
DISSERTATION
Bootstrapping Cryptography

on the Internet

submitted in fulfillment of the requirements for the degree of
Doctor of Engineering (Dr.-Ing.)

Doctoral thesis by Markus Brandt

Darmstadt 2022

Assessors: Prof. Dr. Michael Waidner, TU Darmstadt
Prof. Dr. Haya Shulman, Goethe-Universität
Prof. Dr. Sebastian Schinzel, FH Münster

Department of
Computer Science

Brandt, Markus: Bootstrapping Cryptography on the Internet
Darmstadt, Technische Universität Darmstadt,
Year thesis published in TUprints 2022
URN: urn:nbn:de:tuda-tuprints-215263

Date of submission: March 15, 2022
Date of viva voce: June 13. 2022

Darmstadt 2022

Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-215263
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/21526

This document is provided by TUprints,
e-publishing service of TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

This work is licensed under CC BY-SA 4.0 International.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/

FÜR LENA.

Erklärungen laut
Promotionsordnung

§8 Abs. 1 lit. c PromO
Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der
schriftlichen Version übereinstimmt.

§8 Abs. 1 lit. d PromO
Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion
versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule,
Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO
Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO
Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

vi

Zusammenfassung

Diese Arbeit befasst sich mit dem Hochziehen (engl. bootstrapping) der Kryptogra
fie, so dass ein theoretischer Algorithmus praktisch im Internet eingesetzt werden
kann. Wir fassen die Anforderungen zusammen und definieren fünf Säulen, die die
Grundlage für erfolgreich einsetzbare kryptografische Algorithmen bilden: Rechen
leistung, Benutzerfreundlichkeit, Transport, Schlüsselverwaltung und Zufälligkeit. Wir
konzentrieren und nur auf die drei letzten Säulen.

Für den Transport untersuchen wir zwei Hürden, die die Entwicklung praktischer,
sicherer kryptographischen Anwendungen erschweren. Wir zeigen, wie wichtig die
Auswahl von geeigneten Transportschichten ist. Unsere Auswertungen zeigen, dass
das Transmission Control Protocol (TCP) die Bandbreite für Two Party Computation
(2PC) Implementierungen nicht vollständig ausnutzt. Unsere Evaluation von drei
Transportschichtprotokollen zeigt, dass kein Protokoll für jedes Szenario geeignet
ist. Wir verwenden verschiedene Protokolle und Netzwerkbedingungen in mehreren
geographischen Regionen, um die Auswirkungen auf die Leistung von 2PC Anwen
dungen zu verdeutlichen. Wir schlagen ein erweiterbares Framework vor, welches
(zunächst) drei Transportschichtprotokolle integriert: User Datagram Protocol (UDP),
TCP, und UDP-based Data Transfer Protocol (UDT). Die Aufgabe des Frameworks ist
es, das am besten geeignete Transportschichtenprotokoll in Abhängigkeit von der
aktuellen 2PC Anwendung und den Netzwerkbedingungen zu wählen.

Für die Schlüsselverwaltung zeigen wir, wie man einen Domänenvalidierungsmecha
nismus manipulieren kann. Wir haben einen optimierten BGP-Simulator entwickelt,
um BGP-Pfade im Internet zu berechnen. Zusätzlich berücksichtigt unser Simula
tor die Beziehungen zwischen CAs in der Suche und vermeidet ungültige Pfade. In
Kombination mit unserem Simulator analysieren wir die Widerstandsfähigkeit des

viii Zusammenfassung

Domänen-Ökosystems gegenüber Angriffen auf die Domänenvalidierung. Unsere
Evaluation zeigt, dass das Domänen-Ökosystem nicht widerstandsfähig gegen Präfix-
Hijacks ist und dass nur wenige Autonome Systeme die meisten Domänen besitzen.
Wir stellen mögliche Gegenmaßnahmen vor und schlagen die verteilte Domainva
lidierung als Ersatz für die Standard-Domainvalidierung vor, welche einen starken
Schutz gegen MitM-Angreifer bietet. Außerdem zeigen wir, dass viele IP-Adressen
anycast sind, was für die verteilte Domainvalidierung von Vorteil ist. Wir analysieren
die Platzierung der Validierungsagenten im Internet und demonstrieren eineMethode
zur Bestimmung guter Autonome Systeme für die Agentenplatzierung.

Für die Zufälligkeit schlagen wir einen alternativen Ansatz zur Erzeugung pseudozu
fälliger Zeichenfolgen vor, welcher die verteilte Natur des Internets nutzt, um Zufall
von öffentlichen Diensten im Internet zu sammeln. Wir stellen unseren Distributed
Pseudorandom Generator (DPRG) vor und zeigen, die Sicherheit gegen starke Angrei
fer und wie Hauptmängel bestehender PRGs beheben werden. Der Generator basiert
auf einer AES-Verschlüsselung im CBC-Modus und eine HDKF, um Zufälligkeiten
und Eingaben für Handshakes zu extrahieren. Wir analysieren die Verteilung ver
schiedener Zufallsquellen wie HTTP, SMTPS, SSH und TOR und präsentieren eine
Implementierung von DPRG unter Verwendung des TOR-Netzwerks. Wir analysieren
die Qualität der Zufälligkeit und die Leistung unseres DPRG und zeigen, dass wir
hochsichere Zufälligkeit erreichen können.

Abstract

This thesis focuses on bootstrapping cryptography, taking it from a theoretical algo
rithm to something we can use on the Internet. We summarize the requirement and
define five pillars that build the foundation of successfully deployed cryptographic
algorithms: computational performance, usability, transport, key management, and
randomness. While there is a lot of research around the computational performance
and usability of cryptographic algorithms, we focus on the other pillars.

For transport, we explore two obstacles that interfere with the development of practi
cal, real-world secure computation applications. We show the importance of the se
lection of suitable transport layers. Our evaluations show how Transmission Control
Protocol (TCP) does not fully utilize the bandwidth for Two Party Computation (2PC)
implementations. We evaluate three transport layers protocols for different appli
cations and show that no protocol is suited for every scenario. In our evaluations,
we use various protocols and network conditions in multiple regions to highlight the
effects on the performance of 2PC applications. We propose an extendable frame
work that integrates the (initially) three transport layer protocols: User Datagram
Protocol (UDP), TCP, and UDP-based Data Transfer Protocol (UDT). The framework's
task is to identify the most suitable transport layer protocol depending on the current
TCP application and the network conditions.

For key management, we show how to manipulate a domain validation mechanism.
We developed a BGP simulator to evaluate BGP paths on the Internet. Our simulator
is high performant and respects relationships between CAs. In combination with our
simulator, we analyze the resilience of the domains ecosystem to attacks against
domain validation. Our measurements show that the domains ecosystem is not
resilient to prefix hijacks and reveal that only a few ASes own most domains. We

x Abstract

discuss possible mitigations and propose the distributed domain validation as a
drop-in replacement for the standard domain validation. It allows strong resistance
against MitM attackers. Additionally, we show that many IPs are anycast which is
beneficial for distributed domain validation. We also analyze the validations agents'
placement on the Internet and demonstrate a method to determine good ASes for
agent placement.

For randomness, we propose an alternative approach for generating pseudoran
dom strings, using the distributed nature of the Internet for collecting randomness
from public services on the Internet. We develop our Distributed Pseudorandom
Generator (DPRG) and demonstrate how it guarantees security against strong prac
tical attackers and how it addresses the main shortcomings in existing PRGs. It
uses AES encryption in CBC mode and an HDKF to extract randomness and inputs
for handshakes. We analyze the distribution of different randomness sources like
HTTP, SMTPS, SSH, and TOR and present an implementation of DPRG using the TOR
network. We analyze the quality of randomness and performance of our DPRG and
show that we can achieve highly secure randomness only from user space.

Publications and Contribution

Published:

[36] M. Brandt, T. Dai, A. Klein, H. Shulman, andM.Waidner, Domain Validation++
For MitM-Resilient PKI, In D. Lie, M. Mannan, M. Backes, and X. Wang (Eds.)
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018
(ACM, 2018).

[41] M. Brandt, H. Shulman, and M. Waidner, Internet As a Source of Random
ness, In Proceedings of the 17th ACMWorkshop on Hot Topics in Networks,
HotNets 2018, Redmond, WA, USA, November 15-16, 2018 (ACM, 2018).

[38] M. Brandt, C. Orlandi, K. Shrishak, and H. Shulman, Transputation: Transport
Framework for Secure Computation, In F. Kiefer and D. Loebenberger (Eds.)
Crypto day matters 30 (Gesellschaft für Informatik e.V. / FG KRYPTO, Bonn,
2019).

[43] M. Brandt, H. Shulman, and M. Waidner, Internet As a Source of Ran
domness, In F. Kiefer and D. Loebenberger (Eds.) Crypto day matters 30
(Gesellschaft für Informatik e.V. / FG KRYPTO, Bonn, 2019).

[42] M. Brandt, H. Shulman, and M. Waidner, Distributed Domain Validation
(DDV), In M. Selhorst, D. Loebenberger, and M. Nüsken (Eds.) Crypto day
matters 31 (Gesellschaft für Informatik e.V. / FG KRYPTO, Bonn, 2019).

xii Publications and Contribution

[39] M. Brandt, C. Orlandi, K. Shrishak, and H. Shulman, Optimal Transport Layer
for Secure Computation, In Proceedings of the 17th International Joint
Conference on e-Business and Telecommunications, Volume 2: SECRYPT,
Lieusaint, Paris, France, July 8-10, 2020 (ICETE, 2020).

[40] M. Brandt and H. Shulman, Optimized BGP Simulator for Evaluation of
Internet Hijacks, In 40th IEEE Conference on Computer Communications,
INFOCOM 2021, Virtual Conference, Mai 11-13, 2021 (IEEE, 2021).

[37] M. Brandt, T. Dai, H. Shulman, and M. Waidner, Evaluating Resilience of
Domains in PKI, In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (Association for Computing Ma
chinery, 2021).

My contribution
Scientific research is not only about the exchange of knowledge but also about
collaboration. Many researchers discuss their research with other researchers to
get feedback or new ideas. Usually, researchers concentrate their research on one
research topic. When combining multiple different fields, a collaboration between
researchers is inevitable. This thesis is no exemption to this. However, when re
search is collaborative, it is hard to break down contributions to each author. Other
authors also participated in brainstorming, design, and interpretation of the results.
So basically, they influenced each other.

Chapter 2, which is based on [38,39], was a joint work with Kris Shrishak and Claudio
Orlandi. For me, it was a very close collaboration with Kris and our contributions
merge almost seamlessly. Kris evaluated the performance of the protocols in our
framework. I also contributed to the design of the framework and analysis of the
transport layers. I designed and implemented the transport wrapper. Additionally, I
included the wrapper into an existing framework for evaluation.

Chapter 3 is based on publications [36,37,40,42]. In [36], I did the design and imple
mentation of the distributed domain validation tool. I also designed and implemented
all the tools necessary for the evaluation of the defense mechanism and performed
the evaluations of it. Tianxiang Dai and Amit Klein were responsible for the imple

xiii

mentation and evaluation of the DNS cache poisoning attack. In the publications [37,
40,42], I was the only author except for my supervisors.

Chapter 4 is based on [41,43]. I was the only author except for my supervisors. I was
responsible for all evaluations and implementations.

xiv Publications and Contribution

Contents

Zusammenfassung . vii
Abstract . ix
Publications and Contribution . xi
1 Preface . 1
1.1 Cryptography requirements . 3
1.1.1 Computational Performance . 3
1.1.2 Usability . 3
1.1.3 Transport . 4
1.1.4 Key management . 4
1.1.5 Randomness . 4
1.2 Structure of this work . 5
2 Framework for Optimal Transport Layer for Secure Computation 7
2.1 Introduction . 9
2.1.1 Contribution . 11
2.1.1.1 Evaluations of Two Party Computation (2PC) applications 12
2.2 Background . 13
2.2.1 Security levels . 13
2.2.2 Oblivious Transfer . 14
2.2.3 Garbled Circuits . 15
2.2.4 Transport Layer Protocols . 17
2.3 Related works . 21
2.3.1 Garbling Circuit Optimizations . 21
2.3.2 Secure Computation Frameworks . 23
2.4 Framework . 25
2.4.1 Two-Party Computation Layer . 27
2.4.1.1 Garbling Schemes . 28

xvi Contents

2.4.1.2 Applications and Circuit Size . 29
2.4.2 Transport Layer . 30
2.4.2.1 Transport Protocols in our framework . 31
2.5 Implementation . 33
2.5.1 Abstraction . 33
2.5.2 Simplification . 34
2.5.3 Packet handling . 35
2.5.4 Integration . 36
2.6 Simulation . 37
2.7 Evaluation . 43
2.8 Conclusion . 47
2.8.1 Future Research . 47
3 Public Key Infrastructures . 49
3.1 Introduction . 51
3.1.1 Contribution . 52
3.2 Background . 55
3.2.1 Organization of Internet resources . 55
3.2.2 Domain Name System . 56
3.2.3 DNS cache poisoning . 59
3.2.4 WHOIS . 60
3.2.5 Domain Validation . 60
3.3 Related Work . 63
3.3.1 DNS cache poisoning . 63
3.3.2 CA Compromises . 64
3.3.3 PKI defenses . 65
3.4 Off path attacks against Domain Validation . 67
3.4.1 Triggering the DNS Request . 67
3.4.2 Defragmentation Cache Poisoning . 67
3.4.2.1 Forcing IP fragmentation . 69
3.4.2.2 IPv4 Fragmentation Reassembly . 70
3.4.2.3 Exploiting fragmentation . 72
3.4.3 Overwriting DNS caches . 73
3.4.3.1 Setup . 74
3.4.3.2 Vulnerable Certificate Authorities . 74
3.4.4 Challenges . 75

xvii

3.4.5 Mitigations . 75
3.4.5.1 Blocking fragments . 76
3.4.5.2 DNSSEC . 76
3.5 Optimized BGP Simulation for Evaluations . 77
3.5.1 Implementation . 78
3.5.2 Correct interpretation of relationships . 78
3.5.3 Fast lookups . 80
3.5.4 Bidirectional Search . 80
3.6 Distributed Domain Validation . 83
3.6.1 Design and Implementation . 84
3.6.1.1 Agents . 84
3.6.1.2 Orchestrator . 84
3.6.1.3 Distributed Domain Validation . 85
3.6.1.3.1 Plain Distributed Domain Validation (DDV) 85
3.6.1.3.2 BGP-aware DDV . 85
3.6.2 Evaluations . 86
3.6.2.1 Top-Level Domain TTL measurements . 86
3.6.2.2 Latency and failures . 86
3.6.2.3 Name server distribution . 88
3.6.2.4 Finding multiple paths . 90
3.6.2.5 Anycast IPs . 91
3.6.2.6 IP prefixes . 93
3.6.2.6.1 Sub-prefix hijacks . 94
3.6.2.6.2 Same-prefix hijacks . 96
3.6.2.7 Security evaluation of DDV . 97
3.6.2.8 Selecting agent ASNs . 98
3.7 Conclusion . 103
4 Randomness . 105
4.1 Introduction . 107
4.1.1 Randomness generation . 107
4.1.2 Contribution . 107
4.2 Background . 109
4.2.1 Randomness . 109
4.2.2 Cryptographic primitives . 110
4.2.3 TOR . 110

xviii Contents

4.2.3.1 Consensus . 111
4.2.3.2 Keys and descriptors . 112
4.2.3.3 Circuits . 112
4.2.3.3.1 VERSIONS . 113
4.2.3.3.2 AUTH_CHALLENGE, AUTHENTICATE, and CERTS 113
4.2.3.3.3 NETINFO . 113
4.2.3.3.4 CREATE, CREATE2, and NTOR handshake 113
4.2.3.3.5 RELAY, EXTEND, EXTEND2, EXTENDED, and EXTENDED2 114
4.2.3.3.6 DESTROY . 115
4.3 Related Work . 117
4.4 Distributed Pseudorandom Generator . 119
4.4.1 Sources . 119
4.5 TORC . 125
4.5.1 Components . 125
4.5.2 Initialization . 126
4.5.3 Router selection . 127
4.5.4 Collecting randomness . 128
4.5.5 Randomness expansion . 129
4.6 Evaluation . 131
4.6.1 Router selection . 131
4.6.2 Quality of randomness . 131
4.6.3 Performance . 133
4.6.4 Security analysis . 135
4.6.4.1 At least one good server . 135
4.6.4.2 Hijacking attackers . 136
4.6.4.3 Reversing HKDF . 136
4.6.4.4 Untrusted local ISP . 137
4.7 Conclusion . 139
5 Summary . 141
6 Future Work . 143
A Appendix . 145
Bibliography . 149

Tables

2.1 Yao vs. GMW in LAN and intercontinental settings 27
2.2 Number of boolean gates . 29
2.3 Garbled circuit sizes in MB . 29
2.4 Experimental results for garbled circuits protocols 44
3.1 All 13 DNS root servers . 57
3.2 List of supported DV methods of CAs . 61
3.3 ASN statistics using CAIDAs dataset . 78
3.4 Performance optimizations using direct memory lookups 80
3.5 Local vs. distributed resolution errors . 87
3.6 Local vs. distributed resolution latency . 87
3.7 Name server IP distribution by country . 88
3.8 Name server IP distribution by RIR . 88
3.9 IP address distribution by ASN . 89
3.10 Top 20 ASNs for agent selection . 99
3.11 ASNs from which name server went away . 101
3.12 ASNs to which name servers changed . 101
4.1 RIR distribution . 120
4.2 Top 10 country distribution . 121
4.3 Top 10 ASN distribution for Alexa . 122
4.4 Top 10 ASN distribution for TOR . 122
4.5 Statistical tests over sequences . 132
4.6 Time to collect 1MB of random data . 133

xx Tables

4.7 Time to collect 32 Bytes of random data . 133
4.8 Time to collect different key sizes using a fixed bandwidth 134
A.1 Top 10 ASN distribution for HTTPS . 146
A.2 Top 10 ASN distribution for SMTP(S) . 146
A.3 Top 10 ASN distribution for SSH . 147

Figures

1.1 Pillars of deployable cryptography . 3
2.1 RSA implementation of 1-2 Oblivious Transfer . 14
2.2 Overview of evaluating a function using garbled circuits 15
2.3 AND gate used in Garbled Circuits . 16
2.4 Garbling steps . 16
2.5 Positioning our work within related work . 21
2.6 Overview of our framework . 25
2.7 Effect of latency on a 10Gbps link . 38
2.8 Effect of loss on a 10Gbps link . 39
2.9 Performance of SHA256 using GLNP15 . 40
2.10 Performance of a JustGarble protocol . 41
2.11 Performance of a GLNP15 protocol . 41
2.12 Comparison of assumptions between EU and AUS 45
2.13 TCP vs UDT as garbled circuit size increases . 45
3.1 DNS request packet . 68
3.2 ICMP fragmentation indicating an MTU of 68 bytes 70
3.3 Malicious second fragment modifying the mail server 72
3.4 First fragment from the name server to the resolver 73
3.5 AS cashflow . 78
3.6 Valid and invalid paths . 79
3.7 Node expansion for the path search . 81
3.8 CDF for name server distribution . 89

xxii Figures

3.9 Number of ASNs for each name server . 90
3.10 Number of unique AS paths per domain . 91
3.11 Round-trip time triangulation . 92
3.12 Average ping from all vantage points . 92
3.13 Domains vulnerable to sub-prefix hijacks . 94
3.14 Distribution of domains to prefixes . 95
3.15 IP prefix statistics . 95
3.16 Success probability simulation . 96
3.17 Hops in-between Let's Encrypt vantage points and name server ASes . 97
3.18 Simulating attack success rate . 97
3.19 Simulation of the success rate of an attacker . 98
3.20 Simulating attack success rate of top 10 . 100
4.1 Chain of trust . 111
4.2 IP to ASN distribution . 121
4.3 TORC circuit creation . 128
4.4 First router selection while bootstrapping . 131
4.5 Visualization of collected randomness using TORC 132
4.6 Simulation of the success rate of an attacker . 135

Listings

2.1 Example server setup in plain C/C++ . 34
2.2 Example using our wrapper . 35
2.3 Example of an echo client using our wrapper . 36
3.1 Example zone file for example.org . 56
4.1 Example torc.conf configuration file . 125

xxiv Listings

Algorithms

4.1 Initialize cipher . 126
4.2 Random router selection . 127
4.3 Get random string from router . 129
4.4 Expand randomness . 129

xxvi Algorithms

Abbreviations

2PC Two Party Computation
AES Advanced Encryption Standard
API Application Programming Interface
AS Autonomous System
ASN Autonomous System Number
BGP Border Gateway Protocol
CA Certificate Authority
CAIDA Center for Applied Internet Data Analysis
CBC Cipher Block Chaining
CDF Cumulative Distribution Function
CDN Content Distribution Networks
CPLD Complex Programmable Logic Device
CRL Certificate Revocation List
CSPRNG Cryptographically Secure Pseudorandom Number Generator
CSR Certificate Signing Request
CT Certificate Transparency
DDoS Distributed Denial of Service
DDV Distributed Domain Validation
DNS Domain Name System
DNSSEC Domain Name System Security Extensions
DPRG Distributed Pseudorandom Generator
DV Domain Validation
ECC Elliptic Curve Cryptography
EV Extended Validation
FPGA Field-Programmable Gate Array
GUI Graphical User Interface

xxviii Abbreviations

HKDF HMAC-based Extract-and-Expand Key Derivation Function
HMAC Hash-based Message Authentication Code
HPKP HTTP Public Key Pinning
HSTS HTTP Strict Transport Security
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IP Internet Protocol
ISP Internet Service Provider
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
LIR Local Internet Registry
MitM Man in the Middle
MPC Secure Multi-Party Computation
MTU Maximum Transmission Unit
OCSP Online Certificate Status Protocol
OT Oblivious Transfer
OV Organization Validation
PCC Performance-oriented Congestion Control
PKI Public Key Infrastructure
PPPoE Point-to-Point Protocol over Ethernet
PRF Pseudorandom Function
PRG Pseudorandom Generator
PRNG Pseudorandom Number Generator
RIR Regional Internet Registry
RNG Random Number Generator
RSA Rivest–Shamir–Adleman
RTT Round-Trip Time
SABUL Simple Available Bandwidth Utility Library
SCSV Signaling Cipher Suite Value
TCP Transmission Control Protocol
TLD Top-Level Domain
TRNG True Random Number Generator
TTL Time to live
TXID Transaction ID
UDP User Datagram Protocol
UDT UDP-based Data Transfer Protocol

xxix

URL Uniform Resource Locator
VM Virtual Machine
WAN Wide area network

xxx Abbreviations

CHAPTER 1

Preface

Cryptography is crucial for our modern world. Without it, we could not use the tech
nologies we rely on every day. Many researchers work on improving cryptography.
They make it faster, more secure, or invent new algorithms. However, this research
focuses on the algorithms. There are many requirements for cryptographic algo
rithms to be of practical use. If we do not meet them, the best and most secure
algorithm becomes useless.

2 Preface

Cryptography requirements 3

Computational

Performance
Usability Transport

Key

Management
Randomness

Deployable Cryptography

Figure 1.1 Pillars of deployable cryptography

1.1 Cryptography requirements
In this thesis, we want to focus on what it takes to bootstrap cryptography, taking it
from a theoretical algorithm to something we can use on the Internet. We usually
delay the deployment of new algorithms until we can gather more experience and
assure the algorithm is proven secure. But even if it is, there might be obstacles
to practical deployment. Depending on the type of algorithm, it may need, e.g.,
specific keys or require a lot of bandwidth. We summarize the requirement, as
shown in Figure 1.1, and define five pillars that build the foundation of successfully
deployed cryptographic algorithms: computational performance, usability, transport,
key management, and randomness.

1.1.1 Computational Performance
For an algorithm to be usable, it must be performant. Encryption or decryption must
finish in a reasonable time andworkwith limited CPU and RAM resources. Depending
on its use case, the algorithm must be suited to smaller devices. If we want to use
an algorithm for mobile phones or even IoT devices, the devices must have sufficient
resources to use these algorithms. Researchers and programmers put in a lot of
effort to make algorithms as performant as possible. There exists so much work
in that field that we do not must include it in our research. We can assume that
algorithms are or will be performant.

1.1.2 Usability
Usability is a research field that is out of our scope. Algorithms that are too complex
or too hard to implement are dangerous. Users might avoid it if it is too compli
cated. Also, if they do not fully understand it, they might implement it incorrectly and
generate vulnerabilities. In both cases, it makes a successful practical deployment
impossible.

4 Preface

1.1.3 Transport
Algorithms usually build on cleanroom design. The creators assume perfect band
width conditions. Or they design theoretical algorithms which do not include any
transport layers. Depending on the network conditions, transport layers can play a
big part. We investigate the importance of suitable transport layers in Chapter 2.
We show that under certain network conditions, the correct transport layers make
otherwise unusable cryptography usable.

1.1.4 Key management
Some algorithms require asymmetric keys, others symmetric keys. Some may have
short keys, e.g., 256 bits others have keys over 1 megabyte, e.g., Code-based McElise
crypto. Key distribution is no easy task, especially when assigning new keys to
objects through ownership verification. One example is the worldwide web. To
hand out new certificates, which bind keys to domains, we have to verify that the
request comes from the legitimate owner of that domain. In Chapter 3, we show
the weaknesses of this procedure. We demonstrate attacks and provide a detailed
evaluation and countermeasures.

1.1.5 Randomness
For all kinds of cryptographic algorithms, we need randomness. We could say that
randomness is the most crucial building block for cryptography. If we can predict
keys and passwords, even the most secure algorithm will not be safe. Cryptographic
publications often assume that randomness is ubiquitous, and we can also create
cryptographically secure random strings. However, randomness collection is not a
trivial task. For cryptography, we often use pseudo-random sequences with prede
fined properties. However, algorithmic random generation is deterministic and can
be dangerous if seed values are not random. In Chapter 4, we present a new way
of collecting randomness using servers on the Internet. We show how to generate
cryptographically secure random strings on hardware with no entropy.

Structure of this work 5

1.2 Structure of this work
We investigate three requirements for deployable cryptography. For every pillar, we
made a single chapter. Even if this thesis is monographic, we want to allow readers
to skip individual chapters. Every chapter describes its background necessary to
follow the rest of the chapter. We want to split up the complex topic of bootstrapping
cryptography on the Internet into smaller chunks. However, since it is a monographic
work, the preface, summary, and future work include every chapter.

6 Preface

CHAPTER 2

Framework for Optimal Transport
Layer for Secure Computation

In this chapter, wewill investigate the importance of transport layers for cryptography.
We will see how transport layers affect the usability of more complex cryptographic
protocols. To demonstrate this, we have chosen Two Party Computation (2PC).

8 Framework for Optimal Transport Layer for Secure Computation

Introduction 9

2.1 Introduction
2PC is a sub-problem of Secure Multi-Party Computation (MPC), also called Secure
Computation, MPC, or Privacy-Preserving Computation, with only two parties. In
2PC, two parties jointly compute a function over their private inputs without revealing
these.

The need for secure and efficient 2PC solutions is increasing, and many applications
would benefit from 2PC. A classic scenario for 2PC would be two parties that want
to perform functions on their combined data. However, they do not trust each other
or reveal any inputs. Achieving this might not be possible without 2PC due to privacy
concerns, competition (e.g., financial), or legislation. An often-used example to
illustrate this problem is the private set intersection, where a secret service holds
a list of terrorists, and an airline has a list of passengers. Both parties do not want
to reveal any information besides the intersection itself. With 2PC, it is possible
to realize previously impossible solutions for applications like key management for
digital currencies [12], auctions [34], tax-fraud detection [33], private set intersection
[100, 133] and even prevention of satellite collision [92]. With the rise of privacy
awareness and privacy laws, 2PC will become an important method for maintaining
privacy.

However, 2PC, and MPC in general, currently have drawbacks. One of them is that
implementations are still not practical. This field focuses on theoretical research
applications or libraries that resemble a Proof-of-Concept to demonstrate the fea
sibility [88]. Evaluations use simulations or single hosts without respect to real-
world scenarios with realistic network conditions (e.g., including latency and packet
loss) [115]. Current implementations are far from being usable, which leaves users
with a tradeoff between privacy and efficiency, usually by relying on third parties.

Another drawback is that computational speed was the main goal for 2PC. The idea
of 2PC by Yao in 1986 [164] is quite old. With the first public implementation of 2PC in
2004 [121], it has seen huge improvements. Themost efficient implementations built
upon Garbled Circuits [24] and Oblivious Transfer (OT) [126]. Most improvements
come from protocol optimizations, hardware-accelerated cryptographic operations,
and multiple CPU cores. These drastic improvements lead to the belief that we
reached the lower limit for current 2PC implementations [166]. Due to these advanced
computation optimizations, the common assumption is that bandwidth is the only

10 Framework for Optimal Transport Layer for Secure Computation

remaining bottleneck [16,166]. Work to reduce the complexity and amount of data
the parties must exchange, effectively improving bandwidth, exist. However, no
research evaluates the network layers of 2PC. While evaluations on a single machine
yield a practical performance [23,139], evaluating on different hosts, the overhead in
bandwidth and latency make it unsuitable for practical use [129,157]. These isolated
evaluations ignore issues that occur in the practical use of 2PC like latency, traffic
bandwidth, packet loss, and congestion which can affect real-world performance [88,
115].

Introduction 11

2.1.1 Contribution
We explore two obstacles that interfere with the development of practical, real-world
secure computation applications. First, it should be easy to integrate different trans
port layers, and second, there should be an automated way to evaluate and compare
the performance of 2PC implementations in different network setups.

We show in our evaluations how Transmission Control Protocol (TCP) does not
fully utilize the bandwidth for 2PC implementations. High latency and packet loss
cause a degrading performance of TCP. It also fails to adapt to rapidly changing
network conditions. In stable network conditions, TCP also does not yield optimal
performance making it unsuitable for different 2PC applications. However, all 2PC
implementations use the standard TCP socket provided by their operating systems.

Different variants of TCP and other transport protocols showed up but are still unused
by 2PC applications. There are reasons for this. E.g., to change a transport layer
like TCP, one must include the changes into the OS kernel. Of course, user-space
transport layer protocols do not need this. But these protocols are still niche protocols,
and many users, including 2PC developers, have not heard of them. That is why we
propose a framework that automatically switches to the best transport layer for the
given 2PC application.

Using our framework, we demonstrate the improvements which we can achieve by
using other transport layers. We integrated three transport layer protocols: User
Datagram Protocol (UDP), TCP, and UDP-based Data Transfer Protocol (UDT). We
chose UDT because of its increasing popularity and its impressive performance.
The framework identifies the most suitable transport layer protocol depending on
the current TCP application and the network conditions. An adaptive behavior like
this allows us to achieve higher performance and throughput on complex real-world
networks with various network conditions. In our evaluations, we use different pro
tocols and network conditions in multiple regions to highlight the effects on the
performance of 2PC applications.

12 Framework for Optimal Transport Layer for Secure Computation

2.1.1.1 Evaluations of 2PC applications
Creating real-life testbed environments is difficult and troublesome. 2PC developers
usually avoid this and evaluate their implementations on single hosts or simulated
environments [88, 115]. These environments, however, are not representative of
real-world networks like the Internet. They miss situations caused by various net
work conditions. There are other platforms to perform experiments in distributed
setups [52]. However, these are not suited for 2PC evaluations and do not support
non-standard transport layers.

2PC developers would have to set up and install the requirements. These require
ments include uploading binaries, installing libraries and dependencies, integrating
transport layer protocols, measuring latencies and packet loss.

We developed a distributed 2PC testbed using our preliminary framework. The test
bed provides a user-friendly Graphical User Interface (GUI) where users can select
the application and specific network conditions, e.g., simulated packet loss, delay,
bandwidth, or using geographically distributed servers. The testbed's infrastructure
uses Vultr VMs, which we can setup in various parts of the world. Using our testbed
2PC, developers can perform real-life evaluations and receive immediate results
without the need to install or use any traffic monitoring tools.

Using our platform, we show that even general-purpose protocols, like UDT, provide
a significant performance improvement over standard TCP sockets. E.g., UDT per
forms eight times better than TCP for large circuit sizes in WAN settings. Custom
transport layer protocols completely designed to optimize 2PC applications would,
of course, improve the performance even more. We can see that research on opti
mizations for specific tasks, e.g., [8,45,86,130,161] exists. Optimizations specifically
for crypto applications like 2PC are missing.

Background 13

2.2 Background
MPC is a complex subject. A complete background would exceed the scope of this
thesis. Therefore, we will only cover the basics needed to explain our contribution.
Also, we will only focus on 2PC when we are talking about MPĊ

2.2.1 Security levels
MPC protocols must be secure against attackers. Mathematical proofs are the
method of choice to prove security properties. Part of these definitions is the envi
ronment and the adversaries the protocols face. These are the common categories
for adversaries:

Semi-Honest
For semi-honest, we assume a passive adversary. Parties follow the protocol and try
to extract information out of the protocol. Protocols achieving this security level are
efficient and prevent accidental leakage of information. These protocols provide a
weak level of security which is often an initial step to achieve a higher security level.

Malicious
The malicious adversaries are active adversaries that do not necessarily follow the
protocol. It may manipulate messages and violate the protocol to extract additional
information. Protocols achieving this level provide high security. If these parties
build a majority, the only thing these parties can achieve is to abort the protocol.

Covert
Covert adversaries are somewhere in-between active and passive adversaries. They
represent more of a real-world model than the other two. At this security level,
adversaries can cheat but also have a high probability of "getting caught". Thus,
adversaries are less likely to cheat if others can expose it. Aumann and Lindell
introduced covert adversaries in 2007 [17].

In our research, we focus on semi-honest protocols. Researchers improved the
efficiency of these protocols to a level where the communication layer is the bottle
neck [16,166].

14 Framework for Optimal Transport Layer for Secure Computation

A B

𝑒, 𝑁, 𝑥0, 𝑥1Generate 𝑒, 𝑑, 𝑁
and random 𝑥0, 𝑥1

𝑣 = (𝑥𝑏 + 𝑘𝑒) mod 𝑁 Generate random 𝑘
and choose 𝑏 ∈ {0, 1}

𝑚′
0

= 𝑚0 + 𝑘0

𝑚′
1

= 𝑚1 + 𝑘1
Does not know 𝑘

𝑘0 = (𝑣 − 𝑥0)𝑑 mod 𝑁
𝑘1 = (𝑣 − 𝑥1)

𝑑 mod 𝑁 𝑚𝑏 = 𝑚′
𝑏

− 𝑘

Figure 2.1 RSA implementation of 1-2 Oblivious Transfer
based on the protocol by Even, Goldreich, and Lempel

2.2.2 Oblivious Transfer
In the OTprotocol, a sender can sendmultiplemessages to a receiver, but the receiver
can only choose a certain amount (𝑘) of all (𝑛) messages. Additionally, the receiver
cannot gather any information about the messages it did not choose. This setup is
a k-out-of-n oblivious transfer. In Figure 2.1, we see an example of a one-out-of-two
(1-2) oblivious transfer using RSA cryptosystem. In this example, the receiver gets
two messages and can only read one message. To do this, the sender (A) will create
an RSA keypair and two random messages, and the receiver (B) will choose one of
the two random messages, add its random 𝑘 to it, and send it back to A. Because A
does not know 𝑘, it does not know which message B chose. A will generate two 𝑘s
(𝑘1, 𝑘2) and add each to one message it wants to send. Since B knows the correct 𝑘,
it can decrypt the message but cannot decrypt the message it did not choose.

For OT, we can use different public-key cryptographies, such as RSA, Diffie-Hellman,
Elliptic Curve Cryptography (ECC) or post-quantum cryptography. Because public-key
cryptography is computationally very costly compared to symmetric cryptography,
2PC applications use OT extensions [16,104], which use symmetric cryptography
operations. However, OT implementations are abstract, and a user does not have to
know its internal protocol to use it.

Background 15

Function

Compile to circuit

Garble circuit

Exchange data (OT)

Evaluate

Output

Input A Input B

Figure 2.2 Overview of evaluating a function using garbled circuits

2.2.3 Garbled Circuits
Garbled circuit is a cryptographic protocol that enables parties to compute a function
without revealing their inputs. For this, we transformany functionwewant to evaluate
into a Boolean circuit. Commonly used Boolean gates are XOR and AND gates. This
process is like the design of circuits for Field-Programmable Gate Arrays (FPGAs)
or Complex Programmable Logic Devices (CPLDs). These usually only support one
type of gate because of their hardware design. We use these circuits as our initial
step for 2PC.

We show a simplified overview in Figure 2.2. The Garbled Circuit protocol will evaluate
the circuits using cryptographic functions. We can process multiple Gates in parallel
if they do not depend on the output of previous gates. To evaluate a single logic gate,
we use cryptographic keys to represent the logical values 0 and 1.

16 Framework for Optimal Transport Layer for Secure Computation

𝑘𝑥0

𝑘𝑥1

𝑘𝑦0

𝑘𝑦1

𝑘𝑧0

𝑘𝑧1

Figure 2.3 AND gate used in Garbled Circuits

𝑥 𝑦 𝑧

0 0 0

0 1 0

1 0 0

1 1 1

−−−−−−→
𝑔𝑎𝑟𝑏𝑙𝑒

Enc kx0
,ky0

(kz0
)

Enc kx0
,ky1

(kz0
)

Enc kx1
,ky0

(kz0
)

Enc kx1
,ky1

(kz1
)

−−−−−−−→
𝑠ℎ𝑢𝑓𝑓𝑙𝑒

Enc kx1
,ky0

(kz0
)

Enc kx1
,ky1

(kz1
)

Enc kx0
,ky1

(kz0
)

Enc kx0
,ky0

(kz0
)

(1) (2) (3)
Figure 2.4 Garbling steps

Let us assume the AND gate in Figure 2.3. In this example 𝑘𝑥0
represents 𝑥 = 0 and

𝑘𝑥1
represents 𝑥 = 1. The same applies to the 𝑦 input and its keys. When we input

𝑘𝑥1
and 𝑘𝑦1

into the AND gate we will receive 𝑘𝑧1
. For any other combination, we will

receive 𝑘𝑧0
. We achieve this by garbling the truth table as seen in Figure 2.4. First, one

party garbles the truth table (1) by encrypting the output key 𝑧 with its corresponding
𝑥 and 𝑦 keys. E.g., Enc kx0

,ky0
(kz0

)means, that we encrypt 𝑘𝑧0
with the keys 𝑘𝑥0

and
𝑘𝑦0
. By doing this, we get four encrypted keys (2) where each combination of 𝑥 and

𝑦 can only decrypt one entry. If we keep the order, we will leak information about
the inputs. E.g., one party receives the garbled truth table and an unknown 𝑥 key. If
we chose 𝑦 to be 1 and see that we can decrypt the last value, we know that 𝑥 must
be 1. To prevent this, we shuffle the order of the items (3), so we cannot extract any
information from their positions. So, for each gate, party A sends the fully garbled
output keys and its 𝑥 key party B. Party will exchange the key for 𝑦 by using OT. That
way, party A does not know the logical value of input 𝑦 and output 𝑧, and party B
does not know the logical value of 𝑥. Party will use 𝑧 as the next input or reveal it
processed the whole circuit.

Background 17

2.2.4 Transport Layer Protocols
Transport layer protocols are essential for transmitting data between hosts. Their
main task is to provide the functionality to sendmessages with variable lengths from
one host to another. Besides this bare minimum, most protocols include additional
features for reliability. These include resending missing packets, dropping duplicate
packets, reordering out-of-order packets, and congestion control. If the data is longer
than the maximum packet size of the underlying network layer, hosts must split the
data into smaller chunks that fit. Congestion control is necessary then because
one must time the packets while sending so the receiver's buffers do not overflow
because it is too slow. When sending too fast, the sender can also overflow its send
buffer. However, not all transport layer protocols support this. The choice of the
best transport layer protocol strongly depends on the application. This dependency
makes them an essential part when designing networked applications.

Congestion control is a complex topic, and there aremultiple approaches for improve
ments [45,46,86,120,158,160]. However, when violating their network assumptions,
these improvements do not perform consistently. Most congestion control algo
rithms rely on either packet loss or packet delay for their measurements. We will talk
about these algorithms when we describe TCP and UDT.

The UDP is a very minimalistic transport layer designed for optimal networks and
small data packets. It does not feature any duplicate packet or packet loss detection.
If datagrams (UDP packets) arrive out-of-order, it will not reorder them. There is also
no congestion control. When the host sends too fast, datagrams get lost or dropped.
If one needs these features, one must implement them on the application layer. We
will see examples of this later. Without any of these features, plain UDP is unsuitable
for 2PC since reliance and congestion control are indispensable for cryptographic
protocols.

TheTCP is themost used transport layer protocol. It provides reliance and congestion
control. Like UDP, all common operating systems include it in their kernels, making
it available to everyone out-of-the-box. One of the most used congestion control
algorithms for TCP is CUBIC [86]. It is a loss-based congestion control algorithm that
uses a cubic function to manage congestion control. This cubic function consists of
two parts: (a) a concave portionwhere thewindow size quickly rises to the size before
the last loss and (b) a convex growth where CUBIC tries to increase the bandwidth,

18 Framework for Optimal Transport Layer for Secure Computation

starting slowly and rapidly increasing afterward. CUBIC defines the congestion
window size with the equations

𝑐𝑤𝑛𝑑 = 𝐶(𝑇 − 𝐾)3 + 𝑤𝑚𝑎𝑥, (2.1)

𝐾 =
3

√
𝑤𝑚𝑎𝑥(1 − 𝛽)

𝐶
, (2.2)

where 𝐶 is a scaling constant defined as 0.4 (RFC 8312), 𝛽 is amultiplicative decrease
factor defined as 0.7 (RFC8312), 𝑇 is the elapsed time since the lastwindow reduction,
and 𝑤𝑚𝑎𝑥 is the window size before the latest size reduction. When further talking
about TCP, we will assume TCP-CUBIC.

The UDT is a user-space protocol that manages congestion control and reliability
in user-space. In contrast, other protocols usually implement these functions into
the kernel of the operating system. User-space code has limitations because, unlike
kernel-space code, it cannot directly interact with parts of the operating system and
must do that using system calls. However, it has the advantage that we do not
have to modify components of the operating system to implement changes. The
main goal is high throughput for large datasets over high-speed connections (e.g., 1
Gbit/s). UDT uses timer-based selective acknowledgments (ACK) and packet-based
sequencing. Negative acknowledgments (NAK) indicate a packet loss. It uses a
hybrid rate-based congestion control and window-based flow control. Rate control,
which manages packet sending rate, triggers at a constant interval (every 𝑆𝑌𝑁),
while window control, which limits the number of unacknowledged packets, triggers
when receiving an acknowledgment packet. The packet sending rate is an additive
increase and multiplicative decrease algorithm. The multiplicative decrease is by a
factor of 1/9, while the additive increase is independent of the RTT. For every rate
control interval, if there is no negative feedback, the packet-sending rate 𝑥 increases
by 𝛼(𝑥). The definition of 𝛼(𝑥) is

𝛼(𝑥) = 10⌈log(𝐿−𝐶(𝑥))⌉−𝜏 ⋅ 1500
𝑆

⋅ 1
𝑆𝑌𝑁

(2.3)

where 𝑥 has the unit of packets/second, 𝐿 is the link capacity measured by bits/sec
ond, 𝑆 is the packet size (in terms of IP payload) in bytes, 𝐶(𝑥) is a function that
converts the unit of the current sending rate 𝑥 from packets/second to bits/second
(𝐶(𝑥) = 𝑥 ∗ 𝑆 ∗ 8), and 𝜏 = 9 is a protocol parameter.

Background 19

There are other user-level protocols like QUIC or Performance-oriented Congestion
Control (PCC). We only chose TCP and UDT for our research because other protocols
were not easy to integrate at the time. E.g., QUIC only had a reference implementation
as an HTTP server and was not usable as a general-purpose transport layer and
PCC, which is a further improvement to UDT, is only unidirectional. Also, we did
not investigate other TCP congestion controls protocols since modern operating
systems only support very few, with CUBIC being the best option.

20 Framework for Optimal Transport Layer for Secure Computation

Related works 21

Compile boolean circuit

from a high-level program

E.g. [62,91,119,156]

Garble boolean circuit [164]

Point and permute [22],

Pipelining [101],

Fixed-key AES [23]
Send garbled circuits

to evaluator
Evaluate garbled circuits

Transport Layer [This work]

Communication Complexity

GRR 4-to-3 [127],

4-to-2 [83,132], XOR-1 [83],

Free-XOR [113]

Garbler

Evaluator

Communication

Figure 2.5 Positioning our work within related work

2.3 Related works
Figure 2.5 graphically illustrates the relationship of our work compared to other
related work. The Secure Computation field is a broad and diverse topic. There are
various protocols for a different number of parties, adversarial models, corruption
thresholds. We, however, decided to focus on the most natural case of Secure
Two-Party Computation and leave the research of multi-party protocols as future
work.

2.3.1 Garbling Circuit Optimizations
The original protocol for garbling circuits by Yao [164] dates to 1986. Each Boolean
gate requires four ciphertexts and four decryptions. Since then, many works have
tried to improve the efficiency of garbled circuits by reducing the number of keys or
cryptographic operations. The Point-and-Permute strategy [22] reduced the number
of decryptions per gate to one. Also, it divides the size of ciphertext by approximately
two.

Communication Complexity, the most important measure, is the number of cipher
text transmissions needed per Boolean gate. The 4-3 GRR (garbled row reduction)
technique [127] first reduced the number of ciphertexts to three per Boolean gate.
Furthermore, the 4-2 GRR [132] reduced the number of ciphertexts needed even fur
ther to only two. The Free-XOR technique [113] further optimized the efficiency. Using
this technique, XOR gates (or any other linear gate) do not require the transfer of
ciphertext. The Free-XOR and 4-2 GRR, however, were incompatible with each other.

22 Framework for Optimal Transport Layer for Secure Computation

The Half-Gate optimization [166] combines the benefits of Free-XOR and 4-2 GRR.
However, the Free-XOR technique is only secure in the Random Oracle Model [25]. It
requires a form of circular security assumption [49].

Bellare et al. [23] proposed faster garbling schemes using stronger assumptions,
like Fixed-Key block ciphers. However, some criticize achieving efficiency at the
cost of stronger security assumptions. The industry usually adopts conservative
approaches since it is challenging to change protocols after vulnerabilities emerge
after deployment. Consequently, [83] proposed a proven secure construct for garbled
circuits which only uses standard assumptions. It requires two ciphertexts per AND
gates (like 4-2 GRR) and one ciphertext for each XOR gate (XOR-1). Gueron et al. [83]
concluded that the cost for higher security guarantees is much smaller in practice
than in theory. Our evaluations support this conclusion since we show that choosing
an optimal transport layer has a much higher impact than betting on non-standard
assumptions to boost efficiency. E.g., using UDT and standard assumptions over
WAN is four times faster than TCP with non-standard assumptions.

Using multiple parallel TCP connections, Nielson, Schneider, and Trifiletti [129] tried
to improve efficiency. By doing so, the saturation of the network bandwidth is higher.
However, an arbitrary number of parallel connections can lead to network congestion
effectively, lowering throughput [87].

Related works 23

2.3.2 Secure Computation Frameworks
Since the introduction of the Fairplay framework [121], development on various
other 2PC frameworks started [62,73,101]. Libscapi [73] provides a garbled circuit
framework with the latest optimizations with security against active and passive
adversaries. ABY [62] is a framework for mixed protocols and combines arithmetic
sharing, Boolean sharing, and garbled circuits. These frameworks only focus on the
secure computation aspect and rely on plain TCP sockets for communication.

[91] surveys general-purpose compilers for secure computation used to provide high-
level abstractions to describe functions in an intermediate representation (such as
a circuit). While [91] focuses on compilers, we focus on the efficiency of protocol
execution. The examples chosen in [91] demonstrate the usability of the compiler
code rather than representing practical MPC use cases. Also, the tests run in a
standalone environment and do not account for networks conditions. However, the
paper has a different goal. It wants to demonstrate the efficiency of the protocols.
There is no intention to provide a practical testing framework.

In [19], the authors consider providing MPC as a service. Users can use a platform
to run their protocols through a web browser of a phone app. Their research focuses
on low-bandwidth MPC protocols, which require multiple rounds in LAN settings.
Our work concentrates on high-bandwidth constant round 2PC protocols in LAN and
WAN settings.

We can see how far the efficiency in terms of computational complexity has pro
gressed. In general, we achieved a state where the evaluation on a single host yields
satisfactory performance. However, network conditions can impact the overall per
formance. No previous work considered adjusting transport layers to improve the
performance of Secure Computation protocols.

24 Framework for Optimal Transport Layer for Secure Computation

Framework 25

Application

Secure Computation Layer

Security Assumption Protocol Type Circuit Size

Transport Layer

Latency Packet Loss Bandwidth Protocol

Low level OS functions

Figure 2.6 Overview of our framework

2.4 Framework
We propose a framework to simplify the use of different transport layers in secure
computation. Our framework has two goals: identify which transport layer protocol
is optimal for the current task, and isolate components by function. It uses the input
sizes, the network setup, and buffer sizes to decide which transport layer it uses. To
separate parts of the application, it enforces two layers (see Figure 2.6). One layer
is the secure computation layer. It accepts the function for evaluation and the size
of the circuit representing this function. With the given parameters, we can deploy
optimizations relevant for performance improvements on the transport layer. The
other layer is responsible for the abstraction of network connections. This layer
provides a general abstract API. Every component can use it without knowing how
it works and which protocol it is currently using. The layer determines the latency,
bandwidth, and packet loss on the network through live probes. The transport layer
is also responsible for avoiding overflow at the sender and the receiver.

We demonstrate the usage of the framework and the evaluation of different 2PC
implementations. We integrated popular and representative protocols into the frame
work in both the secure computation and the transport layer. In the secure computa
tion layer, we integrated a garbled circuit protocol under standard assumptions [83],

26 Framework for Optimal Transport Layer for Secure Computation

a garbled circuit protocol under circularity assumption [166], and the scheme that as
sumes AES as an ideal cipher [23]. For the transport layer, we support UDP, TCP [86],
and UDT [82].

Our framework bridges the secure computation layer and the transport layer, choos
ing a suitable protocol for its given parameters. Independent extension of the layers
is also easy. One can easily integrate new protocols in either layer. This flexibility
is crucial because research for new protocols is still continually active. Also, old
protocols still get improvements. Future protocols may provide a better solution
than current options.

We have implemented abstract classes into our framework, making the selection of
transport layer protocols simple or even automated. Integrating new protocols into
an existing 2PC application is straightforward. Once the protocol is available to the
framework (e.g., through an update), the user must define a string with the name of
the new protocol to use it manually.

Without a framework like this, one must rewrite large chunks of the secure compu
tation's code. Additionally, the rewrite can be especially hard since many existing
Secure Computation implementations do not have a modular design. The network
code mixes with the application code, and the transport layer protocol is hard-coded
into the application code. Often, IP addresses and port numbers are hard-coded.
Nowadays, most Secure Computation implementations are only a proof-of-work and
not a production-ready solution [88]. Uncluttering these and adding transport layer
protocols requires an extensive rewrite of the codebase.

There are two ways developers can use our framework. First, they can use the
transport layer module to select the best-suited transport protocol automatically.
The transport layer, together with the secure computation layer, will choose the
most efficient settings. Second, the developer can use the secure computation
layer separate from the transport layer and manually evaluate different transport
protocols.

Framework 27

Circuit Setting Yao (GLNP15) GMW

AES

LAN 7.00 27.88

EU-US 130.40 2917.30

EU-AUS 377.92 7325.00

SHA1

LAN 14.50 1651.27

EU-US 144.41 187080.60

EU-AUS 396.52 493143.10

Table 2.1 Yao vs. GMW in LAN and intercontinental settings (runtime in ms)

2.4.1 Two-Party Computation Layer
The most efficient implementations for 2PC use Yao's protocol with garbled circuits.
It utilizes asymmetric operations with only a few computationally expensive calcu
lations like exponentiations. The GMW protocol [80] is the main alternative to Yao's
protocol. It uses only OT, and unlike Yao's protocol, it does not have constant rounds.
Overall, as seen in Table 2.1, GMW is less efficient than Yao. That is why we do not
consider it for our research.

We focus on recently optimized garbling schemes for which we consider three main
characteristics. For one, the size of the produced circuits, which affects the efficiency
of the communication. Then, the number of cryptographical operations necessary for
generating and evaluating a garbled circuit. These influence computational efficiency.
And finally, the security assumptions, which prove the security of the scheme. We
included the most representative candidates, with the best efficiency-security trade-
off, into our framework. Our evaluations extend upon the work of GLNP15 [83].
We show that we can achieve a more efficient secure computation with standard
assumptions when selecting better transport layer protocols.

28 Framework for Optimal Transport Layer for Secure Computation

2.4.1.1 Garbling Schemes
For the garbled circuits, we use the implementations of libscapi [73]. It incorporates
all known optimizations and uses AES-NI.

GLNP15 This implementation uses the garbling scheme described in [83]. Its main
advantage is that it onlymakes conservative computational assumptions, i.e., we can
prove it secure under the assumption that AES behaves like a pseudorandom function
(PRF). It garbles linear gates (e.g., XOR) and non-linear gates (e.g., AND) differently.
Using the 4-2 Garbled Row Reduction (GRR), Garbling an AND gate produces two
ciphertexts. Garbling an XOR gate, using the XOR-1 technique, produces only one
ciphertext.

Half-Gates The second implementation builds on the work of [166]. It uses the so-
called Half-Gate optimization, which is compatible with the Free-XOR optimization
described in [113]. However, this optimization requires a stronger computational
assumption on AES. It is complex, and we refer for details to [166].

JustGarble The final implementation we consider originates from the JustGarble
framework proposed by [23]. Key-scheduling is the most expensive phase when
using the AES-NI. AES-NI performs best when a large amount of encrypted data using
the same key. When keys consistently change, AES-NI performs worse. However,
garbling circuit schemes use different keys for each gate. JustGarble uses AES in
stream cipher mode as an ideal permutation. The key is a fixed constant. To encrypt
message 𝑚 using the key 𝑘 one computes 𝐶 = 𝐴𝐸𝑆𝑐(𝑘) ⊕ 𝑚 for some constant
𝑐. This non-standard usage of AES. However, out of the three presented garbling
schemes, it has the best efficiency/security trade-off.

Framework 29

Function AND gates XOR gates

AES 6,800 25,124

SHA256 90,825 42,029

MinCut 999,960 2,524,920

Table 2.2 Number of boolean gates

Garbling scheme AES SHA256 MinCut

GLNP15 0.59 3.41 69.04

Half-Gate 0.21 2.77 30.52

JustGarble 0.21 2.77 30.52

Table 2.3 Garbled circuit sizes in MB

2.4.1.2 Applications and Circuit Size
So, we have decided which protocol and garbling scheme. Now we can want to
choose a function. The size and type of the resulting garbled circuits directly influence
the efficiency of the protocol. For one, the Garbler must send the garbled circuit and
its inputs to the Evaluator. The bigger the garbled circuit, the more data the garbled
must send. The cost grows linear with the circuit size. Depending on the garbling
scheme, the types of gates are also important. E.g., it might be better to have more
XOR gates.

We selected three applications that have become the de-facto standard for bench
marking MPC protocols. They represent different orders of magnitude in circuit sizes
as seen in Table 2.2. [83] uses AES to benchmark MPC protocols. Its circuit is tiny
compared to others. MinCut, on the other hand, is a large circuit. It is the largest
circuit available in libscapi. In addition, we chose SHA256 as it fits right in between
AES and MinCut as a medium-sized circuit.

Another factor that influences the circuit size is the security assumption. Garbling
with GLNP15 produces two ciphertexts for each AND gate and one for each XOR gate.
However, using the Half-Gate construction or JustGarble outputs no ciphertexts for
XOR gates and two for AND gates. We can see the effect of this in Table 2.3. The
XOR gates used in MinCut have a strong influence on the circuit size for GLNP15.

30 Framework for Optimal Transport Layer for Secure Computation

2.4.2 Transport Layer
Using the provided parameters like circuit size, implementation, and input size, the
transport layer of the framework will measure the packet loss and latency. All these
factors determine which transport layer protocol the framework will choose. The
framework will try to select the most efficient transport layer protocol for the given
setup.

When choosing an optimal transport layer protocol, latency is a crucial factor. If the
Round-Trip Time (RTT) is shorter than the transmission of one TCP windows, the
sending buffer will fill. We want to keep our send buffer always filled for maximum
performance. In low latency networks like LAN, congestion control is not that impor
tant. Usually, LANs do not suffer from packet losses. In such settings, the framework
will choose UDP-based protocols.

Another crucial factor is the data volume and number of communication rounds. OT
has small messages. Each message depends on a response, so it is not possible to
sendmultiplemessages at once. However, window-based protocols, such asTCP, are
designed to transmit continuous data streams. The optimizations for large streams
provide no benefit for protocols like OT. They negatively impact the performance due
to the overhead and initialization phases. In these cases, UDP is a good fit since
every message fits into a single UDP packet, and UDP has a low overhead. However,
garbled circuits can be huge. So, choosing plain UDP is not a satisfactory solution.
Even if we chose a different protocol like TCP, it would need to readjust to sending
the circuits because it already adjusted for the small packets.

The final factor our framework uses for protocol selection is packet loss. When a
packet loss occurs, plain UDTwill fail, and TCP performs poorly, even with low packet
losses of approximately 1%. In these situations, UDT is a fitting choice to ensure
reliability. Packet loss is not only the effect of bad internet connections. Interferences
in wireless networks (WLAN, 4G, 5G, ...) can also lead to packet losses.

Framework 31

2.4.2.1 Transport Protocols in our framework
We have integrated UDP, TCP, and UDT into our framework. On networks without
packet losses, we used UDP as a reference. We chose UDT because of its increasing
popularity and its impressive performance. It is TCP-friendly (i.e., it does not steal
all the bandwidth for itself) and performs better than TCP in many situations. Once
newer and more efficient protocols evolve, one can easily integrate them into our
framework.

32 Framework for Optimal Transport Layer for Secure Computation

Implementation 33

2.5 Implementation
The design goal of our framework is to provide an extendable modular design. It
should be easy to extend it with other secure computation protocols as well as
transport layer protocols. With the framework, Secure Computation researchers can
focus on the protocol details without worrying about the networking aspects of the
implementation.

2.5.1 Abstraction
The transport layer part is a wrapper. One only must know how to use the wrap
per and not all underlying transport protocols. One can easily use it with secure
computation protocols. Currently, it supports only synchronous sockets, which are
sufficient for our purposes. The framework completely abstracts the network func
tionality. One can set the transport layer protocol at runtime. Changing the protocol
at runtime removes the need for recompilations and makes it easier to compare
different protocols. We used C++ polymorphism to achieve this modularity since
most of the secure computation implementations developed in the past few years
also use C++. The core of the abstraction is an abstract class with virtual methods.
These virtual methods include functions like establishing and closing connections
and sending and receiving data. Every transport layer protocol added to the frame
work must implement these methods. We require only four methods of the abstract
class: SetupClient, SetupServer, RecvRaw, and SendRaw. This abstraction is
very convenient for both developers of Secure Computation implementations and
developers adding transport protocols. Adding new transport layer protocols does
not require any knowledge about the Secure Computation application which will use
it. Secure Computation developers link their applications against the provided shared
or dynamic library. We can update the library independently so Secure Computation
implementations can benefit from future features without recompiling. Our wrapper
currently supports UDP, TCP, and UDT.

34 Framework for Optimal Transport Layer for Secure Computation

/* step 1 */
int one = 1;
struct sockaddr_in local;
int fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)&one, sizeof(one));
setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (void *)&one,
 sizeof(one));

/* step 2 */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons((unsigned short) 1234);

bind(fd, (struct sockaddr *) &local, sizeof(local));
listen(fd, 1);

Listing 2.1 Example server setup in plain C/C++

2.5.2 Simplification
We predefined class methods to simplify tasks. The instantiation of the Transport
class already allocates and sets up the socket (e.g., by using socket() for TCP
or UDT. The application can then use this socket to create a server (aka listening
connection) or a client. We can see how the number of lines significantly decreases
from using plain C/C++ code, as shown in Listing 2.1, to using our wrapper, as shown
in Listing 2.2. This reduction improves readability and encourages users to separate
program logic from network code. Modularity and separation are important to make
distinct parts reusable. It is also easier to evaluate individual parts.

Tomeasure the latency between host and client, the wrapper also includes two static
methods, GetLatencyClient() and GetLatencyServer(), which we can use
to decide which protocol to use. These methods use UDP packets to measure the
RTT in milliseconds.

Implementation 35

auto *t = GetTransport("tcp");
t->SetupServer("0.0.0.0", 1234);

Listing 2.2 Example using our wrapper

2.5.3 Packet handling
Transport layers protocols usually send their data as packets or streams. UDP,
e.g., sends packets for each request. Sending data up to the size of the Maximum
Transmission Unit (MTU) will work fine. However, sending data that exceeds theMTU
is impossible without splitting the data into smaller chunks. A program that wants
to use UDP must implement these features. TCP, on the other hand, sends its data
as a stream. It tries to fit as much data as possible in each packet and automatically
splits data. Nagle's algorithm defines the behavior to wait for TCP packets to fill an
IP packet [125] and can be turn off via the TCP_NODELAY option for faster sending
of small data. The receiver must know what to receive because the sender glues
together each payload with no indication where one ends and the other starts.

The wrapper abstracts these protocols and allows users to send and receive pack
ets in arbitrary sizes. It defines a Packet class that contains the payload and the
payload size. For UDP, it will automatically split the data, and for TCP, it will add size
information, which acts as markers, to the stream. So, on the receiving side, we
can always receive one packet. For the user, it does not matter if the packet got
reassembled from multiple UDP packets or extracted from a TCP stream.

There are two ways to implement endianness: big-endian where the CPUwould store
the hexadecimal number 0xABCD as 0xABCD in memory, and the little-endian, the
most common, where the CPU would store the same number as 0xCDAB. When
sending the data, the network payload will have this memory representation. Since
the packet payload is just raw bytes without any type annotations, the receiver must
know how it interprets the data. The wrapper converts all lengths to network byte
order (big-endian) to ensure compatibility between machines with different endian
ness.

36 Framework for Optimal Transport Layer for Secure Computation

auto *t = GetTransport("tcp");
t->SetupClient("0.0.0.0", 1234);
t->Connect();
auto p = t->Recv();
t->Send(p);

Listing 2.3 Example of an echo client using our wrapper

2.5.4 Integration
Integration of the wrapper is easy. We can simply use the wrappersmethods Send()
or Recv() in the Transport instance. Supplying the protocol, wewant to as a string
to the class is optional. If one adds new protocols to the wrapper, applications using
the wrapper can benefit from these protocols without rewriting. We can see a simple
echo client in Listing 2.3. In the shown example code, a client connects to a server,
receives data, and echoes it back to the server.

For our evaluations, we integrated the wrapper into libscapi. Libscapi uses external
OT extension libraries, which bring their own (redundant) network code. We removed
these portions and replaced them with calls to our wrapper. With these changes,
it is possible to select a suitable transport layer protocol for garbled circuits and
OT. Additionally, both can benefit from changes in the wrapper, and we removed
redundant code. Our goal is to separate the network code and the application code
and keep them self-contained.

Simulation 37

2.6 Simulation
Wedemonstrate the effect of latency, packet loss, and bandwidth on the performance
of Secure Computation protocols by performing simulations. These simulations
provide an estimation for real-world network evaluations. We use tc qdisk. This
command allows us to introduce latency and packet loss to network interfaces in
Linux operating systems. For the host machine, we used a single Vultr instance
with a 64-bit single-core CPU with 2.6 GHz and 2 GB RAM. Vultr provides simple to
deploy VMs in various parts of the world. We used to loopback interface to perform
all measurements.

Previous works only compared the performances between LAN and WAN. To get a
more expressive image, we must examine the behavior to certain conditions in finer
detail. Using simulation, we can fine-tune parameters and generate interim values.

We simulate latencies between 1ms to 300ms that represent latencies from LAN to
various parts of the world. E.g., the RTT of a LAN is about 1–5ms, the RTT within
North America is 50ms on average, and machines placed in North America and Asia,
or EU and Australia are about 300ms. In addition to the latencies, we simulate packet
losses between 0.01% and 0.05%. These packet losses represent packet losses in
real networks [103]. For the bandwidths, we used 200Mbps, 500Mbps, 1Gbps, and
10Gbps in our simulation. We performed measurements using iperf and found
these values to be most representative.

To understand the effect of latency on secure computation protocols, we use TCP,
UDP, and UDT. The UDP results are the baseline for the best possible runtime. We
optimized parameters (huge send/receive buffers) for fast and reliable networks. Of
course, when encountering packet losses, UDP will fail since it does not provide any
reliability features. As reliable protocols with use TCP and UDT. We show the band
width utilization for different circuit sizes. All experiments use only one thread/core
and rely on hardware acceleration through AES-NI.

38 Framework for Optimal Transport Layer for Secure Computation

TCP JustGarble UDT JustGarble UDP JustGarble
TCP Half-Gate UDT Half-Gate UDP Half-Gate
TCP GLNP15 UDT GLNP15 UDP GLNP15

0

100

200

300

400

Ru
nt
im
e
(m
s) AES

0

200

400

600

Ru
nt
im
e
(m
s) SHA256

0 50 100 150 200 250 300
0

2000
4000
6000
8000
10000
12000

RTT (ms)

Ru
nt
im
e
(m
s) MinCut

Figure 2.7 Effect of latency on a 10Gbps link for AES, SHA256, and MinCut

We can see in Figure 2.7 that for small circuits, such as AES, that TCP performs
better than UDT when disabling Nagle's algorithm [125]. Small transmissions with
only a few kilobytes cannot benefit from UDT optimizations. Gu and Grossman [82]
optimized UDT for large data transfers. However, we can see that for the medium-
sized circuits, such as SHA256, while TCP still performs better using Just Garble
and Half-Gate protocols, UDT starts to outperform TCP for the GLNP15 protocol
with increasing RTT. We can see that the performance of UDT is better as Bandwidth
Delay Product (BDP) increases and when the amount of data transferred increases.
For large circuits such as MinCut, we see that UDT utilizes the available bandwidth
much better than TCP. The importance of congestions control mechanisms starts
to show as the size of data sent from the Garbler to the Evaluator increases. We can

Simulation 39

TCP 100ms UDT 100ms
TCP 300ms UDT 300ms

200

400

600

800

1000

Ti
m
e
(m
s)

AES

1000

2000

3000

4000

Ti
m
e
(m
s)

SHA256

0.00 0.01 0.02 0.03 0.04 0.05
0

20000

40000

60000

Packet Loss (%)

Ti
m
e
(m
s)

MinCut

Figure 2.8 Effect of loss on a 10Gbps link for AES, SHA256, and MinCut

also see that higher latencies affect TCP than UDT as UDT does not react to packet
loss/delay but uses a timer-based selective ACK.

We can see in Figure 2.8, that TCP starts to struggle even for small circuits, such as
AES, when the packet-loss increases and UDT outperforms TCP. For medium and
large Garbled Circuits, the performance of TCP decreases drastically. UDT manages
packet loss much better with almost no visible impact.

40 Framework for Optimal Transport Layer for Secure Computation

0 20 40 60 80 100

50

100

150

200

250

300

350

400

RTT (ms)

Ru
nt
im
e
(m
s)

TCP 10Gbps UDT 10Gbps UDP 10Gbps
TCP 200Mbps UDT 200Mbps UDP 200Mbps

Figure 2.9 Performance of SHA256 using GLNP15

In Figure 2.9, UDT performs better than TCP at slightly higher latencies, above 15 ms,
in 200 Mbps. When using high bandwidths like 10Gbps, UDT performs better when
latencies are above 30ms.

Furthermore, we show the effect of bandwidth on the three applications we have
considered. Figure 2.10 is the results for JustGarble protocol and Figure 2.11 is the
results for GLNP15 protocol. We can see that the choice of protocol, i.e., JustGarble
or GLNP15, impacts the performance for SHA256. When using JustGarble, TCP still
performs better, but when using GLNP15, UDT performs better. We can also see that
the delay affects all protocols equally.

Simulation 41

TCP UDT UDP

0
100
200
300
400

Ti
m
e
(m
s) AES

0
100
200
300
400
500

Ti
m
e
(m
s) SHA256

200Mbps
300ms

200Mbps
100ms

10Gbps
300ms

1Gbps
100ms

0
2000
4000
6000
8000
10000

Ti
m
e
(m
s) MinCut

Figure 2.10 Performance of a JustGarble protocol

TCP UDT UDP

0
100
200
300
400

Ti
m
e
(m
s) AES

0

200

400

600

800

Ti
m
e
(m
s) SHA256

200Mbps
300ms

200Mbps
100ms

10Gbps
300ms

1Gbps
100ms

0
3000
6000
9000
12000
15000

Ti
m
e
(m
s) MinCut

Figure 2.11 Performance of a GLNP15 protocol

42 Framework for Optimal Transport Layer for Secure Computation

Evaluation 43

2.7 Evaluation
We set up testbed environments to evaluate two different deployments: LAN and
WAN. In both setups, we use two Azure VMs. The VMs had a 64-bit Intel Xeon quad-
core CPU running at 2.4 GHz and 28 GB of RAM. However, all simulations only used
a single core/thread. AES-NI support was available and used.

In the LAN setup, we use two Azure VM instances located in the same data center
using a high-bandwidth network with low latency. The latency on a 10 Gbps link was
0.5 ms with a variance of 10%.

In the WAN setup, we used two pairs of locations with different latencies for our
experiments. We can then observe the effect of latency and transport layer protocols
on secure computation protocols on real networks.
For the EU-US setup, we located one VM in the EU and one in the central US. We
estimated the network speed to be 1 Gbps with a measured latency of 110ms. The
measured available bandwidth for a singleTCP connectionwas 200Mbps on average.
Both machines run Ubuntu 16.04. The measured variance was 10%.
For the EU-AUS setup, we located one VM in the EU and one in southeast Australia.
We estimated the network speed to be 1 Gbps with a measured latency of 300 ms.
The measured available bandwidth for a single TCP connection was 100 Mbps on
average. The measured variance was 20% for AES and SHA256, and 30% for MinCut
using TCP, and 25% for MinCut using UDT.

44 Framework for Optimal Transport Layer for Secure Computation

Circuit Setting Just garble Half-Gate GLNP15

TCP UDT TCP UDT TCP UDT

AES

LAN 2.4 187.1 2.9 191.3 7.0 202.7

EU-US 127.4 403.9 126.3 408.3 130.4 444.2

EU-AUS 312.4 566.8 310.9 580.2 377.9 592.5

SHA256

LAN 13.5 191.9 19.9 226.7 30.5 233.5

EU-US 146.2 332.2 152.0 318.3 266.5 412.0

EU-AUS 362.5 568.2 394.1 587.0 650.4 612.4

MinCut

LAN 255.2 598.2 267.2 740.2 700.8 1255.9

EU-US 2616.6 896.7 2783.6 957.6 4911.9 1802.3

EU-AUS 8204.6 1069.1 8693.6 1163.1 13805.2 2001.3

Table 2.4 Experimental results for garbled circuits protocols (runtime in ms)

We summarize the experimental results in Table 2.4. The results are an average of
100 runs. The table includes timings for garbling, data transfer, and output compu
tation. TCP performs best for all circuit sizes in the LAN setting. One reason is that
when disabling Nagle's algorithm [125], the kernel's network layer with send packets
as soon as they arrive at the send buffer. Another reason is that the LAN setup is al
most ideal in terms of bandwidth, latency, and packet loss. All optimizations UDT has
are overhead because there are not degrading network conditions to compensate.

When running 2PC protocols in the EU-US WAN setting, circuit sizes impact the
performance. For AES and SHA256, TCP is still more efficient than UDT. However,
MinCut is 2.7–3 times faster by using UDT instead of TCP. Secure computation of
MinCut using GLNP15 with UDT is more efficient than under JustGarble or Half-Gate
using TCP.

When running 2PC protocols in the EU-AU WAN setting, the latency and packet loss
strongly affect the performance. Secure Computation of SHA256 with GLNP15, with
223,679 ciphertexts, using UDT is slightly faster than TCP. For MinCut, it is 7–8 times
faster than using TCP. This performance improvement exceeds the improvements
one can expect from secure computation protocol improvements [166].

Evaluation 45

TCP UDT

Just garble Half-Gate GLNP15
0

100
200
300
400
500
600
700

Ti
m
e
(m
s)

SHA256

Just garble Half-Gate GLNP15
0

2000
4000
6000
8000
10000
12000
14000 MinCut

Figure 2.12 Comparison of assumptions between EU and AUS

103 104

0
2000
4000
6000
8000
10000
12000
14000

Communication (KB)

Ti
m
e
(m
s)

TCP 300ms UDT 300ms
TCP 100ms UDT 100ms

Figure 2.13 TCP vs UDT as garbled circuit size increases

Figure 2.12 shows a comparison of the performance of TCP and UDT under the
three security assumptions. It further demonstrates the improvements which we
can achieve by choosing an appropriate transport layer protocol.

We see a comparison of TCP and UDT for increasing ciphertext sizes in Figure 2.13.
In this figure, we can see the impact of latency on TCP and UDT. The processing time
for UDT increases by 200 ms when the latency increases by 200 ms. The processing
time for TCP, however, significantly increases by magnitudes.

46 Framework for Optimal Transport Layer for Secure Computation

Conclusion 47

2.8 Conclusion
We demonstrate that bandwidth is not the performance bottleneck when choosing
appropriate transport layers. We showed that we achieve performance improve
ments for 2PC implementations with general-purpose transport layers. E.g., UDT
performed up to eight times faster compared to TCP. We also showed the benefit
of modular transport layers in our proposed framework. This design allows one to
easily change or extend transport layers without changing or recompiling the 2PC
application.

We set up a testbed to perform our evaluation. Even if local evaluations provide a
good benchmark, they do not reflect the behavior in real networks like the Internet.
We showed the effect latency, bandwidth, and packet loss have in a simulation,
comparing it to real network connections.

2.8.1 Future Research
We opened opportunities for follow-up research. One field might be to optimize
transport layers specifically for certain 2PC implementations. These optimizations
should adapt to parameters like communications rounds and the amount of data
sent for each iteration. Also, they should consider the network conditions. Integration
of such transport layer protocols will be straightforward using our modular design.

Another open field is the evaluation of different networks. While LAN and WAN
networks are similar, some networks have different conditions. Other networks have
become more crucial, like mobile networks (4G, 5G) or IoT networks (e.g., LoRaWan,
Zigbee, Thread). These networks introduce different restrictions like packet loss and
delay based on the position and limited payload sizes.

In our research, we only focused on 2PC and passive adversaries. A future using
Multi-Party Computations or active adversaries is another possibility.

48 Framework for Optimal Transport Layer for Secure Computation

CHAPTER 3

Public Key Infrastructures

To use cryptography, we need encryption keys. Most platforms use asymmetric keys
to reduce the number of keys. However, we must exchange these keys before we
can use them. We use the term certificate to bind cryptographic keys to objects, like
e.g., IP addresses, domain names, and email addresses. There are usually two forms
to distribute these public keys and their corresponding certificates. In one, there is a
consensus of multiple parties about which information we trust. The TOR network
and PGP rely on this kind of key distribution. Another way is to define trust anchors.
We create trust chains and assume that every chain that validates back to one of
the trust anchors is secure. Of course, this is only true if we trust the trust anchors.
But even if we trust these anchors, other problems arise. If we want to add a new
entry to this Public Key Infrastructure (PKI), one party, which is part of a trusted chain,
can add a new party. However, it will only do that if it can verify if that party owns
the email address, domain name, or IP address, it claims to own. The parties must
perform these verifications over the Internet, without any existing PKI to support this
step. This step is troublesome and error-prone due to attacks. In this chapter, we
will show the challenges of PKI validations. Since most services run using HTTP(S),
we will base our examples on web servers and clients. Of course, one can expand
this to everything that uses a PKI.

50 Public Key Infrastructures

Introduction 51

3.1 Introduction
The Public Key Infrastructure (PKI) is an essential part of the security of the Inter
net. It stores certificates that we can use to validate the identity and integrity of
connections over the Internet. Certificates hold information about a public key and
its corresponding Internet resource. To issue these certificates, we rely on Certifi
cate Authorities (CAs). They own special certificates which allow them to sign other
certificates. CAs are the trust anchors and the backbone of Internet security. Every
valid certificate chain traces back to one CA. If a client requests a certificate for a
domain, like example.org, the CA will verify if that client owns that domain and then
issue a certificate. The certificate contains numerous fields, including the domain
name and the public key of the server. The CA also adds a signature to the certificate
using the content of the certificate and its private key. When a client connects to
the server using the domain example.org, the server sends its certificate, and the
client can verify it. On success, the client will start to request data. Otherwise, clients
usually report an error to the user.

To perform these validations, Browsers include hundreds of registered CAs. We con
sider every certificate successfully tracing back to one of these CAs trusted. Correctly
verifying the ownership of the domains is crucial since one corrupted CA can put the
whole PKI in jeopardy. There are multiple approaches to validate the domain owner
ship: Domain Validation (DV), Organization Validation (OV), and Extended Validation
(EV). DV is the simplest. It provides multiple mechanisms, like sending emails to
that domain or checking for challenges and responses in the domain records. All
these mechanisms work automatically without human interaction from the CA. DV
assumes that only the owner of a domain can receive emails for specific addresses
or modify the domain's records.

Although OV and EV provide much higher security by requiring human interactions,
it is inefficient for the same reason. The process involves steps like communication
with the customer, phones calls, requesting additional documents, ... This manual
verification also takes longer, making instant certificates like in DV impossible. Also,
it is very costly, and prices can exceed $1000. Of course, one can also trick humans
doing the validation by, e.g., social engineering, but our research focuses on DV
since it is the most used mechanism nowadays. DV is fast, automated, cheap, and
supported by 99% of all CAs.

52 Public Key Infrastructures

After a CA issues a certificate, it should publish it to be accessible to all users.
Lightweight Directory Access Protocol (LDAP) directories are a common choice
for that. For the verification, this is not necessary. E.g., web servers usually send the
whole certificate chain, excluding the root certificate, to clients, so they do not need
to fetch any additional information. However, CAs must provide information about
the revocation status of a certificate. It must be possible to withdraw a certificate
even if the certificate has not expired yet. E.g., a reason to revoke a certificate may
be a leaked private key. Certificate Revocation List (CRL) is the current way to main
tain revocation information. It contains a list of all revoked certificates. Clients can
identify the certificate as revoked if the CRL includes it. Another option is to use the
Online Certificate Status Protocol (OCSP). With OCSP clients can query a server for
a certificate. Usually, CAs operate their OCSP servers. When querying a server for a
certificate, the server will reply with the status good, revoked, or unknown.

3.1.1 Contribution
We show how to manipulate domain validation mechanisms and obtain certificates.
We exploited the ownership verification with an off-path attack using DNS cache
poisoning. Using this attack, an attacker can pass domain validations and receive
fraudulent certificates for domains it does not own. We successfully launched the
attack against 7 CAs that use domain validation. However, even a single vulnerable
CA is enough to subvert PKI security. The PKI's security falls with its weakest link,
and a domain signed by one root CA is valid for every Internet browser.

Before ourwork, such off-path attackswere considered theoretical. Attackers actively
use DNS cache poisoning but use MitM techniques [63,143]. We demonstrate DNS
cache poisoning by using off-path attacks.

We developed a BGP simulator to evaluate BGP paths on the Internet. Our simulator
achieves higher performance and accuracy than other simulators. In combination
with our simulator, we analyze the resilience of the domains ecosystem to attacks
against domain validation. Our measurements show that the domains ecosystem
is not resilient to prefix hijacks. It reveals that only a few ASes own most of the
domains and that many have all their name servers on a single AS.

Introduction 53

We discuss mitigations. Cryptographic protection of DNS would prevent the attacks,
but full deployment is far from being complete. Thus, we propose the distributed
domain validation as a drop-in replacement for the standard domain validation. It
allows strong resistance against MitM attackers. We also show that many IPs are
anycast. While anycast does not provide any security for the standard domain
validation, distributed domain validation benefits from anycast IPs. We also analyze
the validations agents' placement on the Internet and propose ASNs for hosting
these. We also demonstrate a method to determine ASes that are good for agent
placement.

54 Public Key Infrastructures

Background 55

3.2 Background
Wewill define some basic background information needed for the following sections.
These include the domain validation itself and its underlying components.

3.2.1 Organization of Internet resources
The Internet Assigned Numbers Authority (IANA) is the central organization that su
pervises Internet resources like IP address blocks, the DNS root zone, Autonomous
System Numbers, and more. IANA does not manage all these resources and del
egates them to one of the five Regional Internet Registries (RIR) that manage re
sources for a specific region. The first is Réseaux IP Européens Network Coordina
tion Centre (RIPE NCC), founded in 1992. It operates in Europe, Central Asia, Russia,
and West Asia. The Asia-Pacific Network Information Centre (APNIC), founded in
1993, provides Internet resources to East Asia, Oceania, South Asia, and Southeast
Asia. The American Registry for Internet Numbers (ARIN), founded in 1997, serves
Antarctica, Canada, parts of the Caribbean, and the United States. The Latin America
and Caribbean Network Information Centre (LACNIC), founded in 1999, is respon
sible for the Caribbean (excluding the parts from ARIN) and Latin America. Finally,
the African Network Information Center (AFRINIC), founded in 2004, serves Africa.
These RIRs allocate address blocks to Local Internet Registries (LIRs). Most of the
LIRs are Internet Service Providers, enterprises, and academic organizations. If a,
e.g., a small company in the United States needs an IP address block, it would get
this from an LIR that is a member of ARIN. Membership is a requirement for every
LIR. That small company would then receive an IP block from that LIR. This IP block
is part of ARIN allocated IP blocks.

56 Public Key Infrastructures

$ORIGIN example.org.
$TTL 86400
@ SOA dns1.example.org. hostmaster.example.org. (
 1970010101 ; serial
 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour
 604800 ; expire after 1 week
 86400) ; minimum TTL of 1 day

 NS dns1.example.org.
 NS dns2.example.org.
 MX 10 mail.example.org.

dns1 A 192.0.2.1
dns2 A 192.51.100.1

mail A 192.0.2.3

host A 192.0.2.4

ftp CNAME host.example.org.
www CNAME host.example.org.

Listing 3.1 Example zone file for example.org

3.2.2 Domain Name System
The Domain Name System (DNS) is a hierarchical system for name lookups. Without
DNS we could only access computers on the Internet by knowing their IP addresses.
With DNS we can use names. While one can also use it in private networks, when
talking about DNS without any further explanation, we are talking about the DNS of
the Internet. A DNS zone contains all information about a domain and its subdomains.
We usually refer to DNS zones as zone files since they are often (but not always)
plain text files containing all information. We can see an example of such a zone file
in Listing 3.1. We call each entry in a zone a record. The most important record is the
SOA (Start of Authority) record. It contains information about the contact email (in
this example hostmaster@example.org) and the primary name server. Name servers
answer queries for DNS records. The name server in the SOA answers queries for
this domain. The serial, refresh, retry, and expire information is for secondary name
servers, which pull from this name server. With this information, secondary name

Background 57

Hostname IPv4 IPv6 Operator

a.root-servers.net 198.41.0.4 2001:503:ba3e::2:30 Verisign, Inc.

b.root-servers.net 199.9.14.201 2001:500:200::b University of Southern California

c.root-servers.net 192.33.4.12 2001:500:2::c Cogent Communications

d.root-servers.net 199.7.91.13 2001:500:2d::d University of Maryland

e.root-servers.net 192.203.230.10 2001:500:a8::e NASA (Ames Research Center)

f.root-servers.net 192.5.5.241 2001:500:2f::f Internet Systems Consortium, Inc.

g.root-servers.net 192.112.36.4 2001:500:12::d0d US Department of Defense (NIC)

h.root-servers.net 198.97.190.53 2001:500:1::53 US Army (Research Lab)

i.root-servers.net 192.36.148.17 2001:7fe::53 Netnod

j.root-servers.net 192.58.128.30 2001:503:c27::2:30 Verisign, Inc.

k.root-servers.net 193.0.14.129 2001:7fd::1 RIPE NCC

l.root-servers.net 199.7.83.42 2001:500:9f::42 ICANN

m.root-servers.net 202.12.27.33 2001:dc3::35 WIDE Project

Table 3.1 All 13 DNS root servers

servers know how often to check for updates and when to stop. A different serial
number indicates a change in the zone for the secondary servers. The TTL (Time
to Live) field is for negative caching, i.e., how long a secondary server should cache
failed queries.

Besides the SOA, we can also see an NS (name server) record, an A (IPv4 address)
record, an AAAA (IPv6 address record, pronounced quad A), and an MX (mail ex
change) record. There are also two CNAME (Canonical Name) records that functions
as an alias. These records point from one domain to another. There are other records,
but the most important DNS records for our research are NS, A, and CNAME. In List
ing 3.1, we can also see an $ORIGIN and a $TTL. The first defines the origin of
the zone file, in this case, example.org.. The name server will append to every
thing ending without a full stop the domain example.org., e.g., dns1 will become
dns1.example.org.. The TTL, however, is particularly important for our research.
It defines how long a DNS resolver should cache the response.

DNS resolutions are recursive. There are thirteen root servers on the Internet. These
globally distributed servers allow redundancy and avoid single points of failure. We
can see a list of all root servers in Table 3.1. For every recursive lookup, we start
from one of these root servers. Since there is no way to lookup root servers, these

58 Public Key Infrastructures

servers are hardcoded into every DNS resolver. As an example, we want to look up
the IP address for example.org.. We assume we have no information cached and
must perform a full recursive resolution. The full stop at the end indicates a root
server. We query one of the root servers for a name server that answers queries for
.org. The first domain, i.e., the last part of a domain name like .com, .net, ..., is the
Top-Level Domain (TLD). In our example, the name server replies with a randomized
list of DNS name servers for .org. The randomization is for load-balancing reasons,
and we pick the first one, e.g., d0.org.afilias-nst.org. Only if a query to that server
fails, we fall back to the second entry. We ask the current name server for the
name server of example.org.. This server then replies with the name server for
that domain, which is in this example a.iana-servers.net.. Now we have to
do the same steps again and query the root servers for .net. Then query, e.g.,
e.gtld-servers.net. for iana-servers.net.. This server then outputs a list
with all name servers for that domain and the corresponding IP addresses. Now
we can query a.iana-servers.net., since we know the IP address, for the A
record of example.com.. The response includes the IP address 93.184.216.34 and
a TTL of 86400 seconds (1 day). Because the resolution involves so many steps,
DNS resolvers cache the result and answer future queries using the cached value
until the cache expires. So, when a DNS resolver recursively resolves a domain, it
will also cache all intermediate steps. In addition to the query, a name server may
supply information the client did not request. E.g., when asking for a name server, it
may already return the IP addresses of all name servers. We call these glue records.
They speed up the lookups and keep the number of queries needed small. However,
sometimes this information is crucial to avoid infinite loops, where for instance we
require .net to resolve .org but the .net name server relies on another .org name
server.

Writing a recursive DNS resolver is a non-trivial task. Because of the high demand
of all Internet users and potential loops, developers must rely on glue records and
other caching strategies. These optimizations can also lead to security flaws like
cache poisoning, which we will explain next.

Background 59

3.2.3 DNS cache poisoning
With DNS cache poisoning, an attacker manipulates the resolver's DNS cache to
return incorrect data. If we modify a DNS resolver's cache to point example.org to
an IP we control, it will answer to succeeding queries with our IP address, effectively
hijacking that domain and impersonate it. We can achieve this in multiple ways. One
way would be to intercept the connection between the resolver and the name server
by, e.g., a Man in the Middle (MitM) attack. We will also show a way to achieve this
using an Off-Path attacker later in this chapter. When receiving a DNS response, the
resolver checks if the Transaction ID (TXID) and source port are the same. Accord
ing to RFC5452 [102], clients should use random ports and TXIDs. Both fields are
16 Bit. Initially, DNS resolvers only used the TXID to validate responses. After the an
nouncement of Kaminsky's cache poisoning attack, DNS resolvers received patches
lowering the initial 1/216 down to 1/232. In addition, RFC6056 provides recommendations
for TCP port randomization. Another way is to abuse glue records. Depending on
the implementation of the DNS server, it might cache glue records we provide for
another domain.

Attackers can use DNS cache to distributemalware, steal credentials, enforce censor
ship [10], or surveillance [99]. Financial gain can be another use case where attackers
use this technique to steal money or cryptocurrencies.

The Internet Engineering Task Force (IETF) designed and standardized in RFC4033
to RFC4035 [13–15] the Domain Name System Security Extensions (DNSSEC) to mit
igate DNS cache poisoning attacks. However, DNSSEC requires significant changes
to the DNS infrastructure and the protocol. The initial proposed standard dates to
1997 [67]. Sadly, DNSSEC is still not widely deployed, and most countries did not
pass 50% yet [11].

60 Public Key Infrastructures

3.2.4 WHOIS
TheWHOIS protocol allows querying databases that store information about Internet
resources like domain names, IP address blocks (sometimes called prefixes), and
Autonomous Systems. RFC3912 [60] defined the current version of the protocol in
2004. Every RIR provides a database for the resources they delegated. E.g., we can
use RIPE's database to look up the registrant of an IP block. For the resources, there
are different blocks like administrative or technical contact or information about the
LIR. If we look up Google's Public DNS Server using a whois lookup, we see that ARIN
delegated the prefix 8.0.0.0/9 to Level 3. Level-3 then delegated the prefix 8.8.8.0/24,
which is part of that block, to Google.

3.2.5 Domain Validation
Domain Validation is by far the most popular choice for ownership validation. We
extracted 122 Root CAs from Windows (Internet Explorer), macOS, iOS, and Linux
(Mozilla). Out of these 122 CAs, 51% support DV. These 51 CAs control more than
99% of the certificate market share [128,162].

The process to obtain a certificate using DV is in most cases as follows. An applicant
generates a Certificate Signing Request (CSR) using OpenSSL or a similar tool. The
CSR contains information such as the organization name, the domain name, the
country, and the public key. The applicant uploads this CSR to a CA including other
information, like which DV method to use. The CA will then use the supplied DV
procedure to validate the domain.

There are multiple methods for DV and not all CAs support all of them. We show a
list of which CA supports whichmethods in Table 3.2. All methods rely on DNSwhich
makes them vulnerable to DNS cache poisoning. The DV methods are as follows:

Email-Based DV When an applicant selects this option for DV, the CA will send an
email. Of course, the applicant cannot freely decide which email to use. Instead,
the CA provides a list of emails to choose from, like, e.g., admin@example.org. The
email contains a validation code that the applicant can enter on the CAs website or
a link to complete the validation. If we provide a valid code by entering it on the CAs
web page or opening a link from an email the link, the CA will issue a certificate.

Background 61

Email DNS HTTP(S) WHOIS

COMODO

DigiCert

Entrust

GeoTrust

GlobalSign

GoDaddy

Network Solutions

SSL.com

SwissSign

Thawte

Trustwave

Symantex

Startcom

Let's Encrypt

Unizeto

NETLOCK

IdenTrust

RapidSSL

StartSSL

Certum

InstantSSL

Table 3.2 List of supported DV methods of CAs

WHOIS-Based DV This method is similar to the Email-Based DV. The main difference
is that the applicant cannot choose the email address at all. The CAs will select an
email address from the Admin, Registrant, Tech, or Zone contact of the domains
WHOIS record.

62 Public Key Infrastructures

DNS-Based DV For this DV method, the CA requests the user to modify the zone
of the domain. The CA will calculate a challenge and a response for the applicant
to set up. These challenges and responses are usually cryptographic hashes. E.g.,
we assume that an applicant wants to get a certificate for the domain example.org.
The applicant must generate a CNAME record with the challenge that points to the
response:

<challenge>.example.org. CNAME <response>.example.org

The CA's DNS resolver then queries the name server. It checks if the CNAME record
with the challenge is present. If it also points to the correct response, the CA will
issue a certificate.

HTTP/S-Based DV This method is like the DNS-Based DV method. However, instead
of modifying the DNS records, the applicant must place a file on a webserver. E.g.,
the file name is the challenge, and the content is the response. So, if an applicant
wants to verify the domain example.org, the CA will make an HTTP(S) request for
a file on a predefined directory, e.g., the root directory or .well-known, named
<challenge>.txt and check that the content of the file equals the response. If
https://example.org/<challenge>.txt is valid, the CA will issue a certifi
cate.

Related Work 63

3.3 Related Work
Since our work combines different research fields, we must cover a broader range
of related work. In this section, we will show work related to our research arranged
into distinct categories.

3.3.1 DNS cache poisoning
We already knew about the potential dangers of cache poisoning in the late nineties.
Even so, researchers warned about the vulnerability Dan Kaminsky was the first to
demonstrate an attack in 2008 [107]. The attack targets DNS resolvers that used
fixed or incrementing source ports. Following the publication, RFC5452 [102] rec
ommended patches, including randomizing source ports or randomly selecting the
name servers. However, these patches did not last long and were, shortly after their
introduction, circumvented. [94,97] demonstrated how to predict ports using side
channels. [95,96,144] bypassed the patches by using fragmentation. However, these
attacks do not guarantee a successful attack. If the DNS resolver already has cached
a value, it will ignore DNS records until the cache expires. [111,148] studied the be
havior of DNS resolver caches to find out in which conditions resolvers will overwrite
the cached value. Furthermore, in [110,140], researchers analyzed multiple actors of
publicly shared DNS resolution platforms and the caches of these platforms. [145]
examined the behavior of various forwarders in DNS resolution chains that lead to
cache poisoning vulnerabilities.

In theory, DNSSEC [13–15] prevents cache poisoning attacks. However, we see
vulnerabilities and misconfigurations in DNSSEC key generation and management.
These flaws affectmore than 35% of all signed domains [53,58,146]. [90] showed that
DNSSEC could not prevent replay attacks that redirect clients to incorrect servers in
Content Distribution Networks (CDNs).

64 Public Key Infrastructures

3.3.2 CA Compromises
A web browser assumes that a connection is secure if it can validate the certificate
chain, and that chain ends with one CA certificate on its list. Issuing a certification
and validating ownership requires no human action. These properties spawned a
big certificate market. However, more CAs also mean more dangers. One vulnerable
or compromised CA is enough to subvert any domain.

There is a long history of attacks against CAs. A bug in Debian's OpenSSL from
2006 to 2008 resulted in about 26k vulnerable certificates [71]. The flaw resulted in
private keys having only 15-17 bits of entropy. In 2011, an attacker compromised
DigiNotar [30]. Vendors immediately had to remove that CA from their products.
Security proposals included directions for users to manually remove DigiNotar from
their list until the vendors patched it. Attackers signed a wildcard domain (valid for
all subdomains) for google.com to spy on Iranians. In 2015, attackers obtained a
certificate for Microsoft's live.fi domain. It is part of Microsoft's Live email server,
and attackers registered the email hostmaster@live.fi, which Microsoft did not block,
and no other user already used. Using Email-Based Domain Validation, the attacker
successfully proved their ownership to Comodo. In 2015, Egyptian ISPMCS holdings
received an unconstrained intermediate certificate from China Internet Network
Information Center (CNNIC). MCS used to certificate for deep packet inspections
of encrypted traffic in firewalls. However, this certificate could sign any domain
and MCS. With this certificate, CNNIC violated root CA policies, resulting in the
removal from, e.g., Mozilla's Root CA list. In 2016, the Chinese CA Wosign issued
certificates for GitHub due to a faulty domain validation [141]. If a user could prove
ownership of a subdomain, the CA would assume ownership of the base domain.
[9, 70, 98] documented loopholes in PKI ecosystems. In addition, many browsers
accept 1024-bit RSA keys. We can assume that nation-state attackers can break
keys with that bit size [20].

[28,29] also pointed that how attackers can use the Border Gateway Protocol (BGP)
using prefix hijacking to bypass domain validation.

Related Work 65

3.3.3 PKI defenses
TLS and the PKI received new security mechanisms to prevent attacks or limit the
consequences. These include Certificate Transparency (CT), HTTP Strict Transport
Security (HSTS), HTTP Public Key Pinning (HPKP), and TLS fallback Signaling Cipher
Suite Value (SCSV), which prevents downgrade attacks. However, there are also
attempts to create alternative PKIs and proposals for supplementary entities to store
and check certificates. One attempt is monitoring CAs' behaviors. Examples for
this are CT [117], Sovereign Keys [72], Accountable Key Infrastructure (AKI) [109],
Attack-Resilient Public Key Infrastructure (ARPKI) [21], and distributed PKIs [4, 48,
151,159]. The DNS-Based Authentication of Named Entities (DANE) [69] relies on
DNSSEC [13–15]. It provides a list of trusted CAs that can issue certificates for that
domain. Another approach that lists acceptable CAs is the DNS Certificate Authority
Authentication (CAA) Resource Record [89]. These methods complement existing
certificates. Their biggest downsides are the overhead and complexity involved,
which complicates deployment and thus sees no adoption. Since January 2015, the
Chrome Browser utilized CT and, since June 2016, started to display undisclosed EV
certificates as untrusted [81].

In 2004 [131] proposed CoDNS, intending to improve the availability and performance
of DNS lookups. In CoDNS, trusting nodes agree to resolve each other's queries when
their lookups are failing. The adoption of CoDNS requires modifications of the DNS
resolvers. Our proposed solution works with no further changes to the existing
servers. The main goal of CoDNS is to improve performance and not to improve
security. A single malicious DNS resolver can compromise the whole DNS lookups.

ConfiDNS [134] extends CoDNS. It uses peer agreements to ensure security to
queries. It forwards DNS responses from multiple hosts to a local resolver and
uses per-site lookup histories. However, the collection of DNS responses centrally
without further security mechanisms creates another attack surface.

Perspectives [159] builds a notary system where hosts can lookup known keys.
Notary hosts keep track of server keys. Clients can query the log and check if the
key matches.

66 Public Key Infrastructures

DoubleCheck [7] prevents attacks when retrieving certificates for the first time. It
uses a remote host over TOR to use an alternative path. This solution, however, is
unsuitable for domain validation since it assumes correct certificates.

After making our DV++ implementation available in March 2017, [28,29] and LetsEn
crypt proposed a similar approach, called multi-VA. They locate these VAs in the
same ASes (ASN16509 - Amazon, ASN13649 - Flexential Colorado Corp.). In con
trast, we ensure that nodes are not in the same AS. Also, we check that the paths
between the nodes and name servers do not overlap.

Off path attacks against Domain Validation 67

3.4 Off path attacks against Domain Validation
In this section, we show how we can maliciously obtain a certificate for a domain.
We trick the CA into issuing a certificate, which we do not own, by utilizing DNS cache
poisoning with off-path attacks. We inject our mail server into the DNS cache to
successfully path the Domain Validation (DV) process. The attack combines different
components. First, we trigger a DNS request by the CA to our name server. Then,
we must match the challenge-response values with a specially crafted spoofed DNS
response. We will describe all the steps necessary and present the attack. Further,
we will provide a measurement study of the CAs and the potential victim domains.
This study provides an estimate of how many clients and servers are vulnerable to
our attack.

3.4.1 Triggering the DNS Request
The first obstacle we must overcome is triggering the DNS request. The DNS re
solvers from CAs do not answer external queries. However, we can use the CA's
website and force a DNS query. First, we upload a CSR. Then, the CA extracts the
target domain from the CSR and provides us with all supported DV methods and
their options. As our target domain, we choose example.org.

3.4.2 Defragmentation Cache Poisoning
Our next obstacle is to generate a spoofed DNS response, including our name server,
which the CA's resolver will accept. Our period for the attack begins with the initial
DNS request and ends with a timeout or the correct response. For a valid response,
we need the matching source port and TXID. According to RFC5452 [102], DNS
resolvers should randomize these values.

68 Public Key Infrastructures

Octet
Octet Bit

0 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

00
324
648
9612
12816
16020
19224
22428
25632
28836
32040

IP

Version=4 IHL=20 TOS Total Length=56
IPID DFMF Fragment Offset

TTL Protocol=17 IP Header Checksum
Source IP = 7.7.7.7

Destination IP = 2.2.2.2

UDPSource Port = 12345 Destination Port = 53
Length = 56 UDP Checksum = 0

DNS

TXID = 76543 QR Opcode AA TC RDRA Z RCODE
Question Count Answer Record Count

Authority Record Count Additional Record Count

Payload

Question Section
Answer Section
Authority Section
Additional Section

Figure 3.1 DNS request packet

Figure 3.1 shows the structure of a DNS request. In this example, we see a DNS
request from the DNS resolver at the IP address 7.7.7.7 to a name server at the IP
address 2.2.2.2. The resolver sends the packets from port 12345 to port 53 of the
name server. The TXID is 76543. With the source ports and TXID fields being 16 bits,
we have 32 bits of entropy with 232 values. An attacker must spoof a DNS response
with the correct port and TXID, which seems like an impossible task. However, we
will show how to circumvent these restrictions and successfully poison a DNS cache
using off-path attacks using overlapping IPv4 fragments. We use these fragments
to manipulate legitimate DNS responses. We overwrite the DNS answer but keep
the original port and TXID. We will show how to force a server to use fragmentation
by limiting the Maximum Transmission Unit (MTU).

Off path attacks against Domain Validation 69

3.4.2.1 Forcing IP fragmentation
The MTU is the largest size of bytes that one can transmit over a single network
transaction [136]. The Path MTU from two endpoints is equal to the smallest MTU
on the path. E.g., we cannot send packets bigger than the MTU. To circumvent this
limitation, the Internet Protocol includes fragmentation. With fragmentation, we can
split big packets into smaller ones. Most networks support aMTUof 1492 bytes (with
PPPoE overhead) or 1500 bytes [122]. RFC791 [136] defines the smallest possible
MTU to 68 bytes. Since most DNS responses do not exceed 1500 bytes, they do
not get fragmented. Of course, there are exceptions like DNSSEC, which exceeds
1500 bytes due to its many cryptographic records.

For our attack, we must force a low MTU, such that the first fragment contains the
source port and TXID, which are too hard to guess, and the second fragment contains
the information we want to overwrite.

Path MTU discovery [124] is a mechanism to probe the lowest MTU on the path.
Hosts set the Do Not Fragment (DF) bit in the IP header. When we enable the DF bit,
routers along the connection do not fragment the packets. Instead, theywill reply with
an error including Type 3 (ICMPDestination Unreachable) and Code 4 (Fragmentation
Needed and DF set). On receiving such an error, the Operating System will store
this information. Linux, e.g., will store this information for 10 minutes. Everyone
on the Internet can send such an ICMP error message. Since the sender does not
know all the routers on the path, it will accept ICMP error messages from every IP
address. Thus, we can use these messages as an off-path attacker to force a host
to assume a smaller MTU. We measured how many servers reduce the MTU using
this technique. We used the Alexa Top 5K list, where 33,4% up to 296 bytes. 11%
even reduced it below 296 bytes. 80% of the servers will reduce the packet size to
600 bytes or lower. The minimal value in the Linux kernel is 552 bytes by default,
while RFC1191 [124] recommends 576 bytes.

Unlike ICMP with TCP headers, Operating Systems, e.g., Linux 3.13, do not verify
ICMPmessages with UDP headers since UDP is stateless. Thus, we can easily spoof
ICMP Fragmentation Needed errors.

70 Public Key Infrastructures

Octet
Octet Bit

0 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

00
324
648
9612
12816
16020
19224
22428
25632
28836
32040
35244
38448
41652

IP

Version=4 IHL=20 TOS Total Length=56
IPID DFMF Fragment Offset

TTL Protocol=1 IP Header Checksum
Source IP = 6.6.6.6

Destination IP = 2.2.2.2 ICM
P

Type = 3 Code = 4 ICMP Checksum
Unused MTU = 68

IP

Version=4 IHL=20 TOS Total Length=76
IPID DFMF Fragment Offset

TTL Protocol=17 IP Header Checksum
Source IP = 2.2.2.2

Destination IP = 7.7.7.7

UDPSource Port = 53 Destination Port = 12345
Length = 56 UDP Checksum = 0

Figure 3.2 ICMP fragmentation indicating an MTU of 68 bytes

In Figure 3.2, we see an example ICMP Fragmentation Needed error sent from at
tacker IP 6.6.6.6 to a name server at IP 2.2.2.2. The payload of the ICMP packet is the
IP header and the first eight bytes of the original packet that caused the error. The
error tells the name server at 2.2.2.2 to reduce its MTU to 68 bytes when connecting
to the DNS resolver at 7.7.7.7.

3.4.2.2 IPv4 Fragmentation Reassembly
When a host receives fragments of an IP packet, it stores them in a defragmentation
cache, by default for 30 seconds. It will use the IP ID value to identify which IP
fragments belong to the original IP packet. All IP fragments of a single IP packet
will have the same IP ID. The offset field indicates the order. However, IP fragments
can overlap, i.e., the offset of an IP fragment is smaller than the size of the previous
fragment. The latest IP fragment will overwrite data from earlier IP fragments. The
More Fragments (MF) bit indicates that the current packet is incomplete, and more
IP fragments follow. The last IP fragment will have this bit set to zero.

In our attack, we exploit IP fragmentation. We trick a DNS resolver into reassembling
the first fragment of a valid response with our second fragment, bypassing the
security mechanisms of DNS. However, we still must predict the correct IP ID. The IP
ID must be unique for every source-destination pair according to the RFC791 [136].
Operating Systems usually use one of three algorithms [77]. One is to increment the

Off path attacks against Domain Validation 71

value, either globally or per destination. Another way is to use random IP IDs. From
the Alexa Top 10k domains, 60% used globally incrementing values, 40% incremented
values per destination, and less than one percent used random IP IDs.

While Windows uses a globally incrementing IP ID, Linux Operating Systems default
to increments per destination. Attacking the globally incrementing IP ID is straightfor
ward. An attacker probes its victim using IP connections and measures the increase
rate. The attacker can then determine the IP ID the name server will use to send its
DNS response. But even if the server increments the IP ID per destination, we can
still estimate the IP ID. For our attack, we used the method presented in [112]. The
algorithm is complex and not part of this work, and we refer to [112] for a detailed
explanation. The last option is to use fully randomized IP IDs. It introduces overhead
because the server must check for collision, which we do not need for incrementing
IDs. For that reason, not many servers use randomized IP IDs. The IP ID field is 16
bits. A randomized IP ID would be the hardest out of the three with a success prob
ability of 1/216. For all three attacks, we can raise the success probability by sending
multiple fragments. If we could send 216 fragments, our success probability would
be 100% for randomized IDs. However, Operating Systems limit the number of IP
fragments it stores, e.g., Windows only allows 100 fragments, and recent versions
of Linux limit this to 64 IP fragments.

Another obstacle is the UDP checksum. RFC768 [135] describes the calculation of
the checksum. It is a simple algorithm designed for error correction and not for
security. Receivers of UDP datagrams will discard them if the checksum is incorrect.
When reassembling the fragments, the UDP checksummust be valid. So,, if we send
our second fragment, the assembled datagram must still have the same checksum.
Because the algorithm is so simple, we can efficiently achieve this. We force a
fragmented response to our IP address. Then we modify the second fragment
and calculate its difference. Remember, the content of the first fragment changes
every time. However, if we maintain the same checksum for our modified second
IP fragment, the checksum of the reassembled packet will be the same. We can
change the checksum to any value by appending two bytes. Hosts will strip these
remaining bytes because they exceed the value from the UDP length field.

72 Public Key Infrastructures

Octet
Octet Bit

0 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

00
324
648
9612
12816
16020
19224
22428
25632
28836

IP

Version=4 IHL=20 TOS Total Length=85
IPID = 23456 DFMF Fragment Offset = 48

TTL Protocol=17 IP Header Checksum
Source IP = 2.2.2.2

Destination IP = 7.7.7.7 Answ.

Data Length = 4 IPv4 Address
6.6.6.6 Additional

Name = 0 Type
OPT UDP Payload Size = 4096 EXTENDED-RCODE = 0

Version = 0 DO Z Data Length
0

Figure 3.3 Malicious second fragment modifying the mail server to the IP 6.6.6.6

3.4.2.3 Exploiting fragmentation
Let us assume we want to get a certificate for the domain vict.im. First, we must do
some preparations. We need to collect a fragmented DNS response and determine
which fragmentation we need using the ICMP Fragmentation Needed error. Once
we know the MTU we will use, we modify the second fragment and fix the checksum
by appending bytes. Our next step is then to estimate the IP ID. Once we have
these requirements, we can place our second fragment in the cache of the CA's DNS
resolver. This fragment changes the mail server to point to our IP address. Figure 3.3
illustrates an example of such a second fragment. We must ensure that the DNS
resolver and the name server use the MTU we previously determined using the ICMP
Fragmentation Needed error. In our example, we use the E-Mail Based Domain
Validation. The CA cannot send a verification code to, e.g., hostmaster@vict.im
if it does not know the IP address of the mail server responsible for that domain.
Therefore, the CAmust resolve themail server (MX) and its IP address (A). Our attack
lowered the MTU, and the CA will receive fragments. In our example, we have chosen
an MTU of 68 bytes. For the IP resolution, the CA's DNS resolver will receive two
IP fragments. The first fragment contains the correct port and TXID. We show an
example of the first fragment in Figure 3.4. However, our second fragment is already
in the cache. The DNS resolver will discard the original second fragment considering
it as duplicate. Now that the CA seems to know the mail server, it will send a mail.
However, since we modified the second fragment to contain our mail server, we will
receive themail with the validation code. Now, we can finish the Domain Validation by
entering the validation code on the CA's website. With the finished Domain Validation,
we can download our signed certificate.

Off path attacks against Domain Validation 73

Octet
Octet Bit

0 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

00
324
648
9612
12816
16020
19224
22428
25632
28836
32040
35244
38448
41652
44856
48060
51264

IP

Version=4 IHL=20 TOS Total Length=85
IPID = 23456 DFMF Fragment Offset = 0

TTL Protocol=17 IP Header Checksum
Source IP = 2.2.2.2

Destination IP = 7.7.7.7

UDPSource Port = 53 Destination Port = 12345
Length = 65 UDP Checksum = 0x14de

DNS

TXID = 76543 QR Opcode = 0 AA TC RDRA Z RCODE = 0

Question Count = 1 Answer Record Count = 1
Authority Record Count = 0 Additional Record Count = 1

Question

4 m a i
l 4 v i
c t 2 i
m 0 Type = A

Class = IN Answ
er

Name (Pointer)
Type = A Class = IN

TTL

Figure 3.4 First fragment from the name server 2.2.2.2 to the resolver at 7.7.7.7

3.4.3 Overwriting DNS caches
The attacks we presented allow us to bypass DNS's security mechanisms. However,
there is still one catch. The method only succeeds when the domain is not in the
DNS resolver's cache. Very often, the DNS cache already contains popular internet
domains. In that case, the DNS resolver will ignore the information from the response
and use its cache. The next step is to trick the resolvers and overwrite their caches.

There is no general approach to force DNS resolvers into overwriting their caches.
Different DNS implementations have individual logic. RFC2181 [74] recommends
ranking priorities, i.e., which values have precedence over others. The implementa
tion, however, differs from software to software. We can use these differences to
fingerprint the software. We characterized DNS caches of CAs and evaluated under
which conditions new values can replace the cached ones. The study builds upon
the evaluations of [111].

74 Public Key Infrastructures

3.4.3.1 Setup
We used the domain vict.im and its subdomains for our study. The zone file contains
six name servers. Each name server had a corresponding IPv4 (A) and IPv6 (AAAA)
address, three mail servers (MX), and other records like anti-spam records (SPF). We
cause CAs to send DNS requests, which wemonitor. For the response, we built a tool
using Standford's DNS server library in Perl. Finally, we use the collected information
to categorize the DNS caches and their overwriting behavior. We selected payloads
presented in [111]. We measured the minimumMTU values of popular Alexa servers
and found that often we can reduce its value to 68 bytes.

3.4.3.2 Vulnerable Certificate Authorities
We found that some CAs share the same infrastructure. We will group these CAs.
We also found that the following CAs were vulnerable to overwriting attacks:

COMODO, InstantSSL, NetworkSolutions, SSL.com These CAs use the same mail
server (mcmail1.mcr.colo.comodo.net) and the same caching DNS resolver. Our
study indicates that the resolvers use Bind 9 with DNSSEC validation.

Thawte, GeoTrust, RapidSSL These also share a single mail server and the same
DNS resolver.

StartCom, StartSSL StartCom stopped issuing new certificates in January 2018.
Both use the same mail server and the same DNS resolver.

SwissSign Uses BIND 9.

Off path attacks against Domain Validation 75

3.4.4 Challenges
The attack does not work against all CAs. We require the following conditions: The
CA must use an automated Domain Validation method. The DNS resolver and the
network of the CAmust allow fragmented responses. Also, the domain's name server,
which we attack, must not filter ICMP fragmentation needed error messages. If the
resolver's cache is not empty, the resolver must be vulnerable to at least one of the
overwriting attacks.

Another big challenge is combining all attacks to trick the domain validation. Since
off-path attackers cannot monitor any communication of its victim, the attacker
must predict events. Triggering the query, measuring the IP ID, and constructing
the spoofed second fragment must be conducted in the correct order and timing.
We can only indirectly trigger DNS queries by using the submission from the CA's
website. This condition makes it is harder for us to fingerprint DNS resolvers and to
analyze their caching behaviors.

Additionally, one must conduct some preprocessing before the attack. Some servers
do not fragment at the forced position. E.g., if we try to reduce the MTU to 512 bytes,
the server might use 500-byte fragments. The attacker must adjust the attack by
using padding or utilizing compression [123] in DNS to make it work.

Another hurdle is when servers use randomized IP IDs. In our research, we used
a name server with a globally increasing IP ID. Depending on the load on a name
server, estimating IDs can be quite easy or quite challenging. It may take multiple
attempts for the attack. Fortunately, name servers are not as crowded as, e.g., web
servers. It even gets worse if name servers use randomized IP IDs. For randomized
IDs, the attacker must predict the pseudo-random sequence. Another option is to
try the attack multiple times using brute force. However, random IP IDs are rare on
the Internet.

3.4.5 Mitigations
We have shown that it is feasible to attack domain validation using off-path cache
poisoning attacks. We identified a few vulnerable CAs. However, it does not matter
howmany CAs are vulnerable since only a single CA is sufficient to issue a certificate
for every domain.

76 Public Key Infrastructures

3.4.5.1 Blocking fragments
Blocking all fragments seems like simple mitigation. Without fragmentation,
there would be no fragmentation cache poisoning. However, MTUs smaller than
1500 bytes are natural on the Internet. E.g., most DSL users have an MTU of
1492 bytes because Point-to-Point Protocol over Ethernet (PPPoE) requires 8 bytes.

Using data captures from the Center for Applied Internet Data Analysis (CAIDA) we
examined how common fragmentation is on the Internet. CAIDA runs two Internet
monitors in the Equinix datacenters in Chicago and San Jose. These monitors
capture packets and anonymize those. The resulting dataset is available as a gzipped
PCAP file. We analyzed 14484 traces in 121 datasets, representing data from 9 years
(2008 - 2016). We observed that one in 135k packets in an ICMP fragmentation
needed packet. Our measurement reveals that blocking traffic would block many
Internet clients.

Also, just blocking fragments would not fix the vulnerability. Attackers may use
other approaches to bypass randomization or poison DNS resolver caches. Off-path
attackers are the weakest attackers. It is not uncommon that attackers launch MitM
attacks, e.g., using BGP prefix hijacks [142].

3.4.5.2 DNSSEC
The IETF standardized the Domain Name System Security Extensions (DNSSEC) in
RFC4033 to RFC4035 [13–15] to mitigate DNS cache poisoning attacks. DNSSEC
even prevents MitM attackers. DNSSEC extends DNS with cryptographic func
tions, which allow owners to sign their domains and prevent modification. DNSSEC
prevents DNS cache poisoning when fully deployed. However, two decades af
ter DNSSEC proposal and standardization, only 27% of DNS resolvers validate
DNSSEC [11], and only 1% of all domains are signed [163]. [146] and [53] show
problems with DNSSEC key generation. It is unclear when these issues get resolved
and when wewill see a fully deployed DNSSEC. However, without these requirements,
we cannot see DNSSEC as mitigation yet.

Optimized BGP Simulation for Evaluations 77

3.5 Optimized BGP Simulation for Evaluations
While BGP simulators are not essential for the PKI or domain validation, it is crucial
for our Internet evaluations. The Internet is a distributed interconnection of multi
ple networks. We cannot take parts offline or attack parts of the Internet without
damaging critical infrastructures. Also, by just using the Internet, we know nothing
about the routing of packets. Not all routing policies are public. Thus, simulating
BGP paths is a suitable alternative.

We developed a simulator for the evaluation of BGP prefix hijack attacks as well as
the evaluation of countermeasures against hijacks. Our simulator uses a dataset of
target networks, e.g., hosting Internet domains, and the CAIDA AS relationship, i.e.,
customer to provider or peer to peer dataset [47], to determine the paths between
ASes. CAIDA analyzes data traces and infers relationships from these. The relation
ship dataset has specific routing rules, i.e., zero or multiple customer-to-provider
connections, zero or one peer-to-peer link, and zero or multiple provider-to-customer
connections.

Our simulator uses breadth-first search taking into consideration also the AS rela
tionships. Other simulators, e.g., [55, 78], ignore the relationships and generate a
simple non-directed graph. The result is low performance and inaccuracies in mea
surements. The goal of those simulators is statistical evaluation, e.g., the success
probabilities of attacks, rather than resolving individual paths. There are also very
advanced simulators like GNS3 [147] that can simulate networks by fully simulating
each router. However, doing this for over 65000 nodes is not practical.

Additionally, we optimized memory allocations and implemented a new feature:
finding the BGP paths. We do not need advanced features like simulating BGP
message exchanges between routers. Instead, we focus on performance and provide
simulations within minutes in contrast to hours with other simulators. We also
implemented non-optimized simulators using different algorithms to cross-validate
the results.

78 Public Key Infrastructures

of ASes 71431

Average degree 11.07

Average mean neighbour degree 1054.41

Highest ASN 399383

Table 3.3 ASN statistics using CAIDAs dataset from March 1st, 2021

peer peer

A

B C

D E F

Z provider

customer

Figure 3.5 AS cashflow: Customers pay their providers for traffic

3.5.1 Implementation
Wewrote our simulator in C++ and highly optimized it for speed. It preallocates mem
ory and structures used for the search and thus avoids dynamic memory allocations
during simulations. The simulator first parses the graph then we use the resulting
data to perform the search.

3.5.2 Correct interpretation of relationships
The simulator reads Caida AS relationship data [47]. It supports both versions, Serial1
and Serial2. The relations between ASes follow the so-called cash flow. Table 3.3
shows the statistics of a recent dataset. Many stub ASes have just one neighbor, their
uplink ISP. The row with the average number of neighbors shows this. That is why we
included the average number of neighbors the neighbors have. In Figure 3.5, we see
an example illustrating the cash flow. The arrows indicate where the cash flows, i.e.,
customers that pay their providers for traffic. ISP B and ISP C are peering ASes. They
connect their customers to the customers of the other AS (usually without requiring
any payments). The rules for a correct path are simple: start with zero or more
customer-to-provider links, followed by at most one peer-to-peer connection, finally
followed by zero or more provider-to-customer links. Figure 3.6 shows examples
for valid and invalid paths. The paths (a) and (b), however, (b) would be the path of
choice because it is shorter and traffic between ISP B and ISP C is free. Example

Optimized BGP Simulation for Evaluations 79

A

B C

D E F

Z A

B C

D E F

Z

(a) valid (b) valid

A

B C

D E F

Z A

B C

D E F

Z

(c) invalid (d) invalid

Figure 3.6 Valid and invalid paths

(c) is invalid since ISP B would have to pay for the traffic its uplink providers Z and
A caused. Similarly, in (d), ISP B must pay for the customers of ISP C. ISP C would
have to connect to ISP Z directly and not through ISP B.

Following the CAIDA relationship rules of the datasets has two advantages. For one,
the results are more accurate. Just feeding the dataset into a graph and perform
ing a breadth-first search would find invalid paths. And the main advantage is the
performance boost. For a breadth-first search, we append all neighbors to a queue.
When we pop a node from that queue, we add its neighbors. If we keep out invalid
nodes, we keep this exponentially growing queue smaller. The result is a crucial
performance improvement.

80 Public Key Infrastructures

Offset (ASN) Value

0 0

1 0

2 5

3 2

4 0

5 1

...

Offset (ASN) Value

0 NULL

1 Pointer to AS1

2 Pointer to AS2

3 Pointer to AS3

4 NULL

5 Pointer to AS5

...

(a) (b)

Table 3.4 Performance optimizations using direct memory lookups

3.5.3 Fast lookups
The search algorithm can only traverse nodes once. Otherwise, infinite loops occur.
To check if we visited a node already, we use a static array of bytes where the index
is the Autonomous System Number (ASN). We can see an example in Table 3.4 (a).
The first column is the ASN. In the second column, we store if we traversed the node.
A zero indicates we have not traversed this node yet. But instead of adding one to
the node we visit, we add the node that led to this visited node. By doing so, we can
backtrack the table to retrieve the path. In the simplified example, we want to find
the path from 1 to 3. Once we reach 3, we can backtrack to 2, 5, and 1, so we know
the path is 1 -> 5 -> 2 -> 3.

Usually, we would create a dictionary datatype to get back the object using the ASN
as an integer. But we can speed up AS lookups the same way we did with the visited
nodes. We initialize a static array with the size of the highest ASN. We can see in
Table 3.4 (b) an example. Of course, we waste space because there are gaps in
the ASNs. However, for a single pointer, we need 8 bytes on a 64-bit machine. With
399,384 array items, we waste 3,195,072 bytes.

3.5.4 Bidirectional Search
We performed a test run calculating the path for one AS to 67306 ASes. It took
4 hours and 6 minutes to complete, which was still too slow for our use case. As
a further improvement, we developed a bidirectional search algorithm. Providers

Optimized BGP Simulation for Evaluations 81

1

2 3 4 5

6 217 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) unidirectional

1

2 53 4

6 217 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) bidirectional

Figure 3.7 Node expansion for the path search from 6
to 21 using unidirectional search and bidirectional search

usually have multiple customers. So going down from a provider to its customers
will add many customers to the queue. And since these customers may also have
customers, the queue size grows exponentially. We can see the result of that in
Figure 3.7 (a). To get from 6 to 21, we must add all nodes to the queue. First, we add
the only neighbor 2. Successively, we add all customers and providers of 2. When we
reach 1, we add all its customers and its customers' customers. Since our example
is symmetrical, it does not matter where we start. On asymmetric graphs, like the
Internet, it can make a difference from which node we start.

Providers have many customers, but customers have only a few providers. Using
the rules of the relationship dataset, we take advantage of this property to optimize
the search by using a bidirectional approach. We avoid adding customers. If a path
exists between the source and the target, they must meet at a certain point when we
search from two directions. In Figure 3.7 (b) we can see the benefit of that. Starting
from 6 and 21, we only add providers and finally meet at node 1. This smaller queue
provides a significant performance improvement. The test run with 67306 paths that
took 4 hours and 6 minutes now only takes 15 minutes.

82 Public Key Infrastructures

The performance optimization using a bidirectional search is also crucial for the
future. The Internet is gettingmore shallowwhichmeans that the average path length
is reducing. These shorter paths cause problems for search algorithms. Nodes have
more neighbor nodes, and with each hop, the number of nodes to traverse grows
exponentially. There are many stub ASes, so the average number of neighbors is
10.7. However, 1.3% of the nodes have more than 100 neighbors, and 0.16% have
more than 1000 neighbors. Because these are so well connected, it is highly likely to
traverse them while searching, and so the queue gets filled up with all the neighbors.
Without our optimization, searching the graph becomes increasingly difficult.

Distributed Domain Validation 83

3.6 Distributed Domain Validation
In this section, we present Distributed Domain Validation (DDV). We want to provide
a design that protects against BGP prefix hijacks [18] and DNS cache poisoning [95].
Domain Validation must not be possible for anyone that does not control the domain.
Also, an attack should not prevent a legitimate owner of a domain from passing
Domain Validation. We achieve this by performing multiple lookups from various
points on the Internet. Our DDV approach avoids overlapping paths on the Internet.
It will only accept the majority results, ignoring lookups with different answers that
might be malicious.

We designed DDV to be easy to adapt. Using it does not require any changes to
existing name servers, and CAs can easily integrate it. CAs can trigger the DDV by
using an API call. The API performs the DDV process and returns the result.

Bandwidth requirements for DDV are insignificant. It can run on the weakest AWS
instance (t2 nano) with 512MB and a single shared CPU core and still have plenty
of unused resources left. Even network requirements are small and can be satisfied
with a 1 Mbit connection. In terms of bandwidth, 1GBs of traffic should yield at
least 100.000 DNS lookups. However, it is a requirement that one host the agent
using different ISPs, ideally in various geographic locations. Otherwise, an attacker
can compromise the validation by attacking a single ISP. The more ISPs used, the
better. The chances of successfully attacking multiple ISPs at the time are almost
impossible. Our evaluations show that by using the top 10 ISPs or ten independent
cloud providers, we could securely, i.e., at least two non-overlapping routes to the
target, validate 80% of all domains in the Alexa, Cisco, and Majestic top 1 million
list. These lists also contain misconfigured domain names, e.g., have only one name
server. Both software components, namely the orchestrator and the agents, run on
Linux distribution, OpenBSD, FreeBSD, and even Windows and macOS.

84 Public Key Infrastructures

3.6.1 Design and Implementation
DDV is a decentralized system. It consists of two elements: an orchestrator and
agents. The orchestrator coordinates its agents to perform domain validation. Each
agent is equally trusted, and the result depends on multiple agents. The number of
the correct responses needed from the agents is a parameter that one can change.
The agents must be in separate locations and ISPs. For a successful attack, the
attacker must compromise at least 50% of the agents. The orchestrator and the
agents use HTTPS for their communication.

3.6.1.1 Agents
The agents are lightweight HTTPS servers set up on virtual machines on multiple
cloud platforms. Each agent also uses a hardened Unbound DNS resolver. The
orchestrator connects to the agents. The agents can perform the validation or return
specific records, e.g., the target domains' name server. Each agent has an X.509
certificate known to the orchestrator. The certificate uses the IP address of the agent
as the subject name, which is crucial since we do not want to rely on another PKI.
We encrypt the communication between the orchestrator and the agents. However,
the DNS queries issued by the agents to the name servers are unencrypted. A vast
majority of the name servers on the Internet do not support encryption. The agents
perform caching of records in Top Level Domains (TLDs) but do not cache hierarchies
under the TLDs.

3.6.1.2 Orchestrator
The orchestrator coordinates the validation. However, it relies on the agents to
decide. The agents and the orchestrator communicate over a secure channel, using
the X.509 certificates of the agents. The orchestrator has a directory that contains
all trusted certificates. It will not rely on any root servers. Only certificates in that
directory are valid. We want to prevent any chicken-and-egg problems by keeping
our component independent from existing PKIs.

Distributed Domain Validation 85

3.6.1.3 Distributed Domain Validation
Once the orchestrator receives the responses from the agents, it compares their
responses and selects amajority vote, which it then returns to the calling API. Hosting
the agents and taking the majority answer is already an improvement for security.
However, we propose a BGP-aware method.

Plain DDV

With the plain DDV, we place the agents across the Internet using different ISPs
and locations. The orchestrator will use the majority answer. But what happens if
multiple connections from agents go through the samemalicious router? To prevent
this scenario, we check the BGP paths in the BGP-aware DDV method.

BGP-aware DDV

In the BGP-aware method, the agents return the result and their BGP path. We use
our simulator the calculate the paths between the agent and the target name server.
In addition to the answers, the orchestrator uses the BGP path to avoid agents with
overlapping BGP paths.

Given a domain to look up, the agents perform the following steps. They check if the
name servers for the requested TLDs (e.g., .com) are in their cache. If that is the case,
it uses the cached records to look up the name servers for the root domain (e.g.,
example.com). If the TLD is not in the cache, it queries the root name servers. Each
root server uses anycast for load balancing, which also improves security against
attackers. If the agents' responses do not match, the orchestrator will continue to
query other agents with non-overlapping BGP paths. We ran an evaluation to see
how many independent paths exist for popular domain names. We found that for
most domains (>80%), there are at least two separate paths. This evaluation also
includes misconfigured domain names that contain only one name server (either via
an NS record or an SOA record). If the DNS response of agents returned matches,
the validation succeeded, and the orchestrator will return the result.

86 Public Key Infrastructures

3.6.2 Evaluations
We performed different evaluations to understand the DNS infrastructure and eval
uate the feasibility. These include TTL measurements for caching of root server
responses, a comparison of latency and failures comparing DDV to standard domain
validation, and an evaluation of name server distribution between different countries
and RIRs. We examine path lengths and analyze anycast IPs. We also analyze prefix
sizes and their effect on security. Furthermore, we simulate attacks against DDV and
calculate the best ASes for agent placement. All measurements use a combined list
of the Alexa, Cisco, and Majestic top 1 million list.

3.6.2.1 Top-Level Domain TTL measurements
Since every recursion starts at the root servers, it makes sense to reduce the load on
the root servers and speed up the validation by caching values. The root servers do
not change very often since they rarely add new TLDs. We analyzed the time-to-live
(TTL) values of top-level domains (TLDs). We took a list of 1508 top-level domains
from .aaa to .zw and performed name server lookups for these on all 13 name
servers. Additionally, we performed this test frommultiple locations. All but one TLD
return 172800 seconds (2 days) as their TTL value. Only .arpa returns 518400 sec
onds (6 days) as its TTL value. These results validate our initial assumption. We
can use this information to cache the name servers for all top-level domains safely,
reducing the load on the root name servers and speeding up the domain lookups.
However, we do not cache name servers except for the TLDs.

3.6.2.2 Latency and failures
We set up non-caching recursive resolvers at various locations. We want to measure
the latency and failure rate of DNS validation. For the baseline, we used our ISP just
running the recursive resolver. Wewill call this the local setup. We also set upmultiple
agents at nine geographically diverse locations: Amsterdam, London, NewYork, Paris,
Seattle, Singapore, Sydney, Tokyo, and Toronto. We will call this the distributed setup.
For each agent, we add the round-trip time from the orchestrator to the agent. We
take the first two responses we receive. The time measured for the distributed setup
is when the second response from an agent arrives. If we could not resolve a domain,
e.g., misconfigured name server, or if the request timed out, we count this as a failure.

Distributed Domain Validation 87

failed (domains) failed (%)

local 28265 28.27%

distributed 21 0.02%

Table 3.5 Local vs. distributed resolution errors

min mean max

local 5.23 ms 214.71 ms 4806.68 ms

distributed 16.32 ms 375.98 ms 3609.02 ms

Table 3.6 Local vs. distributed resolution latency

We took Alexa's Top 1 million list and truncated it to the top 100.000 to speed up
the simulation. Table 3.5 shows how many resolutions failed. Due to geographical
distribution, the agents resolve more domains without errors since the orchestrator
can already stop when a majority exists. However, the distribution comes with round-
trip times from the orchestrator to the agents, as shown in Table 3.6. We can see
the additional overhead of the connection between the orchestrator and the agent.
However, on average, the resolution using the distributed setup takes only 75% longer
than the local setup. But to fully reflect the advantages of the distributed setup, we
must consider that distributed setup could resolve domains that failed on the local
setup.

88 Public Key Infrastructures

Alexa Cisco Majestic Combined

US 34.30% US 50.71% US 36.88% US 38.55%

DE 8.19% DE 5.29% DE 7.06% DE 7.24%

TR 5.07% FR 3.38% FR 5.04% FR 4.55%

RU 4.60% CN 3.35% GB 3.77% RU 3.51%

FR 4.52% GB 3.20% JP 3.75% GB 3.38%

IR 4.13% CA 2.85% RU 3.60% CA 3.18%

GB 3.04% RU 2.78% CA 3.28% NL 2.80%

CA 2.95% NL 2.43% CN 3.10% TR 2.76%

NL 2.51% JP 1.37% NL 2.92% JP 2.75%

BG 2.27% BR 1.36% BG 2.21% CN 2.64%

Table 3.7 Name server IP distribution by country

Alexa Cisco Majestic Combined

afrinic 0.96% 0.57% 0.80% 0.78%

apnic 12.96% 11.62% 14.19% 13.13%

arin 37.14% 53.53% 40.12% 41.64%

lacnic 2.32% 3.09% 3.04% 2.92%

ripencc 46.62% 31.19% 41.86% 41.52%

Table 3.8 Name server IP distribution by RIR

3.6.2.3 Name server distribution

In Table 3.7 and Table 3.8, we see the distribution of all name servers IP addresses
by country and by regional internet registries (RIRs). Usually, RIRs are responsible for
specific regions like RIPE NCC (Réseaux IP Européens Network Coordination Centre)
is responsible for Europe, West Asia, and the former USSR. However, Autonomous
Systems can get prefixes from other RIRs. E.g., perl.com has five name servers. One
of these name servers is ns3.us.bitnames.com, which resolves to 136.144.52.122.
The 136.144.52.0/23 prefix for this IP address belongs to Equinix Services, a US com
pany. The AS number (AS54825) belongs to the range that IANA assigned to ARIN
(American Registry for Internet Numbers). The prefix belongs to RIPE NCC. A whois
lookup at ARIN will redirect to whois.ripe.net, showing RIPE NCC as a maintainer in
the "mnt-by" field. As a result, Table 3.8 is not just a summary of Table 3.7. We can
see that the US/ARIN and Germany/RIPE have themost name servers located in their

Distributed Domain Validation 89

ASN Name #IPs

46606 UNIFIEDLAYER-AS-1 - Unified Layer, US 4.04%

16276 OVH, FR 4.04%

16509 AMAZON-02 - Amazon.com, Inc., US 3.55%

24940 HETZNER-AS, DE 3.54%

32475 SINGLEHOP-LLC - SingleHop LLC, US 1.55%

32244 LIQUIDWEB - Liquid Web, L.L.C, US 1.47%

14061 DIGITALOCEAN-ASN - DigitalOcean, LLC, US 1.10%

14618 AMAZON-AES - Amazon.com, Inc., US 1.04%

13335 CLOUDFLARENET - Cloudflare, Inc., US 1.03%

36351 SOFTLAYER - SoftLayer Technologies Inc., US 0.93%

Table 3.9 IP address distribution by ASN (Combined)

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

ASNs (sorted by number of name servers)

Na
m
e
se
rv
er
s

Figure 3.8 CDF for name server distribution

networks. When hosting agents, it is smart to place some inside these countries. By
doing so, we can keep the paths short and reduce the attack surface. Remember
that there is nothing we can do if the hosting ISP of the name server is malicious.
In Table 3.9, we see the top 10 ASN holding most IPs. The distribution of the name
servers' IPs is not even. In contrast, 10% of the ASes have 80% of the name servers.
In Figure 3.8, we can see that many ASes own only a few name server IPs, and very
few ASes own most of the name servers' IPs.

We can see, that in general, the DNS infrastructure is very vulnerable to attacks. At
least without any additional security mechanisms. In the following, we will evaluate
if we can find independent BGP routes to the name servers even in unideal scenarios.
The top one million lists we use are not model examples since they contain many

90 Public Key Infrastructures

0% 20% 40% 60% 80% 100%
0

2

4

6

8

10

Name servers (sorted by number of ASNs)

AS
Ns

Figure 3.9 Number of ASNs for each name server

misconfigured domains. However, for our demonstration purposes, it is perfect.
Showing that something works in an ideal setup is simple. But doing the same for
unideal setup is not trivial. In our evaluation, we found that 19% of our list's domains
have misconfigurations.

3.6.2.4 Finding multiple paths
Ideally, a name server would use multiple IPs, all located in different ASNs. The
reality, however, shows another picture. In Figure 3.9, we can see that almost all
name servers use a single AS for all their IPs. We perform an analysis to find out
how many unique paths we can find for the name servers of a domain.

We use two sets of ASes. For the first list, we extract the relationship from the CAIDA
datasets. After sorting all ASes by the number of customers, we use the 10 ASes
with the most customers. For the second list, we used eight independent cloud
providers: AWS, Azure, Digital Ocean, GoDaddy, Google Cloud, Inmotion Hosting,
Linode, and Vultr. Using these sets, we generate BGP paths, with our previously
described simulator, for all name server IPs of a domain. We then count the number
of BGP paths we can find that do not overlap. We see in Figure 3.10 that for over
80% of the domain, we have at least two independent paths. These numbers include
misconfigured domain names. Some name servers do not reply with an NS record.
For these, we can only extract one name server from the SOA record of that domain.

Distributed Domain Validation 91

0% 20% 40% 60% 80% 100%
0
2
4
6
8
10
12
14
16
18
20

Domains (sorted by number of unique paths)

Un
iq
ue
pa
th
s Cloud Providers

Top 10 ISPs

Figure 3.10 Number of unique AS paths per domain (truncated to 20)

3.6.2.5 Anycast IPs
Anycast IPs look like ordinary unicast IP addresses. However, they do not route
to the same endpoint. One example of this is the DNS server from Google, which
is 8.8.8.8. Someone accessing this IP address in Canada connects to a different
server than someone from, e.g., Australia. If both connect to the physically same
server, it would be impossible to provide an acceptable latency for both. Anycast
is a well-known method for load-balancing and reducing latency. DDV profits from
anycast IP addresses. Since the routing is different for agents in multiple regions,
it becomes harder to attack the servers. First, an attacker may not know the exact
server the agent uses due to load balancing. And second, successfully attacking
multiple servers makes the task even harder.

92 Public Key Infrastructures

𝐴 𝐴𝑋
−−→ 𝑋

𝐵𝑋 −−→
𝐵

𝐴𝐵
−−→

Figure 3.11 Round-trip time triangulation

0 50 100 150 200 250
100

101

102

103

104

ms

Anycast
Unicast

Figure 3.12 Average ping from all vantage points

Since there is no way to tell if an IP is anycast or not, we performed measurements
to determine if IPs are anycast. We located servers in the following locations: Am
sterdam, Frankfurt, London, New York, Paris, Seattle, Seoul, Singapore, Tokyo, and
Toronto. For every name server IP, we measure the round-trip time to each of our
servers. We then use triangulation to determine which servers are anycast. We
have calculated the distances of all our servers. We use an idealized round-trip time
using the speed of light. Let 𝐴 and 𝐵 be two of our servers, and 𝑋 is the target IP.
We know that for every target X, the round-trip time for 𝐴𝑋

−−→ + 𝐵𝑋
−→ cannot be less than

𝐴𝐵
−−→ (see Figure 3.11). If it is, we know that 𝐴 and 𝐵 must connect to two different
servers. Since we used ideal round-trip times using the speed of light, the target's
connection would be faster than light. We found that out of 11841 IPs, 9945 IPs
(84%) are anycast.

In Figure 3.12, we can see the advantage of anycast IPs. The average round-trip
time for anycast IPs is much smaller compared to non-anycast IPs. The figure only
includes values where all 11 servers succeeded. Otherwise, it would include incorrect
averages, e.g., if only servers with a short round-trip time succeeded. However, we
can see why so many IPs are anycast; to improve latency.

Distributed Domain Validation 93

Ordinary domain validation that CAs already use does not gain any security advan
tages from anycast IPs. If we know the AS of a CA, we can deploy a server close to
them to get responses from the same server. DDV, however, profits from anycast
IPs. Even if an attacker knows the AS of every agent, simultaneously attacking all
anycast name servers is hard. Our agents rely on non-caching resolvers. Exploiting
agents one by one with DNS cache poisoning is not possible.

3.6.2.6 IP prefixes
Strong attackers on the Internet use BGP hijacks. We categorize these attacks as sub-
prefix and same-prefix hijacks. Prefixes are a collection of IP addresses designated
by the number of leading bits. The traditional notation is the slash notation, e.g.,
192.0.0.0/8 would indicate eight fixed leading bits (or the first byte/octet). The
remaining 24 bits can change. That means that the prefix covers all IP addresses
from 192.0.0.1 to 192.255.255.255, 224 IP addresses in total.

BGP routers on the Internet advertise which prefix they can reach and their distance
to it. An ISP can delegate part of its prefix to another AS, e.g., 192.0.2.0/24. Then
another AS will advertise this larger prefix (with fewer IPs). When deciding where to
route IP packets, there are two rules. First, ASes with the longest matching prefix
have the highest priority. Otherwise, ISPs would get the packets for their customers
and would have to redirect them themselves. When two ASes have the same prefix
lengths, the AS with the shortest distance (fewer hops) has the highest priority.
So, when an attacker hijacks a prefix by claiming the same prefix but with fewer
hops, we call this same-prefix hijack. However, when an AS advertises a longer, more
precise, prefix routers will prefer its route nomatter if shorter prefixes are, e.g., directly
connected. We call this kind of attack sub-prefix hijacking. However, routers do not
advertise or forward advertisements longer than /24. Sub-prefix hijacks are powerful
attacks that can steal prefixes globally, while same-prefix hijacks are not harmless
but affect local Internet routing.

94 Public Key Infrastructures

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Domains (sorted by vulnerable name servers)

Vu
ln
er
ab
le
na
m
e
se
rv
er
s

Figure 3.13 Domains vulnerable to sub-prefix hijacks

Sub-prefix hijacks

Name servers that have a prefix shorter than /24 are in general vulnerable to sub-
prefix hijacks. We show that many domains use a single prefix and are vulnerable to
sub-prefix hijacks. We developed a small tool that resolves the prefixes for the name
servers' IPs. We obtained 754857 domains that have at least one name server on a
network prefix less than /24. Further filtering for all that have all their name servers
on a prefix that is less than /24, there are only 551878 domains on 31,820 prefixes
left. We plot the results of our evaluation of the name servers vulnerable to sub-prefix
hijacks in Figure 3.13. The X-axis represents the sorted domains. Domains between
60% and 100% correspond to 551,878 that are vulnerable. These have all their name
servers on prefixes shorter than /24. The first 45% do not have any vulnerable name
servers.

Furthermore, we found that 270,940 domains have all the name servers on one prefix.
We plot the distribution of the domains to prefixes in Figure 3.14. We can see that
20% have only one prefix. We found that 201,595 of them have all the name servers
on a single vulnerable prefix shorter than /24. We also found that 52,768 domains
have a single name server, and 39354 of those are on a prefix shorter than /24. To
summarize: 40.67% of the domains are vulnerable to sub-prefix hijacks since all their
name servers are on prefix less than /24. 47.10% have at least half of the name
servers on prefixes less than /24.

Distributed Domain Validation 95

0% 20% 40% 60% 80% 100%
0

2

4

6

8

10

Domains (sorted by number of prefixes)

Pr
efi
xe
s

Figure 3.14 Distribution of domains to prefixes

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5 Vantage Points
Combined Top 1M List

Figure 3.15 IP prefix statistics

We analyzed the agents of Let's Encrypt, or as they call them: vantage points. Let's
Encrypt is currently the only CA that uses multiple agents to perform domain valida
tion. In Figure 3.15, we show the prefixes of the vantage points and our combined
top 1M list. We can see that all vantage points are vulnerable to sub-prefix hijacking.

The countermeasure to prevent sub-prefix hijacks is simple. By just using /24 prefixes,
prefixes cannot be more precise since /24 is the maximum and routers discard /25
prefix announcements. However, a CA can only influence its validation agents and
not the target servers. Without enforcing /24 prefixes on target domain name servers,
there is not much CAs can do about it. However, sub-prefixes are very noticeable,
and routers distribute them. Launching a sub-prefix hijack that remains hidden is
impossible.

96 Public Key Infrastructures

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Targets (sorted by success rate)

Su
cc
es
s
ra
te

with sub-prefix hijacking
without sub-prefix hijacking

Figure 3.16 Success probability simulation

Same-prefix hijacks

A same-prefix hijack requires proximity. The attacker must be closer to the victim
than the agents performing the domain validation. As our example, we used the
vantage points of Let's Encrypt again. We put the ASes of the vantage points and
the target ASes of the domains from our combined top 1M list into a simulator. Even
if Let's Encrypt has multiple vantage points, they all reside in two ASes: AS13649
Flexential (their ISP) and AS16509 Amazon AWS. We assume that Let's Encrypt
vantage points use local cache resolvers, and attackers can poison them one by
one [59]. We evaluate the probability of a successful attack for same-prefix hijacks
and a combination of same-prefix and sub-prefix hijacks using a sample size of 1000
attackers per target. A randomly selected attacker succeeds if it is closer to the
victim than the agents. A sub-prefix hijack is successful if the prefix length is shorter
than /24.

We can see the results of the simulation in Figure 3.16. The solid line shows attacks
that apply same-prefix hijacks, and the dotted line is a combination of same-prefix
and sub-prefix hijacks. The simulation demonstrates that launching same-prefix
hijacks has a lower success probability than sub-prefix hijacks. In general, networks
which are not vulnerable to sub-prefix hijacks are more secure. The plot shows that
for 20% of domains, attackers have at least a 60% success probability. Same-prefix
hijacks become more difficult as the Internet gets shallower. In Figure 3.17, we see
the distribution of hops between the agents and the target AS. There are on average
1.7 hops in-between.

Distributed Domain Validation 97

0 1 2 3 4 5 6 7
0

10%

20%

30%

40%

50%

of AS hops in-between

Co
un
t

Figure 3.17 Hops in-between Let's Encrypt vantage points and name server ASes

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

50%

Targets (sorted by success rate)

Su
cc
es
s
ra
te

Top 10
Cloud Servers

Figure 3.18 Simulating attack success rate

3.6.2.7 Security evaluation of DDV
We previously showed how prefix lengths and BGP paths influence the security of
domain validation. We choose 1000 random target ASes and calculate the BGP
paths from all agents. We do this for the top 10 ISPs and the cloud providers using
our simulator. For each target, we select 100 random attackers ASes and compare
the path lengths from the attacker to the target. If the attacker's path length has
fewer hops than the agent's path length, we count this as a success for the attacker.
So, if an attacker has a shorter path than 50% of the agents, it has a 50% success
rate. We then take the average of all 100 attackers ASes. In Figure 3.18 we show
the result of our attack simulation. The X-axis is sorted by success rate, i.e., it is not
cumulative. We can see that by using carefully selected agent ASes, we improve the
security of domain validation.

98 Public Key Infrastructures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

of agents

su
cc
es
s
ra
te

Figure 3.19 Simulation of the success rate of an attacker

Of course, this is under the assumption that every attack succeeds. If we assume
that the success probability of an attack is not 100%, we must scale the simulation.
If an attacker has a success rate of 90% for one agent, it will have 81% for two agents
and 72.9% for three agents. In our setup, all agents' resolvers must not cache results.
To attack the domain validation, an attacker must attack all agents simultaneously.
Cache poisoning one by one is not possible. In Figure 3.19, we can see that with
enough agents, attacks become almost impossible.

3.6.2.8 Selecting agent ASNs
We previously showed simulations using Top 10 ISPs and Cloud providers. However,
we still need a method to define ASNs that are good for agents. The logic behind this
is simple: connections with fewer hops are less vulnerable to same-prefix hijacks.
Ideally, the source and target AS have a direct link. We determine the best ASes for
use as an agent by running a simulation using the Caida dataset. We extract the
name server ASNs of our combined list of Alexa, Cisco, and Majestic rankings. We
determine how far ASes in the Caida dataset are from the name servers. If an AS
is a direct neighbor, i.e., directly connected, we award it one point. If an AS has a
neighbor with a direct connection to the target AS, we add 0.1 points. We limit the
simulation to neighbors of neighbors. We then rank the ASes by their score to make
a list of best-connected ASes that as suitable for multiple agent validation as shown
in Figure 3.10.

Distributed Domain Validation 99

ASN Name

6939 HURRICANE, US

174 COGENT-174, US

3356 LEVEL3, US

24482 SGGS-AS-AP SG.GS, SG

267613 ELETRONET S.A., BR

51185 ONECOM-AS, GB

7713 TELKOMNET-AS-AP PT Telekomunikasi Indonesia, ID

39120 CONVERGENZE-AS ISP services in Italy, IT

58511 ANYCAST-GLOBAL-BACKBONE Anycast Global Backbone, AU

28186 ITS TELECOMUNICACOES LTDA, BR

41327 FIBERTELECOM-AS Fiber Telecom S.p.A., IT

13786 SEABRAS-1, US

14840 BR.Digital Provider, BR

28634 Life Tecnologia Ltda., BR

25091 IP-MAX, CH

38880 M21-AS-AP Micron21 Datacentre Pty Ltd, AU

37468 ANGOLA-CABLES, AO

56665 TANGO-TELINDUS, LU

49605 DTS-AS DTS, IT

13237 LAMBDANET-AS European Backbone of AS13237, DE

1299 TELIANET Telia Carrier, EU

Table 3.10 Top 20 ASNs for agent selection

100 Public Key Infrastructures

0% 20% 40% 60% 80% 100%

0%

10%

20%

Targets (sorted by success rate)

Su
cc
es
s
ra
te

Figure 3.20 Simulating attack success rate of top 10

We performed the simulation we already did in Figure 3.18 for the top 10 of our
calculated best ASNs. We can see in Figure 3.20 that they perform like the top 10
ISPs we previously evaluated. They are so similar that it is hard to plot them both.
With extrememagnification, we can see that our calculated performs 0.1-0.2% better.

However, the next question that arises might be: How long is this calculation valid?
We evaluated the consistency of the AS distribution of DNS name servers. We used
our combined list and extracted the name servers. For each domain name, we
resolve its name servers and the IP address of these name servers to look up the
corresponding AS. We did this in April 2020 and December 2020. We see that the
AS changes for 13.41%. Running our algorithm to determine the best agent ASes,
the top 34 ASes remained unchanged. In the top 50, only place 35 and 36 switch
places. We assume that the calculations last for a few years. The name servers
switch from DNS and VM providers to other VM providers, e.g., Cloudflare DNS with
DDoS protection. Table 3.11 shows where most servers left while Table 3.12 shows
where they switched to.

Distributed Domain Validation 101

ASN Name

394695 PUBLIC-DOMAIN-REGISTRY - PDR, US

32475 SINGLEHOP-LLC - SingleHop LLC, US

36351 SOFTLAYER - SoftLayer Technologies Inc., US

24940 HETZNER-AS, DE

16276 OVH, FR

19527 GOOGLE-2 - Google LLC, US

55002 DEFENSE-NET, US

26496 AS-26496-GO-DADDY-COM-LLC - GoDaddy.com, LLC, US

46606 UNIFIEDLAYER-AS-1 - Unified Layer, US

51559 NETINTERNET Netinternet Bilisim Teknolojileri AS, TR

29169 GANDI-AS Domain name registrar, FR

Table 3.11 ASNs from which name server went away (top 10)

ASN Name

13335 CLOUDFLARENET, US

15169 GOOGLE - Google LLC, US

24940 HETZNER-AS, DE

16509 AMAZON-02, US

16276 OVH, FR

19871 NETWORK-SOLUTIONS-HOSTING, US

14061 DIGITALOCEAN-ASN, US

40034 CONFLUENCE-NETWORK-INC, VG

14618 AMAZON-AES, US

209453 GANDI-LIVEDNS AS for LiveDNS Anycast servers, FR

32244 LIQUIDWEB, US

Table 3.12 ASNs to which name servers changed (top 10)

102 Public Key Infrastructures

Conclusion 103

3.7 Conclusion
PKI plays a critical role in Internet security. Automated domain validation is still the
most efficient and easiest-to-use method for ownership verification. Unfortunately,
the comfort comes with the downside of being less secure, making it vulnerable
against off-path attacks. We demonstrate howwe successfully obtained a certificate
using these attacks.

To evaluate same-prefix hijacks, we developed a BGP simulator for large-scale evalu
ations. The simulator is different from the simulator we initially used in [36]. It is more
complex and was the first to incorporate relationship-based search and performance
optimizations. Other simulators, like our initial simulator, use breadth-first search.
We demonstrate that our simulator achieves higher accuracy and better performance
in contrast to existing simulation platforms. Using the simulator, we evaluate the
effectiveness of DDV. We show that securing the CAs does not suffice for ensuring
the security of domain validation in PKI. Our simulations and measurements show
that the domains are not resilient to attacks against domain validation and introduce
a weak link in the PKI ecosystem.

Deployment of cryptography is far from being usable. Instead of relying on using it,
we need another way to bootstrap security on a PKI. We utilize the distributed nature
of the Internet and make assumptions about an attacker's abilities. We propose a
distributed domain validation as a drop-in replacement for current domain validations.
We evaluate the security through our simulations and can prove that it is resilient
against strong MitM attackers. We show that many IP addresses are anycast. In
contrast to the standard domain validation, the distributed domain validation benefits
from anycast IPs.

We also evaluate how to distribute validation agents on the Internet. We provide
simulations and a method the rate how good ASes are for agent placements. We
also provide analysis on the longevity of our calculations.

104 Public Key Infrastructures

CHAPTER 4
Randomness

Without random keys and nonces, the best cryptographic algorithms become use
less. Humans are miserable at generating random sequences. However, we take it
for granted that randomness is always available. Cryptographic algorithms usually
mention taking random values and nonces. However, cryptographically secure ran
domness is not trivial. It does not matter how robust the cryptographic algorithms
are. If an attacker can predict random bits, all security falls. We want to look at a
building block of cryptography.

106 Randomness

Introduction 107

4.1 Introduction
Randomness is crucial to cryptography. Randomness plays a critical role in the
design of security mechanisms. Many applications rely on unpredictable sequences
of random bits: cryptographic keys, SSL/TLS nonces, initialization vectors for sym
metric encryption, password generation, sequence numbers and ports in operating
systems, address space randomization for preventing memory corruption vulnerabil
ities, and many more. Typically, cryptographers assume that perfect randomness
is available. However, access to perfect random bits is non-trivial in practice. We
usually generate randomness with a Pseudorandom Generator (PRG). We collect
random seeds and expand them into a longer pseudorandom string.

4.1.1 Randomness generation
Generating randomness is a longstanding problem. Despite the critical role that
secure generation of unpredictable pseudorandom bits plays, there is a long history
of attacks exploiting bugs and vulnerabilities in PRGs, e.g., [32, 50, 68, 79, 84, 85,
146]. The causes for vulnerabilities in the generation of pseudorandom strings are
often due to faulty implementations or the reuse of entropy. Incorrect usage, as
well as wrong assumptions, can create vulnerabilities. E.g., one uses a system
developed for a setup with access to entropy sources which are not present (like
keyboard or mouse inputs on routers or cloud platforms). Randomness failures
and vulnerabilities are a severe problem in practice. There is a large body of work to
improve the randomness generation, but bugs and benign failures can always persist,
and malicious adversarial strategies are hard to foresee and counter. Furthermore,
reliance on a single pseudorandom generator is risky due to potential intentionally
inserted backdoors [61].

4.1.2 Contribution
We propose an alternative approach for generating pseudorandom strings. We lever
age the distributed nature of the Internet for collecting randomness from public
services on the Internet. Based on this methodology, we develop our Distributed
Pseudorandom Generator (DPRG) and demonstrate how it guarantees security
against strong practical attackers and how it addresses the main shortcomings
in existing PRGs. Specifically, it allows an automated generation of pseudorandom

108 Randomness

strings without the dependency on entropy sources or user input. It provides robust
ness because it does not rely on a single system that may be faulty or vulnerable.
Failures generated by an attacker do not subvert the security of the randomness
generation if at least one of the servers securely provides a good pseudorandom
string. We establish connections to well-managed servers on the Internet and collect
randomness from them. The bitstrings received from some servers may be insecure,
e.g., not random or known to the attacker. Indeed, such incidents are not far-fetched.
Adrian et al. [5] showed how to compute discrete logs of 7% of Alexa servers that
use weak Diffie-Hellman parameters or maintain support for obsolete export-grade
cryptography. Our DPRG uses AES encryption in CBC mode and an HDKF to extract
randomness and inputs for handshakes. To predict our randomness, an attacker
would have to reverse the hash function and know all previous values of the AES
CBC cipher since all ciphertexts depend on these. Hence, the output is secure (i.e.,
pseudorandom) if, at least, one received bitstring is secure.

We analyze the distribution of different randomness sources like HTTP, SMTPS,
SSH, and TOR and present an implementation of DPRG using the TOR network. We
analyze the quality of randomness and performance of our DPRG and show that we
can achieve highly secure randomness only from user space.

Background 109

4.2 Background
In this section, we want to clarify terms and introduce the cryptographic primitives
we need. We also introduce TOR, which we use for our reference implementation
since we assume, that not all readers know about the inner workings of TOR and its
Public Key Infrastructure (PKI).

4.2.1 Randomness
The definition for the term randomness depends on the application field. In graphics
or audio, randomness describes a noise pattern. It does not matter if one can predict
these sequences since their goal is to look and sound random. In statistics, when
performing evaluations with random data, we even want the outcome to be the same
every time we run it. In cryptography, however, we need unpredictable randomness.
We define randomness as not predictable by humans or computers by any means.
We cannot achieve true randomness using algorithms and rely on physical effects,
e.g., atmospheric noise or radioactive elements. We call the output of a random num
ber algorithm pseudorandom. If we are talking about a Random Number Generator
(RNG), we typically talk about a Pseudorandom Number Generator (PRNG). When
we have hardware that collects true randomness, we explicitly mark this as a True
RandomNumber Generator (TRNG). There are still generators more suitable for cryp
tographic uses. A common term for this is Cryptographically Secure Pseudorandom
Number Generator (CSPRNG). However, in the cryptographic context, we always
assume that a PRNG is safe for cryptography. The same applies to this work.

110 Randomness

4.2.2 Cryptographic primitives
Weassume that the reader knows cryptographic primitives like hash functions, MACs
and HMACs, symmetric and asymmetric encryption, and key exchanges. However,
we briefly introduce the methods we use: the HMAC-based Extract-and-Expand Key
Derivation Function (HKDF), AES in CBC mode, and X25519.

A HKDF extracts or expands a pseudorandom key using a Hash-based Message
Authentication Code (HMAC) function [114]. The output is irreversible due to the
hash function. It improves random bit sequences with biases.

The Advanced Encryption Standard (AES) is ubiquitous. Many CPUs provide hard
ware acceleration for it. We use it in the Cipher Block Chaining (CBC) mode, where
the output of a previous block is XORed with the input of a new one. This mode
prevents that encrypting equal plaintexts does not yield the same ciphertext.

X25519 [26] is a Diffie-Hellman key exchange based on the elliptic curve, called
Curve25519 [27], by Daniel J. Bernstein. Curve25519 is by far the most popular
elliptic curve. Popular applications like Signal, Matrix, and Wireguard rely on it.

4.2.3 TOR
The onion router project [65], from which the name TOR derives, first released their
proxy in September 2002 [64]. It is a mix-network that enables anonymous end-to-
end communication. It routes the traffic over multiple routers and encrypts it with
multiplication encryption layers. A client negotiates encryption keys with each router
on the circuit (that is what TOR calls the paths), and only one router can decrypt
one of the layers. Each router forwards the traffic without revealing the IP address
of the incoming packet. So, e.g., the second router will not know the client's IP
address, and the third router will not know the first router's IP address. The TOR
authorities perform the coordination of all routers. There are ten TOR authorities:
bastet, dannenberg, dizum, faravahar, gabelmoo, longclaw, maatuska, moria1, serge,
and tor26. However, we will only consider nine since Serge is a bridge authority. It
is a connection for bridge relays that enables users with limited Internet, e.g., IPs
blocked by the government, to access the TOR network. TOR hides bridge relays. The
authorities, excluding serge, compile a list of all routers called consensus. Currently,
the TOR network has about 6500 routers.

Background 111

Consensus

Authority #1
Signing Key

Authority #1
Identity Key

. . .
Authority #9
Signing Key

Authority #9
Identity Key

Server Descriptor

NTOR Key

signs sign
s

contains (hash of)

contains

Figure 4.1 Chain of trust

4.2.3.1 Consensus
The nine authorities agree on a consensus. This consensus contains the list of all
routers available to the TOR network. It is publicly available [153] as a download
using standard HTTP. Every authority signs the consensus with its signing key, as
shown in Figure 4.1, so even when downloading over unencrypted HTTP, the client
can verify the integrity. For each router in the consensus, there are several details
like the nickname, IP address, port, the hash value of the identity RSA public key, and
the hash of the most recent descriptor. The descriptors provide further information
about a router. Of course, the collection will only be as trustworthy as the PKI used.

112 Randomness

4.2.3.2 Keys and descriptors
The hash value of a node's RSA public key forms its identifier. TOR only uses interme
diate keys, and the sole purpose of the public key is to sign these. The identity keys
of TOR authorities are hardcoded into every TOR client and do not change. Changes
within these need changes in every client's software. The TOR authorities use their
identity keys to sign the keys they use for their signature for the consensus. The
signing keys frequently change. The authority identity keys can form a root of trust.

Authorities gather votes and agree on a common consensus. If we want to verify
it, we must download each signing key. We can use the identity key to check the
integrity and correctness of a signing key. Finally, we can use the signing keys and
check the signatures of the consensus. An attack would need most majority of
authorities to succeed. The TOR authorities run geographically spread across the
Internet, which makes attacks even harder.

To getmore information about a router, a client can download a descriptor for a router
using the hash of the descriptor (which is part of the consensus). The descriptor
contains more keys, like the identity RSA public key or NTOR key. We need these
keys for the circuit creation described later. We can verify a descriptor by comparing
the hashed public key with the identity hash of the router. If these match, we use the
public key to verify the signature of the descriptor itself.

4.2.3.3 Circuits
To conceal the identity of users, TOR establishes connections over multiple routers.
We call this path a circuit, and each circuit consists of three nodes. This value
provides a good balance between privacy and network load [154]. The first node of
each circuit must be a guard node. Only these nodes will see the IP address of the
client establishing a circuit. These guard nodes have requirements for uptime and
bandwidth for the TOR network to consider them as guard nodes. To set up these
circuits, TOR uses its protocol. The TOR spec [155] describes this protocol. TOR
tunnels all messages through a TLS connection. Optionally, one can verify the TLS
certificates. However, the tor spec takes care of authentication in their protocol.

Background 113

TOR embeds every payload in cells. All cells are 514 bytes since version 4. Before
this version, it was 512 bytes. There are a few exceptions, like the VERSIONS, CERTS
and AUTH_CHALLENGE, which do not need a padding to 514 bytes or can even
exceed that size. In the following, we will describe the most important cells for our
use case.

VERSIONS

The first cell sent to a router is the VERSIONS cell. The initiator sends this cell
containing all TOR versions supported by the initiator. The responder will respond
with the highest TOR version it supports or close the connection.

AUTH_CHALLENGE, AUTHENTICATE, and CERTS

After sending a VERSIONS cell, the responder immediately sends the CERTS cell.
This cell includes certificates the responder uses. Unfortunately, this does not in
clude the NTOR key. The AUTH_CHALLENGE cell includes data an initiator needs to
authenticate itself. E.g., it includes 32 random bytes, which the initiator can sign to
prove its identity and send via an AUTHENTICATE cell. The TOR spec defines that
"Responders MUST generate every challenge independently using a strong RNG or
PRNG." [155]. The CERTS cell contains all keys a router supports.

NETINFO

The NETINFO cell only contains a timestamp, the "own" IP addresses, and the "others"
IP address. IP addresses can be both IPv4 and IPv6. However, only a few routers
support IPv6. First, the responder sends this cell with the initiator. The responder
also sends a NETINFO cell to conclude the initial setup.

CREATE, CREATE2, and NTOR handshake

To finally create the circuit, there are two cells: the older CREATE cell and the newer
CREATE2 cell. We only care about the newer CREATE2 which replaces the old one.
We can choose from two handshakes: the original TAP handshake and the newer
NTOR handshake. The NTOR handshake is faster and better suited for low-power
devices because it uses elliptic curves with shorter keys. The CREATE2 cell will
contain the first half of the handshake and the CREATED2 the second half.

114 Randomness

In the first half of the handshake, the initiator generates a temporary Curve25519
key pair (𝑥, 𝑋). It will then send: the identity key (𝐼𝐷), the NTOR key of the responder
(𝐵), and the temporary public key (𝑋) to the responder.

𝑠𝑒𝑐𝑟𝑒𝑡 𝑖𝑛𝑝𝑢𝑡 = 𝑋 ∘ 𝑦 | 𝑋 ∘ 𝑏 | 𝐼𝐷 | 𝐵 | 𝑋 | 𝑌 | 𝑃𝑅𝑂𝑇𝑂𝐼𝐷 ,

where 𝑋 ∘ 𝑦 is the dot multiplication of 𝑋 and 𝑦 , 𝑏 is the private key of the respon
ders NTOR key 𝐵 , 𝑃𝑅𝑂𝑇𝑂𝐼𝐷 is a constant variable containing the string "NTOR-
curve25519-sha256-1", and | is the concatenation operator.

Further, the responder will calculate

𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 = HKDF(𝑠𝑒𝑐𝑟𝑒𝑡 𝑖𝑛𝑝𝑢𝑡, 𝑡 𝑘𝑒𝑦)

𝑣𝑒𝑟𝑖𝑓𝑦 = HKDF(𝑠𝑒𝑐𝑟𝑒𝑡 𝑖𝑛𝑝𝑢𝑡, 𝑡 𝑣𝑒𝑟𝑖𝑓𝑦)

𝑎𝑢𝑡ℎ 𝑖𝑛𝑝𝑢𝑡 = 𝑣𝑒𝑟𝑖𝑓𝑦 | 𝐼𝐷 | 𝐵 | 𝑌 | 𝑋 | 𝑃𝑅𝑂𝑇𝑂𝐼𝐷 | "Server"

𝐴𝑈𝑇𝐻 = HKDF(𝑎𝑢𝑡ℎ 𝑖𝑛𝑝𝑢𝑡, 𝑡 𝑚𝑎𝑐) ,

whereHKDF is a hash-basedmessage authentication code using the constants 𝑡 𝑘𝑒𝑦 ,
𝑡 𝑣𝑒𝑟𝑖𝑓𝑦 and 𝑡 𝑚𝑎𝑐 as a key to hash the 𝑠𝑒𝑐𝑟𝑒𝑡 𝑖𝑛𝑝𝑢𝑡.

In the CREATED2 cell, the responder will include 𝑌 and 𝐴𝑈𝑇𝐻. When the initiator
receives the cell, it can calculate

𝑠𝑒𝑐𝑟𝑒𝑡 𝑖𝑛𝑝𝑢𝑡 = 𝑌 ∘ 𝑥 | 𝐵 ∘ 𝑥 | 𝐼𝐷 | 𝐵 | 𝑋 | 𝑌 | 𝑃𝑅𝑂𝑇𝑂𝐼𝐷

and calculate 𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 and 𝐴𝑈𝑇𝐻. 𝐴𝑈𝑇𝐻 and uses it to verify the identity of the
responder since only a router in possession of the private key 𝑏 can calculate the
correct 𝑠𝑒𝑐𝑟𝑒𝑡 𝑖𝑛𝑝𝑢𝑡.

RELAY, EXTEND, EXTEND2, EXTENDED, and EXTENDED2

After establishing the connection to the first node, both sides derive an encryption
key from the 𝐾𝐸𝑌 𝑆𝐸𝐸𝐷. The initiator will use EXTEND or EXTEND2 cells to extend
the circuit, i.e., add another router to the end of it. The EXTEND and EXTEND2 cells
are like the CREATE and CREATE2 cells and hold the first half of the handshake.
The EXTENDED and EXTENDED2 contain the second half of the handshake. The
responder of the connection will forward these cells to another router.

Background 115

DESTROY

To close connections, TOR uses a DESTROY cell. The only content is the reason for
the teardown, which includes options like protocol violations or timeouts.

116 Randomness

Related Work 117

4.3 Related Work
Attackers use high-profile PRG failures and vulnerabilities for exploits. The attacks
against PRGs can lead to exposure of private keys of cryptographic systems, e.g., low
entropy can allow recovery of plaintext and enable attackers to predict the ephemeral
Diffie Hellman session keys [79,137].

One significant vulnerability is insufficient entropy. During boot or when randomness
pools in operating systems are exhausted, there might not be enough entropy. An
other example is when Linux reaches a global file descriptor limit, and no process can
access the system randomness via /dev/random. Most applications then proceed
without the randomness from the operating system. In that case, cryptographic
libraries produce vulnerable keys, which can potentially affect the security of multi
ple applications. In particular, [57] showed that components of OpenSSL, including
SSL/TLS pre-master secret generation andRSA key generation, aswell as the arc4ran
dom function used for cryptographic randomness in FreeBSD, OpenBSD, andmacOS,
are all affected by this issue. [66] also found that /dev/random and /dev/urandom
do not accumulate enough entropy and presented attacks against them. These
vulnerabilities allow an attacker to predict a future value based on the previous out
puts. An attacker might even retrieve the seed value. Debian, e.g., had a severe bug
in its random number generator. A code linter complained about an uninitialized
value. When developers removed the affected line, the random number generator
only used the current process id as its seed [44]. The seed was effectively limited to
32,768 values (which is the maximum process id).

Previous research showed that system PRGs provide poor security in virtualized
environments [75,76,108]. [137] performed reset vulnerabilities and demonstrated
that a user-space process such as TLS could suffer significant loss of security when
run in a VM that resumes multiple times from a snapshot. [75] showed that resets
could lead to exposure of secret keys generated after snapshot resumption. Among
other factors causing the weaknesses, the software entropy sources are weaker in
the virtualized environment, e.g., due to lack of mouse and keyboard inputs. How
ever, vulnerabilites affect even non-virtualized environments. In 2019, AMD's Ryzen
processors microcode had a flawed RDRAND() function [3]. The function, which
is supposed to return random values from its hardware random number generator,
reported the same value on every call.

118 Randomness

A large-scale Internet measurement by [93] of SSH and TLS keys generated by head
less or embedded systems and server management cards found vulnerabilities in
cryptographic keys caused by insufficient entropy in inputs to PRGs. The causes for
the problems were faulty implementations that generate keys automatically on the
first boot without having collected sufficient entropy. [146] showed vulnerabilities
in DNSSEC keys generation in well-established large registrars and DNS hosting
providers and traced the problems to reuse of cryptographic material in attempts to
save on randomness.

A related research direction attempts to weaken dependence on PRGs in practice by
amplifying randomness [35,56]. There are also centralized services that use other
sources of entropy to generate random bits, such as HotBits [106], which uses the
uncertainty in quantum mechanical laws of nature, or LavaRnd [118], which uses
variation in the timing of hardware interrupts. The is also the infamous example of
Cloudflare using the photos of 100 lava lamps to generate randomness [54].

Previously, researchers identified the benefit of distributed servers to ensure re
silience even in the presence of some corrupted servers, e.g., [51,150]. In contrast
to our mechanism, these works propose setting up dedicated servers with an initial
cryptographic setup (including a key shared between the servers) for the collective
generation of randomness. The main limitation of this approach is the requirement
to set up servers and ensure independent third parties. In contrast, our mechanism
does not require any of these. We also do not assume a shared key or string between
the servers. Furthermore, [51, 150] requires that a majority of the servers are not
corrupted for the overall security to hold. For our approach, it suffices that one server
is uncorrupted.

Distributed Pseudorandom Generator 119

4.4 Distributed Pseudorandom Generator
A DPRG utilizes the randomness that already exists on the Internet without relying on
a single source. It connects to multiple Internet services and extracts shared secrets
from cryptographic handshakes.

Our initial concept collected three random strings from individual servers. We would
XOR all three and use the output as our randomness. Under the assumption that at
least one connection is not malicious, we consider our randomness to be random.
We also had the requirement that we must trust the local ISP. We analyzed the BGP
paths for each connection and avoided overlaps. This design has two drawbacks.
First, we waste random strings, two-thirds, to be precise. Second, we must trust our
ISP. So, we improved the initial concept.

To extract a random string, we perform a handshake that contains a key exchange,
like Diffie-Hellman. However, we then feed the result into an AES CBC encryption. To
predict the current state of the cipher, an attacker must know all inputs (since in CBC
mode, the inputs are XORed with the previous outputs). Now we can use all random
strings we collect. However, since we need some randomness for the key exchange
itself, we extract some randomness by using the HKDF on our current ciphertext.
Reversing the HKDF is not possible, so the current state of our cipher is always
secure. Now we can continuously feed our AES encryption with randomness. We
can also expand our random strings by calling the HKDF multiple times. Everything
we extract from our DPRG must go through a HKDF to keep the current cipher state
always hidden, even to programs running locally and accessing the randomness.
DPRG keeps a buffer and collects new randomness when the pool is empty.

4.4.1 Sources
DPRG can use all kinds of services that provide a key exchange. For our evaluation,
we chose public services that perform a cryptographic handshake. Our first source is
the Alexa Top 1M list. Alexa Internet (a subsidiary of Amazon) publishes a ranking of
the top one million websites [6]. Their goal is to estimate the popularity of websites
by using traffic data acquired by Alexa and links to these sites. This list is by far
the most popular source for website lists in research, which is why we include it.
However, even if it names implies one million web sites, the ranking usually has less
than one million websites, and many of the websites do not work anymore. We also

120 Randomness

Alexa HTTPS SMTP(S) SSH TOR

AFRINIC 0.67% 3.37% 3.54% 5.27% 0.38%

APNIC 9.68% 13.85% 21.80% 21.83% 3.51%

ARIN 55.81% 57.04% 34.18% 44.01% 26.81%

LACNIC 1.47% 3.05% 4.05% 3.96% 1.42%

RIPE NCC 32.48% 22.69% 36.43% 24.94% 67.88%

Table 4.1 RIR distribution

included routers from the TOR consensus. TOR has a custom handshake protocol
that we can use to extract random strings. Lastly, we use data from scans.io [149].
We select services with key exchanges, i.e., HTTPS, SMTP (with STARTTLS), STMPS,
and SSH. These are just IP scans without any ranking.

To extract information like RIRs and countries, we must map the IP addresses to
ASNs. For the mapping, we use the online service provided by Team Cymru [152].
We map each address to its ASN and then evaluate the distribution of the IP ad
dresses using this data. Our set contains 429.463 (Alexa) and 6531 (TOR) unique
IP addresses. For the IPs from scans.io, we reduced the IPs to a 2.5 million per
service. Otherwise, resolving, e.g., 50 million HTTPS IP addresses to ASNs is too
time-consuming.

There are five Regional Internet Registries (RIRs) that operate in different regions:
African Network Information Centre (AfriNIC), Asia-Pacific Network Information Cen
tre (APNIC), American Registry for Internet Numbers (ARIN), Latin America and
Caribbean Network Information Centre (LACNIC), and Réseaux IP Européens Net
work Coordination Centre (RIPE NCC). Table 4.1 shows the RIR distribution of our
data sets. We can see that ARIN and RIPE NCC own most of the IP addresses. Usu
ally, ARIN is ahead of RIPE NCC except for TOR, where RIPE NCC owns 67.88% of
the IP addresses.

Distributed Pseudorandom Generator 121

Alexa HTTPS SMTP(S) SSH TOR

US (54.36%) US (55.11%) US (31.96%) US (42.35%) US (22.17%)

RU (6.41%) DE (4.51%) DE (7.19%) CN (12.32%) DE (21.10%)

DE (5.97%) CN (3.85%) AU (6.39%) DE (5.05%) FR (12.92%)

FR (2.71%) SC (2.48%) FR (5.87%) FR (4.03%) NL (5.16%)

TR (2.69%) GB (2.47%) JP (4.19%) SC (3.77%) CA (4.81%)

GB (2.06%) FR (2.38%) CN (4.12%) RU (2.56%) GB (3.48%)

NL (1.99%) CA (2.17%) PL (3.89%) AU (2.10%) RU (3.15%)

CA (1.73%) JP (2.03%) GB (3.34%) CA (2.07%) SE (2.19%)

IR (1.41%) AU (1.48%) HK (2.94%) GB (2.04%) CH (2.17%)

UA (1.40%) NL (1.48%) CA (2.51%) NL (1.88%) RO (1.55%)

Table 4.2 Top 10 country distribution

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

ASNs (sorted by number of IPs)

IP
s

Alexa
HTTPS
SMTP(S)
SSH
TOR

Figure 4.2 IP to ASN distribution

Table 4.2 shows the geographic distribution by country. The US owns most of the IP
addresses for all our data sets, which is not too surprising, considering that the US
has the most computers in the world [116]. Figure 4.2 shows the distribution of IP
addresses to ASNs. The Y-axis shows the cumulative number of IP addresses. The
X-axis shows the ASNs sorted by the numbers of IPs they own. We can see that for
the Alexa, HTTPS, SMTP(S), and SSH IPs, about 3-4% of the ASes own 80% of the IPs.
We see that Alexa's distribution is slightly better and that HTTPS, SMTP(S), and SSH
have almost the same distribution. However, TOR has a much better distribution,
and only 20% of the ASes own 80% of the IP addresses.

122 Randomness

ASN Name IPs

13335 CLOUDFLARENET, US 16.79

16509 AMAZON-02, US 7.22

14618 AMAZON-AES, US 3.79

24940 HETZNER-AS, DE 3.26

14061 DIGITALOCEAN-ASN, US 3.08

16276 OVH, FR 2.70

46606 UNIFIEDLAYER-AS-1, US 2.66

15169 GOOGLE, US 1.93

26496 AS-26496-GO-DADDY-COM-LLC, US 1.86

63949 LINODE-AP Linode, LLC, US 1.22

Table 4.3 Top 10 ASN distribution for Alexa

ASN Name IPs

16276 OVH, FR 9.55

24940 HETZNER-AS, DE 6.28

53667 PONYNET, US 4.74

12876 Online SAS, FR 4.05

14061 DIGITALOCEAN-ASN, US 2.78

63949 LINODE-AP Linode, LLC, US 2.28

3320 DTAG Internet service provider operations, DE 2.06

197540 NETCUP-AS netcup GmbH, DE 1.83

6830 LGI-UPC, AT 1.60

51167 CONTABO, DE 1.41

Table 4.4 Top 10 ASN distribution for TOR

Table 4.3 and Table 4.4 show the top 10 ASNs for Alexa and TOR. We see that many
web pages in the Alexa list use Cloudflare or Amazon to host their sites. The list
for TOR includes many VM or colocation hosters like OVH, Hetzner, Digital Ocean,
Linode, and PonyNet. For the HTTPS list from scans.io, Akamai takes the top place.
We added the tables for scans.io to the appendix.

Distributed Pseudorandom Generator 123

Overall, we can say that the TOR network is a suitable choice to collect random
strings. The distribution of the IPs is better than the other lists we compared. For
potential attackers, it is harder to manipulate our random string collection. However,
with enough rounds, other lists become just as secure as the TOR list. We must only
connect to one uncompromised router.

124 Randomness

TORC 125

4.5 TORC
To demonstrate our DPRG, we created a reference implementation using the TOR
network, which we call TOr Randomness Collector (TORC). We previously showed
that the TOR network is a suitable network for randomness collection. TOR router
IPs are not as concentrated on single ASes as other IP lists we used. Also, the TOR
network does not have a single root of trust. The TOR authorities determine all
decisions by voting. Unlike the PKI used for web pages where a single Certificate
Authority can decide if a certificate is valid or not, in TOR, there is a consensus of
all routers. Also, many people trust the TOR network because of its decentralized
structure and excellent privacy. Overall, we think TOR is a perfect candidate for our
reference implementation.

TORC is a small and lightweight open-source tool to collect random data using
the TOR network. TORC can either output a given amount of data or write to a
pipe, like /dev/random. TORC fills a buffer and returns random values from that
buffer to accelerate randomness collection. It automatically refills that buffer in the
background. We can set every configuration value in the torc.conf configuration
file (see Listing 4.1). To compile TORC, we only require OpenSSL V1.1 or higher as a
dependency. TORC is cross-platform and runs on Linux and macOS.

ip=127.0.0.1 // IP and port to download
port=80 // consensus and descriptors
routers=5 // # of router to use for initialization
expand=1 // Randomness expansion factor
buffer=65536 // Pipe buffer size

Listing 4.1 Example torc.conf configuration file

4.5.1 Components
TORC consists of three main components: an AES cipher in cipher block chain
ing (CBC) mode, an HMAC-based Extract-and-Expand Key Derivation Function
(HKDF) [114], and a Diffie-Hellman key exchange based on the Curve25519 [27],
also called X25519 [26]. The AES CBC cipher will ensure randomness by encrypt
ing collected randomness with the previous cipher block. We use the X25519 key
exchange to extract the 𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 and the HKDF to extend the randomness.

126 Randomness

function InitCipher(𝑠𝑒𝑒𝑑)
𝑥1, 𝑥2, 𝑥3, 𝑥4 ← divide 𝑠𝑒𝑒𝑑 into 32 bytes chunks
𝑖𝑣 ← HKDF(𝑥1, ":AESInitVector")
𝑘𝑒𝑦 ← HKDF(𝑥2, ":AESInitKey")
𝑟𝑜𝑢𝑡𝑒𝑟 𝑠𝑒𝑒𝑑 ← HKDF(𝑥3, ":RouterSeedInit")
init AES with 𝑘𝑒𝑦, 𝑖𝑣
AES(𝑥4)

end function

Algorithm 4.1 Initialize cipher

4.5.2 Initialization
Before we can collect any randomness, we need an initial seed. If we fully trust our
local ISP, we can use a timestamp. In that case, we would assume that at least one
connection is good. We require this seed only once and it will automatically update
after every initialization with a new value. We fetch all authorities signing keys. Then
we download and verify the consensus using these keys and select random routers.
The router selection does not need cryptographically secure randomness. We want
to prevent all TORC clients from connecting to the same routers. Instead, we want
to distribute all initial requests. We hash a timestamp using the HKDF and generate
three 256-bit values. We use these values as the AES initialization vector and key,
and an initial 𝑟𝑜𝑢𝑡𝑒𝑟 𝑠𝑒𝑒𝑑. Then, we collect a 32 bytes (256 bits) 𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 from
at least five routers. One can change this value in the configuration file of DPRG.
TORC will encrypt every 𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 without using the ciphertext output. With every
encryption, the AES CBC cipher will permutate. If at least one handshake was not
malicious, it is impossible to know the last cipher block. We can see an example of
the initialization in Algorithm 4.1.

TORC 127

function GetRandomRouter()
𝑚𝑎𝑥 ← 𝑛𝑟𝑜𝑢𝑡𝑒𝑟𝑠 ⋅ (65535\𝑛𝑟𝑜𝑢𝑡𝑒𝑟𝑠)
while true do

𝑅𝑠𝑒𝑒𝑑 ← AES(𝑅𝑠𝑒𝑒𝑑)
𝑅ℎ𝑎𝑠ℎ ← HKDF(𝑅𝑠𝑒𝑒𝑑, ":RouterSelect")
𝑅 ← 𝑟𝑜𝑢𝑡𝑒𝑟ℎ𝑎𝑠ℎ[30:31]
if 𝑅 > 𝑚𝑎𝑥 then
continue

end if
return 𝑅 mod 𝑛𝑟𝑜𝑢𝑡𝑒𝑟𝑠

end while
end function

Algorithm 4.2 Random router selection

4.5.3 Router selection
To select a router, we encrypt a 256-bit 𝑟𝑜𝑢𝑡𝑒𝑟 𝑠𝑒𝑒𝑑 value. Then, we hash the value
using the HKDF and use the last two bytes. The TOR network has about 6500 routers
which allow us to represent them using two bytes. We do not need any padding
for the AES 256-bit encryption because the 𝑟𝑜𝑢𝑡𝑒𝑟 𝑠𝑒𝑒𝑑 is also 256 bits. For an
equal distribution, we split up the 65536 (two bytes) values into the number of TOR
routers and only use numbers inside a block big enough for all routers. If e.g., there
are 6500 routers, we would split up the 65536 into 65000 and skip all numbers that
are larger than 65000. We can repeat this step over and over to get a random router.
Algorithm 4.2 further illustrates the router selection we described.

128 Randomness

TORC Router

VERSIONS

VERSIONS

CERTS

AUTH_CHALLENGE

NET_INFO

NET_INFO

CREATE2

CREATED2

DESTROY

Figure 4.3 TORC circuit creation

4.5.4 Collecting randomness
To collect randomness, we create a TOR circuit for a randomly selected router. We
use the standard C rand() function to set the circuit ID, which does not need secure
randomness. We could use the same circuit ID for every circuit for our purpose.
However, a static circuit ID would make our collector easily identifiable. We extract
the 32 random bytes from the 𝐴𝑈𝑇𝐻 𝐶𝐻𝐴𝐿𝐿𝐸𝑁𝐺𝐸 cell and feed those to our AES
encryption in CBC mode. We use the output of the HKDF as our temporary private
NTOR key and use the 𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 as our randomness by feeding it again into our
AES cipher and using the output. We can see an overview of the circuit creation
in Figure 4.3. Since routers only receive hashes of our ciphertext, it is impossible
to draw any conclusion about the current state of our AES encryption. Also, since
every preceding encryption influences succeeding encryption, it will be impossible to
predict the ciphertext without knowing every exchanged secret, even if one knows the
encryption key. For our randomness, we only use the output of the AES encryption
and never the input values. So even if a malicious router generates a bad 𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 ,
if we encrypted enough random inputs previously, the output is still secure.

TORC 129

function GetRandomBytes()
𝑐𝐼𝐷 ← 𝑟𝑎𝑛𝑑(𝑡𝑖𝑚𝑒)
𝐴𝑈𝑇𝐻 𝐶𝐻𝐴𝐿𝐿𝐸𝑁𝐺𝐸 ← CreateCircuit(𝑐𝐼𝐷)
𝑡 ← AES(𝐴𝑈𝑇𝐻 𝐶𝐻𝐴𝐿𝐿𝐸𝑁𝐺𝐸)
𝑥 ← HKDF(𝑡, ":NTORKey")
𝑋 ← GeneratePublicX25519Key(𝑥)
𝐾𝐸𝑌 𝑆𝐸𝐸𝐷 ← NTORHandshake(𝑥, 𝑋, 𝐼𝐷, 𝑌)
return AES(𝐾𝐸𝑌 𝑆𝐸𝐸𝐷)

end function

Algorithm 4.3 Get random string from router

function Expand(𝑥)
𝑟𝑎𝑛𝑑𝑜𝑚 ← 𝑒𝑚𝑝𝑡𝑦
𝑦 ← GetRandomBytes()
for 𝑖 ← 1 to number of expansion do

𝑥 ← AES(𝑦)
𝑦 ← HKDF(𝑥, ":RandomExtract")
Append 𝑦 to 𝑟𝑎𝑛𝑑𝑜𝑚

end for
return 𝑟𝑎𝑛𝑑𝑜𝑚

end function

Algorithm 4.4 Expand randomness

4.5.5 Randomness expansion
In the case that one needs more random data, we implemented a randomness
expansion. Using this, we collect 32 bytes of randomness and encrypt and hash
them multiple times to generate a pseudorandom sequence. For many use cases,
this is enough. A kernel's internal random number generator works like this.

130 Randomness

Evaluation 131

0 1000 2000 3000 4000 5000 6000
800

1000

1200

Routers

Nu
m
be
ro
fc
on
ne
ct
io
ns

Figure 4.4 First router selection while bootstrapping

4.6 Evaluation
We analyze the TORC and its randomness collection. We evaluate previous claims
and analyze the performance, overhead, quality of randomness, and security. First,
we want to verify our claim that TORC equally selects TOR routers.

4.6.1 Router selection
We ran 6.500.000 initial setups for the initial router selection using a timestamp as a
seed. With 6500 routers, TORC should connect about 1000 times to each router. We
can see Figure 4.4 that the distributed connections, and that no single router gets
too many requests.

4.6.2 Quality of randomness
We used a popular software test package ENT [105] to apply statistical tests on
the generated sequences. ENT provides a comprehensive analysis of randomness
testing for cryptographic applications. It performs statistical tests over an input
sequence and produces output according to common randomness properties. For
each test, the ENT suite program generates entropy, 𝜒2 value, arithmetic mean value
𝜇, Monte Carlo value for 𝜋, and serial correlation coefficient. These tests measure
different properties of the strings appearing in the tested sequence.

We apply these tests on sequences of strings collected from (1) TORC without ex
pansion, (2) TORC with expansion, (3) the C rand() using a recent GCC 9.2.0 compiler,
and (4) the /dev/random device of a current macOS 10.14.6. For each of these

132 Randomness

TORC Alexa rand() /dev/random

Entropy (bits/byte) 7.9998 7.9998 7.9546 7.9998

Compression (%) 0 0 0 0

𝜒2 243.75 278.10 67367.89 248.40

exceeds (%) 68.31 15.32 0.01 60.46

𝜇 127.4 127.5 111.63 127.50

𝜋 3.146 3.143 3.482 3.141

Serial correlation 0.001 0.0009 -0.048 -0.001

Table 4.5 Statistical tests over sequences produced by TORC, Alexa
Top 1M, the C rand() function and the /dev/random device of macOS

Figure 4.5 Visualization of collected randomness using
TORC as black and white bits (left) and RGB values (right)

sources, we collect a 1MB file of random bits. We can see the results in Table 4.5.
The expansion mechanism in TORC uses 32 randomly collected bytes and encrypts
and hashed these multiple times to generate longer pseudorandom sequences. In
this case, 32 bytes will generate a sequence of 32768 bytes. Pseudorandom number
sequences are still very secure if seeded and reseeded well.

The abbreviation exceeds % of 𝜒2 in the table describes the degree to which the
test suspects that the sequence is not random. If the percentage is above 99%, we
consider it as not random. We refer an interested reader to Ruhkin et al. [138] for
further information about the statistical tests.

Yfantis et al. [165] suggested visual and acoustic tests for randomnumber generators.
We show the visualization of 65536 random bits collected with TORC in Figure 4.5.
A black pixel represents a binary 0, and a white pixel represents a binary 1. There
should be no visible patterns. We also included a version where we use three bytes
as RGB values to visualize 196608 bytes of randomness collected using TORC.

Evaluation 133

Method Time

rand() 0.02s

/dev/random 0.04s

TORC (1024 expansion) 21.35s

TORC (no expansion) 22534.40s

Table 4.6 Time to collect 1MB (1,048,576 bytes) of random data

Latency Time (cached) Time (uncached)

0ms 56ms 83ms

1ms 80ms 118ms

2ms 104ms 153ms

5ms 176ms 258ms

10ms 296ms 433ms

20ms 536ms 783ms

50ms 1256ms 1833ms

100ms 2456ms 3583ms

200ms 4856ms 7083ms

500ms 12056ms 17583ms

Table 4.7 Time to collect 32 Bytes of random data using
different latencies and a fixed bandwidth of 1 MBit/s

4.6.3 Performance
Randomness collection through internet connections can never compete with hard
ware implementation or pure user space tools. However, we want to provide an
overview of how TORC performs in terms of speed. Table 4.6 shows how TORC
performs against the C rand() function and the /dev/random device. We used a
1 GBit/s connection for this test. Two factors are slowing down the collection of
randomness: (1) unresponsive or failing routers, which take up time without gener
ating any randomness, and (2) latency. The bandwidth almost does not affect the
performance. TOR cells are 514 bytes, and we spend most of the time waiting for
responses. Latency, however, has an enormous influence on speed.

Table 4.7 shows a simulation using different latencies. Here we assume a bandwidth
of 1 MBit/s since this is more than needed, and most devices connected to the
Internet usually have 1 MBit/s or more. However, we do not include the failing

134 Randomness

Key size Time (50ms) Time (100ms)

256 bit 1256ms 2456ms

512 bit 2512ms 4912ms

1024 bit 5024ms 9824ms

2048 bit 10048ms 19648ms

4096 bit 20096ms 39296ms

Table 4.8 Time to collect different key sizes using a fixed bandwidth of 1 MBit/s

routers in the simulation. When we connect to a router, we must fetch its descriptor
and NTOR keys. To speed up the randomness collection, we cache these. If we
connect to a router again, we can use the cached values. We included values where
we assume everything is cached and where nothing is cached. One should consider
the simulation a rough estimation since the actual latency depends on the routing
of the internet provider. We also did not include the processing of the information
by the device. Devices can range from small ones, like a Raspberry Pi, to high-
end computers or Mainframes. The calculation speed does not matter for a faster
computer since it is almost instant. It does, however, for smaller devices like, e.g.,
IoT clients.

In Table 4.8, we can see what it would mean for the generation of different key
sizes. Without a cached descriptor and high latency, it can take 39 seconds to gather
4096 bits of randomness. A common use-case for this amount of random bits would
be the generation of an RSA key.

Evaluation 135

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

of contacted servers

su
cc
es
s
ra
te

Figure 4.6 Simulation of the success rate of an attacker

4.6.4 Security analysis
Using 𝑛 servers ensures security even if some, but not all, are compromised, provide
vulnerable randomness, or if the attacker can eavesdrop on some of the networks
or paths. We assume that an attacker knows the initial seed, e.g., if it is just a
timestamp. When using an AES CBC cipher, an attacker loses if we successfully
connect to a non-malicious server. DPRG is also secure against past and future
break-ins. Compromising the system does not break previous or future connections.
The AES CBC cipher continuously permutates, and old states get discarded.

4.6.4.1 At least one good server
The probability when selecting 𝑛 servers that at least one provides good pseudo
randomness is high. Denote the set of all potential servers with 𝑆 , and 𝐶 is the set
corrupted servers. First, the attacker selects the set 𝐶 of corrupted servers, then
DPRG selects 𝑛 servers out of 𝑆. We can describe the success probability of an
attack as

Pr(attack) =
n

i=1

|C|
|S|

.

We can see a visual representation with 95%, 90%, 75% 50%, and 25% corrupted
servers in Figure 4.6. With enough initial rounds, even strong attackers become
weak.

136 Randomness

4.6.4.2 Hijacking attackers
Since a MitM attacker cannot subvert the security of a DPRG, it can attempt to
perform launch Border Gateway Protocol (BGP) prefix hijacks. BGP is known to be
vulnerable to prefix hijack attacks [1,2,18,31]. In prefix hijacks, the attacker hijacks all
the traffic of a victim network.

We evaluate the attacker's ability to exploit the insecurity of BGP to hijack traffic
between the networks operating a DPRG and the servers. In this case, both the
victim and the attacker announce the victim's BGP prefix. The probability that the
attacker attracts more than 90% of the web servers is 2%. The simulation also shows
that attackers that can hijack traffic from 90% of the web servers would disconnect
the victim from the rest of the Internet. Only 0.20% of the attackers can successfully
launch the attack while maintaining their route to the victim to relay packets between
the victim and the rest of the Internet to avoid detection.

To prevent a DPRG from generating randomness, the attacker must hijack traffic
from almost all the servers. The consequences would be a disruption of all the ASes
on the Internet.

4.6.4.3 Reversing HKDF
We showed that every router receives a HKDF value of our cipher block. The 256-bit
input space, even when using fixed keys, makes it impossible to brute force or gener
ate rainbow tables for a given output. It would require 2256 ⋅ 32 bytes, which is a 79
decimal digit number, to store a 256-bit rainbow table.

Evaluation 137

4.6.4.4 Untrusted local ISP
If we trust the local ISP, we can securely collect randomness since not all paths
overlap. There will be at least one non-malicious path. However, if the ISP is un
trusted, there are two further requirements. The services must provide a public-key
infrastructure (PKI) to authenticate the servers. We achieved this by using the TOR
consensus. But if we were using SSH servers for our DPRG implementation, we
would have no PKI. The ISP can monitor all traffic. We need one initial seed that is
unknown to the ISP. When a DPRG finishes its initialization using the provided seed,
it can refresh it. The next time it starts, there is no need for a new one. We can also
use existing DPRG instances to generate new ones. E.g., we can use TORC to collect
a random seed which we can use.

138 Randomness

Conclusion 139

4.7 Conclusion
Randomness is essential for bootstrapping cryptography. Often, randomness is
difficult to obtain or generate in practice, and we have seen many high-profile PRG
failures and vulnerabilities over the years.

We proposed DPRG, a novel approach to the pseudo-randomness generation prob
lem. We have shown how to collect randomness using public services on the Internet.
We explored different public services which a DPRG could use. We highlighted our
implementation using TOR called TORC and evaluated its quality, performance, and
security.

DPRG can revolutionize not only the current state of randomness generation but can
push forward support and usage of crypto in restricted devices, e.g., that do not have
access to sources of entropy, such as IoT devices or smart cards. It is also a worthy
alternative to hardware RNGs on virtualized environments or any device where the
RNG is unreliable. One advantage of DPRG is the independence of the hardware
entropy. It runs only in software mode and, besides trivial tasks like opening network
sockets, needs no help from the operating system.

140 Randomness

CHAPTER 5
Summary

More people use the Internet. Their safety relies on the cryptographic backbones
of the Internet. Without cryptography, online transactions, login credentials, and
more would be insecure. We must maintain the security, even if new attacks appear.
E.g., when post-quantum computers start to threaten current cryptographic algo
rithms, we must replace them with new ones that are secure against post-quantum
computers.

In this thesis, we look for the answer to the question. "What does it take to bootstrap
cryptography on the Internet, and how can we improve it?" We answer the question
by evaluating three of the five requirements we defined. We show how to improve
transport layers, PKIs, and randomness collection.

In Chapter 2, we investigate the effect of transport layers on cryptographic algo
rithms, which is a direction that no one previously explored. We show that there are
no transport layers that replace all others. We introduce a framework for secure
computation applications which can utilize different transport layers depending on
the application.

In Chapter 3, we evaluate the robustness of the PKI of the Internet. We show the
world's first attack against domain validation utilizing off-path DNS cache poisoning.
We present an optimized BGP simulator for evaluating Internet BGP paths. We
explain how we optimized the simulator and how we can determine valid BGP paths
on the Internet. We also analyze how vulnerable name servers on the Internet are.
We analyze attack probabilities using same-prefix and sub-prefix hijacks. Finally, we
present a countermeasure using distributed domain validation.

142 Summary

In Chapter 4, we present a novel approach to collect randomness on the Internet. We
evaluate the feasibility of a distributed pseudo-random generator and introduce a
reference implementation using the TOR network. We analyze the performance and
compare it to existing PRNGs. We measure the overhead involved in this method
and the quality of randomness.

Wedemonstrate the importance of requirements to cryptography and showproblems
that currently exist. We show that public-key infrastructures are a fragile construct
and need improvements. We further show how choosing a suitable transport layer
allows cryptographic applications that would otherwise be completely unusable. We
also demonstrate that we can collect cryptographically secure randomness even on
devices that lack entropy. Overall, we show cryptography from a different perspective.
Instead of mathematical formulas and proofs, we focus on the practical application
of cryptography.

CHAPTER 6
Future Work

Research is ongoing work. However, our time is finite, and we must concentrate on
chosen directions and cannot follow them all. Also, to finish this thesis, we had to
stop research at a point. These two arguments create space for future work.

We show a transport layer framework for secure computation. From here, there
are so many directions we can go. We can investigate other transport layers and
cryptographic protocols. We can look at Secure Computation with more than two
parties.

Or we can go in a completely different direction, like developing application-aware
transport layers. Here, applications could inform transport layers about the require
ments. E.g., transport layers could switch from a file transfer mode to a loss-resistant
burst mode for quick handshakes.

For the public-key infrastructure of the Internet, there is a lot of future work to do.
For one, we must deploy cryptographic extensions like DNSSEC. The backbone of
the Internet, i.e., DNS and BGP, have many flaws. A good research direction would be
the evaluation of new DNS and BGP alternatives that already utilize the distributed
nature of the Internet for security. However, these changes would be massive. We
should not expect anything more than theoretical research soon.

The simulation of BGPs paths is a convenient utility. The Internet is a live system,
and we cannot take parts of it offline for evaluation purposes. So, the tool we depend
on is simulation. Of course, further improvement of our simulator can be a research
direction. Another future work would be to build a complex simulation framework

144 Future Work

build on top of our simulator. With it, even researchers without programming skills
should be able to perform simulations.

We demonstrated the distributed domain validation. While our use case was the
web's PKI, one could utilize distributed agents to validate different services. Another
research topic could be the development of an open and decentralized validation
infrastructure. Many participants can access other agents by giving them access to
their agents. Further evaluation of a fully deployed DDV setup may also be another
direction that future works may follow.

Network randomness collectors are a new research direction. Not much research
exists for these. Future works could include the evaluation of low-power devices.
One should evaluate the feasibility of network randomness collection on IoT devices.
These devices come with limited resources, and we need some optimizations for
these devices.

Also, we should integrate the randomness collection into existing libraries. E.g.,
OpenSSL and other libraries perform the SSL connections on most operating sys
tems. We could extract randomness from, e.g., handshakes and seed the internal
randomness.

Of course, the two requirements we did not cover also require research. While
performance is still one of the main goals besides security, usability can be difficult.
The easier it is to use algorithms, the more users will use them. However, under no
circumstance should we sacrifice security for usability. Security must be the number
one requirement.

Overall, we consider all of our implementations and mechanism as a starting point.
We hope that future works will extend these in many directions.

APPENDIX A
Appendix

146 Appendix

ASN Name IPs

16625 AKAMAI-AS, US 11.51

16509 AMAZON-02, US 7.39

7018 ATT-INTERNET4, US 4.35

14618 AMAZON-AES, US 2.88

20940 AKAMAI-ASN1, US 2.35

8075 MICROSOFT-CORP-MSN-AS-BLOCK, US 1.74

15169 GOOGLE, US 1.61

13335 CLOUDFLARENET, US 1.58

209 CENTURYLINK-US-LEGACY-QWEST, US 1.53

16276 OVH, FR 1.39

Table A.1 Top 10 ASN distribution for HTTPS

ASN Name IPs

133612 VODAFONE-AS-AP Vodafone Australia Pty Ltd, AU 5.27

16276 OVH, FR 4.60

46606 UNIFIEDLAYER-AS-1, US 3.66

15169 GOOGLE, US 3.55

12824 HOMEPL-AS, PL 2.18

26658 HENGTONG-IDC-LLC, US 2.07

24940 HETZNER-AS, DE 1.79

27680 TELEFONICA MOVIL DE CHILE S.A., CL 1.31

14061 DIGITALOCEAN-ASN, US 1.21

6325 ILLINOIS-CENTURY, US 1.05

Table A.2 Top 10 ASN distribution for SMTP(S)

147

ASN Name IPs

16509 AMAZON-02, US 7.49

37963 CNNIC-ALIBABA-CN-NET-AP Hangzhou Alibaba Advertising Co.,Ltd., CN 4.49

14061 DIGITALOCEAN-ASN, US 4.48

15169 GOOGLE, US 4.19

14618 AMAZON-AES, US 3.23

16276 OVH, FR 3.17

133612 VODAFONE-AS-AP Vodafone Australia Pty Ltd, AU 1.66

24940 HETZNER-AS, DE 1.62

4134 CHINANET-BACKBONE No.31,Jin-rong Street, CN 1.52

45090 CNNIC-TENCENT-NET-AP Shenzhen Tencent Computer Systems Company
Limited, CN

1.33

Table A.3 Top 10 ASN distribution for SSH

148 Appendix

Bibliography

[1] Hijack Event Today by Indosat, http://www.bgpmon.net/hijack-event-today-by
-indosat (unpublished).

[2] New Threat: Targeted Internet Traffic Misdirection, http://www.renesys.com
/2013/11/mitm-internet-hijacking (unpublished).

[3] ars technica, How a months-old AMD microcode bug destroyed my weekend,
https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode
-bug-destroyed-my-weekend/ (2019).

[4] M. Abadi, A. Birrell, I. Mironov, T. Wobber, and Y. Xie, Global Authentication in
an Untrustworthy World., In HotOS (2013).

[5] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J.A. Halderman, N.
Heninger, D. Springall, E. Thomé, L. Valenta et al., Imperfect forward secrecy:
How Diffie-Hellman fails in practice, In Proceedings of the 22nd ACMSIGSAC
Conference on Computer and Communications Security, ACM (2015).

[6] Alexa, Top Sites, https://www.alexa.com/topsites (unpublished).

[7] M. Alicherry and A.D. Keromytis, Doublecheck: Multi-path verification against
man-in-the-middle attacks, In 2009 IEEE Symposium on Computers and
Communications, IEEE (2009).

[8] M. Alizadeh, A. Greenberg, D.A.Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen
gupta, and M. Sridharan, Data center tcp (dctcp), ACM SIGCOMM computer
communication review 41(4), 63–74 (2011).

150 Bibliography

[9] B. Amann, M. Vallentin, S. Hall, and R. Sommer, Extracting certificates from
live traffic: A near real-time SSL notary service, Technical Report TR-12-014
(2012).

[10] D. Anderson, Splinternet Behind the Great Firewall of China, Queue 10(11), 40
(2012).

[11] APNIC,DNSSEC Validation Rate by country, https://stats.labs.apnic.net/dnssec
(2021).

[12] D.W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J.I. Pagter, N.P.
Smart, and R.N. Wright, From Keys to Databases - Real-World Applications
of Secure Multi-Party Computation, Comput. J. 61(12), 1749–1771 (2018).

[13] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, DNS Security Intro
duction and Requirements, RFC, no. 4033 (RFC Editor, 2005). (http://www.rfc
-editor.org/rfc/rfc4033.txt)

[14] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, Protocol Modifi
cations for the DNS Security Extensions, RFC, no. 4035 (RFC Editor, 2005).
(http://www.rfc-editor.org/rfc/rfc4035.txt)

[15] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, Resource Records
for the DNS Security Extensions, RFC, no. 4034 (RFC Editor, 2005). (http:/
/www.rfc-editor.org/rfc/rfc4034.txt)

[16] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, More efficient oblivious
transfer and extensions for faster secure computation, In ACM Conference
on Computer and Communications Security (ACM, 2013).

[17] Y. Aumann and Y. Lindell, Security Against Covert Adversaries: Efficient Pro
tocols for Realistic Adversaries, In S.P. Vadhan (Ed.) Theory of Cryptography,
4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Nether
lands, February 21-24, 2007, Proceedings (Springer, 2007).

[18] H. Ballani, P. Francis, and X. Zhang, A study of prefix hijacking and intercep
tion in the Internet, ACM SIGCOMM Computer Communication Review 37(4),
265–276 (2007).

151

[19] A. Barak, M. Hirt, L. Koskas, and Y. Lindell, An End-to-End System for Large
Scale P2PMPC-as-a-Service and Low-BandwidthMPC forWeakParticipants,
In CCS (ACM, 2018).

[20] E. Barker and A. Roginsky, Transitions: Recommendation for transitioning the
use of cryptographic algorithms and key lengths, NIST Special Publication
(2011).

[21] D. Basin, C. Cremers, T. Hyuni-jin, A. Perrig, R. Sasse, and P. Szalachowski,
Design, Analysis, and Implementation of ARPKI: an Attack-Resilient Public-
Key Infrastructure, IEEE Transactions on Dependable and Secure Computing
(2016).

[22] D. Beaver, S. Micali, and P. Rogaway, The Round Complexity of Secure Proto
cols (Extended Abstract), In STOC (ACM, 1990).

[23] M. Bellare, V.T. Hoang, S. Keelveedhi, and P. Rogaway, Efficient Garbling from
a Fixed-Key Blockcipher, In IEEE Symposium on Security and Privacy (IEEE
Computer Society, 2013).

[24] M. Bellare, V.T. Hoang, and P. Rogaway, Foundations of garbled circuits, In
ACM Conference on Computer and Communications Security (ACM, 2012).

[25] M. Bellare and P. Rogaway, RandomOracles Are Practical: A Paradigm for De
signing Efficient Protocols (Association for Computing Machinery, New York,
NY, USA, 1993).

[26] D.J. Bernstein, [Cfrg] 25510 naming, https://mailarchive.ietf.org/arch/msg
/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU (unpublished).

[27] D.J. Bernstein, Curve25519: New Diffie-Hellman Speed Records., In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin (Eds.) Public Key Cryptography (Springer,
2006).

[28] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal, Bamboozling
Certificate Authorities with BGP, In W. Enck and A.P. Felt (Eds.) 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018 (USENIX Association, 2018).

152 Bibliography

[29] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal, Using BGP to
acquire bogus TLS certificates, HotPETS’17 (2017).

[30] M.S. Blog, DigiNotar Removal Follow Up, https://blog.mozilla.org/security
/2011/09/02/diginotar-removal-follow-up/ (2011).

[31] R. Blog, Renesys Blog - Pakistan Hijacks YouTube, http://www.renesys.com
/blog/2008/02/pakistan_hijacks_youtube_1.shtml (2008).

[32] M. Blum and S. Micali, How to generate cryptographically strong sequences
of pseudorandom bits, SIAM journal on Computing 13(4), 850–864 (1984).

[33] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht, How the Estonian Tax and
Customs Board Evaluated a Tax Fraud Detection System Based on Secure
Multi-party Computation, In Financial Cryptography (Springer, 2015).

[34] P. Bogetoft, D.L. Christensen, I. Damgård, M. Geisler, T.P. Jakobsen, M.
Krøigaard, J.D. Nielsen, J.B. Nielsen, K. Nielsen, J. Pagter et al., Secure Multi
party Computation Goes Live, In Financial Cryptography (Springer, 2009).

[35] Z. Brakerski, S. Goldwasser, G.N. Rothblum, and V. Vaikuntanathan, Weak
verifiable random functions, In Theory of Cryptography Conference, Springer
(2009).

[36] M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waidner, Domain Validation++
For MitM-Resilient PKI, In D. Lie, M. Mannan, M. Backes, and X. Wang (Eds.)
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018
(ACM, 2018).

[37] M. Brandt, T. Dai, H. Shulman, and M. Waidner, Evaluating Resilience of Do
mains in PKI, In Proceedings of the 2021 ACM SIGSAC Conference on Com
puter and Communications Security (Association for Computing Machinery,
2021).

[38] M. Brandt, C. Orlandi, K. Shrishak, and H. Shulman, Transputation: Transport
Framework for Secure Computation, In F. Kiefer and D. Loebenberger (Eds.)
Crypto day matters 30 (Gesellschaft für Informatik e.V. / FG KRYPTO, Bonn,
2019).

153

[39] M. Brandt, C. Orlandi, K. Shrishak, and H. Shulman, Optimal Transport Layer
for Secure Computation, In Proceedings of the 17th International Joint Con
ference on e-Business and Telecommunications, Volume 2: SECRYPT, Lieu
saint, Paris, France, July 8-10, 2020 (ICETE, 2020).

[40] M. Brandt and H. Shulman, Optimized BGP Simulator for Evaluation of Inter
net Hijacks, In 40th IEEE Conference on Computer Communications, INFO
COM 2021, Virtual Conference, Mai 11-13, 2021 (IEEE, 2021).

[41] M. Brandt, H. Shulman, and M. Waidner, Internet As a Source of Random
ness, In Proceedings of the 17th ACMWorkshop on Hot Topics in Networks,
HotNets 2018, Redmond, WA, USA, November 15-16, 2018 (ACM, 2018).

[42] M. Brandt, H. Shulman, andM.Waidner, Distributed Domain Validation (DDV),
In M. Selhorst, D. Loebenberger, and M. Nüsken (Eds.) Crypto day matters 31
(Gesellschaft für Informatik e.V. / FG KRYPTO, Bonn, 2019).

[43] M. Brandt, H. Shulman, andM.Waidner, Internet As a Source of Randomness,
In F. Kiefer and D. Loebenberger (Eds.) Crypto day matters 30 (Gesellschaft
für Informatik e.V. / FG KRYPTO, Bonn, 2019).

[44] Bruce Schneier, Random Number Bug in Debian Linux, https://www.schneier
.com/blog/archives/2008/05/random_number_b.html (2008).

[45] C. Caini and R. Firrincieli, TCP Hybla: a TCP enhancement for heteroge
neous networks, Int. J. Satellite Communications Networking 22(5), 547–566
(2004).

[46] N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, and V. Jacobson, BBR: Con
gestion-Based Congestion Control, ACM Queue 14(5), 20–53 (2016).

[47] CAIDA, Inferred AS Relationships Dataset, https://www.caida.org/data/as-re
lationships (unpublished).

[48] V. Cheval, M. Ryan, and J. Yu, DTKI: a new formalized PKI with no trusted
parties, arXiv preprint arXiv:1408.1023 (2014).

[49] S.G. Choi, J. Katz, R. Kumaresan, and H.S. Zhou, On the Security of the "Free-
XOR" Technique, In TCC (Springer, 2012).

154 Bibliography

[50] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness
and probabilistic communication complexity, SIAM Journal on Computing
17(2), 230–261 (1988).

[51] C.S. Chow and A. Herzberg, Network Randomization Protocol: A Proactive
Pseudo-Random Generator, In Proceedings of the 5th Symposium on UNIX
Security (USENIX Association, Berkeley, CA, USA, 1995).

[52] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M.
Bowman, Planetlab: an overlay testbed for broad-coverage services, ACM
SIGCOMM Computer Communication Review 33(3), 3–12 (2003).

[53] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, D. Choffnes, D. Levin, B.M.
Maggs, A. Mislove, and C. Wilson, A longitudinal, end-to-end view of the
DNSSEC ecosystem, In USENIX Security (2017).

[54] Cloudflare, Inc., Randomness 101: LavaRand in Production, https://blog
.cloudflare.com/randomness-101-lavarand-in-production/ (2017).

[55] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira, Jumpstarting BGP Security
with Path-End Validation, In M.P. Barcellos, J. Crowcroft, A. Vahdat, and S.
Katti (Eds.) Proceedings of the ACM SIGCOMM 2016 Conference, Florianop
olis, Brazil, August 22-26, 2016 (ACM, 2016).

[56] R. Colbeck and R. Renner, Free randomness can be amplified, Nature Physics
8(6), 450 (2012).

[57] H. Corrigan-Gibbs and S. Jana, Recommendations for Randomness in the
Operating System, or How to Keep Evil Children out of Your Pool and Other
Random Facts., In HotOS (2015).

[58] T. Dai, H. Shulman, and M. Waidner, DNSSEC Misconfigurations in Popular
Domains, In International Conference on Cryptology and Network Security,
Springer (2016).

[59] T. Dai, H. Shulman, and M. Waidner, Let's Downgrade Let's Encrypt, In Pro
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communi
cations Security, CCS2021, Virtual Conference, November 15-19, 2021 (ACM,
2021).

155

[60] L. Daigle,WHOIS Protocol Specification, RFC, no. 3912 (RFC Editor, 2004).

[61] J.P. Degabriele, K.G. Paterson, J.C. Schuldt, and J. Woodage, Backdoors in
pseudorandom number generators: Possibility and impossibility results, In
Annual International Cryptology Conference, Springer (2016).

[62] D. Demmler, T. Schneider, and M. Zohner, ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation, In NDSS (The Internet Soci
ety, 2015). (Code: https://github.com/encryptogroup/ABY)

[63] Deploy260, Email Hijacking, https://www.internetsociety.org/blog/2014
/09/email-hijacking-new-research-shows-why-we-need-dnssec-now/
(2014).

[64] R. Dingledine, Pre-alpha: run an onion proxy now!, https://archives.seul.org/or
/dev/Sep-2002/msg00019.html (unpublished).

[65] R. Dingledine, N. Mathewson, and P. Syverson, Tor: The Second-generation
Onion Router, In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13 (USENIX Association, Berkeley, CA, USA, 2004).

[66] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, andD.Wichs, Security analy
sis of pseudo-random number generators with input: /dev/random is not ro
bust, In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, ACM (2013).

[67] Donald E. Eastlake 3rd and C.W. Kaufman, Domain Name System Security
Extensions, RFC, no. 2065 (RFC Editor, 1997). (http://www.rfc-editor.org/rfc
/rfc2065.txt)

[68] L. Dorrendorf, Z. Gutterman, and B. Pinkas, Cryptanalysis of the windows ran
dom number generator, In Proceedings of the 14th ACM conference on Com
puter and communications security, ACM (2007).

[69] V. Dukhovni and W. Hardaker, The DNS-Based Authentication of Named Enti
ties (DANE) Protocol: Updates and Operational Guidance, RFC, no. 7671 (RFC
Editor, 2015).

156 Bibliography

[70] Z. Durumeric, E. Wustrow, and J.A. Halderman, ZMap: Fast Internet-wide
Scanning and Its Security Applications., In USENIX Security Symposium
(2013).

[71] P. Eckersley and J. Burns, An observatory for the SSLiverse, DEFCON'18
(2010).

[72] P. Eckersley, Sovereign keys: A proposal to make https and email more se
cure, Electronic Frontier Foundation 18 (2011).

[73] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell, SCAPI: The Secure Com
putation Application Programming Interface, IACR Cryptology ePrint Archive
2012 629 (2012). (Code: https://github.com/cryptobiu/libscapi)

[74] R. Elz and R. Bush, Clarifications to the DNS Specification, RFC, no. 2181 (RFC
Editor, 1997).

[75] A. Everspaugh, Y. Zhai, R. Jellinek, T. Ristenpart, andM. Swift, Not-so-random
numbers in virtualized Linux and the Whirlwind RNG, In Security and Privacy
(SP), 2014 IEEE Symposium on, IEEE (2014).

[76] T. Garfinkel and M. Rosenblum, When Virtual Is Harder than Real: Security
Challenges in Virtual Machine Based Computing Environments., In HotOS
(2005).

[77] Y. Gilad and A. Herzberg, Fragmentation Considered Vulnerable, ACM Trans
actions on Information and System Security (TISSEC) 15(4), 16:1–16:31
(2013). (A preliminary version appeared in WOOT 2011.)

[78] P. Gill, M. Schapira, and S. Goldberg, Modeling on quicksand: dealing with the
scarcity of ground truth in interdomain routing data, Comput. Commun. Rev.
42(1), 40–46 (2012).

[79] I. Goldberg andD.Wagner, Randomness and theNetscape browser,DrDobb's
Journal-SoftwareTools for the Professional Programmer 21(1), 66–71 (1996).

[80] O. Goldreich, S. Micali, and A. Wigderson, How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority, In STOC (ACM,
1987).

157

[81] Google, Certificate Transparency, https://chromium.googlesource.com
/chromium/src/+/refs/heads/main/net/docs/certificate-transparency.md
(2018).

[82] Y. Gu and R.L. Grossman, UDTv4: Improvements in Performance and Usabil
ity, In GridNets (Springer, 2008).

[83] S. Gueron, Y. Lindell, A. Nof, and B. Pinkas, Fast Garbling of Circuits Under
Standard Assumptions, In ACM Conference on Computer and Communica
tions Security (ACM, 2015).

[84] P. Gutmann, Software generation of random numbers for cryptographic pur
poses, In Proceedings of the 1998 Usenix Security Symposium (1998).

[85] Z. Gutterman, B. Pinkas, andT. Reinman, Analysis of the linux randomnumber
generator, In Security and Privacy, 2006 IEEE Symposium on, IEEE (2006).

[86] S. Ha, I. Rhee, and L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant,
Operating Systems Review 42(5), 64–74 (2008).

[87] T.J. Hacker, B.D. Athey, and B. Noble, The End-to-End Performance Effects of
Parallel TCP Sockets on a Lossy Wide-Area Network, In IPDPS (IEEE Com
puter Society, 2002).

[88] S. Halevi, Advanced Cryptography: Promise and Challenges, In ACM Confer
ence on Computer and Communications Security (ACM, 2018).

[89] P. Hallam-Baker and R. Stradling, DNS Certification Authority Authorization
(CAA) Resource Record, RFC, no. 6844 (RFC Editor, 2013).

[90] S. Hao, Y. Zhang, H. Wang, and A. Stavrou, End-Users Get Maneuvered: Em
pirical Analysis of Redirection Hijacking in Content Delivery Networks, In
27th USENIX Security Symposium (USENIX Security 18), USENIX Associa
tion (2018).

[91] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, SoK: General Pur
pose Compilers for Secure Multi-Party Computation, In 2019 IEEE Sympo
sium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019 (IEEE, 2019).

158 Bibliography

[92] B. Hemenway, S. Lu, R. Ostrovsky, and W.W. IV, High-Precision Secure Com
putation of Satellite Collision Probabilities, In SCN (Springer, 2016).

[93] N. Heninger, Z. Durumeric, E. Wustrow, and J.A. Halderman, Mining your Ps
and Qs: Detection of widespread weak keys in network devices, In Presented
as part of the 21st USENIX Security Symposium (USENIX Security 12) (2012).

[94] A. Herzberg and H. Shulman, Security of Patched DNS, In Computer Secu
rity - ESORICS 2012 - 17th European Symposium on Research in Computer
Security, Pisa, Italy, September 10-12, 2012. Proceedings (2012).

[95] A. Herzberg and H. Shulman, Fragmentation considered poisonous, or: One-
domain-to-rule-them-all. org, In Communications and Network Security
(CNS), 2013 IEEE Conference on, IEEE (2013).

[96] A. Herzberg and H. Shulman, Vulnerable Delegation of DNS Resolution, In
Computer Security - ESORICS 2013 - 18th European Symposium on Re
search in Computer Security, Egham, UK, September 9-13, 2013. Proceed
ings (2013).

[97] A. Herzberg and H. Shulman, Socket Overloading for Fun and Cache Poison
ing, In C.N.P. Jr. (Ed.) ACM Annual Computer Security Applications Confer
ence (ACM ACSAC), New Orleans, Louisiana, U.S. (2013).

[98] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, The SSL landscape: a thor
ough analysis of the x. 509 PKI using active and passive measurements, In
Proceedings of the 2011 ACM SIGCOMM conference on Internet measure
ment conference, ACM (2011).

[99] M. Hu, Taxonomy of the Snowden Disclosures, Wash & Lee L. Rev. 72
1679–1989 (2015).

[100] Y. Huang, D. Evans, and J. Katz, Private Set Intersection: Are Garbled Circuits
Better than Custom Protocols?, In NDSS (The Internet Society, 2012).

[101] Y. Huang, D. Evans, J. Katz, and L. Malka, Faster Secure Two-Party Computa
tion Using Garbled Circuits, In USENIX Security Symposium (USENIX Asso
ciation, 2011).

159

[102] A. Hubert and R. van Mook,Measures for Making DNS More Resilient against
Forged Answers, RFC, no. 5452 (RFC Editor, 2009).

[103] V.C. Inc.,Monthly IP Latency Data - Verizon Enterprise Solutions, https://www
.verizon.com/business/terms/latency/ (2019).

[104] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, Extending Oblivious Transfers
Efficiently, In CRYPTO (Springer, 2003).

[105] John Walker, ENT: A Pseudorandom Number Sequence Test Program, http:/
/www.fourmilab.ch/random/ (2008).

[106] JohnWalker, HotBits: Genuine random numbers, generated by radioactive de
cay, https://www.fourmilab.ch/hotbits/ (2017).

[107] D. Kaminsky, It's the End of the Cache AsWe Know It, In Black Hat conference
(2008). (http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky
/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf)

[108] B. Kerrigan and Y. Chen, A study of entropy sources in cloud computers:
random number generation on cloud hosts, Computer Network Security
286–298 (2012).

[109] T.H.J. Kim, L.S. Huang, A. Perring, C. Jackson, and V. Gligor, Accountable key
infrastructure (AKI): a proposal for a public-key validation infrastructure, In
Proceedings of the 22nd international conference on World Wide Web, ACM
(2013).

[110] A. Klein, H. Shulman, andM.Waidner, Counting in the Dark: Caches Discovery
and Enumeration in the Internet, In The 47th IEEE/IFIP International Confer
ence on Dependable Systems and Networks (DSN) (2017).

[111] A. Klein, H. Shulman, and M. Waidner, Internet-Wide Study of DNS Cache In
jections, In INFOCOM (2017).

[112] J. Knockel and J.R. Crandall, Counting Packets Sent Between Arbitrary Inter
net Hosts., In FOCI (2014).

[113] V. Kolesnikov and T. Schneider, Improved Garbled Circuit: Free XOR Gates
and Applications, In ICALP (2) (Springer, 2008).

160 Bibliography

[114] H. Krawczyk and P. Eronen, HMAC-based Extract-and-Expand Key Derivation
Function (HKDF), RFC, no. 5869 (RFC Editor, 2010).

[115] B. Kreuter, Secure multiparty computation at Google, In Real World Crypto
Conference (RWC) (2017).

[116] mapsofworld.com, Top Ten Countries with Highest number of PCs, https:/
/www.mapsofworld.com/world-top-ten/world-top-ten-personal-computers
-users-map.html (unpublished).

[117] B. Laurie, A. Langley, and E. Kasper, Certificate transparency, Technical report
(2013).

[118] LavaRnd.org, LavaRndNumber Generator, http://www.lavarnd.org/lavarnd.html
(2000).

[119] C. Liu, X.S. Wang, K. Nayak, Y. Huang, and E. Shi, ObliVM: A Programming
Framework for Secure Computation, In IEEE Symposium on Security and Pri
vacy (IEEE Computer Society, 2015).

[120] S. Liu, T. Basar, and R. Srikant, TCP-Illinois: A loss- and delay-based con
gestion control algorithm for high-speed networks, Perform. Eval. 65(6-7),
417–440 (2008).

[121] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, Fairplay - Secure Two-Party Com
putation System, In USENIX Security Symposium (USENIX, 2004).

[122] L. Mamakos, K. Lidl, J. Evarts, D. Carrel, D. Simone, and R. Wheeler, A Method
forTransmittingPPPOver Ethernet (PPPoE), RFC, no. 2516 (RFCEditor, 1999).
(http://www.rfc-editor.org/rfc/rfc2516.txt)

[123] P. Mockapetris, Domain names - implementation and specification, STD, no.
13 (RFC Editor, 1987). (http://www.rfc-editor.org/rfc/rfc1035.txt)

[124] J. Mogul and S. Deering, Path MTU discovery, RFC, no. 1191 (RFC Editor,
1990). (http://www.rfc-editor.org/rfc/rfc1191.txt)

[125] J. Nagle, Congestion control in IP/TCP internetworks, RFC 896 (1984).

161

[126] M. Naor and B. Pinkas, Efficient oblivious transfer protocols, In SODA
(ACM/SIAM, 2001).

[127] M. Naor, B. Pinkas, and R. Sumner, Privacy preserving auctions and mecha
nism design, In EC (1999).

[128] Netcraft, SSL Survey, https://www.netcraft.com/internet-data-mining/ssl-survey/
(2018).

[129] J.B. Nielsen, T. Schneider, and R. Trifiletti, Constant RoundMaliciously Secure
2PC with Function-independent Preprocessing using LEGO, In NDSS (The In
ternet Society, 2017).

[130] H. Obata, K. Tamehiro, and K. Ishida, Experimental evaluation of TCP-STAR
for satellite Internet over WINDS, In 2011 Tenth International Symposium on
Autonomous Decentralized Systems (ISADS), IEEE (2011).

[131] K. Park, V.S. Pai, L.L. Peterson, and Z. Wang, CoDNS: Improving DNS Perfor
mance and Reliability via Cooperative Lookups., In OSDI (2004).

[132] B. Pinkas, T. Schneider, N.P. Smart, and S.C.Williams, Secure Two-Party Com
putation Is Practical, In ASIACRYPT (Springer, 2009).

[133] B. Pinkas, T. Schneider, and M. Zohner, Scalable Private Set Intersection
Based on OT Extension, ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018).

[134] L. Poole and V.S. Pai, ConfiDNS: Leveraging Scale andHistory to Improve DNS
Security., In WORLDS (2006).

[135] J. Postel, User Datagram Protocol, STD, no. 6 (RFC Editor, 1980). (http://www
.rfc-editor.org/rfc/rfc768.txt)

[136] J. Postel, Internet Protocol, STD, no. 5 (RFC Editor, 1981). (http://www.rfc
-editor.org/rfc/rfc791.txt)

[137] T. Ristenpart and S. Yilek, When Good Randomness Goes Bad: Virtual Ma
chine Reset Vulnerabilities and Hedging Deployed Cryptography., In NDSS
(2010).

162 Bibliography

[138] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, A statistical test suite
for random and pseudorandom number generators for cryptographic applica
tions, Technical report (Booz-Allen and Hamilton Inc Mclean Va, 2001).

[139] T. Schneider and M. Zohner, GMW vs. Yao? Efficient Secure Two-Party Com
putation with Low Depth Circuits, In Financial Cryptography (Springer, 2013).

[140] K. Schomp, T. Callahan, M. Rabinovich, and M. Allman, On measuring the
client-side DNS infrastructure, In Proceedings of the 2013 conference on In
ternet measurement conference, ACM (2013).

[141] S. Schrauger, The story of how WoSign gave me an SSL certificate for
GitHub.com, https://www.schrauger.com/the-story-of-how-wosign
-gave-me-an-ssl-certificate-for-github-com (2016).

[142] SharonGoldberg,Themyetherwallet.comhijack andwhy it's risky to hold cryp
tocurrency in a webapp, https://medium.com/@goldbe/the-myetherwallet-com
-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
(2018).

[143] SharonGoldberg,Themyetherwallet.comhijack andwhy it's risky to hold cryp
tocurrency in a webapp, https://medium.com/@goldbe/the-myetherwallet-com
-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
(2018).

[144] H. Shulman and M. Waidner, Fragmentation Considered Leaking: Port In
ference for DNS Poisoning, In Applied Cryptography and Network Security
(ACNS), Lausanne, Switzerland, Springer (2014).

[145] H. Shulman andM. Waidner, Towards Security of Internet Naming Infrastruc
ture, In European Symposium on Research in Computer Security, Springer
(2015).

[146] H. Shulman andM.Waidner, One Key to SignThemAll Considered Vulnerable:
Evaluation of DNSSEC in the Internet., In NSDI (2017).

[147] SolarWindsWorldwide, LLC,GNS3 - The software that empowers network pro
fessionals, https://www.gns3.com (unpublished).

163

[148] S. Son and V. Shmatikov, The Hitchhikers Guide to DNS Cache Poisoning,
Security and Privacy in Communication Networks 466–483 (2010).

[149] Stanford University, Stanford Internet Research Data Repository, https://scans
.io/ (unpublished).

[150] E. Syta, P. Jovanovic, E.K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M.J. Fischer,
and B. Ford, Scalable bias-resistant distributed randomness, In Security and
Privacy (SP), 2017 IEEE Symposium on, Ieee (2017).

[151] P. Szalachowski, S. Matsumoto, and A. Perrig, PoliCert: Secure and flexible
TLS certificate management, In Proceedings of the 2014 ACM SIGSAC Con
ference on Computer and Communications Security, ACM (2014).

[152] TeamCYMRU, IP to ASNMapping Service, https://team-cymru.com/community
-services/ip-asn-mapping/ (unpublished).

[153] The TOR project, Consensus Health, https://consensus-health.torproject.org
(unpublished).

[154] The TOR project, Tor Protocol Specification, https://2019.www.torproject.org
/docs/faq.html.en#ChoosePathLength (unpublished).

[155] The TOR project, Tor Protocol Specification, https://gitweb.torproject.org
/torspec.git/tree/tor-spec.txt (unpublished).

[156] X. Wang, A.J. Malozemoff, and J. Katz, EMP-toolkit: Efficient MultiParty com
putation toolkit, https://github.com/emp-toolkit (2016).

[157] X. Wang, S. Ranellucci, and J. Katz, Authenticated Garbling and Efficient Ma
liciously Secure Two-Party Computation, In CCS (ACM, 2017).

[158] D.X. Wei, C. Jin, S.H. Low, and S. Hegde, FAST TCP: motivation, architecture,
algorithms, performance, IEEE/ACM Trans. Netw. 16(6), 1246–1259 (2006).

[159] D. Wendlandt, D.G. Andersen, and A. Perrig, Perspectives: Improving SSH-
style Host Authentication with Multi-Path Probing., In USENIX Annual Tech
nical Conference (2008).

164 Bibliography

[160] H. Wu, Z. Feng, C. Guo, and Y. Zhang, ICTCP: Incast Congestion Control for
TCP in data center networks, In CoNEXT (ACM, 2010).

[161] H. Wu, Z. Feng, C. Guo, and Y. Zhang, ICTCP: Incast congestion control for
TCP in data-center networks, IEEE/ACM Transactions on Networking (ToN)
21(2), 345–358 (2013).

[162] W3Techs, Usage statistics of SSL certificate authorities for websites, https:/
/w3techs.com/technologies/overview/ssl_certificate (2018).

[163] H. Yang, E. Osterweil, D. Massey, S. Lu, and L. Zhang, Deploying cryptography
in Internet-scale systems: A case study on DNSSEC, Dependable and Secure
Computing, IEEE Transactions on 8(5), 656–669 (2011).

[164] A.C.C. Yao, How to Generate and Exchange Secrets (Extended Abstract), In
FOCS (IEEE Computer Society, 1986).

[165] E.A. Yfantis and J.B. Pedersen, Random number generators: Metrics and
tests for uniformity and randomness, JCMCC. The Journal of Combinatorial
Mathematics and Combinatorial Computing 74 (2010).

[166] S. Zahur, M. Rosulek, andD. Evans, TwoHalvesMake aWhole - ReducingData
Transfer in Garbled Circuits Using Half Gates, In EUROCRYPT (2) (Springer,
2015).

