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ABSTRACT

Hardware-assisted security aims at protecting computing systems against software-
based attacks that can affect the different software layers. This is attained by leveraging
hardware components or modules to enforce strict security measures and thus providing
stronger security guarantees compared to software-only solutions. The trusted hardware
components form together the so-called trust anchor, which comprises various primitives
to support different security protocols and services such as authentication, platform
integrity, runtime protection, trusted execution and trusted configuration, to name some.

This thesis consists of two parts: i) an offensive part, where we present our findings
based on attacks we conducted on hardware-based security primitives that can
be deployed in trust anchors for platform authentication and cryptographic key
generation, and ii) a defensive part, where we present our novel hardware-assisted
defenses/architectures for platform integrity at runtime and trusted configuration that
are based on trust anchors of our design. The contributions are organized in three pivots
based on the security service provided by the trust anchor.

Platform Authentication. Physically Unclonable Functions (PUFs) are hardware se-
curity primitives that leverage the innate characteristics of hardware due to its manu-
facturing process for the generation of device-specific identifiers or cryptographic keys.
Therefore, PUFs have been considered as a promising cost-effective primitive/component
in trust anchors for constrained embedded devices. In this part of the thesis we evaluate
the security of several PUF primitives. We demonstrate a noninvasive fault injection
attack on SRAM PUFs that is conducted by controlling the voltage supply to the PUF
under attack for the recovery of the secret PUF response [1]. Then, we present remote
software-based fault injection attack on Rowhammer PUFs and modeling attacks on
Rowhammer PUFs and memristor-based PUFs that require no physical access to the PUF
under attack [2, 3]. This pivot is based on the following publications:

[1] Shaza Zeitouni, Yossef Oren, Christian Wachsmann, Patrick Koeberl, Ahmad-Reza
Sadeghi. “Remanence Decay Side-Channel: The PUF Case”. In IEEE Transactions
on Information Forensics and Security (TIFS), Vol. 11, 2015.

[2] Shaza Zeitouni, David Gens, Ahmad-Reza Sadeghi. “It's Hammer Time: How to
Attack (Rowhammer-based) DRAM-PUFs”. In Proceedings of the 55th ACM/IEEE
Design Automation Conference (DAC’18), 2018.

[3] Shaza Zeitouni, Emmanuel Stapf, Hossein Fereidooni, Ahmad-Reza Sadeghi. “On
the Security of Strong Memristor-based Physically Unclonable Functions”. In Pro-
ceedings of the 57th ACM/IEEE Design Automation Conference (DAC’20), 2020.

Runtime Protection. Memory corruption attacks aim at diverting the execution of
software at runtime without violating its integrity at rest. While static attestation is a
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well established approach to verify the trustworthiness/integrity of software components
and detect malware attacks, it cannot detect runtime attacks. In this part of the thesis,
we present our runtime defenses for embedded systems under different deployment
and adversary models and their underlying hardware-based trust anchors that we
design and implement. We present i) LO-FAT, the first hardware-based control-flow
attestation scheme to mitigate runtime control-flow attacks [4], ii) ATRIUM, the first
runtime attestation scheme to capture executed instructions/binaries and control-flow
behavior simultaneously to mitigate runtime control-flow as well as Time of Check Time
of Use attacks [5], iii) CHASE, a flexible runtime attestation scheme suitable for real-time
constrained devices [6] and iv) HardScope, a runtime context-specific memory isolation
scheme to efficiently mitigate currently-known runtime data-oriented attacks [7]. This
pivot is based on the following publications:

[4] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi,
Patrick Koeberl, N. Asokan, Ahmad-Reza Sadeghi. “LO-FAT: Low-Overhead Con-
trol Flow ATtestation in Hardware”. In Proceedings of the 54th ACM/IEEE Design
Automation Conference (DAC’17), 2017.

[5] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad Ibrahim,
Yier Jin, Ahmad-Reza Sadeghi. “ATRIUM: Runtime Attestation Resilient Under
Memory Attacks”. In Proceedings of the 36th ACM/IEEE International Conference
on Computer Aided Design ICCAD’17), 2017.

[6] Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, Ahmad-Reza
Sadeghi. “CHASE: Configurable Hardware-Assisted Security Extension for Real-

Time Systems”. In Proceedings of the 38th ACM/IEEE International Conference on
Computer Aided Design (ICCAD’19), 2019.

[7] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew
Paverd, N. Asokan, Ahmad-Reza Sadeghi. “HardScope: Hardening Embedded
Systems Against Data-Oriented Attacks”. In Proceedings of the 56th ACM/IEEE
Design Automation Conference (DAC’19), 2019.

Trusted Configuration. Due to their flexibility and high performance-to-power ratio,
Field Programmable Gate Arrays (FPGAs) have found their way into data centers. Major
Cloud Service Providers (CSPs) offer their clients FPGA-accelerated compute instances
and allow them to freely configure the FPGAs. However, this deployment model engenders
a new type of physical attacks that can be launched remotely by clients using only malicious
FPGA configurations. In this part of the thesis, we systematize the research work on
cloud FPGAs and spot the light on fundamental security concerns and challenges [8].
Among them, the mutual trust problem of FPGA configuration: clients aim to protect
their proprietary designs by encrypting FPGA configurations, while CSPs do not support
the use of encrypted configurations and require access to FPGA configurations to inspect
for malicious primitives, e.g. voltage sensors. To tackle this open challenge, we present a
security protocol between the involved parties and its underlying hardware-based trust
anchor that we design and implement for trusted configuration on cloud FPGAs [9]. This
pivot is based on the following publications:
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[8] Ghada Dessouky, Ahmad-Reza Sadeghi, Shaza Zeitouni. “SoK: Secure FPGA Multi-
Tenancy in the Cloud: Challenges and Opportunities”. In Proceedings of the 6th
IEEE European Symposium on Security and Privacy (EuroS&P’21), 2021.

[9] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza Sadeghi,
Nele Mentens. “Trusted Configuration in Cloud FPGAs”. In Proceedings of the
29th IEEE International Symposium On Field-Programmable Custom Computing
Machines (FCCM'21), 2021.



ZUSAMMENFASSUNG

Hardwareunterstiitzte Sicherheit zielt darauf ab, IT Systeme vor softwarebasierten An-
griffen zu schiitzen, die die verschiedenen Softwareschichten betreffen konnen. Dies wird
erreicht, indem Hardwarekomponenten oder -module genutzt werden, um strenge Sicher-
heitsmafinahmen durchzusetzen und somit starkere Sicherheitsgarantien im Vergleich zu
reinen Softwarelosungen zu bieten. Die vertrauenswiirdigen Hardwarekomponenten bilden
zusammen den sogenannten Vertrauensanker, der verschiedene Primitive umfasst, um ver-
schiedene Sicherheitsprotokolle und -dienste wie Authentifizierung, Plattformintegritat,
Laufzeitschutz, vertrauenswiirdige Ausfiihrung und vertrauenswiirdige Konfiguration
zu unterstiitzen, um einige Aufgaben zu nennen.

Diese Dissertation besteht aus zwei Teilen: i) einem offensiven Teil, in dem wir unsere
Ergebnisse basierend auf Angriffen auf Hardware-Sicherheitsprimitive prasentieren,
die in Vertrauensankern fiir die Plattformauthentifizierung und die Generierung
kryptographischer Schliissel eingesetzt werden konnen, und ii) einen defensiven
Teil, in dem wir unsere neuartigen hardwaregestiitzten Verteidigungen/Architek-
turen fiir Plattformintegritit zur Laufzeit und vertrauenswiirdige Konfiguration
prasentieren, die auf Vertrauensankern unseres Designs basieren. Die Beitrage sind
in drei Gruppen geteilt, basierend auf der Sicherheitsdienstleistung des Vertrauensankers.

Plattformauthentifizierung. Physically Unclonable Functions (PUFs) sind Hardware-
Sicherheitsprimitive, die die intrinsischen/angeborenen Eigenschaften von Hardware
aufgrund ihres Herstellungsprozesses fiir die Generierung von geritespezifischen Identi-
fikatoren oder kryptographische Schliisseln nutzen. Daher wurden PUFs als vielver-
sprechende kostengiinstige Grundelemente/Komponenten in Vertrauensankern fiir
eingeschriankte eingebettete Gerdte angesehen. In dieser Dissertation evaluieren Wir
die Sicherheit mehrerer PUF-Primitiven. Wir demonstrieren einen nichtinvasiven Fehler-
injektionsangriff auf SRAM-PUFs, der durch Steuern der Spannungsversorgung der
angegriffenen PUF zur Wiederherstellung der geheimen PUF-Antwort durchgefiihrt wird
[1]. Dann prasentieren wir Software-basierte Remote-Angriffe auf die Rowhammer PUFs
und Memristor-basierte PUFs, die keinen physischen Zugriff auf die angegriffene PUF
erfordern [2, 3]. Diese Gruppe basiert auf den folgenden Publikationen:

[1] Shaza Zeitouni, Yossef Oren, Christian Wachsmann, Patrick Koeberl, Ahmad-Reza
Sadeghi. “Remanence Decay Side-Channel: The PUF Case”. In IEEE Transactions
on Information Forensics and Security (TIFS), Vol. 11, 2015.

[2] Shaza Zeitouni, David Gens, Ahmad-Reza Sadeghi. “It's Hammer Time: How to
Attack (Rowhammer-based) DRAM-PUFs”. In Proceedings of the 55th ACM/IEEE
Design Automation Conference (DAC’18), 2018.
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[3] Shaza Zeitouni, Emmanuel Stapf, Hossein Fereidooni, Ahmad-Reza Sadeghi. “On
the Security of Strong Memristor-based Physically Unclonable Functions”. In Pro-
ceedings of the 57th ACM/IEEE Design Automation Conference (DAC’20), 2020.

Plattformintegritit zur Laufzeit. Laufzeitangriffe zielen darauf ab, die Ausfiihrung
von Software zur Laufzeit umzuleiten, ohne ihre Integritit im Ruhezustand zu verlet-
zen. Die Attestierung ist ein etablierter Ansatz, um die Vertrauenswiirdigkeit/Integritat
von Softwarekomponenten zu iiberpriifen und Malware-Angriffe zu erkennen, kann
jedoch in seiner statischen Grundform Laufzeitangriffe nicht erkennen. Wir prasentieren
Laufzeitverteidigungen fiir eingebettete Systeme unter verschiedenen Bereitstellungs- und
Gegnermodellen und ihren zugrunde liegenden hardwarebasierten Vertrauensankern,
die wir entwerfen und implementieren. Wir prasentieren i) LO-FAT, das erste hard-
warebasierte Kontrollfluss-Attestierung zur Abschwachung von Laufzeit-Kontrollfluss-
Angriffen [4], ii) ATRIUM, das erste Laufzeit-Attestierung, das sowohl ausgefiihrte
Befehle als auch Kontrollflussverhalten meldet, um sowohl Kontrollfluss- als auch Time-
of-Check-Time-of-Use-Angriffe zu mindern [5], iii) CHASE vor, ein Laufzeit-Attestierung,
das fiir echtzeitbeschrankte Geridte geeignet ist [6] und iv) HardScope, ein laufzeitkon-
textspezifisches Speicherisolationsschema, um derzeit bekannte laufzeitdatenorientierte
Angriffe effizient abzuwehren [7]. Diese Gruppe basiert auf den folgenden Publikationen:

[4] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi,
Patrick Koeberl, N. Asokan, Ahmad-Reza Sadeghi. “LO-FAT: Low-Overhead Con-
trol Flow ATtestation in Hardware”. In Proceedings of the 54th ACM/IEEE Design
Automation Conference (DAC’17), 2017.

[5] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad Ibrahim,
Yier Jin, Ahmad-Reza Sadeghi. “ATRIUM: Runtime Attestation Resilient Under
Memory Attacks”. In Proceedings of the 36th ACM/IEEE International Conference
on Computer Aided Design (ICCAD’1y), 2017.

[6] Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, Ahmad-Reza
Sadeghi. “CHASE: Configurable Hardware-Assisted Security Extension for Real-
Time Systems”. In Proceedings of the 38th ACM/IEEE International Conference on
Computer Aided Design ICCAD’19), 2019.

[7] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew
Paverd, N. Asokan, Ahmad-Reza Sadeghi. “HardScope: Hardening Embedded
Systems Against Data-Oriented Attacks”. In Proceedings of the 56th ACM/IEEE
Design Automation Conference (DAC’19), 2019.

Vertrauenswiirdige FPGA Konfiguration. Aufgrund ihrer Flexibilitidt und ihres Leis-
tungsverhiltnis haben Field Programmable Gate Arrays (FPGAs), die rekonfigurierbare
Gerite sind, ihren Weg in Rechenzentren gefunden. Cloud-Dienstanbieter bieten ihren
Kunden FPGA-beschleunigte Compute-Instanzen und erlauben ihnen, die FPGAs frei
zu konfigurieren. Dieses Bereitstellungsmodell erzeugt jedoch eine neue Art physis-
cher Angriffe, die von Kunden aus der Ferne gestartet werden konnen, indem sie nur
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boswillige FPGA-Konfigurationen verwenden. In dieser Dissertation systematisieren wir
die Forschungsarbeiten zu Cloud-FPGAs und beleuchten grundlegende Sicherheitsbe-
denken und -herausforderungen [8]. Darunter das Problem des gegenseitigen Vertrauens
bei der FPGA-Konfiguration: Kunden zielen darauf ab, ihre proprietiaren Designs durch
Verschliisselung von FPGA-Konfigurationen zu schiitzen, wahrend Cloud-Dienstanbieter
die Verwendung verschliisselter Konfigurationen nicht unterstiitzen und Zugriff auf
FPGA-Konfigurationen bendtigen, um sie auf boswillige Primitiven zu untersuchen, z.B.
Spannungssensoren. Um diese offene Herausforderung anzugehen, prasentieren wir ein
Sicherheitsprotokoll zwischen den beteiligten Parteien und dem zugrunde liegenden
hardwarebasierten Vertrauensanker, den wir fiir eine vertrauenswiirdige Konfiguration
auf Cloud FPGAs entwerfen und implementieren [9]. Diese Gruppe basiert auf den
folgenden Publikationen:

[8] Ghada Dessouky, Ahmad-Reza Sadeghi, Shaza Zeitouni. “SoK: Secure FPGA Multi-
Tenancy in the Cloud: Challenges and Opportunities”. In Proceedings of the 6th
IEEE European Symposium on Security and Privacy (EuroS&P’21), 2021.

[9] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza Sadeghi,
Nele Mentens. “Trusted Configuration in Cloud FPGAs”. In Proceedings of the
29th IEEE International Symposium On Field-Programmable Custom Computing
Machines (FCCM’21), 2021.
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INTRODUCTION

In a world of ubiquitous and inter-connected computing systems, establishing and
retaining trust are challenging tasks, particularly in the light of the increasing attacks such
as malware attacks [10, 11, 12, 13], runtime attacks [14, 15, 16, 17, 18] and software-based
microarchitectural attacks [19, 20, 21]. Existing software-only defenses have been proven
insufficient, since they can be bypassed by more sophisticated attacks, thereby giving
rise to hardware-assisted security solutions. Consequently, there has been a paradigm
shift towards hardware-assisted defenses and security architectures propelled by the
necessity of stronger security guarantees and less performance overhead. During the last
two decades, we have witnessed great advances in this direction with the advent and
the deployment of various hardware-based security solutions into real-world products,
such as Trusted Platform Module (TPM) [22], Physically Unclonable Function (PUF) [23],
ARM TrustZone [24], Intel Software Guard Extension (SGX) [25] and Intel Control-Flow
Enforcement Technology (CET) [26].

In general, hardware-assisted security solutions imply the existence of an immutable
root of trust, or simply a trust anchor, in the hardware of a computing system in order
to support cryptographic protocols, e.g. authentication, and other security services, e.g.
platform integrity, runtime protection [27, 28, 29, 30, 31], trusted or isolated execution
[25, 24, 32, 33, 34, 35, 36], trusted configuration [37, 38] and secure storage.

In the following we discuss trust anchor’s components in Section 1.1 and highlight the
security services that are addressed in this thesis in Section 1.2. Then, we present our
main contributions in Section 1.3 and further contributions that are not included in this
thesis in Section 1.4. Finally, we outline the upcoming chapters in Section 1.5.

1.1 TRUST ANCHOR DESIGN SPACE

Trust Anchor Components. A trust anchor may comprise a variety of hardware primitives
and building blocks, e.g. a cryptographic co-processor, cryptographic engines/acceler-
ators, a random number generator, a key generation scheme, secure persistent storage
and/or an access control enforcement logic, depending on the supported security services.
Note that for cryptographic key storage in a trust anchor, two approaches are feasible:
i) a secure non-volatile memory® that stores the cryptographic key permanently or ii) a
PUF-based key generation scheme that (re)generates the cryptographic key on-demand.
PUFs leverage unique hardware characteristics that ensue from the uncontrollable
variation during Integrated Circuits (ICs) manufacturing process to generate device-
specific identifiers or cryptographic keys. They can be built with dedicated hardware
components, e.g. the Arbiter PUFs [39, 40, 41], or by leveraging existing hardware

1 Non-volatile memory does not lose its content when powered off.



INTRODUCTION

components found in any computing system, such as the Static Random Access Memory
(SRAM) and the Dynamic Random Access Memory (DRAM), e.g. SRAM PUFs [42, 43] and
DRAM PUFs [44, 45, 46]. Owning to their envisioned properties, i.e. uniqueness, reliability,
unpredictability, and tamper-evidence, PUFs have been perceived as a promising cost-
effective replacement of secure non-volatile memory and further deployed in various
security protocols such as authentication. We present an overview on the state-of-the-art
on PUFs in Chapter 2.

In this thesis, we evaluate the security of several PUFs designs, as security primitives
deployed in trust anchors, for cryptographic key generation and authentication.

Trust Anchors in Computing Systems. Figure 1 shows the typical components that can be
found in embedded, Internet of Things (IoT) or edge, devices or in cloud machines. Note
that some software stack components can be omitted/added based on the deployment
model and requirements. In such environments an adversary that can compromise the
entire software stack,” i.e. firmware, hypervisor, operating system and applications, is a
reasonable assumption [24, 25]. Therefore, to protect computing systems from software-
based attacks, a trust anchor is a prerequisite to achieve certain security guarantees in
the system.

App1 App 2 Appn
Operating System Operating System
Hypervisor
Firmware
Hardware

Sytem on Chip

Processor
On-chip Trust
Anchor .
\HPerlpheral ‘Peripheral

Figure 1: Trust Anchors (TAs) in a Computing System.

Off-chip Trust
Anchor

‘ Peripheral

In Figure 1 we show the different possible positions of trust anchors in the platform.
A trust anchor can be i) a stand-alone chip, e.g. a discrete TPM [22], ii) integrated with
the processor in a System-on-Chip (SoC) or iii) integrated with the memory or peripheral
devices, which vary from simple input/output, storage and communication devices to
specialized compute units, e.g. a Graphic Processing Unit (GPU) or a Field Programmable
Gate Array (FPGA). Thus, the design of the trust anchor would be dependent on the

2 Except for a small piece of software that is assumed in some security architectures to be trusted and protected
by the trust anchor.



1.2 SECURITY SERVICES

security requirements. For example, a trust anchor can be needed to simply provide
secure storage or secure communication. In more complex peripherals such as the FPGA,
which is a software-configurable hardware device, an on-chip trust anchor would be
needed to ensure benign FPGA configuration. Next, we briefly describe some of the
security services that can be supported by a trust anchor.

1.2 SECURITY SERVICES

In this section we highlight the security services that we focus on in this thesis and show
them in Figure 2, where security services supported by our novel trust anchors are shown
in gray.

\
\

Runtime Protection ! Trusted \
Configuration

Platform Integrity

Secure Boot } Memory Safety

Configuration

Attestation }

’
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

( Enforcement

[ FPGA Trusted }

[ Randomization

Detection (Runtime Attestation)

Figure 2: Security Services supported in this Dissertation.

Platform Integrity. Secure boot and attestation are two prominent and complementary
approaches that are widely adopted to protect the integrity of a platform and mitigate
malware attacks. Secure boot ensures that only trustworthy software components are
loaded and executed when the system is booted. This is achieved gradually by verifying
the authenticity/integrity of each component in the boot sequence before its execution.
Thus, secure boot aims to prevent malware from being loaded and executed and provides
assurance about the initial state of a platform after power up. On the other hand, attesta-
tion allows a trusted entity, the verifier, to examine the status of a platform by verifying
the authenticity and integrity of its memory content. Attestation requests can be sent
at any point in time defined by the verifier. Thus, attestation enables the detection of
malware presence on the platform. Both, secure boot and attestation, require the presence
of a trust anchor to verify or compute the proof of authenticity /integrity [22, 47]. While
both methods contribute to the protection of software integrity, they give no guarantees
on software execution integrity, i.e. no guarantees that software is executed correctly at
runtime.

Runtime Protection. Runtime attacks leverage vulnerabilities in a software code, e.g.
buffer overflows, during its execution. An attacker exploits a bug in the victim code
in order to gain control over its execution and trigger malicious actions that are not
intended by the software developer. These stealthy attacks aim at diverting the execution
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of a software code at runtime only without violating its integrity at rest. Runtime
attacks can be roughly categorized into control-flow attacks [14, 15, 16] and data-oriented
attacks [17, 18]. To mitigate runtime attacks, different concepts have been thoroughly
investigated at different stages of a runtime exploit. Memory safety solutions for type-
unsafe programming languages aim at preventing memory corruption and thus thwarting
the first stage of a runtime exploit. Complementary defenses, whether randomization-
based [27, 48] or enforcement-based [49, 50, 30, 51], hamper the second stage of a runtime
exploit by impeding the execution of malicious actions, e.g. control-flow hijacking.
Nevertheless, the persistent nature of runtime attacks has led to a continuous arms race
between defenses and more sophisticated attacks. We present a brief overview on the
current state of runtime attacks and defenses in Chapter 3.

In this thesis, we further follow along a recent line of research that rather aims at the
detection of runtime attacks [52] such that execution details are reported to a trusted
entity through remote attestation to verify the execution integrity.

Trusted Configuration. Reconfigurable computing devices such as FPGAs are ICs that can
be electrically programmed by end users using binary files. The flexible nature of FPGAs
and their toolchains allow users to implement various digital circuits on the FPGA fabric
including tiny voltage and temperature sensors [53, 54]. FPGAs can operate as stand-alone
computing systems or be integrated as hardware accelerators in more complex systems.
When deployed in untrusted environments, the confidentiality and integrity of FPGA
configuration can be protected with the help of a trust anchor [37, 38] provided by
FPGA vendors and hard-coded on the FPGAs. Nevertheless, the user, i.e. the owner of
the FPGA, is responsible for enabling the protection of designs on the FPGA. That is, the
user must provision the keys on the FPGA’s trust anchor securely before it is deployed
in-field. Recently, commodity FPGAs have been deployed in datacenters in a temporal
multi-tenant sharing model [55, 56], where clients can rent FPGA-accelerated compute
instances for some time and freely configure the FPGA with own (malicious) functionalities,
which can have serious impact on the cloud infrastructure [57, 58]. On the other hand,
design protection on cloud FPGAs is not supported and clients are forced to divulge their
proprietary designs to the Cloud Service Provider (CSP), which may violate Intellectual
Property (IP) policies for companies. We present a short summary on the recent trend of
FPGA-based cloud computing in Chapter 4.

In this thesis, we evaluate the security ramifications of deploying commodity FPGAs in
the cloud and tackle their mutual trust challenge.

1.3 MAIN CONTRIBUTIONS

Goal and Scope of this Dissertation. The main scope of this dissertation is the design
of trust anchors for hardware-assisted security architectures. First, we address one of
the basic primitives/components of a trust anchor, the PUFs. In particular, we revisit
the security of existing PUF designs and their pitfalls under the assumed deployment
and adversary models. Then, we present novel hardware-assisted schemes for platform
integrity at runtime and trusted configuration and demonstrate how the underlying
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trust anchors that we design and implement achieve the required security guarantees.
Specifically, we advance state-of-the-art in runtime protection with novel hardware-based
runtime enforcement and attestation schemes for embedded systems under different
deployment and adversary models. We further explore security challenges and opportu-
nities of the recent trend of cloud FPGAs and advance state-of-the-art with a scheme to
establish trust on cloud FPGAs. The main contributions of this dissertation are presented
in the upcoming Chapters 2, 3 and 4 as follow:

Security Evaluation of Physically Unclonable Functions. We focus in this part of the
thesis on two essential characteristics of PUFs, reliability and unpredictability, and demon-
strate attacks on different PUFs, namely, the SRAM PUF, the Rowhammer PUF and a set of
hybrid memristor-based PUFs.3 The attack on the SRAM PUF is a noninvasive fault injection
attack that requires a precise control of the voltage supply to the device embedding the
PUF for secret response recovery [1] (Appendix A). On the other hand, the attack on the
Rowhammer PUF is a remote software-based fault injection that causes the generation of
faulty PUF responses and thus faulty keys [2] (Appendix B). Finally, we present modeling
attacks on the Rowhammer PUF [2] (Appendix B) and a set of memristor-based PUFs [3]
(Appendix C) with the goal to build software models of the PUFs under attack that can
predict the PUF behavior with high probability. Our findings are discussed in Chapter 2.

Hardware-assisted Runtime Protection. We present novel hardware-based runtime at-
testation and enforcement schemes that are based on trust anchors that we design and
implement. Our runtime attestation schemes leverage hardware components to capture
and process the runtime behavior of the attested program and are opted for different
deployment scenarios and adversary models. We consider attackers with physical access
to the prover device as well as remote software-only attacks. Specifically, we present
i) LO-FAT, the first hardware-based runtime scheme to mitigate runtime control-flow
attacks [4] (Appendix D), ii) ATRIUM, the first runtime attestation scheme to capture
the executed instructions and control-flow behavior simultaneously to mitigate runtime
control-flow as well as Time of Check Time of Use (TOCTOU) attacks [5] (Appendix E), iii)
CHASE, a flexible runtime attestation scheme suitable for real-time constrained devices
[6] (Appendix F) and iv) HardScope, a runtime enforcement scheme for memory isola-
tion to efficiently mitigate currently-known runtime data-oriented attacks [7] (Appendix
G). Our hardware-based runtime attestation and enforcement schemes and their trust
anchors are presented in Chapter 3.

Hardware-assisted Trusted Configuration. We explore the security challenges and op-
portunities of deploying commodity FPGAs in cloud and datacenters and provide a
comprehensive anatomy of the emerging threats, including state-of-the-art remote physi-
cal attacks that leverage the configurable nature of FPGAs, and potential defenses. We also
discuss lessons learned from CPU-based trusted computing and draw potential analogies
to FPGA-based trusted computing [8] (Appendix H). We further identify the mutual trust
challenge between clients and CSPs: clients require to protect their proprietary designs,

3 A memristor is an emerging nano-technology circuit element.
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while CSPs do not support the use of encrypted FPGA configurations. In fact, CSPs require
access to FPGA configurations to inspect for malicious primitives prior to configuration.
To tackle this problem, we present a security protocol to establish mutual trust between
CSPs and clients that is based on a hardware-based trust anchor that we design and
implement for cloud FPGAs [9] (Appendix I). Thus, paving the way to isolated /trusted
execution on cloud FPGAs. Our work is presented in Chapter 4.

1.4 FURTHER CONTRIBUTIONS

Other contributions that are not included in this dissertation:

Secure Multi-Party Computation (SMPC). SMPC allows multiple parties to evaluate a func-
tion on private inputs revealing only the result of the computation. The two prominent
protocols for SMPC, Yao’s Garbled Circuits (GC) and the protocol of Goldreich-Micali-
Wigderson (GMW), require the function to be evaluated in the form of a Boolean circuit.
While building functionally-correct circuits for simple functions can be done manually
by experts, this task is time-consuming and error-prone for larger functions. In this
direction, hardware synthesis is a well-established line of research and is therefore an
intuitive choice for Boolean circuits generation. Hardware synthesis tools have been
tirst used for the purpose of generating Boolean circuits for Yao’s GC in [59]. We con-
tributed further to the research of enabling highly practical and efficient SMPC protocols
in [60, 61, 62, 63]. Hardware synthesis tools primarily target hardware platforms, such
as Application-Specific Integrated Circuits (ASICs) or FPGAs. Therefore, we need to cus-
tomize these tools to generate Boolean circuits for specific SMPC protocols. This approach
promises accelerated and scalable circuit generation, while maintaining the efficiency of
hand-optimized circuits. I focused in [60, 61, 62, 63] on the design and implementation of
various hardware primitives/functions including basic arithmetic operations, functions
based on floating-point operations and customized MIPS-based cores. Further, I worked
on the customization of hardware synthesis tools (commercial and academic) for the
generation of the final Boolean circuits.

Practical Long-term Secure Distributed Storage Systems. Secret sharing-based dis-
tributed storage is one approach to provide long-term protection against quantum
adversary. However, it is considered an impractical solution, since it requires establishing
an information-theoretically secure channel between any two storage nodes. Not to men-
tion the need for long-term confidential commitment schemes that are computationally
impractical for large files. To mitigate the aforementioned limitations, we worked in [64]
on a secret sharing-based secure distributed storage system that leverages Trusted Execu-
tion Environment (TEE) for shares generation and renewal. In this work, I contributed
with the co-authors to the discussions of the core idea and the design of SAFE’s protocols:
Share, Renew and Reconstruct.

Non-interactive Attestation. Existing attestation schemes are vulnerable to Denial of
Service (DoS) attacks through fake attestation requests sent by malicious entities. In [65],
we proposed the first non-interactive attestation protocol that successfully mitigates DoS
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attacks. Designing such a protocol is non trivial, since it relies on an untrusted prover to
initiate the attestation process. The resulting protocol is particularly suitable for low-end
constrained embedded devices, since it is highly efficient in terms of power consumption
and communication. I contributed in this work to the core idea of mitigating DoS attacks
against remote attestation and the design of the trust anchor that triggers and computes
the attestation reports.

1.5 THESIS OUTLINE

The main contributions of this dissertation are presented next. In Chapter 2 we present
and discuss our results on the security evaluation of various PUF designs. Then, we
present our trust anchors for runtime protection in Chapter 3 and for trusted configurable
cloud computing in Chapter 4. Finally, in Chapter 5 we conclude the dissertation and
refer to future research directions on PUFs and the design of trust anchors for runtime
attestation and trusted configurable computing.
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My Contributions. This chapter is based on the results of three papers published in the
IEEE Transactions on Information Forensics and Security (TIFS) journal and the Design
Automation Conference (DAC):

[1]

[2]

(3]

Shaza Zeitouni, Yossef Oren, Christian Wachsmann, Patrick Koeberl, Ahmad-Reza
Sadeghi. “Remanence Decay Side-Channel: The PUF Case”. In IEEE Transactions
on Information Forensics and Security (TIFS), Vol. 11, 2015.

This publication is an extension of a previous work conducted by Yossef Oren and
Christian Wachsmann [66]. I conducted the new experiments of the voltage drop
attack, worked on the results analysis and led the submission and publication of
the manuscript.

Shaza Zeitouni, David Gens, Ahmad-Reza Sadeghi. “It's Hammer Time: How to
Attack (Rowhammer-based) DRAM-PUFs”. In Proceedings of the 55th ACM/IEEE
Design Automation Conference (DAC’18), 2018.

I am the lead author of this work. I contributed with the co-authors to the idea
of the denial of service attack on the Rowhammer PUF and co-supervised the
HiWi student Mohamed Saad, who implemented part of the attacks. Further, I
contributed to the modeling attack idea of the Rowhammer PUF and conducted
the experiments and results analysis.

Shaza Zeitouni, Emmanuel Stapf, Hossein Fereidooni, Ahmad-Reza Sadeghi. “On
the Security of Strong Memristor-based Physically Unclonable Functions”. In Pro-
ceedings of the 57th ACM/IEEE Design Automation Conference (DAC’20), 2020.

I contributed with Emmanuel Stapf to the discussion of the main idea of this work.
I led the work and worked on the selection of the PUF circuits evaluated in this
work as well as their implementation and fine-tuning. All co-authors contributed
to the selection of the machine learning algorithms used in this work. Emmanuel
Stapf and Hossein Fereidooni contributed to the implementation and evaluation of
the machine learning algorithms.

Chapter Outline. In the following, we introduce silicon PUFs, their properties, classes
and designs in Section 2.1. Then, we provide an overview of state-of-the-art attacks
including our contributions in Section 2.2. Finally, we present hybrid PUFs that leverage
emerging technologies and our attacks on hybrid PUFs in Section 2.3.
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2.1 PUFs DESIGN SPACE

PUFs are noisy functions that are stimulated with an input, a challenge, to produce an
output, a response, that strongly depends on both the challenge and the innate physical
properties of the device embedding the PUF. Silicon PUFs leverage the inevitable effect
of process variation during the manufacturing of Integrated Circuits (ICs) as a source of
entropy to derive a reproducible device-specific behavior. Given the nominal specifications
for IC components, i.e. transistors and interconnect, process variation is the deviation
of the resulting parameter values during IC manufacturing from the given nominal
values [67]. In this section we briefly present envisioned PUFs properties, classes and
deployment models.

Properties of PUFs. Researchers have investigated PUF properties that should be satis-
fied for the deployment in cryptographic protocols [68, 69, 70, 71]. These properties
are uniqueness, reliability, unpredictability, and tamper-evidence among many others.
Uniqueness implies that responses resulting from evaluating the same challenge on
different PUF instances of the same family should be different, while reliability indicates
the consistency of PUF responses to the same challenge that are generated under varying
operating conditions, i.e. ambient temperature and supply voltage. On the other hand, un-
predictability indicates that even after observing a polynomial set of Challenge-Response
Pairs (CRPs) of a PUF instance, responses of new challenges remain sufficiently random.
Owning to their properties and their cost-effectiveness, PUFs have been envisaged as a
root of trust in ICs for the generation of fingerprints and secret keys and are further
deployed in various cryptographic protocols, e.g. authentication and attestation protocols.
In our attacks, we focus on two security properties of PUFs, reliability and unpredictability.

Challenge-Response Space & PUF Deployment. Depending on their input-output space,
PUFs have been categorized into strong PUFs and weak PUFs [72, 73].

A strong PUF has an exponential number of CRPs, with respect to the number of its
components, such that within a bounded amount of time, it is not feasible to measure all
the CRPs. As defined by Rithrmair et al. [72] a PUF is labeled ”strong” if it also satisfies
the unpredictability property. Therefore, no protection mechanisms are applied to their
CRPs [72]. Strong PUFs are mainly designated for authentication protocols. The simplest,
i.e. light-weight, PUF-based authentication protocol is a challenge-response protocol,
where unprocessed CRPs of a PUF are sent in plain-text between the verifier and the prover.
In [74, 75, 76] a survey and security analysis of PUF-based authentication protocols is
presented.

A weak PUF, on the other hand, can only produce a limited number of responses,
linear in the number of its components, and therefore are mainly deployed for secret
key generation. However, since PUFs are noisy functions and their responses might not
be sufficiently random, further post-processing steps are needed to generate secret keys
[77, 78, 79, 80] for deployment in cryptographic protocols [81, 82]. Nevertheless, the use
of weak PUFs in light-weight authentication protocols under certain constraints has been
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proposed [83, 84, 46].

PUF’s Underlying Components. Based on the PUF’ underlying components and architec-
ture, two major groups of silicon PUFs can be identified: memory-based PUFs and delay-based
PUFs.

Memory-based PUFs leverage the process variation in memory technologies that
leads to random strength mismatch of transistors within memory cells, such as SRAM
PUFs [85, 42, 86, 87] and DRAM PUFs [44, 45, 46]. In general, memory-based PUFs, can only
produce a limited number of responses, linear in the number of the utilized memory
cells. Therefore, they are classified as weak PUFs.

Delay-based PUFs [88] leverage delay differences between two identical signal propaga-
tion paths in a circuit. The delay differences are caused by wire and transistor mismatch
in the two paths. The two prominent delay-based PUFs are Ring-Oscillator PUFs (RO PUFs)
[89] and Arbiter PUFs (APUFs) [88].

2.2 PUFs ARMS RACE (SELECTED)

Since their introduction, PUFs have been heavily under various attacks. The attacks range
from physical, which can be further categorized into (semi-) invasive and noninvasive
attacks, to software-based modeling attacks where no physical access to the PUF is needed.

2.2.1  Physical Attacks

Although PUFs have been considered to be tamper-evident, it has been shown that
PUFs are vulnerable to all kinds of physical attacks, including those that do not affect
the PUF’s functionality after the attack. Physical attacks target different PUF families
and are highly dependent on the PUF implementation and the process technology. These
attacks aim at extracting the device-specific parameter values to emulate the PUF behavior.

Noninvasive Attacks aim at extracting a PUF secret key or behavior through side-channel
measurements, i.e. electromagnetic emission [90, 91] and power consumption [92], or via
controlled fault injection [66, 1, 2]. Noninvasive attacks target either the post-processing
circuit [9o] or the PUF circuit, e.g. delay-based PUFs [91, 92] and memory-based PUFs
[66, 1, 2].

In this direction we present in [1] a noninvasive fault injection attack on SRAM PUFs
— SRAM PUFs leverage the start-up values of SRAM cells at power up before initializing
them to defined values [85, 42]. The SRAM memory used by the PUF is assumed to be
shared, after evaluating the PUF response and initializing the memory to predefined
values, with other (malicious) processes on the system, which is a common assumption
on constrained devices [93, 94, 95]. The attack requires a precise control of the voltage
supply to the device embedding the PUF in order to induce the remanence decay effect
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in the SRAM cells." The attack starts by writing a known pattern to SRAM memory, e.g.
all-ones or all-zeros. Next, the attacker reduces the supply voltage of the device for a
fixed period of time then restores the nominal operating voltage and captures the faulty
PUF behavior, e.g. by using the faulty PUF response to encrypt a known message. These
steps are repeated until the supply voltage is gradually reduced to zero. Thus, in each
experiment more SRAM cells will decay and revert into their start-up values until all
SRAM cells reach their start-up values in the final experiment. Then using differential
fault analysis [96] and the resulting cipher-texts from the different experiments, the SRAM
start-up value and consequently the original PUF response can be recovered. This work
extends on the work by Oren et al. in [66], which leverages the remanence decay effect of
SRAM memory by completely powering off the SRAM cells for increasing periods of time
until they all lose their contents and reach their start-up values. The details of our attack
are presented in Appendix A.

Noninvasive attacks typically require physical access or close proximity to the device
under attack to measure the side-channel leakage or control the operating conditions.
Nevertheless, we show that remote software-based fault injection attacks on PUFs are also
feasible. In this context, we demonstrate in [2] a remote DoS attack on the Rowhammer
PUF [45], which is a variant of the runtime-accessible decay-based DRAM PUFs. Rowham-
mer PUFs leverage the unique behavior of DRAM cells under two effects, the Rowhammer?
and the decay effects, in DRAM memories. Given that the Rowhammer PUF is assigned
a dedicated DRAM region that is only accessible by a trusted software for the purpose
of querying the PUF, our attack aims at modifying the PUF responses without accessing
the PUF region. This is achieved by hammering the borders of the PUF region at the
time of querying the PUF response, i.e. a malicious process repeatedly accesses the rows
above and below the PUF region, while the PUF response is evaluated. The attack is also
applicable to decay-based DRAM PUFs [46]. Our results show the non-negligible deviation
of the resulting PUF responses from the reference values. More details on the attack are
available in Appendix B.

Semi-Invasive Attacks on ICs containing PUF circuits have also been demonstrated to be
feasible. These attacks are conducted from the IC backside and require depackaging of
the chip and thinning of the silicon substrate, then further techniques can be applied
to extract PUF parameters. For example, using laser probing [97] and spatial photonic
emission analysis [98] to read the start-up state of SRAM memory, laser voltage probing
and imaging [99] to characterize a RO PUF, and temporal photonic emission analysis
[100, 101] to measure internal paths” delays of an APUF.

2.2.2  Software-based Modeling Attacks

Modeling attacks aim at deriving a numerical model of the PUF under attack using a set
of measured CRPs. If the derived model predicts the responses to unseen challenges with

SRAM cells do not lose their contents immediately when the voltage supply is off or reduced, however they
decay slowly over time.
Excessively accessing DRAM memory cells leads to bit flips in physically adjacent memory cells.
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high probability, the unpredictability of the PUF, and therefore its security, are broken.
Most of existing modeling attacks leverage Machine Learning (ML) algorithms to build a
PUF model [39, 102, 103, 104, 105, 106, 107, 108, 109, 110]. However, other methods that
leverage the inherent noisy PUF responses by measuring each CRP several times, e.g. the
differential measurements method and the least mean square method, have also been
shown to be successful in [111].

During the last two decades, several improved PUF designs [39, 40, 41, 112, 113], and
novel PUF designs [114, 115, 116, 117, 106] have been introduced as modeling-resilient
PUFs, but were later proven to be susceptible to modeling attacks [103, 104, 106, 108,
118]. Further, several mitigation methods to modeling attacks have been introduced: i)
obfuscation of PUF responses only or challenges and responses using hash functions [119]
or reverse fuzzy extractors [120], ii) randomization of challenges [121], iii) concealing
bits of the PUF response (Slender PUF) [122, 123] or challenge [124], iv) using finite state
machine [125], v) irreversible reconfiguration of PUF behavior (Reconfigurable PUF) [126]
and vi) erasing used CRPs (Erasable PUF) [127]. Nevertheless, most of these methods have
been shown to be ineffective in face of modeling attacks [105, 76].

Modeling attacks require a large number of CRPs for learning and validating a PUF
model. Therefore, they typically target strong PUFs with exponential CRPs. Weak PUFs,
on the other hand, have been thought to be out of modeling attacks reach due to their
limited CRP space. However, RO PUFs have been shown to be prone to modeling attacks
[102, 103].

In this context, we also tested the applicability of modeling attacks to another weak PUF,
the Rowhammer PUF. Decay-based DRAM PUFs have been proposed for the deployment
in light-weight authentication protocols under certain conditions regarding the decay
time. Our results indicate that the Rowhammer PUF is not secure for deployment in
authentication protocols where PUF responses are exchanged in plain-text even when the
decay time constraints are met. We present our modeling attack that leverage standard
interpolation algorithms in Appendix B.

Hybrid Modeling Attacks leverage physical aspects of PUF implementations in combina-
tion with modeling attacks to reduce their complexity in terms of the number of required
CRPs and learning time, in case ML algorithms are used. State-of-the-art hybrid attacks are
either passive, i.e. use side-channel information, such as power consumption and timing
information [128, 129] or active, i.e. induce faults in PUF circuits or responses through
laser beam [130] or by manipulating their nominal operating conditions [129, 131, 132] to
generate faulty responses.

2.3 HYBRID PUFs

This continuous arms race has driven the research community to investigate other sources
of entropy for PUF designs. In recent years and due to the prominent and continuous
progress in material science, novel nano-devices have been developed for beyond-silicon
applications. Examples of such emerging nano technologies are carbon nanotube field-
effect transistors [133], spintronic-logic devices [134], memristors [135] and many others.
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A memristor is a circuit element with a dynamic resistance behavior that depends on
the properties (direction and strength) of the voltage applied at ports of the memristor
[136]. When no voltage is applied, the memristor maintains its most recent resistance
state. Due to their compatibility with CMOS manufacturing technology, the deployment of
memristive devices into different digital circuits has been thoroughly investigated [137]
including memory technologies, i.e. Resistive Random Access Memory (RRAM) [137, 138],
and neuromorphic computing [139]. Memristors exhibit stochastic switching behavior, i.e.
a cycle-to-cycle variation when switching between low and high resistance states, that can
be leveraged in addition to cell-to-cell variation, i.e. variation during the manufacturing
process, as an inherent source of randomness to enable the construction of different
light-weight security primitives: random number generators [140, 141] and PUFs.

Modeling Hybrid Memristor-based PUFs. Compared to existing CMOS-only PUFs, hybrid
PUFs have promised higher reliability and unpredictability [142, 143, 144]. Recently,
several hybrid PUF designs have been proposed, including weak PUFs [145, 146, 142] and
strong PUFs [143, 147, 148, 144]. These hybrid PUF designs are mainly evaluated with
circuit simulators. While many new hybrid PUF designs have been proposed, verifying
their properties and security guarantees is highly challenging due to the lack of open
specifications. We reproduced a set of hybrid PUFs based on memristors [149, 150, 151] to
investigate their unpredictability property. In our attacks we use different ML algorithms:
logistic regression, ensemble classifiers and recurrent neural networks. Our results
indicate that the inspected PUFs and their XOR-based versions are still vulnerable to
modeling attacks that leverage advanced ML techniques. Therefore, it is obvious that
the construction of PUFs that are resilient to advanced modeling attacks is still an open
challenge. More details on the modeled hybrid PUFs and our attacks are available in
Appendix C.
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My Contributions. This chapter is based on the results of four papers published in the
Design Automation Conference (DAC) and the International Conference On Computer
Aided Design (ICCAD):

(4]

(5]

[6]

Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi,
Patrick Koeberl, N. Asokan, Ahmad-Reza Sadeghi. “LO-FAT: Low-Overhead Con-
trol Flow ATtestation in Hardware”. In Proceedings of the 54th ACM/IEEE Design
Automation Conference (DAC’17), 2017.

I contributed with Ghada Dessouky and Thomas Nyman to the design discussions
and security analysis that led to this publication. I focused on the implementation
of the modules that process and encode the execution metadata and the modules
that control the computation of the final attestation report. Ghada Dessouky led the
work and focused on the implementation modules that capture and track the exe-
cution from the processor pipeline. Andrew Paverd contributed to the discussions
on the security of the scheme and Patrick Koeberl contributed to the discussions on
the hardware architecture.

Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad Ibrahim,
Yier Jin, Ahmad-Reza Sadeghi. “ATRIUM: Runtime Attestation Resilient Under
Memory Attacks”. In Proceedings of the 36th ACM/IEEE International Conference
on Computer Aided Design ICCAD’17), 2017.

I contributed with Ghada Dessouky to the design discussions and implementation
that led to this publication. I led this work and focused on the implementation of
the proposed scheme, while Ghada Dessouky focused on the implementation that
interfaces and integrates the scheme with the processor pipeline. Orlando Arias
and Dean Sullivan contributed to the attacks on state-of-the-art attestation schemes
(SMART & C-FLAT). Ahmad Ibrahim contributed to the discussions on the security
guarantees of the scheme.

Ghada Dessouky, Shaza Zeitouni, Ahmad Ibrahim, Lucas Davi, Ahmad-Reza
Sadeghi. “CHASE: Configurable Hardware-Assisted Security Extension for Real-

Time Systems”. In Proceedings of the 38th ACM/IEEE International Conference on
Computer Aided Design (ICCAD’19), 2019.

I co-led the work with Ghada Dessouky and contributed to the discussions on
the design and implementation that resulted in this publication. I focused on en-
abling the attestation mechanism for securing timing-critical applications. Ghada
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Dessouky focused on enabling a consolidated security extension that is config-
ured to adapt to different security requirements and deployment settings. Ahmad
Ibrahim contributed to the discussions on the security guarantees and analysis of
the scheme.

[7] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew
Paverd, N. Asokan, Ahmad-Reza Sadeghi. “HardScope: Hardening Embedded
Systems Against Data-Oriented Attacks”. In Proceedings of the 56th ACM/IEEE
Design Automation Conference (DAC’19), 2019.

I contributed with Ghada Dessouky, Thomas Nyman and Aaro Lehikoinen to the
discussions on the design and implementation that led to this publication. Thomas
Nyman led the work and conceived the idea of the Run-time Scope Enforcement
(RSE) and the design of the RSE Instruction Set Extension. Aaro Lehikoinen adapted
the RSE Instruction Set Extension to RISC-V and implemented the support for the
new instruction in GCC. I focused on the design and implementation of the Hard-
Scope hardware extension and evaluated the overheads of the hardware extension.
Ghada Dessouky focused on the design and integration of the RISC-V Instruction
Set Extension and the RSE HardScope hardware extension in the processor. Kesara
Gamlath and Rangana De-Silva, under Thomas'’s supervision, ported the implemen-
tation on an FPGA and evaluated its performance. Thomas Nyman implemented
the platform software support for HardScope to the processor software stack and
evaluated its security.

I focused on the design of hardware trust anchors and leveraging them to establish
or enable the verification of platform runtime integrity by providing different security
services under different deployment and adversarial assumptions for embedded devices.
Co-author Ghada Dessouky focused on the capabilities driven from leveraging existing
processor (micro-)/architectural features, extensions and trusted hardware assumptions
to enable more efficient protection for software with stronger security guarantees than
software-based solutions.

Chapter Outline. In the following, we introduce runtime attacks and their different
classes in Section 3.1. Then, we provide an overview of state-of-the-art runtime defenses
including our work in Section 3.2. Finally, we present state-of-the-art runtime attestation
schemes including our hardware-based runtime attestation schemes in Section 3.3.
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3.1 RUNTIME ATTACKS

Runtime attacks aim at diverting the execution of software at runtime without violating
its integrity at rest. Runtime attacks, also known as memory corruption attacks, exploit
vulnerabilities in a software code, e.g. buffer overflows, to gain control over its execution
and perform malicious actions that are not originally intended. The different objectives
of such attacks include privilege escalation, disclosure of confidential information or
evasion of security countermeasures. Existing runtime attacks are mainly grouped into
control-flow attacks and data-oriented attacks.

Control-Flow Attacks leverage vulnerabilities in the code of a victim program to corrupt
control data, i.e. code pointers, such as function pointers and return addresses, that resides
in the program’s memory at runtime, and pervert program’s execution from its intended
control flow. These attacks are further classified into: i) code injection attacks [152] that
require the injection of the malicious code in the data segment within the program’s
memory and connecting the original code to the malicious code, which is achieved
by tampering with a code pointer through exploiting a program vulnerability, and ii)
code-reuse attacks that utilize pre-existing executable code that is already residing in the
memory rather than injecting new code. Examples of code-reuse attacks are return-into-
libc attacks [153, 14], which redirect the execution into security-critical library functions,
Return-Oriented Programming (ROP) [154] and Jump-Oriented Programming (JOP) [16].
ROP and JOP attacks enable the execution of arbitrary malicious code by stitching together
instruction sequences that already reside in the address space of the program such that
the execution is directed from one sequence to the next sequence using return and
indirect branch instructions, respectively.

Data-oriented Attacks, on the other hand, are stealthier runtime attacks that divert the
execution of a victim program by corrupting non-control data, e.g. data variables or data
pointers, however, without violating the program’s control flow [17]. Non-control data
attacks have been proven to contrive Turing-complete Data-Oriented Programming (DOP)
attacks [18]. Thus, they enable the attacker to execute arbitrary malicious operations by
corrupting non-control data only to stitch together sequences of instructions while still
abiding to the intended program’s control flow.

3.2 ARMS RACE (SELECTED)

Several concepts have been thoroughly investigated to mitigate runtime attacks at the dif-
ferent phases of a runtime exploit. Memory safety solutions for type-unsafe programming
languages work as a first line of defense and aim at preventing a memory corruption and
thus thwarting the first phase of a runtime exploit. Such defenses include the insertion of
stack or heap canaries [155, 156, 157, 158, 159] and the deployment of pointer bounds
checks [160, 161, 162, 163] or pointer integrity /authentication schemes [164, 165, 166].
Complementary defenses work at preventing the second phase of a runtime exploit, i.e.
mitigating the effect of exploiting a memory vulnerability, by impeding the execution of
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malicious actions, e.g. control-flow or data-flow hijacking. Complementary defenses can
be roughly categorized into i) randomization-based solutions [167] including the widely-
adopted Address Space Layout Randomization (ASLR) [27, 48], and ii) enforcement-based
solutions, such as shadow stack for return addresses [28], Control-Flow Integrity (CFI)
based on the program’s Control-Flow Graph (CFG) [50, 29], Data-Flow Integrity (DFI)
based on the program’s Data-Flow Graph (DFG) [30, 31] and data-flow isolation [51, 7].

Data-Flow Isolation. In general, data-flow isolation schemes enforce memory access
control policies to mitigate runtime attacks. HDFI [51] is an Instruction Set Architecture
(IsA) extension that is based on memory tagging of data for access control enforcement.
HDFI uses single-bit tag per memory location to distinguish between sensitive and non-
sensitive data and thus supports only two protection domains/contexts simultaneously.

In this direction, we present HardScope [7] a novel ISA extension to effectively block
current data-oriented attacks including DOP attacks [17, 18]. HardScope provides fine-
grained context-specific memory isolation by enforcing compile-time access control
policies, e.g. variable visibility rules, on every memory access, i.e. load and store, in-
struction at runtime. To instrument the program code, our instrumentation tool in the
compiler adds HardScope instructions at specific locations in the binary depending on
the required granularity and the number of execution contexts, i.e. protection domains.
The inserted HardScope instructions configure at runtime our HardScope hardware
components to define and terminate an execution context and to specify what memory
addresses are accessible by each execution context. Next, HardScope hardware enforces
memory accesses according to the configured rules or access control policies. HardScope
is designed and prototyped on top of the RISC-V ISA for embedded applications. More
details on HardScope are provided in Appendix G.

The widespread adoption of runtime defenses by major hardware and software vendors,
e.g. Intel CET [26], ARM Pointer Authentication (PA) [165], Date Execution Prevention
(DEP), Microsoft Microsoft Control Flow Guard (CFG) and ASLR in Linux, MacOS and
Windows systems, has driven the evolution of more sophisticated attacks against the
different protection schemes: i) ASLR [168, 169, 170, 171, 18], ii) stack canaries [171, 172],
iii) pointer integrity solutions [173] including attacks on ARM PA,* or iv) CFI [174, 175]
including attacks on Intel CET and Microsoft CFG.?

3.3 RUNTIME ATTESTATION

In addition to the aforementioned runtime defenses, researchers have recently proposed
detection-based solutions of runtime attacks through attestation. Attestation is one of the
key approaches for platform integrity that is widely adopted to verify the trustworthiness
of software components and detect malware attacks. Remote attestation is a challenge-
response protocol that enables the verifier to verify the trustworthiness of the prover

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

2 https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-

Assisted-Control-Flow-Integrity-Enforcement.pdf
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by comparing the prover’s response, attestation report, to a reference value. In its basic
form, static attestation, the attestation report is computed over a fresh challenge sent by
the verifier and the memory content of the prover using a cryptographic hash function
and a secret key shared with the verifier. This implies the presence of a trust anchor
on the prover in order to compute the attestation report. This trust anchor could be as
minimal as a secret key and a piece of immutable code that reads the memory content
and computes a proof of integrity [47, 176]. Nevertheless, static attestation provides no
information on software behavior at runtime.

To enable the detection of runtime attacks, the execution of a program is tracked,
measured in an attestation report and sent to the verifier. To verify the execution integrity
the measured execution is compared to a reference execution model. The two currently
known runtime attestation schemes are Control-Flow Attestation (CFA) and Data-Flow
Attestation (DFA).

Reference Model. For CFA a reference execution model is typically based on the pro-
gram’s CFG, where the nodes of the graph represent basic blocks and the edges represent
valid control-flow transfers/transitions. A basic block consists of a sequence of program
instructions that ends with one of the control-transfer instructions, such as jump, branch
or return instructions. Each edge in the graph is represented as a tuple (source, des-
tination) using for example the memory address of the control-transfer instruction as
the source and the memory address of the first instruction in targeted basic block as
the destination. The security achieved by comparing to a CFG-based reference execution
model is dependent on the constructed CFG [174, 175, 177]. Further, a reference execution
model may include data-dependent execution information, e.g. for a given input range
of the program what the expected execution paths, i.e. a series of control-flow transitions
within the CFG, or which values its loop counters might be. Such information can be
acquired by performing dynamic analysis of the code, e.g. symbolic execution. Similarly,
for DFA the reference execution model is based on the program’s DFG that defines how
variables are assigned or used. The verifier is assumed to able to generate the required
reference execution model and to have enough computing resources to perform the
verification.

3.3.1 Control-Flow Attestation (CEA)

We present next state-of-the-art CFA schemes and categorize them based on their underly-
ing trust anchors into TEE-assisted [52, 178], hardware-based [4, 5, 6], hybrid [179, 180]
and software-only CFA schemes [181, 182]. Then, we present CFA schemes that tackle the
Time of Check Time of Use (TOCTOU) problem and CFA schemes for real-time applications.

TEE-assisted CFA. The first seminal work on CFA was C-FLAT [52]. C-FLAT aims at
detecting control-flow and non-control data attacks in embedded systems that support
TEE, e.g. ARM TrustZone-M. In C-FLAT the program’s binary is instrumented to replace
each branch instruction with a trampoline that redirects the execution to a runtime
tracer, which identifies the source and destination of the original branch and passes
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them to a measurement engine. The measurement engine runs in the trusted execution
domain and is responsible for computing the hash values. C-FLAT induces a very high
performance overhead due to the frequent context switching to the trusted execution
domain to compute the hash measurements. Further, its security relies on the integrity of
the program binaries and the runtime tracer, therefore, static attestation is a priori.

Hardware-based CFA. To overcome the limitations of C-FLAT, we present LO-FAT [4]
that leverages hardware to trace, encode and measure detailed execution information.
Although LO-FAT components are tightly integrated within the processor’s pipeline, it
does not interfere with its execution. LO-FAT uses two signals, the program counter and
the executed instruction, from the processor pipeline to identify source-destination pair
of control-transfer transitions as well as loop’s entry and exit points. These are used to
efficiently and uniquely encode the different execution paths. The encoded execution
paths and other execution details such as loop iterations are used as metadata. LO-FAT
computes a single hash measurement for all executed paths using the source-destination
pairs. The computed hash value is then enclosed in an attestation report along with
the metadata. The hash value and the metadata are used by the verifier to recover the
execution traces and enable the detection of control-flow and non-control data attacks.
LO-FAT targets bare-metal embedded applications and requires neither modifications
to the program code nor additional software components. That is, it completely relies
on trusted hardware components to capture the control-flow behavior, however, LO-FAT
still relies on static attestation to ensure the integrity of the binaries prior to its execution.
More details on LO-FAT are provided in Appendix D.

Hybrid and Software-only CFA. Hybrid CFA schemes that target embedded systems
have been proposed. LAPE [179] targets bare-metal legacy firmware on IoT devices,
which is recompiled to generate two components, a trusted part, whose security is pro-
tected by a memory protection unit to periodically measure the control-flow transitions
of the untrusted part, i.e. untrusted firmware functionalities. TinyCFA [180] is a hybrid
CFA scheme for low-end embedded applications running on micro-controllers that ex-
tends on the VRASED architecture [176] for static attestation. On the other hand, ScaRR
[181] and ReCFA [182] are software-only CFA schemes that rely on the trustworthiness
of the kernel to perform the control-flow measurements of high-end user-space programs.

CFA Resilient to Time of Check Time of Use (TOCTOU). TOCTOU attacks is one major
concern for remote attestation schemes. TOCTOU attacks exploit the time gap between the
measurement time of a victim program and its execution to replace the victim binaries
with a malware or a malicious code. In [5], we demonstrate that attestation schemes that
follow the concept of attest-then-run are vulnerable to TOCTOU attacks. For example, a
TOCTOU attack can be performed by an attacker that has a physical access to the victim de-
vice’s off-chip memory only and can manipulate its contents. Note that CFA schemes can
also be vulnerable to TOCTOU attacks, when the injected malicious code’s CFG is reformed
to match the victim’s CFG [5]. To mitigate TOCTOU attacks, we propose the concept of
run-and-attest and build ATRIUM, the first runtime attestation scheme that captures both
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the control-flow behavior of the program as well as its executed binaries. This is achieved
by leveraging trusted hardware components to capture the executed instructions and
control-flow transitions, which are included in the hash measurements. To efficiently
handle program’ loops while keeping the hardware overhead low, ATRIUM generates
several hash measurements rather than a single hash measurement as in LO-FAT. The
beginning and end of each hash measurement are defined automatically based on loop
entry and exit points. Thus, each hash measurement represents a unique execution path
outside or within loops. The attestation report includes all hash measurements and
other data-dependent execution information to enable the detection of control-flow and
non-control data attacks. More details on ATRIUM are provided in Appendix E.

CFA for Real-Time Applications. To tackle the real-time constraints of some embedded
applications we propose CHASE [6], a hardware-based runtime attestation scheme that
operates in four modes. CHASE’s modular design allows it to be configured dynamically
at runtime to operate in one of the available modes depending on the current security
requirements and the tolerable performance overhead at the time of attestation. The
four modes of attestation, from the lowest performance to the highest performance
overhead, are: i) on-device CFA, ii) on-device CFI enforcement, iii) remote CFA, iv) remote
runtime attestation to detect TOCTOU attacks. On-device CFA mode guarantees low-latency
detection of illegal control-flow transfers while incurring minimal performance overhead,
thus making it suitable for real-time applications. Local verification is performed by the
trust anchor with the help of the integrity-protected program’s CFG that is uploaded
on the device. At runtime, CFG edges, i.e. source-destination pairs, are compared to the
source-destination of the currently executing control-flow transfer to verify it. CHASE is
presented in Appendix F.

DIAT [178] is a CFA scheme for collaborative autonomous systems with safety critical
applications. In DIAT the generation and the verification of CFA reports are carried on by
peer constrained embedded devices within TEEs such as ARM TrustZone-M. Therefore,
rather than measuring and verifying long execution paths, the measurement and the
verification processes in DIAT are restricted to measuring and verifying control-flow
transitions within the CFG regardless of their orders. This is achieved by leveraging
multiset hash functions [183]. Nevertheless, the induced performance overhead is still
significant for constrained real-time applications.

3.3.2 Data-Flow Attestation (DFA)

Beyond CFA, LiteHAX [184] enables the detection of both control-flow and data-oriented
attacks for bare-metal embedded applications. LiteHAX captures both the control-flow
and data-flow transitions of a program to enable a remote verifier to detect illegal
memory accesses and control-flow transfers. While LiteHAX relies on signal values
extracted directly from the processor’s pipeline, the runtime attestation scheme proposed
in [185] captures the control-flow and data-flow transitions by monitoring the address
and data signals on the system bus and relies on a runtime integrity model stored on the
device to identify the instructions and their addresses.
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My Contributions. This chapter is based on the results of two papers published in the
IEEE European Symposium on Security and Privacy (EuroS&P) and the International
Symposium On Field-Programmable Custom Computing Machines (FCCM):

[8]

[9]

Ghada Dessouky, Ahmad-Reza Sadeghi, Shaza Zeitouni. SoK: Secure FPGA Multi-
Tenancy in the Cloud: Challenges and Opportunities. In Proceedings of the 6th IEEE
European Symposium on Security and Privacy (EuroS&P’21), 2021.

I led this work and contributed with the co-authors to the discussions on the
deployment model, stakeholders, attack landscape and drawing the analogies to
the trusted computing environments on CPUs. Ghada Dessouky further focused on
the discussions of microarchitectural attacks. While I focused on the classification
and discussions of the different remote physical attacks and their state-of-the-art
defenses, their counterparts in the general-purpose computing paradigm, and the
discussions of the trusted computing base on cloud FPGAs.

Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza Sadeghi,
Nele Mentens. Trusted Configuration in Cloud FPGAs. In Proceedings of the 29th
IEEE International Symposium On Field-Programmable Custom Computing Machines
(FCCM’21), 2021.

I led this work and contributed to the discussions of the core idea with the co-
authors. I focused on the development of the protocol and the security analysis of
the protocol. Further I worked on the design, the implementation and the evaluation
of the trust anchor on the FPGA. Jo Vliegen contributed to the discussions of the
core idea with the co-authors and assisted in developing the protocol. Tommaso

Frassetto focused on the implementation and evaluation of the virus scanner in
Intel SGX.

Chapter Outline. In the following, we present an overview on FPGA security including
IP protection before their deployment in datacenters in Section 4.1. Then, we discuss
FPGA deployment models in the cloud, the emerging security challenges and solutions
including our work in Section 4.2.
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4.1 FPGA SECURITY

FPGAs are reconfigurable ICs that can be electrically (re)programmed by end users using bi-
nary files, the bitstreams, to implement different digital circuits of their own choice. FPGAs
come in different computational capabilities and can operate as fully-fledged stand-alone
computing systems or be integrated as hardware accelerators in more complex systems,
which make them suitable for the deployment in different computing paradigms, IoT,
edge or cloud. To configure the FPGA with the intended circuit, the configuration engine,
which resides on the FPGA chip, reads the encoded configuration information within the
bitstream and uses it to write the configuration memory of the FPGA accordingly. FPGA
configuration memory refers to the memory that holds the configuration patterns of a
given circuit. Existing FPGAs leverage different memory technologies for their configu-
ration memories, such SRAM, flash or anti-fuse. We focus on SRAM-based FPGAs since
SRAM-based FPGAs are the most widespread FPGAs and are the ones deployed currently
in the cloud.

Attacks. In general, physical attacks that can be conducted on ICs are also applicable
to FPGAs. However, the flexible nature of FPGAs introduces a new attack surface, when
deployed in-field in an untrusted environment. For example, on SRAM-based FPGAs, i.e.
whose configuration memory is made of SRAM cells, configuration data is lost at power-off
and thus an off-chip non-volatile memory is required to store the bitstream until it is
loaded again on the FPGA after the next power-up. This would allow an attacker to i) read
out the existing bitstream to reverse-engineer the original design or copy it to a similar
FPGA without authorization or ii) overwrite the current bitstream with an unauthorized
(malicious) bitstream. An overview of FPGA-specific attacks are presented in [186].

Intellectual Property (IP) Protection. Therefore, to prevent such attacks, the bitstream
must be provisioned securely between power cycles. Thereby, a trust anchor on the FPGA
is required to enable the configuration of authorized bitstreams and to prevent the read
out of proprietary designs. Being a topic of concern in the early era of reconfigurable ICs,
several works have been conducted in this direction [187, 85, 188, 189, 190, 191]. Further,
FPGA vendors have reacted already to these requirements, as evident in more recent
FPGAs [37, 38]. Recent FPGAs are equipped with hard-coded cryptographic engines that
enable the verification and decryption of users’ bitstreams prior to their configuration on
the FPGA. However, the user, i.e. the owner of the FPGA, is responsible for enabling the
protection of bitstreams on the FPGA. That is, the user must provision the keys on the
FPGA’s trust anchor in a secure environment before it is deployed in-field.

4.2 FPGAs IN THE CLOUD

In recent years, FPGAs have made their way into datacenters along with GPUs and ASICs
as hardware accelerators of compute-intensive services and applications. Unlike ASICs,
whose functionalities cannot be changed after fabrication, FPGAs and GPUs are flexible in
the sense that the programmed functionality can be updated /modified when required,
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yet FPGAs provide higher flexibility, by supporting various data types, and higher energy
efficiency compared to general-purpose computing platforms [192, 193]. Therefore, they
have been perceived to bring the best of both hardware and software worlds.

4.2.1  Deployment Models

FPGAs are deployed in the cloud under two different deployment models: Acceleration-
as-a-Service (AaaS) or FPGA-as-a-Service (FaaS). Both models provide acceleration for a
wide range of compute-intensive workloads, such as Machine Learning (ML), genomic
data processing, and other scientific computations.

AaaS Model. In AaaS, FPGAs are dedicated to accelerate specific tasks, e.g. web search and
network encryption, that are pre-defined by the Cloud Service Provider (CSP). In this
model, clients have no access to FPGA fabric, but can benefit from the accelerated services.
Microsoft Azure was among the first datacenters to introduce FPGAs in cloud computing
by augmenting their processors with an interconnected and configurable compute layer
of FPGAs to accelerate the Bing web search [194] and network encryption [195]. More
recently, Microsoft launched Brainwave project for FPGA-accelerated real-time ML infer-
ence for Bing web search and Skype language translations [196]. To this end, the FPGA
fabric in the AaaS model is not directly accessible by the clients, yet FPGAs are part of
the underlying infrastructure of the cloud. Thus, trust assumptions and requirements by
the CSPs would include FPGA vendors and potential IP providers, if external proprietary
designs will be configured on the FPGAs.

FaaS Model. FaaS, on the other hand, enables a more flexible usage model where clients can
directly configure their allocated FPGAs with the desired functionality. In fact, academic
proposals suggested to further allocate a single FPGA to multiple clients/tenants to
maximize FPGA utilization [197, 198, 199, 200, 201, 202]. This is achieved by leveraging
the partial reconfigurability of FPGAs, in which a single FPGA can be split into logically-
isolated regions and each region can be reconfigured at runtime without disturbing
other regions. This sharing model is known as spatial multi-tenancy. On the other hand,
prominent CSPs, e.g. Amazon [55], Huawei [203], and Alibaba [56], still offer their clients
dedicated FPGAs. This sharing model is known as temporal multi-tenancy, i.e. clients
can only use the same FPGA after it is released. Therefore, the FaaS model introduces
additional security challenges that arise due to the flexible nature of FPGAs.

In [8], we present a systematization of knowledge on the security of multi-tenant
cloud FPGAs. We focus on the FaaS model and present a through analysis on the different
stakeholders, threats, trust assumptions and security requirements. Concurrent to our
work, trust assumptions and threat models within a remote FPGA deployment model in
general are discussed in [204].

In the following, we focus on FPGA security challenges that stem from the recent
deployment model of FPGAs in the cloud, the Faas.
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4.2.2  Attacks on Cloud FPGAs

The FPGA’s configurable fabric and the flexibility offered to FPGA programmers to pre-
cisely control the underlying components allow the realization of various digital circuits
including voltage and temperature sensors that work by measuring propagation delay
differences in a given circuit to infer changes in power consumption or temperature
on the FPGA [53, 54]. These tiny voltage sensors have even proven their effectiveness
by measuring power consumption on neighboring devices that share the same power
supply [57]. Given the fact that in the cloud environment the FPGAs can share the power
supply system with other components in the infrastructure and the clients are allowed to
configure the FPGAs freely, various remote physical attacks have been demonstrated in
spatial and temporal multi-tenancy settings. These attacks mainly deploy two types of
malicious primitives, voltage/temperature sensors or power viruses, which can draw an
excessive amount of current from the power supply of the FPGA.

In [8] we distinguish between two classes of attacks with respect to FPGAs. The first
one includes well-known attacks in typical CPU-based cloud computing settings, e.g.
Rowhammer and cache side-channel attacks, and does not require the configuration of
malicious primitives on cloud FPGAs. In this direction we shed the lights on the various
lessons from the CPU-based computing and draw analogies to FPGA-based computing
in order to have better understanding of the security challenges and their potential
treatments on FPGA-based computing in the cloud. The second class of attacks includes the
different variants of remote physical attacks, such as fault-injection and power/thermal
side-channel attacks on co-clients as well as DoS attacks on the cloud infrastructure, and
can be conducted by configuring malicious primitives on the FPGA. We analyze and
categorize the different attacks in temporal and spatial multi-tenancy settings and further
scrutinize the proposed defenses against these attacks. More details are provided in
Appendix H.

4.2.3 Defenses on Cloud FPGAs

Mitigating Remote Physical Attacks. We classify state-of-the-art defenses against remote
physical attacks into static proactive solutions that mitigate the threats before configura-
tion on the FPGA and runtime solutions that aim to address the gap that static approaches
cannot comprehensively close. Nevertheless, runtime solutions try to address different
forms of attacks, e.g. power side-channel attacks, thermal side-channel attacks or fault
injection attacks, individually. Moreover, some of these defenses are dependent on the cir-
cuit to be protected and thus should be implemented by the clients [205]. Consequently,
runtime defenses incur higher overhead and have limited effectiveness compared to
proactive countermeasures. Among the most promising proactive countermeasures that
would hinder most of the currently-known remote physical attacks are virus scanners.
They allow the CSP to vet the FPGA’s bitstream in order to detect the presence of malicious
circuits, i.e. voltage and temperature sensors and power viruses, prior to their deployment
on cloud FPGAs [206, 207]. Nevertheless, these virus scanners require access to clients’
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bitstreams.

Remote IP Protection. Clients’ bitstreams may include proprietary designs, yet bitstream
encryption is not supported on cloud FPGAs. On the one hand, clients have no physical
access to the FPGA and there is no direct and secure means to program the user’s
secret key into the FPGA’s trust anchor. On the other hand, multiple clients might be
scheduled to use the same FPGA whether within the temporal or the spatial multi-tenancy
models. Therefore, direct utilization of the existing hard-coded cryptographic engines
on commodity FPGAs by clients for IP protection on the cloud is not feasible for the
two reasons: i) secure remote key provisioning step is not supported and ii) the key
provisioning scheme is not designed to support multiple clients.

To solve IP protection issue on cloud FPGAs, academic initiatives proposed the use of
an initial bitstream to configure a trust anchor on cloud FPGAs for clients’ bitstreams
protection [208, 209]. The initial bitstream contains different cryptographic cores for
decryption of clients’ bitstreams and for secret key exchange or generation. Therefore,
the initial bitstream itself must be protected. This is achieved through FPGA vendor
support, either by programming the secret key on the FPGA trust anchor [208] or by
configuring the initial bitstream on the FPGA [209] before deployment in the cloud. The
latter assumes FPGA to be continuously powered, even during shipping to the cloud, to
maintain its configuration. Nevertheless, having IP protection enabled on cloud FPGAs,
malicious primitives, which can be contained within clients encrypted bitstreams, would
be overlooked.

4.2.4 Mutual Trust on Cloud FPGAs

To summarize the current mutual trust problem: clients require to protect their proprietary
designs by encrypting their bitstreams, which is not allowed on cloud FPGAs, while access
to FPGA configurations is required to inspect for malicious circuits prior to configuration
on cloud FPGAs. To solve this paradoxical problem of client’s IP protection and prevention
of malicious FPGA configurations, we propose the first scheme to satisfy the requirements
of clients and CSPs in [9].

Our solution comprises a cryptographic protocol by the two parties the client and
the CSP and requires the existence of a TEE and a trust anchor on the FPGA that can
support cloud deployment models. To vet a client’s bitstream prior to configuration
on a cloud FPGA, a design check on the bitstream is executed inside a TEE and a proof
of execution including a status report is provided to the CSP. We examine two options
where the TEE resides, on the client side or on the CSP side, and show the trade-offs
between the two options. Then, the CSP verifies the status report and allows the encrypted
bitstream to be loaded on the FPGA, where it is verified and decrypted on-the-fly with
the help of a trust anchor of our design that resides on the FPGA. As such, the CSP
has no access to the decrypted bitstream. We further explore the design options of the
trust anchor being either configurable or hard-coded on the FPGA fabric and propose
a remote secret key provisioning and management scheme that can support multiple
clients acquiring a single FPGA instance by utilizing PUFs and public-key cryptography.
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Our solution requires the support of hardware vendors, TEE and FPGA vendors, which is
a reasonable assumption in the hardware-assisted trusted computing paradigm. Finally,
we prototype our configurable trust anchor on the FPGA and show the feasibility of
our scheme on commodity FPGAs. By solving both security challenges, we provide the
means for practical isolated /trusted execution on cloud FPGAs and thus enabling secure
processing of sensitive data on cloud FPGAs. We provide more details on our solution
and the different design options in Appendix I.
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CONCLUSION

Hardware-assisted security aims at protecting computing systems against various software-
based attacks including malware and runtime attacks. Hardware-assisted security archi-

tectures imply the existence of a trust anchor in the hardware of a computing system

to support various cryptographic protocols and security features. During the last two

decades, we have witnessed great advances in this direction with the deployment of vari-

ous hardware-based security solutions into today’s computing systems such as Trusted

Platform Module, Physically Unclonable Functions (PUFs), ARM TrustZone, Intel Software

Guard Extension and Intel Control-Flow Enforcement Technology.

The main focus of this dissertation is the design of trust anchors for hardware-assisted
security architectures. First, we address PUFs, one of the basic primitives of a trust
anchor, which are used to generate device-specific identifiers and secret keys. Then,
we consider the design of trust anchors to support different security features, namely,
runtime protection and trusted configuration. In the following, we briefly recap on the
main contributions of this thesis in Section 5.1 and present future research directions in
Section 5.2.

5.1 DISSERTATION SUMMARY
5.1.1 Security Evaluation of Physically Unclonable Functions

In Chapter 2 we presented an overview on the current research work on PUFs and
demonstrated our attacks on the SRAM PUF, the Rowhammer PUF and a set of hybrid
memristor-based PUFs.

We performed a physical fault injection attack on SRAM PUFs by precisely controlling
the voltage supply to the device embedding the PUF in order to induce the remanence
decay effect and gradually allow the SRAM cells revert to their start-up values. We showed
then how to recover the original PUF response with the help of faulty PUF responses and
differential fault analysis. The attack exploits the fact that in constrained devices SRAM
memory, which is used to extract the PUF response at boot up, is accessible by other
processes at runtime and hence are accessible to the attacker.

Then, we performed two attacks on a variant of the runtime-accessible decay-based
DRAM PUFs, the Rowhammer PUF. In the first attack we demonstrated how PUF reliability
is deteriorated by accessing only neighboring locations to the PUF region thus leading to
faulty PUF responses and keys. In the second attack, we performed a modeling attack on
the Rowhammer PUF using standard interpolation algorithms. Our results indicate that
PUF responses can be predicted and the Rowhammer PUF is not secure for deployment in
light-weight authentication protocols as suggested by the authors.
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Finally, we showed that even memristor-based PUFs, which promised higher reliability
and unpredictability over CMOS-only PUFs, are prone to modeling attacks. We reproduced
a set of memristor-based PUFs and tested them using a set of Machine Learning (ML)
algorithms. Our results indicate that the inspected PUFs and their XOR-based versions
are vulnerable to modeling attacks.

5.1.2 Hardware-assisted Runtime Protection

In Chapter 3 we gave an overview on the different runtime attacks and defense strategies.
We presented then our novel hardware-assisted runtime enforcement and attestation
schemes that target bare-metal embedded applications and rely on their hardware trust
anchors to achieve the required security guarantees.

HardScope is a novel ISA extension based on RISC-V to mitigate the currently-known
data-oriented attacks. HardScope trust anchor provides fine-grained context-specific
memory isolation by enforcing access control on function variables in the memory based
on policies defined at compile-time.

LO-FAT trust anchor captures, encodes and reports the fine-grained control-flow
behavior of the attested program to the verifier for the detection of control-flow and
non-control data attacks. LO-FAT requires neither modifications to the program code
nor additional software components. However, LO-FAT still relies on static attestation to
ensure the integrity of the binaries prior to its execution.

To mitigate Time of Check Time of Use (TOCTOU) attacks on attestation schemes, we
proposed the concept of run-and-attest in ATRIUM, the first runtime attestation scheme
that captures both the control-flow behavior of the program as well as its executed
binaries in a single attestation report. ATRIUM enables the detection of TOCTOU as well
as control-flow and non-control data attacks.

Finally, we presented CHASE, a runtime attestation scheme for embedded applications
with real-time constraints. CHASE on-device Control-Flow Attestation mode allows
its trust anchor to capture and locally-verify control-flow transfers on-device using
program’s Control-Flow Graph. This mode guarantees low-latency detection of illegal
control-flow transfers while incurring minimal performance overhead.

5.1.3 Hardware-assisted Trusted Configuration

In Chapter 4 we explored the current trend of leveraging FPGAs in the cloud for accelera-
tion of cloud services and clients” applications.

We investigated the security challenges and opportunities of cloud FPGAs in the FPGA-
as-a-Service (FaaS) deployment model. Given the fact that in FaaS model clients are allowed
to configure the FPGAs freely, various remote physical attacks have been demonstrated.
We analyzed and categorized the different attacks in FaaS model and scrutinized the
proposed defenses against these attacks. Further, we drew attention to the mutual trust
problem of cloud FPGAs: clients require to protect their proprietary designs, while Cloud
Service Providers (CSPs) do not support the use of encrypted FPGA configurations. In fact,
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CSPs require access to FPGA configurations to inspect for malicious circuits that can be
used to launch physical attacks remotely, prior to configuration.

Then we tackled this problem by presenting the first trusted configuration scheme for
cloud FPGAs. Our scheme provides the CSP with an authentic proof that the encrypted
bitstream has been vetted for malicious primitives with the help of a Trusted Execution
Environment (TEE). If admitted, the encrypted bitstream is forwarded to our trust anchor,
which provides a secret key provisioning and management scheme that supports multiple
clients, for decryption and configuration on the FPGA. By solving both security challenges,
we provide the means for practical isolated /trusted execution on cloud FPGAs and thus
enabling secure processing of sensitive data on cloud FPGAs.

5.2 FUTURE RESEARCH DIRECTIONS
5.2.1 Physically Unclonable Functions

Scrutinizing PUF Primitives. In recent years, prominent progress has been made in device
technologies beyond CMOS, such as carbon nanotube field-effect transistors, spintronic-
logic devices, fully depleted silicon on insulator and many others. Consequently, several
PUF designs that leverage these emerging technologies have been proposed, yet most of
the proposed PUFs are only demonstrated in simulation environments and their security
properties are not verified. Thus, there is a need to have a unified framework for evaluat-
ing the claimed security properties of recent hybrid PUF designs in unified /comparable
simulation environments and operating conditions for fair comparison. This will provide
a deep insight on the different capabilities of these technologies and their suitability for
the design of novel modeling-resilient PUFs.

On the other hand, PUFs have made their way into commercial products, such as Intel
Stratix 10 SoCs [210] and Microsemi SmartFusion2 SoCs [211] for the purpose of generating
device-specific keys. Another interesting research direction is to investigate the security
of these real-world PUF implementations.

5.2.2 Runtime Attestation

Software-Hardware Co-Design. In our hardware-based attestation schemes we aimed to
keep the performance overhead minimal, however, this comes at the cost of higher area
overhead, in terms of memory and logic. Our trust anchors deploy different components
to track the execution, encode control-flow transfers and hash them. For example, one
basic hardware component is responsible filtering out instructions and memory addresses
to identify loop entry and exist points. However, it can only handle a limited number of
loops and nested loops simultaneously, which can be different from program to another.
Supporting more (nested) loops and recursive functions would complicate the design
process and increase the hardware complexity. One option to tackle this issue is by
exploring the software-hardware co-design space to build an efficient scheme that would
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strike a balance between flexibility, area and performance overhead.

Attestation & Verification of Complex Software. Further, our attestation schemes support
bare-metal embedded programs only. Consequently, extending the scope of our attestation
schemes to support embedded programs running on top of operating systems will allow
the coverage of more application areas. In this direction, it is also interesting to explore
the challenges and opportunities for hardware-assisted runtime attestation of complex
user-space applications on desktop systems. The goal of such scheme is two-fold: reduce
the performance overhead, compared to software-only schemes [181, 182], by offloading
intensive computations to hardware components while minimizing the trust assumptions
on software components. On the other hand, verifying attestation reports of complex
software is expected to be challenging due to the significantly large space of possible
execution paths. Thus, efficient verification methods should be also investigated. In this
direction ML capabilities for the verification of runtime behavior of complex software can
be explored.

5.2.3 Trust in Cloud FPGAs

Practical Trusted FPGA-based Cloud Computing. In our scheme for trusted FPGA con-
figuration [9] the client’s bitstream is encrypted using an FPGA-specific secret key. In
order for the client to use different cloud FPGAs, the client must re-encrypt the bitstream
with different secret keys. This further calls for reinspecting the FPGA configuration. One
feasible approach to tackle this problem is by building a database of the previously
scanned clients” designs and store their corresponding hash values and scan reports.
Before inspecting a client configuration a search for that FPGA configuration in the
database is performed using its hash value. Nevertheless, this solution still implies the
initialization and running of a TEE enclave to perform the search. Therefore, alternatives
such as different encryption schemes that allow the encryption with a single key and
the decryption with different keys [212] can be investigated. This would enable a more
practical and cost effective approach for trusted cloud FPGA configuration.

Trusted Cloud FPGAs Applications. Establishing trusted configuration on cloud FPGAs is
the first step towards trusted execution on these platforms. The next step is to leverage
the computational power of FPGA TEEs to enable efficient and secure processing of
compute-intensive real-world applications. An example of such workloads is federated
ML, where aggregation of federated ML models is to be performed in an untrusted
environment. Thus, the federated ML models are prone to powerful inference attacks
by an untrusted aggregator. Compared to existing solutions of outsourcing Secure
Multi-Party Computation [63] in a semi-honest model, leveraging FPGA TEEs will reduce
the computation and communication overhead significantly. In this direction, it is also
interesting to investigate the deployment of defenses against malicious clients that aim
to sabotage the aggregated model by injecting poisoned models during the aggregation
process [213]. Thus, integrating a poisoning defense in the aggregation process will
protect the confidentiality of clients” models and the integrity of the aggregated model.
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Remanence Decay Side-Channel: The PUF Case

Shaza Zeitouni, Yossef Oren, Christian Wachsmann, Patrick Koeberl, and Ahmad-Reza Sadeghi

Abstract— We present a side-channel attack based on rema-
nence decay in volatile memory and show how it can be exploited
effectively to launch a noninvasive cloning attack against SRAM
physically unclonable functions (PUFs)—an important class of
PUFs typically proposed as lightweight security primitives, which
use existing memory on the underlying device. We validate our
approach using SRAM PUFs instantiated on two 65-nm CMOS
devices. We discuss countermeasures against our attack and
propose the constructive use of remanence decay to improve
the cloning resistance of SRAM PUFs. Moreover, as a further
contribution of independent interest, we show how to use our
evaluation results to significantly improve the performance of the
recently proposed TARDIS scheme, which is based on remanence
decay in SRAM memory and used as a time-keeping mechanism
for low-power clockless devices.

Index Terms— SRAM PUF, fault injection attack, side-channel
analysis, data remanence decay.

I. INTRODUCTION

HYSICALLY Unclonable Functions (PUFs) have been

an attractive research area and are increasingly proposed

as building blocks in cryptographic protocols and security
architectures. One major class of PUFs and the focus of this
paper are memory-based PUFs [1]-[6]. These PUFs are com-
monly proposed as an alternative to secure non-volatile storage
and are used in a variety of anti-counterfeiting mechanisms
and authentication schemes [1], [8]-[12]. Today, PUF-based
security products are already on the market, mainly targeting
IP-protection and anti-counterfeiting applications as well as
Radio-Frequency Identification (RFID) systems [14] and [15].
Memory-based PUFs are arrays of volatile memory ele-
ments, such as SRAM cells [1], [5], flip-flops [2], [6], or
latches [3], [4]. These elements are typically bi-stable circuits
with two stable states corresponding to a logical zero and one.
By controlling the voltage level at the inputs of the elements,
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they enter either one of the two states. Due to the bi-stability,
the elements retain their states as long as they are supplied with
power. Memory-based PUFs exploit the following phenom-
enon: When powering up such an element without applying
any voltage at the bit-line input, its state mainly depends on the
physical characteristics of the underlying transistors. Due to
uncontrollable manufacturing variations, these characteristics
are unique for each physical instantiation of the element.
Hence, the state of all memory elements, after powering the
memory without applying any voltage at the bit-lines, can be
used as a unique identifier, known as ‘PUF response’, of the
device containing the memory. However, since the response of
a memory-based PUF could be read out and copied to another
device, protecting the PUF response against unauthorized
accesses is considered a fundamental requirement of memory-
based PUF implementations, which implies mimimally the
presence of some security mechanism to prevent unauthorized
accesses to the PUF response.

Memory-based PUFs are considered to be cost-effective
since it is possible to use the already existing memory of
the device as PUFs [1], [7], [10], [14]-[17]. However, in this
case the memory is also used to store data of some other
components in the device and will be overwritten at some point
of time. In particular, volatile memory is typically initialized
before it is used for data storage. Further, although volatile
memory loses the data it stores when it is powered off, the
data are not immediately lost but rather decay slowly over
time [18], [19]. Hence, it is very likely that any data written
to the memory of a memory-based PUF may affect the PUF
response when removing or reducing the power supply for
short time periods. Although this effect has been discussed in
the literature [5], [23]-[25] it has never been used to attack
memory-based PUFs. A preliminary and shorter version of this
work has been published at [22]. This is an extended version
that includes new evaluation results of voltage-based attacks.

A. Contribution

We present, to the best of our knowledge, the first side-
channel attack based on the remanence decay in volatile
memory and show how it can be exploited for a non-invasive
cloning attack against SRAM-based PUFs. In particular, our
contributions are as follows:

1) First Cloning Attack on SRAM PUFs Using Remanence
Decay Side Channels: Our attack recovers the secret response
of a memory-based PUF in applications where the underlying
memory is overwritten with a known value after the PUF
response has been read. This attack can be applied to all
memory-based PUF systems that share the PUF memory with
some other functionality, which is often suggested in the

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 65
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literature to allow cost-effective PUF implementations [1],
[71, [10], [14]-[17]. We show that the attack is successful
against small memory-based PUFs even when using common
lab equipment.

2) Experimental Validation of the Attack: We validate the
feasibility of our attack using SRAM PUFs instantiated on
two 65nm CMOS devices, and suggest several improvements
to increase the performance of our attack.

3) Constructive Use of Remanence Decay: We propose
using remanence decay as a source of side-channel information
to enhance the cloning-resistance of SRAM PUFs. Cloning
such a PUF would require emulating the remanence decay
behavior, which increases the cost of cloning or even render
it uneconomical. We also propose a time-memory tradeoff to
dramatically reduce the complexity of the recently proposed
TARDIS [19] time-keeping mechanism for clockless devices
from linear to logarithmic time, enhancing its applicability
to many practical scenarios; we further propose a simplified
version of TARDIS which requires only constant time and
minimal non-volatile storage.

B. Outline

We introduce our notation, the system and the adversary
model in Section II. The attack is described in Section III
and its experimental validation is presented in Section IV.
A practical instantiation of our attack is shown in
Section V. We discuss the impact and improvements of the
attack in Section VI and make suggestions on the constructive
use of remanence decay, including the improved TARDIS
algorithm, in Section VII. We give an overview of the related
work in Section VIII and finally conclude in Section IX.

II. MODEL AND PRELIMINARIES

We consider devices that contain memory-based PUFs,
where the underlying memory can be overwritten with a
known value after the PUF response has been read. This
typically happens when the PUF memory is also used for
data storage by some other functionality in the device, which
is a common approach to cost-effective implementations of
memory-based PUFs [1], [7], [10], [14]-[17].

A. Initial State

Volatile memory is typically initialized, i.e., overwritten
with a specific bit pattern (usually all zeroes or ones), before it
is used as a data storage. We denote this pattern as the initial
state of the memory.

Definition 1 (Initial State): The initial state of the memory
is the matrix Minit representing the data that is written to the
memory before it is used as a data storage.

B. Start-Up State

Data stored in the volatile memory are not immediately lost
when the power to the memory is removed or decreased but
decay slowly over time [18], [19]. Hence, when powered off
only for a short time, the memory may still hold some of
the data 8t have been written to it before the power cycle.
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We capture this aspect by introducing the notion of the start-
up state.
Definition 2 (Start-Up State): Let vnom be the nominal
supply voltage of the memory V.
Consider the following experiment:
1) Set supply voltage of memory elements to OV for time t
2) Set supply voltage of memory elements to vpom
3) Read the states of all memory elements and store them
ina m@trix A_;l,
We say that M; is the start-up state of the memory with respect
to time t.
Further, consider the following experiment:
1) Set supply voltage of memory elements to v < vpom for
constant time T
2) Set supply voltage of memory elements to vnom
3) Read the states of all memory elements and store them
ina mgtrix M,
We say that M, is the start-up state of the memory with respect
to voltage v and a constant time t.

C. PUF State

The response of a memory-based PUF corresponds to the
start-up state of the underlying memory, where the memory has
been powered off long enough that any data previously stored
in it have decayed. We capture this aspect by introducing the
notion of the PUF state of a memory.

Definition 3 (PUF State): Let to indicates the time
required for previously stored data to completely decay
from the memory. We denote the start-up state My, as the
PUF state Mpyur of the memory, i.e., Mpur := M;,.

In the case where the memory has been powered off only
for a short time before it is used as a PUF, the PUF response
may be distorted by the data previously stored in the memory.

D. Device Behavior

At some point while the device is running, it reads the start-
up state of its memory and uses it as the PUF response in some
computation. In many applications the result of this computa-
tion can be observed from outside the device. For instance,
in PUF-based (authentication) protocols [7], [10], [11],
the device receives some query @ and responds with a
message X that depends on the PUF response. In these
schemes, the response of the memory-based PUF is typically
used to derive a cryptographic secret that is used to compute X.
However, the device behavior is not limited to challenge-
response protocols. In the extreme case X could be only one
single bit of information, e.g., indicating whether the correct
PUF response was extracted from the memory or not. For
instance, in PUF-based IP protection schemes [1], [8], [9], the
device refuses to boot in the case where the PUF response
is incorrect, which can be observed by the adversary. We cap-
ture this aspect by introducing the notion of device behavior.

Definition 4 (Device Behavior): Let M be the start-up state
of the device memory with respect to some time t or voltage
v (Definition 2). Further, let Q be some query that can be
sent to the device. We denote with X = Dev(M, Q) the
response to Q of the device using the start-up state M. The
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algorithm Dev describes the behavior of the device with
respect to Q and M.

E. Assumptions and Adversary Model

Following the common adversary model of memory
PUFs [1], [7], [10], [14]-[17], we assume that the
adversary 4 cannot simply read the plain PUF response from
the underlying memory. This means that A does not know the
start-up state M (Definition 2) with respect to any time ¢ or
v91tage v and, in particular, A does not know the PUF state
Mpur (Definition 3). Further, we assume that all algorithms
implemented in the device are known to A (Kerckhoffs’
principle). This means that A could compute X = Dev(M, Q)
ig he knew M and Q. Moreover, A knows the initial state
Mipnit (Definition 1) that is part of the algorithms used by the
device. Furthermore, we assume that .4 can observe the device
behavior (Definition 4) and that A can control the time ¢ the
memory is powered off before it is used as a PUF as well as
the supply voltage o of the memory. This means that A can
send some query Q to the device and observe its reaction X
that depends on the device’s start-up state M. We also assume
that the fuzzy extractor generates an output for any arbitrary
state M that differs from Mpyg with more than ¢ bits, which
the fuzzy extractor can correct.

III. CLONING ATTACK USING REMANENCE DECAY

The high level idea and approach of our attack is to
recover the PUF response in a device that overwrites the
SRAM of the PUF with some data that are known to the
adversary A (cf. Section II). The attack principle is similar
to Biham-Shamir attack [23] to extract a secret key stored in
some device (e.g., a smart card).

The Biham-Shamir attack consists of two phases. In the first
phase, A collects a sequence of ciphertexts, each encrypting
the same plaintext with a slightly different key. More detailed,
A requests the device to encrypt the plaintext and, after
receiving the corresponding ciphertext, he injects a fault into
the device that sets one bit of the key to a known value.
A repeats this step until all bits in the key are set to known
values. In the second phase of the attack, A iteratively recovers
the secret key of the device, starting from the last ciphertext
that has been generated by the device using the key known
to A. A performs an exhaustive search for each key used by
the device to generate each ciphertext collected in the first
phase. Since the keys of two consecutive ciphertexts differ in
at most one single bit and the value of this bit is known to
A, this exhaustive search is linear in the bit-length of the key.
This way, A can recover the secret key of the device with a
total effort quadratic in the bit-length of the key.

Similar to the Biham-Shamir attack, we iteratively collect a
series of device responses to the same query, each generated
using a different start-up state. In each iteration, we send the
query to the device, record its response (that depends on the
start-up state), and then inject a fault to change some bits in
the start-up state. The fault injection is performed by carefully
controlling the amount of remanence decay undergone by the
SRAM, e.g., by increasing the time the device is powered
off between two iterations, or by reducing the device’s supply
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voltage for a fixed time period. Due to the different remanence
decay exhibited by each SRAM cell, for any given power-
off period or reduction of voltage supply, some SRAM cells
will lose the known value of the initial state and revert back
to their unknown PUF state, some will retain their initial
state and some will exhibit metastable behaviour by taking a
random state. Hence, in contrast to the Biham-Shamir attack,
the number of bits k that are different in the start-up states
used in two consecutive iterations is typically larger than one
bit. However, as we show in Section IV, k has an upper
bound that highly depends on the exhaustive method or the
computational power and a lower bound imposed by the
accuracy of the equipment used to control the remanence
decay.

In the second phase of the attack, we iteratively recover
the PUF state. A trivial approach would be to perform a
simple exhaustive search for all cells that have reverted to their
PUF state in the start-up states of two consecutive iterations
of phase one. However, while this approach works for small
values of k, it is inefficient for large values of k. In Section VI
we discuss several approaches to reduce the value of k by
improving the test setup and to reduce the complexity of the
search for the changed bit positions. Before we describe our
attack in detail, we explain the underlying requirements and
building blocks.

A. Controlling the Remanence Decay

An essential requirement for our attack is that the
adversary 4 can precisely control the remanence decay in the
SRAM. There are two approaches how this can be achieved.
The voltage-based approach directly decreases the supply
voltage to the chip for a certain amount of time 7, while the
time-based approach sets the supply voltage of the chip to
0 V for a precisely-measured amount of time ¢. In general,
the time-based approach is easier to use since it only requires
a precise timer to trigger the voltage drop, while the voltage-
based approach requires an expensive precision DC power
source. Next, we present results for both approaches.

B. Data Remanence Experiment

One major building block of our attack is the data rema-
nence experiment where the adversary A observes how the
remanence decay affects the behavior of the device containing
the PUF.

Definition 5 (Data Remanence Experiment): Consider a
device that overwrites the memory used by the PUF with
some known data. Let vpom be the nominal supply voltage
of the device. Let I\ZPUF (Definition 3) be the PUF state and
Minit (Definition 1) be the initial state of the device memory.
Further, let Dev (Definition 4) be the algorithm describing the
device behavior with respect to some start-up state M; or M,
(Definition 2).

The _time-based data remanence experiment
DRE(Minit, t, Q) is as follows: .

1) Set the memory content of the device to Mini

2) Temporarily set the supply voltage of the device to 0 V

for time t and then set it back to v 67
nom

X =
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3) Send the query Q to the device and observe its response
X = Dev(M;, Q)
Further, we define the voltage-based data remanence experi-
ment X = DRE(Miyit, v, Q) as follows: .
1) Set the memory content of the device to Mipjt
2) Temporarily set the supply voltage of the device to
0 < Upom for a constant time t and then set it back
10 Unom
3) Send the query Q to the device and observe its response
X =Dev(M,, Q)

C. Finder Algorithm

Another building block of our attack is the finder algorithm,
which recovers the PUF state based on the device behavior
observed in a series of data remanence experiments.

Definition 6 (Finder Algorithm): Let Ml+1 and M be two
start-up states (Definition 2) that consist of n bits and that
differ in at most k < n bits, ie., the Hamming distance
dist(M;, Miy1) < k. Further, let Xiy1 = Dev(Myi, Q)
for some arbitrary device query Q. A finder algorithm is a
probabilistic polynomial time algorithm Finder(]l7[i, 0,Xi+1)
that returns Mi+1.

The finder is most efficient when diSt(M,, 1\71,+1) is mini-
mal, ideally one. In this case, Flnder can recover an unknown
n-bit start-up state M,+1 from M and X, by performing a
simple exhaustive search with linear complexity in n. How-
ever, dlSt(M, , M,+1) is typically larger than one since multiple
SRAM cells may have similar remanence decay behavior,
decay at the same time/voltage, while other SRAM cells may
be metastable (i.e., take a random value) [19], [24]-[26]. In the
worst case, where up to k bits have changed in a start-up state
with n bits, a trivial finder performing an exhaustive search
may require up to ZIZ=1 (?) Typically n is a fixed system
parameter while k can be somehow controlled or reduced as
we discuss in Section VI.

D. Details of the Attack

The attack is detailed in Algorithm 1 on the example of
the time-based approach and works as follows. The adversary
A chooses an arbitrary device query Q (Step 1) and records
the response Xpurp generated by the device using the PUF

state MpUp (Step 2). Then, A performs a series of time-
based DRE experiments (Definition 5) where he slightly
increases the power-off time # used in each experiment
(Steps 3 and 4).! This way, A obtains a sequence of device
responses X, ..., X to the same query Q generated by the
device using the start-up states M,l,.. Ml/, respectively,
where dlst(M, ,M,M) forall 1 < i < (f —1) is upper
bounded by some value k. Observe that M,o = Mipit is the
initial state (Definition 1) and Mtf = Mpyr is the PUF
state (Definition 3) of the SRAM. Next, A uses the Finder
algorithm (Definition 6) to iteratively recover Mpyr from
the device responses observed in Steps 3 to 4. Specifically,

1An adversary using the voltage-based approach would gradually lower the
supply Voltag%(for a fixed amount of time) instead of increasing the power-off
time.
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Algorithm 1 Extracting the PUF State of an SRAM
PUF-Enabled Device (Time-Based Approach)

Consider a device that uses the same SRAM for the PUF
and some other functionality. Let Minit be the initial state
(Definition 1) and #o, be the decay time (cf. Definition 3)
of the device memory. Further, let At be the difference
between the power-off times used in two consecutive time-
based DRE experiments (cf. Definition 5). Further, let i and f
be indices. The attack works as follows:

1) Fix an arbitrary device query Q
2) Record Xpyp = DRE(Minit, tso, Q)
3) Seti <~ Oand tp =0
4) Repeat:
a) Seti «<—i+1
b) Sett; =ti_1 + At
¢) Record X; = DRE(Minit, ti, Q)
d) Stop when X; = Xpyr and set f =i
5) Seti < 0 and A7[t0 = Minit
6) Repeat:
a) Seti «<—i+1
b) Compute Aj[t,- = Finder(1\71,i71 , 0, Xi)
¢) Stop wheni = f
7) Return M,

starting from the known lmtlal state M,O Mlmt, the adversary
iteratively recovers each M, - from M, and X;4; until A
arrives at the PUF state M, ;= MpUF

Theorem 1 (Success of the Attack): The cgtack in
Algorithm 1 successfully recovers the PUF state Mpur. The
worst case complexity of the attack when using a trivial
Finder algorithm (Definition 6) is f - thf:l (?) where f is
the number of DRE experiments (cf. Definition 5), n is the
size of the SRAM, and k is the maximum Hamming distance
of the start-up states M, and M,“ used by the device in two
consecutive DRE experiments for all 1 <i < (f —1).

The complexity of the attack strongly depends on the
value of k, which highly depends on the accuracy of the
equipment and method used to control the remanence decay
in the SRAM. Typical values are k = 0.1469 - n for the
time-based approach and £k = 0.1004 - n for the voltage-
based approach (cf. Section IV). Moreover, in our experiments
for the time-based approach we observed a decay time of
to = 2,000 us and used At = 1 us, resulting in f =
[2,000 us/1 us| = 2,000. For the voltage-based approach
we observed remanence decay for supply voltages between
0.4 V and 0 V and used Av = 2 mV, resulting in f =
[400 mV /2 mV7] = 200. Proof of Theorem 1 can be found
in [22].

IV. EXPERIMENTAL VALIDATION OF THE ATTACK

In order to reduce the complexity of the attack, it is required
that only a small number k of SRAM cells in two consecu-
tive DRE experiments change their states during the transition
from the known (initial) state to the final PUF state. This
number k is mainly controlled by two factors: (1) the accuracy
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Fig. 1.  Test setup for the time-based/voltage-based approaches using an
Agilent pulse generator/Keithley sourcemeter.

of the equipment used to control the remanence decay of the
memory during the attack and (2) the number of metastable
SRAM cells, i.e., those that take random states. In this section,
we investigate the impact of both factors on the remanence
decay in the SRAM PUFs implemented in two 65 nm CMOS
ASICs. Our evaluation uses both the time-based and the
voltage-based approach to control the remanence decay.

A. Test Setup

Our analysis is based on data obtained from two ASICs that
have been manufactured in TSMC 65 nm CMOS technology
within an Europractice multi-project wafer run. The ASIC has
been designed within the UNIQUE? research project. Each
ASIC implements four different SRAM PUF instances, each
using 8 kBytes of SRAM. The test setup consists of an ASIC
evaluation board, a Xilinx Virtex 5 FPGA board, a power
supply; either an Agilent 81150 pulse/function/arbitrary pulse
generator for the time-based approach or a Keithley 2400
general-purpose sourcemeter for the voltage-based approach,
and a workstation (Figure 1). The evaluation board allows
controlling the ASIC supply voltage using an external power
supply. In each experiment, we wrote a pre-determined bit
pattern (i.e., all ones) to the SRAM, used the pulse generator or
sourcemeter to deliver a temporary voltage drop with precisely
controlled width and amplitude and finally read back the
memory contents of the SRAM. The rated accuracy of the
Agilent 81150 pulse generator has a temporal resolution of
5 ns and an amplitude resolution of 25 mV. The Keithley 2400
sourcemeter has a basic accuracy of 50 uV.

To accelerate and simplify the remanence decay process,
we did not place any decoupling capacitors between the pulse
generator/sourcemeter’s output and the ASIC’s supply voltage
input, as shown in [19], the effect of such a capacitor in the
time-based approach is an increase in the time between the
power-down event and the beginning of remanence decay.
In the voltage-based approach, the capacitor increases the
time required for the ASIC’s power input to converge to the
required value, again resulting in a slowdown of the remanence
decay process. The interaction with the evaluation board and
the ASICs is performed by the FPGA, which is connected
to a workstation that controls the PUF evaluation and the
pulse generator or the sourcemeter. Further, the workstation is

2http://www.unique—project.eu/
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Fig. 2. Chip-scale view of remanence decay (time-based approach).

used to process and store the data obtained from the ASICs.
The tests with the Keithley sourcemeter were performed in a
refrigerator at temperatures between 2.7 °C and 7.6 °C, while
tests with the Agilent 81150 pulse generator were performed
at room temperature (approx. 25°C) in an air conditioned
laboratory because we wanted to capture the effect of power-
off time on data remanence without controlling the ambient
temperature, as it is already known that some attacks use
low temperatures to decelerate data remanence of SRAM
cells [18].

B. Chip-Scale Modeling

The purpose of this experiment was to observe and to
reproduce the decay behaviour reported in [19] and to gauge
its stability and reproducibility for the SRAM PUF for the
time-based and the voltage-based approach.

1) Time-Based Approach: A series of 10,000 data rema-
nence experiments with an initial state Minit consisting of only
ones was performed. Each experiment was repeated 10 times
with 1,000 different power-off times ¢ between 300 us and
2,000 us. During the power-off time the supply voltage was
set to 0 V. After each experiment we measured for each SRAM
cell the probability that it still stores the value we wrote to
it before the power cycle. We call this probability the bias of
the cell.

2) Voltage-Based Approach: We performed 30 series of data
remanence experiments with an initial state Mjy;; consisting of
only ones. Each series consists of 201 experiments, where the
voltage was dropped by 2 mV for 1 ms starting at 0.4 V, as the
experiments show no decay to zero in the range between 1.2 V
and 0.4 V, and then set back to the default supply voltage of
1.2 V. For each experiment, we measured the probability that
each SRAM cell preserves the value written to it before the
power cycle. 9
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Fig. 3. Chip-scale view of remanence decay (voltage-based approach).

3) Chip-Scale Results: Our results are depicted in
Figure 2 and Figure 3. In both figures, the y-axis corresponds
to the mean bias over all SRAM cells, while the x-axis
corresponds to the total time the ASIC was without power
in Figure 2 or to the voltages applied to the ASIC Figure 3.
Each cross in the graphs corresponds to a single experiment.
As shown in Figure 2, the average bias over all SRAM cells
decays very reliably from 1 to the expected 0.5 [25], [26]
during the course of 2 ms, while in Figure 3 exhibits the
average bias over all SRAM cells decaying from 1 to 0.5 in
the range of 0.4 V to 0 V. The results are also compatible with
the findings in [21] and [33], i.e., the typical values of DRV
fall in the range between 80 mV and 250 mV.

As the zoomed-in views in Figure 2 and Figure 3
show that, there is a small variation in the measured bias
between identical experiments, which was either due to
the physical limitations of our test setup or due to those
SRAM cells exhibiting metastability.

C. Bit-Scale Modeling

This experiment investigates whether the individual SRAM
cells have different transition times (voltages), which is
required in our attack. With the transition time (resp. tran-
sition voltage) of an SRAM cell we mean the point in time
(resp. voltage level) where the cell loses the value that has
been written to it and reverts to its PUF state. Based on the
results of the previous experiment, we estimated the bias of
each SRAM cell over time.

1) Bit-Scale Results: Figure 4 and Figure 5 display 2-D
contour plots of the cell-level behaviour of the SRAM PUF.
Again, the inner graphs represent zoomed-in portions of the
graphs. Each horizontal row in the graph corresponds to the
bias of a single SRAM cell, selected out of 1000 representative
cells whose final bias were close to zero. We only selected
cells with’flnal bias close to zero since the cells with a final
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Fig. 5. Bit-scale view of remanence decay (voltage-based approach).

bias close to one will not show any decay behavior in our
experiment where we wrote a logical one to all memory cells
before the power cycle. For the purpose of legibility, the cells
were sorted in the graphs by their transition times (voltages).
The left and right gray lines on the graphs correspond to times
in Figure 4 and voltages in Figure 5, when the bias of each
bit is one and zero, respectively. The black line corresponds
to the time (voltage) when the bias of each bit is 0.5.

As shown in Figure 4, each individual SRAM cell has
a different remanence decay time surrounded by a short
period of metastability in which the cell may enter both
states. The median metastability period measured was 30 us
and the worst-case metastability rate was 14%. Figure 5
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shows each individual SRAM cell has a different remanence
decay voltage with a voltage band on either side exhibiting
metastability. The median metastability voltage was 4 mV
and the worst-case metastability rate was 10%, which is 28%
lower than the time-based result. In general, the maximum
size of a PUF that can be attacked using our methodology
is limited by the metastability, as we discuss further
in Section VI.

A detailed look at the evolution of the bias of a single bit
over time and voltage is shown in Figure 6 and Figure 7
respectively, and the small spikes which can be noted in
the otherwise monotonic plots are probably the result of
noise encountered when measuring the bit in its metastable
state.

D. Cross-Device Comparison

Next we investigated whether the transition times (resp.
voltages) of the SRAM cells in one device allow to infer
some information on the transition times (resp. voltages) of
the SRAM cells in another device. A second goal of this
experiment was to get a first impression of whether the
transition times (voltages) in SRAM cells could be used
to identify individual SRAM chips, an idea we discuss in
Section VI. In this experiment, we measured the bias over
time and the transition times (voltages) of each SRAM cell in
two ASICs. Again, we considered only cells whose PUF state
is zero.

1) Cross-Device Results: The results for the time-based
approach as well as voltage-based approach are shown in
Figure 8 and Figure 9 respectively. Each cross in the graphs
corresponds to the bias of a single SRAM cell. In both figures,
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the x-coordinate of each point is the transition time (voltage)
of the SRAM cell on the first ASIC, while the y-coordinate
is the transition time (voltage) of the same SRAM cell on the
second ASIC. The behavior in Figure 8 is due the fact that
the number of metastable cells in time-based experiment is
larger than those in voltage-based experiment. Besides that, in
time-based experiment, some of the cells, which decay to zero,
oscillate over power cycles before they settle down on zero in
the last power cycle. Figure 8 also shows that, the transition
times of the two ASICs are virtually uncorrelated, which we
confirmed by computing the normalized cross correlation p of
both data sets, which is p = 0.002. Our results are in line with
the findings by Holcomb et al. [21] who also suggest using the
remanence decay behaviour as a source of unique information
to identify individual devices. Figure 9 also confirms the same
conclusion, i.e. the transition voltages of the two ASICs are
uncorrelated and the normalized cross correlation p of both
data sets p = 0.0012.

E. Time-Based vs. Voltage-Based Attacks

The evaluation results in the previous sections confirm
results in the literature [19], [27] and show that the voltage-
based approach is less sensitive to temperature’ Variations,
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TABLE I
COMPARISON OF VOLTAGE-BASED AND TIME-BASED REMANENCE

Remanence control Voltage- Time-

based based
Bits stable at 1 44.82% 43.45%
Bits stable at 0 45.14% 41.86%
Metastability rate (worst case)  10.04% 14.69%

making it potentially more effective in an attack than the
time-based approach. Our results are summarized in Table I,
which shows that using the voltage-based approach results
in a significantly lower metastability rate than using the
time-based approach. This means that a voltage-based attack
may still be effective in situations where the time-based attack
fails. An interesting observation is that the set of metastable
SRAM cells in voltage-based approach shows 28% improve-
ment over time-based approach, which indicates that most of
the inaccuracies in our experiments are due to the limitations
of our test setup and not due the physical properties of the
SRAM PUF itself.

V. EFFECTIVENESS OF THE ATTACK
IN PRACTICAL SETTINGS

To investigate the effectiveness of our attack in a practical
setting, we created a standard implementation of an SRAM
PUF-based authentication scheme. This scheme uses a stan-
dard secret-key-based challenge-response protocol and derives
the underlying key from the PUF response using a basic
repetition code [28].3 In more detail, during the enrollment
of the device, the memory addresses of those 128 SRAM
bytes whose PUF state is highly biased (i.e., that have a
Hamming weight of 0, 1, 7, or 8) are stored as the public
helper data, each representing one bit of the secret key stored
in the PUF. The key is reconstructed from the PUF as follows.
The 128 SRAM bytes whose addresses are stored in the helper
data are read from the SRAM and the value of each bit in
the key is set as the result of a simple majority voting over
all bits in the respective byte to ensure that the 128 bits key
derived from the 128 highly-biased SRAM bytes are stable.
Even though the bits participating in the majority voting (and
their associated transition times and voltages) are spatially
averaged, there is still a single point of time/voltage for each
output bit where a majority of its constituent bits transit to
the PUF state. The bit-flips before this transition period are
absorbed by the error-correcting code and can be ignored by
the attacker. This is a simple example of the general behaviour
of error correcting codes, where the output symbol changes
only after a sufficient number of errors has accumulated.
The resulting secret key K is then used in the secret key-
based challenge-response protocol, i.e. X = MACk(Q),
where MAC is a Message Authentication Code. The attack
is as in Section III-D. However, we use an optimized Finder
algorithm (Definition 6) that only searches for key candidates
with a Hamming distance less than 10 bits from the previous

3We omit dBe linear encoding used in [28] and the privacy amplification
typically uséd in PUF-based key storage since it has no effect on our attack.
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key, which significantly improves the performance of the
attack compared to the trivial Finder described in Defini-
tion 6. The overall running time of the attack is estimated as
2336 MAC operations. Considering that modern CPUs can per-
form 23! AES operations per second [29], [30], the total cost
of the attack on an AES-based MAC is 2?>¢ CPU-seconds,
or approximately two CPU-months. The attack can easily be
parallelized by testing multiple key candidates simultaneously,
making the attack even more practical for moderately-funded
adversaries.

VI. IMPACT OF OUR ATTACK AND COUNTERMEASURES
A. Impact

Our results in Section IV show that by carefully controlling
the power-off times or the supply voltage of the SRAM PUF,
one can reliably control the number of metastable bits as
required by the attack described in Section III. This means
that, even if we use the trivial finder algorithm discussed in
Definition 6, common lab equipment and the less effective
time-based approach to control the remanence decay in
the SRAM, we can recover a 216-bit SRAM PUF derived
key by making at most 2%* calls to the Dev algorithm
(cf. Definition 4). Using the voltage-based approach with
the same finder algorithm and equipment as in the time-
based approach, we can extract the response of a 315-bit
SRAM PUF derived key in the same time. Further, our
results in Section V show that, depending on the post-
processing of the PUF responses, our attack can also be
applied to systems using larger PUFs. Hence, it is problematic
to overwrite the memory of an SRAM PUF with a known
value, which, however, is required when the PUF memory
is also used for other purposes, as suggested in many prior
works [1], [7], [10], [14]-[17]. This particularly holds for
resource-constrained devices with only small amounts of
SRAM, such as RFIDs or medical implants [7], [10], [14],
where SRAM PUFs without shared memory are impractical.

B. Improving the Attack

One approach to lower the complexity of our attack is using
more accurate equipment that allows a very precise control of
the remanence decay in the SRAM using the voltage-based
approach, which limits the number of metastable bits and the
complexity of the finder algorithm (cf. Definition 6).

Furthermore, several optimizations of the finder algorithm
are possible: The order in which the individual SRAM cells
transition from their initial state to their PUF state is dif-
ferent for the time-based and the voltage-based approach
(cf. Section V). Further, in some scenarios the adversary
may be able to control the initial state of the SRAM. This
results in four different ways to observe the decay behavior
of each SRAM cell and allows the adversary to choose the
way with the lowest metastability rate for his attack, which
can significantly reduce the complexity of the naive finder
algorithm (cf. Definition 6).

Another approach to improve the complexity of the finder
algorithm is to take advantage of the algorithms used by the
device to process the PUF responses (cf. Section V). These
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algorithms typically include an error correction mechanism
such as a fuzzy extractor [31], which helps to maintain
the consistency of the PUF response to the same challenge
under different environmental variations affecting the under-
lying physical object. Due to this error correction the device
response changes only when the error correction mechanism
fails to correct state M which differs from MPUF with more
than ¢ bits, which the error correction mechanism can handle.
Hence, the finder algorithm needs to consider only one single
candidate of each codeword class. This can either be done
explicitly by considering the structure of the error correcting
code or by casting the problem as an optimization problem
and using an optimizer [32].

C. Countermeasures

There are several countermeasures that prevent our attack
by breaking the underlying assumptions but that are
impractical in low-resource scenarios such as RFIDs and
sensors [7], [10], [14]. One approach to prevent the attack
described in Section III is using an additional memory that
can only be accessed by the PUF. However, this contradicts
the idea of using the existing memory of the device and sig-
nificantly increases implementation costs. Another approach
is to wait until any value stored in the memory has decayed
before reading the PUF response. However, this requires the
device to have some notion of time and increases the boot time,
which can be problematic in some applications. Further, the
attack can be prevented by designing the algorithms processing
the PUF response such that the device behavior for different
start-up states is indistinguishable by the adversary. However,
this might imply the use of complex cryptographic primitives
for authentication schemes that exceed the capabilities of
resource-constrained devices for which PUFs with shared
memory have been proposed [7], [10], [14].

VII. CONSTRUCTIVE USE OF REMANENCE DECAY
A. Device Authentication

The remanence decay behavior can be used to authenticate
an SRAM to some verifier. Specifically, using the same
approach as in our attack, a verifier could force the SRAM
into a partially reverted state by, e.g., writing some value to
the SRAM and then powering the device off for a carefully
controlled amount of time. Since the verifier knows the (secret)
PUF state of the SRAM and the decay behavior of the
genuine device, he can determine the partially reverted SRAM
state and check whether it matches the expected state of
the SRAM to be authenticated. Care must be taken that this
additional functionality does not expose the device to our
attack, for example by requiring that the verifier successfully
authenticates to the device before being allowed to write to
the SRAM.

Note that, it is much more difficult to clone such an SRAM
PUF since the clone must emulate the SRAM decay behavior,
which requires the clone to contain a time-keeping mechanism
that raises its costs. Our results suggest that for an SRAM of
size n bits there are log(n!) bits of entropy encoded in the
order at which individual SRAM cells revert to their PUF
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state. However, further evaluations are needed to assess the
practicality of this approach, in particular the temperature-
dependency and the effect of aging on the decay behavior
must be investigated.

B. Improving the TARDIS Time-Keeping Algorithm

The use of SRAM remanence decay has been proposed as
a time-keeping mechanism for clockless low-power devices,
such as passive RFID tags [19]. This mechanism, called
TARDIS, allows a clockless device to estimate how much
time has passed since its last power-down and aims to impede
oracle attacks. TARDIS consists of two main elements: the
Init algorithm which sets all SRAM cells to a fixed value (all
ones) and the Decay algorithm which determines how long
the device has been without power based on the number of
ones that are still stored in the SRAM. These two operations
consume a non-negligible amount of power and add 15.2 ms
to the start-up time of the device.

Our observations on the behaviour of remanence decay
can be used to dramatically improve the performance of the
TARDIS system. As our results show, the transition time
of each bit is uniquely determined by its individual DRV.
By profiling the SRAM in an offline phase, we can thus
determine the order in which the SRAM cells return to their
PUF state and store this ordering in the non-volatile memory
of the device. Now, if we observe that a certain group of bits
has reverted to its PUF state, we can infer that all bits which
have a lower transition time have also returned to their PUF
state. Similarly, if a certain group of bits is still in its initial
state then all bits that have a longer transition time are also
still in their initial state. Knowing this ordering, we can replace
the linear-time Decay algorithm of [19] with the well known
binary search algorithm that takes logarithmic time. To deal
with metastability, the algorithm should sample not only one
but a group of bits for each transition time period.

If the device needs to detect only whether or not the entire
SRAM has returned to its PUF state, another improvement
is possible that dramatically decreases the running time of
both the Init and the Decay algorithms from linear time to
constant time. In this case, both algorithms need only to access
those SRAM cells that are known to be the last to revert to
the PUF state. Since most of the applications described in [19]
can be adapted to use this improvement, our results enhance
the applicability of the TARDIS system to practical scenarios.
We stress that the SRAM used by the TARDIS scheme cannot
be used as an SRAM PUF since its content is well-known in
this case.

VIII. RELATED WORK

While the impact of remanence decay on the random-
ness that can be extracted from SRAM cells and the
reliability of SRAM PUFs has been discussed in the
literature [5], [23]-[25] it has never been used as a side channel
to attack SRAM PUFs. In fact, some papers investigate side
channel attacks in the context of PUFs, mainly focusing on
the side channel leakage of the algorithms processing the
PUF response [33], [34] or proposing combinatihs of side
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channels attacks on PUFs with modeling or fault injection
attacks [35]-[37]. The impact of environmental changes on
the repeatability of PUF response has been introduced as a
source of fault injection attack on arbiter and RO PUFs in [38],
and current-based PUFs in [39], while the same impact has
been evaluated in [30] and [31] for memory-based PUFs, how-
ever no results on fault injection attacks have been reported.
In contrast, to the best of our knowledge, we present the first
cloning attack that injects faults into the SRAM PUF and
uses the data remanence effect in SRAM as a side channel
to recover the (secret) PUF response.

It has been shown that SRAM PUFs can be emu-
lated and physically cloned. By physically inspecting the
SRAM hardware the adversary learns information that helps
emulating the PUF [40]. Further, it has been shown that after
learning the response of an SRAM PUF pj, a focussed ion
beam (FIB) can be used to modify the circuits of the SRAM
cells of another SRAM PUF p» so that po shows a very similar
challenge/response behavior as p; [41].

Data remanence in DRAM has been used to extract security-
sensitive data from the random access memory of PCs and
workstations [18]. While these attacks aim to recover some
data that has been written to an unprotected memory, the goal
of our attack is to recover the start-up pattern of an SRAM
PUF that is typically protected by some kind of access control
mechanism.

IX. CONCLUSION

We demonstrated a simple non-invasive cloning attack on
SRAM PUFs using remanence decay as a side-channel and
validated its feasibility on 8 KBytes SRAM PUFs instantiated
on two 65 nm CMOS devices. Our attack and evaluation is
general and can be optimized for concrete systems. Our evalu-
ation results show that even without optimizations, attacks on
small SRAM PUFs are feasible using common lab equipment.
We discussed countermeasures against our attack and suggest
using remanence decay to improve the cloning-resistance of
SRAM PUFs. We showed how our evaluation results can be
used to improve the performance of TARDIS [19], a time-
keeping mechanism for clockless devices.

We investigated both the time-based approach and the
voltage-based approach to control the data remanence decay in
the SRAM. Our results show that the voltage-based approach
is more promising than the time-based approach. Directions for
future work include the design of non-trivial finder algorithms
that, e.g., exploit the properties of the algorithms used by the
device processing the PUF response.
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ABSTRACT

Physically Unclonable Functions (PUFs) are still considered promis-
ing technology as building blocks in cryptographic protocols. While
most PUFs require dedicated circuitry, recent research leverages
DRAM hardware for PUFs due to its intrinsic properties and wide
deployment. Recently, a new memory-based PUF was proposed that
utilizes the infamous Rowhammer effect in DRAM. In this paper, we
show two remote attacks on DRAM-based PUFs. First, a DoS attack
that exploits the Rowhammer effect to manipulate PUF responses.
Second, a modeling attack that predicts PUF responses by observing
few challenge-response pairs. Our results indicate that DRAM may
not be suitable for PUFs.
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1 INTRODUCTION

Physically Unclonable Functions (PUFs) have been considered a
promising technology to establish trust anchors in embedded sys-
tems with minimal hardware requirements. PUFs allow for utilizing
inherent manufacturing process variations to extract unique but repro-
ducible secrets/identifiers, which are generated through a challenge
and response process. The responses directly depend on the unique
physical properties that is implicitly introduced during production.
However, the uniqueness property is not sufficient to ensure security:
the response to a particular challenge must also be unpredictable,
i.e., it is required that the responses for a series of PUF challenges
look like the output of a random function to an observer. PUFs have
been proposed as tamper-evident building blocks for various use
cases such as for authentication, key-derivation, and device identifi-
cation [4, 9, 18].
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So far many different PUF implementations in hardware have
been proposed and evaluated over the recent years [1, 6, 18]. In
particular, PUFs based on physical properties of memory cells in
SRAM (Static Random Access Memory) and DRAM (Dynamic
Random Access Memory) are very popular since they are cost-
effective and widely deployed on many platforms. The declining
costs of DRAM hardware further motivates recent research efforts on
utilizing DRAM for PUFs, e.g., by measuring the decay rate [22, 23]
or the inherent startup-value [20] of memory cells. In the following
we focus on DRAM PUFs.

While DRAM hardware is highly standardized, cheap, widely
used, and commercially available as off-the-shelf components, it
also exhibits a number of reliability problems: Adverse conditions
such as higher temperature or electromagnetic radiation can lead to
bit errors in the information stored digitally on the hardware [10—
12]. Moreover, researchers demonstrated that DRAM hardware is
in fact subject to bit errors that are reproducable purely from soft-
ware under completely benign operating conditions. In particular,
several independent studies found that frequently accessing phys-
ically co-located memory cells leads to bit flips in adjacent mem-
ory cells [7, 8]. This effect, called Rowhammer, was subsequently
shown to be exploitable by remote adversaries to undermine de-
ployed security mechanisms on computing platforms using DRAM
hardware [13, 17, 21]. The focus of the literature so far has been on
Rowhammer-based attacks and defenses [2, 3, 7], however, recently,
at HOST 2017 Schaller et al. considered a new paradigm to leverage
the Rowhammer effect in DRAM to construct memory-based intrin-
sic Rowhammer PUFs (RH-PUFs) [16]. They propose to extract a
unique device fingerprint from DRAM locations that are subject to
reproducible bit flips.

Goals and Contributions. We revisit the security of DRAM PUFs
and demonstrate two remote attacks on (Rowhammer) DRAM PUFs,
proposed by Schaller et al. [16]. First, we show that an adversary
observing few challenge-response pairs can predict future responses
with high confidence, violating the unclonability property. Second,
we present a Rowhammer-based Denial of Service (DoS) attack by
tampering with the responses of DRAM PUFs. Our attacks work
completely in software, i.e., without any physical access to the
system. We implemented and evaluated our attacks in a real-world
setup and in different scenarios. Our experimental results suggest
that DRAM hardware might in fact not be a suitable candidate for
secure PUF implementations. To summarize our contributions are:

e We present a remote, Rowhammer-based Denial-of-Service
(DoS) attack against DRAM PUF constructions.
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Figure 1: A DRAM bank is an organization of memory cells
in a grid of columns and rows with a dedicated row buffer.
Rowhammer exploits electro-magnetic coupling effects due to
the increased chip density by activating Aggressor (A) rows that
are physically adjacent to a Victim (V) row to influence its con-
tents without accessing it.

e We present a modeling attack against the Rowhammer PUF
proposed by Schaller et al. [16] that completely breaks its
unclonability property.

e We implement and evaluate both attacks experimentally using
a Pandaboard ES B3'.

We would like to stress that our attacks are not limited to RH-PUF
but concern DRAM PUFs in general. To this end, we discuss both
of our attacks with respect to startup-value-based and decay-based
DRAM PUFs in Section 6.

2 THE ROWHAMMER EFFECT IN DRAM

Modern DRAM hardware is structured hierarchically: the hardware
unit itself is connected to the memory controller through one or
multiple channels. The DRAM chips on the module consist of a
number of banks which contain the memory cells. A bank is laid out
in a grid of columns and rows, as shown in Figure 1.

DRAM rows contain neighboring memory cells, whereas columns
hold adjacent cells. Each memory cell comprises a capacitor and
a transistor, where the state of the capacitor is used to store an in-
dividual bit. Memory accesses always happen row-wise, i.e., read
operations read out the cells of the entire row. The row data is re-
trieved and stored in a row buffer, before being transferred to the
memory controller. However, read operations are destructive since
retrieving bits from a row drains the capacitors of the correspond-
ing memory cells. For this reason, a read operation also triggers a
memory refresh of the current row by writing the content of the row
buffer back to the drained cells of the current row.

The Rowhammer bug occurs during this write-back operation
when accessing co-located rows of the same bank: frequently trigger-
ing (or hammering) an aggressor row (A) that is physically located
on top of the victim row (V) affects the cells of the victim row due to
electromagnetic coupling—although these cells are never accessed
directly. Amplified by the shrinking feature size of the manifactured

! https://svtronics.com/EVM/panda
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DRAM chips, several studies found Rowhammer to be a wide-spread
reliability issue, and conclude that Rowhammer seems to be an in-
herent design problem of DRAM chips as all vendors and even ECC
DRAM modules are affected [7, 8].

3 DRAM PUFS & APPLICATIONS

RH-PUFs. While prior research on Rowhammer focused on its
negative effect to illegitimately alter memory contents and break
system’s security mechanisms, Schaller et al. [16] investigated the
properties of the Rowhammer effect in different DRAM chips as
a PUF candidate. The RH-PUF consists of physically adjacent
memory rows, where victim rows are located between aggressor
rows. The RH-PUF has the following parameters: PUF,, 4, to
indicate the starting address of the PUF in the memory, PU F; ¢
refers to the number of victim rows and RHyype defines the
order of victim rows and aggressor rows in a RH-PUF. RHyype
can be either double-sided, referred to as DSRH, in which each
victim row is located between two aggressor rows as shown in
Figure 1, or single-sided, SSRH, in which two victim rows are
located between two aggressor rows. These parameters can be used
to define a RH-PUF instance in the DRAM memory such that
PUFRry = PUFqq4y, PUF; ¢, RHiype. The challenge to the
RH-PUF is the duration of the Rowhammer process RH¢;y, . The
idea of the RH-PUF, is to hammer the aggressor rows in the memory
for the time defined by RHy;,,, e and then measure the changes in
the victim rows. These changes, the indices of bit flips, constitute
the RH-PUF response and are unique per memory chip. Thus, the
response of a RH-PUF instance is a set of integers, i.e., indices of
bit flips, rather than a binary value as in conventional delay-based
PUFs [22]. As DRAM cell consists of a transistor and a capacitor,
binary information is stored in a DRAM cell in the form of a charge
on the capacitor. However, capacitors lose their charges gradually
over time. Therefore, a periodic refresh is required to retain the
charge stored in the capacitor, otherwise, the DRAM cell decays
over time, i.e., loses its stored value. Note that periodic refresh of
DRAM cells in the PUF region is disabled during RHy;y,¢. This
allows for DRAM cells in the victim rows to decay over time, thus
resulting in more bit flips. The RH-PUF falls under the decay-based
DRAM PUFs category (more details in Section 7), therefore, it can
be deployed in authentication protocols [23] as shown next.

Authentication Protocol. Xiong et al. [23] proposed to use the time-
dependent decay characteristics of DRAM PUF:s for authentication
in a passive adversary model where the attacker has no physical
access to the device. An important requirement or their DRAM
PUFs is that for a series of PUF challenges the decay times RH e
must be strictly increasing. This is due to the fact that the security
of the protocol relies on the number of new bit flips between the
two PUF responses. Therefore, a challenge must be chosen such that
guessing the locations of new bit flips is computationally infeasible,
even if the attacker knows the previous responses [23]. When decay-
based DRAM PUFs are used in authentication protocols, similarity
of PUF response m with the reference response 7 stored in the
verifier’s database is measured using the Jaccard similarity J such
that:

I(rom) = M)
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The authentication protocol succeeds if J (7", m) > Jihreshs
where Jipesh 18 defined for each PUF based on the noise of its
measurements.

Key Derivation. Decay-based DRAM PUFs can be deployed in key
derivation schemes [23]. A PUF response is typically transformed
by a fuzzy extractor scheme from noisy non-uniformly distributed
secret into a stable high-entropy key [5]. Fuzzy extractor corrects
noisy PUF responses using error correcting codes and amplifies its
randomness to generate a secret key. RH-PUF responses exhibit a
maximum noise of 5%, which makes them suitable for key derivation
schemes. Given the lower bound entropy of RH-PUF (0.192 per
DRAM cell), a 128-bit key can be generated using a PU F; . of
only 85 Bytes [16].

4 OUR ATTACKS ON DRAM PUFS

In this section we demonstrate our attacks on the RH-PUF [16]. Our
attacks are feasible in the same adversary model as the RH-PUF,
i.e., the memory region is exclusively allocated for PUF usage and
cannot be accessed by other processes.

4.1 DoS Attack on the RH-PUF

As demonstrated in [16] cryptographic keys can be derived from the
RH-PUF response caused by hammering PUF’s (aggressor rows)
for a fixed amount of time. As depicted in Figure 2 our DoS attack
aims at maliciously modifying the PUF response (V) by hammering
the borders of the RH-PUF region (A). Our attack is carried out
without accessing the RH-PUF itself (black in Figure 2), i.e., by
repeatedly accessing physically adjacent rows (white in Figure 2)
above and below the PUF region, while simultaneously querying
the PUF. Consequently, our malicious process can influence the
RH-PUF response.

In principle, RH-PUFs can be queried at run time within the kernel
module by allocating consecutive chunk of memory for the RH-PUF,
disabling DRAM periodic refresh and selectively refreshing critical
code sections while measuring RH-PUF response. For example,
assuming a cryptographic key that is derived on-demand by RH-PUF
is used at some point to encrypt sensitive data. Then, an adversary
can perform this attack, when the PUF is queried again to decrypt the
data. Related work already demonstrated how to exploit physical co-
location in practice [13, 17, 21]: Since there is a non-linear physical-
to-DRAM mapping between the physical addresses and the physical
location in the DRAM module, a malicious process with knowledge
of the mapping can trick the system’s memory allocator into co-
locating its memory adjacent to the PUF region. This attack results
in a different key, as its seed is based on a faulty RH-PUF response,
thus the user is prevented from retrieving the original data. This
attack can also interfere with DRAM PUF-based authentication
protocols causing the prover to be blocked from authenticating to
the verifier. In Section 5.2, we present evaluation results of the DoS
attack on several variants of the RH-PUF.

4.2 Modeling Attack on the RH-PUF

In [23], Xiong et al. demonstrated that DRAM-based PUFs can
be queried at run time and utilized in authentication protocols in a
passive adversary model, i.e., the attacker can only observe CRPs

\ Row Buffer |

Nl

Figure 2: DoS Attack on the RH-PUF [16]: memory rows above
and below the PUF region are accessed by the malicious pro-
cess.

exchanged between the verifier and the prover. As explained in
Section 3, challenges must adhere to certain criteria such that the
probability of correctly guessing the responses is smaller than 27128
This implies that the difference in bit flips between two successive
responses has to achieve a lower bound, denoted as €p;; 5, to fulfill
the security requirements. Therefore, if an adversary already knows
the locations of bit flips in the previous response, it is computation-
ally infeasible to guess the locations of the new bit flips bits in the
following response, assuming that locations of the new bit flips have
a uniform distribution. Modeling attacks of decay-based DRAM
PUFs under these assumptions is challenging as the attacker has no
access to PUF hardware and can observe but not chose CRPs, as
in conventional modeling attacks on decay-based PUFs. However,
a modeling attack is still feasible, as we show that the assumption
of randomly-distributed bit flips does not hold true in practice. In
particular, we observe that bit flips in two successive responses of
RH-PUF are correlated. In other words, in one response, bits are
more likely to flip near to bits that have already flipped in a previous
response. Therefore, predicting the locations of next bit flips in the
RH-PUF response is possible when enough CRPs are observed. Con-
sequently, the RH-PUF can be modeled with reasonable probability.
In Section 5.3, we present evaluation results of the modeling attack
on several variants of RH-PUF.

5 EVALUATION

5.1 Setup

We implemented our attacks and evaluated the RH-PUF on a Pand-
aboard ES B3. The board has a TI OMAP 4460 System-on-Chip
module with 1GB DDR2 memory, which is configured such that
each memory row consists of 4KB. Our attacks are based on the
open-source implementation of the RH-PUF [16] which is avail-
able online. In our experiments, we analyzed several RH-PUF in-
stances with PU Fg;,. = 4KB (1 row), 8KB (2 rows), 16KB (4
rows) and 32KB (8 rows) with RHyyype set to single-sided (SSRH)
or double-sided (DSRH). We analyzed the RH-PUF measurements
using Matlab running on an Intel Core i7 desktop machine.
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Figure 3: Histogram of J;,,;,, values for three PUF instances before and after double-sided DoS attack using 20 measurements with
PUFy;,. =4KB, 8KB and 16KB, RH¢yp.= SSRH and RHy;,c = 120s

5.2 DoS Attack on the RH-PUF

Our Denial of Service (DoS) attack can be launched remotely at
run time by a malicious process that has simultaneous access to
physically adjacent memory locations to RH-PUF memory. For our
prototype implemention of the DoS attack we used the RH-PUF
source code, which modifies the popular boot loader U-Boot [16].
We evaluated our attack on top of the RH-PUF, such that additional
rows above and/or below the PUF region are hammered simultane-
ously while querying PUF responses. We present two variants of
our DoS attack assuming that the malicious process has access to:
i) one neighboring row above the PUF region, which we refer to as
the SSRH DoS attack and ii) two neighboring rows above and below
the PUF region, referred to as the DSRH DoS attack as shown in
Figure 2. The goal of our attack is to increase the noise in the PUF
measurements and reduce its robustness, such that the PUF can no
longer be identified or used for key derivation.

To measure RH-PUF robustness, the Jaccard index Jjnrq 1S
used to reflect similarity between two PUF responses for the same
challenge (see Equation I). When J;,,1q = 1, it reflects that the
responses are identical. As indicated in [16], RH-PUF achieves high
robustness with a minimum of Jyp,,.sp, = 0.9454 and exhibits a
maximum noise of around 5% that can be corrected using standard
fuzzy extractors in key derivation schemes [5]. We first measured re-
sponses of several RH-PUF instances, i.e., with different PU F; .,
RHyype and RHyjp e values. Then, we performed the DoS attacks
on these RH-PUF instances and collected their responses. In both
experiments, each response was measured 20 times. Figure 3 shows
the similarity index J;;,¢yq for the three RH-PUF responses before
and after the attack. On the right-hand side of the figure, histograms
of similarity index values J;, ¢, for three SSRH RH-PUFs before
the DoS attack are shown. Our results are on par with the results
in [16]. On the left-hand side of Figure 3, the effect of our DoS
attack on the J;, ¢ values of the same three RH-PUF instances is
shown. Our attacks shifted the similarity index of PUF responses
Jintre away from the threshold value J;j,,05p and introduced a
maximum of 80% noise to the PUF responses, which cannot be
tolerated even with the use of more advanced fuzzy extractors. As
indicated by the results in Table 1 and Table 2, our DoS attack works
at best on RH-PUF with small sizes. For example, in the second
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Table 1: SSRH DoS attack on several RH-PUF variants

Rthpe PUFg;ze RHiime

60s 120s 180
SSRH I-row PUF 0.5 0.78 0.853
SSRH 2-row PUF 0.79 0.85 0.76

SSRH 4-row PUF 046 0.68 0.88

DSRH I-row PUF 0.67 0.53 0.69
DSRH 2-row PUF 089 09 0.88
DSRH 4-row PUF 0.89 097 0.97

Table 2: DSRH DoS attack on several RH-PUF variants

PUFgjze RHiime

60s 120s 180
SSRH I-row PUF 0.6 0.84 0.88
SSRH 2-row PUF 033 0.79 0.85

SSRH 4-row PUF 037 0.54 0.73

RHype

DSRH I-row PUF 033 02 0.56
DSRH 2-row PUF 085 0.85 0.92
DSRH 4-row PUF  0.94 096 0.88

row of Table 2, using DSRH DoS attack, the adversary is capable
of reducing the J;,;rq of a DSRH RH-PUF of 4KB to 0.33, 0.20,
and 0.56 (i.e., < 0.9454 = Jypesh [16]) when hammered for 60s,
120s and 180s respectively. This is mainly due to the close proximity
of the DoS aggressor rows to more PUF victim rows, since victim
rows in the middle become less vulnerable to our attack when the
RH-PUF size increases.

5.3 Modeling Attack on the RH-PUF

Our modeling attack on the RH-PUF works under the restriction that
an attacker can only observe CRPs exchanged in the authentication
protocol. Hence, we perform the following steps: i) measure RH-
PUF CRPs for a RH-PUF instance, ii) pick valid CRPs that adhere
to the criteria defined in [23] as training set from the collected CRPs,
and iii) run an interpolation algorithm to predict future responses
based on the training set and verify its accuracy. We use standard
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Figure 4: Visual representation of the evolution of bit flips in
a bank (charged cells are depicted in black, uncharged cells in
white pixels). The first measurement is displayed on top, the
second measurement on the bottom.

interpolation algorithms for two reasons: we aim to show that the
attacker does not require to craft a dedicated algorithm to perform
the attack and that indeed publicly available interpolation algorithms
can be utilized to easily launch our attack.

The basic idea is best explained in Figure 4: it depicts two subse-
quent measurements of the same location in DRAM. Black pixels
represent memory cells that are set to 1, white pixels represent cells
that are set to 0. We made two observations, (1) many bit flips stabi-
lize over time, and (2) additional bit flips tend to appear around exist-
ing clusters. We tested several interpolation methods that are usually
used for the manipulation of digital imagery. Among them Piece-
wise Cubic Hermite Interpolating Polynomial (PCHIP) achieved the
highest prediction rates. Therefore, we use the PCHIP algorithm to
predict future bit flip locations by interpreting the memory contents
obtained in our measurements as binary images. For each RH-PUF
instance, we first measured 335 CRPs with 2s steps between each
two challenges in the range of 30s to 700s. We observed that within
this time range the total number of bit flips in each response are
less than 2KB. Then, for each valid challenge, we calculated €4 ¢
based on the number of bit flips in its response to choose the next
valid challenge from the available CRPs, such that the probability
of correctly guessing the next response is smaller than 27128 por
the same RH-PUF instance, €p,;+¢ values are different based on the
value of the authentication threshold Jyp,,.csp, Which defines if a
measured response is accepted based on its similarity to a reference
response, i.e., Jintra > Jihresh- We observed that the smaller
this authentication threshold is, the larger €;,;;s values become. 2
After collecting valid CRPs in this way, we used them as training
set for our modeling algorithm. For modeling the RH-PUF behavior,
we used an interpolation algorithm in Matlab. We first interpolate
CRPs in between two valid CRPs. While these interpolated CRPs
are not used for authentication, they allow our algorithm to identify
bit flip cluster regions in the DRAM. We then extrapolate from these
values by predicting future responses with high confidence as shown
in Table 3. In Table 3, each row shows the minimum number of
required CRPs based on the authentication threshold Jp,,-¢sp, and
RHyype to achieve a prediction rate that is higher than Jyp,yc s, -

6 DISCUSSION

As our evaluation results show both attacks succeed and completely
undermine the security guarantees of the RH-PUF construction.

2Due to space limit we refer the reader to [23] for more details about €, s calculations.

Table 3: Modeling 8-row RH-PUFs

RHyype Required CRPs  Jypreqp  Prediction rate

DSRH 10 0.6 0.75
DSRH 11 0.7 0.8
DSRH 14 0.8 0.88
SSRH 12 0.6 0.73
SSRH 14 0.7 0.79
SSRH 17 0.8 0.83

Furthermore, our attacks are practical and work completely from
software, i.e., assuming only a remote adversary. There are two main
consequences: first, the DRAM-based RH-PUF responses are subject
to bit flips by accessing memory that is physically co-located. This is
possible even under a remote adversary model, since the attacker can
force physical co-location of her memory to the PUF region. While
previous defensive work demonstrated how to prevent user-space
attackers from co-locating memory with kernel-space memory [3],
adopting such a physical isolation policy in the context of PUFs
is difficult, as the memory of the PUF region might be managed
by a different allocator than the attacker’s memory. Over-allocating
system memory for the PUF region such that a large number of rows
surrounds the actual PUF region might be a possible strategy. How-
ever, this comes at the cost of blocking a large amount of memory
resources and will affect the performance of the system. Another
way could be to prevent other processes from running on the device
while measuring the PUF response. However, this effectively locks
the device during PUF usage. The second consequence is that the
RH-PUF construction in its current design is predictable, as our
modeling attack succeeds with high confidence. The reason is that
vulnerable DRAM cells are not distributed uniformly but contrar-
ily tend to form clusters on the module. Hence, correlating bit flip
locations physically is feasible. Since this is due to the intrinsic prop-
erties of DRAM hardware, all DRAM-based PUF implemenations
assuming uniform distribution (in time or space) of decay, startup
value, or bit flips are affected and must be considered inherently
insecure.

7 RELATED WORK

Recently, research work showed that a PUF-behavior can be
found in DRAM memory [15]. Since then, several DRAM-based
PUFs have been proposed and evaluated. They differ in which
DRAM characteristics they exploit and their accessibility. In the fol-
lowing, we go briefly over the different types of DRAM-based PUFs.

Start-up DRAM PUFs. Similar to SRAM memory, DRAM
memory exihibts a unique behavior that relies on the startup
tendencies of DRAM cells [19]. When powering up DRAM, the
capacitors in DRAM cells show different inclinations towards either
a 0 or a 1 due to uncontrollable process variations. Hence, the
startup values of DRAM cells can be used as a unique fingerprint.
However, in practice, it can only be evaluated at system power up.

Decay-based DRAM PUFs. As capacitors lose their charges over

time, which is referred to as decay time, DRAM cells require pe-
riodic refresh in order to retain their values. The DRAM memory
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controller performs the periodic refresh at a vendor-defined rate,
which is usually 32ms or 64ms. If periodic refresh is disabled, then,
some DRAM cells decay to 0, while others decay to 1. Exploiting the
unique decay rate of DRAM cells to construct a unique identity has
also been proposed for identification and key storage in FPGAs [14]
and in comoditiy devices at run time [23]. Extracting Decay-based
PUF response implies disabling the refresh cycle of DRAM cells.
However, disabling periodic refresh for the whole memory can lead
to system crash, while partially disabling periodic refresh for a spec-
ified memory region is not possible. Therefore, several techniques
were proposed to cope with this issue. One solution is to perform a
selective DRAM refresh. In which periodic refresh is disabled and a
read-loop is used to refresh the contents of the whole memory except
the PUF region.

8 CONCLUSION

Recent research proposed to leverage DRAM hardware for the
construction of PUFs. Our findings show that DRAM-based PUF
implementations are subject to remote attacks, such as Denial of
Service. Futhermore, a passive adversary can predict future DRAM
PUF responses by observing only few challenge-response pairs. Our
results show that DRAM hardware may in fact not be a suitable
candidate for the construction of secure PUF implementations.
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Abstract—PUFs are cost-effective security primitives that extract
unique identifiers from integrated circuits. However, since their intro-
duction, PUFs have been subject to modeling attacks based on machine
learning. Recently, researchers explored emerging nano-electronic tech-
nologies, e.g., memristors, to construct hybrid-PUFs, which outperform
CMOS-only PUFs and are claimed to be more resilient to modeling
attacks. However, since such PUF designs are not open-source, the
security claims remain dubious. In this paper, we reproduce a set of
memristor-PUFs and extensively evaluate their unpredictability property.
By leveraging state-of-the-art machine learning algorithms, we show that
it is feasible to successfully model memristor-PUFs with high prediction
rates of 98%. Even incorporating XOR gates, to further strengthen PUFs’
against modeling attacks, has a negligible effect.

Index Terms—memristor PUFs, machine-learning, modeling attacks.

I. INTRODUCTION

Physically unclonable functions (PUFs) are considered as an inno-
vative and cost-effective replacement for secure non-volatile memory,
e.g., EEPROMs, or expensive cryptographic hardware engines to real-
ize light-weight authentication as well as key generation and storage
[1]. Silicon-based PUFs leverage the uncontrollable manufacturing
process variation of integrated circuits (ICs) as a source of entropy to
derive a device-specific cryptographic key or unique identifier. Hence,
a PUF can be expressed as a black-box system that takes a challenge
as an input and returns a unique output, also called a response.

PUF classifications. Based on their input-output space, PUFs
are roughly classified into two broad categories, weak and strong
PUFs [1]. Weak PUFs can only process a limited number of unique
challenges and are mainly deployed in cryptographic key generation
schemes. On the other hand, strong PUFs possess a large number
of challenges such that, within a bounded amount of time, it is
infeasible to measure all challenge-response pairs (CRPs), making
them a perfect primitive for authentication protocols [1], [2]. The
security of PUF-based protocols/schemes relies on the security of the
underlying PUFs. Therefore, some properties should be satisfied in
PUFs: 1) uniqueness, the behavior of a PUF instance should be unique
among other instances of the same design, 2) unclonability, meaning
that even a PUF manufacturer cannot create two indistinguishable or
identical PUF instances, 3) unpredictability, PUF responses to unseen
challenges should be unpredictable even if some CRPs are known,
and 4) robustness or reliability, a PUF response to the same challenge
should be steady under different operating conditions.

PUFs under attack. Since their introduction, PUFs have been
heavily under attack whether to reveal PUF-based secret keys or
to emulate their behavior. The attacks range from physical attacks,
which can be further categorized into invasive/semi-invasive [3], [4]
and side-channel attacks [5], to software-based modeling attacks
where no physical access to the PUF is needed [6]. Software attacks
can be launched remotely and are cheaper than physical attacks that
require expensive tools. Therefore, software attacks can scale to a
large number of devices. Software-based modeling attacks leverage
machine learning (ML) algorithms to learn an accurate model of

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

the PUF under attack using a set of measured CRPs. Modeling
attacks mainly target strong PUFs with a large number of CRPs.
The PUF model generated by a ML algorithm is said to be accurate,
if it predicts responses of a PUF to unseen challenges with high
probability, thereby undermining the unpredictability property of
strong PUFs. Subsequently, the security of protocols building on
top of modeled PUFs is broken. During the last decade, novel
and improved PUF designs have been introduced but were later
successfully broken by modeling attacks [6], [7].

Deploying emerging technologies to secure PUFs. Due to promi-
nent and continuous progress in material science, novel nano-devices
have been developed for beyond-silicon applications. Examples of
such nano-devices include carbon nanotube field-effect transistors
[8], memristors [9], spintronic-logic devices [10] and many others.
Being compatible with CMOS manufacturing technology motivated
the deployment of such technologies in the fabrication of digital
circuits, e.g., non-volatile memory (NVM) architectures, such as
resistive random access memory (RRAM) and magneto-resistive
random access memory (MRAM). Such hybrid memory architectures
offer great advantages over CMOS-only technology due to their
higher density, lower footprint and lower power consumption. As
memristive devices have a stochastic nature when switching their
resistance [9], [11], in addition to their sensitivity to process variation,
they have been seen as an inherent source of entropy that can be
leveraged to build PUFs. Consequently, several so-called hybrid PUF
designs have been proposed, including strong PUFs [12]-[14] as well
as weak PUFs [15]. Most newly proposed strong PUFs (e.g., [13],
[14], [16]) are not thoroughly tested against most recent machine
learning algorithms, e.g., deep neural networks that are successfully
deployed to model complex functions in other fields of research [17].
Nevertheless, they are claimed to be resilient to modeling attacks.

Challenges. Hybrid PUF designs are mainly evaluated with circuit
simulators, since such nano-technologies, e.g. memristors, are not
industry-ready yet. In simulation, the PUF circuit and its components,
e.g., transistors, memristors, etc., are described using mathematical
functions. When a challenge is fed as an input to the PUF circuit, the
circuit simulator performs a step-wise evaluation of the mathematical
functions describing the PUF circuit to compute its response. While
many new hybrid PUF designs have been proposed, verifying their
properties and security guarantees is highly challenging. One reason
is that only the high-level description of the PUF designs and the
resulting security-relevant characteristics are published. However,
neither the resulting datasets (CRPs) nor the low-level details, e.g.,
the parameters’ values of the components, which are required to
reproduce the PUF’s intended behavior or CRPs, are published. The
lack of open specifications makes it difficult to verify the claimed
characteristics and resilience to machine learning attacks.

Our goals and contributions. The main motivation of this work
is to evaluate the security of hybrid memristor PUFs that are claimed
to be resilient to modeling attacks. Our contributions are as follows:
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o We reproduce a set of memristor-based PUFs [14], [16], [18]
and simulate their behavior to collect CRPs. We then verify their
resiliency to modeling attacks using the measured CRPs only,
i.e., as a black-box system. We achieve accuracy rates higher
than 95% using state-of-the-art ML algorithms and thus, break
the security guarantees of the tested PUFs.

We further evaluate XOR-based versions of the PUFs under test,
since more complex behavior could potentially result in stronger
PUFs. Subsequently, we show that even the XOR-based versions
can be successfully modeled with higher computational power.
We evaluate the effect of noise on the learnability of the PUFs.
Our results show that even when noisy responses are used for
model training, it is still feasible to obtain a model with a
prediction accuracy higher than 90%.

II. BACKGROUND: PHYSICAL UNCLONABLE FUNCTIONS

Silicon-based PUFs are noisy electronic circuits that are stimulated
with a challenge in order to produce a response. A PUF response
strongly depends on both the provided input and the innate physical
properties of the integrated circuit embedding the PUF. Based on
PUF’s underlying components and architecture, three major groups
of PUFs can be identified; delay-based PUFs, memory-based PUFs
and hybrid PUFs.

Memory-based PUFs, e.g., SRAM-based PUFs, which leverage
variations in the manufacturing process that lead to a mismatch of
transistors among SRAM memory cells [19]. Extracting device fin-
gerprints of non-volatile memory technologies were also introduced
in [15], [20]. Memory-based PUFs, however, can only produce a
limited number of responses, linear in the number of utilized memory
cells. Therefore, they are considered as weak PUFs and mostly
deployed in cryptographic key generation schemes [1].

Delay-based PUFs leverage delay difference between two identical
signal-propagation paths. The delay difference is caused by wires and
transistors mismatch, due to the process variation, in identical paths.
Two prominent examples of delay-based PUFs are ring-oscillator
PUFs (RO-PUFs) and arbiter PUFs (APUFs). Several APUF vari-
ants, e.g., the XOR-APUF [21] and the Feed Forward APUF [22],
have been proposed to strengthen APUFs against modeling attacks.
However, all APUF variants have been subject to successful modeling
attacks [6], [7], [23]. An APUF can generate an exponential number
of responses, 2", with respect to the number of switches n, which are
the main components of an APUF. Therefore, it is mainly deployed
in authentication protocols [1], [2].

Hybrid PUFs leverage the recently-emerging nano-devices, which
can be combined with conventional delay-based PUFs [12]-[14],
[24] promising great advantages (higher robustness and resilience
to modeling attacks) over CMOS-only PUFs due to the stochastic
behavior of such nano-devices. However, verifying their security
is challenging, since the proposed PUF designs are not publicly
available. Thus, making it harder for the research community to verify
their claimed characteristics. As a result, many newly proposed PUFs
are not thoroughly tested against state-of-the-art machine learning.

III. ADVERSARY MODEL

Our adversary model adheres to the established assumptions of
strong PUFs and modeling attacks [6], [7], [25]. The adversary is
able to collect a large number of challenge-response pairs (CRPs) in
plain text. Since this work deals with simulated PUF designs, we do
not consider/rely on any sort of physical attacks, e.g., side-channel
analysis, to support ML-based modeling attacks [26]. Moreover, we
assume a black-box model, i.e., our adversary receives only CRPs of
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the PUF under attack, no further information are obtained, e.g., the
mathematical model representing the PUF behavior. In our evaluation
in § VI-B, we differentiate between two types of adversaries. A weak
adversary with access to limited computational power, e.g., in form
of an off-the-shelf laptop, and an advanced adversary that has access
to more powerful computational resources with specialized hardware
to execute ML algorithms such as a Tensorflow laptop.

IV. TESTED MEMRISTOR-BASED PUFSs

Memristor Arbiter PUF [16], shown in Fig. 1, has a fairly simple
design compared to the classical APUF. It consists of two identical
chains of memristors connected in series, which are connected to
the input ports of a D Flip-Flop (D-FF) to define the response. Each
memristor is connected in parallel to an NMOS transistor that acts as
a switch. The gate of each transistor is controlled by one challenge
bit. When a challenge bit is 0, the transistor is turned off and the
corresponding memristor is included in the signal propagation path,
otherwise, the signal propagates through the transistor itself due to
its small R,, resistance. The workflow for the Memristor Arbiter
PUF is as follows: first, in the reset phase V;.s; and Vs are enabled,
while all switch-transistors are turned off, such that the memristors
are driven to random resistance states depending on their individual
properties obtained due to their stochastic switching behavior and
process variation. Then, in the challenge application phase, a pulse
is fired at the beginning of both memristor chains and the voltages at
the gates of all switch-transistors are applied simultaneously based on
challenge bits. In this phase, Ve, is also enabled to prevent voltage
levels at the inputs of the D-FF to rise. During the response evaluation
phase, Ve is disabled, allowing the signal to propagate in both
chains and be captured at the D-FF inputs to generate a response.
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Fig. 1. Memristor Arbiter PUF Design Proposed in [16].

RRAM Arbiter PUF [14], shown in Fig. 2 consists of two
identical chains of 1 transistor - 1 resistive device (1T1R) cells and
switches (similar to classical APUF) connected in series through
relays. Such that two 1TIR cells and a switch comprise one PUF
stage. Relays are used to disconnect 1TIR cells from the switches
during the reset of memristors. The RRAM Arbiter PUF works as
follows: all 1T1R cells are first reset to random high resistance states
(HRS). To query the PUF, the relays are switched on to connect
ITIR cells to the switches, which are controlled by challenge bits.
A read pulse of 0.1 v, which is applied at the BL lines of 1TIR cells
of the first PUF stage, propagates through the two established paths
and is captured at the inputs of a voltage comparator to generate
a response. The RRAM Arbiter PUF design is more complex than
Menmristor Arbiter PUF design and is, as our results in § VI-B show,
harder to break.

Memristor RO-PUF (mrPUF) [18], shown in Fig. 3, consists
of a nanoscale N x M crossbar array of memristors connected to
two identical Current-Mirror Ring Oscillators (CM-ROs). The rest of
mrPUF components are similar to a conventional RO-PUF; two N-
to-1 analog multiplexers, two counters and a comparator to capture
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Fig. 2. RRAM Arbiter PUF Design Proposed in [14].

the response. The idea of mrPUF is to translate memristors’ states
into frequencies through ROs. To query the mrPUF, addresses of two
memristors, i.e., a column number and two row numbers are specified.
Although a mrPUF can only generate a limited number of CRPs, the
authors proposed to deploy it in authentication protocols. In order to
achieve a higher number of CRPs and a more complex behavior we
also build an XOR-based mrPUF as we show in § VI-A.
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Fig. 3. mrPUF Design Proposed in [18].

V. DEPLOYED MACHINE LEARNING ALGORITHMS

We evaluate the unpredictability of the aforementioned memristor-
PUFs in § IV against several machine learning algorithms. We de-
scribe next a subset of the implemented machine learning algorithms
and elaborate why we use them during our evaluation in § VI-B.

Logistic Regression (LR) is a classification algorithm that was
heavily used earlier to attack the classical arbiter and XOR arbiter
PUFs [6], [25]. In newer strong PUF designs, LR was used to show
the resilience of the design against ML-based modeling attacks [16].
We use LR in our attacks to verify the results of the tested PUFs.

Ensemble classifiers (meta-algorithms) are a type of classifiers,
which were used to attack newer strong PUF designs that could not
be broken by LR [25]. We use ensemble classifiers to verify if they
can also be used to model memristor-PUFs. In ensemble algorithms,
a number of weak classifiers are combined (through averaging or
max vote) to create a model that can make accurate predictions. We
use the ensemble classifiers Random Forest and AdaBoost. Random
Forest [27] is an improvement over bagged Decision Trees. It fits
a number of Decision Tree classifiers on various sub-samples of the
training dataset and uses averaging to improve the prediction accuracy
and to control over-fitting. AdaBoost [28] is a boosting algorithm with
the Decision Tree classifier as the base estimator. It builds a model
from the training data, then creates another model that attempts to
correct the errors of the previous model. Models are added until the
training set is predicted correctly. During the learning phase, data,
which is misclassified by the previous learners, is given more weight
by the subsequent learners.

Recurrent Neural Networks (RNN) belong to the group of
artificial neural networks. RNNs have been successfully applied in

different research fields, e.g. speech recognition, to learn complex
models [17]. RNNs are state-of-the-art ML algorithms designed to
recognize patterns in data sequences. This makes RNNs perfectly
suited for ML-based PUF modeling, since PUF’s challenges can be
represented as binary sequences. Therefore, they are strong candidates
to model PUF designs that could not be learned with simpler algo-
rithms. An RNN has a looping mechanism that allows information to
flow from one step (in sequence) to the next. This information is the
hidden state, which is a representation of previous inputs. However,
RNNs suffer short-term memory. In most real-world problems, a
variant of RNN such as Gated Recurrent Unit (GRU) [29] is used to
solve the problem of short-term memory using a mechanism called
gates, which learn what information to add or to remove from the
hidden state. Thus, gates enable learning long-term dependencies.

VI. EVALUATION
A. PUF Parameters

The tested PUF designs are neither completely open-source, due
to unavailable memristor models or missing parameters’ values of
some components, nor their resulting CRPs are disclosed for research.
Therefore, to collect CRPs for modeling attacks, we reproduced
the PUFs using open-source memristor models that exhibit similar
behavior to the ones deployed in the original designs. We also tuned
the missing parameters’ values in PUF circuits in order to obtain
security properties (uniqueness and uniformity') close or similar to
the values achieved by the original designs. We performed PUFs
simulations using Cadence Spectre on a CentOS 7 Desktop with an
Intel Core 15-2400 CPU running at 3.10 GHz and 16 GB RAM.

Memristor Arbiter PUF [16]. We build Memristor Arbiter PUF
in several challenge sizes, i.e., number of memristors in chain, 64-bit
and 128-bit. For our simulations, we utilize the available models and
parameters as suggested in [16]. In particular, we used the compact
model by Rék et al. [30] for memristors with the parameter values:
D = 10nm, low resistance state (LRS) or R,, = 121€2, high
resistance state (HRS) or Rory = 12.1KQ and p = 10~ *m?(V.s).
A process variation of 15% is applied to D as suggested by the
authors [16]. For CMOS transistors, we use the PTM device model
for 45nm CMOS technology and set process variation to 15% for
threshold voltages of NMOS and PMOS transistors. Table I shows
the statistics of the simulated Memristor Arbiter PUF with tuned
transistors parameters, channel length L = 45nm and channel width
W = 45nm (except for NMOS transistors connected to the Vi,
which have a channel width W between 1pm and 3pm).

TABLE I
MEMRISTOR ARBITER PUF STATISTICS & SIMULATION TIMES

PUF size | Uniqueness | Uniformity | Simulation Time per CRP
64 bits 50.6% 48.3% 44.5's
128 bits 52.8% 52.4% 104.2's

RRAM Arbiter PUF [14]. We build and simulate the PUF in two
sizes, 16-bit and 24-bit, as given in [14]. We utilize the PTM model
for 656nm CMOS transistors, which are used for access transistors
and transistors within the analog multiplexers and inverters of the
switches, and set process variation to 10% for threshold voltages of
NMOS and PMOS transistors as suggested by the authors. However,
for memristors, since the model used in the paper was not publicly
available at the time of experiments, we utilize an open-source

Ut refers to the proportion of 0’s and 1’s in responses of different PUF
instances to a given challenge
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Verilog-A model targeting the same TiN/H fO,/TiN RRAMs,
provided by Chen et al. [11] with a process variation of 30%, 10%
and 10% for the parameters 10, gamma0 and VelO as suggested
in [11]. Table II shows the statistics for the simulated RRAM Arbiter
PUF with transistors of channel length L = 70nm and channel width
W = 70nm for NMOS and W = 0.7pm for PMOS transistors.

TABLE II
RRAM ARBITER PUF STATISTICS & SIMULATION TIMES
PUF size | Uniqueness | Uniformity | Simulation Time per CRP
16—bit 47.2% 49.5% 246 s
24—bit 49.5% 50.1% 388 s

Memristor RO-PUF (mrPUF) [18]. We implement the mrPUF in
three sizes, 40, 64, and 128 rows. We utilize the same components and
models as described in [18]. For transistors we use Cadence’s generic
process design kit (GPDK) model for 90nm CMOS technology
and apply the same process variation suggested by Cadence. For
memristors we utilize the Verilog-A model by TEAM [31] and set
LRS to 500K$2 and HRS to 200M$2 with process variation of 10%
for both resistance values. Table III shows the statistics for the given
parameter values. Uniqueness measurements are performed among
columns in the same crossbar array.

TABLE III
MRPUF STATISTICS & SIMULATION TIMES, PUF SIZE IS GIVEN AS
N x M, N: NUMBER OF ROWS, M : NUMBER OF COLUMNS

PUF size | Uniqueness | Uniformity | Simulation Time per CRP
40 x 4 54.9% 50.3% 21's
64 x 4 54.5% 49.9% 37 s
128 x 4 55.2% 50.7% 55 s

B. Modeling Attacks Using Machine Learning Algorithms

We performed modeling attacks with several ML algorithms:
Logistic Regression, Support Vector Machine, voting ensembles,
stochastic gradient boosting, AdaBoost, Extra Trees, Bagged Decision
Trees, XGBoost, Random Forest and RNNs. We implemented the
aforementioned algorithms using Python libraries Scikit-learn and
Keras, which provides an interface to Tensorflow. However, we only
show the results obtained by Logistic Regression, Random Forest,
AdaBoost and GRU RNNs due to the limited space. CRPs generated
by simulating the PUFs under test are presented in form of a matrix,
where each row contains the challenge and response bits in binary
form. In Table IV, we summarize the ML parameters’ values used
for training models of all reproduced PUF designs. These parameters
can be further tuned for each PUF to achieve higher prediction
rates, however, we used unified parameters values for the sake of
comparison among the tested PUFs.

TABLE IV
PARAMETERS OF USED MACHINE LEARNING ALGORITHMS
Classifier Hyper-parameters
Random Forest | estimators = 100
AdaBoost estimators = 50, learning rate = 1.0
LR C = 1.0, penalty =12
Layers = [GRU, GRU, GRU, Dense]
Layer size = [128,128,128,1]
RNN Optimizer = Adam
Loss = binary crossentropy
epoch = 100, learning rate = 0.001
90

Memristor Arbiter PUF. The results of our modeling attacks
are shown in Fig. 4. The best prediction results are achieved with
Logistic Regression and GRU RNN, which achieved 99% and 96%
accuracy for the 64-bit PUF and 98% and 95% accuracy for the 128-
bit PUF, respectively. This indicates a linear relation ship between
the challenges and the corresponding responses. We believe that this
could be due to the simple design of Memristor Arbiter PUF, e.g.,
memristors are either included in the propagation paths or not, there
is no switching between propagation paths as in the classical arbiter
PUF. The AdaBoost achieves a prediction accuracy of 92% for the
64-bit PUF and 84% for the 128-bit PUF, respectively. Whereas,
Random Forest achieves only 70% accuracy for the 64-bit PUF and
63% accuracy for the 128-bit PUF. Although the resulting statistical
values of our simulated Memristor Arbiter PUF are close to the
original values [16], our modeling results, however, do not correspond
to the results presented in [16]. The authors claim a resilience of
the Memristor Arbiter PUF against modeling attacks and present
results for Linear Regression with only 50% prediction accuracy.
Nevertheless, we achieved accuracies of over 95%. This shows the
importance of open-sourcing proposed PUF designs. Based on our
results, we cannot confirm the security guarantees claimed in [16].
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(a) 64-bit Memristor Arbiter PUF.
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(b) 128-bit Memristor Arbiter PUF.
Fig. 4. Prediction Accuracy on Memristor Arbiter PUF.

RRAM Arbiter PUF. In Fig. 5, the prediction accuracy of our
modeling attacks is shown for two PUF sizes, 16-bit and 24-bit. For
both sizes, only the multi-layered neural networks (GRU RNN) is
able to break RRAM Arbiter PUF. For breaking the PUF, a training
set size of around 7,000 CRPs for the 16-bit PUF and of around
13,000 CRPs for the 24-bit PUF is needed to achieve an accuracy of
more than 95%. For the test set, we use 1,000 CRPs. All other
algorithms only achieve prediction accuracies around 50% which
resembles guessing. In Fig. 6, the duration for learning an accurate
model of RRAM Arbiter PUF is shown. The plots show that the
learning time only increases linearly with the number of CRPs and
the PUF size. Therefore, we believe that also larger PUF sizes can be
modeled with higher computational resources and/or longer learning
durations. However, in our experiments we only tested up to 24-
bit, due to the long simulation time of RRAM Arbiter PUF that is
required to collect enough CRPs. As indicated in Table II, a larger
PUF requires longer simulation time. For the 24-bit PUF, learning
the model takes 1,728 s for 13,000 CRPs, which means that each
one of the epochs of the GRU RNN takes 24.7 s on average. All
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other algorithms have a negligible model learning time of less than
1 s, which is why the lines for Logistic Regression, AdaBoost and
Random Forest form one solid line in the plots of Fig. 6.

Modeling attacks on both Memristor Arbiter PUF and RRAM
Arbiter PUF were performed on an off-the-shelf laptop, a T440s
ThinkPad with Intel i7-4600U CPU and 12 GB RAM, meaning that
even a weak attacker can break the PUFs.
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Fig. 5. Prediction Accuracy on RRAM Arbiter PUF.
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Fig. 6. Model Learning Duration for the RRAM Arbiter PUF.

mrPUF XOR version. As described in § IV, the mrPUF has
a small space of % unique CRPs, where N is the number
of rows. We therefore implemented and simulated an XOR version
of the mrPUF [18]. The XOR version has an increased CRP space
by a power of 2. Our goal is to verify if such an improved design
could be used as a strong PUF. The results of our modeling attacks
are shown in Fig. 7. The PUF model can be successfully learned
with the GRU RNN for all simulated PUF sizes with an accuracy
of ~ 100%. Random Forest only achieves a prediction accuracy
of 70% for the 40 rows PUF, 60% for the 64 rows PUF and 57%
for the 128 rows PUF. Logistic Regression and AdaBoost do not
perform better than random guessing. In comparison to the RRAM
Arbiter PUF and Memristor Arbiter PUF, a larger number of CRPs

is needed to correctly learn the mrPUF model. Learning the model
with GRU RNN using 100,000 CRPs would take a weak adversary
approximately 9 days. However, for an advanced attacker with more
computational power, the learning time is reduced. The results shown
in Fig. 7 are created on a Tensorbook laptop with Intel Core i7-
8750H CPU, 32 GB RAM and a NVIDIA GTX 1070 GPU, which is
optimized for deep learning tasks. On the Tensorbook, learning the
model of the 128 rows PUF takes only 70 s. Therefore, an attacker
that can utilize the computational power of many machines or even
computing clusters will be also able to break larger PUFs.
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Fig. 7. Prediction Accuracy on mrPUF xor version.

RRAM Arbiter PUF XOR version. As shown in [23], augment-
ing APUFs with XOR gates does not increase the complexity of the
PUF design drastically. Therefore, XOR-APUFs [21] could still be
learned [6]. Our experiments show similar results for XOR versions
of the mrPUF [18] and the RRAM Arbiter PUF [14]. For the latter,
we tested the XOR version of both PUF sizes 16-bit and 24-bit. Our
initial results on relatively small sets of CRPs are promising. We
achieved a prediction accuracy of 90% for the 16-bit and of 86% for
the 24-bit RRAM Arbiter PUF using GRU-RNN. For these initial
results, we used a CRP set consisting of 29,000 CRPs, which is the
complete set of CRPs we had available when writing this paper. The
reason for the relatively small CRP set is the long simulation time
of the RRAM Arbiter PUF (770 s per CRP for the 24-bit PUF).

Apart from our results, increasing the number of XOR gates that
can be used in a PUF could lead to the loss of its reliability [6],
[7]. Moreover, adding XOR gates to a PUF design up to the point
where it is believed that the learning is infeasible due to limitations
of current computational resources is also a brittle approach.

Effect of noisy responses on PUF Modeling. We tested the effect
of noisy responses on the learned model for RRAM Arbiter PUF,
since it shows more complex behavior than the other tested PUFs.
For that, we randomly flipped 5% of the responses in the training
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set of a 24-bit RRAM Arbiter PUF, i.e., assuming the percentage of
noisy responses is 5%, which is worse than the reliability results of
0.13% reported in [14]. The achieved prediction accuracy dropped
only to 92% using GRU RNN.

VII. RELATED WORK

Since their introduction, PUFs have been the target of various
attacks ranging from physical attacks (invasive and side-channel
based) [3]-[5] to software-based modeling attacks. Strong PUFs are
prone to modeling attacks since they possess an exponential space
of input-output (CRPs). During the last decade, several novel (e.g.,
Current-Mirror PUF [32] and Bistable Ring PUF [33]) or improved
PUF designs (e.g., XOR-APUF [21] and Feed Forward APUF [22])
were introduced and later proven to be insecure against modeling
attacks [6], [7], [25], even when the underlying mathematical model
of the PUF is unknown [34]. Moreover, hybrid attacks on PUFs
combining physical attacks and machine learning techniques were
also proven to be effective. For example, power and timing side-
channels [26] or fault injection techniques [35] can be used to reduce
the complexity of modeling attacks. Ganji et al. [23] proved that
the number of CRPs required for learning XOR arbiter PUF models
increases only polynomial in process variation and number of stages.
Therefore, it is not possible to build secure (XOR) arbiter PUFs
relying on current IC technologies. However, such results are not con-
clusive regarding emerging technologies. The impact of the stochastic
switching behavior of memristors in addition to process variations
were thought to be high enough to impede modeling attacks, which
motivated the researchers to investigate hybrid PUFs. Thus, several
hybrid PUF designs combining emerging nano-technologies with
classical delay-based PUFs promised great advantages (higher robust-
ness and resilience to modeling attacks) over CMOS-only delay-based
PUFs. However, only the Xbar PUF [12], [24] was shown later to be
vulnerable to modeling attacks [36]. In this work, we show that recent
PUFs incorporating memristors [14], [16], [18] are also susceptible
to modeling attacks using state-of-the-art ML algorithms. We also
show that even when XOR gates are used to increase the complexity
of PUFs, they can still be learned with high prediction rates.

VIII. CONCLUSION AND FUTURE WORK

Recent hybrid PUF designs leveraging emerging nano-electronic
technologies are claimed to be resilient to modeling attacks. However,
since these simulation-based designs are not open-source, it is harder
for the research community to verify their security. In this work,
we reproduced a set of recently proposed PUFs and verified their
resilience to modeling attacks. Our results indicate that even when
highly non-linear emerging technologies such as memristors are
deployed to build modeling-resilient hybrid PUFs, it is still feasible
to break them with state-of-the-art ML. For future work, we plan to
evaluate the security guarantees of PUF designs that leverage the non-
linear behavior of other nano-technologies, e.g., MRAM or PSM.
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ABSTRACT

Attacks targeting software on embedded systems are becoming in-
creasingly prevalent. Remote attestation is a mechanism that allows
establishing trust in embedded devices. However, existing attesta-
tion schemes are either static and cannot detect control-flow attacks,
or require instrumentation of software incurring high performance
overheads. To overcome these limitations, we present LO-FAT, the
first practical hardware-based approach to control-flow attestation.
By leveraging existing processor hardware features and commonly-
used IP blocks, our approach enables efficient control-flow attesta-
tion without requiring software instrumentation. We show that our
proof-of-concept implementation based on a RISC-V SoC incurs no
processor stalls and requires reasonable area overhead.

1 Introduction

Embedded systems have been facing a variety of security challenges
for decades [25] which are becoming increasingly prevalent with
emerging trends such as collaborative Internet of Things (IoT). A
recent prominent example is Mirai malware' in October 2016, where
a series of Distributed Denial-of-Service (DDoS) attacks against
the DNS system disrupted a number of prominent websites.These
attacks were perpetrated by IoT devices, including routers, DVRs,
and web-enabled security cameras, that had been compromised by
the Mirai malware.

Increasingly, attacks against embedded systems aim to exploit
software vulnerabilities. In 2015, a remotely exploitable buffer
overflow vulnerability was found in the USB over IP software used
in millions of residential gateways and wireless routers supplied
by prominent manufacturers®. In 2014, a memory corruption flaw
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was found in the embedded webserver software used by over 200
different models of embedded devices, affecting at least 12 million
devices, many of which still remain vulnerable today”.

Remote attestation is an important class of security mechanisms
designed to detect software attacks. In principle, remote attestation
allows one entity (the verifier) to ascertain the precise state of the
software running on a remote system (the prover). However, most
attestation schemes are stzatic in that they attest the software initially
loaded by the prover before it begins executing. Although useful,
this still leaves the system vulnerable to run-time software attacks.
If the adversary gains control of the stack or heap, (s)he can alter
control-flow information to subvert the control flow of the target
program, and mount a code-reuse attack. Similarly, in non-control
data attacks [8], the adversary modifies strategic data variables
to cause a permissible but unintended control flow change (e.g.,
executing a privileged instruction sequence). Traditionally, code-
reuse attacks are mitigated using techniques such as control-flow
integrity (CFI) [1]. However, CFI cannot prevent non-control data
attacks, since these do not violate control-flow integrity. Neither of
these types of attacks can be detected by static attestation.

To overcome these challenges control-flow attestation [2] was
proposed very recently, enabling the prover to precisely report the
control flow of application software to the verifier while giving
assurance on control-flow integrity and detection of non-control
data attacks. The attestation mechanism of [2] requires an iso-
lated execution environment (e.g., ARM TrustZone, Intel SGX)
to protect it against potentially compromised application software.
However, implementing control-flow attestation in software has
two limitations: Firstly, in order to detect control-flow events, the
application software must be instrumented prior to deployment.
Non-instrumented or incorrectly-instrumented software cannot be
attested. The instrumentation rewrites all control-flow instructions
(e.g., branch, return, etc.) in order to transfer control to the
attestation software. Secondly, the attestation software runs on the
main processor which incurs significant performance penalties be-
cause single control-flow instructions are essentially replaced with
relatively many numbers of instructions in order to track and record
the control-flow event (e.g., update a running hash value). As we
elaborate in §7, some existing hardware approaches, such as debug-
ging and tracing features in modern processors [14, 24] or hardware
security architectures [3, 6, 9], can be used to record control flow
information. However, due to the overhead they incur or the type

*http://mis.fortunecook.ie/
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of information they record, these approaches are not well-suited for
control-flow attestation.

Goals and Contributions. To overcome the limitations of a
software solution, we introduce a practical hardware-based Low-
Overhead Control Flow ATtestation architecture, LO-FAT. Unlike
software implementations, LO-FAT can handle unmodified applica-
tion software without instrumentation, meaning that it is transparent
to legacy software. By recording the control flow in hardware in
parallel to the main processor, LO-FAT does not stall the application
software, thus eliminating the performance overhead of attestation
in software. LO-FAT leverages existing processor features and
commonly-used IP blocks and can feasibly be implemented on
typical embedded systems hardware platforms.

The main contributions of this paper are:

e Design of LO-FAT, a hardware-based scheme for control-
flow attestation, providing the same security guarantees as
previous software schemes, without the performance overhead
or the need for software instrumentation (§4).

e An integrated optimization for eliminating redundant attesta-
tion computation (e.g., avoiding duplication when attesting
loops) and reducing the burden on the verifier (§4).

e A proof-of-concept implementation of LO-FAT on the new
open-source RISC-V architecture targeting the Pulpino core
for single-threaded embedded system software (§5).

e A systematic evaluation of LO-FAT in terms of the required
hardware area and performance benefits (§6).

2 Problem Setting and Challenges

Remote attestation provides a well-known mechanism for detecting
malware on a device. However, existing conventional (binary) attes-
tation cannot detect run-time exploitation techniques, since run-time
attacks do not not modify the program binary. Such attacks aim to
subvert the intended control flow of the targeted program while it is
executing. An overview of different classes of such attacks is shown
in Figure 1. In general, a program reserves dedicated memories for
data and code. The former is marked as readable and writable (rw),
whereas the latter is as readable and executable (7x). This ensures
that code cannot be executed from data memory, and code memory
cannot be overwritten. Furthermore, any program can be abstracted
through its corresponding control-flow graph (CFG) that encapsu-
lates the valid paths a program should follow at run-time.

Program Memory

DATA (rw)

o Data Variables

H » indirectly affecting
e control flow

e > Loop Counters |

e Code Pointers |-

Control-Flow

Figure 1: Overview on run-time attack classes

We can distinguish three classes of run-time attacks: @ non-
control-data attacks that indirectly affect the control flow of a pro-
gram, @ corruption of loop counter variables, and & code-pointer
overwrites. The most prominent run-time attacks exploit code-
pointer overwrites, i.e., corruption of return addresses and function
pointers. For instance, code-reuse attacks such as Return-oriented
Programming (ROP) [23] exploit memory corruption vulnerabilities
(e.g., buffer overflows) in the program and then stitch together a
malicious sequence of machine code instructions from benign gad-
gets of code already residing in the vulnerable program memory.
This is exemplified by a malicious CFG edge (see dashed line for
code-pointer overwrite in Figure 1). These attacks have been shown
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Figure 2: Attestation protocol of LO-FAT

to be a realistic threat on many processor architectures, such as
Intel x86 [23], ARM [17] and embedded systems building on Atmel
AVR [12]. Although countermeasures against this class of attacks
exist, e.g., control-flow Integrity (CFI) [1] and code-pointer integrity
(CPI) [16], they do not prevent attacks @ and @. The so-called
non-control data attacks [8] do not compromise the control flow of
a program, but cause unexpected malicious control-flow paths by
corrupting data variables. In @, the attacker compromises data vari-
ables that are used for security decisions during program execution,
e.g., corrupting an authentication variable to execute a privileged but
existing path. Attack class ® is even more subtle as it only affects
the number of times a program loop is executed. This can have
severe consequences in the context of embedded system software,
e.g., a syringe pump dispenses more liquid than requested (see [2]).

Control-flow attestation can cover these cases by assuring the
verifier of the precise run-time control flow of the program on the
embedded device. In [2], the first control-flow attestation scheme
was proposed and implemented. However, it suffers from practical
limitations, such as high performance overhead and the need for
tedious software instrumentation.

Our work tackles the challenge of detecting attack classes @-
®, while addressing the limitations of recently proposed software-
based control-flow attestation [2] by presenting LO-FAT, an efficient
hardware-only solution.

3 System Model

Figure 2 depicts the attestation protocol of LO-FAT: the verifier
V aims to attest the run-time control-flow (execution path) of the
Program S on a remote embedded system — the prover P. We
assume that both V and P have access to the program S in binary
form and that conventional static (binary) attestation assures P is
executing the correct and unmodified program S.

First, V performs a one-time offline pre-processing step to gener-
ate the CFG of S (including expected loop execution information)
by means of static or dynamic analysis. Next, V initiates the proto-
col by sending P the program input ¢ for the program ID ids, and
the nonce N to ensure freshness of the attestation response. P exe-
cutes S with verifier input ¢ and a set of malicious adversary inputs
1. In fact, the untrusted inputs received may corrupt the control-
flow by means of the attack techniques described in §2. While S
executes, LO-FAT captures the control-flow transitions and gener-
ates a cumulative authenticator A of the control-flow path taking
source and destination address (S7c, Dest) of each branch as input.
Naively storing and transmitting every single executed instruction
to V would incur impractical memory, power and communication
overheads, especially for resource-constrained embedded devices.
Hence, LO-FAT follows the idea outlined in [2] and computes a
cumulative cryptographic hash of the executed path. In addition, it
also produces auxiliary metadata L to track program loop paths and
their number of iterations (including recursive functions) thereby
covering attacks of class @ in Figure 1. Together A and L form



a unique program path P. Lastly, upon program exit, P generates
the attestation report R = sign(P||N; sk), under the signing key
sk, which is stored by P in hardware-protected secure memory, e.g.,
a register that is accessible only to LO-FAT. Upon receiving R, V
verifies the signature using the verification key pk. Next, V checks
whether the reported path P resembles a valid path in CFG under
input 4. If true, V is assured of P’s execution.

Adversary Model and Assumptions. We assume a strong adver-
sary that has full control over the data memory of P and can uti-
lize standard memory corruption vulnerabilities to modify arbitrary
writable memory locations. However, the adversary cannot modify
program code at run-time (marked as rx) and cannot modify mem-
ory used by LO-FAT itself (due to hardware protection). Note that
similar to all attestation schemes we consider software-only attacks
and hence physical attacks on P’s device are out of scope in this
work. Also note that our scheme can detect attacks that affect the
program’s control-flow, but not pure data-driven attacks (that do not
affect any control-flow) such as data-oriented programming attacks,
which remain an open research problem [13].

4 LO-FAT Design

Figure 3 illustrates our architecture for LO-FAT and how it inter-
faces with the processor pipeline. The proposed scheme exploits
branch tracking functionality inherent in any processor pipeline and
re-usable IP cores such as the hash engine. We extend these with
additional logic to achieve efficient tracing of control-flow infor-
mation. The main LO-FAT components are the branch filter and
the loop monitor. The former extracts branch instructions from the
processor as it executes the attested code segment while the latter
monitors program loops.

[
| pipelined processor

Code ) Legend:

] | Pre-existing o
| 1 components C..—

LO-FAT
components

On-chip memory |

s_status & branch_status ctrl

(@ loop:
) ©
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E Metadata E
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Figure 3: Architecture of LO-FAT.

Branch Filter. Upon code execution, the branch filter, which is
tightly coupled to the processor, extracts the current program counter
and instruction executed per clock cycle. Then it filters in every
branch, jump and return instruction since these are the rel-
evant instructions for control-flow attestation. The branch filter
outputs a concise representation of every executed branch instruc-
tion with its source and destination address pair (Src, Dest) into
a dedicated branches memory and detects whether the intercepted
branch is within a program loop. If not, the branch filter enables
hashing of (Sre, Dest). Branches inside a program loop require
special treatment in LO-FAT, because (i) loop counter manipulation
may compromise the program’s control-flow in a malicious way

IMetadat:
| storage Metadata

(§2), and (ii) naively hashing each loop iteration and path leads to a
combinatorial explosion of valid hash values [2]. As such, we de-
sign LO-FAT to compress control-flow information associated with
loops efficiently. As mentioned earlier in §3, we report each loop
path and its number of iterations as auxiliary metadata L. However,
doing so in hardware is challenging, i.e., in contrast to the most
related work C-FLAT, since we do not use code instrumentation to
preserve legacy compliance. Hence, the branch filter must detect
and identify loop entry and exit points and their depth at run-time
without instrumentation aid. We describe in §5.1 how we tackled
this challenge.

Loop Monitor. When a loop is encountered, the branch filter for-
wards the loop entry and exit to the loop monitor. The loop monitor
identifies and tracks program loops (including nested loops). When
a branch inside a program loop is encountered, the branch filter
forwards this information to the loop monitor which in turn encodes
each path inside the loop uniquely. Simultaneously, (Src, Dest) of
each branch remains stored in the branches memory.

Another major challenge concerning loops is the hash computa-
tion and attestation overhead incurred by hashing each loop iteration.
In LO-FAT, we significantly reduce the hash computation cost by
only hashing each loop path once and keeping an iteration counter
for each unique loop path. To achieve this, LO-FAT generates a
unique path encoding for each loop path and associates an on-chip
loop counter with it. The loop monitor indicates newly observed
loop paths to the hash engine controller in order to hash its corre-
sponding (Src, Dest) from the branches memory. On the other
hand, once the same loop path executes, LO-FAT only needs to
increment the counter, i.e., not requiring further hash operations.

Upon loop exit, the loop monitor requests the metadata generator
to assemble the loop auxiliary metadata based on the loops memory
which contains the unique loop path encodings, their number of
iterations, and indirect branch targets. This information is stored on-
chip and is appended to the final hash value A computed at the end
of the attested execution. Finally, a digital signature R is computed
over the hash value A, metadata L and nonce N and sent to ) for
attestation (as per our protocol outlined in §3).

5 Implementation
5.1 Loop Handling

Detecting loops. As shown in Figure 3, the branch filter unit traces
the instruction (and its address) executed per clock cycle and filters
in @ every branch, jump and return instruction. It outputs a
concise representation of every executed branch instruction with its
(Src, Dest)-pair into a dedicated branch buffer (@). To compress
the control-flow trace for loops, the branch filter has to detect loops.
If the intercepted branch is not in a loop, the branch filter sends the
control signal non_loops_ctrl to the existing hash engine controller
to compute a hash over (Src, Dest) in (3). Otherwise, the branch
filter forwards the loop status (entry and exit) to the loop monitor
and its depth (in case of nested loops) via the loops_status_ctrl
signals ((4)).

To enable efficient run-time loop detection, we utilize a property
of RISC architectures that implement a link-register, such as Pow-
erPC, ARM, SPARC, and RISC-V. LO-FAT uses a simple heuristic
to differentiate between backward branches that constitute loops,
and branches for subroutine calls where the call target resides earlier
in memory. Since subroutine calls use instructions that update the
link-register, we consider the target of each non-linking backwards
branch as a loop entry node. The basic block proceeding the branch
instruction is considered a loop exit node. We base our heuristic on
our observations of the RISC-V compiler assembly and the calling
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convention described in the instruction manual: any subroutine call
with multiple call sites must be linking and updates the link-register.
Subroutines with a single call site are still compiled as a linking
branch or are optimized by traditional inlining using the RISC-V
compiler.

The addresses of the entry and exit nodes of each loop are stored
in registers by the loop detector and used to detect and track loop
iterations and loop depth at run-time when executing nested loops.
The number of loop iterations is determined by recording the number
of times the loop entry node is entered within the loop. Loop
termination is detected by tracking if execution proceeds to or past
the currently active loop exit node, either as the result of sequential
execution (e.g. in the case of a conditional branch) or a non-linking
branch (e.g. break). Loop execution status is forwarded using the
loops_status_ctrl signals to the loop monitor, as shown in Figure 3.

Loop entry @
(&) basic block 1 _1) while ; foop sty
(™) (cond1) { a oopexit_| g
if (cond2) 1 € |Path_ID
cond. branch: ]
() then: bb_4 (taken 1/ not taken 0) | €
@ else: bb_5 1 %
(%) bb 6} jumpz1) | S

Loop exit \I\L)
Figure 4: CFG for pseudo-code and its Iz]yout of instructions in memory.

Tracking loops. As shown in Figure 3, the loop monitor receives
branch_status_ctrl signals from the branch filter to describe the
type of intercepted branch instruction and its (Src, Dest) (@).
This branch tracking mechanism allows the loop path encoder to
uniquely encode paths as they occur. Simultaneously, (Src, Dest)
of each branch along the executing loop path remain stored in the
branches memory.

Figure 4 shows a sample pseudo-code and its CFG according to
how the instructions would be laid out in code memory to illustrate
how the loop monitor encodes the loop paths. The example code
shows a while-loop with an if-else statement inside. Each basic
block in the pseudo-code is represented by a node in the CFG
and numbered accordingly, with loop entry and exit nodes also
indicated. Within this simple loop, there are only 2 valid paths:
bold path N2 —- N3 — N4 — Ng — N> and dashed path
NQ—)N;;—)N5—)N6—>N2.

For every conditional branch, the processor evaluates the
condition and either jumps to the computed target address (branch
is taken), or continues sequentially to the next instruction address
in memory (branch is not taken). Processors commonly track this
branching behavior in the pipeline and may encode a taken/not-
taken branch with *1°/°0. This branch information is extracted from
the processor by the branch filter and used by the loop monitor to
uniquely identify and encode paths within each loop with a unique
path_ID, as shown in Figure 4. In Figure 4, the dashed path N> —
N3 — N5 — Ng — Na is encoded as ‘011’ and bold path No —
N3 — N4 — Ng — N3 as ‘0011°. Other path encodings are
considered invalid and detected by the V.

Once a loop path is completed, this unique path_ID is used to
index loop counter memory, in which the number of iterations for
each corresponding path is saved (@) in Figure 3. A counter value
of zero indicates the first time a particular path is executed. This is
forwarded by the loop monitor into the hash engine controller using
new_path_ctrl signals (@) to enable hashing of corresponding
(Src, Dest) pairs. Otherwise, the counter is simply incremented.
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To ensure constant-time, single-cycle memory access latency, we
implement loop counter memory as on-chip memory indexed by the
unique loop path encodings. However, this consumes a dedicated
sparsely-utilized memory which is often a constrained resource
on low-end embedded devices. In light of this, LO-FAT allows
configuring the granularity of the control-flow tracking according to
the availability of memory resources.

Once a loop exits, this is identified by the loop monitor and
indicated in the loop_end_ctrl signals sent to the metadata generator
(). The metadata generator assembles the loop auxiliary metadata
from the loops memory - this consists of the unique loop path
encodings in order of first occurrence, the number of iterations of
each path, and the indirect branch targets encountered in this loop
(@). This fine-grained auxiliary information on loop execution
is stored on-chip () and is appended to the final hash value
computed at the end of the attested execution (@). Finally, a digital
signature is computed over the hash value, metadata and nonce N,
and sent to V for attestation. Handling indirect branches in loops is
yet another implementation challenge we discuss next.

5.2 Handling Indirect Branches in Loops

Indirect branches can involve any arbitrary number of targets which
can never be exhaustively identified using static analysis. To uniquely
identify loop paths with indirect branches (calls and returns), we
would need to include the 32-bit target addresses into the path en-
codings, which would require infeasibly high memory requirements
for loop path-indexed memory. Instead, we re-encode the addresses
using a smaller number of n bits, allowing a maximum number of
2"-1 possible targets for each loop. Target addresses are encoded at
run-time and stored in a register file, which is implemented as 2 in-
terleaved CAMs to ensure low-latency constant-time access. When
a target address is encountered that exceeds the configured limit, we
report this in the encoding to the V by an all-zero code. LO-FAT is
designed such that the maximum number of branches per loop path
and the maximum number of possible target addresses (of indirect
branches) to track is configurable in a trade-off between granularity
and availability of on-chip memory. Tracking ¢ branches per path in
a loop requires 8 x 2° bits memory. In our implementation, we con-
figure n = 4 to track up to 16 possible indirect branch targets for a
given loop and ¢ = 16 such that LO-FAT can handle a maximum of
16 branches per loop path (every additional indirect branch tracked
reduces the maximum number of possible conditional branches by
n) and depth of up to 3 nested loops, which requires a dedicated 1.5
Mbits memory that is synthesized as block RAM (BRAM) when
prototyping on FPGA. Once a loop exists, its memory is re-used for
other subsequent loop executions.

Loop metadata. The measurement in A is a single hash com-
putation of (Sre, Dest) pairs of executed loop paths. To enable V
to reconstruct the final hash value, metadata L of the loops serves
as helper data and provides V with fine-grained insight into the
execution of the loops. L contains the encodings of executed paths
in each loop, the order of first occurrence of each executed path, and
number of iterations per loop path and indirect branch targets.

5.3 Hash Engine

A single hash measurement A is computed on the full execution path,
along with auxiliary loop metadata L. We employ a SHA-3 512-bit
open-source engine’ operating at a maximum clock frequency of
150 MHz. It consists of a permutation module which operates on a
message block size of 576-bit. User input is absorbed by the core
first into a padding module to assemble the 576-bit block size. Once
this padding is full, the permutation module begins computation on

*http://opencores.org/project, sha3



input. In LO-FAT, the engine can absorb a 64-bit input (Src, Dest)-
pair every clock cycle into the padding module for 9 clock cycles,
after which the 576-bit buffer becomes full and notifies the per-
mutation module to begin its computation. Once full, the padding
buffer cannot absorb further input for 3 clock cycles after which
it resumes normally. Therefore, a small cache buffer is configured
at the hash engine input to prevent dropping of (Src, Dest)-pairs
if they arrive during these cycles where the padding buffer is full.
Using this hash engine, an unlimited message size can be hashed
while indicating the end of streaming (Src, Dest)-pairs when the
execution of attested software is completed.

6 Evaluation

We present a proof-of-concept implementation of LO-FAT on Pulpino [18],

the first open-source RISC-V-based microcontroller SoC [19]. It
is based on a single 32-bit 4-stage minimal RISC-V core targeting
low-end embedded systems. We augment the RISC-V processor
pipeline to interface with the LO-FAT branch filter to extract control-
flow signals required for execution flow tracing. LO-FAT can be
easily integrated into any low-end embedded processor as it does
not require modifications to the ISA.

6.1 Functionality and Performance

We integrated LO-FAT with Pulpino and performed cycle-accurate
functional simulation of their RTL Verilog source code on Mod-
elSim while Pulpino executed extracted code segments from real
embedded applications, such as Open Syringe Pump’, an open-
source open-hardware syringe pump design. Simulation results
confirmed the functionality of LO-FAT in correctly capturing and
compressing the control flow (branches, loops, and nested loops) of
an uninstrumented application. Since LO-FAT extracts and filters
control-flow events in parallel with the processor, it does not incur
any performance overhead for the attested software, as opposed to
C-FLAT which incurs attestation overhead that is linearly dependent
on the number of control-flow events. LO-FAT internally incurs
latency of 2 clock cycles for branch instructions and loop status
tracking and 5 clock cycles at loop exit for completing path_ID
generation and loop counter memory access and update. However,
LO-FAT simultaneously continues to absorb and process any in-
coming (Sre, Dest)-pairs to prevent the processor from stalling
or dropping trace information. Synthesis results using Xilinx Vi-
vado indicate LO-FAT can operate at maximum clock frequency
of 80 MHz on a Virtex-7 XC7Z020 FPGA device on a Zedboard.
The LO-FAT units are engineered such that they operate on par
with Pulpino’s clock frequency, while also allowing single-cycle
constant-time memory accesses for indirect branches and loops
management. Eliminating the CAM access results in a much higher
clock frequency if desired.

The length of the auxiliary metadata (L) that must be sent to
V depends on the number of loops executed, the number of dif-
ferent paths per loop, and the number of indirect branch targets
encountered in the attested code.

6.2 Area

On a Virtex-7 XC7Z020, LO-FAT consumes 4% of the available
registers and 6% of available LUTs, which amounts to an average
of 20%additional logic overhead to the Pulpino SoC. 49 36Kbit
Block RAM (BRAMSs) are utilized, most of which are dedicated
for the sparse loop path-indexed memories to ensure constant-time
single-cycle access. Therefore, its width depends on the configured
maximum number of indirect branches allowed in each loop path
and number of bits required to encode them, as discussed in §5.2. In

Shttps://hackaday.io/project/1838-open-syringe-pump

our implementation, the loop monitor is configured to tackle up to 4
indirect branches and requires 10 bits to encode them in Path_I D,
resulting in 16 BRAMs per loop. Since we allow up to 3 levels of
nested loops, we require 48 BRAMs. Configuring these parameters
to lower numbers or leveraging CAMs instead reduces the memory
requirements significantly at the expense of coarser granularity or
additional logic overhead respectively.

6.3 Security

The primary security requirement of LO-FAT is to provide an ac-
curate, complete, authentic, and fresh attestation of P’s control
flow. This requires an integrity-protected mechanism for recording
control-flow information and unforgeably communicating this to V.

Control-Flow Recording. One of the main contributions of LO-
FAT is using low-overhead hardware extensions to record control-
flow information preventing it from being modified or subverted by
malicious software. The on-chip memory employed by LO-FAT
for storing the (Src, Dest) addresses prior to their hashing is also
assumed to be protected from adversarial access. The hardware ex-
tensions are guaranteed to receive every control-flow event from the
processor, thus ensuring that the complete control flow is recorded.
All (Src, Dest) addresses are cryptographically hashed resulting
in the authenticator A. The auxiliary metadata L records (1) the
unique paths within each loop; (2) the number of repetitions of each
path; and (3) all indirect branches encountered within loops.

Attestation Protocol. LO-FAT makes use of the widely-used
secure challenge-response attestation protocol. As explained in §3,
‘P sends the recorded program path P along with a digital signature
over P and a nonce supplied by V. If P’s signing key has not been
compromised, this signature guarantees the authenticity of the attes-
tation, and the inclusion of the challenge nonce ensures freshness.
Our assumed software adversary cannot compromise the signing
key because it is stored in hardware-protected secure memory. Any
tampering with the attestation messages can be detected by V.

Given that the control flow recording and the signing key is pro-
tected from software attacks, the resulting attestation report provided
by LO-FAT is accurate, complete, authentic, and fresh. Since P’s
code is immutable and is statically attested at boot time, ) has com-
plete information about P’s execution. As described in §3, V also
has access to the CFG of the attested software, which it can use to
identify permissible control flows and detect control-flow attacks or
non-control data attacks.

7 Related Work

Remote Attestation. Most prior work focuses on static remote
attestation [7, 11, 21], which is orthogonal to run-time attestation —
the focus of this paper. Software-based attestation [22] can, under
strict assumptions, enable static attestation of legacy devices without
hardware-based trust anchors. Property-based attestation [20] can
attest behavioral characteristics of a program, with the assistance of
a trusted third-party. However, none of these can attest control-flow
at machine code instruction level.

Prior work on run-time attestation focuses on specific aspects of
a program’s execution. ReDAS [15] attests program data invariants,
such as the integrity of a function’s base pointer, at each system
call. Trusted virtual containers [4] attest the run-time launch or-
der of application modules — a form of coarse-grained control-flow
attestation that does not include internal control flows within mod-
ules. DynIMA [10] uses dynamic taint analysis and tracing to attest
run-time properties that may be symptomatic of run-time attacks.
However, it does not cover non-control data attacks and incurs high
performance overhead due to dynamic taint analysis.
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C-FLAT [2] is a fine-grained control-flow attestation scheme.
LO-FAT also leverages the idea of attesting the control flow of an
application by computing a cumulative hash of executed branches
but with several fundamental differences. C-FLAT requires instru-
mentation of all control-flow instructions thereby violating legacy
compliance. In contrast, LO-FAT does not require any binary rewrit-
ing. C-FLAT requires complete coverage in the offline binary analy-
sis, as un-instrumented control-flow instructions could be exploited
to mount undetectable attacks. This is not possible in LO-FAT as
every executed branch is monitored by design. Finally, C-FLAT
incurs significant performance overhead, whereas LO-FAT incurs
no performance overhead due to its efficient hardware support for
control-flow attestation.

Tracing and Debug Mechanisms. Intel processors provide the
Last Branch Record (LBR) and Branch Trace Store (BTS) mecha-
nisms, which can be used to trace control-flow events [24]. However,
the overhead incurred by these debugging mechanisms makes them
unsuitable for control-flow attestation. Recently, Intel processors
introduced Intel Processor Trace (IPT) [14], a low-overhead exe-
cution tracing feature that collects more tracing information than
BTS (including execution mode and timing information). However,
IPT cannot be directly used for control-flow attestation as it only re-
ports control-flow events that cannot be inferred from static analysis.
ARM’s CoreSight® debug and trace architecture provides a mech-
anism to access trace information from different hardware trace
components. However, high-throughput tracing on ARM typically
requires the use of proprietary hardware.

Hardware-Assisted Security. Recent work [5, 26] developed a
generic architecture for enforcing a diverse range of SoC security
policies. Each IP block has an individually-customized security
wrapper that sends security-relevant events and information to a
central security controller to enforce individual security policies for
each IP. However, this incurs high memory and logic complexity
overhead as the number of IPs increases. It has further been pro-
posed [3, 6] that this could be made more practical by re-purposing
design-for-debug features found on many SoCs — a promising ap-
proach which could complement LO-FAT in future.

Sofia [9] is a recent hardware-assisted architecture for enforc-
ing control-flow integrity (CFI). It encrypts instructions with CFI-
dependent data, such that they can only be decrypted at run-time
as part of a valid control-flow path, and it ensures instruction in-
tegrity by checking MACs on groups of instructions at run-time.
However, unlike LO-FAT, this requires software instrumentation
and places decryption in the critical execution path, thus incurring
total execution time overheads of up to 110%.

8 Conclusion

Due to the increasing prevalence of interconnected embedded sys-
tems, software running on these devices have become a prime target
for remote attacks. We presented in this paper the first hardware-
based control-flow attestation scheme that allows precise detection
of remote memory corruption attacks in embedded system soft-
ware. Our architecture, LO-FAT, monitors, measures and reports the
program’s behavior by interfacing with the processor to intercept
control-flow events. LO-FAT does not require any code instru-
mentation (compliant to legacy software), compiler toolchain or
instruction set extension. Our proof-of-concept implementation on
the open-source RISC-V core is highly efficient with no perfor-
mance impact on the attested software at the expense of minimal
logic overhead and on-chip memory.
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Abstract—Remote attestation is an important security service
that allows a trusted party (verifier) to verify the integrity of a
software running on a remote and potentially compromised de-
vice (prover). The security of existing remote attestation schemes
relies on the assumption that attacks are software-only and that
the prover’s code cannot be modified at runtime. However, in
practice, these schemes can be bypassed in a stronger and more
realistic adversary model that is hereby capable of controlling
and modifying code memory to attest benign code but execute
malicious code instead — leaving the underlying system vulnerable
to Time of Check Time of Use (TOCTOU) attacks.

In this work, we first demonstrate TOCTOU attacks on
recently proposed attestation schemes by exploiting physical
access to prover’s memory. Then we present the design and
proof-of-concept implementation of ATRIUM, a runtime remote
attestation system that securely attests both the code’s binary and
its execution behavior under memory attacks. ATRIUM provides
resilience against both software- and hardware-based TOCTOU
attacks, while incurring minimal area and performance overhead.

Index Terms—Attestation, runtime, memory attacks

I. INTRODUCTION

Recent high-profile attacks on embedded systems, such as
Mirai and Stuxnet, have become crucially alarming and of
increased significance as systems are becoming more intercon-
nected and collaborative. Remote attestation plays an important
role as a security service for detecting malware on a remote
device. It is implemented as a challenge-response protocol that
allows a trusted verifier to obtain an authentic report about
the (software) state of a potentially untrusted remote device
called prover. Conventional attestation schemes are static in
nature, i.e., the prover sends an authenticated report to the
verifier by issuing a digital signature or cryptographic MAC
(Message Authentication Code) over the verifier’s challenge
and the measurement (typically hash) of the binary code to
be attested [22]. However, static attestation only ensures the
integrity of binaries but not of their execution. In particular, it
cannot detect the prevalent state-of-the-art runtime attacks that
do not modify the program binary but subvert the intended
control flow of the targeted application program during its
execution. Current runtime attacks take advantage of code-
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reuse techniques, such as return-oriented programming that
dynamically generate malicious code by chaining together code
snippets (called gadgets) of benign code without requiring
to inject any malicious code/instructions [24]. Consequently,
the hash value computed over the binaries remain unchanged
and the attestation protocol succeeds, although the prover has
been compromised. These sophisticated exploitation techniques
have been shown effective on many processor architectures,
such as Intel x86 [23], SPARC [4], ARM [16], and Atmel
AVR [10]. In fact, large-scale investigations of embedded
systems security have shown various vulnerabilities, including
memory corruption (such as buffer overflow) that can be
exploited for runtime attacks.

Hence, effective attestation should enable reporting the
prover’s dynamic behavior — more concretely, its current
execution details — to the verifier. To attest the dynamic
program behavior researchers have proposed enhancements
and/or extensions to static binary attestation (e.g., [11], [3]).
The most recent, C-FLAT [3], reports the prover’s dynamic
state (execution paths) and provides fine-grained control-flow
measurements to the verifier. Note that, unlike control-flow
integrity (CFI) enforcement, control-flow attestation provides
detailed information about the executed path that might be of
crucial interest to a remote verifier. This information helps
in detecting data-oriented non-control attacks [5] that can
bypass CFI by corrupting data variables to execute a valid
but unintended control-flow path, for instance, redirecting the
control flow to a high-privileged recovery routine (see also [13]).
However, C-FLAT requires program code instrumentation and
incurs high performance overhead, particularly on the prover.

On the other hand, all existing attestation schemes (including
C-FLAT) rule out physical attacks in their adversary model.
This assumption is not always realistic, since the adversary may
at some point have physical access to the prover. In this case,
it is possible to execute (extraordinarily effective and cheap)
non-invasive attacks on the program code memory through
physical access. In particular, the adversary physically controls
and modifies the memory such that benign code is attested but
malicious code is executed instead.
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Goals and Contributions. In this paper, we first demon-
strate that — using external interfacing with prover’s program
code memory bank — an adversary can bypass all existing at-
testation schemes and deliver sound attestation reports, without
even having to extract the prover’s secret keys (cf. § III).
To overcome the limitations of current attestation schemes,
we introduce a holistic approach to attestation ATRIUM, a
resilient runtime attestation scheme that is capable of detecting
both physical memory attacks and software attacks including
runtime attacks by attesting the executed instructions and their
control flow at runtime. Our main contributions are listed as
follows.

« We demonstrate memory bank attacks on state-of-the-
art attestation schemes for embedded devices such as
SMART [9] and C-FLAT [3]. We exploit physical access
to code memory to bypass attestation and deliver sound
attestation reports without having to extract the prover’s
secret keys.

e We present ATRIUM- an attestation scheme which:
(1) detects memory bank attacks by attesting instructions
as they are fetched from (off-chip) memory for execution;
(2) prevents software attacks on the attestation process it-
self by separating the attestation engine from the processor
(i.e., no instructions are sent to the processor to perform
attestation). Instead, attestation is performed by a separate
hardware engine in parallel. (3) detects runtime attacks
by tracking and reporting both executed instructions and
control-flow events during execution.

o We present a proof-of-concept implementation and perfor-
mance analysis which demonstrate the effectiveness and
feasibility of ATRIUM, and its applicability to low-end
embedded devices.

II. BACKGROUND

Control-Flow Graph (CFG). The execution flow of a
program can be abstracted into a control-flow graph (CFG) by
leveraging the aid of static and dynamic code analysis. The
nodes in CFG represents basic blocks of a program, while
edges represent control-flow transitions from one block to
another by means of a branch instruction. A valid path in CFG
is composed of several nodes connected by edges.

Runtime Attacks. An outline of the different classes of
runtime attacks is illustrated in Figure 1. The system dedicates
separate memories for data and code. The former is marked
as readable and writable (rw), while the latter is marked as
readable and executable (7x). This ensures that code cannot
be executed from data memory, and code memory cannot be
overwritten by means of software. Along this CFG, we can
outline three major classes of runtime attacks: @ non-control-
data attacks that indirectly affect the control flow of a program,
@ corruption of loop variables, and ® code-pointer overwrite
attacks. By corrupting control-flow information stored in the
stack or heap and overwriting code-pointers (return addresses
and function pointers) as in ® an attacker can redirect the
control flow of a program such that execution has a malicious
and unauthorized effect. In attacks based on code-injection,

Program Memory
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(CFG) of code

data (rw)

Data Variables
- non-control-data |
Software-only Y\ ° attacks
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. malicious
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~1*__ Code Pointers
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@ benign code block O
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Figure 1: Different attack classes

the attacker places a malicious executable payload in program
memory and redirects control flow to execute it. Alternatively,
state-of-the-art runtime attacks leverage code-reuse techniques,
such as Return-oriented Programming (ROP) [23]. These
attacks exploit a memory corruption vulnerabilities (e.g., buffer
overflows) in the program and stitch together a malicious
sequence of machine code instructions from benign gadgets
of code already residing in the memory of the vulnerable
program. Non-control-data attacks [5] do not compromise the
control flow of a program, but cause unexpected malicious
control flow by corrupting critical data variables such as an
authentication variable. This results in executing a privileged
(unintended) but permissible control-flow path that exists in
the CFG. Attack @ affects the number of times a program loop
executes by corrupting a loop variable such as a counter. This
can have severe consequences depending on the context, e.g.,
a syringe pump dispenses more liquid than requested (see [3]).
Code injection attacks can be prevented by either marking
memory as writable or executable. This mechanism is known
as Data Execution Prevention (DEP) [12]. Countermeasures
against code reuse attacks include: Control-Flow Integrity
(CFI) [2], fine-grained code randomization [19], and Code-
Pointer Integrity (CPI) [18].

Besides software-based runtime attacks, a stronger adversary
as shown in Figure 1, can modify program code in memory
through physical access without mounting sophisticated inva-
sive physical attacks, but by simply replacing the benign code
memory with malicious code memory at runtime. We elaborate
on these memory bank attacks next in § III and propose an
attestation scheme that can mitigate them in § V.

III. TOCTOU ATTACKS ON ATTESTATION SCHEMES

Next we describe memory bank attacks that we aim to
mitigate in this work, and we show how they bypass recently
proposed attestation schemes: SMART [9] C-FLAT [3] and
LO-FAT [7]. These attacks assume a stronger adversary that
can physically manipulate the code memory without the need
for sophisticated invasive physical attacks and can consequently
bypass attestation schemes that strictly consider software-only
adversary. The attack is illustrated in Figure 2: At Prv’s side
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the attestation scheme (i.e., the attestation code and secret
key) is stored on-chip while the benign code resides in an
external memory. The adversary can interleave instruction
fetches to malicious code in-between those fetches needed
to attest the benign code of the original program. This can
be done by replacing the original memory interface with an
interface to a memory controller. This allows the adversary to
direct instruction fetches to either benign code when attestation
is running, or malicious code otherwise. The same interleaving
attack can be achieved by inserting malicious instructions in-
between hooks to the attestation. As long as the malicious
instructions do not interfere with attesting benign code, e.g.,
intended control flow, the attestation can be bypassed. In the
following, we describe how we implement the attacks to bypass
SMART and C-FLAT.
\

Prover Request to attest

d

Remote

Execute

| Malicious ' -~ - Processor Verifier
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lllllll <7 Attestation report,
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Figure 2: Memory bank attack on attestation schemes
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A. SMART

SMART [9] is a static attestation scheme that establishes
a root of trust in low-end embedded systems with minimal
hardware components. It targets microprocessors that are able to
execute code from an external memory, whereas the attestation
code and key reside in an internal ROM and are protected by
access control policies of a memory protection unit (MPU).
When an attestation request is received, the atomic attestation
code in ROM computes a HMAC of a region of code memory,
provided in the attestation request. Then the attested code
executes atomically.

Detecting Attestation Execution. By eavesdropping in the
communication channel between the verifier and the prover for
an attestation request, we determine when the attestation engine
is about to run in order to launch a TOCTOU attack. Although
this is permissible by the adversary model in SMART, we
choose not to tackle the detection problem this way. Instead,
we examine a side-channel that is inherent to the SMART
design, by placing a monitor on the address bus between the
processor and memory to capture which addresses are being
accessed. Using the access patterns, we are able to discern
whether a CPU is executing from external memory or from the
internal ROM. Since SMART is prototyped on the open-source
MSP430', it utilizes a von Neumann architecture, where data
and instructions are accessed over the same address space but
are structured such that they reside in different sections of
memory. Hence, we can extract and filter out data accesses,

"http://opencores.org/project,openmsp430

leaving behind accesses to code memory. In doing so, we
observe the time-frame that it takes the internal ROM to set
up the attestation environment, followed by the linear scan of
code addresses, then the subsequent execution of external code.
On processors with modified Harvard architecture, a temporary
halt in accesses to code memory would be recognized, as the
ROM code starts executing. We then observe a linear scan
over an address range, as code is being read and hashed by
the attestation code. A break is then noticed as the ROM
code cleans up memory, followed by the continued access to
program memory for execution. Utilizing this, we perform one
of the following attacks to mount a TOCTOU attack.

Blind Execution of Malicious Software. Since code mem-
ory remains external to the SoC, we splice the address bus,
add a new memory chip containing malicious code and utilize
the monitor to detect when the attestation code runs. When
attesting, we bank to the memory with the intended code. When
executing, we bank to the malicious code memory, allowing
SMART to report valid attestation results while malicious code
is actually executed by CPU during periods of no attestation.

Leakage of Secrets via Data Memory Banking. As the
attestation code runs, temporary values are saved in memory,
assuming SMART implementation utilizes off-chip memory
to store temporary values. We use the monitor to detect when
the attestation code runs. As data memory is accessed to store
temporary values, we bank memories to allow for the leakage
of values. We perform this by physically tampering with the
address lines between the processor and the memory. As the
monitor detects when SMART is about to perform its cleanup
routines, we bank to a different portion of memory, leaving the
ROM code to erase the wrong portion of memory. By reading
the SMART secrets from memory, we are able to reconstruct
the attestation secret and fake a valid response.

B. C-FLAT

C-FLAT [3] is a runtime attestation scheme that aims to
measure and report the control-flow behavior of an executing
code. It instruments all branch instructions such that they are
intercepted by a runtime tracer (RTT). The RTT recovers the
source and destination addresses of the branch as well as its
type, which are then passed to the measurement engine (ME).
The ME is responsible for computing a hash over the reported
branches and these hash measurements are secured by running
in a TrustZone secure world. In this way, a runtime control-flow
attestation report is generated and verified against previously
computed control-flow traces stored in a trusted verifier party.

C-FLAT is susceptible to two TOCTOU attacks assuming
that the attacker has physical access to the code memory : 1)
replacing instructions within a basic block with malicious ones;
and 2) refactoring the control-flow graph (CFG) of an arbitrary
program to match a benign CFG protected by C-FLAT. Both
attacks exploit the fact that C-FLAT attests only control flow
when exiting a basic block but not the executed instructions
themselves. Hence, intermediate instructions within the basic
block can be arbitrarily replaced by malicious executable code
by a stronger adversary with physical access to the code
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memory, as long as the control flow of the code remains
unchanged and the expected attestation report is not violated.
These attacks are also applicable to the hardware-assisted
control-flow attestation scheme LO-FAT [7] since it also only
attests control flow.

We chose to implement a TOCTOU attack against one of the
case studies presented in [3], namely the syringe pump program
responsible for dispensing intravenous (IV) fluids. Our attack
goal is to dispense liquid in incorrect volumes at unexpected
times, thereby, disrupting the correct flow of IV fluids. We
only demonstrate the second attack variant, however, the first
variant of the attack is also easily feasible by replacing the
original instructions within the basic block with malicious ones.
This allows the original RTT hooks into the ME to compute
a valid attestation report as it is based upon the source and
destination addresses of a branch and its type.

In place of the original program that manages liquid
dispensing and withdrawal, we implement a malicious program
that chooses a random value to dispense by modifying the
set—quantity function and additionally creates compound
dispense and withdraw triggers for the move-syringe
function. We embed this code in the original program, which
creates new edges in the CFG of the syringe pump program.
Our new edges would violate C-FLAT’s attestation report for
the benign syringe pump program.

To avoid triggering C-FLAT, we refactor the CFG of our
attacker syringe pump program using the REpsych tool” to
construct the desired CFG. The REpsych tool is an IDA plugin
that translates a source image into a functioning program whose
CFG is the image. We used the original syringe pump’s CFG as
a source image, and our modified syringe pump program as the
target. This allowed us to generate a program with alternative
functionality, but equivalent CFG to the original syringe pump
program. We then recompute the attestation report using
C-FLAT’s tools®. The attacker program’s attestation report
matched the original syringe pump program’s attestation report
after CFG refactoring. Thus, we were able to accurately execute
the attacker program without violating C-FLAT’s protection.

IV. ATRIUM

We present ATRIUM a runtime attestation scheme targeting
bare-metal embedded systems software. ATRIUM comprises
a remote embedded system, called in this context the prover
Pru, and a trusted verifier Vr f. The Pro is deployed in-field
such that the adversary has physical access to its memory.
Typically, both Vrf and Prv have access to the binary code
of the program P to be attested on Prv. Note that, in practice,
it may not be feasible to apply runtime attestation to the entire
program code due to obvious efficiency reasons, but it can be
applied to pre-defined security-critical code regions.

A. Adversary Model and Assumptions

In addition to the standard capabilities of the adversary in
typical remote attestation schemes, which assume software-

Zhttps://github.com/xoreaxeaxeax/REpsych
3https://github.com/control-flow-attestation/c-flat

only attacks, our adversary can also perform runtime attacks
(§ II). Furthermore, we assume a stronger adversary that has
physical access to the Prv’s memory and can manipulate the
program code at runtime and, therefore, is able to mount a
TOCTOU attack (§ III). However, the adversary cannot modify
memory reserved and used by ATRIUM itself — this memory is
hardware-protected and not mapped to the software-accessible
address space. Data-oriented programming attacks [13] that
do not affect the control flow as well as invasive physical
attacks on the SoC that aim at extracting secret keys are out
of scope. This assumption is reasonable, since an adversary is
more likely to mount a simple physical attack on the memory
as we demonstrated in § III, rather than expensive sophisticated
invasive attacks on the chip that can destruct it eventually.

B. Runtime Attestation: High-Level Scheme

Inspired by C-FLAT [3] (described in § III-B) and the
hardware-assisted scheme LO-FAT [7], ATRIUM performs
attestation of an executing program code at runtime. However,
unlike both schemes, it measures both the executed instructions
(to detect the more advanced TOCTOU attacks described
in § III) and control flow (to detect runtime attacks).

Similar to C-FLAT, our attestation mechanism relies on Vr f
performing one-time offline pre-processing to generate the CFG
of program P (including expected loop execution information)
by means of static and dynamic analysis. Vrf computes
cryptographic hash measurements over the instructions and
addresses of basic blocks along legal CFG paths and stores
them in a reference database. Vrf initiates the attestation by
sending Prv benign input iny, the code region to be attested
in P, and a nonce to ensure freshness of the attestation report.
‘Prv executes P on the benign inputs in, and potentially
malicious inputs in,, that are not controlled by Vr f and may
lead to the corruption of the program’s control flow by means
of runtime attacks (§ II). ATRIUM is triggered during the
execution of the code region of interest and computes a set of
hash measurements over the executed paths. When execution
of the code region is complete, Prv generates and sends to
Vrf the final attestation report consisting of the concatenated
set of hash values Hy||...||H,, and the number of iterations of
the hash values which correspond to executed loop paths, and
a signature over Hyl|...||H,, and the nonce based on Pruv’s
secret key sk. To ensure authenticity of the report, sk is stored
in memory accessible only by ATRIUM. Upon receiving the
report, Vr f verifies its signature using Prv’s public key pk
and checks whether the Hy||...||H,, values match the reference
hash values under input in;,. If they match, Vrf concludes
that Prv’s execution of the attested code region was correct
in terms of executed instructions and their control flow. For
better understanding, we demonstrate next by an example how
the hash values are computed during attestation.

Example. A CFG of an example pseudo-code is shown
in Figure 3. Each numbered node in the CFG represents the
corresponding numbered basic block of sequential instructions
in the pseudo-code and the address of the first instruction of
that basic block. For example, N5 corresponds to the first 3
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Control-flow Graph (CFG) of pseudo-code

@{ segment 0

if (variable==true) (s0)
@7 then: call func_x()
®7 else: call func_y()
@ - segment 1

terminate ST

segment 0
(s0)

g 1oop .
}
@7}}‘unc_ v{ -

segment 2
{s2)

®——» Path 0in CFG (PO)
®:--Ppath 1in CFG (P1)

D D I:] D CFG path segments
Figure 3: Example pseudo-code and its segmented CFG

Legend

instructions outlined in the pseudo-code, constituting a single
basic block, and the address of the first instruction. The CFG
shown in Figure 3 has 2 main paths: PO, in bold, consisting
of nodes N1-Ny-N5-Ng-Ny and P1, in dashed, consisting of
nodes Ny-N3-N7-Ny. In order to avoid combinatorial explosion
of legal hash values that would occur due to multiple loop
iterations, the program CFG is split into segments such that
hash values for loop paths are computed separately, rather than
computing a single hash value over the complete executed path
of the attested region. In Figure 3, due to the loop in N5-Ng,
PO is sectioned into 3 segments: SO, S1 and S2. SO comprises
all nodes till loop entry at N5, where S1 is initialized. S1
ends at the loop exit node Ng, and S2 is initialized at N4 and
beyond until again another loop is encountered and so on.

When path PO is executed and attested, ATRIUM accumu-
lates nodes (address of the first instruction and the individual
instructions in each node) along each segment and computes a
hash value for each segment: a hash value Hy = H(N;||N2)
over the nodes in SO of PO, followed by Hy = H(N5||Ng)
over the nodes in S1, and Hy = H(N,) over the nodes in 52,
resulting in the set of hash values Hy||H;||Hs representing
the executed path P0. P1, on the other hand, has no loops.
Therefore, when executed the whole path is measured by
a single hash value Hs = H(Np||N3||N7||Ny). This CFG
segmentation in hash computation allows our scheme to tackle
loops and nested loops efficiently, while also allowing fine-
grained attestation of their execution. It requires that ATRIUM
can detect and interpret loops accurately at runtime. Unlike
C-FLAT, we aim to realize this without instrumentation, hence
avoiding the associated performance overheads. We present next
the architecture of ATRIUM and how it interfaces directly with
the processor hardware to capture at runtime every executed
instruction and accurately interpret control flow and infer loop
entry and exit points without instrumentation.

V. ATRIUM: DESIGN AND IMPLEMENTATION

ATRIUM is a hardware-based scheme for runtime attestation
that tightly integrates with a processor, as shown in Figure 4.
This allows it to extract the executed instructions and their
memory addresses from the execute stage of the pipeline
at runtime while the program P (that needs to be attested)
executes on input values in; and in,,. ATRIUM outputs a set
of hash values Hyl|...||H, computed over the executed path

PC,
executed instruction

branch (SRC, TGT),
executed instruction

loop_ID, F_ID
executed instruction

Hll... IIH,

Processor Pipeline

increment
hash counter.~"

ARTRIUM HW- [
Components [ —

Of-the-shelf
Components

Figure 4: Architecture of ATRIUM

Legend

which get included in the attestation report. We present next
the components of ATRIUM and their implementation details.

A. Instruction Filter

Upon code execution, the instruction filter extracts the current
program counter (PC) and the executed instruction per clock
cycle and checks whether the current instruction is a branch or
jump, since such instructions reflect control-flow transitions.

Implementation. We implemented the instruction filter such
that it tightly extends the execute stage of the processor from
which it extracts the PC and instruction per clock cycle. If the
current instruction is a control-flow instruction, its PC and the
address it jumps to are stored as source—target pair, (Src, Tgt)-
pair. To determine whether the branch was taken and whether
control jumped forwards or backwards in memory, the PC of
the next executed instruction is compared to the stored target
address. Instruction filter outputs the following signals: (1)
branch instructions, their type, and (Src,Tgt)-pairs and (2)
basic block addresses and executed instructions.

B. Loop Encoder

As explained in § IV-B, ATRIUM handles loops and their
hash computations differently. Hence, at runtime the loop
encoder detects loops and identifies their entry and exit points
and their depth, in case of nested loops. It checks whether
the behavior of a captured branch can be inferred as returning
to a loop’s entry point, hence indicating a new loop iteration.
The loop encoder instructs the hash controller to finalize the
ongoing hash computation and initialize a new one with the
entry address of a loop iteration. Furthermore, the loop encoder
also detects if a branch represents a system call since system
functions have to be handled specially in ATRIUM.

Implementation. To detect loops at runtime without rely-
ing on code instrumentation, we utilize a feature of RISC
architectures that implement a link-register, such as PowerPC,
ARM, SPARC, and RISC-V. We adopt a heuristic used in [7]
to distinguish between backward branches that indicate loop
entry, and branches for subroutine calls where the call target
resides earlier in memory. Subroutine calls use instructions
that update the link-register with the return address, hence, we
consider any non-linking backwards branch as a loop entry
node. Consequently, the basic block after the branch instruction
is considered a loop exit node. This is based on observations
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of the RISC-V compiler assembly and its calling convention:
any subroutine call with multiple call sites must be linking
and updates the link-register. Subroutines with a single call
site can be compiled as a linking branch or inlined using the
RISC-V compiler. A system call is identified by comparing its
target against a predefined list of addresses of such functions
and issuing a unique identifier for that function F_ID. The
loop encoder stores the addresses of entry and exit nodes of
each loop in a content-addressable memory (CAM) to ensure
single-cycle constant-access search time. At runtime, every
(Sre,Tgt) is used to index the CAM to detect if a loop is
re-entered or exits and to extract its loop_ID and depth (in
case of nested loops). An iterations counter for each loop is
maintained and updated at runtime. We detect loop exit when
execution proceeds past the currently active loop exit node,
either due to sequential execution or a non-linking jump, such
as a break. The F_ID, loop_ID and loop_status signals are
forwarded then to the hash controller.

C. Hash Engine and Hash Controller

The hash engine computes a hash value of each executed
path within a segment (§ IV-B). The hash controller regulates
the operation of the hash engine, i.e., finalizes or initiates a
hash computation based on the control signals received from
the loop encoder. In case the computed hash corresponds to
a loop path, the hash controller sends this hash to the hash
lookup and sets the search boundaries of the hash lookup to
that particular current loop (necessary in case of nested loops).
Otherwise, the hash value is simply stored in hash memory.

Implementation. We selected Blake2 # for hash computa-
tions and used the open-source hardware implementation of
Blake2b, which takes as an input a message block of size 1Kbit
and has a configurable digest size. We configured its digest size
to 88 bits to reduce memory requirements for hash lookup and
hash memory. The hash controller buffers incoming instructions
from the loop encoder, aligns them in 1Kbit message blocks
and feeds them to the hash engine. The hash engine requires
28 cycles to process a block, thus the hash controller issues a
stall signal to the processor in case its buffer is full and the
hash engine cannot digest a new message block. Therefore,
system calls are handled differently because we observe that
they often involve short loops that are executed arbitrarily
many times, e.g., string utility functions. Hashing such a short
loop path every time it executes, especially for a large number
of iterations, would require the hash controller to stall the
processor frequently and delibitate performance. Hence, the
executed instructions along a loop path are concatenated and
stored in plaintext in a dedicated CAM and sent to the hash
engine only once when it is first encountered. When the same
path is executed again, it is compared with the previously
recorded paths in the CAM, and a corresponding counter is
incremented when a match is found, without sending it to
the hash engine again. The counters are concatenated with
the corresponding hash values in the final attestation report.

“https://blake2.net/

Upon finalizing a hash computation, the hash controller checks,
whether the resulting hash is computed over a path within a
loop or not. If it is computed over a path loop, it forwards the
resulting hash value from the hash engine synchronized with
its corresponding loop_ID to the hash lookup.

D. Hash Lookup

The hash lookup is dedicated to storing and tracking hash
values during loop iterations efficiently. Once a hash value is
ready, the hash controller forwards it to the hash lookup, which
searches within the current loop’s list of hash values for a
match. If not found, then the hash value is appended to the list.
The hash lookup also maintains a counter per loop path which
is incremented when its corresponding hash is encountered.

Implementation. To avoid multiple memory accesses due to
sequential search of a particular hash value, we implement the
hash lookup as a set of CAMs, whose number can be configured
based on the system’s requirements. A CAM is dedicated for
every active loop, so the number of CAMs is determined by the
maximum number of nested loops that ATRIUM is configured
to track concurrently. Each CAM has a configurable capacity
of (n,m) bits, where n is the maximum number of entries and
m is number of bits per entry and a counter to maintain the
occupied number of entries. When a loop is detected, the hash
controller sends the hash lookup to reserve a CAM for it and
reset its counter to zero. The CAM holds the computed hash
values of a currently executing loop temporarily till the loop
exits. Each time a path in the pertinent loop is executed, its
computed hash value is looked up in the associated CAM. If a
match is not found, i.e., this path has not been executed before,
then its hash value is appended to the CAM. When a new
loop is detected and all CAMs are occupied, a CAM that was
reserved for a loop that already exit (and will not be executed
again) is freed and re-used. If a path does not belong to a loop,
then its hash value is used to update the hash memory directly.

E. Hash Memory

All computed hash values are stored in a dedicated memory.
After the execution of the code region to be attested completes,
these hash values are assembled and a digital signature is
computed over them. The hash values Hy|...||H,, and their
signature are then transmitted to Vrf.

Implementation. An on-chip hash memory is dedicated to
store all computed hash values during a single attestation run
of the pertinent code region. The sequence of the storage of the
hash values in memory indicates the order of the first occurrence
of their corresponding code segments during execution. It is
necessary to maintain this order and report Ho||...||H,, in the
same sequence to Vr f for correctly verifying execution. In our
FPGA prototyping of ATRIUM (cf. § VI), we configure the
hash memory as on-chip block RAM (BRAM) of configurable
capacity with each entry occupying 88 bits for hash digest and
8 bits for its counter. The capacity is configured according
to our attestation requirements, i.e., the maximum number
of CFG segments an attested code region would consist of.
Alternatively, for constrained embedded systems, we can reduce
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the memory requirements by streaming the hash values (or
every batch of them) as soon as they get generated to the Vr f.

VI. EVALUATION & SECURITY CONSIDERATIONS
A. Performance & Area Evaluation

We implemented ATRIUM in Verilog, interfaced it with the
open-source RISC-V Pulpino core >, and simulated and synthe-
sized it. Performance and functionality were evaluated using
a suite of microprocessor benchmarks including Dhrystone,
mt-matmul, rsort, spvm and towers.

Functionality. We extended the Pulpino RTL with ATRIUM
and performed cycle-accurate simulation on ModelSim while
executing the aforementioned benchmarks. We confirm correct
functionality of ATRIUM by comparing simulation results
with reference execution profiles of the benchmarks, which we
extracted by running the benchmarks on standalone Pulpino
without ATRIUM and analyzing the execution trace.

Area and Memory. Area utilization depends on the config-
urations of the hash lookup and hash memory of ATRIUM. For
our evaluation, we configured the hash lookup with 8 CAMs,
each CAM with n = 8 entries and each entry being m = 88
bits. This allows ATRIUM to track up to 8 active nested loops
at once with a maximum of 8 different 88 — bit path hashes
per loop. On synthesizing ATRIUM using Xilinx Vivado on
a Zedboard (Virtex-7 XC7Z020 FPGA), we show the overall
area utilization to be 15% of slice registers and 20% of slice
LUTs of this FPGA, while only one 18Kbit BRAM is required
for the hash memory.

Performance. Implementation results indicate that ATRIUM
can operate at a maximum clock frequency of 70 MHz on
a Zedboard (Virtex-7 xc7z020 FPGA) and is, hence, on par
with the Pulpino’s maximum clock frequency of 50 MHz on
the same board. Performance experiments show an overhead
of 1.97% for Dhrystone, 12.23% for mt-matmul, 22.69% for
rsort, 6.06% for spvm and 1.7% for towers. Since ATRIUM
components run on par with Pulpino, performance loss is caused
by the hash function, as the processor stalls occur only when the
currently executed path has ended and needs to be hashed while
the hash engine is still processing the previously executed path
and is not ready for input. This overhead is incurred for loops
with paths whose number of executed instructions are less than
the required number of cycles for the hash engine to finalize
its computation (28 cycles for the chosen hash function). To
mitigate this overhead, the hash engine should be clocked at a
higher frequency than the processor if possible.

B. Security Considerations.

We assume that the used cryptographic primitives are secure.
Upon receiving an attestation request, Prv generates and sends
the list of computed hash values Hy||...|| H,, along with a digital
signature computed over it and a nonce provided by Vrf and
signed by Pruv’s secret key sk. The signature guarantees the
authenticity of the attestation report while the nonce ensures
its freshness. By verifying the signature, checking the value of

Shttps://github.com/pulp-platform/pulpino

the nonce, and comparing the received hashes to their expected
values stored in Vrf’s database, Vrf gains assurance of the
correct execution (both instruction and their control flow) of
the current program on Prv. We consider three classes of
attacks that can be mounted on ATRIUM.

Malware and Network Attacks. ATRIUM detects mali-
cious software modification introduced by the adversary, as
every executed instruction is included in the hash computation.
To evade detection, finding a second image that maps to same
hash value is required. However, that is infeasible since the
hash engine is second pre-image resistant. Forging the signature
or replaying an old signature is also not feasible, due to security
of signature scheme and to the nonce being long enough.

Runtime Attacks. Since basic block addresses are included
in hash computations along with the executed instructions, the
hash values computed in ATRIUM reflect the control flow of
the executed path. Being tightly integrated with the processor,
ATRIUM is guaranteed to track and record every control-flow
event executed. An attacker who knows the program code
P or CFG(P) can try to bypass ATRIUM by searching for
a second pre-image of the corresponding hash. However, by
using cryptographically-secure hash function, finding collisions
is computationally infeasible.

Physical Attacks. An adversary with physical access to Prv
can try to manipulate the program code in Prv’s memory at
runtime, i.e, between time of attestation and time of execution.
However, in ATRIUM attestation is performed during execution.
Therefore, it is guaranteed that every instruction that is
executed on Prov will be included in the hash generation, and
consequently any manipulation will be detected by Vrf, as
the generated hash values would not match Vr f’s expectations.
This defends against TOCTOU attacks that can occur when
attestation is followed by execution, as was the case for both
SMART [9] and C-FLAT [3]. Finally, fault injection attacks
which target the SoC clock and cause unintended behavior
would also be detected by Vrf, as long as the attacks affect
the instructions executed or their control flow. Note that,
expensive invasive/semi-invasive physical attacks on the SoC
are considered out of scope in this work.

VII. RELATED WORK

Attestation Schemes. Existing static attestation schemes
such as software-based [14], [20], hardware-based [21], [17],
and hybrid [15], [9] attestation schemes are vulnerable to
runtime attacks. Control-flow attestation (C-FLAT) aims at
enhancing the security of static attestation schemes by addi-
tionally hashing the code’s execution control flow. This enables
the detection of code-reuse and non-control data attacks that
divert the execution flow. However, due to frequent hash calcu-
lations and context switching (on TrustZone), C-FLAT incurs
high performance overhead. LO-FAT [7] leverages hardware
assistance to track and measure control flow, thus, overcoming
the limitations of C-FLAT and enabling efficient attestation
of uninstrumented code. LO-FAT, however, incurs significant
area overhead due to its on-chip memory requirements (up to
49 36Kbit Block RAMs are used sparsely to store counters of
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loops’ paths). Finally, in a stronger adversary model with
physical access to the prover’s device, these schemes are
vulnerable to Time of Check Time of Use (TOCTOU) attacks.
ATRIUM mitigates this by providing both static and control-
flow attestation in a stronger (and more realistic) adversary
model efficiently.

Authenticated Memory Modules. Authenticated Memory
Modules (such as Intel Authenticated Flash [1]) aim at
resisting physical attacks on external memory by preserving
the memory’s integrity. However, they are insecure under an
adversary model with physical access. Moreover, they do
not authenticate the control flow of the execution. On the
contrary, ATRIUM provides an additional defense against
software runtime attacks by coupling the attestation of both
the instructions and their control flow with their execution to
eliminate any room for TOCTOU attacks.

Memory Authentication. Such schemes [8], [6] aim at
resisting physical attacks on external memory. However, they
incur high performance overhead by authenticating memory
blocks before execution and are susceptible to runtime attacks.
ATRIUM detects both runtime attacks and physical attacks on
code memory while incurring minimal overhead.

Hardware Security Architectures. Finally, hardware se-
curity architectures (such as Intel SGX) provide memory
authentication as well as static attestation. However, such
architectures are not designed to target low-end embedded
devices. Furthermore, they only provide static attestation and
therefore cannot meet the goals that we target. Nevertheless,
they provide security features complementary to our work.

VIII. CONCLUSION

Due to the ubiquity of interconnected embedded systems,
software running on these devices have become vulnerable
to remote software attacks. Previous attestation schemes have
been proposed to detect these attacks while always ruling
out physical attacks. In this paper, we showed that physical
attacks on the system’s code memory are indeed feasible. We
presented a hardware-based efficient scheme ATRIUM that
allows precise attestation of both executed instructions as well
as their control flow. ATRIUM is the first attestation scheme to
provide security guarantees against a stronger adversary with
physical access to code memory, and does not require any code
instrumentation (compliant to legacy software) or instruction
set extension. Our proof-of-concept implementation is highly
efficient with reasonable performance impact on the attested
software at an expense of minimal area overhead and memory.
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Abstract—Real-time autonomous systems are becoming pervasive in
many application domains such as vehicular ad-hoc networks, smart
factories and delivery drones. The correct functioning of these real-
time systems is timing-critical with hard deadlines. However, although
they interact with other systems and exchange inputs/outputs with the
physical world, they usually lack security mechanisms, which makes
them susceptible to a wide range of attacks with critical consequences.
Typically, this is because security mechanisms usually violate the real-
time requirements of these systems and cannot be adjusted at runtime
to provide the adequate security without compromising performance.

In this paper, we propose a consolidated runtime-configurable
hardware-assisted security extension called CHASE that supports dif-
ferent levels of security at runtime. Depending on the desired security
level and the system real-time, availability or functionality requirements,
CHASE can be configured accordingly at runtime, thus enabling the cal-
ibration of the security vs. performance trade-off. We analyze CHASE’s
effectiveness in providing different security guarantees against various
adversarial capabilities, and show how this is achieved with reasonable
logic overhead and minimal performance overhead.

Index Terms—Remote attestation, real-time system security, runtime
attacks, hardware-assisted security, runtime attestation

I. INTRODUCTION

Real-time systems are ubiquitous in many application domains
such as programmable logic controllers (PLCs), electronic control
units (ECUs) and emerging domains that deploy networks of col-
laborative autonomous systems, e.g., vehicular ad-hoc networks,
smart factories, search and rescue, and delivery robots and drones.
Typically, such systems are required to perform their tasks in real
time, while some may have hard and critical time deadlines with little
tolerance for down time. They may also be deployed in safety-critical
or non-deterministic infrastructures where their fail-safe operation is
paramount. To perform their tasks, they might also be interconnected
with the physical world and other devices, making them equally
vulnerable as other systems to security exploits.

Security for Timing-Critical Applications. Nevertheless, these
systems usually lack security protection mechanisms, leaving them
exposed to a wide spectrum of attacks, such as the infamous
Stuxnet' and more recently Triton’. Particularly, an attacker may
violate memory integrity by exploiting a standard memory corruption
vulnerability, e.g., externally-controlled format string® that causes
buffer overflows leading to data memory corruption. By corrupting
targeted control-flow information stored in the stack or the heap and
overwriting code-pointers (return addresses or function pointers), an
attacker can redirect the control flow of execution to cause a malicious
and unauthorized effect. Such runtime attacks can be used to inject
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malicious code (code-injection attacks) or re-use already existing
benign code chunks maliciously (code-reuse attacks), such as control-
flow hijacking and data-oriented attacks [1], [2].

Protection mechanisms, such as control-flow integrity (CFI) [3] and
control-flow attestation [4]) to mitigate or detect such attacks have
been shown to incur non-negligible performance overheads. While
this can be tolerated to some extent for applications without real-time
constraints, it would violate the functionality requirements of real-
time high-availability systems. Even defenses such as asynchronous
CFI specifically designed for PLCs [5] still incur performance
overhead of up to 8.3%. According to the NIST 800-82 guide on
the security of industrial control systems [6], timing, safety and
availability requirements must be prioritized when designing security
mechanisms for these systems.

Attack Space Coverage and Reconfigurability. Moreover, exist-
ing defenses against runtime attacks each assume a particular adver-
sary model and thus mitigate specific classes of attacks. Currently,
no consolidated defense exists that can mitigate multiple classes
of different attack vectors, or can be at least configured to thwart
different adversarial capabilities depending on the desired security
requirements and deployment environment. This is especially true
for hardwired hardware-assisted security extensions [7]-[12] which
cannot be upgraded or patched after fabrication. This makes system
architects reluctant to deploy them, despite their advantages over
software-based defenses.

Our Goal. In this work, we aim to tackle the challenges outlined
with respect to attack space coverage and applicability of defenses
for timing-critical applications. These challenges hinder the practical
deployment of hardware-assisted security mechanisms for embedded
systems in general, and for real-time safety-critical systems in partic-
ular. In doing so, we address the persistent trade-off between func-
tionality requirements (e.g., real-time operation, safety, availability or
other deployment constraints) vs. security requirements. We aim to
provide a flexible means for the system designer to tune this trade-
off by only incurring the corresponding performance overhead for the
degree of the security guarantees required and configured at runtime.

To achieve this, we categorize the different classes of attacks
that may target embedded systems. We evaluate which of these
attacks can be detected on-device and which of them require more
sophisticated policy-checking at a trusted third party. With this in
mind, we provide a consolidated and configurable defense mechanism
that can be adjusted at runtime to provide different security services
(and thus different security guarantees against different classes of
attacks) at the cost of different performance overheads. We enable this
by leveraging a custom hardware-based extension, called CHASE,
designed to operate in parallel to the actual processor. It captures and
tracks the execution at runtime in a cycle-accurate and tightly cou-
pled manner. CHASE is runtime-configurable and supports different
security services to mitigate different adversarial capabilities, where
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its hardware can be configured at runtime to either verify or enforce
control flow (including call-return matching). Verifying control flow
checks on-device that a control-flow transfer is allowed after it is
executed, without incurring performance overhead on the execution.
Conversely, enforcing control flow actively checks that each control-
flow transfer is allowed prior to its execution, which evidently comes
with some performance overhead. For more sophisticated attacks that
cannot be detected on-device, CHASE can be configured to capture
fine-grained features of the relevant execution, and send them to
a trusted third party (equipped with computational resources) for
verification using more complex policies.

For timing-critical systems, CHASE can be configured to verify
on-device that the control flow of execution is valid without inter-
fering with the application run time or halting the execution in case
of illegal control flow. Violation of a control flow policy is detected
with minimal latency, after which CHASE reacts gracefully without
compromising the safety or real-time requirements of the application.
Execution is redirected to a pre-defined and isolated safe state which
is application-dependent. In the meantime, a neighboring device (in
case of a network of collaborative devices) and the trusted third party
are notified of the impending exploit to react accordingly.

Contributions. In this work, we tackle the challenges we outline
above by proposing:

o A modular hardware-assisted extension CHASE that consoli-
dates different defenses and security services mitigating a larger
attack space than existing defenses.

« Configurable security that can be adjusted at runtime depending
on the security vs. functionality requirements of a given embed-
ded application and the deployment scenario.

e A security mechanism that can verify control flow on-device
with minimal latency making it suitable for timing-critical
systems (with caveats).

« Proof-of-concept implementation for a RISC-V processor and an
evaluation of performance overhead for the detection latency.

II. CHASE: SYSTEM AND ADVERSARY MODEL

The intuition behind our work is two-fold. The first is that security
mechanisms to date are not configurable by design to provide differ-
ent levels of security at runtime. Configurable security is required
when an embedded system is deployed in scenarios with different
threat levels and different functionality requirements (fail-safety, real-
time, periodicity, etc.). This is particularly a limitation of existing
hardware-assisted extensions which cannot be modified or upgraded
after production, rendering them hardwired to mitigate a fixed class
of security threats for the entire lifetime of the encompassing system.
Despite their many advantages as opposed to software-based schemes,
this hinders their deployment in practice.

The second is that existing security extensions, even asynchronous
Control-Flow Integrity (CFI) designed for PLCs [5], affect the
application run time, often non-deterministically. This makes them
unsuited for timing-sensitive systems that have no tolerance for down
time or variable reaction times. This further emphasizes the need for
a tuning knob that can be used to calibrate the trade-off between
the security guarantees vs. application run time and performance
overhead for different use cases and deployment settings.

To tackle the above challenges and provide configurable security
and modular lines of defense, we propose CHASE. CHASE is
the first consolidated and configurable custom hardware-assisted
security extension that integrates tightly with the processor core of
a remote in-field mid-end embedded device, called DEV. CHASE

114

captures and tracks the execution of DEV at runtime in a cycle-
accurate manner using custom hardware that operates in parallel to
the processor execution. It supports different security configuration
modes where valid control flow can be either actively-enforced or
attested after-the-fact, assuming control-flow policies are provisioned
on DEV. Verification can be performed either on-device or remotely.
On-device verification checks control-flow transfers against control-
flow policies that are provisioned on DEV. Although on-device
verification is limited to detecting explicit control-flow hijacking, it
is low-latency and can mitigate an exploit within a few clock cycles
as shown in § V-B.

Remote attestation, on the other hand, is used to detect more
sophisticated attacks, such as non-control-data attacks, which do not
directly compromise the control flow. It requires that the recorded
and measured execution is reported to a trusted third party (called
the moderator MOD). MOD is assumed to be a significantly
more computation-resourceful server than DEV and, thus can verify
the reported execution against a more complex set of policies and
heuristics, and detect data-oriented attacks. At runtime, the user
can select to activate or deactivate any of these security services
depending on the trade-off between the functionality requirements
(e.g., how much performance overhead can be tolerated) and the
presumed threat level of the deployment settings. In what follows,
we describe and classify the adversarial capabilities and classes of
attacks we consider in this work.

A. Adversary Model and Assumptions

Adversary Model. We consider an adversary ADY with varying
capabilities depending on the deployment settings, and with full
control over both the program memory and data memory of the target
program executing on DEV.

The different types of attacks .ADV can launch against embedded
systems can be broadly classified into:

A1l Static code manipulation (malware injection) attacks
A2 Runtime code-injection attacks

A3 Runtime control-flow attacks

A4 Runtime non-control-data attacks

A5 Runtime code manipulation attacks

ADYV can launch static code manipulation attacks and inject
malware such that modified code is loaded at start-up and executed
(A1). ADYV can also launch runtime attacks (A2 - A5) by exploiting
memory corruption vulnerabilities that cause buffer overflows leading
to corruption of data memory. By corrupting control-flow information
stored in the stack or heap and overwriting code-pointers (return
addresses and function pointers), ADV can maliciously redirect
the control flow of execution at runtime. In code-injection attacks
(A2), the attacker places a malicious executable payload in program
memory and redirects control flow to execute it. Alternatively, state-
of-the-art runtime attacks exploit code-reuse techniques, e.g., Return-
Oriented Programming (ROP) [2]. These attacks exploit memory
corruption vulnerabilities and stitch together benign gadgets of code,
which already reside in the program memory, in a particular sequence
to build the attack payload and hijack the control flow of the program
maliciously. These attacks hijack the control flow of the program
by executing invalid control-flow transfers, that do not exist in the
control-flow graph (CFG) of the program (A3).

More sophisticated code-reuse attacks known as non-control-data
attacks (A4) do not explicitly compromise the control flow of a
program, but cause malicious execution by corrupting critical data
variables such as an authentication variable or loop variable. This
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results in executing a privileged (unintended) but permissible control-
flow path that exists in the CFG or manipulating the number of
iterations of a program loop or control-flow edge. This can have
severe consequences depending on the context and is more challeng-
ing to detect. Furthermore, a stronger .ADY can modify program
code in memory at runtime through physical access without mounting
sophisticated invasive physical attacks. ADYV can replace the benign
code memory with malicious code memory at runtime especially if
the program code resides in an external off-chip memory [10] (AS).

Assumptions. We assume that MOD has access to the source
and binary code of the target program and that static root of trust
is in place by deploying conventional static (binary) attestation at
load-time. This assures that DEV is executing unmodified program
code, thus effectively mitigating attacks Al. Static attestation is a
standard established mechanism assumed to be commonly deployed
in embedded systems, while incurring no overhead on the application
run time. Access to the source code is assumed for MOD to generate
the control-flow graph of the target program and define the set of
policies to be enforced/attested (described in more detail in III-A).
Code injection attacks A2 can be effectively prevented by marking
memory as either writable or executable (W&X). This mechanism,
known as Data Execution Prevention (DEP) [13], is long-established
and considered a standard assumption for these systems. Finally, we
assume that expensive invasive physical attacks are out of scope
(except attacks A5 because they are realistic in practice). Thus, ADV
cannot compromise hardware-protected memory used exclusively by
CHASE that is not mapped to the software-accessible address space.

B. Requirements Analysis

To address the above, we derive the following requirements:

R1 Configurable security: Different security services with varying
security guarantees should be supported. These should be con-
figured at runtime depending on the threat level presumed for
the deployment and functionality requirements.

R2 Runtime security: The security services should be capable of
detecting different classes of runtime attacks (A3 - AS5) when
activated. For at least one of these services, the attacks should
also be detected with a sufficiently low latency for an impending
exploit to be prevented in time (not just after-the-fact detection).

R3 Minimal performance impact: All services supported should
incur minimal performance overhead on DEV. At least one of
these services should deterministically guarantee zero perfor-
mance overhead and no impact on the application run time.

R4 Accuracy & completeness: All services, when enabled, should
accurately capture, record and enforce or attest every control-
flow event in the execution. No control-flow events can be
dropped or bypass the activated security mechanism.

RS Secure communication: Whenever applicable, attestation results
should be securely reported to MOD; they should be integrity-
protected and fresh.

R6 Reasonable logic overhead: The hardware extension providing
these security services should incur minimal memory and logic
overhead to the baseline processor.

III. CHASE: HIGH-LEVEL DESIGN

In light of the requirements described in § II, we present CHASE,
the first consolidated hardware-assisted security extension that is con-
figurable by design in the face of different attack classes § II-A based
on their degree of difficulty to launch and (effectively) detect/mitigate.
With this in mind, we describe the different security configuration
modes supported in CHASE to mitigate these attacks and how

they can be configured at runtime in § III-A. These modes aim to
provide varying security guarantees by means of different security
mechanisms to thwart different adversarial capabilities at different
performance overhead costs. In § III-B, we describe the modular
design of CHASE shown in Figure 2 and how its components can
be configured to realize the different configuration modes at runtime.

Attack Categorization. As described in § II-A, attacks A1 and A2
are the most trivial to launch and mitigate. The former are mitigated
by deploying static attestation at load-time. The latter are mitigated
by deploying Data Execution Prevention (DEP), a long-established
mechanism that does not affect application run time. Attacks A3,
A4, and AS are the more challenging to launch and mitigate, and are
currently the more sophisticated threats targeting embedded systems.
CHASE provides different modes of configuration for different secu-
rity guarantees against these attacks, thus fulfilling R1 in § II-B. This
enables the configuration of different security mechanisms at runtime
while having the targeted application, functionality requirements and
the threat level in mind, thus calibrating the performance/security
trade-off flexibly. For real-time applications, for instance, particular
configurations can be selected that do not affect the application run
time, while providing an adequate level of security. For more vulner-
able or less timing-critical applications, higher security guarantees
can be provided by enabling other mechanisms, but at a higher
performance overhead. This renders CHASE suitable for deployment
in a wide spectrum of embedded systems with different use cases,
while also taking into account the strict functionality requirements of
timing-critical systems. We describe next how these different security
services can be activated at runtime.

A. Security Configurations Scheme

Four configuration modes are supported by CHASE:
C1 On-device control flow verification
C2 On-device control flow enforcement
C3 Moderator-verified control flow attestation
C4 Moderator-verified executed instructions attestation

Service ccmplete&

Idle )
Message request \
Security configuration Disable
N Check security , /c1/c2

C1/C2 disabled

y- Check (C1/C2) request
f\ data/message ‘ ‘ configuration
request R mode
EnablefCB/ %ble ca Enable C]/ \nable c2
C3: Attest N -~ C4: Attest CF \\\ // C1: Verify \‘ // €2: Enforce N
Control-Flow ( events, ) ( \ ( \
) | T : ) | CF events | [ CF events 1
(CF) events & \ iterations & / \ N / \ N /
,, R 3 4 \_  on-device / \_ on-device /
iterations instructions - < v \ 4
Service completed ~ \_ Violation detected /
y Send attestation N Direct execution to

( safe state and report )‘

report to moderator )
4 to moderator

& disable C3/C4

Fig. 1: Runtime activation of the CHASE configuration modes.

To enable these security mechanisms, a set of reference control-
flow policies is generated and provisioned in a dedicated addressable
policy memory on DEV, while more complex policies are made
available at MOD. These policies are generated by means of offline
one-time static and dynamic code analysis. The addresses used to
access the policy memory for fetching the policies for indirect branch
instructions are instrumented directly after the corresponding indirect
jump instructions in the application binary (or source). Moreover,
code analysis is used to generate a priori the list of security-
critical data/messages that can be requested from DEV, and the
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Fig. 2: CHASE high-level hardware architecture representing the modules activated for different security configuration modes.

corresponding software modules that contribute to the generation of
the pertinent data/message, and their memory address bounds. This
list is provisioned in a dedicated memory on DEV along with the
data/message ID, and is used to restrict the attestation in modes C3
and C4 to the relevant software modules only, when a particular
data/message is requested as described below.

Modes C1 and C2 can be enabled or disabled at any point
during execution as shown in Figure 1, and are not bound to
the execution of a particular data/message request. They verify or
enforce, respectively, that the control flow of execution is valid so
long as they are enabled. Modes C3 and C4, on the other hand,
are bound to a particular data/message request. If either mode is
requested along with the data/message request, the attestation service
continues to run until the request is completed. We describe next how
the hardware modules of CHASE shown in Figure 2 are configured
at runtime to realize the different configuration modes.

B. Security Configuration Modes

C1. Control-flow transfers are captured at runtime by module
M, in Figure 2 while being executed. The captured control-flow
events are checked against control-flow policies, which enlist the
allowed destination addresses for every indirect branch instruction.
These policies are in a dedicated policy memory and are pre-fetched
into a dedicated on-chip cache (policy cache). The required policy
address is mapped to the corresponding cache entry by module M3
and used to fetch the policies from cache in My. Mg verifies the
captured control-flow transfer by comparing it against the fetched
policy if it is a forward transfer, e.g, a function call. The call site
address is then pushed to the call-return matching stack in Mg if
this is a jump—-and-link-register instruction (function call).
Backward control-flow transfers, e.g., returning to a call site, are
verified by comparing the return address with a pre-defined number
of most-recently call sites pushed onto the stack. The matching call
site address and addresses pushed on top of it afterwards are all
popped off the stack. The activated paths for this mode are ‘A, 'C,
D, F, and H through the activated modules M1, M3, M4, and Mg
as shown in Figure 2. This mode guarantees low-latency (within a few
clock cycles) detection of illegal control-flow transfers and graceful
mitigation of an impending exploit (A3 attacks) while incurring zero
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performance overhead on the application run time (with caveats that
we discuss in § V-B and § VI).

C2. A control-flow transfer is not permitted to occur unless it is
validated on-device by M5 in this mode. This invasive enforcement
of control-flow transfers guarantees prevention of executing illegal
control-flow transfers (A3 attacks) that violate the provisioned poli-
cies, while incurring minimal performance overhead. This overhead
is variable and proportional to the number of control-flow transfers
and the number of policy rules verified for each control-flow transfer.
The activated paths for this mode are ‘A, 'C, D, E, and ‘G through
the activated modules My, M3, M4, and Ms5.

C3. To detect more sophisticated control-flow and non-control-
data attacks (A3 and A4 attacks), a more detailed attestation is
performed that cannot be verified on-device owing to the complexity
of the required code analysis and derived policies. Since this mode is
activated for a specific data/message request, the current instruction
address is checked by M3 to validate whether it is within the memory
bounds of relevant program modules that should be attested for
this particular data/message. This avoids attesting modules that may
execute in parallel but are irrelevant to the requested data/message.
If a control-flow event is within bounds, i.e., to be attested, its policy
address is fetched from cache by Mz and My (similar to C1 and
C2). Then the control-flow event is verified on-device by Mg and the
counter for this particular edge is incremented by M~ to keep track
of the number of times a control-flow edge executes. Each executed
edge is measured into a cryptographic hash computation by the hash
engine (My) and forwarded to the multi-set hash operator (Mjo).
Both are regulated by (Mg). The multi-set hash (MSH) function
enables the computation of a single fixed-length hash digest for a
set of elements (control-flow edges in this case) while allowing its
members to occur multiple times, in which the order of the items does
not affect the final value [14]. The MSH functionality significantly
reduces the amount of information that needs to be sent by DEV to
enable reconstructing the hash values at MOD side. The attestation
report is assembled of a bitmap of executed control-flow edges and
their iteration numbers as well as a single MSH measurement of the
executed edges. The resulting attestation report is then sent to MOD.
MOD uses the bitmap to identify the executed edges and the number
of times each edge was executed to identify benign behavior by the
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expected control-flow edge iterations. Therefore, it can detect more
sophisticated attacks which often involve a loop iteration counter
getting maliciously compromised, thus causing the loop to execute
for an abnormally different number of times than expected. MOD
is assumed to be more computationally resourceful than DEV and
provisioned with more complex fine-grained policies and heuristics
in order to detect more sophisticated non-control-data attacks (A4
attacks). The activated paths for this mode are ‘A, B, 'C, D, F,
H, T,7J, K, L, and M through the activated modules M;;, Ma,
Mg, M4, Mﬁ, M7, Ms, Mg, and M10.

C4. This configuration mode assumes a much stronger adversary
capable of manipulating the actual instructions that are executed at
runtime without compromising control flow. To detect such an attack,
every instruction executed, besides control flow, is captured by both
M, and My, respectively, and included into the cryptographic hash
computations. As in C3 mode, a final MSH measurement is sent
along with a bitmap of executed control-flow edges and their iteration
numbers to MOD in order to detect attacks A3, A4 and AS5. The
activated paths for this mode are (A, B, C, D, F, H, 1, 7,
K, L, and M) through the activated modules M1, M1, M2, M3,
M4, Ma, M7, Mg, Mg, and M10~

While providing progressively stronger and more sophisticated
detection guarantees, configuration modes C3 and C4 come with sig-
nificant latency that includes network communication with the remote
moderator. On the other hand, modes C1 and C2 are performed on-
device, thus incurring minimal (if any) clock cycle-level latency for
detection/enforcement.

IV. CHASE: HARDWARE ARCHITECTURE

We describe next the functionality of the hardware modules of
CHASE used to enable the different configuration modes.
Execution Tracer M; is tightly coupled to the processor
pipeline. It tracks the execution flow of a software module/program by
extracting several signals relevant to the execution from the processor
pipeline at every clock cycle. It consists of two sub-modules: the
Instruction Tracer which captures every instruction executed when
mode C4 is activated, and the Control-Flow Tracer which captures all
signals relevant to control-flow transfers, as shown in Figure 2. This
module requires tight interfacing with the Fetch and Decode stages
of the pipeline to extract the program counter (PC), the instruction
itself, and whether it is an indirect branch. Only indirect branches
are exploitable by runtime attacks, and thus only these are captured
and their destination addresses are extracted from the Decode stage.
Bounds Checker M controls which control-flow events are
tracked and attested when either mode C3 or C4 is activated. For
modes C3 or C4 only software modules that contribute to the
generation of the requested data/message are attested during their
execution (§ III-A). Therefore, the Bounds Checker compares the
current PC with the address bounds of the relevant software modules.
This requires two clock cycles and is interleaved with the operation
of other CHASE modules for minimal performance overhead.
Policy Access Mapper Mj receives an address pointer to
the policy memory from the Execution Tracer and maps it
to corresponding cache entry in the Policy Cache, where the
requested policy would be available. If the policy is already cached
then the Policy Access Mapper fetches it from the Policy
Cache. Otherwise, it issues a cache miss. The Policy Access
Mapper also enables successive accesses to the Policy Cache in
case more than one cache entry is required to store the policies for
the pertinent control-flow transfer. The policies consist of the allowed
source—destination address tuples and are organized in the policy

memory per control-flow transfer, i.e., by source address, to achieve
spatial locality in the Policy Cache, thus lower miss rates. As
explained in § III-A, the policy memory addresses are instrumented
within the program binary immediately after their corresponding
indirect branch instructions, such that they get fetched anyway by
the processor then invalidated (incurring no additional overhead).
The Execution Tracer extracts the instrumented policy memory
address before it gets invalidated.

Policy Cache My is accessed to fetch the cache line with the
requested policy once the policy memory address is resolved by the
Policy Access Mapper. The policy is then forwarded to either
the Control-Flow Verifier or Control-Flow Enforcer
depending on whether C1 or C2 is enabled respectively.

Control-Flow Enforcer Ms; is tightly coupled with the
processor Decode stage. For function calls and forward edges, the
Control-Flow Enforcer ensures that the computed destina-
tion address matches one of the possible destination addresses in
the relevant policy. For function returns or backward edges, the
Control-Flow Enforcer utilizes the call-return matching stack
to enforce returning to one of the call sites on the stack. Otherwise, it
issues an interrupt signal to flush the pipeline and jump to an interrupt
routine, which requires invasive integration with the pipeline.

Control-Flow Verifier Mg checks whether the computed
control-flow destination address adheres to the pertinent policy by
comparing it with the allowed destination addresses in parallel. If
no match is found, then a control-flow violation is detected and
communicated to MOD. Execution may be gracefully interrupted
and redirected to an application-dependent safe state. In case C3 or
C4 is also enabled, the executed control-flow event is recorded in the
metadata and included in the hash computation to report to MOD.
MOD can analyze the detected violation to confirm that it is indeed
a violation and not a false positive. Otherwise, it can update the
provisioned policies if necessary. The Control-Flow Verifier
also informs the Control-Flow (CF) Event Counter with
the executed control-flow event for further processing.

Control-Flow (CF) Event Counter My is only en-
abled for modes C3 and C4 and receives information from the
Control-Flow Verifier on the executed control-flow trans-
fers. The CF Event Counter generates and maintains a bitmap
per software module that indicates which indirect edges and how
many times they are executed by means of maintaining edge counters.
It also maintains a list of control-flow transfers that were flagged as
violating. At the end of the attestation epoch of C3 or C4, the CF
Event Counter outputs the metadata to be sent to MOD namely,
the bitmaps, violated control-flow events and edge-counters.

Hash Regulator, Hash Engine and MSH Operator are
only enabled in the two modes C3 and C4. Hash Regulator
M;s regulates the operation of the Hash Engine for different
configuration modes and instructs it when to initialize/finalize a hash
computation. When C3 is enabled, it instructs the Hash Engine to
compute a hash measurement over the executed control-flow event.
It also guarantees that an executed control-flow transfer is hashed
only once when it is encountered for the first time, thus avoiding
exhausting the Hash Engine (with respect to power computation
and clock cycles) in repeatedly computing the same hash values.
When C4 is enabled, it also forwards the executed instructions
between consecutive control-flow events to the Hash Engine for
hashing. Finally, it also regulates the forwarding of the computed
hash values from the Hash Engine to the MSH Operator.

Hash Engine My is required to be a high-throughput and
collision-resistant cryptographic hash function (RS in § II-B). We de-
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ploy BLAKE2 * as the underlying hash function for the computation
of the multi-set hash value [14] that will be reported to MOD. More
details specific to our BLAKE? instantiation are presented in § V.

MSH Operator Mjo receives the computed hash values from
the Hash Engine to continuously generate the intermediate and
final multi-set hash (MSH) values. The MSH Operator performs
additive multi-set hashing using simple arithmetic operations (+ and
mod) [14]. At the end of the attestation epoch, the final MSH-hash
value is sent along with metadata to MOD for further inspection.
The execution of the Hash Engine and MSH Operator are
interleaved to achieve minimal performance overhead.

V. IMPLEMENTATION AND EVALUATION

We prototype CHASE by extending the open-source RISC-V
Pulpino ° on a Zedboard Zynq evaluation board. Hardware modules
were implemented in Verilog and integrated with the processor, along
with integrating modifications to the processor pipeline for capturing
the required execution signals and enabling control-flow enforcement.
In the following, we highlight the most crucial details relevant to our
proof-of-concept (PoC) implementation and evaluation.

A. Hardware Prototyping

Policy Access Mapper & Policy Cache. In our PoC,
we deploy a direct-mapped Policy Cache and a simple mod
function for the Policy Access Mapper that requires a single
clock cycle. The policy is fetched from the mapped cache entry
in the Policy Cache. Similar to conventional processor caches,
the cache organization, mapping and replacement policies are design
decisions and can be applied differently for the Policy Cache.
Furthermore, cache misses in the Policy Cache would correspond
to misses in the instruction cache. In case several cache lines need to
be accessed for fetching the policies of a control-flow transfer, suc-
cessive accesses to the Policy Cache are pipelined with the op-
eration of the Control-Flow Verifier and Control-Flow
Enforcer to maintain minimal performance overhead. In our PoC,
we assume a 64KB cache and a 64B cache line, such that a tuple of
16 32-bit addresses (thus up to 16 policies for one source address)
correspond to one cache line. We synthesize the cache using 8
instances of 64Kb Block RAMs (BRAMs), such that the complete
cache line (storing 16 policies) is fetched in one cycle.

Hash Engine & Hash Regulator. Blake2 is deployed as
the underlying cryptographic hash function for the computation of the
multi-set hash [14]. We utilize the Blake2s version, which consists of
10 rounds of computation. In each round, the compression function is
applied in parallel to the columns of the internal state and then in par-
allel to its diagonals. We build our Hash Engine implementation
on top of the open-source Verilog implementation of Blake2s ®. The
Hash Regulator is a simple controller that regulates the operation
of Hash Engine for different configuration modes and instructs it
when to initialize or finalize a hash computation. In C4, instructions
executed after a destination address of a control-flow transfer and
the source address of the next control-flow transfer are split into
blocks of 512 bits such that the blocks are hashed individually by
Hash Engine. These values are forwarded continuously to the MSH
Operator for the final MSH-hash value computations.

“https://blake2.net/
Shttps://github.com/pulp-platform/pulpino
Shttps://github.com/secworks/blake2s
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B. Area & Performance Overhead

Area. In Table I, we show a breakdown of the area overhead
of the CHASE modules. CHASE consumes 7,556 lookup-tables
(LUTs) and 5,040 Registers/Flip Flops (FFs), approximately 50%
of the baseline Pulpino logic (R6 in § II-B). However, the Hash
Engine incurs 50% of this overhead and requires at least 24 cycles
to finalize a hash computation. The rounds of the Hash Engine
implementation can be unrolled to achieve a significantly higher
throughput (at the cost of increased area overhead).

Performance. We evaluate sample control-flow exploits (ROP
and simple JOP attacks) with CHASE, and show that the detec-
tion latency of an illegal control-flow transfer is at least 3 clock
cycles after an indirect branch is decoded. For instance, the total
number of instructions in the Pixhawk’ firmware, an open-source
flight controller for drones (a timing-critical application), is 324, 996
instructions including 6, 210 indirect branches. For C2, this incurs a
performance overhead of 6% on the application run time, assuming
that all the policies are cached and only one cache line (maximum of
16 policies) is required per branch instruction. For C1, this latency
does not affect the application run time (a requirement for such
timing-critical applications), since the control-flow transfer is verified
after its execution. However, this only holds as long as there are at
least 3 clock cycles between consecutive indirect branch instructions,
which is satisfied for this particular benchmark. For other cases
where this is not true, only certain indirect branch instructions can
be verified while others are discarded, or the binary can be re-
instrumented accordingly. Nevertheless, the low detection latency
guarantees that an impending exploit can be prevented in time (R3).

TABLE I: Breakdown of CHASE Area Overhead

LUTs FFs Memory
Execution Tracer 210 128 1KB
Bounds Checker 630 1,071 4 KB
Policy Access Mapper 7 2 -
Policy Cache - 4 64 KB
Control-Flow Verifier 230 140 -
Control-Flow Enforcer 1053 287 -
Control-Flow Event Counter 240 288 34 KB
MSH Operator 384 256 -
Hash Regulator & Hash Engine 4,802 2,864 -

VI. SECURITY ANALYSIS

CHASE aims to provide a configurable defense and cover the
attack space described in § II-A. To achieve this, CHASE is required
to provide accurate, authentic and low-latency enforcement or on-
device verification of control-flow transfers for modes C1 or C2.
For C3 and C4, CHASE is required to provide accurate, complete,
authentic, and fresh attestation of control flow (as well as executed
instructions in C4) of the program running on DEV.

Attestation and Network Attacks. In modes C3 and C4,
the recorded control-flow events as well as the executed instruc-
tions (for C4) are measured into a compact cryptographically-
secure additive multi-set hash (MSH) digest MSH = (hash(r) +
EIteri.hash(CFlowi)) mod 27, where r is a nonce, CFlow; is an
executed control-flow edge (source-destination address pair), Iter;
is the number of iterations of that edge, n is the bit length of
CFlow; and hash is the underlying hash function used (Blake2 in
CHASE). In order to evade detection of control-flow/code manipu-
lation attacks, ADYV is required to find a sequence of control-flow
events/instructions (another multi-set) that maps to the the same MSH

Thttp://pixhawk.org/
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value. However, this is not feasible since the chosen additive MSH
is multiset-collision resistant where the hardness of finding collisions
is reduced to the hardness of breaking the underlying hash function,
which is the second pre-image resistant Blake2 in our design (RS).

Moreover, every attestation report is authenticated by DEV along
with a monotonic counter ctr using a cryptographically-secure
digital signature o = sign{skpey;bitmapcr| Iter;|r||MSH||ctr}
based on DEV’s signing key skpey. skpey is stored in hardware-
protected memory that is only accessible by CHASE. The signature
and secure storage of the key guarantee the authenticity of the report
while the monotonic counter ensures its freshness (R5). Note that,
the monotonic counter is backed in a non-volatile memory and is
non-resettable even when DEV is reset. Finally, since attestation is
coupled with program execution at D&V, Time-of-Check-Time-of-
Use (TOCTOU) attacks on attestation are prevented.

Malware and Code Injection Attacks. Recall that the adversary
is incapable of modifying the software binary at load-time (malware
injection) as well as the control-flow policies which are fetched from
external memory into on-chip memory. This is due to static attestation
which allows the detection of such tampering, thus mitigating attacks
Al. Furthermore, code injection attacks are effectively prevented
through DEP (W@X)), thus mitigating attacks A2.

Runtime Code-Reuse Attacks. CHASE uses hardware modules
that are tightly integrated with the processor to extract the control-
flow information and executed instructions directly from the proces-
sor pipeline. This guarantees that all control-flow events and executed
instructions are recorded. CHASE hardware also guarantees that all
control-flow transfers are verified against their respective policies,
thus, ensuring that the provisioned control-flow policies are accurately
and completely enforced. The security guarantees with respect to the
detection of runtime attacks are as good as the provisioned control-
flow policies, and the code analysis that generated the policies. So
long as any configuration modes in CHASE is enabled, at least every
executed control-flow transfer is directly captured from the processor
and either verified or enforced (for modes C1 and C2 respectively)
using the provisioned control-flow policies or measured (for modes
C3 and C4). Thus, in order to ensure that no control-flow transfers
are dropped, Execution Tracer of CHASE is padded with a
First-In-First-Out (FIFO) structure that buffers incoming control-flow
transfers. This is required for the unlikely event that multiple indirect
jump instructions execute consecutively (R1 and R4). While CHASE
ensures that all buffered control-flow transfers are verified with
their respective policies, the detection latency of potential violations
is increased. Nevertheless, software developers are advised not to
program multiple indirect branches consecutively.

This accurate tracking and enforcement/verification of control-flow
edges in CHASE guarantees the detection of explicit control-flow
hijacking attacks (A3). The call-return matching stack also provides
additional guarantees on context-sensitive enforcement/verification of
backward edges, i.e., returning to correct call sites. Moreover in C3
and C4, tracking the number of times each edge iterates and sending
the respective bitmap to MOD enables the detection of all data-
oriented attacks that do not directly hijack the control flow but mali-
ciously compromise the expected number of loop iterations (attacks
A4). In C4, tracking and measuring every instruction executed (not
only control flow) allows MOD to detect runtime code manipulation
attacks (A2 and A5). This assumes that MOD has knowledge of the
program source code and the benign number of loop iterations for a
given service/message by means of code analysis (see § II-A) (R2).

Finally, since CHASE is hardware-based, it cannot be compro-
mised by malicious software. Moreover, all on-chip cache/memory

utilized by CHASE, e.g., for policies, is hardware-protected and not
mapped to software-accessible address space, and hence protected
from remote software attacks.

Figure 3 shows an example of a control-flow violation at runtime.
The solid arrows represent the expected benign execution path,
while the dashed arrows respresent the violating control-flow edges,
assuming the function pointer in the writable data memory was
overwritten by the attacker. Assuming C3 is enabled, the attestation
report will differ from the reference in the bitmap of the executed
edges, iterations per edge as well as the final MSH value computed.

Program Code Library Code

<main>:
0x100: Instructions,
1) 0x124: CALLf1()
0x128: Policy addr. —
0x12c: Instructions,

(5)— ox4s: cauLi2()
0x14c: Policy addr.
0x150: Instructions,...

<gets>:

0x500: Function Prologue
0x510: Instructions, ...

= Ox56c: RET

¥ 0x570: Policy addr.

<puts>:

® 0x580: Function Prologue
0x590: Instructions, ...

— Ox618: RET

0x61c: Policy addr.

<fl>:
'— 0x200: Function Prologue
0x210: CALL gets(Buffer) —@
0x214: Policy addr.
0x218: Instructions,...
0x23c: RET
0x240: Policy addr.

<exit>:

<f2>: 0x700: HALT Program

—> 0x244: Function Prologue
0x254: CALL puts(Buffer), ...
0x258: Policy addr.
0x25c: Instructions,...

@— 0x27c: RET

0x280: Policy addr.

Q-5

— Benign control-flow transfer
~%  Corrupted control-flow transfer

Fig. 3: Detection of a control-flow violation by CHASE. Expected
control-flow path (benign): ® (0x124, 0x200), @ (0x210, 0x500),
® (0x56¢, 0x218), @ (0x23c, 0x12¢), ® (0x148, 0x244), ® (0x254,
0x580), @ (0x618, 0x25¢), ® (27¢c, 0x150), etc. Traced control-flow
path (corrupted): @ (0x124, 0x200), @ (0x210, 0x500), ® (0x56c,
0x218), @ (0x23c, 0x12¢), ® (0x148, 0x244), ® (0x254, 0x500), @
(0x56¢, 0x25¢), ® (27¢, 0x150), etc.

Physical Attacks. Expensive invasive/semi-invasive physical at-
tacks are out of scope in this work, thus CHASE hardware is
assumed secure against such attacks that would compromise its
accuracy/functionality (R4). However, other realistic physical attacks
that manipulate the program code at runtime, as well as fault injection
attacks are captured by CHASE and detected by MOD in the mode
C4 since CHASE captures all executed instructions.

VII. RELATED WORK

Static Attestation. Attestation aims at enabling a trusted third
party to check the trustworthiness of the software on another device.
Approaches to static attestation include: (1) Software-based attes-
tation [15], [16] that allows the attestation of legacy and low-end
computing devices while requiring no secure hardware but relying on
strong assumptions, and thus have been attacked [17], (2) Hardware-
based attestation [18], [19] that requires complex and/or security
hardware (e.g., trusted platform module — TPM), and (3) Hybrid
attestation [20]-[22] that is based on hardware/software co-design
aiming at reducing the hardware security required for remote attes-
tation. Static attestation, however, cannot detect runtime attacks.

Runtime Integrity. Many defenses have been proposed in re-
cent years to mitigate runtime exploits [1]. Control-Flow Integrity

119

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 21,2021 at 11:32:44 UTC from IEEE Xplore. Restrictions apply.



(CFI) [3] ensures that a program follows a valid path in its control-
flow graph (CFG). However, CFI does not mitigate non-control-
data and DOP attacks. Code randomization [23] randomizes the
code layout, but a branch instruction can still be exploited to jump
to the target address of choice. Code-Pointer Integrity (CPI) [24]
aims at ensuring the integrity of code pointers but also does not
mitigate non-control-data attacks. Defenses has been proposed for
mitigating pure data-oriented attacks such as data-flow integrity
enforcement/isolation [12], [25], [26], but they all incur a non-
negligible performance overhead.

Runtime Attestation. Control-flow attestation was proposed in [4]
and aimed to allow the verifier to attest the measure and record the
control-flow path executed on the prover. However, code instrumen-
tation was required and prohibitively high performance overhead was
incurred on the prover. Subsequent schemes have been proposed [4],
[9]-[11] to leverage hardware assistance for recording runtime execu-
tion events in parallel to program execution, and without code instru-
mentation, thus reducing the overhead on the prover significantly and
tackling stronger adversarial capabilities [10], [11]. However, existing
schemes each tackle different adversarial capabilities with no scheme
providing a consolidated or configurable defense.

Defenses for Real-Time Systems. Some defenses have been
recently proposed for providing integrity to real-time systems and
the requirements of applying remote attestation to safety-critical
systems was investigated recently in [27]. SeED [28] enables non-
interactive attestation, while ERASMUS [29] proposes periodic self-
measurements of the prover’s software that are occasionally reported
to a remote verifier, thus providing applicability to real-time systems,
but only providing static integrity. DIAT [30] proposes data-integrity
attestation for collaborating real-time systems but still incurs signif-
icant performance overhead to the application run time. ECFI [5]
proposes a CFI mechanism for PLCs which gives priority to the
PLC’s runtime operation, yet it still incurs a performance overhead
of up to 8.3%. Existing solutions cannot provide runtime security
guarantees for a real-time system without incurring a performance
overhead on the application, unlike CHASE.

VIII. CONCLUSION

In this work, we presented the first hardware-assisted security
extension CHASE, that consolidates different modular defenses that
can be configured at runtime to mitigate different adversarial capa-
bilities, thus effectively covering a larger attack space than existing
defenses. This enables the calibration of the security/performance
trade-off by selecting the desired level of security and thus the corre-
sponding performance overhead. Moreover, CHASE also provides a
non-intrusive control-flow verification mechanism that does not affect
the application run time, yet detects violations with minimal latency,
making it applicable to timing-critical systems.
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ABSTRACT

Memory-unsafe programming languages like C and C++ leave
many (embedded) systems vulnerable to attacks like control-flow
hijacking. However, defenses against control-flow attacks, such
as (fine-grained) randomization or control-flow integrity are in-
effective against data-oriented attacks and more expressive Data-
oriented Programming (DOP) attacks that bypass state-of-the-art
defenses.

We propose run-time scope enforcement (RSE), a novel approach
that efficiently mitigates all currently known DOP attacks by enforc-
ing compile-time memory safety constraints like variable visibility
rules at run-time. We present Hardscope, a proof-of-concept imple-
mentation of hardware-assisted RSE for RISC-V, and show it has a
low performance overhead of 3.2% for embedded benchmarks.

1 INTRODUCTION

Data-oriented attacks can influence program behavior without
the need to modify control-flow data. Instead, they corrupt vari-
ables used by the program’s decision making, or leak sensitive
information from program memory. Such attacks are called non-
control-data attacks [7]. Non-control-data attacks have been shown
to allow attackers to forge user credentials, change security criti-
cal configuration parameters, bypass security checks, and escalate
privileges. Recent work shows that it is even possible to generalize
data-oriented attacks to construct full-blown malicious attacks with
Turing-complete expressiveness, called Data-Oriented Programming
(DOP) [15]. Such attacks are executed by carefully corrupting only
non-control data over time to chain together sequences of opera-
tions on attacker-controlled input. DOP provides similar capabili-
ties to attackers as return-oriented programming [26], but without
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breaking the victim program’s control-flow integrity. This, com-
bined with the ability for DOP to reuse virtually any data, makes
preventing DOP attacks a significant and open challenge.

Existing defenses against control-flow attacks cannot prevent

data-oriented attacks. Some defenses against non-control-data at-
tacks (e.g., [5, 24]) protect individual pieces of (security-critical)
data. Hu et al. [15] discuss various existing schemes that could
reduce the number of DOP attacks, including memory safety, data-
flow integrity, fine-grained data-plane randomization, and hard-
ware/software fault isolation. However, they explain that existing
approaches are either too coarse grained, or result in prohibitively
high performance overheads. Without viable alternatives, and be-
cause effective defenses against control-flow attacks are already
being deployed, DOP is likely to become the next appealing attack
technique for run-time exploitation.
Goals and Contributions. We propose a new efficient defense
against data-oriented attacks that effectively prevents all currently
known DOP attacks. It can also be configured to prevent control-
flow hijacking. The intuition behind our approach is simple: In block
structured languages every variable has a lexical scope, denoting
the block(s) of source code in which the variable is visible. All cor-
rect compilers enforce variable scope at compile-time by checking
these variable visibility rules. All currently known DOP attacks,
and many data-oriented attacks in general, violate variable scope
rules at run-time, since there is no equivalent enforcement. Conse-
quently, mechanisms for variable scope enforcement at run-time
can significantly reduce the exposure to data-oriented attacks.

In this paper, we define the notion of Run-time Scope Enforce-
ment (RSE) that provides fine-grained compartmentalization of data
memory within programs. We then describe HardScope, a hardware-
assisted RSE scheme. HardScope differs from existing defenses in
the following important ways: a) it provides complete meditation
of all variables accesses, b) it is efficient, incurring only a small
performance overhead for embedded benchmarks, and c) it enables
context-specific policies. This means that the same piece of code can
be granted access to different memory locations depending on the
context in which the code is executed. Our main contributions are:
e Run-time Scope Enforcement: A novel approach for fine-grained

context-specific memory isolation within programs (Sec-

tion 3) to defeat data-oriented attacks.
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e HardScope: An open-source proof-of-concept implementation of
hardware-assisted RSE on the RISC-V architecture that demon-
strates efficient memory compartmentalization (Section 4).

o Compiler support and APIs: Compiler support for protecting
static and automatic variables at run-time (Section 4.3) with-
out requiring any developer input, and a programmer’s API
(Section 4.4) that allows developers to annotate dynamic alloca-
tions to complement the automated instrumentation.

o Evaluation: Analysis of RSE security guarantees (Section 5.1), and
evaluation of HardScope’s hardware area overhead and minimal
performance impact (Section 5.2).

2 ADVERSARY MODEL & CHALLENGES

Adversary Model. We consider a powerful adversary who has full
control over the data memory of the target program. This models
buffer overflows and other memory corruption vulnerabilities (e.g.,
an externally controlled format string!) that could corrupt any data
memory. However, the adversary cannot modify program code
(WeX protection). Our adversary model is standard for run-time
attacks and consistent with Hu et al.’s DOP attacks [15].
Challenges. Our goal is to prevent the above adversary from
mounting DOP attacks. Since DOP attacks (similar to many other
data-oriented attacks) require the adversary to modify and access
data in unintended ways at run-time, these attacks can be prevented
by a run-time enforcement mechanism that prevents any data ac-
cess that would not be permitted during a compile-time check by a
correct compiler. Designing a solution to meet this goal requires
addressing the following significant challenges:

Run-time enforcement: enforcing variable scopes at run-
time requires information which is usually only available at
compile-time.

Multi-granularity enforcement: the enforcement mechanism
must be configurable for any granularity of protection do-
main (subject) and protected region (object).

Context-specific enforcement: enforcing different permissions
on each invocation of the same subject (e.g., each function),
to minimize the attack surface following the principle of
least privilege.

Complete mediation: protection domains cannot be allowed
to increase their permissions accidentally or maliciously, and
all memory accesses must be checked with only minimal
performance impact and memory overhead.

3 DESIGN OVERVIEW

The high-level idea of HardScope is to extend the compiler to
emit compile-time information about the visibility of variables, and
to extend the underlying hardware to use this compiler-supplied
information to dynamically create and update a set of memory
access rules against which all memory accesses are checked.
Run-time enforcement. Machine code produced from languages
such as C and C++ does not include information available to the
compiler about variables and code blocks () RSE needs this
information to assign in-memory variables to specific execution
contexts. To bridge this gap between compile-time lexical scope and

LCWE-134: Use of Externally-Controlled Format String
https://cwe.mitre.org/data/definitions/134.html
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run-time execution context, we modified the compiler to instru-
ment the program code with special instructions that record which
variables may be used by each code block. HardScope introduces
an instruction set extension for this purpose (Section 4).

The compile-time components and behavior of HardScope are
illustrated in Figure 1. An unmodified source code program (@) is
fed to the compiler (@), which checks (as usual) that all variable ac-
cesses are correctly scoped. Our new RSE Plug-in (®) in the compiler
adds HardScope instructions (@) at particular locations in the bi-
nary (e.g., at the start of functions). This results in a fully-functional
program binary, instrumented with HardScope instructions that
the HardScope hardware uses to create a set of rules against which
all memory accesses can be checked at run-time.
Multi-granularity enforcement. We chose function-level com-
partmentalization as the granularity of isolation, since this is suf-
ficient to mitigate all currently known DOP attacks (Section 5.1).
However, RSE can also be implemented at other granularities (Sec-
tion 4), without changes to the new HardScope hardware ().
Context-specific enforcement. Consider the program (@) in Fig-
ure 1: function C receives two pointers and copies data from the
first pointer to the second. It can be called from either function A
or function B (call graph shown in Figure 2). In benign execution,
variables x and y are only used in a privileged execution path, where
access control checks prevent misuse (e.g., x could be a secret key).
Function B contains an exploitable vulnerability allowing the at-
tacker to control the pointers passed to function C. Since function C
can be used to copy arbitrary data between two attacker-controlled
pointers, this constitutes a DOP gadget. The attacker could use
this to bypass the access control checks on variables x and y by
accessing them through the unprivileged execution path.

HardScope prevents this by providing context-specific enforce-
ment, in which different memory access rules can be associated
with each active instance of a function () To achieve this, the
HardScope hardware creates memory access rules dynamically
for each individual function invocation, and stores these in a data
structure called the Storage Region Stack (SRS). The SRS is kept in
hardware-isolated protected memory; only HardScope instructions
can add or remove SRS entries. Each SRS entry defines an area of
memory (e.g., the location of a variable) that may be accessed. The
SRS is organized into frames; each frame contains all the entries for
a particular execution context. The topmost SRS frame corresponds
to the active execution context. On each memory access, e.g., load
or store, HardScope validates that the memory address matches an
entry in the topmost SRS frame.

Specifically, HardScope prevents the attack in Figure 2 as follows:
The SRS for function A (®) includes variables x and y, and the SRS
for function B (®) includes variables i and j (Figure 2). To allow
function C to access certain variables, the calling function must use
a special instruction (Figure 1 @) to delegate access to a variable to
function C: e.g., function A must delegate access to x and y. For valid
delegation, the calling function must already have access to the
delegated variables. Even though the attacker can still manipulate
the pointers in function B, this function does not have access to x
and y (no corresponding SRS entries) and hence it cannot delegate
access to these variables to function C.
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Figure 1: Compile-phase design of HardScope. Run-time
memory accesses via pointers ptry, ptry are limited to vari-
ables x and y, while ptr;, ptr;j are limited to i and j.

4 IMPLEMENTATION

We developed a proof-of-concept hardware implementation of
HardScope and integrated it into the open-source RISC-V Pulpino
core.? HardScope extends the RISC-V instruction set with seven
new SRS management instructions, as shown in Table 1. We aug-
mented the GCC compiler to incorporate a proof-of-concept RSE
plug-in and a modified RISC-V backend to automatically instru-
ment C programs with the relevant HardScope instructions. These
protect static and automatic variables at run-time without requiring
any changes to program code. We also developed a HardScope Pro-
grammer’s API (Section 4.4) that allows developers to annotate
dynamic allocations to complement the automated instrumentation.
HardScope itself is architecture-agnostic; our choice of RISC-V and
Pulpino is due to the open-source nature of the ISA and the RTL
implementation, thus enabling us to prototype our solution.

4.1 Instructions

The sbent and sbxit instructions are used to mark the begin-
ning and end of each execution context. HardScope uses these
instructions to track when HardScope is first enabled and when
the execution context changes, and thus when new enforcement
rules should be loaded in the SRS. sbent pushes a new frame on
top of the SRS, whilst sbxit pops the topmost SRS frame. Program
execution starts with an empty SRS and HardScope enforcement
is initially disabled. HardScope is enabled by the first sbent, and
remains enabled until a matching sbxit empties the stack.

The sradd and srdda instructions create an SRS entry in the
current (topmost) SRS frame. HardScope uses these instructions to
determine the bounds of memory areas that the current execution
context is allowed to access. The two operands set the base and

Zhttp://www.pulp-platform.org/

y y
(5

(a) delegation permitted (b) delegation disallowed

—--—» corrupted pointer
memory corruption vulnerability

eo—— privileged control-flow path
e ---» unprivileged control-flow path

Figure 2: Run-time design of HardScope showing the call
graph of program in Figure 1. In (a), access to variables x
and y is successfully delegated from A to C. In (b), function B
should not have access to x and y, but a memory corruption
vulnerability in B is used to corrupt ptr; and ptr; to point to x
and y instead of i and j. HardScope prevents B from accessing
or delegating x and y.

limit address of the storage region respectively. An optional offset is
added to to either the limit (sradd) or base (srdda) register operand.

The srdel instruction removes the specified number of SRS
entries from the current SRS frame (last in first out). It allows
the program to drop unneeded memory access privileges without
changing execution context.

The srdlg and srdsub instructions delegate an SRS entry from
the currently executing function either to an invoked callee function
or to the caller when the current function returns. HardScope uses
these instructions to derive SRS entries for data flows which are not
known at compile-time, such as context-specific accesses (Section 3).
The operands specify an address to determine which memory
address to delegate. The resulting memory address is compared
with the current SRS entries and if a match is found, the most recent
matching entry is copied to the next execution context entered. If
the delegation is followed by a sbent, the delegated entry is added
to the newly created SRS frame. If the delegation is followed by a
sbxit, the delegated entry is added to the caller’s SRS frame.

The srdsub instruction is used to delegate a new SRS entry that
is a subset of an existing SRS entry. It takes the same operands
as sradd. If the new subdivided memory region is a subset of an
existing SRS entry in the current SRS frame, a new SRS entry is
created for a sub-region using the new base and limit.

If no matching entry is found in the SRS when srdlg or srdsub
execute, no entry is delegated. This prevents the use of srdsub
to elevate the access rights of the next execution context beyond
the rights of the current, but allows the delegation instructions
to be applied to pointers which are not dereferenced directly in
the current context. These include null-pointers and intentionally
created out-of-scope pointers (e.g., via the use of pointer arithmetic)
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Table 1: HardScope Instructions. Operands lists valid combina-
tions of operands: rn is a register, imm is an immediate value, and
imm(rn) is a register to which an immediate offset is added. Cycles
indicates the number of cycles consumed at execute stage.

Mnemonic Name Operands Cycles
sbent  scope block enter n/a 1(+N)
sbxit  scope block exit n/a 1(+N)

r1, imm(r2) 1
imm(r1), r2 1

sradd  storage region add
srdda  storage region dda (reverse add)

srdel  storage region delete 1::(“) 1(+1)
. imm(r1)
srdlg  storage region delegate imm 1(+1)

srdsub  storage region delegate sub-region r1, imm(r2) 1(+1)

that are passed to callees for which they are in scope (e.g., accessor
functions that receive opaque pointers as arguments).

4.2 Hardware Implementation

We modified the instruction decoding stage of the processor
pipeline to interpret the new instructions (Section 4.1). After de-
coding, the appropriate control signals are sent to the HardScope
unit, which realizes the execute stage of the new instructions. Fig-
ure 3 shows the main components of the HardScope unit: the SRS
controller (@), dedicated memory to hold the SRS (@), and three reg-
ister banks (®, @, ®). The active bank (®) holds the entries in the
SRS frame for the current execution context enabling each memory
access to be compared against all active entries efficiently. The spare
bank (@) holds entries delegated via srdlg and srdsub before a
HardScope context switch occurs. It allows delegated entries for
the next execution context to be accumulated ahead of time. When
a HardScope context switch occurs, the spare bank becomes the
active bank (and vice versa), thus activating the delegated entries.
The third bank (@) is used as a cache to hold a copy of the topmost
frame of the SRS. This reduces the latency when the topmost SRS
frame is transferred between the stack memory and the spare bank.

When executing sbent, the controller activates the spare bank
and transfers the contents of the currently active bank to the cache
(@) in a single cycle. The bank that held the previously active frame
becomes the spare, and can be used for subsequent delegations.
The entries in the cache must be stored for future use, and are
transferred to the SRS in protected memory (@) over at most N sub-
sequent cycles, where N is the maximum number of entries in the
cache. During this time, the CPU continues to execute subsequent
instructions normally until a new HardScope context switch occurs.
Only if a HardScope context switch occurs before the cache has
been emptied does the processor stall until the transfer is complete.

When executing sbxit, the controller copies the SRS frame from
the cache into the spare bank (@) while retaining delegated entries
(i.e., activating the entries that are already in the spare bank). The
SRS frame in the previously active bank is no longer needed and is
discarded. This executes in a single cycle. The cache, which now
holds an out-of-date copy of the active frame, is updated with the
topmost SRS frame from the protected memory (®), which takes at
most N cycles, where N is the number of entries in the topmost SRS
frame in memory. This does not stall the processor unless another
sbxit is encountered before the cache is fully populated, in which
case the CPU stalls until the next frame is available. However, if

126

copy to spare

SRS in

1 v
protected © Cache © Active bank @ Spare bank
memory | copy to cache,
_______ Lo T
,,,,,,,,,,,,,,,, copy to cache copy tospare
copy to SRS 10}
| base | limit | | base | limit | | base Llimit |
: i
: sradd srdlg i .
sbent | srdda srdsub \ben

SRS Controller

B Chxit

[o0se i | o
Enable/Data for sradd, srdda ~ ------oo Enable/Data for sbent
Enable/Data for srdlg, srdsub —-—-—-=  Enable/Data for sbxit

Figure 3: HardScope hardware architecture.

an sbent is encountered before the cache is fully populated, the
partial cache is discarded and replaced with the contents of the
active bank, without stalling.

The sradd and srdda instructions always operate on the active
bank. When executing srdsub, the controller checks the active
bank for an entry containing the given memory region and, if found,
adds the new sub-entry to the spare bank. Similarly, in srdlg, the
controller checks for the matching entry in the active bank and,
if found, copies the entry to the spare bank (®). The srdlg and
srdsub instructions require an additional cycle only if followed
immediately by a sbent or sbxit.

Integrating HardScope into the processor pipeline also required
modifying the memory access stage to intercept all memory access
requests to the load/store unit. At each load or store instruction,
the requested memory address and the number of requested bytes
(one byte, half-word (two bytes), or word (four bytes)) are inter-
cepted and forwarded to the SRS controller, which compares it
against all entries in the active bank. The registers in each bank are
wired to comparators such that all entries in the bank are checked
in parallel. If a match is found, i.e. the requested address range is
a subset of any of the active entries, then the memory access is
granted by the processor’s load/store unit, otherwise a hardware
fault exception is raised. We design and integrate HardScope to the
processor pipeline such that no additional clock cycle latency is
incurred to the baseline load and store instructions.

4.3 Software Instrumentation

Our RSE GCC plug-in and the modified RISC-V backend currently
supports automatic instrumentation of C programs at function gran-
ularity to protect the 1) call stack frame including local variables,
return address and other return state information, 2) arguments
passed on the stack, 3) heap objects, and 4) global and static vari-
ables. The beginning of each distinct execution context is marked
by inserting a single sbent instruction at the function call site just
before the jump instruction. The end of an execution context is
marked by inserting an sbxit instruction just before the return
in the callee function. In Section 5 we show that function-level
isolation is sufficient to mitigate all currently known DOP attacks.
However, RSE can also be implemented at other granularities, with-
out changes to the HardScope instructions, by inserting sbent and
sbxit instructions around the instructions that comprise a distinct
execution context.
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4.4 HardScope Programmer’s API

Deeply Nested Pointers. The HardScope Programmer’s API en-
ables the handling of code that uses deeply nested pointers e.g.,
traversing linked lists. This type of code is a challenge for auto-
mated instrumentation because e.g., passing the head of a linked list
to a function that iterates through the list would require delegation
of an SRS entry for each element of the list. Since the number of SRS
entries (per frame) is constrained by the HardScope hardware (see
Section 4.2), this leads to suboptimal use of HardScope hardware
resources and an increased cost in HardScope context switches
due to more frequent stalls at run-time. Instead, we propose a pro-
gramming pattern using the HardScope Programmer’s API where
one sradd instruction is added before the dereference of member
pointers to linked member elements, and one srdel is added after
the dereference. This enables effective yet secure traversal of linked
lists and other data structures containing nested pointers.

Heap object allocation. We implemented a wrapper on top of
the C standard library malloc() function that creates SRS entries
for heap allocations, and delegates these to the caller. Other li-
brary functions can be similarly wrapped to allow HardScope-
instrumented code to be linked against uninstrumented libraries.

5 EVALUATION

HardScope meets the stated challenges (Section 2) as follows:
Run-time enforcement. The RSE GCC Plug-in infers and
emits the necessary HardScope instructions to manage the SRS for
stack and global data, as well as dynamic allocations that follow
a well-defined pattern. The HardScope Programmer’s API allows
handling code that is not automatically instrumentable, e.g., uses
deeply nested pointers.

Multi-granularity enforcement. HardScope can enforce
policies with either coarser or finer granularity of execution con-
texts with the appropriate instrumentation ( ) For instance,
HardScope can isolate the function prologue and epilogue from the
function body, and protect return addresses on the stack from mem-
ory errors in the function body to prevent control-flow hijacking.
Context-specific enforcement. In HardScope, the active
SRS entries can differ between different invocations of the same
subject, depending on which entries have been delegated to this
subject (e.g., variables passed to a function by its caller or callee).

Complete mediation. HardScope hardware checks every
memory access against the active set of SRS entries; accesses with-
out matching entries will fail. Therefore only compiler-admissible
memory accesses are allowed.

Instructions that create rules at run-time could potentially be
used as confused deputies. In a confused deputy attack, the attacker
attempts to subvert the RSE property by misusing existing Hard-
Scope instructions at run-time to create unintended rules. Our de-
sign ensures that no such instructions are available to the attacker.
Rules for static allocations (stack and global variables) are encoded
directly into the instructions. Since these cannot be modified at
run-time, they cannot be used as confused deputies.

Instructions that create rules that are determined at run-time
are found within memory allocators, e.g., malloc(), or code that
deals with deeply nested pointers, e.g., iterators annotated using
the HardScope Programmer’s APL It is reasonable to assume that

memory allocators are trusted (or at least that allocations are not
influencable by the attacker). We recommend that manually an-
notated code is vetted for allocators that create rules at run-time.
Furthermore, an attacker can only initiate a confused deputy attack
if he already controls some part of the code, which is very difficult
since every memory access in the instrumented program is checked
by the HardScope hardware.

5.1 Security Evaluation

We replicated the DOP attack by Hu et al. [15] and ported the
code to Pulpino to evaluate the effectiveness of HardScope. Al-
though it was not possible to port the complete victim ProFTPD
server to our FPGA testbed, we focussed on the vulnerable
sreplace() function [15]. All enforcement rules in our experi-
ments are derived without any developer annotations — the GCC
intermediate representation contains all information necessary for
compile-time instrumentation, including: stack-frame sizes, global
variable accesses, function calls, parameters, and return values.
Function-granularity isolation is sufficient to prevent the attack.

We verified experimentally four ways in which RSE prevents
this DOP attack: 1) it prevents the initial memory violation in
sreplace() as it enforces the indended bounds of input and out-
put buffers when operated on by an unsafe string copy operation
(strncpy () with incorrect buffer length), 2) it prevents the attack
from keeping internal state in unused areas of the program’s data
section, 3) it denies access to global variables which are accessed by
the attack out of their normal context, 4) it denies access to static
variables which should only be accessible by code wihin the same
compilation unit. We discuss each of these in detail in the extended
version of this article [22]. Any one of these would be sufficient to
stop the attack, and thus the existence of four distinct mitigations
demonstrates the effectiveness of RSE’s layered defense strategy.

5.2 Performance and Area Evaluation

Performance overhead. We ran CoreMark?, a standard perfor-
mance benchmark for embedded systems, with varying iteration
counts on a HardScope-augmented Pulpino synthesized on a Xilinx
Zyng-7020 ZedBoard. We observed an average overall performance
overhead of 3.2% compared to the execution of unmodified Core-
Mark on the unmodified Pulpino SoC. All instrumentation in Core-
Mark was automatically generated by our extended GCC compiler
resulting in the binary size increasing by 11%. The number of en-
tries required per SRS frame varied throughout execution between
1 and 23. The overall maximum SRS size was 71 entries in 11 frames,
resulting in a memory overhead of 573 bytes (64 bits per entry + 4
bits per frame to record the number of entries).

Area and memory utilization. The area utilization depends pri-
marily on the size of active, spare and cache banks (i.e., the number
of entries per frame). All three banks are mapped to logic to guar-
antee single-cycle access parallel checking of all frame entries. The
area utilization increases linearly as the number of entries con-
figured per frame increases (for a fixed number of frames), since
more entries must be checked in parallel. For a protected memory
size of 8 entries X 16 frames, HardScope utilizes 4, 572 LUTs, 1, 760
registers, and one 36 kB block RAM (RAMB36). For a 32 entries X

Shttp://www.eembc.org/coremark/faq.php
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16 frames configuration (required for the CoreMark performance
evaluation above), HardScope utilizes 30, 520 LUTs, 6, 362 registers,
and one 36 kB block RAM (RAMB36).

6 RELATED WORK

Various software-only and hardware-assisted memory safety
technologies have been proposed and/or deployed (e.g., [2-6, 8, 11,
13, 17-19, 24, 25]). We discuss approaches that aim to mitigate data-
oriented attacks in detail in the extended version of this article [22].

Software-only defenses (e.g. DFI [6] and SoftBound [20]) can
offer strong security guarantees, but their usefulness is limited
by high performance overhead, and by requiring changes to the
system software architecture. Consequently, the granularity of en-
forcement of deployed defenses are often relaxed in favor of im-
proved performance. Memory-safe dialects of C (e.g., CCured [21],
Cyclone [16], and Checked C [12]) retrofit C with compile- and/or
run-time checks that prevent memory errors from occuring. How-
ever, such dialects only benefit programs which are modified to
make use of enhanced language features, also incur considerable
run-time overhead [16, 21], or preclude certain C features [12].

Hardware-assisted defenses (e.g., BIMA [19], HDFI [27], and
CHERI [28]) promise to drastically improve the performance over-
head compared to software-based defenses. However, recent ad-
vances in attacks against bounds-checking approaches [14] sug-
gest that low-fat pointer schemes which enforce allocation bounds
rather than object bounds, such as BIMA [19] are exploitable. On
the other hand approaches that track object bounds in separate
storage, e.g., Intel MPX [23], HardBound [11], are not faster nor
more memory effient than sofware-based approaches. Hardware-
assisted tagged memory allow efficient enforcement of memoru
access policies, but unlike HardScope only support a small number
of simultaneour protection domains (e.g. two domains in HDFI [27]).
CHERI [28] is a hardware-assisted capability model that can support
various protection models, but requires program re-engineering.

Run-time attestation schemes [1, 9, 10, 29] can only detect, but
not prevent, control-flow and non-control-data attacks.

Although HardScope shares many of the same goals as the above
schemes, it differs in several fundamental aspects. Compared to
software-based schemes (e.g., DFI [6] and SoftBound [20]), Hard-
Scope has significantly lower overhead, does not require whole-
program static analysis, and can enforce context-specific policies
for individual function invocations. HardScope RSE policies can be
instantiated for a large class of programs without additional input
from developers (cf., YARRA [24]), or software re-engineering (cf.,
CHERI). HardScope reduces the metadata needed at execution time
to the rules for active execution contexts. Active rules are cached
in on-chip memory, to enable access checks with no overhead.

7 CONCLUSION

By implementing and evaluating HardScope, we demonstrated
that RSE is an effective approach to protect against data-oriented
attacks. HardScope can also enforce memory isolation at coarser or
finer granularity, to enable different memory protection strategies.

We provide 1) our enhanced GCC compiler; 2) instrumented
binaries of our test programs; and 3) a RISC-V simulator with
support for HardScope instructions at https://goo.gl/TAjLxy.
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Abstract—Field Programmable Gate Arrays (FPGAs) are
increasingly deployed in datacenters due to their inherent
flexibility over ASICs or GPUs that makes them an ideal pro-
cessing unit for emerging and dynamic area of deep learning
and other techniques and algorithms that are rapidly evolv-
ing. To maximize their utilization in the cloud, researchers
have proposed the spatial multi-tenant deployment model,
where the FPGA fabric is simultaneously shared among
mutually distrusting tenants. This is enabled by leveraging
the partial reconfiguration capability of FPGAs.

In this paper, we systematize the research work on multi-
tenant FPGAs in cloud computing settings and highlight
their adversary models, security guarantees, as well as their
fundamental security and privacy related shortcomings. We
further categorize existing research works that demonstrate
a new class of remotely-exploitable physical attacks on
multi-tenant FPGAs by malicious tenants sharing physical
resources with the victims. Through investigating end-to-
end multi-tenant FPGA deployment comprehensively, we
reveal that these attacks represent only one dimension of the
problem, while various open security and privacy challenges
remain unaddressed. We conclude with our insights on future
research challenges and open opportunities.

Index Terms—Cloud FPGA Security, FPGA Multi-tenancy,
FPGA-based Acceleration, FPGA-based Trusted Computing

1. Introduction

Field Programmable Gate Arrays (FPGAs) are inte-
grated circuits that can be (re)programmed after fabrication,
as opposed to Application-Specific Integrated Circuits
(ASICs), in order to implement custom functionality in
hardware. FPGAs provide more flexible computing fabric
than their ASIC counterparts, yet higher throughput and
more computing power than their software counterparts.
They require lower energy consumption, and given their
continuously increasing capacities, they have been per-
ceived to bring the best of both hardware and software
worlds. In their steady growth and penetration of different
application domains, FPGAs have also made their way
into hardware acceleration of machine learning applications
among other compute-intensive services. More recently,
FPGAs have been increasingly adopted in datacenters to
accelerate cloud-based services, such as by Microsoft [1],
[2]. Other enterprises, such as Amazon [3], are offering
clients to rent FPGAs in the cloud which they can freely
configure with their own logic.

Multi-tenant FPGAs. To maximize FPGA utiliza-
tion and the return-on-investment in cloud computing,
researchers have proposed to share a single FPGA fabric
among multiple users [4]-[10] by leveraging the partial
reconfiguration property of FPGAs. This key distinguishing
feature of FPGAs allows to reconfigure the functionality of
a part, or region of the FPGA while being deployed in-field
(at runtime). The reconfiguration property of FPGAs, both
normal and partial, has led to the notion of virtualized
or multi-tenant FPGAs, which are used interchangeably
to refer to FPGAs shared among several tenants in the
cloud. While this distinction is often not clearly outlined,
FPGA sharing/multiplexing/partitioning can occur either
temporally or spatially. Temporal sharing is where the
FPGA device fabric, or the accelerator configured thereon,
is used by different tenants at different time slots. This
is the more conventional FPGA sharing model typically
deployed in industry solutions. More recently, however,
researchers have been investigating spatial sharing, where
multiple tenants’ designs can be co-located on the same
physical FPGA device simultaneously, while occupying
different logically isolated FPGA regions. Although this
approach is principally possible and would further boost
utilization, such a setting is not yet deployed in cloud com-
puting architectures. It introduces a new threat landscape
which we systematically investigate in this work.

Remotely-Exploitable Physical Attacks. Recent aca-
demic works have demonstrated the feasibility of remotely-
exploitable physical attacks in multi-tenant settings, with
a particular focus on spatial multi-tenancy. Such attacks
have been shown to compromise the availability (e.g.,
DoS attacks) [11], [12], or integrity (e.g., fault injection
attacks) [13], [14], or confidentiality (e.g., side- or covert-
channel attacks) [15]-[30] of the victim’s logic on the
FPGA. The root cause for most of these attacks is that
both the victim and malicious tenants 1) have their logic,
while logically isolated, still co-located on an underlying
fabric that shares resources such as the power supply
system and are thus not physically isolated, and 2) have
the freedom to configure their allocated regions with any
(malicious) hardware logic of their choice.

FPGA-Based Trusted Computing. Besides the fo-
cus on boosting performance and utilization of FPGA
resources and the emerging attack surface, literature on
FPGA-based accelerated computing covers other emerging
industry trends such as datacenter disaggregation [31]
and edge cloud computing [32]. Nevertheless, very lit-
tle has been invested in the direction of FPGA-based
trusted computing [33]-[35] that aims to protect clients’
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Intellectual Property (IP) on cloud FPGAs. Remotely-
exploitable physical attacks, while clearly a threat, are
indeed not the only security challenge stemming from
these deployment settings. Other fundamental questions
remain: how is clients’ IP protection assured? How can
FPGAs and their toolchains enable a minimal Trusted
Computing Base (TCB) in order to provide the required
security guarantees for clients and cloud service providers
in different deployment scenarios?

Contributions. In this work we aim to provide a
comprehensive overview of the security concerns in multi-
tenant cloud FPGAs and shed light on specific directions
for future research to address these challenges. Our main
contributions are as follows.

« Introduction to the state-of-the-art trends in multi-tenant
FPGA-based cloud computing.

Systematization of the various security requirements
and challenges in FPGA-based cloud computing and
potential approaches to address them.

Systematization of the different attacks in FPGA-based
cloud computing. We classify these attacks into two ma-
jor categories. The first category is remotely-exploitable
physical attacks (remote physical attacks for brevity)
that stem from the configurable nature of FPGAs where
clients can freely configure their (malicious) hardware
circuits on the FPGA. We further classify these attacks
depending on the deployment model assumed, either
spatial or temporal multi-tenancy. The second category
includes more classical attacks that do not require the
configuration of malicious primitives on the FPGAs
and have their counterparts in CPU- or GPU-based
computing.

Systematization of defenses based on the different secu-
rity requirements for secure multi-tenant FPGA settings
(spatial and temporal).

Insights on the open challenges and opportunities in
enabling FPGA-based trusted computing in the cloud.

2. Field Programmable Gate Arrays

FPGAs are integrated circuits that can be electrically
programmed or configured by end users to implement
different digital circuits. Compared to ASICs, FPGAs are
cost-effective and have shorter time-to-market. Moreover,
unlike ASICs, FPGAs can be reconfigured to overwrite or
update an existing design. However, the flexible nature of
FPGAs comes at additional costs in terms of area, power
consumption and performance, which are mainly attributed
to the programmable interconnect of FPGAs [36]. FPGAs
consist of three major components: configurable logic
elements, configurable interconnects and input/output (I/O)
blocks, which provide off-chip connections. Configurable
logic blocks are connected together and to I/O blocks
through the programmable routing interconnects to form
the desired functionality. Other components of FPGAs
are memory blocks (BRAM) and digital signal processing
blocks (DSPs) for high-performance DSP applications, as
shown in Fig. 1b [36].

FPGAs are usually integrated on printed circuit boards
(PCBs) Fig. la, such that a single board can have one or
more FPGA chips along with other components such as

external interfaces to a computing platform, e.g., PCle,
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USB, etc. A single FPGA chip can pack one or multi-
ple dies, by leveraging advances in 3D integration and
packaging, as in recent FPGA chips, e.g., Intel Stratix 10
and Xilinx Virtex UltraScale+. We show this distinction,
since academic proposals called for leveraging the different
chips per PCB or different dies per chip in the multi-tenant
FPGAs in the cloud.

Design flow refers to the steps required to convert
an abstract circuit description, written in a hardware
description language, such as Verilog or VHDL, into a
functioning circuit on a target FPGA. In synthesis, an
abstract form of circuit description (functional, behavioral
or structural) is translated into a functionally-equivalent
gate-level representation, netlist, using a suite of different
optimizations and mapping algorithms. Next, in place-
and-route, the generated netlist is mapped onto the target
FPGA'’s resources (LUTs, FFs, BRAMs, DSP cores, etc).
In this step, the routing resources to connect the allocated
resources are defined while preserving timing constraints,
e.g., operating frequency. The developer can influence the
outcome of this step by adding placement constraints as
well. For example, the developer can restrict the design
to be allocated on a specific region in the FPGA, or
can force the routing of connections through specific
channels. In bitstream generation, the actual binary file
that configures the target FPGA is generated. Examples
of FPFA toolchains provided by FPGA vendors are Intel
Quartus Prime Software Suite and Xilinx Vivado Design
Suite.

Partial Reconfiguration enables dynamically recon-
figuring a portion of the FPGA, while the rest of the FPGA
logic continues to operate seamlessly [37]. An FPGA
can be partitioned into a static region and one or more
reconfigurable regions (RRs), such that a reconfigurable
region can be configured with its own partial bitstream
without affecting other regions. This has been one of
the most significant features of FPGAs in cloud-centric
applications, since it allows the cloud service provider
to partition the FPGA into one or more RRs executing
different functions, thus enabling new features or future
updates with increased flexibility and ease. Figure Fig. la
shows an FPGA configuration with different RRs that
can communicate with the CPU or other peripherals via
pre-defined interfaces implemented in the static region.
As long as the partial bitstream is accommodated by the
resources of the allocated RR, the rest of the FPGA does
not get affected by the dynamic reconfiguration of that
region logic.

3. FPGA Deployment in the Cloud

While early FPGAs were primarily deployed in appli-
cations such as telecommunications and ASIC prototyping,
more recently, they are used for large-scale datacenters
and cloud computing services as Acceleration-as-a-Service
(AaaS) or FPGA-as-a-Service (FaaS). Both models provide
acceleration for a wide range of compute-intensive work-
loads such as machine learning, genomic data processing,
and other scientific computations.

In AaaS, FPGAs are dedicated to accelerate specific
tasks that are pre-defined by the cloud service provider
(CSP), e.g., a web search and network encryption. In this
model, clients, a.k.a tenants, cannot freely configure the
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Figure 1. FPGAs on Board: (a) Printed Circuit Board (PCB), Chips & Dies with Reconfigurable Regions (RRs) & (b) Basic FPGA Structure [36].

FPGA fabric as desired, but can only benefit from the
accelerated services.

Faa$, on the other hand, enables a more flexible usage
where dedicated FPGAs are allocated to tenants and can be
freely configured by them as desired. In FaaS, apart from
acceleration, FPGAs have also been leveraged in some
works [33]-[35] primarily to provide a hardware-based
trust anchor for clients in the cloud under minimal trust
assumptions. This deployment setting is often referred to
as FPGA-based trusted computing.

Each of these different deployment settings impose
different trust assumptions and requirements. For example,
in AaasS, since FPGA devices are indiscernible/inaccessible
to clients, only the FPGA vendor must be trusted, with no
further trust assumptions or guarantees required. In FaasS,
however, where the clients have more flexible access to
the FPGA devices, additional security challenges arise,
and thus trust assumptions and requirements differ. Fur-
thermore, effective abstraction, virtualization and resource
management techniques (briefly described in § 3.2) are
also required.

In this work, we focus on the FaaS deployment model,
and investigate the challenges and opportunities in achiev-
ing trusted computing in this setting under minimal trust as-
sumptions. We present in the following section § 3.1 more
details on the two FPGA-based acceleration deployment
models, AaaS and FaaS, adopted by the cloud computing
industry. Next, we present an overview on the different
virtualization and resource management mechanisms pro-
posed by academia for the FaaS model in § 3.2.

3.1. Commercial Deployment Solutions

FPGA-accelerated computing has been recently de-
ployed by various commercial cloud services providers,
e.g., Microsoft, and Amazon AWS. In the following we
briefly look into CSPs and their deployment models.

AaaS. Microsoft Azure was among the first datacenters
to introduce FPGAs in cloud computing by augmenting
CPUs with an interconnected and configurable compute
layer of FPGAs to accelerate portions of large-scale soft-
ware services, e.g., Bing web search [38], or to reinforce
the cloud infrastructure by performing network acceleration
tasks [39], [40]. Microsoft demonstrated the first proof of
concept that deployed FPGAs to accelerate web search
ranking on its Bing web search engine [!]. Recently,
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Microsoft has announced its Project Brainwave [2], a
deep learning acceleration platform, aiming to deliver real-
time AL The project aims to support the Al capabilities
in Microsoft services like Bing web search and Skype
language translations.

Faa$S. Several CSPs offer their clients FPGA acceler-
ated computing instances. Prominent examples are Amazon
EC2 F1 [3], Huawei FACS FP1 [41], Alibaba F1 &
F3 [42], Baidu FPGA Cloud Server [43], and Telekom
ECS [44]. The differences among them are mainly in
the allocated resources (RAM, vCPUs, network, etc.) and
the available FPGA devices a client can rent. Depending
on the selected instance capacity, multiple FPGA devices
can be configured together to enable larger applications
distributed efficiently across the FPGAs. Furthermore,
the allocated FPGA devices are dedicated exclusively
to the user during the paid period, i.e., spatial multi-
tenant FPGA usage is not yet provided, as far as we
can infer from the publicly available service description.
These instances enable clients to develop FPGA-based
services and accelerators by providing a Virtual Machine
with pre-installed and licensed FPGA design tools , i.e.,
Intel Quartus, Xilinx Vivado or SDAccel, depending on
the FPGA vendor as well as hardware and software
development kits. These kits enable both expert hardware
developers and non-specialist developers to generate the
desired hardware logic. After the hardware development
process is complete, the client uploads the resulting design
netlist (the outcome of the synthesis step, cf. § 2) to
the cloud. The corresponding FPGA image/bitstream is
generated at the CSP side after inspection of the netlist
against design rule checks. Then the client proceeds with
the software development process, i.e., to develop, debug
and run the applications that will benefit from the FPGA-
accelerated tasks. Clients can develop their own FPGA-
accelerated tasks for personal usage or for commercial
purposes, where they can offer their accelerators in the
corresponding cloud-based marketplace.

3.2. Academic Deployment Models

In this section we provide an overview of abstraction,
virtualization and resource management techniques in the
FaaS model as proposed in academic research.

In order to maximize resource utilization and return-on-
investment of FPGA resources deployed in the cloud, these
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Figure 2. FPGA virtualization in typical cloud computing.

devices can be shared among different tenants, owing to the
reconfigurable nature of FPGAs (cf. § 2). Virtualization
is used to enable this sharing by abstracting away the
complexities and intricacies of the underlying devices and
simplifying the interface of interaction with the FPGAs.
Earlier FPGA virtualization was primarily concerned with
temporal FPGA multiplexing [45] to swap in and out
partitions of larger designs when device capacity was
limited. Over the years, FPGA virtualization has evolved
significantly (in line with evolving FPGA capacities and
capabilities), and is currently almost aligned with that of
typical CPU and I/O virtualization [46], as shown in Fig. 2.

However, certain FPGA features, e.g., their heteroge-
neous fabric, execution model and how their logic configu-
ration is vendor-dependent, differentiate them from typical
CPU computing. Thus, this imposes specific challenges
and requirements on how the virtualization can be handled,
as we describe next.

Virtualization. There has been significant progress in
FPGA virtualization in recent years [46]. Most of the state-
of-the-art work, proposed by academia, focuses on perfor-
mance boosting for the FaaS cloud-based model [4]-[10].
Nevertheless, both cloud-based models (FaaS & AaaS)
require some mechanism of virtualization, similar to that
in Fig. 2 to abstract hardware-specific details and represent
the FPGA device and its components as a resource pool that
can be actively managed, queried, allocated/de-allocated by
tenants through the OS deployed in a cloud infrastructure.
The cloud OS scheduler handles requests from tenants and
creates virtual machines (VMs) for them, and schedules
their tasks and resource requirements across a number
of available resources and compute nodes, e.g., CPUs,
memory, disks, as well as FPGAs. The tenants are thus
provided access to their required resources via these VMs.

Granularity of Virtualization. The next question of
FPGA 1\/312tualization concerns the level of granularity of
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FPGA primitives that is abstracted into a resource pool
available to tenants. Abstracting FPGAs into registers,
LUTs, I/0 blocks, and memory blocks that can be managed
by the cloud OS for tenants to request is, however, not
trivial. This is because current FPGA-based development
remains largely dependent on the specific hardware fabric
of the FPGA and its layout details (cf. § 2). These
details must be visible to the configuration toolchain
provided in order to generate a compatible FPGA bitstream,
where hardware-independent FPGA bitstream configuration
remains an open research problem. Moreover, the irregular
distribution of these different primitives across the FPGA
fabric imposes spatial constraints on how the device gets
partitioned into reconfigurable regions (RRs) and how
user logic gets mapped to these regions. Recent FPGA
devices, however, are attempting to achieve more regular
distribution of primitives across the fabric [47].

Virtual FPGAs. Thus, FPGA virtualization schemes
usually propose to provide a pre-defined pool of different
fixed-size reconfigurable regions (RRs) of the FPGA [4]-
[9], e.g. any of regions A - D in Fig. 2. Each reconfigurable
region is considered a “virtual FPGA (VFPGA)” where
any accelerator can be configured in it, as long as the
region provides the required resources, thus providing
some degree of independence from the FPGA fabric spatial
specifics. Nevertheless, to enable higher flexibility with
respect to the sizing of these RRs, recent work [10] has
introduced a new layer of abstraction that encapsulates user
FPGA logic and enables its mapping to dynamically-sized
FPGA physical zones.

FPGA Shell. Besides RRs, some logic on the FPGA
must remain statically configured (as shown in Fig. 2),
sometimes referred to as the FPGA shell or hypervisor
logic [6]. FPGA shell provides the physical infrastructure,
i.e., clock signals, communication interfaces and reconfigu-
ration management, that actually configures the remaining
FPGA fabric (RRs A - D) with the partial bitstreams of
the desired accelerator functionalities and controls their
connections to FPGA interfaces.

Virtualization Stack. To share the available FPGAs
and the RRs therein across multiple tenants as described,
a hypervisor layer is required to provide host drivers
to enable accessibility for the tenants to the underlying
FPGAs. A controller module is also required to manage
the resources allocation, perform address translation and
provide bottom-level software interfaces to the FPGAs,
thus providing multiple virtual instances of the FPGA
devices [0]. Libraries are required to wrap up the available
services (different FPGA configurations) into accelerator
functions and maintain their bitstreams, while also pro-
viding respective APIs for tenants to call and use the
accelerators from their software applications.

A tenant can use an API to call an accelerator function
either i) from a pre-defined pool of different accelerator
functions provided by the CSP such that the respective
pre-compiled bitstream of the selected accelerator function
is used to configure one of the available reconfigurable
regions (RRs) [5], [6], or ii) of own choice i.e., a tenant may
be allowed to provide an FPGA design that gets compiled
into a compatible bitstream at the CSP side [5], [6], [9],
or even be allowed to directly upload the accelerator’s
bitstream, given that the tenant is provided with the
required information, i.e., vendor-dependent specifics and
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location on the FPGA to generate the partial bitstream [8].

The FPGA device itself can be either i) installed as
a separate acceleration card that is either tied to a host
CPU through PCI Express (PCle) [6], [7], or configured
as a stand-alone compute node that is accessed directly
and independently over the network only [5], [8], [48] or
over both the PCle and the network [9], or ii) integrated
into the same die package as the processor.

Memory accesses by the FPGA to the host’s main
memory use host physical addresses, whereas VMs on the
cloud use guest physical addresses. Hence, an IOMMU
is used to translate between the two address spaces to
enable accelerators to access VM memory regions to
read or write the required data. To further optimize the
performance, FPGA memory accesses may be served from
the host’s last-level-cache (LLC) as well as an FPGA-
exclusive local cache, which is kept coherent with the
CPU’s cache subsystem. !

FPGA (Temporal and Spatial) Multi-Tenancy. This
virtualized deployment described above enables FPGA
multi-tenancy, which traditionally, refers to temporal shar-
ing of FPGA devices. Temporal sharing is where the FPGA
device itself, or the accelerator functionality configured
on it, is used by different users or tenants at different
time slots (by some form of time multiplexing), but
never simultaneously. This is the more popular FPGA
sharing model and the one commonly deployed now in
commercial solutions, as described earlier in § 3.1. More
recently, however, there has been a growing interest in
both academia and industry to enable spatial multi-tenancy
on FPGA devices as well, where multiple tenants’ logic
are co-located on the same physical FPGA device simul-
taneously [49], [50]. In other words, mistrusting tenants
would have their configuration bitstreams simultaneously
occupying logically isolated RRs, e.g., A and B in Fig. 2.
While such a deployment model is principally possible,
and would ultimately enhance resource utilization and
performance gains, it raises a multitude of challenges
that have not been systematically investigated before.
One of the key challenges that distinguishes this type
of sharing on FPGA from CPU sharing across multiple
tenants, is the security issues that arise, both at system-
and physical-level, due to the sharing of the physical and
raw hardware fabric/compute substrate itself, where the
mutually mistrusting tenants have complete privilege and
freedom to configure the underlying fabric (within their
allocated RRs) as desired. Even if each tenant is restricted
to configure the fabric of its allocated RR, the underlying
hardware substrate and its physical implementation, e.g.
the power supply and distribution are still shared, thus
isolation at this level is challenging.

Performance vs. Security Gap. From a performance
and efficiency standpoint, there is an abundance of signifi-
cant works in the literature [4]-[10] that have been concen-
trated on boosting performance and resource utilization for
FPGA-based accelerated computing, i.e., are performance-
centric, as shown above, and assume a trustworthy CSP.
On the other hand, from a security standpoint, the state
of FPGA-based trusted computing lags behind. Very little
has been invested in investigating and enabling a security-
centric end-to-end deployment model that leverages cloud

1. https://wiki.intel-research.net/FPGA.html
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FPGAs to perform security-critical tasks on sensitive
data, where clients can have their protected IP designs
accelerated on cloud FPGAs without having to trust the
CSP [33]-[35]. More details on the different adversary
models of these different computing settings are presented
next in § 4.

4. System Model & Threat Analysis

In this section we provide an analysis of the stakehold-
ers, threats and resultant security requirements that emerge
in FPGA cloud deployment settings.

4.1. Stakeholders

An overview of the of the system model of FPGA cloud
computing deployment is shown in Fig. 3. We discuss next
the involved stakeholders and their trust assumptions.

FPGA-based cloud services are commonly deployed by
a CSP, which provides different usage models and services
that involve heterogeneous architectures (cf. § 3). This
usually involves a standard CPU-based host interfacing
with co-processors and accelerator devices, such as GPUs
and FPGAs, and offloading particular computation tasks to
them as shown in Fig. 3. The CSP, being the platform owner
of these facilities, may opt for temporal or even spatial
multi-tenancy, i.e., offloading workload from different ten-
ants to an accelerator device simultaneously, to maximize
resource utilization and return on their investment, while
reaping even higher performance gains.

FPGA vendors provide the FPGA devices and their
toolchains to the CSP, which are in turn made available
(besides additional development environments also provi-
sioned by the CSP) for the tenants to use over the CSP
provided service. FPGA devices and their toolchains are
usually assumed trusted by the different stakeholders.

Clients or tenants rent the desired computation capacity
and facilities and communicate their workload, which
may include security-sensitive data as well as intellectual
property (IP) design or code, to the CSP. Therefore, clients
sharing resources in the cloud are mutually mistrusting.
However, clients may trust the CSP with their sensitive
data and only require that the CSP provides isolation
among different tenants’ workloads. Otherwise, clients
may additionally also not trust the CSP, thus requiring it
to deploy technologies such as Trusted Execution Environ-
ments (TEE) to isolate tenants’ workloads from the system
software and the CSP itself.

Besides tenants’ IPs, the CSP, FPGA vendors and IP
partners or enterprises, which are developing their own
third-party IPs, may release their IPs in an IP marketplace
(hosted by the CSP) for tenants to rent and use. To establish
secure communication between the clients and the CSP, a
trusted authority (TA) is required for the management and
provisioning of digital certificates, which could either be
another dedicated party or the CSP.

Further amplifying the complexity of these relation-
ships, a very recent trend for maximizing datacenter effi-
ciency and flexibility also involves the CSP disaggregating
its facilities across multiple different distributed resource
pools [31], and thus migrating the computation to these
resource pools.
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Figure 3. Stakeholders and their security concerns in FPGA-based
cloud computing.

Other stakeholders are also involved, which we pur-
posefully keep out of scope to keep the threat modeling
more realistic and practical. Examples include foundry
facilities that the hardware and FPGA vendors rely on for
fabricating their devices, as well as independent entities that
issue certificates for CSPs’ compliance with security and
privacy standards. We assume, however, that trusting these
entities, especially fabrication facilities (for the CPUs and
FPGA devices acquired by the CSP) is a reasonable and
unavoidable assumption. Moreover, such threats and their
proposed mitigation mechanisms occur at a very different
layer of abstraction, and are an active and orthogonal
research focus [51].

4.2. Threat Landscape & Security Requirements

Based on the system model and stakeholders de-
scribed above, we identify two classes of security threats,
demonstrated in Fig. 3. The first includes threats that are
also common with traditional CPU-based cloud settings
(§ 4.2.1) and do not require the configuration of malicious
primitives on cloud FPGAs, while the second class of
threats is exclusive to cloud FPGA devices (§ 4.2.2).

4.2.1. Traditional Threats. These are common to cloud-
based VM settings and include:

Network Attacks. Tenant IP/data must be protected
when transmitted to the cloud, whether a centralized
cloud infrastructure @ or disaggregated/distributed cloud
resources @, against an external network adversary.

Physical Attacks. Tenant IP/data must be protected at
rest and in processing against an external adversary with
physical access. Note that physical attacks are considered
a threat only with disaggregation to the edge, where an
external adversary may gain physical access to unattended
edge devices, as opposed to a single, centralized and
physically secure datacenter ©.

Software Attacks. Tenant IP/data must be protected
against potentially compromised hypervisor or system
software @ and compromised co-tenants’ workload on
the host @. Examples of such attacks are software runtime
attacks, microarchitectural and cache side-channel attacks,
Rowhammer [52] and software-exploitable physical at-
tacks [53]. We discuss in § 5 how some of these attacks
can be also launched from FPGAs.

I/0 and System Bus Attacks. Tenant IP/data, which are
offloadedéto accelerator devices, e.g., GPUs or FPGAs,
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must be protected when transmitted to/from the accelerator
device @®. This largely depends on, and may also influence,
the choice of communication link between the host and the
FPGA, e.g., physical link such as PCI Express, Ethernet or
a wireless link. Possible attacks include man-in-the-middle
attacks, payload misdirection, and device/communication
spoofing or sniffing.

Countermeasures. Based on the cloud architecture and
the assumed threat model some of these threats may not ap-
ply, e.g., physical attacks by the CSP are usually excluded
and the CSP is assumed to protect the disaggregated cloud
infrastructure against external adversaries with physical
access. Other threats may not require explicit catering
and assurances, if certain reasonable trust assumptions
are instead made. For example, if tenants are willing to
trust the CSP with their workloads, security concern @ is
no longer valid, though standard cloud security measures
should still be in place to isolate mistrusting co-tenants’
workloads. However, if an untrusted cloud environment
is assumed, clients may request to run their workloads in
TEEs to isolate and protect co-tenants’ workloads from
the CSP itself [54]-[56].

4.2.2. FPGA-Specific Threats. This second class of
threats stems from the reconfigurable nature of FPGAs
and include:

Remote Physical Attacks based on Malicious FPGA
Configurations. Tenant IP/data must be protected from
untrusted and potentially malicious logic configured on the
FPGA device. Damage, which can be caused by malicious
logic executing on the FPGA, does not only affect co-
tenants on the same physical FPGA but also other resources
of the cloud infrastructure in general @. We discuss these
attacks in detail in § 6 and § 7.

IP Theft or Corruption. Hardware IP providers must
be protected from malicious access and counterfeiting, and
be able to manage, query and monitor their IP licensing
rights and usage @. This also includes protecting tenant IP
by protecting the confidentiality and the integrity of FPGA
bitstreams before and after configuration on the FPGA ©.

Countermeasures. To tackle FPGA-specific threats,
while assuming trusted FPGA devices and toolchains, ad-
ditional trust requirements should be addressed to achieve
secure spatial and temporal multi-tenant FPGA deployment
in the cloud. We summarize their potential defenses below:

Defenses Against Remote Physical Attacks. These
include i) preventive defenses, e.g., bitstream validation,
that mitigate remote physical attacks before configuration
on cloud FPGAs by detecting logic primitives that cause
them (cf. § 8.1), and ii) runtime defenses that address the
mitigation gap, which cannot be comprehensively closed
by preventive defenses (cf. § 8.2).

IP Protection. Protection of confidentiality and in-
tegrity of IP bitstreams as well as secure configuration
of bitstreams on cloud FPGAs either via direct or remote
interfaces (cf. § 8.3).

In what follows, we describe the aforementioned two
classes of attacks in more detail. The first class of attacks
common to other cloud computing settings that do not
require the configuration of malicious primitives on cloud
FPGAs are described in § 5. The second class of attacks, re-
mote physical attacks in multi-tenant FPGAs, are described
in § 6 and § 7. The key enabler of the latter attacks is
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that clients can freely configure their (malicious) hardware
circuits on the FPGA. For a better understanding, we
provide a brief description of the malicious reconfigurable
primitives deployed in these attacks in Appendix § A.
These primitives include delay-line sensors, ring-oscillator
(RO) sensors and RO power viruses. Most of these attacks
assume spatial multi-tenancy (§ 6), however, some of the
attacks are also applicable in the temporal multi-tenancy
model adopted today in commercial cloud infrastructures
(§ 7). All remote physical attacks and defenses are also
summarized in Table 1.

5. Traditional Attacks

In this section we briefly outline attacks that are not
FPGA-specific, i.e., they do not require the configuration
of malicious primitives on FPGA logic in the cloud. These
attacks are, thus, applicable in both FPGA deployment
models (temporal or spatial) and have their equivalents
in CPU- and GPU-based computing. They usually exploit
non-configurable hardware and microarchitectural features
that already exist in both computing systems, e.g., shared
caches and DRAM-based main memories. Therefore, we
also argue that the established defenses to mitigate these
attacks in CPU-based computing can also be applied for
FPGA devices, and we mention them briefly.

Rowhammer Attacks. Weissman et al. [74] demon-
strated a software-based fault injection attack that leverages
the Rowhammer effect in DRAM memories. By excessively
accessing specific rows in the DRAM memory bit flips
in neighboring DRAM cells can be induced [52]. The
attack is demonstrated using two different setups’, Intel
Arria 10 FPGA integrated into the CPU package (A
prototype E5-2600v4) and Intel Arria 10 acceleration
card. Compared to a Rowhammer attack conducted by
the CPU, the FPGA can achieve faster memory accesses
and thus more bit flips due to the fact that, unlike memory
accesses from the FPGA, memory accesses from the
CPU must be followed by flushing the cached data. To
conduct the Rowhammer attack, the FPGA is configured
to perform memory accesses for specific amount of time,
the parameters (target memory addresses and number of
times to be accessed) are provided by the CPU.
Mitigation. As a countermeasure against these Rowham-
mer attacks, in line with these proposed for CPU-based
attacks, the authors propose to increase DRAM row refresh
rate. Another solution would be monitoring and detecting
excessive DMA commands by the FPGA shell [6].

Cache Attacks. The feasibility of cache attacks on
both the integrated Arria 10 FPGA and the Arria 10
acceleration card have also been shown by Weissman
et al. [74] since the CPU and FPGA share memory and
the last-level-cache (LLC). More specifically, the Arria
10 acceleration card has its own local DRAM besides
access to that of the CPU. When the card reads from the
CPU’s memory, the request is served from the CPU’s LLC
if possible, otherwise from the main memory. Thus, the
card is able to influence the state of the LLC and place
cache lines into it, but only by writing (not reading) to
the corresponding memory addresses. The integrated Arria
10 FPGA has access to the CPU host memory, and has

2. https://wiki.intel-research.net/FPGA.html
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its own dedicated directly-mapped local cache that is kept
coherent with the CPU’s cache. Depending on the type of
memory access, it is either served directly from the CPU’s
LLC and main memory or it is first checked in the FPGA
local cache. Then on a miss, the request gets forwarded to
the CPU’s LLC and main memory. Owing to both shared
cache and memory, different cache-based attacks can be
mounted by either the FPGA or the CPU to target the
CPU’s LLC or the FPGA local cache respectively. While
eviction-based attacks can be mounted from the FPGA to
influence and prime the CPU’s LLC successfully, flush-
based attacks (that require the c1f1lush instruction) are
not possible since the FPGA cannot run this instruction. On
the other hand, eviction-based attacks that require to prime
the FPGA local cache from the CPU are not possible,
though flush-based attacks that leverage the c1flush
instruction are possible since the FPGA local cache is
kept coherent with the CPU’s cache. Furthermore, a covert
channel can be constructed from the FPGA logic to the
CPU by manipulation and probing of the LLC state.
Similarly, cache attacks in spatial multi-tenant FPGAs,
where both the victim and attacker are co-located on the
same FPGA device, would also be easily feasible. These
attacks would exploit the FPGA local cache, so long as it is
unconditionally shared among the different tenants, similar
to how CPU cache is shared among different processes or
cores. If the FPGA local cache is a directly-mapped cache,
e.g. as in the Arria 10 FPGA, eviction set construction
becomes trivial, especially since FPGA logic is usually
allocated memory pages such that the requested memory
buffer is within contiguous physical memory.
Mitigation. Cache partitioning mechanisms proposed to
protect CPUs against these attacks, either software-
based [75]-[77] or hardware-based [78]-[82], would, in
principle, also mitigate cache attacks on FPGAs. However,
to mitigate cache attacks in spatial multi-tenant FPGAs,
where the CPU host OS is not involved, hardware-based
defenses are the only feasible approach. Cache partitions
would be utilized exclusively by the co-tenants, thus enforc-
ing cache isolation among them and blocking side channels.
Alternatively, specific cache lines that are security-critical
can be tagged and locked in cache [78], [80] by hardware-
based mechanisms, and thus cannot be evicted by other co-
tenants. Hardware-based randomization defenses [83]-[85]
proposed for cache attacks in CPU computing would also
mitigate them with similar guarantees on FPGA devices.

6. Spatial Multi-Tenancy: Remote Physical
Attacks

In spatial multi-tenant deployment model, a tenant
that has the freedom to configure malicious primitives
(cf. § A) on one of the virtual FPGAs, i.e., reconfigurable
regions, can launch a physical attack on a victim logic
occupying a virtual FPGA on the same physical FPGA
as the attacker. For a better understanding of the attacks,
we provide a brief description of the power supply system
of an FPGA device next and classify the physical attacks
based on the exploited physical phenomena into power
leakage attacks § 6.1 and crosstalk effect attacks § 6.2.

Power Distribution Network (PDN) for an FPGA
consists of a voltage regulator, decoupling capa}%it70rs and
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TABLE 1. REMOTE ATTACKS AND DEFENSES AT A GLANCE.

Leakage Source

Remote Physical Attacks Power Leakage

Power Drop

Crosstalk Thermal Leakage

Spatial Multi-Tenancy [15]-[19], [21], [22]

[

1, [14] [23]-27]

1
Temporal Multi-Tenancy [28]

[

1. [12] - (501

Defenses [

Bitstream Validation

Other Preventive Solutions

Runtime Solutions [

a grid of interconnects, modeled as an RLC-network, to
deliver the power and ground voltages to FPGA compo-
nents [86], [87]. The voltage drop Vy,p is modeled as
the sum of two components a steady-state voltage drop
IR, caused by the interconnects’ resistance of the RLC-
network, and a transient voltage drop Ldi/dt, caused by
the interconnects’ inductance of the RLC-network. The
power consumption is a product of voltage drop and
drawn current. Since the voltage supplied to the FPGA
device must remain fixed at a pre-defined level, changes
in power demands, which vary based on the running
functionality, are manifested as changes in current demands.
The voltage regulator and the decoupling capacitors operate
in parallel to accommodate the changes in current demand
and to compensate steady-state and transient voltage drops,
respectively, to try and maintain a fixed voltage level.
However, in case of sharp transient changes in current
demand of the FPGA, neither the voltage regulator nor the
decoupling capacitors can respond fast enough. This leads
to spatial and temporal fluctuations of the voltage level in
the PDN, which may result in functional failures.

6.1. Power Leakage & Power Drop Attacks

Power consumption of victim cryptographic cores,
configurable or running as a software (SW) process on
an FPGA-based SoC, can be measured using either one
of the configurable voltage sensors to retrieve their secret
keys. Further, power leakage can be leveraged to construct
a covert channel between malicious co-tenants. In the
following we categorize state-of-the art attacks into side
and covert channels.

Side-Channel Attacks. Schellenberg et al. [15] de-
ployed a delay-line sensor to detect voltage fluctuations
in the PDN caused by the activity of a soft AES-128
core, both located on the same FPGA fabric and logically
isolated by passive fence of unused logic [88]. Using
correlation power analysis (CPA), encrypted messages and
the measured sensor values, i.e., power traces, the secret
key can be recovered. The attack, which is demonstrated
locally (in controlled Lab settings) on a SAKURA-G board
with Xilinx Spartan 6 FPGAs, is shown to be successful for
different locations of the sensor with reference to that of
the AES core, but fewer traces are required when the sensor
is closer to the AES core. The same attack was conducted
on AES using several RO-based sensors in [|6].Further,
the attack is deemed feasible on Xilinx UltraScale+ FPGAs
deployed in Amazon F1 instances. In [17] the AES key was
fully recovered in 42% of 30 attempts made on different
Amazon F1 instances.

In [18], RO-based voltage sensors are leveraged to
monitgighe activity of a soft RSA-1024 core, based on
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square-and-multiply, co-located on the same FPGA fabric.
Using simple power analysis (SPA) and the sum of power
traces from 20 RO-based sensors, RSA private key can
be fully recovered. We summarize the details in Table 2.
Further, the authors demonstrated that the start of RSA
operations cannot be identified from the power traces
when a noise generator, whose area overhead and power
consumption are comparable to that of the RSA core, is
activated. The attack also works when the RSA encryption
runs as a process on a CPU that shares the same PDN with
the FPGA, i.e., in an FPGA-based SoC. The attacks are
demonstrated locally on a Zedboard deploying Zynq-7020
SoC of ARM Cortex-A9 and a Xilinx Artix 7 FPGA.

Similarly, Gravellier et al. [19] demonstrated a CPA
attack on AES-128, running as a bare metal program on
the CPU of a Zyng-7000 SoC, using delay-line sensors, im-
plemented on the Artix 7 FPGA. In Table 2 we summarize
the details of the aforementioned attacks.

Krautter et al. [20] investigated the effect of different
placement strategies (default, area-, performance- or power-
optimized) as well as the effect of process variation (PV),
within a single FPGA instance (intra-PV) and among
different FPGA instances of the same family (inter-PV), on
the number of required traces by a CPA attack. The authors
further showed a difference in the minimum amount of
traces required for a successful attack of more than 100x
for different locations of the AES core and the sensor on a
Virtex 7 ADM-PCIE-7V3 accelerator card, which stresses
the great impact of process variation on this attack.

Covert-Channel Attacks. By leveraging groups of
RO-based power viruses as transmitters and RO-based
voltage sensors as receivers, Giechaskiel et al. [21] demon-
strated a one-direction covert channel between two users
spatially sharing a cloud FPGA. Although spatial multi-
tenant FPGAs are not yet adopted in real-world cloud
solutions, such covert channels are shown feasible on
Amazon F1 and Huawei FPI1 instances, which deploy
Xilinx 3D Viretx UltraScale+ FPGAs. A Virtex UltraScale+
FPGA can accommodate up to four dies called super
logic regions (SLRs) in a single chip to deliver high
logic density [89], where the SLR dies are aligned in one
dimension and share power and clock delivery systems.
The authors envisioned, in a spatial multi-tenant scenario,
that each SLR would be dedicated to a different tenant and
demonstrated the construction of a covert channel between
two SLRs based on power leakage, which is confirmed to
be stronger when the receiver and the transmitter occupy
neighboring SLRs. The attack is demonstrated on local and
cloud Virtex UltraScale+ FPGAs (Huawei FP1 and Ama-
zon F1 instances). In Table 3 we summarize the required
resources and the performance (accuracy and bandwidth) of
the attack. Different bandwidth numbers (bits per second)
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TABLE 2. SPATIAL MULTI-TENANCY: REMOTE SIDE-CHANNEL ATTACKS LEVERAGING POWER LEAKAGE.

Ref Crypto Core Sensor Properties Required local Analvsis
’ HW/SW Data Path Freq. Type Sampling Freq. | Encryptions /cloud y
bare metal AES 32-bit . 87K
[19] | SW process [ AFS sbir | 007 MHz %sdgkyTgnce; 200 MHz TTIK local
AES 128-bit 10 MHz 4.5K boards CPA
[15] HW AES 32-bit 24 MHz 1 delay-line (6-bit TDC) 24 MHz 5K P
[17] AES 128-bit 8 MHz 1 delay-line (8-bit TDC) 96 MHz 500K Amazon F1
[16] AES 128-bit 50 MHz 64 ROs & 8-bit counters 250 MHz 8K
. 20 I-stage ROs local
[18] RSA 1024-bit | 20 MHz . 0.1 MHz 9 boards SPA
& 14-bit counters

4 Results apply also to other sampling frequencies: 48, 72 & 96 MHz.
b The results correspond to the key bit showing the highest correlation.

are due to the different operating frequencies: 300 MHz,
200 MHz and 125 MHz on local VCU118, Huawei FP1
and Amazon F1. Transmitter ROs, which are grouped into
subsets and placed in different clock regions, are enabled
and disabled simultaneously. The transmission between
the transmitter and the receiver is based on the Manchester
encoding scheme, in which a single bit of information is
represented as a tuple: ‘1’ as (1,0) and ‘0’ as (0,1).

Similarly, Gnad et al. [22] demonstrated a power covert
channel, however, using a different encoding scheme. To
send a ‘1’ the transmitter generates positive voltage spike
in the PDN by gradually activating groups of the RO-
based power viruses and disabling all of them at once.
Whereas to transmit a ‘0’ a negative spike in the power
trace should be generated by activating all power viruses
at once and gradually disabling them. The receiver is a
delay-line sensor that can measure the emerging voltage
spikes in the PDN. 25 clock cycles separate between the
transmission of two bits to allow the PDN to recover. The
covert channel is evaluated on different boards: Pyng-Z1
with Zynq-7020 SoC (Xilinx Artix 7 FPGA) and KC705
with Kintex 7 FPGA. We present in Table 3 the best
performance results when the transmitter and the receiver
operates at 200 MHz and no additional noise source is
running on the Kintex 7 FPGA.

Fault Injection Attacks. Krautter et al. [13] showed
that by precisely controlling a power-hungry circuit, which
comprises thousands of RO-based power viruses and
occupys 30-50% of FPGA LUTs of a Terasic DE1-SoC
board deploying Intel Cyclone V, it is feasible to induce
timing failures in the 9" round of a soft AES-128 core,
i.e., implemented in the FPGA fabric. The induced timing
faults are used to recover the secret key by means of a
differential fault analysis (DFA) [90], where the victim
AES core operating at 111 MHz and spatially shared the
FPGA with an array of RO-based power viruses. The
achieved key recovery rate is of 93% on average using 18K
encrypted messages. Mahmoud et al. [14] also leveraged a
power-hungry circuit, occupying 25% of FPGA LUTs of a
VC707 board with Xilinx Virtex 7, to induce timing failures
during the operation of a true random number generator
that are used for the generation of secret keys. The faulty
output was shown to be biased and failed randomness tests.

6.2. Crosstalk Attacks

The crosstalk effect is caused by the electromagnetic
coupling that occurs between unshielded wires that are laid
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in parallel. Thus, a signal transmitted through one wire
influences the signal propagation delay in neighboring
wires. The crosstalk effect is leveraged to launch remote
side- and covert-channel attacks.

Side-Channel Attacks. Ramesh et al. [23] exploited
the crosstalk effect within long wires in FPGA (cf. Fig. 1b)
to recover the secret key of a soft AES-128 core. The
transmitter, routed through long wires, is an input to
an AES S-box. The snooping circuit comprises a RO-
based voltage sensor. The receiver, which is one of the
RO’s wires, is routed through long wires and is located
next to the transmitter wire. Using differential power
analysis (DPA) [91], the counter values obtained from
the snooping circuit (power traces) and the encrypted
messages, the key of the final round of the AES can
be recovered byte by byte. Then the encryption key can be
obtained by inverting the key schedule. The crosstalk effect
increases for longer transmission pair and lower operating
frequencies of the victim logic, which directly influences
the number of encryption operations required to recover
the key. The attack is evaluated locally on several boards
of Intel FPGA devices: DE2-115 board, Cyclone IV and
Stratix V development kits [23] and DESa-Net Arria 10
GX boards [24].

The same effect is also demonstrated in [25], where
the authors leverage a sliding-window sampling scheme to
sample the RO-based sensor at overlapping time periods in
order to extract the value of each transmitted bit of a secret
key. The authors show that the probability of correctly
recovering a key is higher for larger keys (asymmetric vs.
symmetric keys) and smaller window sizes. In Table 4 we
summarize the performance of each of the aforementioned
DPA and sliding window approaches. Long wire leakage
is characterized for different generations and families of
Xilinx FPGAs, including Virtex 5, Virtex 6, Artix 7, Spar-
tan 7 and Virtex UltraScale+, on local boards [26] as well
as on cloud FPGA instances [27]. More technical details
on the respective attacks can be found in Appendix § B.

Covert-Channel Attacks. Besides side-channel at-
tacks, the crosstalk effect can be exploited to construct
a covert channel between two circuits sharing the FPGA
fabric at the same time [25], [26]. Crosstalk-based covert
channels have been shown locally on several boards (of
Xilinx FPGA devices) in [26]: ML509 (Virtex 5), ML605
(Virtex 6), ArtyS7 (Spartan 7), Nexys 4 DDR and Basys
3 (Artix 7). In Table 3 we summarize the performance
of a crosstalk covert channel conducted with transmission
pair of 2-segment long wire and Manchester1 3eélcoding
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TABLE 3. SPATIAL MULTI-TENANCY: REMOTE COVERT-CHANNEL ATTACKS.

Ref. | Deployed Effect | Bandwidth | Error Rate Platform Transmitter Receiver
[21] Power Leakage 1.17 Mbps 0.1% local V(;Ul 18 | 4K 2-stage ROs (Fig. 4c) 25 7-bit counters
[21] Power Leakage 781 Kbps 0.1% Huawei FP1 6K 2-stage ROs (Fig. 4c) | & 2-stage ROs (Fig. 4c)
[21] Power Leakage 488 Kbps 0.1% Amazon F1 stag C e stag C e
[22] Power Leakage 8 Mbps 0 local KC705 5K 1-stage ROs (Fig. 4c) 6-bit delay-line
e ) ) } _ o single 21-bit counter
[26] Crosstalk 6.1 Kbps 0.1 -1% local boards one signal buffer & 3-stage RO (Fig. 4b)
TABLE 4. SPATIAL MULTI-TENANCY: REMOTE SIDE-CHANNEL ATTACKS LEVERAGING CROSSTALK EFFECT.
Victim Circuit Snooping Circuit Required Analysis
Ref. Key Size Operating Freq. Transmitter Length Type / Sampling Freq. | Encryptions ys1s
[23] | AES (128-bit) 1 MHz 1-segment long wire RO /1 MHz 233K # DPA
[26] 32-bit 0.78 MHz > 1-segment long wire RO / 195 KHz 20K P Sliding Window (w = 4)

2 Reported results are for automatically placed and routed victim AES.

b For all four counters, i.e., 5K per counter, to recover only 98.4% of the 32-bit key.

scheme without error-correcting codes. Compared to a
covert channel based on power leakage, crosstalk effect
has notably lower performance (accuracy and bandwidth),
however, it also requires less FPGA resources.

To summarize, exploiting the crosstalk effect requires
more measurements or traces than a power side-channel
attack, as seen in Table 2 and Table 4. Further, exploiting
crosstalk effect requires close proximity between the victim
and snooping circuit with a maximum distance of one long
wire separating the transmitter and the receiver, which
is hard to achieve in a real-world deployment model,
given that a malicious tenant has no influence on the
process of place-and-route of the victim netlist on the
FPGA. Moreover, It is demonstrated that the crosstalk
effect diminishes for victim circuits operating at higher
frequencies [23]. In general these attacks, whether based
on power leakage or crosstalk effect, are demonstrated
on cryptographic cores operating at low frequencies, e.g.,
24 MHz for the AES core, as opposed to the purpose
of leveraging FPGAs to achieve the high performance
these platforms can offer.’ Running the cryptographic
cores at higher frequencies of few hundreds MHz would
require higher sampling rates that are harder to achieve
with reconfigurable sensors.

7. Temporal Multi-Tenancy: Remote Physical
Attacks

In this section, we present remote physical attacks
that assume the conventional temporal multi-tenant FPGA
deployment model, which is adopted in real-world cloud
infrastructures. That is the whole physical FPGA is allo-
cated to one client at a time. Nevertheless, different tenants
can use different FPGA instances (and other resources)
at the same time. We classify these attacks into power
leakage attacks § 7.1 and thermal leakage attacks § 7.2.

7.1. Power Leakage & Power Drop Attacks

Side-Channel Attacks. Schellenberg et al. [28] de-
ployed a delay-line sensor in one FPGA to measure the

3. For example, AES can run at 300MHz on a Virtex 6 FPGA https:
//opencorfa_@rg/projects/tiny_aes.
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power consumption of a soft cryptographic core (AES-
128 or RSA-224) implemented on another FPGA that
is integrated on the same board and sharing the power
supply system. To enable the comparison of results with
spatial power side-channel attacks (cf. § 6.1), the authors
replicated their settings from [15] (same board and same
AES core). They showed that to recover AES key, 2.5
million encryptions are required when the AES core and
sensor are on two different FPGAs, compared to 5K
encryptions when they are co-located on the same physical
FPGA. The attacks are demonstrated on a SAKURA-G
board integrating two Xilinx Spartan 6 FPGAs.

Covert-Channel Attacks. Power leakage is further
exploited on three realistic setups of FPGA-to-FPGA,
CPU-to-FPGA and GPU-to-FPGA covert channels, where
transmitters and receivers are separated on two distinct
boards sharing only the external power supply unit in [29].
Nevertheless, to capture the power leakage across boards,
additional set of RO-based power viruses, the stressor,
is required. The stressor power viruses and the receiver
sensors, which are on the same FPGA, are grouped into
subsets and distributed across different clock regions in
the corners and the center of the receiver FPGA, while the
transmitter is different based on the source type, i.e., FPGA
or CPU/GPU. In case of FPGA-to-FPGA the transmitter is
a set of RO-based power viruses, whereas in case of CPU-
to-FPGA and GPU-to-FPGA the transmitter is a stress
program that runs simultaneously on available threads or
cores. During the transmission of one bit, the stressors are
alternately enabled and disabled in equal intervals and the
counter values of each receiver RO for the enabled and
disabled periods are averaged and compared to extract the
transmitted bit. Then the final transmitted bit is computed
based on the majority of all receiver ROs. The covert
channel is demonstrated locally on different FPGA boards
KC705 (Xilinx Kintex 7) and AC701 (Xilinx Artix 7), two
Xeon processors with 4 threads and 24 threads, and two
GeForce GPUs with 96 and 640 CUDA cores. In Table 5
we summarize the best performance results (bandwidth
and accuracy) and the required resources to achieve them.

By comparing the results in Table 3 and Table 5 in
terms of resources and performance, it is obvious that
power covert channels in spatial settings are stronger and
require less resources.

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 18,2022 at 08:59:22 UTC from IEEE Xplore. Restrictions apply.



Denial of Service (DoS) Attacks. Gnad et al. [11]
demonstrated that excessive switching activities of a power-
hungry circuit, occupying 12-13% of the FPGA LUTs
on Xilinx ML605 (Virtex 6), KC705 (Kintex 7) and
Zedboard (Artix 7), in the picosecond regime create voltage
emergencies in the PDN. Such sharp and transient voltage
drops cannot be compensated by the decoupling capacitors
or the voltage regulator and cause the FPGA to crash
in less than 1 ms. The DoS attack is demonstrated on
local boards and is deemed feasible on Xilinx UltraScale+
FPGAs similar to those deployed in Amazon EC2 F1
instances [12]. Note that the size of the power-hungry
circuit and the required resources on the FPGA to induce
the required effect differ based on the targeted FPGA.

7.2. Thermal Leakage Attacks

Tian et al. [30] demonstrated how to exploit thermal
leakage of cloud FPGAs to establish a covert channel
using single FPGA. This requires a pre-agreement between
the clients on the identity of target FPGA instance, i.e.
the communication medium, which implies disclosing
information about the cloud infrastructure, i.e., identifying
FPGA instances offered by the CSP. One approach to
acquire such information is by fingerprinting cloud FPGAs
using physically unclonable functions to measure unique
characteristics of the FPGAs. Tian et al. [92] conducted
the experiments on Amazon AWS cloud and demonstrated
the feasibility of renting the same FPGA by two successive
clients for the different available instances.

By leveraging a grid of ROs as a transmitter (heater)
and RO-based thermal sensors as a receiver, Tian et
al. [30] demonstrated a covert channel between two clients
temporally sharing the same cloud FPGA. A transmitter
circuit is configured on the FPGA and enabled to achieve
a steady-state temperature corresponding to logic ‘1°. Then
the transmitter circuit is disabled and the FPGA is left
idle before configuring the receiver’s bitstream on the
same FPGA. The receiver circuit then measures the ROs
frequencies and compares them to nominal ROs frequencies
which correspond to logical ‘0’ to acquire the transmitted
value. The covert-channel bandwidth is defined by the
heating period, the maximum time gap between heating the
FPGA and sensing its temperature, and the transmitter’s
size (number of ROs). The longer the idle gap/period
between heating and sensing, the weaker the covert channel
is. The evaluation is performed on cloud FPGA instances,
where for an idle period between two users of a cloud
FPGA of 120 seconds, 6.64 minutes are required to
transmit one bit. Unlike covert channels based on crosstalk
or power leakage, thermal leakage impose no constraints on
the placements of transmitter and receiver circuits since the
generated heat can be sensed from anywhere on the FPGA.
The covert channel is demonstrated on Stratix V FPGAs
deployed in Texas Advanced Computing Center. Table 5
shows the performance of the thermal covert channel and
a comparison to power covert channels.

8. Defenses

We classify state-of-the-art defenses against remote
physical attacks (cf. § 6 and § 7) into preventive solutions
that mitigate the threats before configuration on the FPGA
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(§ 8.1) and runtime solutions that aim to address the miti-
gation gap that static approaches cannot comprehensively
close (§ 8.2). In § 8.3 we examine IP/data protection and
secure configuration solutions.

8.1. Preventive Solutions

8.1.1. Bitstream Validation. This attempts to verify that
a user design is harmless, i.e., contains no malicious
primitives that can be deployed for remote physical attacks.
One way to do this is by leveraging design rule checks
(DRCs), which are provided in FPGA vendor toolchains,
e.g., Xilinx Vivado DRCs, to verify that a design does
not violate a set of pre-defined rules. Amazon AWS
enforces DRCs on clients’ netlists to prevent combinatorial
loops, e.g. ROs, before generating the final bitstream. *
However, alternative sequential RO designs (cf. § A.1)
can still bypass the check [27], [93], [94]. In particular,
latch-based and flip-flop based RO sensors are used to
characterize long wire leakage on Amazon F1 and Huawei
FP1 instances [27].

Another approach for bitstream validation is by using
stand-alone virus scanner tools [57], [58] that search for un-
common structural and behavioral properties of malicious
logic in the netlist. For example, FPGADefender [58]
is designed to detect combinatorial and sequential self-
oscillating circuits, whereas the virus scanner in [57] is
designed to detect combinatorial loops as well as delay-
line sensors. Such tools are envisioned to be deployed
by the CSP to scan the uploaded FPGA circuits prior to
configuration on the FPGA. In case the CSP allows clients
to directly upload their bitstreams, reverse-engineering of
the bitstream is required to recover the netlist. Moreover,
the virus scanner tool must be updated regularly with
formulation of properties, i.e., virus signatures, to account
for new malicious logic designs.

Both DRCs and virus scanners require access to plain-
text client IP designs, which introduces a conflict with IP
confidentiality (discussed further in § 9.1).

8.1.2. Prevention of Crosstalk Attacks. Giechaskiel et
al. [25], [26] proposed to block four neighboring long wires,
two long wires from each side, of the victim wires. The
blocked wires can be left unoccupied or further driven by
random values. This can be performed either by manual
inspection of the placed and routed design to identify
the source of leakage and add the guarding wires or by
the support of FPGA toolchains. This requires including
directives in the source code of the design by the developer
to annotate sensitive signals and further modifying routing
algorithms to automate adding the guarding wires.

A compromise solution is proposed by Luo and Xu [60].
They implemented a framework in the command line
interface of FPGA toolchains to prioritize the placement
of sensitive logic based on their security-levels in a spiral
manner such that the most sensitive logic is in the center
of the allocated blocks. For example, the S-Boxes of the
AES core are placed in the center of the allocated logic
and are routed away from long wires. External interfaces
to the sensitive logic, e.g., UART or PCle, routed through
long wires are guarded by driving the neighboring long

4. https://github.com/aws/aws-fpga/blob/master/ERRAT A gkl
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TABLE 5. TEMPORAL MULTI-TENANCY: REMOTE COVERT-CHANNEL ATTACKS.
ALL ATTACKS USE 3-STAGE RO DESIGNS (RO FIG. 4A IN [

] AND RO FIG. 4B IN [29])

Ref. | Deployed Effect Bandwidth Error Rate Platforms Transmitter Receiver Stressor
[29] Power 6.1 bps < 5% KC705-to-AC701 14K ROs 20 ROs &

[29] Power 6.1 bps 3% CPU-to-AC701 14 threads 15-bit Counters 500 ROs
[29] Power 2 bps 3% GPU-to-AC701 640 CUDA core

[20] Thermal 1 bit per 6.64 minute 0% Altera Stratix V 41K ROs * RO sensors * N.A.

* Exact numbers are not given.

wires with ‘0’, ‘1’ or random values. The framework
operates at the netlist level of the design, therefore, it is
unlikely that additional resources (LUTSs or memory blocks)
will be incurred. Nevertheless, constrained place-and-route
would affect the maximum operating frequency of the
circuit, besides the two additional long wires, surrounding
each sensitive long wire, that are reserved and driven by
obfuscation logic.

Seifoori et al. [61] demonstrated that modifying
the PathFinder FPGA routing algorithm eliminates the
crosstalk effect in the context of integrating untrusted third-
party IP cores and security-critical IP cores in a single
design. The authors proposed four routing strategies that
either i) entirely block the nearest two or four neighbors
of a sensitive wire, ii) block only untrusted signals (of
a different core) from occupying the two neighbors of a
sensitive wire or iii) allow only trusted signals (of the same
core) to occupy the two neighbors of a sensitive wire. The
performance loss is evaluated for each strategy in terms of
routing channel width and critical path delay (maximum
operating frequency).

Xilinx Vivado toolchain includes an Isolation Design
Flow, which enforces physical separation between dif-
ferent cores/designs on the FPGA, such that the entire
design (functions & signals) is placed-and-routed inside
the defined region [59]. Then, Vivado Isolation Verifier
can be used to ensure that isolation rules are met. This
mitigates the crosstalk leakage, however, it may introduce
performance issues due to routing constraints.

In summary, mitigating crosstalk should be adopted
by the CSP to secure both clients logic and their interfaces
to the FPGA shell in case clients are only allowed to
upload their designs/netlists. Otherwise, clients should
make sure that their circuits are not routed through long
wires, whereas the interfaces to the FPGA shell should be
still secured by the CSP.

8.2. Runtime Defenses

We refer here to runtime solutions that aim to i) detect
‘malicious’ activities by detecting changes in operating
conditions or ii) prevent or harden the exploitation of the
leakage during the execution on the FPGA.

8.2.1. Detection of Power-Drop Attacks. Provelengios et
al. [71] proposed to deploy a network of RO-based sensors
in the FPGA shell to periodically detect and identify
malicious voltage drops and to locate the center of a power-
hungry circuit. This information is used by CSP to revoke
the malicious logic from the FPGA. The accuracy of this
approach depends highly on the number of sensors and
also thei A{gtensity of the attack (number of power viruses).
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The more sensors and the intenser the attack, the more
accurate the results will be. In their settings, the authors
used 46 RO sensors (each comprises a 19-stage RO & a
20-bit counter) resulting is 5% resource utilization on a
Intel Cyclone V FPGA of DE1-SoC board. Although the
authors do not elaborate on the time required to locate the
center of the malicious logic, it is very likely that until the
malicious logic is located and revoked, timing errors in
neighboring logic would still occur or the FPGA would be
shut down. Alternatively, when voltage drops are detected,
the clocks of virtual FPGAs can be paused until the CSP
locates the source of the malicious activities. Note that the
clients need to trust the CSP, otherwise, a malicious CSP
can deploy a sensor network to spy on the clients.
Xilinx provides a security monitor IP core that can
be instantiated in some of their FPGAs [72]. This IP
core monitors supply voltage and temperature in addition
to other functionalities and allows the user to decide
among different configurable penalties. Such IP core can
be instantiated by the CSP to detect voltage drop in the
FPGA and zeroize (regions of) the configuration memory
for example. However, it is not clear whether it can provide
information about the source of the voltage drop.

8.2.2. Mitigation of Power Leakage Attacks. Krautter et
al. [62] proposed a hiding countermeasure, through which
side-channel leakage is reduced by implanting a fence of
ROs that works as a noise generator circuit around the logic
to be protected, thus reducing signal-to-noise-ratio (SNR).
The fence has a size of roughly the size of of the design
to be protected and its power consumption is slightly more
than half of the AES power consumption. Krautter et al.
[62] further proved that a fence activation strategy based
on internal power measurements, using voltage sensors,
is more effective than a random activation pattern. Their
approach increased the number of required traces to recover
the key from 1.8K, when no defense applied, to 300K
for sensor-based activated fence. Nevertheless, physical
locations of the fence and AES core highly affect the size of
the fence and the required traces for a CPA attack. Krautter
et al. [20] showed that by carefully choosing the AES core
location on the targeted FPGA, the same protection level
of the active fence approach can be achieved with zero
overhead. However, this requires exhaustive per-device
analysis to find the least vulnerable location per FPGA.
Note that implementing an active fence by a client
would not be allowed if a bitstream validation process is
applied by the CSP. On the other hand, if such a defense is
to be applied by the CSP, then the CSP needs to orchestrate
active fences for the virtual FPGAs, resulting in additional
and non-trivial overhead in terms of power and FPGA
resources. Other hiding techniques based on dual-rail
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precharge logic or duplication schemes [63], [64] can be
implemented directly by the clients in their allocated virtual
FPGAs. However, they still suffer information leakage due
to imbalanced routing on FPGAs and result in duplicated
area and power overhead.

Other countermeasures that can be implemented by the
client against power leakage on FPGAs are randomization
and masking. Randomization approaches work by randomly
changing operating frequency (if allowed by the CSP) [66],
[67], [70], execution of random dummy operations [66]
or adding random delays to input signals [68]. Masking
techniques for reconfigurable platforms are either inef-
ficient with respect to area and performance [69], or
still generate exploitable leakage [65]. Moreover, masking
techniques should be designed for every cryptographic
function individually and the desired security guarantees.

8.2.3. Mitigation of Thermal Leakage Attacks. Intel
integrates diode temperature sensors in the configurable
fabric of their FPGAs [73]. To mitigate thermal leakage,
these sensors can be exclusively leveraged by the CSP
to monitor the temperature across the device at runtime.
Once the temperature reaches a pre-defined level, the CSP
can apply a suitable cooling countermeasure.

In [30] the authors proposed enforcing a minimum idle
period, in the order of minutes, for the FPGA between two
successive allocations. This allows the FPGA to recover
to a nominal temperature. Alternatively, they proposed to
heat or cool the FPGA to a pre-defined temperature before
it is reallocated. This mitigation needs to be considered
for practical feasibility and against the CSP’s drive for
operational efficiency where idle cycles are lost income.

8.3. FPGA IP & Data Protection

We present in the following an overview of academic
solutions that are focused on IP protection in an untrusted
cloud environment for FPGA-based trusted computing.
Then we refer to other schemes that try to address data
isolation and access control for cloud FPGAs.

8.3.1. IP Protection. State-of-the-art solutions rely on an
initial bitstream that configures a trust anchor on a cloud
FPGA. The main goal of this trust anchor is to run a
key exchange protocol with clients and decrypt client’ IP
bitstream prior to configuration on the FPGA. The trust
anchor contains a cryptographic core for decryption of IP
bitstreams using secret session keys, which are obtained
through the key exchange protocol that deploys public
key cryptography, e.g., RSA or elliptic core cryptography
(ECO) [33], [35], [95]. In [33], the authors proposed to
embed the private key directly with the RSA core in the
initial bitstream, thus, the confidentiality of the initial
bitstream must be protected and this is achieved, e.g., by
leveraging the built-in AES engine in Xilinx FPGAs. For
that, the authors propose a trusted party, e.g., the FPGA
vendor, to program the AES secret key before deploying
the FPGA in the cloud. In [95], the authors do not protect
the initial bitstream but rather obfuscate the public key into
a finite state machine (FSM) [96]. Such that the public
key cannot be inferred by static analysis of the initial
bitstream, i.e., the initial bitstream must be configured on
the FPGA in order for the trust anchor to generate the
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public key. The security of the scheme relies on strong
assumptions of time-bounded protocol responses to detect
network attacks, e.g., man-in-the-middle. Moreover, the
unprotected initial bitstream is vulnerable to bitstream
manipulation attacks [97]. In [35], the authors embed a
physically unclonable function (PUF) in the trust anchor
to generate device-specific session keys. This implies
protecting only the integrity of the initial bitstream as
PUF outputs are generated on-the-fly. However, the authors
instead assume that the FPGA vendor configures the trust
anchor on the FPGA prior to deployment in the cloud and
that the FPGA is constantly powered, even during shipping
to the CSP, to maintain its configuration. Alternatively,
the initial bitstream of the trust anchor can be protected
and stored in off-chip memory as in [33]. Note that the
trust anchor, which is designed and implemented by the
trusted party, may also include the rest of the FPGA shell
functionality (interfaces to host). However, this would
impose restrictions on the design decisions of the CSP.

In [34] an initial bitstream is not required. The au-
thors leverage the built-in PUF, ECC and AES cores on
SmartFusion-2 FPGAs of Microsemi. The PUF is used to
generate a pair of ECC keys, and the client uses the ECC
public key to encrypt the AES secret key. The AES key is
used to encrypt client bitstream. Partial reconfiguration of
the FPGA fabric is not available in these FPGAs, therefore
the client should design and implement the interfaces to
host, which is inconvenient for the CSP. On the other
hand, in an untrusted environment, the FPGA can be run
in factory test mode to read out client’s IP design.

In [33], [34] the public key is published via standard
public key infrastructure held by the trusted party.

These schemes mainly assume temporal multi-tenant
setting. Nevertheless, [33], [35] would theoretically work
in the spatial setting, however, a malicious tenant can
overwrite the configuration of another tenant, since the
CSP has neither control over the bitstream generation nor
access to plain-text bitstreams. Moreover, the CSP has no
guarantees that the encrypted bitstream is harmless, i.e.,
free of power viruses or sensors. To sum up, for trusted
computing on cloud FPGAs, FPGA vendor support is
required for IP protection. At the same time, the CSP must
be assured that encrypted clients bitstreams contain no
harmful logic. We discuss this in more detail in § 9.1.

8.3.2. Access Control & Encrypted Communications.
Access Control. To mitigate unauthorized access to co-
clients data and IP in spatial multi-tenant setting, a DMA
engine can be implemented in the FPGA shell to allow
valid memory accesses only and to isolate the data of the
different virtual FPGAs [6], [7], since IOMMU matches
memory accesses per physical FPGA only. Whereas in case
the FPGA is accessed through the network, the network
interface controller implemented in the FPGA shell is
augmented with VLAN-tagging to isolate the packets of
different virtual FPGAs [9]. These solutions work as the
first line of defense. Hence, for further protection of data
at rest and in transit, encryption is used.

Elnaggar et al. [98] proposed to add an external
hardware component to the FPGA, rather than the FPGA
shell, secure authentication module (SAM) that manages
the distribution of secret keys to clients and enforces
access control to the FPGA-accelerated tasksihgsed on
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these keys. A client then integrates the secret key in
the SW-application and the FPGA bitstream and uploads
them to the cloud. At runtime, SAM verifies that the
SWe-application and the requested FPGA-accelerated task
belong to the same legitimate client by comparing the
implanted secret key. If authenticated, the SAM sends
both components a secret session key to encrypt their
communications. Hence, the established trust relies on the
security of the secret key given to the client and implanted
in the bitstream. Therefore, a client bitstream must be
protected, otherwise, the security of the entire scheme is
compromised.

Encrypted Communications. Yazdanshenas et al.
[99], [100] attempt to address the confidentiality of off-
chip communication using encryption in the FPGA shell,
the statically configured logic, for all incoming/outgoing
traffic of a physical FPGA through its interfaces (PCle,
Network and off-chip memory storage). Another way to
secure tenant communications is to add encryption core
wrappers around the reconfigurable regions to encrypt the
data before leaving the virtual FPGA. This prevent I/O
bottleneck compared to the first option, where all tenants’
data gets encrypted or decrypted in the shell. However,
the choice between the two modes should consider the
trust assumptions: opting for shell encryption implies trust
in the shell and the CSP, whereas using an encryption
wrapper per virtual FPGA protects the virtual FPGA traffic
in an untrusted environment. The main issue with the latter
mode is that clients must securely bring their own keys
into the encryption wrappers, which we only see feasible
if bitstream protection on cloud FPGAs is supported.
Nevertheless, for both encryption modes, defenses against
remote physical attacks should be in-place. The authors
compared the cost of soft vs. built-in AES cores and
recommended the integration of built-in cryptographic
cores by the FPGA vendors. As an example, the authors
proposed to leverage a hardwired Network-on-Chip (NoC)
where the NoC can be used to connect these regions via
encryption-enhanced routers [99], [100]. However, this
would result in extensive architectural modifications to
FPGAs and restrict the CSP choices, i.e., number and size
of virtual FPGAs.

In summary, in temporal or spatial multi-tenant set-
tings, data isolation or encryption of different tenants is
performed either i) by the client logic implying client
bitstream protection, or ii) by the FPGA shell implying
trust in the shell and the CSP. This trust can be simply
assumed as a perquisite or gained, e.g. by remote attestation.
More discussions on this follow in § 9.1.

9. Discussion

In light of the analysis of the security concerns that
would arise from the different cloud FPGA computing
deployment models, we present next our insights on the
open challenges and opportunities in establishing trust in
FPGA-based computing in the cloud in § 9.1 and lessons
learned from trusted computing on CPUs in § 9.2.

9.1. Trusted Computing on Cloud FPGAs

FPGA devices can be leveraged to establish the trust
anchorigequired in different secure computation flows
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and services on the cloud, owing to their features and
advantages to both software as well as hardwired static
hardware. One prominent example is offering to run clients’
workloads in a trusted execution environment that gets
established in cloud FPGAs. This is analogous to running
workloads in a trusted execution environment on a CPU in
the cloud, which is being offered more by CSPs recently
to provide confidentiality and integrity guarantees both in
bare-metal instances [55], [560] and in virtual machines [54].
We envision the FPGA shell, or hypervisor, to set up the
FPGA trusted execution environment or trust anchor, i.e.,
to configure the client IP bitstream through the internal
configuration port on the FPGA. Moreover, the FPGA shell
must ensure that the bitstream is actually configuring the
intended/allocated reconfigurable region (virtual FPGA)
and not overwriting the configuration of another virtual
FPGA, if spatial multi-tenancy is enabled.

One significant open challenge here is establishing a
trust anchor when the FPGA shell, also a bitstream itself,
is untrusted. Therefore, a supporting infrastructure (archi-
tecturally in FPGA devices as well as within overlying
protocols and toolchains) is required to establish trust in
the FPGA shell in the first place. Then, it can provide
clients with sufficient guarantees that their IPs and data
remain contained in secure and untampered isolation during
execution and at rest.

FPGA-TCB. We refer to the components on the
FPGA that are required to establish a trust anchor as
the FPGA Trusted Computing Base (FPGA-TCB). This
TCB would be required to verify the integrity of the
FPGA shell and configure it on the FPGA, similar to
secure boot on CPUs. The FPGA-TCB should also provide
remote attestation of the FPGA shell, or the part of it
that establishes and manages the FPGA trusted execution
environment. Remote attestation would be required to
provide assurance to the clients regarding the integrity of
the deployed cryptographic primitives used to decrypt and
verify their IP bitstreams and the protected access to plain-
text bitstreams. To enable FPGA shell remote attestation
and client bitstream decryption, the FPGA-TCB would
also be required to handle secret session keys generation,
exchange and management. Note that some FPGA vendors
offer some of these requirements in their recent FPGAs,
e.g., Intel Black Key Provisioning enables remote and
secure provisioning of the AES root key in Stratix 10 [101].

Since the immutable FPGA-TCB cannot be compro-
mised by malicious parties, it forms a root of trust in
the FPGA. By leveraging remote attestation, the trust
is extended to the FPGA shell, specifically to FPGA
shell components that deal with client IPs and data, e.g.,
decryption and configuration management logic as well
as the logic that prevents plain-text bitstream readback
through the different configuration ports.” In [102] a first
step towards the establishment of trust anchor on cloud
FPGA is made.

This calls for a comprehensive analysis of the minimal
FPGA-TCB components (both hardware and software) to
provide these required security guarantees. This includes
investigating efficient secure key and certificate provi-

5. Readback property enables reading configuration memory content
(LUTs and programmable connections) to support the implementation of
error correction for reliability.
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sioning as well as the minimal hardware primitives (e.g.,
cryptographic processors or cores and their verified side-
channel-resilient implementations). Furthermore, which of
these primitives must be hard-wired into the FPGA, and
which can be provided as configurable logic? How much
hardware-software co-design is needed and what are the
ideal design choices therein? How can debug interfaces,
such as the Joint Test Action Group (JTAG) interface
among others, be provided securely to still enable cloud
clients to debug their FPGA development without threat-
ening the confidentiality of other IPs and computations
running on the FPGAs? Last but not least, how can we
provide bitstream validation while still preserving client IP
protection where the bitstream is encrypted? Various us-
ability/performance/security trade-offs are involved within
these open questions, all of which require a comprehensive
and systematic treatment and analysis.

Remote Physical Attacks & Defenses. On another
front, remote physical attacks demonstrate and emphasize
why secure spatial multi-tenant FPGA computing is chal-
lenging. Nevertheless, in quest for maximum utilization
and as FPGA devices’ capacities keep scaling, spatial
multi-tenancy is becoming inevitable. Thus, it becomes
imperative to develop mechanisms that provide the required
future-proof security assurances that are unique to these
emerging FPGA computing scenarios. Runtime defenses,
presented in § 8.2, require the implementation of protection
logic in the FPGA shell or in a client’s allocated reconfig-
urable region to protect the victim logic against a specific
leakage source, e.g., power leakage. Such defenses do not
only consume non-negligible resources but also require the
clients to have FPGA hardware design expertise in order to
implement them and find the best trade-off between security
and resources overhead. Whereas other runtime defenses
require the implementation of configurable sensors and
noise generators, which are considered malicious and
would be prevented by a bitstream validation process.

Fundamentally, the key enabler of these attacks is
that clients can freely configure their (malicious) logic on
the FPGA fabric. Developing mechanisms for effectively
scanning and validating the clients’ logic for malicious
circuit signatures seems to be the intuitive approach to
prevent malicious logic from being configured on the FPGA
in the first place. While recently proposed stand-alone tools
for detection of malicious circuits and suspicious behavior
show promising results, they detect known malicious
circuits only, but provide no guarantees for future zero-
day attacks. Moreover, these tools, deployed by the CSP,
work at the netlist level and require reverse engineering
of clients’ bitstreams. This is especially a challenge when
the bitstreams are encrypted for purposes of IP protection,
as pointed out above.

Therefore, FPGA toolchains may need to additionally
cater for providing such security guarantees in cloud
deployment settings, e.g., by extending them with particular
design rule checks to enforce certain constraints on routing
(e.g., to eliminate potential crosstalk across co-located
tenants) and checking for potentially malicious design
primitives before generating the bitstream.
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9.2. Trusted Computing on CPUs: Takeaways

Being the more established and classical computing
setting in the cloud, various lessons can be drawn from
CPU-based computing. These can be taken into account in
proactively assessing the security challenges and require-
ments of FPGA-based computing in the cloud, as well
as adapting defenses that can also apply for FPGAs and
drawing analogies where possible. In the following, we
discuss the most common examples of security threats in
CPU-based computing and draw the analogy to FPGAs.

Software Runtime Attacks. Analogously to TEE
infrastructures and SDKs in CPU-based computing, trust
assumptions in FPGA SDKs are to be examined and
questioned. The critical security implications of a memory
corruption vulnerability, if found in the SGX SDK, have
been demonstrated in [103], where the authors show
how a vulnerability can be exploited to craft a return-
oriented-programming attack chain in the Trusted Runtime
System (tRTS) code handling enclave entry. Similarly,
such vulnerabilities can be exploited to load unintended
accelerator tasks on the FPGA or even inject malicious
accelerator tasks [98]. Therefore, SDKs and toolchains for
FPGA development, whether at the client’s end or hosted
by the CSP in the cloud, need to be scrutinized and tested
for such vulnerabilities and hardened accordingly, such that
trust assumptions regarding them are sufficiently justified.

Microarchitectural Attacks. The recent outbreak of
microarchitectural attacks in CPU-based computing also
motivates an analogous investigation in FPGA-based com-
puting. Identical counterparts of attacks such as Spectre and
Meltdown [104]-[109] are not feasible on FPGA devices
since they exploit side effects of specific microarchitectural
features, e.g., speculative execution, that simply do not exist
on FPGA fabric. However, attacks that generally exploit
shared resources, e.g. caches and other memory buffers
(store, load, etc.), would principally be also feasible on
FPGA devices in one form or another, if they were shared
without isolation among FPGA co-tenants. We already
discuss in more detail in § 5 how different types of cache
attacks would also be feasible on FPGA devices, and
which defenses would similarly apply. In principle, be-
sides caches, all shared microarchitectural/hardware/logic
resources by co-tenants on an FPGA device constitute a
potential security threat that require a thorough security
information flow analysis under the assumed threat model
of the deployment settings in question. They may leak
information on the execution of one tenant to another via
an exploitable side channel, unless appropriate defenses,
e.g., flushing, partitioning or randomization, are applied.

Power Drop & Power Leakage Attacks. CPU ven-
dors provide software-accessible interfaces to dynamic
voltage and frequency scaling to control the supply voltage
and the operating frequency of different CPU components
(cores, last-level caches, etc.) at runtime and are accessible
only to privileged software. Recent attacks exploit these
interfaces to maliciously drop the supply voltage [110],
[111] or increase operating frequency [ 12] to precisely
induce faults in the operations of victim applications to
reveal confidential data, e.g., secret keys. Some CPU
vendors further provide software-accessible interface to
power measurements of individual components (cores,
uncore, DRAM, etc.). This interface has beent¢gploited
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in [53] to infer executed instructions and their operands
in a victim application to extract secret data. Similarly,
such attacks have already been shown feasible on FPGAs,
although by unprivileged malicious co-tenants in § 7 and
§ 6. Nevertheless, in an untrusted environment, such attacks
can also be launched by the privileged FPGA shell that
comprises power viruses or sensors. Defenses mitigating
these attacks on CPUs usually involve patches to disable
the interfaces, which is not directly applicable for FPGA
devices, since the attacks stem from configuring malicious
logic on the FPGA fabric. To mitigate these attacks on
FPGA devices, both the FPGA shell bitstream as well as
the clients’ bitstreams should be validated and vetted for
malicious logic before configuration.

In summary, valuable lessons can be drawn from
CPU-based computing for FPGA-based computing in
the cloud; a rigorous and systematic security analysis
of the underlying fabric and TCB early on is crucial
for the derived security guarantees for all that lies on
top of that. Furthermore, for FPGAs, unlike CPUs, the
configurable fabric is a double-edged sword. On one hand,
it allows seamless updating and patching of hardware and
vulnerabilities therein. However, it also poses an even
larger attack surface if exposed to malicious parties to
configure with complete freedom. Therefore, providing
techniques to vet and police configuration bitstreams while
preserving their confidentiality is the key open and non-
trivial challenge for FPGA-based trusted computing.

10. Conclusion

In this paper, we systematically visited the different
deployment models of FPGA-based cloud computing, and
highlighted their adversary models and required security
guarantees. The threat landscape is diverse and spans
different levels of the deployment stack. We categorized
and analyzed the different feasible attacks in FPGA-based
cloud computing with a focus on remote physical at-
tacks. We further classified state-of-the-art countermeasures
against remote physical attacks into preventive and runtime
defenses and discussed their deployment and security
guarantees. Bitstream validation, a preventive mechanism,
is more comprehensive and effective against the different
threats, whereas current runtime defenses are each tailored
to detect or mitigate individual threats.

We concluded with our insight into the open challenges
in establishing trust in FPGA-based computing in the cloud
and identifying the required minimal trusted computing
base on FPGA devices required to provide clients with
the relevant security and IP assurance guarantees. We also
discuss some takeaways and lessons learned from CPU-
based trusted computing and the security challenges therein,
and draw potential analogies for FPGA-based computing.
We emphasize that developing mechanisms to vet and
validate protected (e.g. encrypted) configuration bitstreams
is the key open and non-trivial challenge for FPGA-based
trusted computing.
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Appendix A.
Hardware Circuits for Remote Physical At-
tacks

A.1. Reconfigurable Sensors

While on-die sensors to monitor FPGA supply voltage
and temperature are typically available on recent generation
of FPGAs, their response time and sampling frequency are
typically not sufficient to capture short time-constant effects
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such as voltage transients. Therefore, fine-grain sensors that
can measure the impact of physical properties (e.g., voltage
and temperature variations in power distribution network,
aging, etc.) of the different regions on the reconfigurable
logic have been proposed [113], [114]. Two prominent
examples of configurable sensors, which are implemented
in the FPGA fabric that can perform self-measurement
of their path delays are the ring oscillator and delay-line
based sensors. Since propagation delay in circuits is highly
affected by process, voltage and temperature (PVT) varia-
tions, measurement of combinatorial ¢ propagation delays
provides a means of measuring fine-grained changes in
operating conditions and process variations. Nevertheless,
calibration or post-processing steps might be required to
suppress the undesired effects [114], [115].

Ring Oscillator (RO) Sensor consists of an AND gate
(enabler) and an odd number of serially-chained inverters,
referred to as stages, where the output of the last stage is
fed back to the input of the AND gate (along with an enable
signal), thus forming a combinatorial loop circuit. Further,
the AND gate and one inverter may be combined in NAND
gate. Other sequential RO sensors are the latch-based RO
and the flip-flop based RO [94]. When a RO circuit is
enabled, the RO output signal alternates between ‘1’ and ‘0’
continuously. To measure RO oscillation frequency, the RO
output is used to trigger a counter circuit. The counter value
is sampled at a user-defined rate, such that changes in the
counter value between successive samples of the same RO
reflect changes in operating conditions. RO sensors used in
the different remote physical attacks differ in the number
of stages, the counter design (binary or non-binary) and
whether sequential elements (latches or flip-flops) are used.
A classical ring oscillator (RO) is shown in Fig. 4a. All
inverters but one can also be replaced with digital buffers as
shown in Fig. 4b. Both RO designs Fig. 4a and Fig. 4b are
pure combinatorial logic circuits, whereas the latch-based
RO and the flip-flop (FF) based RO, shown in Fig. 4c
and Fig. 4d respectively, are sequential. RO/oscillation
frequency is inversely proportional to the delay of a
signal traversing the feedback loop through the AND gate
and chained inverters/buffers. Therefore, the oscillation
frequency is dependent on the number of inverters/buffers
and their propagation delays.

Delay-Line Sensor consists of a chain of n buffers,
through which a clock signal propagates. Propagation delay
is measured by how far the clock propagates through
the buffers within a fixed time frame using a time-to-
digital convertor (TDC) circuit. Latches are tapping into
the connected buffers such that the propagation delay in
the delay-line is measured by observing the boundary
between all ‘1’s latches and all ‘O’s latches. The n latches
are sampled at some user-defined rate and the obtained
value is encoded into a log,(n)-bit binary value, such that
changes in the binary value between successive samples
reflect changes in operating conditions. To minimize its
area overhead (latches and encoder complexity), delay-line
buffers can be split into initial and observable, such that
only the observable buffers are connected to the latches.

Zhao and Suh [18] examined the trade-off between
RO and delay-line based sensors in terms of sampling

6. Combinatorial circuits consist only of wires and logic gates i.e. no
memory elements such as flip-flops.
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frequency, accuracy, resolution and complexity (area over-
head and ease of implementation). In general, determining
which on-chip sensor to deploy and its sampling frequency
highly depends on the physical properties to be measured.

A.2. Reconfigurable Power Viruses

Examples of configurable circuits that have been used
for power dissipating in the literature are: RO-based, FF-
based and PIP-based power viruses. By toggling a large
group of such power viruses for enough time, voltage
drops (both transient and steady-state drops) can be in-
duced in the power distribution network of the FPGA.
FF-based power virus consists of a D flip-flop (D-FF),
whose output is connected to the input of an inverter,
while the inverter output is fed back to the input of the
D-FF [115]. PIP-based power virus is constructed by
leveraging programmable interconnect points (PIPs) in
Xilinx FPGAs. These are programmable transistors used
to connect inputs and outputs of I/O blocks and CLBs
into the routing network in the FPGA fabric. Unused PIPs
and wires in the FPGA fabric resemble a high capacitance,
such that frequently charging and discharging them result
in transient voltage drop and overshoot in the PDN [93].

An on-chip power dissipating circuit can be precisely
controlled to induce power glitches within a specific time-
frame. Moreover, such power viruses can be activated for
long enough time to heat the FPGA. Therefore, power
dissipating circuits can be leveraged to mount power fault
attacks, as well as on-chip noise generators for mitigating
side-channel attacks, as we describe later in more detail.

Appendix B.
Details on Attacks Exploiting Crosstalk

Attack [23]. The key of the final round of the AES-128
can be recovered byte by byte. Then the encryption key can
be obtained by inverting the key schedule. This requires the
attacker and victim circuits to have 16 transmitter-receiver
pairs of neighboring long wires, with one pair for each byte
of the final round key in case of a high-throughput AES
implementation with a datapath of 128-bit. Consequently,
this is reduced to one pair of neighboring long wires if

the AES has an 8-bit datapath.
The crosstalk effect increases for longer transmission

pair and lower operating frequencies of the victim logic,
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which directly influences the number of encryptions re-
quired to recover the key. A minimum of 217 encryptions
are required to recover the key for an AES core running at
10KHz, whereas at a higher operating frequency of 4MHz
a 1.5 million encryptions are required. Interestingly, this
crosstalk effect can also be leveraged to build an adjacency
map for long wires within each channel in the FPGA [24],
which is considered a proprietary information.

Attacks [25] and [26]. The crosstalk effect is demon-
strated in the context of integrating encrypted or obfuscated
third-party FPGA IP designs from multiple vendors in the
same design [25]. The propagation delay of the receiver’s
long wire is highly influenced by how long a neighboring
victim long wire carries a signal ‘1’ within a sampling
period. Thus, the counter value, i.e., the frequency of
the RO connected to the receiver, indicates the hamming
weight of the transmitted bits over the victim long wire
within that sampling period. A sliding-window scheme
is proposed to sample the counter at overlapping periods
to extract the value of each transmitted bit of a secret
key. By subtracting two overlapped hamming weights,
information on the first and last bits of the corresponding
windows are revealed. Assuming that the victim long wire
is transmitting the whole key bits sequentially, and using
a sliding-window of size w bits and a secret key of size N
bits, where N is a multiple of w, i.e., N = nw, the authors
compute the probability of recovering the key:

1 w
~(-5)

This implies that the probability of key recovering is
higher for larger keys (asymmetric vs. symmetric keys)
and smaller window sizes. Equation 1, however, does not
take into account noisy hamming weight measurements
due to operating conditions (transmission frequency) and
layout of transmission pair (length of transmission lines
and distance between them). The sliding-window approach
is applied to 32-bit keys in [26]. The authors demonstrate
that using a sliding window of size w = 4 bits, 98.4%
of the 32-bit key can be recovered assuming a single bit
stays constant on the transmitter for 1.28 us, i.e., 780
KHz signal frequency, and a transmission pair of at least
1-segment long wire. Moreover, it requires connecting four
counters (equal to the window size) to the snooping circuit,
where these counters are sampled at overlapping periods
of 5.12 us (4 x 1.28 us).

)
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Abstract—In this paper we tackle the open paradoxical chal-
lenge of FPGA-accelerated cloud computing: On one hand, clients
aim to secure their Intellectual Property (IP) by encrypting
their configuration bitstreams prior to uploading them to the
cloud. On the other hand, cloud service providers disallow the
use of encrypted bitstreams to mitigate rogue configurations
from damaging or disabling the FPGA. Instead, cloud providers
require a verifiable check on the hardware design that is intended
to run on a cloud FPGA at the netlist-level before generating the
bitstream and loading it onto the FPGA, therefore, contradicting
the IP protection requirement of clients. Currently, there exist
no practical solution that can adequately address this challenge.

We present the first practical solution that, under reasonable
trust assumptions, satisfies the IP protection requirement of
the client and provides a bitstream sanity check to the cloud
provider. Our proof-of-concept implementation uses existing tools
and commodity hardware. It is based on a trusted FPGA shell
that utilizes less than 1% of the FPGA resources on a Xilinx
VCU118 evaluation board, and an Intel SGX machine running
the design checks on the client bitstream.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are popular im-
plementation platforms for performance enhancement and
energy saving in cloud computing. In a recent market search
report, Grand View Research mentions that the increased
adoption of FPGA resources in the cloud is an important
driver for the growth of the FPGA market [1]. FPGAs are
already used in commercial cloud platforms as in Amazon
EC2 F1 [2], Microsoft Azure Catapult [3] and Alibaba Cloud
F3 [4]. Examples of applications that benefit from FPGA
acceleration in the cloud are artificial intelligence, financial
trading and network encryption. The deployment model of
cloud FPGAs is the following: when a client requests FPGA
computing resources in the cloud, the cloud service provider
(CSP) allocates an FPGA instance (from a pool of FPGA
instances) to the client for a specific amount of time.

Recent research presents attacks specific to the FPGA
hardware on commercially deployed cloud FPGAs. These
attacks allow clients to potentially damage FPGAs hosted in
the cloud and consequently disable the computing resources
of other clients. A malicious client performs such a denial-of-
service (DoS) attack by uploading a design circuit that drains
an excessive amount of current from the power supply of the
FPGA such that the whole platform stops functioning. This can
be done, e.g., with ring oscillators [5], [6] or by invoking short
circuits [7]. A real-world DoS attack on EC2 F1 instances is
demonstrated in [8].

Other categories of attacks — side and covert-channel attacks
— have been mostly shown in academic settings, assuming
that different clients share different portions of the same
FPGA. This allows a malicious client to exploit crosstalk
between the wires of an FPGA [9], [10], voltage fluctuations
on the shared power distribution network [11]-[13] or thermal
information [14]. For example, to perform a side-channel
attack, a malicious client uploads a sensor circuit onto the
allocated portion of the FPGA with the goal to retrieve secret
data processed by another client sharing the same FPGA
fabric simultaneously. While no CSP offers the concurrent use
of a single FPGA device among clients, multiple computing
resources, including FPGAs, typically share a power supply
rail, which represents an attack surface [15], [16]. A detailed
analysis of these attacks and their defenses is presented in [17].

Therefore, it is important for CSPs to detect the presence of
circuits that have sensor or power draining capabilities before
they are loaded on the FPGA. We refer to these circuits as
rogue circuits in the remainder of this paper. The only way to
prevent a rogue circuit from being configured onto an FPGA,
is to perform a check on the circuit the client intends to upload.
In existing commercial platforms, this check is done by the
CSP using the FPGA vendor tools that inspect the netlist,
e.g., running Xilinx design rule checks (DRCs). Initiatives in
academic research propose the use of virus scanners to check
FPGA bitstreams [18], [19].

However, any detection mechanism, be it through the exist-
ing commercial platforms or through academic virus scanner
tools, needs access to the configuration data representing
the circuit that the client intends to upload. Consequently,
the client is forced to reveal the Intellectual Property (IP)
of the hardware circuit to the CSP, which may violate IP
protection policy for companies. Clients would rather send
encrypted configuration bitstreams to the service provider.
However, the use of encrypted bitstreams does not comply
with the requirement of the CSP to check the incoming FPGA
configurations before they are loaded onto the FPGA.

Contributions. In this work, we propose TruFPGA, the
first scheme to satisfy the requirements of both, the clients
in protecting their IPs and the CSP in guaranteeing that a
check has been done on the presence of rogue circuits in
the configuration bitstream. In TruFPGA, a design check
on a client bitstream is executed in a Trusted Execution
Environment (TEE) and a proof of execution is provided to the
CSP. We further present two options where the TEE resides
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either on the client side or CSP side and show the trade-
offs between the two options. The CSP loads the encrypted
bitstream on the FPGA, where it is decrypted on-the-fly with
the help of a trusted FPGA shell that we designed. As such,
the CSP has no access to the decrypted bitstream, thus solving
the paradox of client’s IP protection while preventing rogue
FPGA configurations. In TruFPGA, we tackle the following
challenges:

(1) Secret session keys need to be securely established
between cloud FPGAs and clients. This is non-trivial in cloud
FPGAs because (a) multiple clients with different secret keys
should be supported over time, (b) clients are oblivious to the
identities of the FPGA instances assigned to them, i.e., CSP’s
proprietary information, and (c) the CSP, who controls and
configures the FPGA, should not have access to the secret
keys used in the FPGA.

(2) The client needs the assurance that (a) a read-out of
the FPGA’s configuration memory, including client’s IP, is
disallowed, and (b) an unauthorized configuration of client’s
application bitstream is denied. This is technically challenging,
because the CSP controls the FPGA.

(3) The overall solution must be efficient and incurs minimal
or no changes to (a) the FPGA architecture, and (b) the
cloud infrastructure, e.g., avoid direct communication channel
between clients and cloud FPGAs.

We tackle these challenges in TruFPGA that comprises a
trusted shell on the FPGA leveraging physically unclonable
functions (PUFs) for key generation and an overarching se-
curity protocol between the involved parties. Our proof-of-
concept implementation is demonstrated with existing tools
and commodity hardware. Further, TruFPGA is generic and
the necessary design checks can be performed through vendor
toolchains or academic virus scanner tools.

II. BACKGROUND

In this section we present a brief background on the security
components and concepts used in TruFPGA.

A. Trusted Execution Environment (TEE)

Ideally, a TEE guarantees that the code and the data running
inside the TEE are protected with respect to confidentiality and
integrity. Commercial TEEs include Intel SGX [20], AMD
SEV [21] and ARM TrustZone [22]. Being a subject of an
active research field, several TEE architectures have been
proposed, e.g., Sanctum [23], Sanctuary [24], Keystone [25]
and Cure [26]. A TEE is an execution environment with its
own hardware and software components. Typically, in a TEE, a
security-sensitive application, referred to as an enclave, runs in
isolation of all software on the system including the untrusted
operating system (OS) or the hypervisor. A host process, e.g.,
the OS, sets up the enclave. This means that the enclave’s
initial binaries may be manipulated. Therefore, the authenticity
and integrity of the enclave’s initial binaries are verified before
execution through remote or local atfestation. Only then,
confidential data can be communicated to the enclave over
a secure channel.
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B. Remote Attestation

It enables a party/entity to verify the authenticity and
integrity of a piece of code or memory on a remote device.
A trust anchor on the device computes a digest of the code
or memory content, e.g., using a cryptographic hash function
and a secret key shared with the verifier. The verifier compares
the received digest to a reference value to verify the remote
device’s status. In the case of a TEE, the platform’s secret key
is used for attestation.

C. Physically Unclonable Function (PUF)

Silicon PUFs leverage the uncontrollable manufacturing
process variation of integrated circuits as a source of entropy
to derive a device-specific cryptographic key or a unique
identifier. A PUF is stimulated by an input, challenge, to
produce a response, which depends on both the challenge
and the innate physical characteristics of the PUF circuit.
Therefore, PUF responses are envisioned to be unique and
unpredictable. Nevertheless, PUFs have been shown to be
prone to software-based modeling attacks [27]. Such attacks
require the collection of a large number of challenge-response
pairs (CRPs) of a PUF instance to build a mathematical
model that emulates the intended PUF behavior. One of the
solutions to mitigate such attacks is to obfuscate the output
of a PUF using, for example, a cryptographic hash function,
such that an attacker has no access to the actual CRPs of a
PUF. Note that PUF-based secret keys can be generated on-
the-fly, thus eliminating the need for secure non-volatile key
storage. PUF technology has been widely adopted for digital
fingerprinting and authentication of IoT devices. Moreover,
PUFs have already made their way into some FPGA families,
e.g., Intel Stratix-10, and Microsemi SmartFusion-2 for the
generation of device-specific secret keys.

III. SYSTEM AND TRUST MODEL

In a typical cloud-computing paradigm, different parties are
involved. Cloud service providers CSPs, such as Microsoft
or Amazon, provide different usage models and services and
deploy heterogeneous computing platforms. Such platforms
involve a conventional CPU-based host that interfaces with
co-processors and accelerators (GPUs, ASICs, FPGAs, etc.),
which are in turn supplied by different hardware vendors.
FPGAs and FPGA design tools are provided by FPGA ven-
dors. The CSP may deploy FPGAs of one or more vendors.
Computation capacity is rented by a client that communicates
the workload, i.e., code and data, to the CSP. Workloads of
multiple clients may share the same physical resources in the
cloud, according to the allocation and scheduling policies of
the CSP. The current FPGA deployment model of commercial
CSPs, which is also adopted in this work, allocates an entire
FPGA instance from an FPGA pool in the cloud to one client
for an agreed amount of time. The protection mechanism we
propose, enters into force when the CSP allocates a specific
FPGA to the client.
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A. Trust Model & Assumptions

Trust relations among the involved parties are as follows.

FPGA vendor: the CSP as well as the clients trust the
FPGAs and the design tools offered by the FPGA vendor.

Client-Client: co-clients sharing physical resources in the
cloud are mutually distrusting.

CSP-Client: the CSP does not trust clients in general. More
specifically, a malicious client may launch physical attacks
remotely through rogue FPGA configurations. In such attacks,
a malicious client implants virus circuits in the design intended
to run on the cloud FPGA to mount various remote physical
attacks, e.g., DoS attacks that could lead to shutting down
cloud services.

Client-CSP: clients do not trust the CSP with their sensitive
data. The CSP owns the infrastructure and is motivated by
reputation and financial gain, therefore, DoS and physical
attacks on the cloud infrastructure by the CSP are excluded.

Assumptions. We focus in this work on cloud FPGA
configurations that intend to shut down FPGAs or perform
side/covert-channel attacks using rogue primitive circuits. As
such, attacks that do not deploy rogue primitives are not
considered [28]. We assume that FPGA vendors are willing to
support IP protection on cloud FPGAs. This is consistent with
the assumptions in related work [29]-[31] and is acceptable by
FPGA vendors, e.g., this is evident in Intel Stratix-10 FPGAs
where Intel supports remote secure key provisioning [32].
Further, we assume the CSP, the clients, and the FPGA vendors
communicate with each other over secure channels, e.g., TLS,
to prevent man-in-the-middle attacks. We assume the CSP
offers the clients, upon request, to run their security-sensitive
applications in TEEs. Finally, we assume that standard cloud
security measures and protection of software against various
attacks are in place.

B. Objectives & Requirements Analysis

We summarize the objectives of this work and extract the
technical requirements that allow our design in § IV to achieve
the objectives under the trust relations among different parties.

Objectives. While the clients aim to protect their IP designs
in cloud FPGAs, CSPs are keen to protect their infrastructure,
including their FPGAs, against damage caused by rogue
configurations in line with recent findings [5], [6], [8], [14]-
[16].

Requirements. Based on the aforementioned objectives, we
derive the following requirements.

RI: TEEs on cloud FPGAs. To protect confidentiality and
integrity of the client’s workload on a CPU in the cloud, CSPs
increasingly offer the option to run the client’s workload in a
TEE (see § II), both in bare-metal instances [33], [34] and
in virtual machines [35]. Analogously, such protection should
be offered for workloads intended to run on cloud FPGAs.
For instance, a client, who intends to run a machine learning
(ML) model (trained on the client’s private data) on a cloud
FPGA, may want to protect the ML model against attacks that
aim to extract the client’s private data [36]. TEEs on cloud
FPGAs can be used to achieve such protection. We refer to

the components that establish the TEE on an FPGA as the
trusted shell. 1deally, the trusted shell should be i) realized
with the configurable fabric to allow for future patches, while
ii) incurring minimal or no changes to FPGA architectures.
This implies that protecting the integrity of the configurable
trusted shell against unauthorized changes is a requirement to
protect the TEE on the FPGA. Therefore, establishing TEEs
on cloud FPGAs requires FPGA vendor support. This is akin
to hardware vendor support to establish TEEs on CPUs, e.g.,
Intel SGX, and is justified, since hardware and FPGA vendors
are implicitly trusted by other parties.

R2: Verifiable proof of virus-free FPGA bitstreams. One
typical approach to provide the CSP with adequate assurance
against known FPGA attacks is to check the client’s FPGA
design using proprietary tools or virus scanners [18], [19] that
search for known virus signatures. For example, Amazon AWS
runs vendor DRCs on the client’s netlist to prevent combi-
natorial ring oscillatorsbefore generating the final bitstream.
However, we assume that the client’s bitsteam is encrypted,
and hence the CSP has no access to the client’s netlist or
bitstream in plain. Therefore, a convincing proof must be
provided to the CSP that the encrypted bitstream will pose
no threat to the infrastructure as well as co-tenants.

IV. TRUFPGA

To achieve the objectives in § III-B, we propose the
TruFPGA protocol, which leverages TEEs on both CPUs
and FPGAs. We further design a trusted shell that protects
client’s IP bitstream on cloud FPGAs and propose to run
the design check inside the TEE, whether on the client side
or the CSP side. Thus, an authentic report on the status of
client bitstream can be generated inside the TEE enclave and
provided to the CSP. Thus, fulfilling both requirements RI &
R2 (§ III-B). TruFPGA protocol, depicted in Fig. 1, consists
of three phases: preparation (not shown in Fig. 1), offline (2
steps) and online (5 steps) phases.

Offline phase. In step (1), the FPGA vendor provides the
client with the trusted shell, which will be installed on the
cloud FPGA in the online phase, as well as with the key
material that enables the protection of client bitstream. In
step (2), client’s encrypted bitstream is sent to the CSP to
be checked for rogue circuits inside a TEE. By the end of
this phase, the CSP either approves the client bitstream and
proceeds with the online phase or aborts if the bitstream does
not pass the virus check.

We opt for the TEE at the CSP side for the following
reasons: i) CSPs are assumed to continuously maintain their
infrastructures and deploy suitable defenses against known
attacks, including attacks on TEEs (as discussed in § III-A),
and ii) powerful computation resources on the cloud enable
access to a TEE equipped with the required memory resources
for the virus scanner. Nevertheless, the TEE can also be on
the client side as we discuss next in § VII.

Online phase. In step (3), the CSP configures the trusted
shell on the FPGA. As discussed in § III-B, the main objective
of the trusted shell is to establish a TEE on cloud FPGAs. In
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step @ the client attests, i.e., verifies the integrity of, the
trusted shell on the FPGA to ensure that the trusted shell
has not been manipulated after configuration on the FPGA
and that configuration readback is deactivated for the CSP.
In step @ the client authenticates itself to the FPGA to
prevent unauthorized configuration of client bitstream (more
details in § V). While in step @, the CSP forwards the
encrypted bitstream received in step (2) to the intended FPGA
for partial reconfiguration. Finally, in step (7), the client attests
the intended application is configured on the intended FPGA.
By the end of this phase, the client’s application is ready to
run on the cloud FPGA.

Next, we present our trusted shell in § IV-A and the detailed
computations and communication steps of TruFPGA protocol
in § IV-B.

A. Trusted Shell

1) Tasks: After its configuration on a cloud FPGA, the
trusted shell exchanges data and receives the encrypted bit-
stream (for partial reconfiguration) from the CSP through a
PClIe interface. The trusted shell’s security-related tasks are:

Preventing read-out. The trusted shell blocks configuration
memory read-out to protect the client’s application. Only the
trusted shell itself will have access to the FPGA configuration
through the internal configuration access port.

Attestation of the trusted shell. The entire configuration
memory of the FPGA, including the trusted shell, is read to
compute a proof of integrity Polr using a nonce N; (a random
number used once in a cryptographic protocol) sent by the
client and the secret key R;. The attestation of the trusted
shell is inspired by the FPGA self-attestation in [37].

Client authentication. The client must prove to the trusted
shell that it knows the secret key R; 1 used for the encryption
of the client bitstream. The client computes the proof of
authenticity PoA¢ over the FPGA configuration using a nonce
N, that is generated by the trusted shell and communicated
to the client, and the secret key R;;. To verify PoAc, the
trusted shell also computes the proof of authenticity PoAp
and compares it to the client’s PoA¢. Only upon successful
authentication, secret key R;;; is provided to the next task.
Details on the computation of authenticity and integrity proofs
are presented in § IV-B.
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Bitstream verification & decryption. Only when the client
authentication succeeds, i.e., when PoAc = PoAp, decryp-
tion and configuration of the client bitstream on the FPGA
is permitted. The FPGA verifies the application bitstream
integrity and decrypts it using the secret key R;;; to obtain
and configure the plain partial bitstream on the FPGA.

Some of these tasks require secret keys. We consider PUF-
based secret key generation, as this approach binds the cryp-
tographic keys to a specific FPGA instance and eliminates the
need for permanent secret key storage, i.e., keys are generated
on-the-fly, thus, minimizing the physical attack window. PUF-
based secret key generation has been thoroughly investigated
for FPGAs [38]-[41]. To prevent PUF modeling attacks [27],
we use a controlled PUF (CPUF). The FPGA vendor enrolls
the CPUF on each cloud FPGA before deployment and pos-
sesses a database of its CRPs for later use. PUF enrollment
can be also performed by another trusted 3rd party.

Note that the trusted shell can be designed to accept plain
partial bitstreams for clients that require no IP protection.
Detailed architecture of the trusted shell is presented in § VI.

2) Design Space: ldeally, the trusted shell should be im-
plemented in configurable logic. The advantage is two-fold;
no further changes to commodity FPGAs are required and
security or functional patches are feasible. This is vital, since
changes to the trusted shell might be required to patch security
bugs in cryptographic cores, e.g., the bitstream decryption
core, as the recent work of Ender et al. [42] demonstrated
an attack against the unpatchable decryption core on Xilinx
7-Series FPGAs. On the other hand, this implies protecting
the integrity of the trusted shell itself prior to configuration,
since a malicious party can manipulate the trusted shell to
leak the secret keys. Therefore, we explore the trade-offs and
propose two approaches for the trusted shell implementation,
both of which fulfill requirement R/ from § III-B and require
the support of the FPGA vendor:

Fully-configurable trusted shell. In this approach, the
entire trusted shell is implemented in configurable logic. To
protect its integrity prior to configuration on cloud FPGAs, we
rely on existing hardened authentication cores on commodity
FPGAs, e.g., RSA-based authentication on Xilinx UltraScale
FPGAs. The FPGA vendor enforces bitstream authentication
on the FPGA, programs the public key on the FPGA before
shipping it to the CSP and signs the trusted shell bitstream with
the corresponding private key. This prevents the FPGA from
loading an unauthorized trusted shell bitstream. We implement
this approach in commodity FPGAs in § VL

Hardening some components of the trusted shell. As an
alternative approach, we propose to harden the components
that perform remote attestation and client authentication tasks.
These are the CPUF, the cryptographic core that computes the
authenticity and integrity proofs and the finite state machine
(FSM) that controls them. This further requires to harden the
bus carrying the configuration data from the configuration
engine to the cryptographic core to ensure that the proofs
are computed on the actual configuration data. Note that the
computation of the proofs can be also performed by a hardened
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processor/microcontroller instead of the cryptographic core
and the FSM, given that the firmware implementing these
instructions is protected by the FPGA vendor. The hardened
components cannot be modified or altered by malicious parties,
thus, they form a root of trust in the FPGA. By leveraging
remote attestation, the trust is extended to the other config-
urable components of the trusted shell, i.e., the verification
& decryption core and the configuration memory controller
that controls the configuration engine through the internal
interface. Note that in recent FPGA families, e.g., Intel Stratix-
10 and Microsemi SmartFusion-2, hardened PUF technology
is already deployed for the generation of device-specific secret
keys.

B. TruFPGA: Protocol

This section explains the detailed computations and ex-
changed messages in the TruFPGA protocol that is presented
at a higher level in Fig. 1 and detailed in Fig. 2. TruFPGA
requires no direct communication channel between the client
and the FPGA: the client uses the established secure channel
with the CSP, who has full control over the FPGA, to com-
municate with the FPGA. Thus, the CSP has access to all
messages sent to/from the FPGA.

1) Preparation Phase: Step (0): PUF enrollment. Prior
to deployment in the cloud, the FPGA vendor enrolls the
CPUF on each FPGA instance and collects a large number
of CRPs. The CRPs are securely stored in a database at the
FPGA vendor side.

2) Offline Phase: Step (1): Acquire necessary data. To
rent a cloud FPGA, the client sends a service request to the
CSP. The CSP then assigns an FPGA to the client according
to the CSP allocation and scheduling policies. The CSP sends
an obfuscated identifier of the allocated FPGA, FPGAp,
to the client. Since the infrastructure information of the CSP
is proprietary, the CSP and FPGA vendor can share a list of
pseudo identifiers (PIDs) for each FPGA instance, such that
a PID is never given twice. Alternatively, the actual FPGA
identifier is encrypted using a secret key between the CSP
and FPGA vendor, such that the client only sees an encrypted
message.

The client forwards the FPGA;p to the FPGA vendor
and gets back two messages. The first message contains
the trusted shell T'sh, a nonce N;, a challenge C;, and a
reference proof of integrity of the trusted shell Poly . The
FPGA vendor computes the proof of integrity as follows:
Poly = HMAC(R;, N;||CD). Such that, HMAC is a keyed-
hash message authentication code used to verify both the
integrity and the authenticity of data, R; is the secret key
used in the HMAC and corresponds to the response of the
CPUF to the challenge C;: R, = CPUF(C;), and CD
is the configuration data of the targeted FPGA. The second
message from the FPGA vendor to the client contains the CRP
(Cit1, Riya).

Step (2): Bitstream check. The client encrypts the appli-
cation partial bitstream pBS4 using R;y; and sends it to
the CSP. An enclave on a TEE residing on the CSP side
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Fig. 2. TruFPGA Protocol. AuthEnc(): authenticated encryption algorithm,
Dec(): decrypt and verify algorithm, and V' Scan(): virus scanner algorithm.

is initiated to check the application bitstream against known
virus signatures. The enclave code includes a key exchange
algorithm, a decryption algorithm and the virus scanner code.
The client first attests the enclave binaries [43]. After enclave
attestation, the client exchanges a session key SK jjent to
establish a secure link with the enclave. Through this secure
channel, the secret key R;;; is sent to the enclave to decrypt
the application bitstream prior to the virus scan. The CSP
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receives only a report generated by the virus scanner about
the bitstream status. The CSP has neither access to the secret
key R,4+1 nor to the plain application bitstream. The protocol
proceeds if the bitstream is proven to be virus-free.

3) Online Phase: In this phase, the protocol is aborted, if
any of the following steps fails.

Step (3): Trusted shell configuration. We assume the
trusted shell is an open-source IP core provided by the FPGA
vendor. The CSP configures the trusted shell bitstream BSg
on the intended FPGA. The trusted shell next deactivates all
external configuration ports. Note that the trusted shell can be
also provided by a 3rd party, therefore, it must be checked for
rogue circuits before configuration on the FPGA.

Step (4): Trusted shell attestation. In this step the client
verifies the installation of the trusted shell on the FPGA.
Therefore, the client sends the challenge C; and the nonce N,
which are received from the FPGA vendor, to the FPGA.
The challenge C; is fed to the CPUF and the resulting
response R; is used to compute the integrity proof on the
entire configuration memory, which contains at the moment the
trusted shell only: Polp = HMAC(R;, N;||CD). The CSP
sends Polp back to the client for comparison to the reference
attestation report Poly . In this context, remote attestation
provides not only a means to verify the integrity of the trusted
shell and the deactivation of external configuration ports, but
also a proof of execution on the intended FPGA.

Step (5): Client authentication. Next, the client authenti-
cates itself to the FPGA. For that, the trusted shell generates
a fresh nonce N;;; and sends it to the client. The client then
computes PoAc = HMAC(R; 41, Ni+1||CD) and sends it
back to the trusted shell, together with C;,;. The trusted
shell computes PoAr = HMAC(R;+1, Nit1||CD), using
Rit1 = CPUF(C;41), and verifies that PoAc = PoAp.

Step (6): Application bitstream configuration. The CSP
sends the encrypted application bitstream to the intended
FPGA. The trusted shell decrypts C,pg, into the plain bit-
stream pBS,4 using the secret key R;i;. The trusted shell
then configures the application bitstream on the FPGA. As
a result, the client application, denoted as C'app, is loaded
on the FPGA and ready for use. Note that we use the same
secret response R;y; for client authentication and bitstream
decryption to associate the bitstream to the client. Therefore,
it is not possible for the CSP or other entities to load a different
encrypted application bitstream after client authentication.

Step (7): Application attestation. As in step (3) the client
attests the entire configuration memory of the FPGA including
the application to ensure the intended application is running
on the intended FPGA.

V. SECURITY ANALYSIS

In this section, we discuss possible attacks on TruFPGA.
We assume that the cryptographic cores, i.e., the decryption
core and the HMAC core, are cryptographically secure.

Pirated shell. To prevent the configuration of a pirated shell,
whose target is to leak PUF-based keys or to compromise the
computation of authenticity or integrity proofs. We discuss
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in § IV-A, design space, two approaches to prevent a pirated
shell and to protect the integrity of the trusted shell: i)
enforcing authentication on the cloud FPGA, thus only an
authentic shell bitstream is configured or ii) hardening some
of the components of the trusted shell.

Unauthorized configuration of client’s IP. A CSP has
access to all exchanged messages between the user and the
allocated FPGA. After the client releases the FPGA, the CSP
may use the same FPGA and instantiates it with the trusted
shell. The CSP then replays prior exchanged messages with
the trusted shell in order to run the client’s application on the
FPGA. In order to prevent unauthorized configuration of the
client encrypted bitstream on the same FPGA, we add client
authentication (step (5)). In this step, the client or the party
communicating with the FPGA must prove the possession
of the secret response R;;; used for bitstream encryption.
The fresh nonce N4, which is used to compute the proof
of authenticity PoAc, must be therefore truly random and
is generated by the trusted shell. Note that a pseudo-random
number generator (PRNG) cannot be used, because PRNG will
generate the same nonce each time the trusted shell is config-
ured on the FPGA (thus the CSP can replay recorded PoA¢).
Therefore, the CSP cannot compute PoA¢ since the CSP has
no access to the secret R, .

TEE security. Secure TEEs are expected to provide three
properties: integrity, confidentiality, and secure remote attes-
tation. These properties are essential to TruFPGA in order to
ensure the integrity of the enclave code and the confidentiality
of the bitstream (or the integrity of the report generated by the
virus scanner in the case the TEE is assumed running on the
client side, see § VII). Recent attacks on TEEs focused on
extracting secret information, e.g., extracting attestation keys
to spoof attestation reports [44], [45] or introducing small
changes in TEE execution [46], [47]. However, influencing
the computation inside a TEE in a meaningful way has not
been shown yet. In response, TEE vendors are continuously
patching their hardware vulnerabilities [48]. Nevertheless,
TEE security is an orthogonal problem to the problem we
are tackling in this paper. TEE security is an active field of
research and new TEE architectures [24]-[26] are developed
that try to tackle the weaknesses of current TEEs. Moreover,
TruFPGA is TEE-agnostic and can seamlessly migrate to
newer TEE technologies.

Configuration memory read-out. Major FPGA vendors
allow reading back the FPGA’s configuration memory after
bitstream configuration and also provide the clients with the
option to block this feature to prevent unauthorized read-out.
However, in the cloud setting, the client has no physical access
to the FPGA to enforce/ensure that this feature is blocked.
Therefore, the trusted shell is designed to block configuration
memory read-out after it is configured on the FPGA. Once
the trusted shell is configured, the CSP cannot read out the
client’s application in plain form.

PUF security. As discussed in § IV-A PUF enrollment
is assumed to be done by the FPGA vendor in a secure
facility before shipping the FPGAs to the CSP. To prevent PUF
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emulation or modeling attacks [27], we deploy a controlled
PUF (CPUF) [49], [50]. As such, actual raw responses are
processed internally, within the CPUF circuit, to generate the
final responses. This prevents a malicious party from collecting
raw CRPs for modeling attacks. Further, the FPGA vendor can
set a quota of CRPs per client/day targeting the same FPGA.

VI. TRUFPGA: IMPLEMENTATION & EVALUATION
A. Trusted Shell

We prototype a configurable trusted shell, depicted in Fig. 3,
on a Xilinx VCU118 evaluation board.

Components. We describe each of the components and list
their required resources. The configuration memory controller
is implemented using the AXI HWICAP core, which interfaces
with the internal configuration access port (ICAP) primitive.
The main tasks of the configuration memory controller (1161
LUTs, 1451 FFs, a BRAM, an ICAPE3) are to i) prevent
configuration memory read-out ii) read the configuration
memory for the computation of Polp & PoAp, and iii)
partially configure the application bitstream. Readback of
configuration memory is disabled by setting the security bits
SBITS in the Control Register to 1x, which disables writes
and reads through external configuration ports, but not to
the ICAPE3 [51]. The verification & decryption core (3171
LUTs and 1004 FFs) includes an AES-128 core for bitstream
decryption in the counter mode as well as a keyed hash
function (AES-CMAC) for the integrity verification of the
incoming client application bitstream. Note that for higher
security assurance, a side-channel resilient AES core with
higher security parameter (key width of 256-bit) can be used.
The HMAC (1955 LUTs and 1455 FFs) for the computation
of the integrity/authenticity proofs is implemented also with
an AES-CMAC core with the 128-bit secret key generated by
a CPUF circuit. In our prototype, we implemented a TRNG
core for fresh nonces (1069 LUTs and 137 FFs) and a dummy
CPUF that generates a random value for demonstration pur-
poses only. However, we propose the use of CPUF as in [49],
[50]. Commercial soft PUF IP cores are also available, e.g.,

Intrisic-ID Inc. (https://www.intrinsic-id.com). Note that the
trusted shell must be designed to keep no records of secret
keys after their usage to minimize the physical attack window.
The trusted shell clears all intermediate key-related values
immediately after their usage. Further, the trusted shell can
be designed to configure unencrypted IP bitstreams directly
for clients that do not need IP protection.

Integrity Protection. We leverage RSA authentication,
which can be used independently of bitstream encryption [51],
to authenticate the static trusted shell bitstream before con-
figuration. RSA authentication is enforced by setting the
OTP eFUSE Security Register (FUSE_SEC) [51], thus, only
authentic bitstreams can be configured. FPGA vendor support
is required to program the RSA public key and enforce the
authentication prior to deployment in the cloud.

B. Virus Scanner in the TEE

In order to prove the feasibility of performing privacy-
preserving checks on clients’ bitstreams, we run the virus
scanner on a commodity TEE with limited memory resources
resembling a client machine for demonstration purposes only.
We run our experiments on a computer with modest resources
(Core i7-7700 CPU clocked at 3.6 GHz and 8 GB of RAM)
running Ubuntu 18.04.4 LTS. We use the Graphene-SGX
framework [52] to embed the virus scanner into an Intel
SGX enclave [20]. We chose the open-source virus scanner
FPGADefender [53], which is designed to detect short-circuits
and self-oscillating circuits in bitstreams. We test our setup
with a number of FPGA designs used also in [53] and
implemented on a on a Zynq UltraScale+ MPSoC: parallel
scrambler, stepper motor, encoder/decoder, coded decimal
adder, RS_232 UART, I2C Bus, DES, AES, SHA3, PSNG,
TRNG, SPI, CAN controller, Cordic, MIPS CPU, RISC-V
CPU, Mandelbrot and FPGA miner. Due to the limited space,
we report the runtime of the biggest tested design, SHA3 core,
which is approximately 36 minutes. The runtime overhead
of SHA3 compared to the runtime of unprotected version is
8.82x, whereas the geometric mean of the runtime overheads
of the aforementioned designs is approximately 3.21x. This
is due in our setup SGX can only access up to 128 MB of
encrypted memory at a time. Therefore, for benchmarks that
require more than 128 MB, the SGX driver for Linux relies on
paging, i.e., least-recently-used encrypted pages are replaced
when other pages are needed. Note that optimizing the virus
scanner performance, as evident in [8], will significantly
improve our results. To account for bigger FPGAs, e.g., with
multiple super logic regions (SLR), the client can provide a
bitstream for each SLR to be scanned individually. The CSP
then approves the client design when bitstreams of all SLRs
are scanned. To further reduce the overhead, the scan can be
done once per client’s bitstream. This is feasible by keeping
encrypted and integrity-protected records, e.g., the scan report
and a hash of the bitstream, of scanned bitstreams. The enclave
then checks whether the incoming bitstream is within the list
of records, by comparing its hash to existing hash values. The
bitstream gets scanned, only if it is not scanned before.
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VII. DISCUSSION

Location of the virus scanner. It is also feasible to scan
the bitstream in a TEE on the client side. However, it requires
slight modifications to step (2). The enclave code includes the
virus scanner, an encryption algorithm and an algorithm to
compute Polg,ciave Of both, the resulting scan report and
the encrypted bitstream. This is required to prove for the CSP
that i) the scan report has not been compromised by the client
after its generation, and ii) the scanned bitstream is the one
encrypted afterward. Since the TEE is on the client side, the
client provides as an input to the enclave the plain application
bitstream and the secret key for encryption. After initiating the
enclave, the CSP attests the enclave binaries to ensure their
integrity. Then, the CSP exchanges a session key with the
enclave to establish a secure link with the enclave. Through
this secure link, the CSP sends a secret key for the computation
of Polgnciave. At the end of step (2), the CSP receives the
encrypted application bitstream and Polgyciqve-

CSP side vs. client side: trade-offs. In terms of perfor-
mance, it is more efficient to run the virus scan on the CSP
side than on the client side, assuming the client has access to a
TEE in the first place, due to the limited computing resources
of the client. In terms of security, compromising the TEE on
the client side could result in forging the virus scan report to
label a bitstream with rogue primitives as a benign bitstream.
This could pose serious threats on the CSP infrastructure or
functional failure of the FPGA shell. Whereas for a compro-
mised TEE on the CSP side, the bitstream confidentiality is no
longer guaranteed. This could lead to problems for companies
in which IP theft has a financial impact. In principle, the CSP
and the client could negotiate where the scan should happen.
In practice, however, the solution where the TEE resides on
the CSP side is most likely to be adopted.

Trusted shell: CSP propriety infrastructure information.
We assume the trusted shell to be open-sourced to assure
clients the integrity of the deployed cryptographic primitives
that will process their bitstreams on the cloud FPGA and
the protected access to the configuration engine. Thus, the
client does not need to attest the integrity of the trusted shell
interfaces (PCle core, DRAM controller, etc.), which might be
considered as proprietary information for the CSP. To achieve
the goal of this work while protecting the CSP proprietary
design, the trusted shell can be split into an open-sourced part
(the attestable part) by the FPGA vendor and a customized
part whose configuration is done through the attestable part.
The customized part, which contains the proprietary FPGA
interfaces, is not revealed to cloud clients. However, the
customized part can be scanned for viruses by a trusted party,
similar to client bitstreams in step @, and a hash of the
customized part is published instead. This is to assure the
clients that the shell does not contain rogue circuits spying
on their logic. FPGA configuration data of the customized
part, are replaced with their hash value during the computation
of the reference attestation report in step (1) and the proofs
computed in steps (4) and (5).
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VIII. RELATED WORK

To the best of our knowledge, there are few solutions that
tackle IP protection in cloud FPGAs, these are thoroughly dis-
cussed in [54]. We briefly discuss the most relevant work [29]-
[31]. The schemes in [29], [31] rely on an initial bitstream
configured on a cloud FPGA to enable the protection and the
configuration of clients’ IP bitstreams. The initial bitstream
contains a cryptographic core for decryption of IP bitstreams
using secret session keys, which are obtained through a key
exchange protocol that deploys public key cryptography, e.g.,
RSA or Diffie-Hellman. In [29], RSA private key is embedded
in the RSA core in the initial bitstream, thus, the confidentiality
of the initial bitstream must be protected and this is achieved,
e.g., by leveraging the hardened AES core in Xilinx FPGAs.
For that, the authors propose the FPGA vendor to program
the AES secret key before deploying the FPGA in the cloud.
In [31], the authors assume that the FPGA vendor configures
the FPGA with the initial bitstream prior to deployment in
the cloud and that the FPGA is constantly powered, even
during shipping to the CSP, to maintain its configuration.
In [30] the authors leverage the hardened SRAM-PUF, elliptic
core cryptography and AES cores on SmartFusion-2 FPGAs
of Microsemi. However, partial reconfiguration of the FPGA
fabric is not available in these FPGAs, therefore the client
should design and implement the interfaces to the host, which
is inconvenient for the CSP.

Unlike TruFPGA, these solutions attempt to solve one part
of the problem that is IP protection for cloud clients under the
assumption of untrusted CSP. while the CSP has no assurance
that the encrypted bitstreams do not include rogue circuits.
Moreover, they do not prevent unauthorized configuration of
client’s IP by the CSP, since the CSP can replay client’s
messages and freely load the encrypted bitstream after the
client releases the FPGA.

IX. CONCLUSION

We presented, discussed, and demonstrated TruFPGA the
first trusted configuration scheme for cloud FPGAs that i)
protects the intellectual property of clients through the support
of encrypted bitstreams and ii) enables the cloud service
provider to check the client’s application bitstream for rogue
circuits that could damage or disable the FPGA or attack the
integrity of the cloud infrastructure. With solving both security
challenges in one feasible protocol, TruFPGA provides the
means for practical FPGA TEEs, which not only allows more
clients to use FPGA cloud services but also the processing of
sensitive data on cloud FPGAs.
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