beat intervals (BBIs) (Couceiro et al 2008) and simply computes the BBIs from
detectedQRS-complexes and classifies the training data based on a threshold on the standard deviation of BBIs.
TheKIS*MEDModel was also provided as a reference implementation7 for the interface to our scoring system
and provided example python-files for training and inference from themodel, as well as standard functionality
to compute the score, load in the data, and save predictions. Figure 2 shows themore general flowof the course,
with kickoff, a 3monthmodelling and validation phase, and the final evaluation of themodels. The participants
were asked to form groups of 2–3members or alternatively were grouped by us.We offered aweekly video-
meeting during the validation phase, where teams could discuss theirmain problems and ask questions. After
roughly 2months, all teams presented their general ideas and the difficulties theywere facing. ‘Tricks’used for
achieving good scoresweremostly kept secret at that time.

During the validation phase, each teamwas allowed 5model submissions, only counting successful runs.
Model codewas provided via git repositories and processed semi-automatically in order to check if the
information givenwas consistent. Evaluationwas performed in python environments8 by running the inference
code for each team. A SQLdatabasewas used to store the evaluationmetrics, team information, dataset
information, and all information about the validation runs such as run time, console outputs, confusion
matrices. After each evaluation, the instantaneous rankingwas updated based on this data. Only themodels of
thefinal submissionswere also trained on our system to check if the performance is plausible.

The participants were encouraged to use their ownPCs or other freeGPU computing resources such as
Google Colab andwere given access to the TUDarmstadt Lichtenberg high performance computer (HPC), which
provides high performance parallel computing capabilities. A short introduction to the usage of theHPC and
parallel computing on a batch systemwas given, but to the best of our knowledge, only one teammade
significant use of theHPC.

Figure 1.We split the datawe acquired into three types of datasets. The color for each dataset codes the phase inwhich the data is used.

6
Google Colab: https://colab.research.google.com/drive/1AoloKP-ZfZ7rRJu6-aq1cG1PkJHS7KJS (inGerman).

7
KIS*MEDonGitHub: https://github.com/KISMED-TUDa/18-ha-2010-pj.

8
All performed in-house on aUbuntu Linux based systemwith twoNVIDIAQuadroRTX5000GPUs and two Intel Xeon@3.8 GHz and

256 GBRAM.
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2.3.Deep learningmodels
Recent work on detecting cardiac abnormalities in ECG signals withdeep neural networks focused on using
either input data in the time or the frequency-domain (Zihlmann et al 2017,Mashrur et al 2019, Khriji et al
2020).We present two different deep neural networkmodels,ECG-RCLSTM-Net andECG-DualNet, which
bothmake use of a convolutional neural network (CNN), residual network (ResNet)(He et al 2016) and long
short termmemory (LSTM)(Hochreiter and Schmidhuber 1997). ECG-RCLSTM-Net consists of twomain
building blocks: a ResNet which takes thewhole signal as an input and is designed to analyse global features and a
CNN-LSTMarchitecture (CLSTM) (Shi et al 2015,He et al 2016,Hong et al 2020, Xiaolin et al 2020)which
analyses local features by focusing on segmented beats as shown infigure 4. Inspired by the ECGNET (Mousavi
et al 2019) and recent advances in deep learning, we present ECG-DualNet, a novel neural network architecture
for single-lead ECG classification that utilises input data in both the time and frequency-domain. This enables
ECG-DualNet to learn features from the time and frequency-domain, redressing the need for engineered input
features (Linschmann et al 2021). Based on the same global architecture as ECG-DualNet we also present ECG-
DualNet++ (figure 3). For ECG-DualNet++, we substitute CNNand LSTMblockswith recent state-of-the-art
deep learning building blocks, such as Transformers (Vaswani et al 2017) andAxial-Attentions (Wang et al
2020).

2.3.1. Network architectures
InECG-RCLSTM-Net same-length ECG recordings are put into the ResNet block. Beat-segments arefirst fed
into a 1D-CNN to obtain a feature representation and then fed into an LSTM. Finally, the outputs of the two
networks are concatenated and fed into a fully connected classification layer.

The global network architecture of theECG-DualNet(++), as presented infigure 3, comprises a signal
encoder and a spectrogram encoder. The time-domain ECG signal, cropped into short sequences, builds the
input to the signal encoder. Based on this input a latent vector is predicted. The spectrogramof the ECG signal is
fed into the spectrogram encoder. Similar to image encoders (He et al 2016,Huang et al 2017, Reich et al 2021),
which reduce the spatial resolution of image features, the spectrogram encoder reduces the dimension of the
frequency-domain features in each block. Conditional batch normalization (deVries et al 2017) (CBN), used in
each spectrogram encoder block, integrates the latent vector of the signal encoder to the frequency-domain
features. The ECG-DualNet employs a standard LSTMas the signal encoder and five ResNet blocks withCBN
for the spectrogram encoder. The ECG-DualNet++ utilises a Transformer encoder as the signal encoder. Two
ResNet blocks followed by three Axial-Attention blocks, all withCBN, build the spectrogram encoder.

Figure 2.The flowof the project seminar is on the top, below the validation phase is detailed. In the beginning students form teams of
up to 3 people andwork iteratively on theirmodels with validation steps. The test set is only used in the final evaluation.
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2.3.2. Preprocessing
In order to counteract imbalances in the training data, we oversample the datasets by copying individual
recordings from theminority class and adding them to the training dataset until the classes are balanced.
Fundamentally, the preprocessing is composed of four steps: data augmentation, filtering/transformation,
standardization, padding.

The data augmentation pipeline applies a variety of data augmentations to the ECG signal randomly. This
improves the generalization of the trained network and prevents overfitting (Perez andWang 2017,Hatamian
et al 2020, Nonaka and Seita 2020). The following augmentations are used: dropping, cut-out, resampling, random
resampling, scaling, shifting, sine addition, artificial noise, windowwarping and bandpass filtering. The dropping
augmentation sets random samples of the ECG signal to zero, the cut-out augmentation sets a random sequence
to zero. In the resampling augmentation, thewhole signal is resampled to emulate a different heart rate.
Random resampling is inspired by the random elastic deformation (Simard et al 2003, Ronneberger et al 2015,

Figure 3.ECG-DualNet++ architecturewith spectrogram andECG signal as inputs. The ECG signal sequence gets encoded by a
Transformer encoder (in yellow ) to a single latent vector. The spectrogram is encoded by the spectrogram encoder (in green )
composed of twoResNet (He et al 2016) blocks and three Axial-Attention (Wang et al 2020) blocks. All spectrogram encoder blocks
incorporate the latent vector with Conditional BatchNormalization (deVries et al 2017). The classification prediction is obtained by a
final fully connected layer with softmax activation (in violet ). Transformer encoder (Vaswani et al 2017) architecture shown in the
top right.

Figure 4.The ECG-RCLSTMarchitecturewith aResNet on the left and aCLSTMon the right. The signal is zero-padded and fed as a
whole into the ResNet. For theCLSTMwe split the signal into two second long beats around the R-Peaks. The results of both
architectures are then concatenated into a fully connected linear layer to produce a classification.
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Prangemeier et al 2020) used for image augmentation. The ECG signal is resampled by applying smooth random
offsets, resulting in a changing heart rate. In the scaling augmentation, the signal gets scaled by a random factor.
The sine addition augmentation adds a sinusoidal signal with a randommagnitude and phase to the ECG signal.
The shift augmentation shifts the ECG signal by a random length. The artificial noise augmentation adds
Gaussian noise to the original recordings.Windowwarpingmeans that we randomly adjust the sampling
frequency of randomly selectedwindows. Finally, in the band passfilter augmentation, the ECG signal is filtered
by a band-pass.

For ECG-RCLSTM-Netwe confine augmentation to artificial noise, resampling andwindowwarping. After
augmentation, the data isfiltered using a finite impulse response (FIR) bandpass filter, to remove noise from the
training data. Finally, each lead is normalized using itsmean and standard deviation. To obtain isolated heart
beats, we are using the hamilton segmenter (Hamilton 2002). In order to retain the information about the
distances of the individual R-Peaks, we include one second before and after eachR-Peak. Finally, the input signal
of the ResNet is zero padded.

Conversely for ECG-DualNet, the augmented ECG signal is directly standardized to zeromean and unit
variance. In the third step, the log spectrogramof the ECG signal is computedwith awindow length of 64, a hop
size of 32, and 64 bins. Recent work showed, using the logarithmic spectrogram improves the classification
accuracy of CNN’s (Zihlmann et al 2017). Finally, both the ECG signal and the spectrogram are zero-padded to a
fixed length.

2.3.3. Training approach and datasets
We train bothmodels in an end-to-endmanner on aweighted version of the cross-entropy loss (Goodfellow et al
2016)

( ˆ ) ( )åå a= -
= =


N

y y
1

log , 1
j

N

i

C

i ji ji
1 1

whereC is the number of classes, Î yj
C is the ground truth one-hot label, ˆ Î yj

C the network softmax

prediction, anda Î C the class weighting to encounter a class imbalance. The cross-entropy loss is averaged
over amini-batch of the sizeN. The loss function (equation (1)) isminimized by using the RAdamoptimizer
(Liu et al 2020).

For training of ECG-DualNet(++) , we utilize the Icentia11k dataset and the combined samples of datasets
A ∪ B (PhysioNet/CinC2017).We pre-train ECG-DualNet for 20 epochs on the Icentia11k dataset. The pre-
trainedmodel is thenfine-tuned on the PhysioNet/CinC 2017 dataset for 100 epochs. Dependent on the task
(two or four-class classification), we utilize the PhysioNet/CinC 2017 dataset with two [‘NSR’,‘AFib’] or four
classes [‘NSR’,‘AFib’,‘Other’,‘Noisy’].

For training of ECG-RCLSTM-Net, wemostly used the Icentia11k dataset, fromwhichwe extracted 35 000
about sixty seconds long recordings for each label. These were then split into pretrain and test subsets with
disjoint patients. The ResNet is pretrained on the pretrain subset of the Icentia11k dataset using a 20%validation
split formodel selection and fine-tuned on the PhysioNet dataset (A ∪ B). TheCLSTM is trained in two stages.
First, the CNN is pretrained on theMIT-BIHArrhythmiaDatabase to learn a feature representation. Then the
complete CLSTM is trained on the PhysioNet dataset. Finally, ECG-RCLSTM-Net is trained using the fully
trained ResNet andCLSTMandonly tuning the fully connected classification layers. Here, we also use the full
PhysioNet dataset and train for a single epoch.

2.3.4. Implementation details
We implemented both networks using PyTorch (Paszke et al 2019). For implementing the preprocessing,
including the data augmentation pipeline, SciPy (Virtanen et al 2020), NumPy (Harris et al 2020), and
Torchaudio9 is used, in addition. ECG-DualNet (XL) is pre-trained on the Icentia11k dataset for 20 epochswith
a batch size of 100. Pre-training on a singleNvidia Tesla V100 (32 GB) took approximately one day. Fine-tuning
on the PhysioNet/CinC2017 dataset for 100 epochs with a batch size of 24 took three hours on a singleNvidia
2080Ti. The initial learning rate of the RAdamoptimiser was 10−3 for both the pre-training and the fine-tuning.
The learning ratewas decreased after 25%, 50%, and 75%of the training (pre-training and fine-tuning) by 0.1.
Thefirst and second-ordermomentum factors were set to 0.9 and 0.999, respectively. Each augmentationwas
appliedwith a probability of 0.2.

9
https://github.com/pytorch/audio.
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2.4. Scoringmetrics
For the evaluation, similarmetrics as in the 2017CinC challengewere used. Specifically, we used twometrics to
score the submissions of the participants and ourfinalmodels. Both scoreswere provided and visualized in a
table to generate ongoing insights about the performance of each teamduring the 3months period. The ranking
based on F1 was visible to participants only

( )
( )=

+ +
F

TP

TP FP FN
, 21 1

2

where TP is the number of recordings correctly labeled ‘AFib’ , FP is the number of recordings that are labeled as
‘AFib’ for which the ground truth is ‘NSR’, FN is the number of recordings labeled as ‘NSR’whereby ground
truth is ‘AFib’. In addition, we compute themultilabel score

·
( )

( )å=
+ +=

F
1

4

TP

TP FP FN
, 3

i

i

i i i
1,macro

1

4

1

2

where TPi is the number of correctly labeled recordings of class i, FPi is the number of all recordings that are
incorrectly labeled as class i, FNi the number of allmembers of class i that were not labeled as i.

All unlabeled recordings were scored as if theywere labeled as ‘NSR’. For F1, only recordings with ground-
truth ‘NSR’ and ‘AFib’were evaluated and predicted labels [‘Other’, ‘Noisy’]were relabeled as ‘NSR’. Besides the
ranking, each teamwas notified about code execution and raisedwarningswere shared.

Thefinal score of the the Physionet Challenge 2017 used as external validationwas given as

( )=
+ +

F
F F F

3
, 41,CinC

1,NSR 1,AFib 1,Other

where F1,NSR is the F1 from equation (2), but with ‘NSR’ as the positive class and so on.

3. Results

We show the validation procedure for ourmodels, results for the internal ranking based on F1 and F1,macro scores
aswell as external evaluation on the hidden PhysioNet/CinC2017 challenge test set.We compute the F1,CinC for
the PhysioNet/CinC2017 challenge setting to compare ECG-DualNet++ and ECG-RCLSTM-Netwith recent
deep learning approaches.

3.1. Preliminary deep learning results
To compare themodel sub-architectures of ECG-RCLSTM-Netwe performed a four fold cross validation on
the Physionet dataset. TheResNet alone achieves amean F1 of 0.947, which outperforms theCLSTMwith a
score of 0.929. This leads to the conclusion that the ResNet is superior to theCLSTMwith regards to
performance. In contrast, the ResNet is with about 30million parameters a significantly largermodel than the
CLSTMwith about 500 000 parameters. The combinedmodel yields the same performance on the Physionet
dataset as the ResNet alone, but shows better results on the Incentia11k validation set, which hints to a better
generalization capability of the overallmodel.

Preliminary experiments were performed to analyse the effect of the architecture choice (ECG-DualNet
versus ECG-DualNet++) and the network size on the classification accuracy. In particular, we varied thewidth
and the depth of the signal encoder. For the spectrogram encoder, we diversified thewidth. For ECG-DualNet
we utilized four different sizes (S,M, L, andXL). The ECG-DualNet++ architecture was employed infive
different sizes (S,M, L, XL, and 130M). The preliminary results concluded that the ECG-DualNet architecture

Table 2. Final ranking of the AI inMed. Challenge sorted by F1 SetDwhich is also thefinal score.

Pos. Model name F1 Set B F1 Set C F1 SetD F1,macro Set B F1,macro Set C

1 ECG-RCLSTM-Net 0.986 0.977 0.911 0.887 0.576

2 ECG-DualNet++ 0.939 0.963 0.906 0.831 0.566

3 〈Unnamed〉 1.000 0.949 0.881 1.000 0.459

4 〈Unnamed〉 0.935 0.914 0.867 0.878 0.598

5 〈Unnamed〉 0.779 0.938 0.803 0.330 0.465

6 〈Unnamed〉 0.894 0.989 0.725 0.896 0.393

7 〈Unnamed〉 0.993 0.935 0.554 0.367 0.464

Mean 0.932 0.952 0.806 0.741 0.503

Std 0.072 0.024 0.119 0.253 0.071
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performs on par or slightly better than the advanced ECG-DualNet++ architecture in classification accuracy
(F1 score). This performance gap between the ECG-DualNet and attention-based (Transformer andAxial-
Attention)ECG-DualNet++may be caused by the limited available data in dataset (A ∪ B). In terms of
networks size, ECG-DualNet XL outperformed all smaller counterparts. Thus, ECG-DualNet XL is further
considered. All preliminary results, trainedmodels and an overview of all hyperparameters can be found at
https://github.com/ChristophReich1996/ECG_Classification.

3.2. Internal ranking
All teams achieved competitive results in the binary classification setting for almost all datasets (table 2). This is
especially true for test setDwhich is both out of distribution from the training set and unknown to participants
andmodels. The superb results for validation setB for some teams stem fromoverfitting to the set, which is
publicly available.

The F1-Scores for the validation setCwere very good on averagewith low standard deviation between teams,
which can be explained by setC being less noisy. Teams that overfit on validation setB, teams that used
pretraining on different openly available data, and those that only used the training data provided by us
performedwell on datasetC, which is an indicator for relatively good generalization ofmostmodels. All but two
teams tried to optimize themultilabel score but did not put the same effort to the task, as can be seenwhen
looking at the difference between teams that have good scores on F1,macro SetB as opposed to F1,macro SetC.

ECG-RCLSTM-Net and ECG-DualNet++were also tested on the external PhysioNet/CinC 2017 challenge
test dataset E to verify the results we received fromour course set-up. Besides F1 we includedAUROC,AUPRC,
Accuracy using sklearn10 for computation. In table 3 both approaches show similar results to the ranking.

3.3. Comparison to PhysioNet challenge 2017
Afterfine-tuning ECG-RCLSTM-Net and ECG-DualNet to the 4 class problemwe submitted both to the official
PhysioNet/CinC 2017 challenge test set (datasetE) to obtain the official PhysioNet Challenge Score F1,CinC. Both
models performed competitively in the 4 class setting of the 2017 challenge11 as can be seen from table 4 and the
comparison of recent deep learningmodels summarized inHong et al (2019). Teijeiro et al (2018) rankedfirst in
the official phase of the 2017 challenge.

Table 3.Binary classification results on the hidden PhysioNet/CinC 2017 challenge test dataset
(Clifford et al 2017) (E).

Method F1,CinC ( ↑ ) AUROC ( ↑ ) AUPRC ( ↑ ) Accuracy ( ↑ )

ECG-RCLSTM-Net 0.9127 0.9939 0.9623 0.9805

ECG-DualNet 0.9072 0.9901 0.9393 0.9794

Table 4.Numerical results on the hidden PhysioNet/CinC 2017 challenge test dataset (Clifford et al 2017).Macro AUROC,macroAUPR
and accuracy are computedwith regard to all 4 classes using the sklearn implementations.We compare ourmodels to the bestmodels of the
challenge and themean and standard deviation (std) of the best 15models (of a total of 67 scoredmodels) of the challenge, as well as recent
results of deep learningmodels summarized inHong et al (2019) (—not known).

Method F1,CinC ( ↑ ) AUROCmacro ( ↑ ) AUPRCmacro ( ↑ ) Accuracy ( ↑ )

Teijeiro et al (2018) 0.831 — — —

Datta et al (2017) 0.829 — — —

Zabihi et al (2017) 0.826 — — —

Hong et al (2017) 0.825 — — —

ECG-RCLSTM-Net (ours) 0.8240 0.9453 0.8257 0.8554

ECG-DualNet (ours) 0.8003 0.9508 0.8322 0.8308

Top 15mean (Challenge) 0.8180 — — —

Top 15 std (Challenge) 0.0086 — — —

Top 15mean (Deep Learning) (Hong et al 2019) 0.8006 — — —

Top 15 std (Deep Learning) (Hong et al 2019) 0.0370 — — —

10
https://scikit-learn.org/stable/index.html.

11
Official Phase Scores https://physionet.org/content/challenge-2017/1.0.0/results all F1 scores for each classification type.csv.
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4.Discussion

The in tables 3 and 4 presented results for the selected deep learningmodels are close to/well above the average
top scoring deep learning approaches published after the official phase of the PhysioNet/CinC challenge 2017
and the follow-up. Better performingmodels based on F1,CinC rely on similar deep learningmethods such as
convolutional neural networks (Plesinger et al 2018) and LSTMs (Teijeiro et al 2018).Most importantly, they use
extensivemedical background knowledge about the physiological aspects of the ECG and hand-crafted features
that reflect this, as well as relabeling of the training data by experts. Pure deep learning approaches (Zihlmann
et al 2017,Warrick andHomsi 2018) report similar results as ours for the challenge dataset. Both presented
model architectures and training procedures result in competitive performance across awide range of datasets
(C,D,E) fromdifferent ECG sources.

Furthermore, we observed that the pretraining accelerates the training time and the performance on the
internal Icentia11k validation set but does not lead to amajor difference in performance on our PhysioNet
validation set.

4.1. Common themes in participants’ approaches
Most teams used some formof pre-training as a technique to train large scalemodels. Often, the freely available
Icentia11k dataset (Tan et al 2019)was used. Also, the design of end-to-end deep learningmodels from scratch
and the extensive use of preprocessing and data augmentationwere common themes. Only four teams used
either dualmodels with hand-crafted features (2/7) ormodels purely relying on hand-crafted features (2/7). The
use of at least one separate validation set (7/7) generated from their data was employed by all teams, even though
one teamused all data at hand to train their final submission. To compare theirmodels or check for overfitting,
three teams used some kind of cross-validation (3/7).CNNswere used by almost all teams for some part of their
models and four teams usedResNet (4/7) architectures. Ensemblemethods (4/7)were used by four teams. They
either trained twodifferentmodels and performed averaging/voting (3/7) of the end results, or partly trained
differentmodels together (1/7). A spectrogram (3/7) of the ECGwas used as input for the classifiers of three teams.
Data augmentationmethods (4/7)were used by four teams and all found that this improved the performance of
their respectivemodels significantly. Interestingly, some teams saw improvements fromusing ensemblemodels
while others did not. Four teams tried additional datasets (4/7) for pretraining. However, they saw no
improvements in F1 when training and validating on theCinC 2017 dataset.

Another interesting yet expected outcome can be seen infigure 5: as with the original challenge, submissions
clustered at the end of the validation period, which lead us to implement improvements for the course. In
particular, we imposed amandatorymidtermpresentation and introduced fixed, overlapping timewindows for
each of the 5 possible submissions. Bothmeasures were taken in order to distribute theworkloadmore evenly
over thewhole semester and thus lessen the pressure for the final week and improving the overall (median)
performance of all teams, recognizing that top teamsmight not be affected.Having deadlines for all 5
submissions showed no improvement in student engagement, while also having no benefits regarding
submission clustering towards the end of the course compared to a singlemandatory and early first submission.

4.2. Participant self-assessment
Wedesigned a short surveywhichwas taken anonymously after the final gradewas assigned (n= 11). It
contained questions about the perceived impact of the course on themethodological knowledge of the

Figure 5. Submissions per Teamplotted fromkick-off tofinal submission. Vertical lines indicateweeks. The encircled submissions
are first attempted submissions, that not necessarily ran successfully on our server, but indicate the first try of each team.
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participants. In addition, we asked about the impact of the leaderboard on specificmotivation. Figure 6 shows
that themost common answer in terms of knowledge before and after the course changed from ‘rather low’ to
‘rather high’. Interestingly, themajority of the participants rated both the requirements on prior knowledge for
the course and the impact of the course on knowledge gain as ‘average’ and ‘rather high’. The leaderboard
probablymotivated the participants farmore to try newmethods than it did to performparameter tuning as
shownby figure 7, whichwe believe is an encouraging result. Nine participants selected interest in AI and
Machine Learning as themain reason for participating in our class while a good time/credit point ratio and
interest in teamworkwere selected once each. On the other hand, interest inmedicine seems to be only aminor
reason. Thus, both prior knowledge inmedicine andmachine learning of the participants were rather low in the
beginning of theChallenge.We learned from the free-text responses that participants particularly liked the fact
that therewere only few restrictions regarding code requirements. They also appreciated thatworking on the
same task led to seeingmultiple solutions.We found it somewhat surprising that students actually suggested to
imposemore restrictions by introducingmandatory submissions during the course and amandatory halftime
presentation (whichwe did in the next iteration of the class). Finally, the students also addressed environmental
aspects ofmachine learning by proposing limits on computation-time and dataset-size.

4.3. Peculiarities of our challenge
We set up our own evaluation system for this course whichwill be shared as an easy-to-use set of scripts12. As a
matter of fact,multiple systems exist that support evaluation and set up of competitions. Themain drawbacks of
using externally hosted competitions are privacy concerns and the compulsion to share datasets with the hosts.

Figure 6.The plot shows the self-assessed knowledge inmachine learning and ECG-Analysis of the students before and after the
course aswell as the perceived required knowledge for participating and the impact of the course on knowledge-gain.

Figure 7. ‘The leaderboard of the challengemotivated students to focus on...’

12
Evaluation system: https://github.com/KISMED-TUDa/ai_med_evaluation.
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Codalab13 provides awell-documented, flexible system, that is open source and thus can be hosted on own
servers andmight be a good alternative to using our evaluation system, while only adding some complexity. Also,
the semi-automatic analysismethodwhichwas intended to lower the threshold for beginners compared to a
fully automated system tends to result in a significant overhead even for this small cohort. Themain reason for
that is not the evaluation system itself but the lack of direct and automatic feedback about successful runs.
Therefore, we plan to switch to a Jupyter-Notebook-based evaluation system, which reduces overhead on both
participants and supervisor and benefits the participants additionally by creating a separate learning
environment.

5. Conclusion

The two bestmodels of the course were validated against the PhysioNet/CinCChallenge 2017 test set for both F1
and official challenge score and achieved near state-of-the-art results. Although these results were close in
performance to the top scoringmodels, itmust be emphasized that the existing difference is ultimately relevant
for the application in patientmonitoring. Additionally, we showed that the PhysioNet/CinCChallenge of 2017
provides a suitable platform for educatingmaster level engineering students inmachine learning for biomedical
tasks.While originality and good analysis of themodels weremost relevant for grading and emphasized
regularly, the competitive nature of the course lead to objectively competitivemodels. The high scores as shown
in the ranking and individual statements by participants on the voluntary but highworkload demonstrate
known aspects of gamification. All teams employedwell known and recentmethods based on hand-crafted
features and/or deep learning to engineer competitivemodels. In the following semester, we addedmandatory
mid-term submissionswhichmimic the unofficial/official phase of theCinC challenge and increased emphasis
on themid-termpresentation based on student suggestions. First results imply a decrease in the earlymodel
scores with a faster increase between submissions compared to the first iteration of the course.We provide links
and documentation to our example code and evaluation system.
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